--- _id: '15082' abstract: - lang: eng text: "Two plane drawings of geometric graphs on the same set of points are called disjoint compatible if their union is plane and they do not have an edge in common. For a given set S of 2n points two plane drawings of perfect matchings M1 and M2 (which do not need to be disjoint nor compatible) are disjoint tree-compatible if there exists a plane drawing of a spanning tree T on S which is disjoint compatible to both M1 and M2.\r\nWe show that the graph of all disjoint tree-compatible perfect geometric matchings on 2n points in convex position is connected if and only if 2n ≥ 10. Moreover, in that case the diameter\r\nof this graph is either 4 or 5, independent of n." acknowledgement: Research on this work was initiated at the 6th Austrian-Japanese-Mexican-Spanish Workshop on Discrete Geometry and continued during the 16th European Geometric Graph-Week, both held near Strobl, Austria. We are grateful to the participants for the inspiring atmosphere. We especially thank Alexander Pilz for bringing this class of problems to our attention and Birgit Vogtenhuber for inspiring discussions. D.P. is partially supported by the FWF grant I 3340-N35 (Collaborative DACH project Arrangements and Drawings). The research stay of P.P. at IST Austria is funded by the project CZ.02.2.69/0.0/0.0/17_050/0008466 Improvement of internationalization in the field of research and development at Charles University, through the support of quality projects MSCA-IF. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 734922. article_number: '56' article_processing_charge: No author: - first_name: Oswin full_name: Aichholzer, Oswin last_name: Aichholzer - first_name: Julia full_name: Obmann, Julia last_name: Obmann - first_name: Pavel full_name: Patak, Pavel id: B593B804-1035-11EA-B4F1-947645A5BB83 last_name: Patak - first_name: Daniel full_name: Perz, Daniel last_name: Perz - first_name: Josef full_name: Tkadlec, Josef id: 3F24CCC8-F248-11E8-B48F-1D18A9856A87 last_name: Tkadlec orcid: 0000-0002-1097-9684 citation: ama: 'Aichholzer O, Obmann J, Patak P, Perz D, Tkadlec J. Disjoint tree-compatible plane perfect matchings. In: 36th European Workshop on Computational Geometry. ; 2020.' apa: Aichholzer, O., Obmann, J., Patak, P., Perz, D., & Tkadlec, J. (2020). Disjoint tree-compatible plane perfect matchings. In 36th European Workshop on Computational Geometry. Würzburg, Germany, Virtual. chicago: Aichholzer, Oswin, Julia Obmann, Pavel Patak, Daniel Perz, and Josef Tkadlec. “Disjoint Tree-Compatible Plane Perfect Matchings.” In 36th European Workshop on Computational Geometry, 2020. ieee: O. Aichholzer, J. Obmann, P. Patak, D. Perz, and J. Tkadlec, “Disjoint tree-compatible plane perfect matchings,” in 36th European Workshop on Computational Geometry, Würzburg, Germany, Virtual, 2020. ista: 'Aichholzer O, Obmann J, Patak P, Perz D, Tkadlec J. 2020. Disjoint tree-compatible plane perfect matchings. 36th European Workshop on Computational Geometry. EuroCG: European Workshop on Computational Geometry, 56.' mla: Aichholzer, Oswin, et al. “Disjoint Tree-Compatible Plane Perfect Matchings.” 36th European Workshop on Computational Geometry, 56, 2020. short: O. Aichholzer, J. Obmann, P. Patak, D. Perz, J. Tkadlec, in:, 36th European Workshop on Computational Geometry, 2020. conference: end_date: 2020-03-18 location: Würzburg, Germany, Virtual name: 'EuroCG: European Workshop on Computational Geometry' start_date: 2020-03-16 date_created: 2024-03-05T08:57:17Z date_published: 2020-04-01T00:00:00Z date_updated: 2024-03-05T09:00:07Z day: '01' department: - _id: KrCh - _id: UlWa language: - iso: eng main_file_link: - open_access: '1' url: https://www1.pub.informatik.uni-wuerzburg.de/eurocg2020/data/uploads/papers/eurocg20_paper_56.pdf month: '04' oa: 1 oa_version: Published Version publication: 36th European Workshop on Computational Geometry publication_status: published quality_controlled: '1' status: public title: Disjoint tree-compatible plane perfect matchings type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ... --- _id: '7810' abstract: - lang: eng text: "Interprocedural data-flow analyses form an expressive and useful paradigm of numerous static analysis applications, such as live variables analysis, alias analysis and null pointers analysis. The most widely-used framework for interprocedural data-flow analysis is IFDS, which encompasses distributive data-flow functions over a finite domain. On-demand data-flow analyses restrict the focus of the analysis on specific program locations and data facts. This setting provides a natural split between (i) an offline (or preprocessing) phase, where the program is partially analyzed and analysis summaries are created, and (ii) an online (or query) phase, where analysis queries arrive on demand and the summaries are used to speed up answering queries.\r\nIn this work, we consider on-demand IFDS analyses where the queries concern program locations of the same procedure (aka same-context queries). We exploit the fact that flow graphs of programs have low treewidth to develop faster algorithms that are space and time optimal for many common data-flow analyses, in both the preprocessing and the query phase. We also use treewidth to develop query solutions that are embarrassingly parallelizable, i.e. the total work for answering each query is split to a number of threads such that each thread performs only a constant amount of work. Finally, we implement a static analyzer based on our algorithms, and perform a series of on-demand analysis experiments on standard benchmarks. Our experimental results show a drastic speed-up of the queries after only a lightweight preprocessing phase, which significantly outperforms existing techniques." alternative_title: - LNCS article_processing_charge: No author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Amir Kafshdar full_name: Goharshady, Amir Kafshdar id: 391365CE-F248-11E8-B48F-1D18A9856A87 last_name: Goharshady orcid: 0000-0003-1702-6584 - first_name: Rasmus full_name: Ibsen-Jensen, Rasmus id: 3B699956-F248-11E8-B48F-1D18A9856A87 last_name: Ibsen-Jensen orcid: 0000-0003-4783-0389 - first_name: Andreas full_name: Pavlogiannis, Andreas id: 49704004-F248-11E8-B48F-1D18A9856A87 last_name: Pavlogiannis orcid: 0000-0002-8943-0722 citation: ama: 'Chatterjee K, Goharshady AK, Ibsen-Jensen R, Pavlogiannis A. Optimal and perfectly parallel algorithms for on-demand data-flow analysis. In: European Symposium on Programming. Vol 12075. Springer Nature; 2020:112-140. doi:10.1007/978-3-030-44914-8_5' apa: 'Chatterjee, K., Goharshady, A. K., Ibsen-Jensen, R., & Pavlogiannis, A. (2020). Optimal and perfectly parallel algorithms for on-demand data-flow analysis. In European Symposium on Programming (Vol. 12075, pp. 112–140). Dublin, Ireland: Springer Nature. https://doi.org/10.1007/978-3-030-44914-8_5' chicago: Chatterjee, Krishnendu, Amir Kafshdar Goharshady, Rasmus Ibsen-Jensen, and Andreas Pavlogiannis. “Optimal and Perfectly Parallel Algorithms for On-Demand Data-Flow Analysis.” In European Symposium on Programming, 12075:112–40. Springer Nature, 2020. https://doi.org/10.1007/978-3-030-44914-8_5. ieee: K. Chatterjee, A. K. Goharshady, R. Ibsen-Jensen, and A. Pavlogiannis, “Optimal and perfectly parallel algorithms for on-demand data-flow analysis,” in European Symposium on Programming, Dublin, Ireland, 2020, vol. 12075, pp. 112–140. ista: 'Chatterjee K, Goharshady AK, Ibsen-Jensen R, Pavlogiannis A. 2020. Optimal and perfectly parallel algorithms for on-demand data-flow analysis. European Symposium on Programming. ESOP: Programming Languages and Systems, LNCS, vol. 12075, 112–140.' mla: Chatterjee, Krishnendu, et al. “Optimal and Perfectly Parallel Algorithms for On-Demand Data-Flow Analysis.” European Symposium on Programming, vol. 12075, Springer Nature, 2020, pp. 112–40, doi:10.1007/978-3-030-44914-8_5. short: K. Chatterjee, A.K. Goharshady, R. Ibsen-Jensen, A. Pavlogiannis, in:, European Symposium on Programming, Springer Nature, 2020, pp. 112–140. conference: end_date: 2020-04-30 location: Dublin, Ireland name: 'ESOP: Programming Languages and Systems' start_date: 2020-04-25 date_created: 2020-05-10T22:00:50Z date_published: 2020-04-18T00:00:00Z date_updated: 2024-03-28T23:30:34Z day: '18' ddc: - '000' department: - _id: KrCh doi: 10.1007/978-3-030-44914-8_5 external_id: isi: - '000681656800005' file: - access_level: open_access checksum: 8618b80f4cf7b39a60e61a6445ad9807 content_type: application/pdf creator: dernst date_created: 2020-05-26T13:34:48Z date_updated: 2020-07-14T12:48:03Z file_id: '7895' file_name: 2020_LNCS_Chatterjee.pdf file_size: 651250 relation: main_file file_date_updated: 2020-07-14T12:48:03Z has_accepted_license: '1' intvolume: ' 12075' isi: 1 language: - iso: eng license: https://creativecommons.org/licenses/by/4.0/ month: '04' oa: 1 oa_version: Published Version page: 112-140 project: - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering - _id: 25892FC0-B435-11E9-9278-68D0E5697425 grant_number: ICT15-003 name: Efficient Algorithms for Computer Aided Verification - _id: 266EEEC0-B435-11E9-9278-68D0E5697425 name: Quantitative Game-theoretic Analysis of Blockchain Applications and Smart Contracts - _id: 267066CE-B435-11E9-9278-68D0E5697425 name: Quantitative Analysis of Probablistic Systems with a focus on Crypto-currencies publication: European Symposium on Programming publication_identifier: eissn: - '16113349' isbn: - '9783030449131' issn: - '03029743' publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: record: - id: '8934' relation: dissertation_contains status: public scopus_import: '1' status: public title: Optimal and perfectly parallel algorithms for on-demand data-flow analysis tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 12075 year: '2020' ... --- _id: '8728' abstract: - lang: eng text: Discrete-time Markov Chains (MCs) and Markov Decision Processes (MDPs) are two standard formalisms in system analysis. Their main associated quantitative objectives are hitting probabilities, discounted sum, and mean payoff. Although there are many techniques for computing these objectives in general MCs/MDPs, they have not been thoroughly studied in terms of parameterized algorithms, particularly when treewidth is used as the parameter. This is in sharp contrast to qualitative objectives for MCs, MDPs and graph games, for which treewidth-based algorithms yield significant complexity improvements. In this work, we show that treewidth can also be used to obtain faster algorithms for the quantitative problems. For an MC with n states and m transitions, we show that each of the classical quantitative objectives can be computed in O((n+m)⋅t2) time, given a tree decomposition of the MC with width t. Our results also imply a bound of O(κ⋅(n+m)⋅t2) for each objective on MDPs, where κ is the number of strategy-iteration refinements required for the given input and objective. Finally, we make an experimental evaluation of our new algorithms on low-treewidth MCs and MDPs obtained from the DaCapo benchmark suite. Our experiments show that on low-treewidth MCs and MDPs, our algorithms outperform existing well-established methods by one or more orders of magnitude. alternative_title: - LNCS article_processing_charge: No author: - first_name: Ali full_name: Asadi, Ali last_name: Asadi - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Amir Kafshdar full_name: Goharshady, Amir Kafshdar id: 391365CE-F248-11E8-B48F-1D18A9856A87 last_name: Goharshady orcid: 0000-0003-1702-6584 - first_name: Kiarash full_name: Mohammadi, Kiarash last_name: Mohammadi - first_name: Andreas full_name: Pavlogiannis, Andreas id: 49704004-F248-11E8-B48F-1D18A9856A87 last_name: Pavlogiannis orcid: 0000-0002-8943-0722 citation: ama: 'Asadi A, Chatterjee K, Goharshady AK, Mohammadi K, Pavlogiannis A. Faster algorithms for quantitative analysis of MCs and MDPs with small treewidth. In: Automated Technology for Verification and Analysis. Vol 12302. Springer Nature; 2020:253-270. doi:10.1007/978-3-030-59152-6_14' apa: 'Asadi, A., Chatterjee, K., Goharshady, A. K., Mohammadi, K., & Pavlogiannis, A. (2020). Faster