--- _id: '14600' abstract: - lang: eng text: We study the problem of learning controllers for discrete-time non-linear stochastic dynamical systems with formal reach-avoid guarantees. This work presents the first method for providing formal reach-avoid guarantees, which combine and generalize stability and safety guarantees, with a tolerable probability threshold $p\in[0,1]$ over the infinite time horizon. Our method leverages advances in machine learning literature and it represents formal certificates as neural networks. In particular, we learn a certificate in the form of a reach-avoid supermartingale (RASM), a novel notion that we introduce in this work. Our RASMs provide reachability and avoidance guarantees by imposing constraints on what can be viewed as a stochastic extension of level sets of Lyapunov functions for deterministic systems. Our approach solves several important problems -- it can be used to learn a control policy from scratch, to verify a reach-avoid specification for a fixed control policy, or to fine-tune a pre-trained policy if it does not satisfy the reach-avoid specification. We validate our approach on $3$ stochastic non-linear reinforcement learning tasks. article_processing_charge: No author: - first_name: Dorde full_name: Zikelic, Dorde id: 294AA7A6-F248-11E8-B48F-1D18A9856A87 last_name: Zikelic orcid: 0000-0002-4681-1699 - first_name: Mathias full_name: Lechner, Mathias id: 3DC22916-F248-11E8-B48F-1D18A9856A87 last_name: Lechner - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X citation: ama: Zikelic D, Lechner M, Henzinger TA, Chatterjee K. Learning control policies for stochastic systems with reach-avoid guarantees. arXiv. doi:10.48550/ARXIV.2210.05308 apa: Zikelic, D., Lechner, M., Henzinger, T. A., & Chatterjee, K. (n.d.). Learning control policies for stochastic systems with reach-avoid guarantees. arXiv. https://doi.org/10.48550/ARXIV.2210.05308 chicago: Zikelic, Dorde, Mathias Lechner, Thomas A Henzinger, and Krishnendu Chatterjee. “Learning Control Policies for Stochastic Systems with Reach-Avoid Guarantees.” ArXiv, n.d. https://doi.org/10.48550/ARXIV.2210.05308. ieee: D. Zikelic, M. Lechner, T. A. Henzinger, and K. Chatterjee, “Learning control policies for stochastic systems with reach-avoid guarantees,” arXiv. . ista: Zikelic D, Lechner M, Henzinger TA, Chatterjee K. Learning control policies for stochastic systems with reach-avoid guarantees. arXiv, 10.48550/ARXIV.2210.05308. mla: Zikelic, Dorde, et al. “Learning Control Policies for Stochastic Systems with Reach-Avoid Guarantees.” ArXiv, doi:10.48550/ARXIV.2210.05308. short: D. Zikelic, M. Lechner, T.A. Henzinger, K. Chatterjee, ArXiv (n.d.). date_created: 2023-11-24T13:10:09Z date_published: 2022-11-29T00:00:00Z date_updated: 2024-01-22T14:08:29Z day: '29' department: - _id: KrCh - _id: ToHe doi: 10.48550/ARXIV.2210.05308 ec_funded: 1 external_id: arxiv: - '2210.05308' language: - iso: eng license: https://creativecommons.org/licenses/by-sa/4.0/ main_file_link: - open_access: '1' url: https://arxiv.org/abs/2210.05308 month: '11' oa: 1 oa_version: Preprint project: - _id: 0599E47C-7A3F-11EA-A408-12923DDC885E call_identifier: H2020 grant_number: '863818' name: 'Formal Methods for Stochastic Models: Algorithms and Applications' - _id: 62781420-2b32-11ec-9570-8d9b63373d4d call_identifier: H2020 grant_number: '101020093' name: Vigilant Algorithmic Monitoring of Software - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication: arXiv publication_status: submitted related_material: record: - id: '14539' relation: dissertation_contains status: public - id: '14830' relation: later_version status: public status: public title: Learning control policies for stochastic systems with reach-avoid guarantees tmp: image: /images/cc_by_sa.png legal_code_url: https://creativecommons.org/licenses/by-sa/4.0/legalcode name: Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY-SA 4.0) short: CC BY-SA (4.0) type: preprint user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2022' ... --- _id: '10052' abstract: - lang: eng text: "A deterministic finite automaton (DFA) \U0001D49C is composite if its language L(\U0001D49C) can be decomposed into an intersection ⋂_{i = 1}^k L(\U0001D49C_i) of languages of smaller DFAs. Otherwise, \U0001D49C is prime. This notion of primality was introduced by Kupferman and Mosheiff in 2013, and while they proved that we can decide whether a DFA is composite, the precise complexity of this problem is still open, with a doubly-exponential gap between the upper and lower bounds. In this work, we focus on permutation DFAs, i.e., those for which the transition monoid is a group. We provide an NP algorithm to decide whether a permutation DFA is composite, and show that the difficulty of this problem comes from the number of non-accepting states of the instance: we give a fixed-parameter tractable algorithm with the number of rejecting states as the parameter. Moreover, we investigate the class of commutative permutation DFAs. Their structural properties allow us to decide compositionality in NL, and even in LOGSPACE if the alphabet size is fixed. Despite this low complexity, we show that complex behaviors still arise in this class: we provide a family of composite DFAs each requiring polynomially many factors with respect to its size. We also consider the variant of the problem that asks whether a DFA is k-factor composite, that is, decomposable into k smaller DFAs, for some given integer k ∈ ℕ. We show that, for commutative permutation DFAs, restricting the number of factors makes the decision computationally harder, and yields a problem with tight bounds: it is NP-complete. Finally, we show that in general, this problem is in PSPACE, and it is in LOGSPACE for DFAs with a singleton alphabet." acknowledgement: "Ismaël Jecker: Marie Skłodowska-Curie Grant Agreement No. 754411. Nicolas Mazzocchi: BOSCO project PGC2018-102210-B-I00 (MCIU/AEI/FEDER, UE), BLOQUESCM project S2018/TCS-4339, and MINECO grant RYC-2016-20281.