algorithms for quantitative analysis of MCs and MDPs with small treewidth. In Automated Technology for Verification and Analysis (Vol. 12302, pp. 253–270). Hanoi, Vietnam: Springer Nature. https://doi.org/10.1007/978-3-030-59152-6_14' chicago: Asadi, Ali, Krishnendu Chatterjee, Amir Kafshdar Goharshady, Kiarash Mohammadi, and Andreas Pavlogiannis. “Faster Algorithms for Quantitative Analysis of MCs and MDPs with Small Treewidth.” In Automated Technology for Verification and Analysis, 12302:253–70. Springer Nature, 2020. https://doi.org/10.1007/978-3-030-59152-6_14. ieee: A. Asadi, K. Chatterjee, A. K. Goharshady, K. Mohammadi, and A. Pavlogiannis, “Faster algorithms for quantitative analysis of MCs and MDPs with small treewidth,” in Automated Technology for Verification and Analysis, Hanoi, Vietnam, 2020, vol. 12302, pp. 253–270. ista: 'Asadi A, Chatterjee K, Goharshady AK, Mohammadi K, Pavlogiannis A. 2020. Faster algorithms for quantitative analysis of MCs and MDPs with small treewidth. Automated Technology for Verification and Analysis. ATVA: Automated Technology for Verification and Analysis, LNCS, vol. 12302, 253–270.' mla: Asadi, Ali, et al. “Faster Algorithms for Quantitative Analysis of MCs and MDPs with Small Treewidth.” Automated Technology for Verification and Analysis, vol. 12302, Springer Nature, 2020, pp. 253–70, doi:10.1007/978-3-030-59152-6_14. short: A. Asadi, K. Chatterjee, A.K. Goharshady, K. Mohammadi, A. Pavlogiannis, in:, Automated Technology for Verification and Analysis, Springer Nature, 2020, pp. 253–270. conference: end_date: 2020-10-23 location: Hanoi, Vietnam name: 'ATVA: Automated Technology for Verification and Analysis' start_date: 2020-10-19 date_created: 2020-11-06T07:30:05Z date_published: 2020-10-12T00:00:00Z date_updated: 2024-03-28T23:30:34Z day: '12' ddc: - '000' department: - _id: KrCh doi: 10.1007/978-3-030-59152-6_14 external_id: isi: - '000723555700014' file: - access_level: open_access checksum: ae83f27e5b189d5abc2e7514f1b7e1b5 content_type: application/pdf creator: dernst date_created: 2020-11-06T07:41:03Z date_updated: 2020-11-06T07:41:03Z file_id: '8729' file_name: 2020_LNCS_ATVA_Asadi_accepted.pdf file_size: 726648 relation: main_file success: 1 file_date_updated: 2020-11-06T07:41:03Z has_accepted_license: '1' intvolume: ' 12302' isi: 1 language: - iso: eng month: '10' oa: 1 oa_version: Submitted Version page: 253-270 project: - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering - _id: 25892FC0-B435-11E9-9278-68D0E5697425 grant_number: ICT15-003 name: Efficient Algorithms for Computer Aided Verification - _id: 267066CE-B435-11E9-9278-68D0E5697425 name: Quantitative Analysis of Probablistic Systems with a focus on Crypto-currencies publication: Automated Technology for Verification and Analysis publication_identifier: eisbn: - '9783030591526' eissn: - 1611-3349 isbn: - '9783030591519' issn: - 0302-9743 publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: record: - id: '8934' relation: dissertation_contains status: public scopus_import: '1' status: public title: Faster algorithms for quantitative analysis of MCs and MDPs with small treewidth type: conference user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 12302 year: '2020' ... --- _id: '8089' abstract: - lang: eng text: "We consider the classical problem of invariant generation for programs with polynomial assignments and focus on synthesizing invariants that are a conjunction of strict polynomial inequalities. We present a sound and semi-complete method based on positivstellensaetze, i.e. theorems in semi-algebraic geometry that characterize positive polynomials over a semi-algebraic set.\r\n\r\nOn the theoretical side, the worst-case complexity of our approach is subexponential, whereas the worst-case complexity of the previous complete method (Kapur, ACA 2004) is doubly-exponential. Even when restricted to linear invariants, the best previous complexity for complete invariant generation is exponential (Colon et al, CAV 2003). On the practical side, we reduce the invariant generation problem to quadratic programming (QCLP), which is a classical optimization problem with many industrial solvers. We demonstrate the applicability of our approach by providing experimental results on several academic benchmarks. To the best of our knowledge, the only previous invariant generation method that provides completeness guarantees for invariants consisting of polynomial inequalities is (Kapur, ACA 2004), which relies on quantifier elimination and cannot even handle toy programs such as our running example." article_processing_charge: No author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Hongfei full_name: Fu, Hongfei id: 3AAD03D6-F248-11E8-B48F-1D18A9856A87 last_name: Fu - first_name: Amir Kafshdar full_name: Goharshady, Amir Kafshdar id: 391365CE-F248-11E8-B48F-1D18A9856A87 last_name: Goharshady orcid: 0000-0003-1702-6584 - first_name: Ehsan Kafshdar full_name: Goharshady, Ehsan Kafshdar last_name: Goharshady citation: ama: 'Chatterjee K, Fu H, Goharshady AK, Goharshady EK. Polynomial invariant generation for non-deterministic recursive programs. In: Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation. Association for Computing Machinery; 2020:672-687. doi:10.1145/3385412.3385969' apa: 'Chatterjee, K., Fu, H., Goharshady, A. K., & Goharshady, E. K. (2020). Polynomial invariant generation for non-deterministic recursive programs. In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation (pp. 672–687). London, United Kingdom: Association for Computing Machinery. https://doi.org/10.1145/3385412.3385969' chicago: Chatterjee, Krishnendu, Hongfei Fu, Amir Kafshdar Goharshady, and Ehsan Kafshdar Goharshady. “Polynomial Invariant Generation for Non-Deterministic Recursive Programs.” In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation, 672–87. Association for Computing Machinery, 2020. https://doi.org/10.1145/3385412.3385969. ieee: K. Chatterjee, H. Fu, A. K. Goharshady, and E. K. Goharshady, “Polynomial invariant generation for non-deterministic recursive programs,” in Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation, London, United Kingdom, 2020, pp. 672–687. ista: 'Chatterjee K, Fu H, Goharshady AK, Goharshady EK. 2020. Polynomial invariant generation for non-deterministic recursive programs. Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation. PLDI: Programming Language Design and Implementation, 672–687.' mla: Chatterjee, Krishnendu, et al. “Polynomial Invariant Generation for Non-Deterministic Recursive Programs.” Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation, Association for Computing Machinery, 2020, pp. 672–87, doi:10.1145/3385412.3385969. short: K. Chatterjee, H. Fu, A.K. Goharshady, E.K. Goharshady, in:, Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation, Association for Computing Machinery, 2020, pp. 672–687. conference: end_date: 2020-06-20 location: London, United Kingdom name: 'PLDI: Programming Language Design and Implementation' start_date: 2020-06-15 date_created: 2020-07-05T22:00:45Z date_published: 2020-06-11T00:00:00Z date_updated: 2024-03-28T23:30:34Z day: '11' department: - _id: KrCh doi: 10.1145/3385412.3385969 external_id: arxiv: - '1902.04373' isi: - '000614622300045' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1902.04373 month: '06' oa: 1 oa_version: Preprint page: 672-687 project: - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering - _id: 25892FC0-B435-11E9-9278-68D0E5697425 grant_number: ICT15-003 name: Efficient Algorithms for Computer Aided Verification publication: Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation publication_identifier: isbn: - '9781450376136' publication_status: published publisher: Association for Computing Machinery quality_controlled: '1' related_material: record: - id: '8934' relation: dissertation_contains status: public scopus_import: '1' status: public title: Polynomial invariant generation for non-deterministic recursive programs type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ... --- _id: '6918' abstract: - lang: eng text: "We consider the classic problem of Network Reliability. A network is given together with a source vertex, one or more target vertices, and probabilities assigned to each of the edges. Each edge of the network is operable with its associated probability and the problem is to determine the probability of having at least one source-to-target path that is entirely composed of operable edges. This problem is known to be NP-hard.\r\n\r\nWe provide a novel scalable algorithm to solve the Network Reliability problem when the treewidth of the underlying network is small. We also show our algorithm’s applicability for real-world transit networks that have small treewidth, including the metro networks of major cities, such as London and Tokyo. Our algorithm leverages tree decompositions to shrink the original graph into much smaller graphs, for which reliability can be efficiently and exactly computed using a brute force method. To the best of our knowledge, this is the first exact algorithm for Network Reliability that can scale to handle real-world instances of the problem." acknowledgement: We are grateful to the anonymous reviewers for their comments, which significantly improved the present work. The research was partially supported by the EPSRC Early Career Fellowship EP/R023379/1, grant no. SC7-1718-01 of the London Mathematical Society, an IBM PhD Fellowship, and a DOC Fellowship of the Austrian Academy of Sciences (ÖAW). article_number: '106665' article_processing_charge: No article_type: original author: - first_name: Amir Kafshdar full_name: Goharshady, Amir Kafshdar id: 391365CE-F248-11E8-B48F-1D18A9856A87 last_name: Goharshady orcid: 0000-0003-1702-6584 - first_name: Fatemeh full_name: Mohammadi, Fatemeh last_name: Mohammadi citation: ama: Goharshady AK, Mohammadi F. An efficient algorithm for computing network reliability in small treewidth. Reliability Engineering and System Safety. 2020;193. doi:10.1016/j.ress.2019.106665 apa: Goharshady, A. K., & Mohammadi, F. (2020). An efficient algorithm for computing network reliability in small treewidth. Reliability Engineering and System Safety. Elsevier. https://doi.org/10.1016/j.ress.2019.106665 chicago: Goharshady, Amir Kafshdar, and Fatemeh Mohammadi. “An Efficient Algorithm for Computing Network Reliability in Small Treewidth.” Reliability Engineering and System Safety. Elsevier, 2020. https://doi.org/10.1016/j.ress.2019.106665. ieee: A. K. Goharshady and F. Mohammadi, “An efficient algorithm for computing network reliability in small treewidth,” Reliability Engineering and System Safety, vol. 193. Elsevier, 2020. ista: Goharshady AK, Mohammadi F. 2020. An efficient algorithm for computing network reliability in small treewidth. Reliability Engineering and System Safety. 193, 106665. mla: Goharshady, Amir Kafshdar, and Fatemeh Mohammadi. “An Efficient Algorithm for Computing Network Reliability in Small Treewidth.” Reliability Engineering and System Safety, vol. 193, 106665, Elsevier, 2020, doi:10.1016/j.ress.2019.106665. short: A.K. Goharshady, F. Mohammadi, Reliability Engineering and System Safety 193 (2020). date_created: 2019-09-29T22:00:44Z date_published: 2020-01-01T00:00:00Z date_updated: 2024-03-28T23:30:34Z day: '01' department: - _id: KrCh doi: 10.1016/j.ress.2019.106665 external_id: arxiv: - '1712.09692' isi: - '000501641400050' intvolume: ' 193' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1712.09692 month: '01' oa: 1 oa_version: Preprint project: - _id: 266EEEC0-B435-11E9-9278-68D0E5697425 name: Quantitative Game-theoretic Analysis of Blockchain Applications and Smart Contracts publication: Reliability Engineering and System Safety publication_identifier: issn: - '09518320' publication_status: published publisher: Elsevier quality_controlled: '1' related_material: record: - id: '8934' relation: dissertation_contains status: public scopus_import: '1' status: public title: An efficient algorithm for computing network reliability in small treewidth type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 193 year: '2020' ... --- _id: '6887' abstract: - lang: eng text: 'The fundamental model-checking problem, given as input a model and a specification, asks for the algorithmic verification of whether the model satisfies the specification. Two classical models for reactive systems are graphs and Markov decision processes (MDPs). A basic specification formalism in the verification of reactive systems is the strong fairness (aka Streett) objective, where given different types of requests and corresponding grants, the requirement is that for each type, if the request event happens infinitely often, then the corresponding grant event must also happen infinitely often. All omega-regular objectives can be expressed as Streett objectives and hence they are canonical in verification. Consider graphs/MDPs with n vertices, m edges, and a Streett objectives with k pairs, and let b denote the size of the description of the Streett objective for the sets of requests and grants. The current best-known algorithm for the problem requires time O(min(n^2, m sqrt{m log n}) + b log n). In this work we present randomized near-linear time algorithms, with expected running time O~(m + b), where the O~ notation hides poly-log factors. Our randomized algorithms are near-linear in the size of the input, and hence optimal up to poly-log factors. ' alternative_title: - LIPIcs article_number: '7' article_processing_charge: No author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Wolfgang full_name: Dvorák, Wolfgang last_name: Dvorák - first_name: Monika H full_name: Henzinger, Monika H id: 540c9bbd-f2de-11ec-812d-d04a5be85630 last_name: Henzinger orcid: 0000-0002-5008-6530 - first_name: Alexander full_name: Svozil, Alexander last_name: Svozil citation: ama: 'Chatterjee K, Dvorák W, Henzinger MH, Svozil A. Near-linear time algorithms for Streett objectives in graphs and MDPs. In: Leibniz International Proceedings in Informatics. Vol 140. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2019. doi:10.4230/LIPICS.CONCUR.2019.7' apa: 'Chatterjee, K., Dvorák, W., Henzinger, M. H., & Svozil, A. (2019). Near-linear time algorithms for Streett objectives in graphs and MDPs. In Leibniz International Proceedings in Informatics (Vol. 140). Amsterdam, Netherlands: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPICS.CONCUR.2019.7' chicago: Chatterjee, Krishnendu, Wolfgang Dvorák, Monika H Henzinger, and Alexander Svozil. “Near-Linear Time Algorithms for Streett Objectives in Graphs and MDPs.” In Leibniz International Proceedings in Informatics, Vol. 140. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. https://doi.org/10.4230/LIPICS.CONCUR.2019.7. ieee: K. Chatterjee, W. Dvorák, M. H. Henzinger, and A. Svozil, “Near-linear time algorithms for Streett objectives in graphs and MDPs,” in Leibniz International Proceedings in Informatics, Amsterdam, Netherlands, 2019, vol. 140. ista: 'Chatterjee K, Dvorák W, Henzinger MH, Svozil A. 2019. Near-linear time algorithms for Streett objectives in graphs and MDPs. Leibniz International Proceedings in Informatics. CONCUR: International Conference on Concurrency Theory, LIPIcs, vol. 140, 7.' mla: Chatterjee, Krishnendu, et al. “Near-Linear Time Algorithms for Streett Objectives in Graphs and MDPs.” Leibniz International Proceedings in Informatics, vol. 140, 7, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019, doi:10.4230/LIPICS.CONCUR.2019.7. short: K. Chatterjee, W. Dvorák, M.H. Henzinger, A. Svozil, in:, Leibniz International Proceedings in Informatics, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. conference: end_date: 2019-08-30 location: Amsterdam, Netherlands name: 'CONCUR: International Conference on Concurrency Theory' start_date: 2019-08-27 date_created: 2019-09-18T08:07:58Z date_published: 2019-08-01T00:00:00Z date_updated: 2022-08-12T10:54:34Z day: '01' ddc: - '000' department: - _id: KrCh doi: 10.4230/LIPICS.CONCUR.2019.7 ec_funded: 1 file: - access_level: open_access checksum: e1f0e4061212454574f34a1368d018ec content_type: application/pdf creator: kschuh date_created: 2019-10-01T08:20:30Z date_updated: 2020-07-14T12:47:43Z file_id: '6922' file_name: 2019_LIPIcs_Chatterjee.pdf file_size: 730112 relation: main_file file_date_updated: 2020-07-14T12:47:43Z has_accepted_license: '1' intvolume: ' 140' language: - iso: eng month: '08' oa: 1 oa_version: Published Version project: - _id: 25863FF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11407 name: Game Theory - _id: 2581B60A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '279307' name: 'Quantitative Graph Games: Theory and Applications' publication: Leibniz International Proceedings in Informatics publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik quality_controlled: '1' scopus_import: '1' status: public title: Near-linear time algorithms for Streett objectives in graphs and MDPs tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf volume: 140 year: '2019' ... --- _id: '6885' abstract: - lang: eng text: 'A vector addition system with states (VASS) consists of a finite set of states and counters. A configuration is a state and a value for each counter; a transition changes the state and each counter is incremented, decremented, or left unchanged. While qualitative properties such as state and configuration reachability have been studied for VASS, we consider the long-run average cost of infinite computations of VASS. The cost of a configuration is for each state, a linear combination of the counter values. In the special case of uniform cost functions, the linear combination is the same for all states. The (regular) long-run emptiness problem is, given a VASS, a cost function, and a threshold value, if there is a (lasso-shaped) computation such that the long-run average value of the cost function does not exceed the threshold. For uniform cost functions, we show that the regular long-run emptiness problem is (a) decidable in polynomial time for integer-valued VASS, and (b) decidable but nonelementarily hard for natural-valued VASS (i.e., nonnegative counters). For general cost functions, we show that the problem is (c) NP-complete for integer-valued VASS, and (d) undecidable for natural-valued VASS. Our most interesting result is for (c) integer-valued VASS with general cost functions, where we establish a connection between the regular long-run emptiness problem and quadratic Diophantine inequalities. The general (nonregular) long-run emptiness problem is equally hard as the regular problem in all cases except (c), where it remains open. ' alternative_title: - LIPIcs article_number: '27' author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000−0002−2985−7724 - first_name: Jan full_name: Otop, Jan last_name: Otop citation: ama: 'Chatterjee K, Henzinger TA, Otop J. Long-run average behavior of vector addition systems with states. In: Vol 140. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2019. doi:10.4230/LIPICS.CONCUR.2019.27' apa: 'Chatterjee, K., Henzinger, T. A., & Otop, J. (2019). Long-run average behavior of vector addition systems with states (Vol. 140). Presented at the CONCUR: International Conference on Concurrency Theory, Amsterdam, Netherlands: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPICS.CONCUR.2019.27' chicago: Chatterjee, Krishnendu, Thomas A Henzinger, and Jan Otop. “Long-Run Average Behavior of Vector Addition Systems with States,” Vol. 140. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. https://doi.org/10.4230/LIPICS.CONCUR.2019.27. ieee: 'K. Chatterjee, T. A. Henzinger, and J. Otop, “Long-run average behavior of vector addition systems with states,” presented at the CONCUR: International Conference on Concurrency Theory, Amsterdam, Netherlands, 2019, vol. 140.' ista: 'Chatterjee K, Henzinger TA, Otop J. 2019. Long-run average behavior of vector addition systems with states. CONCUR: International Conference on Concurrency Theory, LIPIcs, vol. 140, 27.' mla: Chatterjee, Krishnendu, et al. Long-Run Average Behavior of Vector Addition Systems with States. Vol. 140, 27, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019, doi:10.4230/LIPICS.CONCUR.2019.27. short: K. Chatterjee, T.A. Henzinger, J. Otop, in:, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. conference: end_date: 2019-08-30 location: Amsterdam, Netherlands name: 'CONCUR: International Conference on Concurrency Theory' start_date: 2019-08-27 date_created: 2019-09-18T08:06:14Z date_published: 2019-08-01T00:00:00Z date_updated: 2021-01-12T08:09:27Z day: '01' ddc: - '000' department: - _id: ToHe - _id: KrCh doi: 10.4230/LIPICS.CONCUR.2019.27 file: - access_level: open_access checksum: 4985e26e1572d1575d64d38acabd71d6 content_type: application/pdf creator: kschuh date_created: 2019-09-27T12:09:35Z date_updated: 2020-07-14T12:47:43Z file_id: '6914' file_name: 2019_LIPIcs_Chatterjee.pdf file_size: 538120 relation: main_file file_date_updated: 2020-07-14T12:47:43Z has_accepted_license: '1' intvolume: ' 140' language: - iso: eng month: '08' oa: 1 oa_version: Published Version project: - _id: 25863FF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11407 name: Game Theory - _id: 25F2ACDE-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11402-N23 name: Rigorous Systems Engineering publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik quality_controlled: '1' scopus_import: 1 status: public title: Long-run average behavior of vector addition systems with states tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 140 year: '2019' ... --- _id: '6889' abstract: - lang: eng text: 'We study Markov decision processes and turn-based stochastic games with parity conditions. There are three qualitative winning criteria, namely, sure winning, which requires all paths to satisfy the condition, almost-sure winning, which requires the condition to be satisfied with probability 1, and limit-sure winning, which requires the condition to be satisfied with probability arbitrarily close to 1. We study the combination of two of these criteria for parity conditions, e.g., there are two parity conditions one of which must be won surely, and the other almost-surely. The problem has been studied recently by Berthon et al. for MDPs with combination of sure and almost-sure winning, under infinite-memory strategies, and the problem has been established to be in NP cap co-NP. Even in MDPs there is a difference between finite-memory and infinite-memory strategies. Our main results for combination of sure and almost-sure winning are as follows: (a) we show that for MDPs with finite-memory strategies the problem is in NP cap co-NP; (b) we show that for turn-based stochastic games the problem is co-NP-complete, both for finite-memory and infinite-memory strategies; and (c) we present algorithmic results for the finite-memory case, both for MDPs and turn-based stochastic games, by reduction to non-stochastic parity games. In addition we show that all the above complexity results also carry over to combination of sure and limit-sure winning, and results for all other combinations can be derived from existing results in the literature. Thus we present a complete picture for the study of combinations of two qualitative winning criteria for parity conditions in MDPs and turn-based stochastic games. ' alternative_title: - LIPIcs article_number: '6' author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Nir full_name: Piterman, Nir last_name: Piterman citation: ama: 'Chatterjee K, Piterman N. Combinations of Qualitative Winning for Stochastic Parity Games. In: Vol 140. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2019. doi:10.4230/LIPICS.CONCUR.2019.6' apa: 'Chatterjee, K., & Piterman, N. (2019). Combinations of Qualitative Winning for Stochastic Parity Games (Vol. 140). Presented at the CONCUR: International Conference on Concurrency Theory, Amsterdam, Netherlands: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPICS.CONCUR.2019.6' chicago: Chatterjee, Krishnendu, and Nir Piterman. “Combinations of Qualitative Winning for Stochastic Parity Games,” Vol. 140. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. https://doi.org/10.4230/LIPICS.CONCUR.2019.6. ieee: 'K. Chatterjee and N. Piterman, “Combinations of Qualitative Winning for Stochastic Parity Games,” presented at the CONCUR: International Conference on Concurrency Theory, Amsterdam, Netherlands, 2019, vol. 140.' ista: 'Chatterjee K, Piterman N. 2019. Combinations of Qualitative Winning for Stochastic Parity Games. CONCUR: International Conference on Concurrency Theory, LIPIcs, vol. 140, 6.' mla: Chatterjee, Krishnendu, and Nir Piterman. Combinations of Qualitative Winning for Stochastic Parity Games. Vol. 140, 6, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019, doi:10.4230/LIPICS.CONCUR.2019.6. short: K. Chatterjee, N. Piterman, in:, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. conference: end_date: 2019-08-30 location: Amsterdam, Netherlands name: 'CONCUR: International Conference on Concurrency Theory' start_date: 2019-08-27 date_created: 2019-09-18T08:11:43Z date_published: 2019-08-01T00:00:00Z date_updated: 2021-01-12T08:09:28Z day: '01' ddc: - '000' department: - _id: KrCh doi: 10.4230/LIPICS.CONCUR.2019.6 file: - access_level: open_access checksum: 7b2ecfd4d9d02360308c0ca986fc10a7 content_type: application/pdf creator: kschuh date_created: 2019-10-01T08:49:45Z date_updated: 2020-07-14T12:47:43Z file_id: '6923' file_name: 2019_LIPIcs_Chatterjee.pdf file_size: 509163 relation: main_file file_date_updated: 2020-07-14T12:47:43Z has_accepted_license: '1' intvolume: ' 140' language: - iso: eng month: '08' oa: 1 oa_version: Published Version project: - _id: 25863FF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11407 name: Game Theory - _id: 25892FC0-B435-11E9-9278-68D0E5697425 grant_number: ICT15-003 name: Efficient Algorithms for Computer Aided Verification publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik quality_controlled: '1' scopus_import: 1 status: public title: Combinations of Qualitative Winning for Stochastic Parity Games tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 140 year: '2019' ... --- _id: '6884' abstract: - lang: eng text: 'In two-player games on graphs, the players move a token through a graph to produce a finite or infinite path, which determines the qualitative winner or quantitative payoff of the game. We study bidding games in which the players bid for the right to move the token. Several bidding rules were studied previously. In Richman bidding, in each round, the players simultaneously submit bids, and the higher bidder moves the token and pays the other player. Poorman bidding is similar except that the winner of the bidding pays the "bank" rather than the other player. Taxman bidding spans the spectrum between Richman and poorman bidding. They are parameterized by a constant tau in [0,1]: portion tau of the winning bid is paid to the other player, and portion 1-tau to the bank. While finite-duration (reachability) taxman games have been studied before, we present, for the first time, results on infinite-duration taxman games. It was previously shown that both Richman and poorman infinite-duration games with qualitative objectives reduce to reachability games, and we show a similar result here. Our most interesting results concern quantitative taxman games, namely mean-payoff games, where poorman and Richman bidding differ significantly. A central quantity in these games is the ratio between the two players'' initial budgets. While in poorman mean-payoff games, the optimal payoff of a player depends on the initial ratio, in Richman bidding, the payoff depends only on the structure of the game. In both games the optimal payoffs can be found using (different) probabilistic connections with random-turn games in which in each turn, instead of bidding, a coin is tossed to determine which player moves. While the value with Richman bidding equals the value of a random-turn game with an un-biased coin, with poorman bidding, the bias in the coin is the initial ratio of the budgets. We give a complete classification of mean-payoff taxman games that is based on a probabilistic connection: the value of a taxman bidding game with parameter tau and initial ratio r, equals the value of a random-turn game that uses a coin with bias F(tau, r) = (r+tau * (1-r))/(1+tau). Thus, we show that Richman bidding is the exception; namely, for every tau <1, the value of the game depends on the initial ratio. Our proof technique simplifies and unifies the previous proof techniques for both Richman and poorman bidding. ' alternative_title: - LIPIcs article_number: '11' author: - first_name: Guy full_name: Avni, Guy id: 463C8BC2-F248-11E8-B48F-1D18A9856A87 last_name: Avni orcid: 0000-0001-5588-8287 - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000−0002−2985−7724 - first_name: Dorde full_name: Zikelic, Dorde id: 294AA7A6-F248-11E8-B48F-1D18A9856A87 last_name: Zikelic citation: ama: 'Avni G, Henzinger TA, Zikelic D. Bidding mechanisms in graph games. In: Vol 138. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2019. doi:10.4230/LIPICS.MFCS.2019.11' apa: 'Avni, G., Henzinger, T. A., & Zikelic, D. (2019). Bidding mechanisms in graph games (Vol. 138). Presented at the MFCS: nternational Symposium on Mathematical Foundations of Computer Science, Aachen, Germany: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPICS.MFCS.2019.11' chicago: Avni, Guy, Thomas A Henzinger, and Dorde Zikelic. “Bidding Mechanisms in Graph Games,” Vol. 138. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. https://doi.org/10.4230/LIPICS.MFCS.2019.11. ieee: 'G. Avni, T. A. Henzinger, and D. Zikelic, “Bidding mechanisms in graph games,” presented at the MFCS: nternational Symposium on Mathematical Foundations of Computer Science, Aachen, Germany, 2019, vol. 138.' ista: 'Avni G, Henzinger TA, Zikelic D. 2019. Bidding mechanisms in graph games. MFCS: nternational Symposium on Mathematical Foundations of Computer Science, LIPIcs, vol. 138, 11.' mla: Avni, Guy, et al. Bidding Mechanisms in Graph Games. Vol. 138, 11, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019, doi:10.4230/LIPICS.MFCS.2019.11. short: G. Avni, T.A. Henzinger, D. Zikelic, in:, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. conference: end_date: 2019-08-30 location: Aachen, Germany name: 'MFCS: nternational Symposium on Mathematical Foundations of Computer Science' start_date: 2019-08-26 date_created: 2019-09-18T08:04:26Z date_published: 2019-08-01T00:00:00Z date_updated: 2023-08-07T14:08:34Z day: '01' ddc: - '004' department: - _id: ToHe - _id: KrCh doi: 10.4230/LIPICS.MFCS.2019.11 ec_funded: 1 external_id: arxiv: - '1905.03835' file: - access_level: open_access checksum: 6346e116a4f4ed1414174d96d2c4fbd7 content_type: application/pdf creator: kschuh date_created: 2019-09-27T11:45:15Z date_updated: 2020-07-14T12:47:42Z file_id: '6913' file_name: 2019_LIPIcs_Avni.pdf file_size: 554457 relation: main_file file_date_updated: 2020-07-14T12:47:42Z has_accepted_license: '1' intvolume: ' 138' language: - iso: eng month: '08' oa: 1 oa_version: Published Version project: - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program - _id: 264B3912-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: M02369 name: Formal Methods meets Algorithmic Game Theory - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize - _id: 25F2ACDE-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11402-N23 name: Rigorous Systems Engineering publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik quality_controlled: '1' related_material: record: - id: '9239' relation: later_version status: public scopus_import: 1 status: public title: Bidding mechanisms in graph games tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 138 year: '2019' ... --- _id: '5948' abstract: - lang: eng text: We study the termination problem for nondeterministic probabilistic programs. We consider the bounded termination problem that asks whether the supremum of the expected termination time over all schedulers is bounded. First, we show that ranking supermartingales (RSMs) are both sound and complete for proving bounded termination over nondeterministic probabilistic programs. For nondeterministic probabilistic programs a previous result claimed that RSMs are not complete for bounded termination, whereas our result corrects the previous flaw and establishes completeness with a rigorous proof. Second, we present the first sound approach to establish lower bounds on expected termination time through RSMs. alternative_title: - LNCS article_processing_charge: No author: - first_name: Hongfei full_name: Fu, Hongfei last_name: Fu - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X citation: ama: 'Fu H, Chatterjee K. Termination of nondeterministic probabilistic programs. In: International Conference on Verification, Model Checking, and Abstract Interpretation. Vol 11388. Springer Nature; 2019:468-490. doi:10.1007/978-3-030-11245-5_22' apa: 'Fu, H., & Chatterjee, K. (2019). Termination of nondeterministic probabilistic programs. In International Conference on Verification, Model Checking, and Abstract Interpretation (Vol. 11388, pp. 468–490). Cascais, Portugal: Springer Nature. https://doi.org/10.1007/978-3-030-11245-5_22' chicago: Fu, Hongfei, and Krishnendu Chatterjee. “Termination of Nondeterministic Probabilistic Programs.” In International Conference on Verification, Model Checking, and Abstract Interpretation, 11388:468–90. Springer Nature, 2019. https://doi.org/10.1007/978-3-030-11245-5_22. ieee: H. Fu and K. Chatterjee, “Termination of nondeterministic probabilistic programs,” in International Conference on Verification, Model Checking, and Abstract Interpretation, Cascais, Portugal, 2019, vol. 11388, pp. 468–490. ista: 'Fu H, Chatterjee K. 2019. Termination of nondeterministic probabilistic programs. International Conference on Verification, Model Checking, and Abstract Interpretation. VMCAI: Verification, Model Checking, and Abstract Interpretation, LNCS, vol. 11388, 468–490.' mla: Fu, Hongfei, and Krishnendu Chatterjee. “Termination of Nondeterministic Probabilistic Programs.” International Conference on Verification, Model Checking, and Abstract Interpretation, vol. 11388, Springer Nature, 2019, pp. 468–90, doi:10.1007/978-3-030-11245-5_22. short: H. Fu, K. Chatterjee, in:, International Conference on Verification, Model Checking, and Abstract Interpretation, Springer Nature, 2019, pp. 468–490. conference: end_date: 2019-01-15 location: Cascais, Portugal name: 'VMCAI: Verification, Model Checking, and Abstract Interpretation' start_date: 2019-01-13 date_created: 2019-02-10T22:59:17Z date_published: 2019-01-11T00:00:00Z date_updated: 2023-08-24T14:42:22Z day: '11' department: - _id: KrCh doi: 10.1007/978-3-030-11245-5_22 external_id: arxiv: - '1701.02944' isi: - '000931943000022' intvolume: ' 11388' isi: 1 language: - iso: eng main_file_link: - url: https://arxiv.org/abs/1701.02944 month: '01' oa_version: Preprint page: 468-490 project: - _id: 25892FC0-B435-11E9-9278-68D0E5697425 grant_number: ICT15-003 name: Efficient Algorithms for Computer Aided Verification - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering publication: International Conference on Verification, Model Checking, and Abstract Interpretation publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Termination of nondeterministic probabilistic programs type: conference user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 11388 year: '2019' ... --- _id: '6462' abstract: - lang: eng text: A controller is a device that interacts with a plant. At each time point,it reads the plant’s state and issues commands with the goal that the plant oper-ates optimally. Constructing optimal controllers is a fundamental and challengingproblem. Machine learning techniques have recently been successfully applied totrain controllers, yet they have limitations. Learned controllers are monolithic andhard to reason about. In particular, it is difficult to add features without retraining,to guarantee any level of performance, and to achieve acceptable performancewhen encountering untrained scenarios. These limitations can be addressed bydeploying quantitative run-timeshieldsthat serve as a proxy for the controller.At each time point, the shield reads the command issued by the controller andmay choose to alter it before passing it on to the plant. We show