\r\nPetra Wolf : DFG project FE 560/9-1.\r\n" alternative_title: - LIPIcs article_number: '18' article_processing_charge: No author: - first_name: Ismael R full_name: Jecker, Ismael R id: 85D7C63E-7D5D-11E9-9C0F-98C4E5697425 last_name: Jecker - first_name: Nicolas full_name: Mazzocchi, Nicolas last_name: Mazzocchi - first_name: Petra full_name: Wolf, Petra last_name: Wolf citation: ama: 'Jecker IR, Mazzocchi N, Wolf P. Decomposing permutation automata. In: 32nd International Conference on Concurrency Theory. Vol 203. Schloss Dagstuhl - Leibniz Zentrum für Informatik; 2021. doi:10.4230/LIPIcs.CONCUR.2021.18' apa: 'Jecker, I. R., Mazzocchi, N., & Wolf, P. (2021). Decomposing permutation automata. In 32nd International Conference on Concurrency Theory (Vol. 203). Paris, France: Schloss Dagstuhl - Leibniz Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.CONCUR.2021.18' chicago: Jecker, Ismael R, Nicolas Mazzocchi, and Petra Wolf. “Decomposing Permutation Automata.” In 32nd International Conference on Concurrency Theory, Vol. 203. Schloss Dagstuhl - Leibniz Zentrum für Informatik, 2021. https://doi.org/10.4230/LIPIcs.CONCUR.2021.18. ieee: I. R. Jecker, N. Mazzocchi, and P. Wolf, “Decomposing permutation automata,” in 32nd International Conference on Concurrency Theory, Paris, France, 2021, vol. 203. ista: 'Jecker IR, Mazzocchi N, Wolf P. 2021. Decomposing permutation automata. 32nd International Conference on Concurrency Theory. CONCUR: Conference on Concurrency Theory, LIPIcs, vol. 203, 18.' mla: Jecker, Ismael R., et al. “Decomposing Permutation Automata.” 32nd International Conference on Concurrency Theory, vol. 203, 18, Schloss Dagstuhl - Leibniz Zentrum für Informatik, 2021, doi:10.4230/LIPIcs.CONCUR.2021.18. short: I.R. Jecker, N. Mazzocchi, P. Wolf, in:, 32nd International Conference on Concurrency Theory, Schloss Dagstuhl - Leibniz Zentrum für Informatik, 2021. conference: end_date: 2021-08-27 location: Paris, France name: 'CONCUR: Conference on Concurrency Theory' start_date: 2021-08-23 date_created: 2021-09-27T14:33:14Z date_published: 2021-08-13T00:00:00Z date_updated: 2022-05-13T08:12:52Z day: '13' ddc: - '000' department: - _id: KrCh doi: 10.4230/LIPIcs.CONCUR.2021.18 ec_funded: 1 external_id: arxiv: - '2107.04683' file: - access_level: open_access checksum: 4722c81be82265cf45e78adf9db91250 content_type: application/pdf creator: cchlebak date_created: 2021-10-01T11:10:53Z date_updated: 2021-10-01T11:10:53Z file_id: '10064' file_name: 2021_CONCUR_Jecker.pdf file_size: 1003552 relation: main_file success: 1 file_date_updated: 2021-10-01T11:10:53Z has_accepted_license: '1' intvolume: ' 203' language: - iso: eng month: '08' oa: 1 oa_version: Published Version project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: 32nd International Conference on Concurrency Theory publication_identifier: isbn: - 978-3-9597-7203-7 issn: - 1868-8969 publication_status: published publisher: Schloss Dagstuhl - Leibniz Zentrum für Informatik quality_controlled: '1' scopus_import: '1' status: public title: Decomposing permutation automata tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 203 year: '2021' ... --- _id: '10054' abstract: - lang: eng text: 'Graphs and games on graphs are fundamental models for the analysis of reactive systems, in particular, for model-checking and the synthesis of reactive systems. The class of ω-regular languages provides a robust specification formalism for the desired properties of reactive systems. In the classical infinitary formulation of the liveness part of an ω-regular specification, a "good" event must happen eventually without any bound between the good events. A stronger notion of liveness is bounded liveness, which requires that good events happen within d transitions. Given a graph or a game graph with n vertices, m edges, and a bounded liveness objective, the previous best-known algorithmic bounds are as follows: (i) O(dm) for graphs, which in the worst-case is O(n³); and (ii) O(n² d²) for games on graphs. Our main contributions improve these long-standing algorithmic bounds. For graphs we present: (i) a randomized algorithm with one-sided error with running time O(n^{2.5} log n) for the bounded liveness objectives; and (ii) a deterministic linear-time algorithm for the complement of bounded liveness objectives. For games on graphs, we present an O(n² d) time algorithm for the bounded liveness objectives.' acknowledgement: 'Krishnendu Chatterjee: Supported by the ERC CoG 863818 (ForM-SMArt). Monika Henzinger: Supported by the Austrian Science Fund (FWF) and netIDEE SCIENCE project P 33775-N. Sagar Sudhir Kale: Partially supported by the Vienna Science and Technology Fund (WWTF) through project ICT15-003. Alexander Svozil: Fully supported by the Vienna Science and Technology Fund (WWTF) through project ICT15-003.' alternative_title: - LIPIcs article_number: '124' article_processing_charge: No author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Monika H full_name: Henzinger, Monika H id: 540c9bbd-f2de-11ec-812d-d04a5be85630 last_name: Henzinger orcid: 0000-0002-5008-6530 - first_name: Sagar Sudhir full_name: Kale, Sagar Sudhir last_name: Kale - first_name: Alexander full_name: Svozil, Alexander last_name: Svozil citation: ama: 'Chatterjee K, Henzinger MH, Kale SS, Svozil A. Faster algorithms for bounded liveness in graphs and game graphs. In: 48th International Colloquium on Automata, Languages, and