how optimalshields that interfere as little as possible while guaranteeing a desired level ofcontroller performance, can be generated systematically and automatically usingreactive synthesis. First, we abstract the plant by building a stochastic model.Second, we consider the learned controller to be a black box. Third, we mea-surecontroller performanceandshield interferenceby two quantitative run-timemeasures that are formally defined using weighted automata. Then, the problemof constructing a shield that guarantees maximal performance with minimal inter-ference is the problem of finding an optimal strategy in a stochastic2-player game“controller versus shield” played on the abstract state space of the plant with aquantitative objective obtained from combining the performance and interferencemeasures. We illustrate the effectiveness of our approach by automatically con-structing lightweight shields for learned traffic-light controllers in various roadnetworks. The shields we generate avoid liveness bugs, improve controller per-formance in untrained and changing traffic situations, and add features to learnedcontrollers, such as giving priority to emergency vehicles. alternative_title: - LNCS article_processing_charge: No author: - first_name: Guy full_name: Avni, Guy id: 463C8BC2-F248-11E8-B48F-1D18A9856A87 last_name: Avni orcid: 0000-0001-5588-8287 - first_name: Roderick full_name: Bloem, Roderick last_name: Bloem - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000−0002−2985−7724 - first_name: Bettina full_name: Konighofer, Bettina last_name: Konighofer - first_name: Stefan full_name: Pranger, Stefan last_name: Pranger citation: ama: 'Avni G, Bloem R, Chatterjee K, Henzinger TA, Konighofer B, Pranger S. Run-time optimization for learned controllers through quantitative games. In: 31st International Conference on Computer-Aided Verification. Vol 11561. Springer; 2019:630-649. doi:10.1007/978-3-030-25540-4_36' apa: 'Avni, G., Bloem, R., Chatterjee, K., Henzinger, T. A., Konighofer, B., & Pranger, S. (2019). Run-time optimization for learned controllers through quantitative games. In 31st International Conference on Computer-Aided Verification (Vol. 11561, pp. 630–649). New York, NY, United States: Springer. https://doi.org/10.1007/978-3-030-25540-4_36' chicago: Avni, Guy, Roderick Bloem, Krishnendu Chatterjee, Thomas A Henzinger, Bettina Konighofer, and Stefan Pranger. “Run-Time Optimization for Learned Controllers through Quantitative Games.” In 31st International Conference on Computer-Aided Verification, 11561:630–49. Springer, 2019. https://doi.org/10.1007/978-3-030-25540-4_36. ieee: G. Avni, R. Bloem, K. Chatterjee, T. A. Henzinger, B. Konighofer, and S. Pranger, “Run-time optimization for learned controllers through quantitative games,” in 31st International Conference on Computer-Aided Verification, New York, NY, United States, 2019, vol. 11561, pp. 630–649. ista: 'Avni G, Bloem R, Chatterjee K, Henzinger TA, Konighofer B, Pranger S. 2019. Run-time optimization for learned controllers through quantitative games. 31st International Conference on Computer-Aided Verification. CAV: Computer Aided Verification, LNCS, vol. 11561, 630–649.' mla: Avni, Guy, et al. “Run-Time Optimization for Learned Controllers through Quantitative Games.” 31st International Conference on Computer-Aided Verification, vol. 11561, Springer, 2019, pp. 630–49, doi:10.1007/978-3-030-25540-4_36. short: G. Avni, R. Bloem, K. Chatterjee, T.A. Henzinger, B. Konighofer, S. Pranger, in:, 31st International Conference on Computer-Aided Verification, Springer, 2019, pp. 630–649. conference: end_date: 2019-07-18 location: New York, NY, United States name: 'CAV: Computer Aided Verification' start_date: 2019-07-13 date_created: 2019-05-16T11:22:30Z date_published: 2019-07-12T00:00:00Z date_updated: 2023-08-25T10:33:27Z day: '12' ddc: - '000' department: - _id: ToHe - _id: KrCh doi: 10.1007/978-3-030-25540-4_36 external_id: isi: - '000491468000036' file: - access_level: open_access checksum: c231579f2485c6fd4df17c9443a4d80b content_type: application/pdf creator: dernst date_created: 2019-08-14T09:35:24Z date_updated: 2020-07-14T12:47:31Z file_id: '6816' file_name: 2019_CAV_Avni.pdf file_size: 659766 relation: main_file file_date_updated: 2020-07-14T12:47:31Z has_accepted_license: '1' intvolume: ' 11561' isi: 1 language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: 630-649 project: - _id: 264B3912-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: M02369 name: Formal Methods meets Algorithmic Game Theory - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering publication: 31st International Conference on Computer-Aided Verification publication_identifier: isbn: - '9783030255398' issn: - 0302-9743 publication_status: published publisher: Springer quality_controlled: '1' scopus_import: '1' status: public title: Run-time optimization for learned controllers through quantitative games tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 11561 year: '2019' ... --- _id: '6836' abstract: - lang: eng text: Direct reciprocity is a powerful mechanism for the evolution of cooperation on the basis of repeated interactions1,2,3,4. It requires that interacting individuals are sufficiently equal, such that everyone faces similar consequences when they cooperate or defect. Yet inequality is ubiquitous among humans5,6 and is generally considered to undermine cooperation and welfare7,8,9,10. Most previous models of reciprocity do not include inequality11,12,13,14,15. These models assume that individuals are the same in all relevant aspects. Here we introduce a general framework to study direct reciprocity among unequal individuals. Our model allows for multiple sources of inequality. Subjects can differ in their endowments, their productivities and in how much they benefit from public goods. We find that extreme inequality prevents cooperation. But if subjects differ in productivity, some endowment inequality can be necessary for cooperation to prevail. Our mathematical predictions are supported by a behavioural experiment in which we vary the endowments and productivities of the subjects. We observe that overall welfare is maximized when the two sources of heterogeneity are aligned, such that more productive individuals receive higher endowments. By contrast, when endowments and productivities are misaligned, cooperation quickly breaks down. Our findings have implications for policy-makers concerned with equity, efficiency and the provisioning of public goods. article_processing_charge: No article_type: letter_note author: - first_name: Oliver P. full_name: Hauser, Oliver P. last_name: Hauser - first_name: Christian full_name: Hilbe, Christian id: 2FDF8F3C-F248-11E8-B48F-1D18A9856A87 last_name: Hilbe orcid: 0000-0001-5116-955X - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Martin A. full_name: Nowak, Martin A. last_name: Nowak citation: ama: Hauser OP, Hilbe C, Chatterjee K, Nowak MA. Social dilemmas among unequals. Nature. 2019;572(7770):524-527. doi:10.1038/s41586-019-1488-5 apa: Hauser, O. P., Hilbe, C., Chatterjee, K., & Nowak, M. A. (2019). Social dilemmas among unequals. Nature. Springer Nature. https://doi.org/10.1038/s41586-019-1488-5 chicago: Hauser, Oliver P., Christian Hilbe, Krishnendu Chatterjee, and Martin A. Nowak. “Social Dilemmas among Unequals.” Nature. Springer Nature, 2019. https://doi.org/10.1038/s41586-019-1488-5. ieee: O. P. Hauser, C. Hilbe, K. Chatterjee, and M. A. Nowak, “Social dilemmas among unequals,” Nature, vol. 572, no. 7770. Springer Nature, pp. 524–527, 2019. ista: Hauser OP, Hilbe C, Chatterjee K, Nowak MA. 2019. Social dilemmas among unequals. Nature. 572(7770), 524–527. mla: Hauser, Oliver P., et al. “Social Dilemmas among Unequals.” Nature, vol. 572, no. 7770, Springer Nature, 2019, pp. 524–27, doi:10.1038/s41586-019-1488-5. short: O.P. Hauser, C. Hilbe, K. Chatterjee, M.A. Nowak, Nature 572 (2019) 524–527. date_created: 2019-09-01T22:00:56Z date_published: 2019-08-22T00:00:00Z date_updated: 2023-08-29T07:42:54Z day: '22' ddc: - '000' department: - _id: KrCh doi: 10.1038/s41586-019-1488-5 ec_funded: 1 external_id: isi: - '000482219600045' file: - access_level: open_access checksum: a6e0e3168bf62de624e7772cdfaeb26f content_type: application/pdf creator: dernst date_created: 2020-05-14T10:00:32Z date_updated: 2020-07-14T12:47:42Z file_id: '7828' file_name: 2019_Nature_Hauser.pdf file_size: 18577756 relation: main_file file_date_updated: 2020-07-14T12:47:42Z has_accepted_license: '1' intvolume: ' 572' isi: 1 issue: '7770' language: - iso: eng month: '08' oa: 1 oa_version: Submitted Version page: 524-527 project: - _id: 2581B60A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '279307' name: 'Quantitative Graph Games: Theory and Applications' - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: Nature publication_identifier: eissn: - '14764687' issn: - '00280836' publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/too-much-inequality-impedes-support-for-public-goods-according-to-research-published-in-nature/ scopus_import: '1' status: public title: Social dilemmas among unequals type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 572 year: '2019' ... --- _id: '6942' abstract: - lang: eng text: "Graph games and Markov decision processes (MDPs) are standard models in reactive synthesis and verification of probabilistic systems with nondeterminism. The class of \U0001D714 -regular winning conditions; e.g., safety, reachability, liveness, parity conditions; provides a robust and expressive specification formalism for properties that arise in analysis of reactive systems. The resolutions of nondeterminism in games and MDPs are represented as strategies, and we consider succinct representation of such strategies. The decision-tree data structure from machine learning retains the flavor of decisions of strategies and allows entropy-based minimization to obtain succinct trees. However, in contrast to traditional machine-learning problems where small errors are allowed, for winning strategies in graph games and MDPs no error is allowed, and the decision tree must represent the entire strategy. In this work we propose decision trees with linear classifiers for representation of strategies in graph games and MDPs. We have implemented strategy representation using this data structure and we present experimental results for problems on graph games and MDPs, which show that this new data structure presents a much more efficient strategy representation as compared to standard decision trees." alternative_title: - LNCS article_processing_charge: No author: - first_name: Pranav full_name: Ashok, Pranav last_name: Ashok - first_name: Tomáš full_name: Brázdil, Tomáš last_name: Brázdil - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Jan full_name: Křetínský, Jan last_name: Křetínský - first_name: Christoph full_name: Lampert, Christoph id: 40C20FD2-F248-11E8-B48F-1D18A9856A87 last_name: Lampert orcid: 0000-0001-8622-7887 - first_name: Viktor full_name: Toman, Viktor id: 3AF3DA7C-F248-11E8-B48F-1D18A9856A87 last_name: Toman orcid: 0000-0001-9036-063X citation: ama: 'Ashok P, Brázdil T, Chatterjee K, Křetínský J, Lampert C, Toman V. Strategy representation by decision trees with linear classifiers. In: 16th International Conference on Quantitative Evaluation of Systems. Vol 11785. Springer Nature; 2019:109-128. doi:10.1007/978-3-030-30281-8_7' apa: 'Ashok, P., Brázdil, T., Chatterjee, K., Křetínský, J., Lampert, C., & Toman, V. (2019). Strategy representation by decision trees with linear classifiers. In 16th International Conference on Quantitative Evaluation of Systems (Vol. 11785, pp. 109–128). Glasgow, United Kingdom: Springer Nature. https://doi.org/10.1007/978-3-030-30281-8_7' chicago: Ashok, Pranav, Tomáš Brázdil, Krishnendu Chatterjee, Jan Křetínský, Christoph Lampert, and Viktor Toman. “Strategy Representation by Decision Trees with Linear Classifiers.” In 16th International Conference on Quantitative Evaluation of Systems, 11785:109–28. Springer Nature, 2019. https://doi.org/10.1007/978-3-030-30281-8_7. ieee: P. Ashok, T. Brázdil, K. Chatterjee, J. Křetínský, C. Lampert, and V. Toman, “Strategy representation by decision trees with linear classifiers,” in 16th International Conference on Quantitative Evaluation of Systems, Glasgow, United Kingdom, 2019, vol. 11785, pp. 109–128. ista: 'Ashok P, Brázdil T, Chatterjee K, Křetínský J, Lampert C, Toman V. 2019. Strategy representation by decision trees with linear classifiers. 