Programming. Vol 198. Schloss Dagstuhl - Leibniz Zentrum für Informatik; 2021. doi:10.4230/LIPIcs.ICALP.2021.124' apa: 'Chatterjee, K., Henzinger, M. H., Kale, S. S., & Svozil, A. (2021). Faster algorithms for bounded liveness in graphs and game graphs. In 48th International Colloquium on Automata, Languages, and Programming (Vol. 198). Glasgow, Scotland: Schloss Dagstuhl - Leibniz Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.ICALP.2021.124' chicago: Chatterjee, Krishnendu, Monika H Henzinger, Sagar Sudhir Kale, and Alexander Svozil. “Faster Algorithms for Bounded Liveness in Graphs and Game Graphs.” In 48th International Colloquium on Automata, Languages, and Programming, Vol. 198. Schloss Dagstuhl - Leibniz Zentrum für Informatik, 2021. https://doi.org/10.4230/LIPIcs.ICALP.2021.124. ieee: K. Chatterjee, M. H. Henzinger, S. S. Kale, and A. Svozil, “Faster algorithms for bounded liveness in graphs and game graphs,” in 48th International Colloquium on Automata, Languages, and Programming, Glasgow, Scotland, 2021, vol. 198. ista: 'Chatterjee K, Henzinger MH, Kale SS, Svozil A. 2021. Faster algorithms for bounded liveness in graphs and game graphs. 48th International Colloquium on Automata, Languages, and Programming. ICALP: International Colloquium on Automata, Languages, and Programming, LIPIcs, vol. 198, 124.' mla: Chatterjee, Krishnendu, et al. “Faster Algorithms for Bounded Liveness in Graphs and Game Graphs.” 48th International Colloquium on Automata, Languages, and Programming, vol. 198, 124, Schloss Dagstuhl - Leibniz Zentrum für Informatik, 2021, doi:10.4230/LIPIcs.ICALP.2021.124. short: K. Chatterjee, M.H. Henzinger, S.S. Kale, A. Svozil, in:, 48th International Colloquium on Automata, Languages, and Programming, Schloss Dagstuhl - Leibniz Zentrum für Informatik, 2021. conference: end_date: 2021-07-16 location: Glasgow, Scotland name: 'ICALP: International Colloquium on Automata, Languages, and Programming' start_date: 2021-07-12 date_created: 2021-09-27T14:33:15Z date_published: 2021-07-02T00:00:00Z date_updated: 2022-08-12T10:55:02Z day: '02' ddc: - '000' department: - _id: KrCh doi: 10.4230/LIPIcs.ICALP.2021.124 ec_funded: 1 file: - access_level: open_access checksum: 5a3fed8dbba8c088cbeac1e24cc10bc5 content_type: application/pdf creator: cchlebak date_created: 2021-10-01T08:49:26Z date_updated: 2021-10-01T08:49:26Z file_id: '10062' file_name: 2021_LIPIcs_Chatterjee.pdf file_size: 854576 relation: main_file success: 1 file_date_updated: 2021-10-01T08:49:26Z has_accepted_license: '1' intvolume: ' 198' language: - iso: eng month: '07' oa: 1 oa_version: Published Version project: - _id: 0599E47C-7A3F-11EA-A408-12923DDC885E call_identifier: H2020 grant_number: '863818' name: 'Formal Methods for Stochastic Models: Algorithms and Applications' publication: 48th International Colloquium on Automata, Languages, and Programming publication_identifier: isbn: - 978-3-95977-195-5 issn: - 1868-8969 publication_status: published publisher: Schloss Dagstuhl - Leibniz Zentrum für Informatik quality_controlled: '1' scopus_import: '1' status: public title: Faster algorithms for bounded liveness in graphs and game graphs tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf volume: 198 year: '2021' ... --- _id: '10075' abstract: - lang: eng text: We study the expressiveness and succinctness of good-for-games pushdown automata (GFG-PDA) over finite words, that is, pushdown automata whose nondeterminism can be resolved based on the run constructed so far, but independently of the remainder of the input word. We prove that GFG-PDA recognise more languages than deterministic PDA (DPDA) but not all context-free languages (CFL). This class is orthogonal to unambiguous CFL. We further show that GFG-PDA can be exponentially more succinct than DPDA, while PDA can be double-exponentially more succinct than GFG-PDA. We also study GFGness in visibly pushdown automata (VPA), which enjoy better closure properties than PDA, and for which we show GFGness to be ExpTime-complete. GFG-VPA can be exponentially more succinct than deterministic VPA, while VPA can be exponentially more succinct than GFG-VPA. Both of these lower bounds are tight. Finally, we study the complexity of resolving nondeterminism in GFG-PDA. Every GFG-PDA has a positional resolver, a function that resolves nondeterminism and that is only dependant on the current configuration. Pushdown transducers are sufficient to implement the resolvers of GFG-VPA, but not those of GFG-PDA. GFG-PDA with finite-state resolvers are determinisable. acknowledgement: 'Ismaël Jecker: Funded by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 754411. Karoliina Lehtinen: Funded by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 892704.' alternative_title: - LIPIcs article_number: '53' article_processing_charge: No author: - first_name: Shibashis full_name: Guha, Shibashis last_name: Guha - first_name: Ismael R full_name: Jecker, Ismael R id: 85D7C63E-7D5D-11E9-9C0F-98C4E5697425 last_name: Jecker - first_name: Karoliina full_name: Lehtinen, Karoliina last_name: Lehtinen - first_name: Martin full_name: Zimmermann, Martin last_name: Zimmermann citation: ama: 'Guha S, Jecker IR, Lehtinen K, Zimmermann M. A bit of nondeterminism makes pushdown automata expressive and succinct. In: 46th International Symposium on Mathematical Foundations of Computer Science. Vol 202. Schloss Dagstuhl - Leibniz Zentrum für Informatik; 2021. doi:10.4230/LIPIcs.MFCS.2021.53' apa: 'Guha, S., Jecker, I. R., Lehtinen, K., & Zimmermann, M. (2021). A bit of nondeterminism makes pushdown automata expressive and succinct. In 46th International Symposium on Mathematical Foundations of Computer Science (Vol. 202). Tallinn, Estonia: Schloss Dagstuhl - Leibniz Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.MFCS.2021.53' chicago: Guha, Shibashis, Ismael R Jecker, Karoliina Lehtinen, and Martin Zimmermann. “A Bit of Nondeterminism Makes Pushdown Automata Expressive and Succinct.” In 46th International Symposium on Mathematical Foundations of Computer Science, Vol. 202. Schloss Dagstuhl - Leibniz Zentrum für Informatik, 2021. https://doi.org/10.4230/LIPIcs.MFCS.2021.53. ieee: S. Guha, I. R. Jecker, K. Lehtinen, and M. Zimmermann, “A bit of nondeterminism makes pushdown automata expressive and succinct,” in 46th International Symposium on Mathematical Foundations of Computer Science, Tallinn, Estonia, 2021, vol. 202. ista: 'Guha S, Jecker IR, Lehtinen K, Zimmermann M. 2021. A bit of nondeterminism makes pushdown automata expressive and succinct. 