16th International Conference on Quantitative Evaluation of Systems. QEST: Quantitative Evaluation of Systems, LNCS, vol. 11785, 109–128.' mla: Ashok, Pranav, et al. “Strategy Representation by Decision Trees with Linear Classifiers.” 16th International Conference on Quantitative Evaluation of Systems, vol. 11785, Springer Nature, 2019, pp. 109–28, doi:10.1007/978-3-030-30281-8_7. short: P. Ashok, T. Brázdil, K. Chatterjee, J. Křetínský, C. Lampert, V. Toman, in:, 16th International Conference on Quantitative Evaluation of Systems, Springer Nature, 2019, pp. 109–128. conference: end_date: 2019-09-12 location: Glasgow, United Kingdom name: 'QEST: Quantitative Evaluation of Systems' start_date: 2019-09-10 date_created: 2019-10-14T06:57:49Z date_published: 2019-09-04T00:00:00Z date_updated: 2023-08-30T06:59:36Z day: '04' department: - _id: KrCh - _id: ChLa doi: 10.1007/978-3-030-30281-8_7 external_id: arxiv: - '1906.08178' isi: - '000679281300007' intvolume: ' 11785' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1906.08178 month: '09' oa: 1 oa_version: Preprint page: 109-128 project: - _id: 25863FF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11407 name: Game Theory - _id: 25F2ACDE-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11402-N23 name: Rigorous Systems Engineering - _id: 25892FC0-B435-11E9-9278-68D0E5697425 grant_number: ICT15-003 name: Efficient Algorithms for Computer Aided Verification publication: 16th International Conference on Quantitative Evaluation of Systems publication_identifier: eisbn: - '9783030302818' isbn: - '9783030302801' issn: - 0302-9743 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Strategy representation by decision trees with linear classifiers type: conference user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 11785 year: '2019' ... --- _id: '7183' abstract: - lang: eng text: 'A probabilistic vector addition system with states (pVASS) is a finite state Markov process augmented with non-negative integer counters that can be incremented or decremented during each state transition, blocking any behaviour that would cause a counter to decrease below zero. The pVASS can be used as abstractions of probabilistic programs with many decidable properties. The use of pVASS as abstractions requires the presence of nondeterminism in the model. In this paper, we develop techniques for checking fast termination of pVASS with nondeterminism. That is, for every initial configuration of size n, we consider the worst expected number of transitions needed to reach a configuration with some counter negative (the expected termination time). We show that the problem whether the asymptotic expected termination time is linear is decidable in polynomial time for a certain natural class of pVASS with nondeterminism. Furthermore, we show the following dichotomy: if the asymptotic expected termination time is not linear, then it is at least quadratic, i.e., in Ω(n2).' alternative_title: - LNCS article_processing_charge: No author: - first_name: Tomás full_name: Brázdil, Tomás last_name: Brázdil - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Antonín full_name: Kucera, Antonín last_name: Kucera - first_name: Petr full_name: Novotný, Petr id: 3CC3B868-F248-11E8-B48F-1D18A9856A87 last_name: Novotný - first_name: Dominik full_name: Velan, Dominik last_name: Velan citation: ama: 'Brázdil T, Chatterjee K, Kucera A, Novotný P, Velan D. Deciding fast termination for probabilistic VASS with nondeterminism. In: International Symposium on Automated Technology for Verification and Analysis. Vol 11781. Springer Nature; 2019:462-478. doi:10.1007/978-3-030-31784-3_27' apa: 'Brázdil, T., Chatterjee, K., Kucera, A., Novotný, P., & Velan, D. (2019). Deciding fast termination for probabilistic VASS with nondeterminism. In International Symposium on Automated Technology for Verification and Analysis (Vol. 11781, pp. 462–478). Taipei, Taiwan: Springer Nature. https://doi.org/10.1007/978-3-030-31784-3_27' chicago: Brázdil, Tomás, Krishnendu Chatterjee, Antonín Kucera, Petr Novotný, and Dominik Velan. “Deciding Fast Termination for Probabilistic VASS with Nondeterminism.” In International Symposium on Automated Technology for Verification and Analysis, 11781:462–78. Springer Nature, 2019. https://doi.org/10.1007/978-3-030-31784-3_27. ieee: T. Brázdil, K. Chatterjee, A. Kucera, P. Novotný, and D. Velan, “Deciding fast termination for probabilistic VASS with nondeterminism,” in International Symposium on Automated Technology for Verification and Analysis, Taipei, Taiwan, 2019, vol. 11781, pp. 462–478. ista: 'Brázdil T, Chatterjee K, Kucera A, Novotný P, Velan D. 2019. Deciding fast termination for probabilistic VASS with nondeterminism. International Symposium on Automated Technology for Verification and Analysis. ATVA: Automated TEchnology for Verification and Analysis, LNCS, vol. 11781, 462–478.' mla: Brázdil, Tomás, et al. “Deciding Fast Termination for Probabilistic VASS with Nondeterminism.” International Symposium on Automated Technology for Verification and Analysis, vol. 11781, Springer Nature, 2019, pp. 462–78, doi:10.1007/978-3-030-31784-3_27. short: T. Brázdil, K. Chatterjee, A. Kucera, P. Novotný, D. Velan, in:, International Symposium on Automated Technology for Verification and Analysis, Springer Nature, 2019, pp. 462–478. conference: end_date: 2019-10-31 location: Taipei, Taiwan name: 'ATVA: Automated TEchnology for Verification and Analysis' start_date: 2019-10-28 date_created: 2019-12-15T23:00:44Z date_published: 2019-10-21T00:00:00Z date_updated: 2023-09-06T12:40:58Z day: '21' department: - _id: KrCh doi: 10.1007/978-3-030-31784-3_27 external_id: arxiv: - '1907.11010' isi: - '000723515700027' intvolume: ' 11781' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1907.11010 month: '10' oa: 1 oa_version: Preprint page: 462-478 project: - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering publication: International Symposium on Automated Technology for Verification and Analysis publication_identifier: eissn: - '16113349' isbn: - '9783030317836' issn: - '03029743' publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Deciding fast termination for probabilistic VASS with nondeterminism type: conference user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 11781 year: '2019' ... --- _id: '7210' abstract: - lang: eng text: The rate of biological evolution depends on the fixation probability and on the fixation time of new mutants. Intensive research has focused on identifying population structures that augment the fixation probability of advantageous mutants. But these amplifiers of natural selection typically increase fixation time. Here we study population structures that achieve a tradeoff between fixation probability and time. First, we show that no amplifiers can have an asymptotically lower absorption time than the well-mixed population. Then we design population structures that substantially augment the fixation probability with just a minor increase in fixation time. Finally, we show that those structures enable higher effective rate of evolution than the well-mixed population provided that the rate of generating advantageous mutants is relatively low. Our work sheds light on how population structure affects the rate of evolution. Moreover, our structures could be useful for lab-based, medical, or industrial applications of evolutionary optimization. article_number: '138' article_processing_charge: No article_type: original author: - first_name: Josef full_name: Tkadlec, Josef id: 3F24CCC8-F248-11E8-B48F-1D18A9856A87 last_name: Tkadlec orcid: 0000-0002-1097-9684 - first_name: Andreas full_name: Pavlogiannis, Andreas id: 49704004-F248-11E8-B48F-1D18A9856A87 last_name: Pavlogiannis orcid: 0000-0002-8943-0722 - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Martin A. full_name: Nowak, Martin A. last_name: Nowak citation: ama: Tkadlec J, Pavlogiannis A, Chatterjee K, Nowak MA. Population structure determines the tradeoff between fixation probability and fixation time. Communications Biology. 2019;2. doi:10.1038/s42003-019-0373-y apa: Tkadlec, J., Pavlogiannis, A., Chatterjee, K., & Nowak, M. A. (2019). Population structure determines the tradeoff between fixation probability and fixation time. Communications Biology. Springer Nature. https://doi.org/10.1038/s42003-019-0373-y chicago: Tkadlec, Josef, Andreas Pavlogiannis, Krishnendu Chatterjee, and Martin A. Nowak. “Population Structure Determines the Tradeoff between Fixation Probability and Fixation Time.” Communications Biology. Springer Nature, 2019. https://doi.org/10.1038/s42003-019-0373-y. ieee: J. Tkadlec, A. Pavlogiannis, K. Chatterjee, and M. A. Nowak, “Population structure determines the tradeoff between fixation probability and fixation time,” Communications Biology, vol. 2. Springer Nature, 2019. ista: Tkadlec J, Pavlogiannis A, Chatterjee K, Nowak MA. 2019. Population structure determines the tradeoff between fixation probability and fixation time. Communications Biology. 2, 138. mla: Tkadlec, Josef, et al. “Population Structure Determines the Tradeoff between Fixation Probability and Fixation Time.” Communications Biology, vol. 2, 138, Springer Nature, 2019, doi:10.1038/s42003-019-0373-y. short: J. Tkadlec, A. Pavlogiannis, K. Chatterjee, M.A. Nowak, Communications Biology 2 (2019). date_created: 2019-12-23T13:36:50Z date_published: 2019-04-23T00:00:00Z date_updated: 2023-09-07T13:19:22Z day: '23' ddc: - '000' department: - _id: KrCh doi: 10.1038/s42003-019-0373-y ec_funded: 1 external_id: isi: - '000465425700006' pmid: - '31044163' file: - access_level: open_access checksum: d1a69bfe73767e4246f0a38e4e1554dd content_type: application/pdf creator: dernst date_created: 2019-12-23T13:39:30Z date_updated: 2020-07-14T12:47:53Z file_id: '7211' file_name: 2019_CommBio_Tkadlec.pdf file_size: 1670274 relation: main_file file_date_updated: 2020-07-14T12:47:53Z has_accepted_license: '1' intvolume: ' 2' isi: 1 language: - iso: eng month: '04' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 2581B60A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '279307' name: 'Quantitative Graph Games: Theory and Applications' - _id: 2584A770-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P 23499-N23 name: Modern Graph Algorithmic Techniques in Formal Verification - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering publication: Communications Biology publication_identifier: issn: - 2399-3642 publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: record: - id: '7196' relation: part_of_dissertation status: public scopus_import: '1' status: public title: Population structure determines the tradeoff between fixation probability and fixation time tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 2 year: '2019' ... --- _id: '10190' abstract: - lang: eng text: 'The verification of concurrent programs remains an open challenge, as thread interaction has to be accounted for, which leads to state-space explosion. Stateless model checking battles this problem by exploring traces rather than states of the program. As there are exponentially many traces, dynamic partial-order reduction (DPOR) techniques are used to partition the trace space into equivalence classes, and explore a few representatives from each class. The standard equivalence that underlies most DPOR techniques is the happens-before equivalence, however recent works have spawned a vivid interest towards coarser equivalences. The efficiency of such approaches is a product of two parameters: (i) the size of the partitioning induced by the equivalence, and (ii) the time spent by the exploration algorithm in each class of the partitioning. In this work, we present a new equivalence, called value-happens-before and show that it has two appealing features. First, value-happens-before is always at least as coarse as the happens-before equivalence, and can be even exponentially coarser. Second, the value-happens-before partitioning is efficiently explorable when the number of threads is bounded. We present an algorithm called value-centric DPOR (VCDPOR), which explores the underlying partitioning using polynomial time per class. Finally, we perform an experimental evaluation of VCDPOR on various benchmarks, and compare it against other state-of-the-art approaches. Our results show that value-happens-before typically induces a significant reduction in the size of the underlying partitioning, which leads to a considerable reduction in the running time for exploring the whole partitioning.' acknowledgement: "The authors would also like to thank anonymous referees for their valuable comments and helpful suggestions. This work is supported by the Austrian Science Fund (FWF) NFN grants S11407-N23 (RiSE/SHiNE) and S11402-N23 (RiSE/SHiNE), by the Vienna Science and Technology Fund (WWTF) Project ICT15-003, and by the Austrian Science Fund (FWF) Schrodinger grant J-4220.