46th International Symposium on Mathematical Foundations of Computer Science. MFCS: Mathematical Foundations of Computer Science, LIPIcs, vol. 202, 53.' mla: Guha, Shibashis, et al. “A Bit of Nondeterminism Makes Pushdown Automata Expressive and Succinct.” 46th International Symposium on Mathematical Foundations of Computer Science, vol. 202, 53, Schloss Dagstuhl - Leibniz Zentrum für Informatik, 2021, doi:10.4230/LIPIcs.MFCS.2021.53. short: S. Guha, I.R. Jecker, K. Lehtinen, M. Zimmermann, in:, 46th International Symposium on Mathematical Foundations of Computer Science, Schloss Dagstuhl - Leibniz Zentrum für Informatik, 2021. conference: end_date: 2021-08-27 location: Tallinn, Estonia name: 'MFCS: Mathematical Foundations of Computer Science' start_date: 2021-08-23 date_created: 2021-10-03T22:01:23Z date_published: 2021-08-18T00:00:00Z date_updated: 2022-05-13T08:21:56Z day: '18' ddc: - '000' department: - _id: KrCh doi: 10.4230/LIPIcs.MFCS.2021.53 ec_funded: 1 external_id: arxiv: - '2105.02611' file: - access_level: open_access checksum: f4d407d43a97330c3fb11e6a7a6fbfb2 content_type: application/pdf creator: cchlebak date_created: 2021-10-06T12:44:05Z date_updated: 2021-10-06T12:44:05Z file_id: '10097' file_name: 2021_LIPIcs_Guha.pdf file_size: 825567 relation: main_file success: 1 file_date_updated: 2021-10-06T12:44:05Z has_accepted_license: '1' intvolume: ' 202' language: - iso: eng month: '08' oa: 1 oa_version: Published Version project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: 46th International Symposium on Mathematical Foundations of Computer Science publication_identifier: isbn: - 978-3-9597-7201-3 issn: - 1868-8969 publication_status: published publisher: Schloss Dagstuhl - Leibniz Zentrum für Informatik quality_controlled: '1' scopus_import: '1' status: public title: A bit of nondeterminism makes pushdown automata expressive and succinct tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 202 year: '2021' ... --- _id: '10630' abstract: - lang: eng text: In the Intersection Non-emptiness problem, we are given a list of finite automata A_1, A_2,… , A_m over a common alphabet Σ as input, and the goal is to determine whether some string w ∈ Σ^* lies in the intersection of the languages accepted by the automata in the list. We analyze the complexity of the Intersection Non-emptiness problem under the promise that all input automata accept a language in some level of the dot-depth hierarchy, or some level of the Straubing-Thérien hierarchy. Automata accepting languages from the lowest levels of these hierarchies arise naturally in the context of model checking. We identify a dichotomy in the dot-depth hierarchy by showing that the problem is already NP-complete when all input automata accept languages of the levels B_0 or B_{1/2} and already PSPACE-hard when all automata accept a language from the level B_1. Conversely, we identify a tetrachotomy in the Straubing-Thérien hierarchy. More precisely, we show that the problem is in AC^0 when restricted to level L_0; complete for L or NL, depending on the input representation, when restricted to languages in the level L_{1/2}; NP-complete when the input is given as DFAs accepting a language in L_1 or L_{3/2}; and finally, PSPACE-complete when the input automata accept languages in level L_2 or higher. Moreover, we show that the proof technique used to show containment in NP for DFAs accepting languages in L_1 or L_{3/2} does not generalize to the context of NFAs. To prove this, we identify a family of languages that provide an exponential separation between the state complexity of general NFAs and that of partially ordered NFAs. To the best of our knowledge, this is the first superpolynomial separation between these two models of computation. acknowledgement: "We like to thank Lukas Fleischer and Michael Wehar for our discussions. This work started at the Schloss Dagstuhl Event 20483 Moderne Aspekte der Komplexitätstheorie in der Automatentheorie https://www.dagstuhl.de/20483.\r\n" alternative_title: - LIPIcs article_number: '34' article_processing_charge: No author: - first_name: Emmanuel full_name: Arrighi, Emmanuel last_name: Arrighi - first_name: Henning full_name: Fernau, Henning last_name: Fernau - first_name: Stefan full_name: Hoffmann, Stefan last_name: Hoffmann - first_name: Markus full_name: Holzer, Markus last_name: Holzer - first_name: Ismael R full_name: Jecker, Ismael R id: 85D7C63E-7D5D-11E9-9C0F-98C4E5697425 last_name: Jecker - first_name: Mateus full_name: De Oliveira Oliveira, Mateus last_name: De Oliveira Oliveira - first_name: Petra full_name: Wolf, Petra last_name: Wolf citation: ama: 'Arrighi E, Fernau H, Hoffmann S, et al. On the complexity of intersection non-emptiness for star-free language classes. In: 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science. Vol 213. Schloss Dagstuhl - Leibniz Zentrum für Informatik; 