\r\n" article_number: '124' article_processing_charge: No author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Andreas full_name: Pavlogiannis, Andreas id: 49704004-F248-11E8-B48F-1D18A9856A87 last_name: Pavlogiannis orcid: 0000-0002-8943-0722 - first_name: Viktor full_name: Toman, Viktor id: 3AF3DA7C-F248-11E8-B48F-1D18A9856A87 last_name: Toman orcid: 0000-0001-9036-063X citation: ama: 'Chatterjee K, Pavlogiannis A, Toman V. Value-centric dynamic partial order reduction. In: Proceedings of the 34th ACM International Conference on Object-Oriented Programming, Systems, Languages, and Applications. Vol 3. ACM; 2019. doi:10.1145/3360550' apa: 'Chatterjee, K., Pavlogiannis, A., & Toman, V. (2019). Value-centric dynamic partial order reduction. In Proceedings of the 34th ACM International Conference on Object-Oriented Programming, Systems, Languages, and Applications (Vol. 3). Athens, Greece: ACM. https://doi.org/10.1145/3360550' chicago: Chatterjee, Krishnendu, Andreas Pavlogiannis, and Viktor Toman. “Value-Centric Dynamic Partial Order Reduction.” In Proceedings of the 34th ACM International Conference on Object-Oriented Programming, Systems, Languages, and Applications, Vol. 3. ACM, 2019. https://doi.org/10.1145/3360550. ieee: K. Chatterjee, A. Pavlogiannis, and V. Toman, “Value-centric dynamic partial order reduction,” in Proceedings of the 34th ACM International Conference on Object-Oriented Programming, Systems, Languages, and Applications, Athens, Greece, 2019, vol. 3. ista: 'Chatterjee K, Pavlogiannis A, Toman V. 2019. Value-centric dynamic partial order reduction. Proceedings of the 34th ACM International Conference on Object-Oriented Programming, Systems, Languages, and Applications. OOPSLA: Object-oriented Programming, Systems, Languages and Applications vol. 3, 124.' mla: Chatterjee, Krishnendu, et al. “Value-Centric Dynamic Partial Order Reduction.” Proceedings of the 34th ACM International Conference on Object-Oriented Programming, Systems, Languages, and Applications, vol. 3, 124, ACM, 2019, doi:10.1145/3360550. short: K. Chatterjee, A. Pavlogiannis, V. Toman, in:, Proceedings of the 34th ACM International Conference on Object-Oriented Programming, Systems, Languages, and Applications, ACM, 2019. conference: end_date: 2019-10-25 location: Athens, Greece name: 'OOPSLA: Object-oriented Programming, Systems, Languages and Applications' start_date: 2019-10-23 date_created: 2021-10-27T14:57:06Z date_published: 2019-10-10T00:00:00Z date_updated: 2023-09-07T13:30:27Z day: '10' ddc: - '000' department: - _id: GradSch - _id: KrCh doi: 10.1145/3360550 external_id: arxiv: - '1909.00989' file: - access_level: open_access checksum: 2149979c46964c4d117af06ccb6c0834 content_type: application/pdf creator: cchlebak date_created: 2021-11-12T11:41:56Z date_updated: 2021-11-12T11:41:56Z file_id: '10278' file_name: 2019_ACM_Chatterjee.pdf file_size: 570829 relation: main_file success: 1 file_date_updated: 2021-11-12T11:41:56Z has_accepted_license: '1' intvolume: ' 3' keyword: - safety - risk - reliability and quality - software language: - iso: eng main_file_link: - open_access: '1' url: https://dl.acm.org/doi/10.1145/3360550 month: '10' oa: 1 oa_version: Published Version project: - _id: 25892FC0-B435-11E9-9278-68D0E5697425 grant_number: ICT15-003 name: Efficient Algorithms for Computer Aided Verification - _id: 25863FF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11407 name: Game Theory - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering - _id: 25F5A88A-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11402-N23 name: Moderne Concurrency Paradigms publication: Proceedings of the 34th ACM International Conference on Object-Oriented Programming, Systems, Languages, and Applications publication_identifier: eissn: - 2475-1421 publication_status: published publisher: ACM quality_controlled: '1' related_material: record: - id: '10199' relation: dissertation_contains status: public status: public title: Value-centric dynamic partial order reduction tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 volume: 3 year: '2019' ... --- _id: '7402' abstract: - lang: eng text: Graph planning gives rise to fundamental algorithmic questions such as shortest path, traveling salesman problem, etc. A classical problem in discrete planning is to consider a weighted graph and construct a path that maximizes the sum of weights for a given time horizon T. However, in many scenarios, the time horizon is not fixed, but the stopping time is chosen according to some distribution such that the expected stopping time is T. If the stopping time distribution is not known, then to ensure robustness, the distribution is chosen by an adversary, to represent the worst-case scenario. A stationary plan for every vertex always chooses the same outgoing edge. For fixed horizon or fixed stopping-time distribution, stationary plans are not sufficient for optimality. Quite surprisingly we show that when an adversary chooses the stopping-time distribution with expected stopping time T, then stationary plans are sufficient. While computing optimal stationary plans for fixed horizon is NP-complete, we show that computing optimal stationary plans under adversarial stopping-time distribution can be achieved in polynomial time. Consequently, our polynomial-time algorithm for adversarial stopping time also computes an optimal plan among all possible plans. article_processing_charge: No author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Laurent full_name: Doyen, Laurent last_name: Doyen citation: ama: 'Chatterjee K, Doyen L. Graph planning with expected finite horizon. In: 34th Annual ACM/IEEE Symposium on Logic in Computer Science. IEEE; 2019:1-13. doi:10.1109/lics.2019.8785706' apa: 'Chatterjee, K., & Doyen, L. (2019). Graph planning with expected finite horizon. In 34th Annual ACM/IEEE Symposium on Logic in Computer Science (pp. 1–13). Vancouver, BC, Canada: IEEE. https://doi.org/10.1109/lics.2019.8785706' chicago: Chatterjee, Krishnendu, and Laurent Doyen. “Graph Planning with Expected Finite Horizon.” In 34th Annual ACM/IEEE Symposium on Logic in Computer Science, 1–13. IEEE, 2019. https://doi.org/10.1109/lics.2019.8785706. ieee: K. Chatterjee and L. Doyen, “Graph planning with expected finite horizon,” in 34th Annual ACM/IEEE Symposium on Logic in Computer Science, Vancouver, BC, Canada, 2019, pp. 1–13. ista: 'Chatterjee K, Doyen L. 2019. Graph planning with expected finite horizon. 34th Annual ACM/IEEE Symposium on Logic in Computer Science. LICS: Symposium on Logic in Computer Science, 1–13.' mla: Chatterjee, Krishnendu, and Laurent Doyen. “Graph Planning with Expected Finite Horizon.” 34th Annual ACM/IEEE Symposium on Logic in Computer Science, IEEE, 2019, pp. 1–13, doi:10.1109/lics.2019.8785706. short: K. Chatterjee, L. Doyen, in:, 34th Annual ACM/IEEE Symposium on Logic in Computer Science, IEEE, 2019, pp. 1–13. conference: end_date: 2019-06-27 location: Vancouver, BC, Canada name: 'LICS: Symposium on Logic in Computer Science' start_date: 2019-06-24 date_created: 2020-01-29T16:18:33Z date_published: 2019-06-01T00:00:00Z date_updated: 2023-09-07T14:48:11Z day: '01' department: - _id: KrCh doi: 10.1109/lics.2019.8785706 external_id: arxiv: - '1802.03642' isi: - '000805002800001' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1802.03642 month: '06' oa: 1 oa_version: Preprint page: 1-13 publication: 34th Annual ACM/IEEE Symposium on Logic in Computer Science publication_identifier: isbn: - '9781728136080' publication_status: published publisher: IEEE quality_controlled: '1' related_material: record: - id: '11402' relation: later_version status: public scopus_import: '1' status: public title: Graph planning with expected finite horizon type: conference user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2019' ... --- _id: '7950' abstract: - lang: eng text: "The input to the token swapping problem is a graph with vertices v1, v2, . . . , vn, and n tokens with labels 1,2, . . . , n, one on each vertex. The goal is to get token i to vertex vi for all i= 1, . . . , n using a minimum number of swaps, where a swap exchanges the tokens on the endpoints of an edge.Token swapping on a tree, also known as “sorting with a transposition tree,” is not known to be in P nor NP-complete. We present some partial results:\r\n1. An optimum swap sequence may need to perform a swap on a leaf vertex that has the correct token (a “happy leaf”), disproving a conjecture of Vaughan.\r\n2. Any algorithm that fixes happy leaves—as all known approximation algorithms for the problem do—has approximation factor at least 4/3. Furthermore, the two best-known 2-approximation algorithms have approximation factor exactly 2.\r\n3. A generalized problem—weighted coloured token swapping—is NP-complete on trees, but solvable in polynomial time on paths and stars. In this version, tokens and vertices \ have colours, and colours have weights. The goal is to get every token to a vertex of the same colour, and the cost of a swap is the sum of the weights of the two tokens involved." article_number: '1903.06981' article_processing_charge: No author: - first_name: Ahmad full_name: Biniaz, Ahmad last_name: Biniaz - first_name: Kshitij full_name: Jain, Kshitij last_name: Jain - first_name: Anna full_name: Lubiw, Anna last_name: Lubiw - first_name: Zuzana full_name: Masárová, Zuzana id: 45CFE238-F248-11E8-B48F-1D18A9856A87 last_name: Masárová orcid: 0000-0002-6660-1322 - first_name: Tillmann full_name: Miltzow, Tillmann last_name: Miltzow - first_name: Debajyoti full_name: Mondal, Debajyoti last_name: Mondal - first_name: Anurag Murty full_name: Naredla, Anurag Murty last_name: Naredla - first_name: Josef full_name: Tkadlec, Josef id: 3F24CCC8-F248-11E8-B48F-1D18A9856A87 last_name: Tkadlec orcid: 0000-0002-1097-9684 - first_name: Alexi full_name: Turcotte, Alexi last_name: Turcotte citation: ama: Biniaz A, Jain K, Lubiw A, et al. Token swapping on trees. arXiv. apa: Biniaz, A., Jain, K., Lubiw, A., Masárová, Z., Miltzow, T., Mondal, D., … Turcotte, A. (n.d.). Token swapping on trees. arXiv. chicago: Biniaz, Ahmad, Kshitij Jain, Anna Lubiw, Zuzana Masárová, Tillmann Miltzow, Debajyoti Mondal, Anurag Murty Naredla, Josef Tkadlec, and Alexi Turcotte. “Token Swapping on Trees.” ArXiv, n.d. ieee: A. Biniaz et al., “Token swapping on trees,” arXiv. . ista: Biniaz A, Jain K, Lubiw A, Masárová Z, Miltzow T, Mondal D, Naredla AM, Tkadlec J, Turcotte A. Token swapping on trees. arXiv, 1903.06981. mla: Biniaz, Ahmad, et al. “Token Swapping on Trees.” ArXiv, 1903.06981. short: A. Biniaz, K. Jain, A. Lubiw, Z. Masárová, T. Miltzow, D. Mondal, A.M. Naredla, J. Tkadlec, A. Turcotte, ArXiv (n.d.). date_created: 2020-06-08T12:25:25Z date_published: 2019-03-16T00:00:00Z date_updated: 2024-01-04T12:42:08Z day: '16' department: - _id: HeEd - _id: UlWa - _id: KrCh external_id: arxiv: - '1903.06981' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1903.06981 month: '03' oa: 1 oa_version: Preprint publication: arXiv publication_status: submitted related_material: record: - id: '7944' relation: dissertation_contains status: public - id: '12833' relation: later_version status: public status: public title: Token swapping on trees type: preprint user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2019' ... --- _id: '6780' abstract: - lang: eng text: "In this work, we consider the almost-sure termination problem for probabilistic programs that asks whether a\r\ngiven probabilistic program terminates with probability 1. Scalable approaches for program analysis often\r\nrely on modularity as their theoretical basis. In non-probabilistic programs, the classical variant rule (V-rule)\r\nof Floyd-Hoare logic provides the foundation for modular analysis. Extension of this rule to almost-sure\r\ntermination of probabilistic programs is quite tricky, and a probabilistic variant was proposed in [16]. While the\r\nproposed probabilistic variant cautiously addresses the key issue of integrability, we show that the proposed\r\nmodular rule is still not sound for almost-sure termination of probabilistic programs.