2021. doi:10.4230/LIPIcs.FSTTCS.2021.34' apa: 'Arrighi, E., Fernau, H., Hoffmann, S., Holzer, M., Jecker, I. R., De Oliveira Oliveira, M., & Wolf, P. (2021). On the complexity of intersection non-emptiness for star-free language classes. In 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (Vol. 213). Virtual: Schloss Dagstuhl - Leibniz Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.FSTTCS.2021.34' chicago: Arrighi, Emmanuel, Henning Fernau, Stefan Hoffmann, Markus Holzer, Ismael R Jecker, Mateus De Oliveira Oliveira, and Petra Wolf. “On the Complexity of Intersection Non-Emptiness for Star-Free Language Classes.” In 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, Vol. 213. Schloss Dagstuhl - Leibniz Zentrum für Informatik, 2021. https://doi.org/10.4230/LIPIcs.FSTTCS.2021.34. ieee: E. Arrighi et al., “On the complexity of intersection non-emptiness for star-free language classes,” in 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, Virtual, 2021, vol. 213. ista: 'Arrighi E, Fernau H, Hoffmann S, Holzer M, Jecker IR, De Oliveira Oliveira M, Wolf P. 2021. On the complexity of intersection non-emptiness for star-free language classes. 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science. FSTTCS: Foundations of Software Technology and Theoretical Computer Science, LIPIcs, vol. 213, 34.' mla: Arrighi, Emmanuel, et al. “On the Complexity of Intersection Non-Emptiness for Star-Free Language Classes.” 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, vol. 213, 34, Schloss Dagstuhl - Leibniz Zentrum für Informatik, 2021, doi:10.4230/LIPIcs.FSTTCS.2021.34. short: E. Arrighi, H. Fernau, S. Hoffmann, M. Holzer, I.R. Jecker, M. De Oliveira Oliveira, P. Wolf, in:, 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, Schloss Dagstuhl - Leibniz Zentrum für Informatik, 2021. conference: end_date: 2021-12-17 location: Virtual name: 'FSTTCS: Foundations of Software Technology and Theoretical Computer Science' start_date: 2021-12-15 date_created: 2022-01-16T23:01:29Z date_published: 2021-11-29T00:00:00Z date_updated: 2022-01-17T10:56:19Z day: '29' ddc: - '000' department: - _id: KrCh doi: 10.4230/LIPIcs.FSTTCS.2021.34 ec_funded: 1 external_id: arxiv: - '2110.01279' file: - access_level: open_access checksum: d5a82ba893c3bc5da5914edbb3efb92b content_type: application/pdf creator: cchlebak date_created: 2022-01-17T10:49:03Z date_updated: 2022-01-17T10:49:03Z file_id: '10634' file_name: 2021_LIPIcs_Arrighi.pdf file_size: 844224 relation: main_file success: 1 file_date_updated: 2022-01-17T10:49:03Z has_accepted_license: '1' intvolume: ' 213' language: - iso: eng month: '11' oa: 1 oa_version: Published Version project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science publication_identifier: isbn: - 978-3-9597-7215-0 issn: - 1868-8969 publication_status: published publisher: Schloss Dagstuhl - Leibniz Zentrum für Informatik quality_controlled: '1' scopus_import: '1' status: public title: On the complexity of intersection non-emptiness for star-free language classes tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 volume: 213 year: '2021' ... --- _id: '10629' abstract: - lang: eng text: "Product graphs arise naturally in formal verification and program analysis. For example, the analysis of two concurrent threads requires the product of two component control-flow graphs, and for language inclusion of deterministic automata the product of two automata is constructed. In many cases, the component graphs have constant treewidth, e.g., when the input contains control-flow graphs of programs. We consider the algorithmic analysis of products of two constant-treewidth graphs with respect to three classic specification languages, namely, (a) algebraic properties, (b) mean-payoff properties, and (c) initial credit for energy properties.\r\nOur main contributions are as follows. Consider a graph G that is the product of two constant-treewidth graphs of size n each. First, given an idempotent semiring, we present an algorithm that computes the semiring transitive closure of G in time Õ(n⁴). Since the output has size Θ(n⁴), our algorithm is optimal (up to polylog factors). Second, given a mean-payoff objective, we present an O(n³)-time algorithm for deciding whether the value of a starting state is non-negative, improving the previously known O(n⁴) bound. Third, given an initial credit for energy objective, we present an O(n⁵)-time algorithm for computing the minimum initial credit for all nodes of G, improving the previously known O(n⁸) bound. At the heart of our approach lies an algorithm for the efficient construction of strongly-balanced tree decompositions of constant-treewidth graphs. Given a constant-treewidth graph G' of n nodes and a positive integer λ, our algorithm constructs a binary tree decomposition of G' of width O(λ) with the property that the size of each subtree decreases geometrically with rate (1/2 + 2^{-λ})." alternative_title: - LIPIcs article_number: '42' article_processing_charge: No author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Rasmus full_name: Ibsen-Jensen, Rasmus id: 3B699956-F248-11E8-B48F-1D18A9856A87 last_name: Ibsen-Jensen orcid: 0000-0003-4783-0389 - first_name: Andreas full_name: Pavlogiannis, Andreas id: 49704004-F248-11E8-B48F-1D18A9856A87 last_name: Pavlogiannis orcid: 0000-0002-8943-0722 citation: ama: 'Chatterjee K, Ibsen-Jensen R, Pavlogiannis A. Quantitative verification on product graphs of small treewidth. In: 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science. Vol 213. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2021. doi:10.4230/LIPIcs.FSTTCS.2021.42' apa: 'Chatterjee, K., Ibsen-Jensen, R., & Pavlogiannis, A. (2021). Quantitative verification on product graphs of small treewidth. In 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (Vol. 213). Virtual: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.FSTTCS.2021.42' chicago: Chatterjee, Krishnendu, Rasmus Ibsen-Jensen, and Andreas Pavlogiannis. “Quantitative Verification on Product Graphs of Small Treewidth.” In 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, Vol. 213. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. https://doi.org/10.4230/LIPIcs.FSTTCS.2021.42. ieee: K. Chatterjee, R. Ibsen-Jensen, and A. Pavlogiannis, “Quantitative verification on product graphs of small treewidth,” in 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, Virtual, 2021, vol. 213. ista: 'Chatterjee K, Ibsen-Jensen R, Pavlogiannis A. 2021. Quantitative verification on product graphs of small treewidth. 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science. FSTTCS: Foundations of Software Technology and Theoretical Computer Science, LIPIcs, vol. 213, 42.' mla: Chatterjee, Krishnendu, et al. “Quantitative Verification on Product Graphs of Small Treewidth.” 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, vol. 213, 42, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021, doi:10.4230/LIPIcs.FSTTCS.2021.42. short: K. Chatterjee, R. Ibsen-Jensen, A. Pavlogiannis, in:, 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. conference: end_date: 2021-12-17 location: Virtual name: 'FSTTCS: Foundations of Software Technology and Theoretical Computer Science' start_date: 2021-12-15 date_created: 2022-01-16T23:01:28Z date_published: 2021-11-29T00:00:00Z date_updated: 2022-01-17T10:39:40Z day: '29' ddc: - '000' department: - _id: KrCh doi: 10.4230/LIPIcs.FSTTCS.2021.42 file: - access_level: open_access checksum: 71141acdeffa9056f24d6dbef952d254 content_type: application/pdf creator: cchlebak date_created: 2022-01-17T10:36:08Z date_updated: 2022-01-17T10:36:08Z file_id: '10633' file_name: 2021_LIPIcs_Chatterjee.pdf file_size: 891566 relation: main_file success: 1 file_date_updated: 2022-01-17T10:36:08Z has_accepted_license: '1' intvolume: ' 213' language: - iso: eng month: '11' oa: 1 oa_version: Published Version publication: 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science publication_identifier: isbn: - 978-3-9597-7215-0 issn: - 1868-8969 publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik quality_controlled: '1' scopus_import: '1' status: public title: Quantitative verification on product graphs of small treewidth tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 volume: 213 year: '2021' ... --- _id: '10694' abstract: - lang: eng text: 'In a two-player zero-sum graph game the players move a token throughout a graph to produce an infinite path, which determines the winner or payoff of the game. Traditionally, the players alternate turns in moving the token. In bidding games, however, the players have budgets, and in each turn, we hold an “auction” (bidding) to determine which player moves the token: both players simultaneously submit bids and the higher bidder moves the token. The bidding mechanisms differ in their payment schemes. Bidding games were largely studied with variants of first-price bidding in which only the higher bidder pays his bid. We focus on all-pay bidding, where both players pay their bids. Finite-duration all-pay bidding games were studied and shown to be technically more challenging than their first-price counterparts. We study for the first time, infinite-duration all-pay bidding games. Our most interesting results are for mean-payoff objectives: we portray a complete picture for games played on strongly-connected graphs. We study both pure (deterministic) and mixed (probabilistic) strategies and completely characterize the optimal and almost-sure (with probability 1) payoffs the players can respectively guarantee. We show that mean-payoff games under all-pay bidding exhibit the intriguing mathematical properties of their first-price counterparts; namely, an equivalence with random-turn games in which in each turn, the player who moves is selected according to a (biased) coin toss. The equivalences for all-pay bidding are more intricate and unexpected than for first-price bidding.' acknowledgement: This research was supported in part by the Austrian Science Fund (FWF) under grant Z211-N23 (Wittgenstein Award), ERC CoG 863818 (FoRM-SMArt), and by the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 665385. article_processing_charge: No author: - first_name: Guy full_name: Avni, Guy id: 463C8BC2-F248-11E8-B48F-1D18A9856A87 last_name: Avni orcid: 0000-0001-5588-8287 - first_name: Ismael R full_name: Jecker, Ismael R id: 85D7C63E-7D5D-11E9-9C0F-98C4E5697425 last_name: Jecker - first_name: Dorde full_name: Zikelic, Dorde id: 294AA7A6-F248-11E8-B48F-1D18A9856A87 last_name: Zikelic citation: ama: 'Avni G, Jecker IR, Zikelic D. Infinite-duration all-pay bidding games. In: Marx D, ed. Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms. Society for Industrial and Applied Mathematics; 2021:617-636. doi:10.1137/1.9781611976465.38' apa: 'Avni, G., Jecker, I. R., & Zikelic, D. (2021). Infinite-duration all-pay bidding games. In D. Marx (Ed.), Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (pp. 617–636). Virtual: Society for Industrial and Applied Mathematics. https://doi.org/10.1137/1.9781611976465.38' chicago: Avni, Guy, Ismael R Jecker, and Dorde Zikelic. “Infinite-Duration All-Pay Bidding Games.” In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, edited by Dániel Marx, 617–36. Society for Industrial and Applied Mathematics, 2021. https://doi.org/10.1137/1.9781611976465.38. ieee: G. Avni, I. R. Jecker, and D. Zikelic, “Infinite-duration all-pay bidding games,” in Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, Virtual, 2021, pp. 617–636. ista: 'Avni G, Jecker IR, Zikelic D. 2021. Infinite-duration all-pay bidding games. Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms. SODA: Symposium on Discrete Algorithms, 617–636.' mla: Avni, Guy, et al. “Infinite-Duration All-Pay Bidding Games.” Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, edited by Dániel Marx, Society for Industrial and Applied Mathematics, 2021, pp. 617–36, doi:10.1137/1.9781611976465.38. short: G. Avni, I.R. Jecker, D. Zikelic, in:, D. Marx (Ed.), Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, Society for Industrial and Applied Mathematics, 2021, pp. 617–636. conference: end_date: 2021-01-13 location: Virtual name: 'SODA: Symposium on Discrete Algorithms' start_date: 2021-01-10 date_created: 2022-01-27T12:11:23Z date_published: 2021-01-01T00:00:00Z date_updated: 2022-01-27T12:58:43Z day: '01' department: - _id: GradSch - _id: KrCh doi: 10.1137/1.9781611976465.38 ec_funded: 1 editor: - first_name: Dániel full_name: Marx, Dániel last_name: Marx external_id: arxiv: - '2005.06636' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2005.06636 month: '01' oa: 1 oa_version: Preprint page: 617-636 project: - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize - _id: 0599E47C-7A3F-11EA-A408-12923DDC885E call_identifier: H2020 grant_number: '863818' name: 'Formal Methods for Stochastic Models: Algorithms and Applications' - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication: Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms publication_identifier: isbn: - 978-1-61197-646-5 publication_status: published publisher: Society for Industrial and Applied Mathematics quality_controlled: '1' scopus_import: '1' status: public title: Infinite-duration all-pay bidding games type: conference user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2021' ... --- _id: '10847' abstract: - lang: eng text: 'We study the two-player zero-sum extension of the partially observable stochastic shortest-path problem where one agent has only partial information about the environment. We formulate this problem as a partially observable stochastic game (POSG): given a set of target states and negative rewards for each transition, the player with imperfect information maximizes the expected undiscounted total reward until a target state is reached. The second player with the perfect information aims for the opposite. We base our formalism on POSGs with one-sided observability (OS-POSGs) and give the following contributions: (1) we introduce a novel heuristic search value iteration algorithm that iteratively solves depth-limited variants of the game, (2) we derive the bound on the depth guaranteeing an arbitrary precision, (3) we propose a novel upper-bound estimation that allows early terminations, and (4) we experimentally evaluate the algorithm on a pursuit-evasion game.' acknowledgement: "This research was supported by the Czech Science Foundation (no. 19-24384Y), by the OP VVV MEYS funded project CZ.02.1.01/0.0/0.0/16 019/0000765 “Research Center for Informatics”, by the ERC CoG 863818 (ForM-SMArt), and by the Combat Capabilities Development Command Army Research Laboratory and was accomplished under Cooperative\r\nAgreement Number W911NF-13-2-0045 (ARL Cyber Security CRA). The views and conclusions contained in this document are those of the authors and should not be interpreted as\r\nrepresenting the official policies, either expressed or implied, of the Combat Capabilities Development Command Army Research Laboratory or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes not withstanding any copyright notation here on. " article_processing_charge: No author: - first_name: Petr full_name: Tomášek, Petr last_name: Tomášek - first_name: Karel full_name: Horák, Karel last_name: Horák - first_name: Aditya full_name: Aradhye, Aditya last_name: Aradhye - first_name: Branislav full_name: Bošanský, Branislav last_name: Bošanský - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X citation: ama: 'Tomášek P, Horák K, Aradhye A, Bošanský B, Chatterjee K. Solving partially observable stochastic shortest-path games. In: 30th International Joint Conference on Artificial Intelligence. International Joint Conferences on Artificial Intelligence; 2021:4182-4189. doi:10.24963/ijcai.2021/575' apa: 'Tomášek, P., Horák, K., Aradhye, A., Bošanský, B., & Chatterjee, K. (2021). Solving partially observable stochastic shortest-path games. In 30th International Joint Conference on Artificial Intelligence (pp. 4182–4189). Virtual, Online: International Joint Conferences on Artificial Intelligence. https://doi.org/10.24963/ijcai.2021/575' chicago: Tomášek, Petr, Karel Horák, Aditya Aradhye, Branislav Bošanský, and Krishnendu Chatterjee. “Solving Partially Observable Stochastic Shortest-Path Games.” In 30th International Joint Conference on Artificial Intelligence, 4182–89. International Joint Conferences on Artificial Intelligence, 2021. https://doi.org/10.24963/ijcai.2021/575. ieee: P. Tomášek, K. Horák, A. Aradhye, B. Bošanský, and K. Chatterjee, “Solving partially observable stochastic shortest-path games,” in 30th International Joint Conference on Artificial Intelligence, Virtual, Online, 2021, pp. 4182–4189. ista: 'Tomášek P, Horák K, Aradhye A, Bošanský B, Chatterjee K. 2021. Solving partially observable stochastic shortest-path games. 30th International Joint Conference on Artificial Intelligence. IJCAI: International Joint Conferences on Artificial Intelligence Organization, 4182–4189.' mla: Tomášek, Petr, et al. “Solving Partially Observable Stochastic Shortest-Path Games.” 