\r\nBesides establishing unsoundness of the previous rule, our contributions are as follows: First, we present a\r\nsound modular rule for almost-sure termination of probabilistic programs. Our approach is based on a novel\r\nnotion of descent supermartingales. Second, for algorithmic approaches, we consider descent supermartingales\r\nthat are linear and show that they can be synthesized in polynomial time. Finally, we present experimental\r\nresults on a variety of benchmarks and several natural examples that model various types of nested while\r\nloops in probabilistic programs and demonstrate that our approach is able to efficiently prove their almost-sure\r\ntermination property" article_number: '129' article_processing_charge: No author: - first_name: Mingzhang full_name: Huang, Mingzhang last_name: Huang - first_name: Hongfei full_name: Fu, Hongfei last_name: Fu - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Amir Kafshdar full_name: Goharshady, Amir Kafshdar id: 391365CE-F248-11E8-B48F-1D18A9856A87 last_name: Goharshady orcid: 0000-0003-1702-6584 citation: ama: 'Huang M, Fu H, Chatterjee K, Goharshady AK. Modular verification for almost-sure termination of probabilistic programs. In: Proceedings of the 34th ACM International Conference on Object-Oriented Programming, Systems, Languages, and Applications . Vol 3. ACM; 2019. doi:10.1145/3360555' apa: 'Huang, M., Fu, H., Chatterjee, K., & Goharshady, A. K. (2019). Modular verification for almost-sure termination of probabilistic programs. In Proceedings of the 34th ACM International Conference on Object-Oriented Programming, Systems, Languages, and Applications (Vol. 3). Athens, Greece: ACM. https://doi.org/10.1145/3360555' chicago: Huang, Mingzhang, Hongfei Fu, Krishnendu Chatterjee, and Amir Kafshdar Goharshady. “Modular Verification for Almost-Sure Termination of Probabilistic Programs.” In Proceedings of the 34th ACM International Conference on Object-Oriented Programming, Systems, Languages, and Applications , Vol. 3. ACM, 2019. https://doi.org/10.1145/3360555. ieee: M. Huang, H. Fu, K. Chatterjee, and A. K. Goharshady, “Modular verification for almost-sure termination of probabilistic programs,” in Proceedings of the 34th ACM International Conference on Object-Oriented Programming, Systems, Languages, and Applications , Athens, Greece, 2019, vol. 3. ista: 'Huang M, Fu H, Chatterjee K, Goharshady AK. 2019. Modular verification for almost-sure termination of probabilistic programs. Proceedings of the 34th ACM International Conference on Object-Oriented Programming, Systems, Languages, and Applications . OOPSLA: Object-oriented Programming, Systems, Languages and Applications vol. 3, 129.' mla: Huang, Mingzhang, et al. “Modular Verification for Almost-Sure Termination of Probabilistic Programs.” Proceedings of the 34th ACM International Conference on Object-Oriented Programming, Systems, Languages, and Applications , vol. 3, 129, ACM, 2019, doi:10.1145/3360555. short: M. Huang, H. Fu, K. Chatterjee, A.K. Goharshady, in:, Proceedings of the 34th ACM International Conference on Object-Oriented Programming, Systems, Languages, and Applications , ACM, 2019. conference: end_date: 2019-10-25 location: Athens, Greece name: 'OOPSLA: Object-oriented Programming, Systems, Languages and Applications' start_date: 2019-10-23 date_created: 2019-08-09T09:54:20Z date_published: 2019-10-01T00:00:00Z date_updated: 2024-03-28T23:30:34Z day: '01' ddc: - '000' department: - _id: KrCh doi: 10.1145/3360555 ec_funded: 1 external_id: arxiv: - '1901.06087' file: - access_level: open_access checksum: 3482d8ace6fb4991eb7810e3b70f1b9f content_type: application/pdf creator: akafshda date_created: 2019-08-12T15:40:57Z date_updated: 2020-07-14T12:47:40Z file_id: '6807' file_name: oopsla-2019.pdf file_size: 1024643 relation: main_file - access_level: open_access checksum: 4e5a6fb2b59a75222a4e8335a5a60eac content_type: application/pdf creator: dernst date_created: 2020-05-12T15:15:14Z date_updated: 2020-07-14T12:47:40Z file_id: '7821' file_name: 2019_ACM_Huang.pdf file_size: 538579 relation: main_file file_date_updated: 2020-07-14T12:47:40Z has_accepted_license: '1' intvolume: ' 3' language: - iso: eng license: https://creativecommons.org/licenses/by-nc/4.0/ month: '10' oa: 1 oa_version: Published Version project: - _id: 25892FC0-B435-11E9-9278-68D0E5697425 grant_number: ICT15-003 name: Efficient Algorithms for Computer Aided Verification - _id: 25863FF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11407 name: Game Theory - _id: 2581B60A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '279307' name: 'Quantitative Graph Games: Theory and Applications' - _id: 267066CE-B435-11E9-9278-68D0E5697425 name: Quantitative Analysis of Probablistic Systems with a focus on Crypto-currencies - _id: 266EEEC0-B435-11E9-9278-68D0E5697425 name: Quantitative Game-theoretic Analysis of Blockchain Applications and Smart Contracts publication: 'Proceedings of the 34th ACM International Conference on Object-Oriented Programming, Systems, Languages, and Applications ' publication_status: published publisher: ACM quality_controlled: '1' related_material: record: - id: '8934' relation: dissertation_contains status: public status: public title: Modular verification for almost-sure termination of probabilistic programs tmp: image: /images/cc_by_nc.png legal_code_url: https://creativecommons.org/licenses/by-nc/4.0/legalcode name: Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) short: CC BY-NC (4.0) type: conference user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 volume: 3 year: '2019' ... --- _id: '6380' abstract: - lang: eng text: 'There is a huge gap between the speeds of modern caches and main memories, and therefore cache misses account for a considerable loss of efficiency in programs. The predominant technique to address this issue has been Data Packing: data elements that are frequently accessed within time proximity are packed into the same cache block, thereby minimizing accesses to the main memory. We consider the algorithmic problem of Data Packing on a two-level memory system. Given a reference sequence R of accesses to data elements, the task is to partition the elements into cache blocks such that the number of cache misses on R is minimized. The problem is notoriously difficult: it is NP-hard even when the cache has size 1, and is hard to approximate for any cache size larger than 4. Therefore, all existing techniques for Data Packing are based on heuristics and lack theoretical guarantees. In this work, we present the first positive theoretical results for Data Packing, along with new and stronger negative results. We consider the problem under the lens of the underlying access hypergraphs, which are hypergraphs of affinities between the data elements, where the order of an access hypergraph corresponds to the size of the affinity group. We study the problem parameterized by the treewidth of access hypergraphs, which is a standard notion in graph theory to measure the closeness of a graph to a tree. Our main results are as follows: We show there is a number q* depending on the cache parameters such that (a) if the access hypergraph of order q* has constant treewidth, then there is a linear-time algorithm for Data Packing; (b)the Data Packing problem remains NP-hard even if the access hypergraph of order q*-1 has constant treewidth. Thus, we establish a fine-grained dichotomy depending on a single parameter, namely, the highest order among access hypegraphs that have constant treewidth; and establish the optimal value q* of this parameter. Finally, we present an experimental evaluation of a prototype implementation of our algorithm. Our results demonstrate that, in practice, access hypergraphs of many commonly-used algorithms have small treewidth. We compare our approach with several state-of-the-art heuristic-based algorithms and show that our algorithm leads to significantly fewer cache-misses. ' article_number: '53' author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Amir Kafshdar full_name: Goharshady, Amir Kafshdar id: 391365CE-F248-11E8-B48F-1D18A9856A87 last_name: Goharshady orcid: 0000-0003-1702-6584 - first_name: Nastaran full_name: Okati, Nastaran last_name: Okati - first_name: Andreas full_name: Pavlogiannis, Andreas id: 49704004-F248-11E8-B48F-1D18A9856A87 last_name: Pavlogiannis orcid: 0000-0002-8943-0722 citation: ama: Chatterjee K, Goharshady AK, Okati N, Pavlogiannis A. Efficient parameterized algorithms for data packing. Proceedings of the ACM on Programming Languages. 2019;3(POPL). doi:10.1145/3290366 apa: Chatterjee, K., Goharshady, A. K., Okati, N., & Pavlogiannis, A. (2019). Efficient parameterized algorithms for data packing. Proceedings of the ACM on Programming Languages. ACM. https://doi.org/10.1145/3290366 chicago: Chatterjee, Krishnendu, Amir Kafshdar Goharshady, Nastaran Okati, and Andreas Pavlogiannis. “Efficient Parameterized Algorithms for Data Packing.” Proceedings of the ACM on Programming Languages. ACM, 2019. https://doi.org/10.1145/3290366. ieee: K. Chatterjee, A. K. Goharshady, N. Okati, and A. Pavlogiannis, “Efficient parameterized algorithms for data packing,” Proceedings of the ACM on Programming Languages, vol. 3, no. POPL. ACM, 2019. ista: Chatterjee K, Goharshady AK, Okati N, Pavlogiannis A. 2019. Efficient parameterized algorithms for data packing. Proceedings of the ACM on Programming Languages. 3(POPL), 53. mla: Chatterjee, Krishnendu, et al. “Efficient Parameterized Algorithms for Data Packing.” Proceedings of the ACM on Programming Languages, vol. 3, no. POPL, 53, ACM, 2019, doi:10.1145/3290366. short: K. Chatterjee, A.K. Goharshady, N. Okati, A. Pavlogiannis, Proceedings of the ACM on Programming Languages 3 (2019). date_created: 2019-05-06T12:18:17Z date_published: 2019-01-01T00:00:00Z date_updated: 2024-03-28T23:30:33Z day: '01' ddc: - '004' department: - _id: KrCh doi: 10.1145/3290366 ec_funded: 1 file: - access_level: open_access checksum: c157752f96877b36685ad7063ada4524 content_type: application/pdf creator: dernst date_created: 2019-05-06T12:23:11Z date_updated: 2020-07-14T12:47:29Z file_id: '6381' file_name: 2019_ACM_POPL_Chatterjee.pdf file_size: 1294962 relation: main_file file_date_updated: 2020-07-14T12:47:29Z has_accepted_license: '1' intvolume: ' 3' issue: POPL language: - iso: eng month: '01' oa: 1 oa_version: Published Version project: - _id: 25892FC0-B435-11E9-9278-68D0E5697425 grant_number: ICT15-003 name: Efficient Algorithms for Computer Aided Verification - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering - _id: 2581B60A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '279307' name: 'Quantitative Graph Games: Theory and Applications' publication: Proceedings of the ACM on Programming Languages publication_identifier: issn: - 2475-1421 publication_status: published publisher: ACM pubrep_id: '1056' quality_controlled: '1' related_material: record: - id: '8934' relation: dissertation_contains status: public status: public title: Efficient parameterized algorithms for data packing tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 3 year: '2019' ...