30th International Joint Conference on Artificial Intelligence, International Joint Conferences on Artificial Intelligence, 2021, pp. 4182–89, doi:10.24963/ijcai.2021/575. short: P. Tomášek, K. Horák, A. Aradhye, B. Bošanský, K. Chatterjee, in:, 30th International Joint Conference on Artificial Intelligence, International Joint Conferences on Artificial Intelligence, 2021, pp. 4182–4189. conference: end_date: 2021-08-27 location: Virtual, Online name: 'IJCAI: International Joint Conferences on Artificial Intelligence Organization' start_date: 2021-08-19 date_created: 2022-03-13T23:01:47Z date_published: 2021-09-01T00:00:00Z date_updated: 2022-08-05T09:05:06Z day: '01' department: - _id: KrCh doi: 10.24963/ijcai.2021/575 ec_funded: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.24963/ijcai.2021/575 month: '09' oa: 1 oa_version: Published Version page: 4182-4189 project: - _id: 0599E47C-7A3F-11EA-A408-12923DDC885E call_identifier: H2020 grant_number: '863818' name: 'Formal Methods for Stochastic Models: Algorithms and Applications' publication: 30th International Joint Conference on Artificial Intelligence publication_identifier: isbn: - '9780999241196' issn: - 1045-0823 publication_status: published publisher: International Joint Conferences on Artificial Intelligence quality_controlled: '1' scopus_import: '1' status: public title: Solving partially observable stochastic shortest-path games type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2021' ... --- _id: '9296' abstract: - lang: eng text: ' matching is compatible to two or more labeled point sets of size n with labels {1,…,n} if its straight-line drawing on each of these point sets is crossing-free. We study the maximum number of edges in a matching compatible to two or more labeled point sets in general position in the plane. We show that for any two labeled convex sets of n points there exists a compatible matching with ⌊2n−−√⌋ edges. More generally, for any ℓ labeled point sets we construct compatible matchings of size Ω(n1/ℓ) . As a corresponding upper bound, we use probabilistic arguments to show that for any ℓ given sets of n points there exists a labeling of each set such that the largest compatible matching has O(n2/(ℓ+1)) edges. Finally, we show that Θ(logn) copies of any set of n points are necessary and sufficient for the existence of a labeling such that any compatible matching consists only of a single edge.' acknowledgement: 'A.A. funded by the Marie Skłodowska-Curie grant agreement No. 754411. Z.M. partially funded by Wittgenstein Prize, Austrian Science Fund (FWF), grant no. Z 342-N31. I.P., D.P., and B.V. partially supported by FWF within the collaborative DACH project Arrangements and Drawings as FWF project I 3340-N35. A.P. supported by a Schrödinger fellowship of the FWF: J-3847-N35. J.T. partially supported by ERC Start grant no. (279307: Graph Games), FWF grant no. P23499-N23 and S11407-N23 (RiSE).' alternative_title: - LNCS article_processing_charge: No author: - first_name: Oswin full_name: Aichholzer, Oswin last_name: Aichholzer - first_name: Alan M full_name: Arroyo Guevara, Alan M id: 3207FDC6-F248-11E8-B48F-1D18A9856A87 last_name: Arroyo Guevara orcid: 0000-0003-2401-8670 - first_name: Zuzana full_name: Masárová, Zuzana id: 45CFE238-F248-11E8-B48F-1D18A9856A87 last_name: Masárová orcid: 0000-0002-6660-1322 - first_name: Irene full_name: Parada, Irene last_name: Parada - first_name: Daniel full_name: Perz, Daniel last_name: Perz - first_name: Alexander full_name: Pilz, Alexander last_name: Pilz - first_name: Josef full_name: Tkadlec, Josef id: 3F24CCC8-F248-11E8-B48F-1D18A9856A87 last_name: Tkadlec orcid: 0000-0002-1097-9684 - first_name: Birgit full_name: Vogtenhuber, Birgit last_name: Vogtenhuber citation: ama: 'Aichholzer O, Arroyo Guevara AM, Masárová Z, et al. On compatible matchings. In: 15th International Conference on Algorithms and Computation. Vol 12635. Springer Nature; 2021:221-233. doi:10.1007/978-3-030-68211-8_18' apa: 'Aichholzer, O., Arroyo Guevara, A. M., Masárová, Z., Parada, I., Perz, D., Pilz, A., … Vogtenhuber, B. (2021). On compatible matchings. In 15th International Conference on Algorithms and Computation (Vol. 12635, pp. 221–233). Yangon, Myanmar: Springer Nature. https://doi.org/10.1007/978-3-030-68211-8_18' chicago: Aichholzer, Oswin, Alan M Arroyo Guevara, Zuzana Masárová, Irene Parada, Daniel Perz, Alexander Pilz, Josef Tkadlec, and Birgit Vogtenhuber. “On Compatible Matchings.” In 15th International Conference on Algorithms and Computation, 12635:221–33. Springer Nature, 2021. https://doi.org/10.1007/978-3-030-68211-8_18. ieee: O. Aichholzer et al., “On compatible matchings,” in 15th International Conference on Algorithms and Computation, Yangon, Myanmar, 2021, vol. 12635, pp. 221–233. ista: 'Aichholzer O, Arroyo Guevara AM, Masárová Z, Parada I, Perz D, Pilz A, Tkadlec J, Vogtenhuber B. 2021. On compatible matchings. 15th International Conference on Algorithms and Computation. WALCOM: Algorithms and Computation, LNCS, vol. 12635, 221–233.' mla: Aichholzer, Oswin, et al. “On Compatible Matchings.” 15th International Conference on Algorithms and Computation, vol. 12635, Springer Nature, 2021, pp. 221–33, doi:10.1007/978-3-030-68211-8_18. short: O. Aichholzer, A.M. Arroyo Guevara, Z. Masárová, I. Parada, D. Perz, A. Pilz, J. Tkadlec, B. Vogtenhuber, in:, 15th International Conference on Algorithms and Computation, Springer Nature, 2021, pp. 221–233. conference: end_date: 2021-03-02 location: Yangon, Myanmar name: 'WALCOM: Algorithms and Computation' start_date: 2021-02-28 date_created: 2021-03-28T22:01:41Z date_published: 2021-02-16T00:00:00Z date_updated: 2023-02-21T16:33:44Z day: '16' department: - _id: UlWa - _id: HeEd - _id: KrCh doi: 10.1007/978-3-030-68211-8_18 ec_funded: 1 external_id: arxiv: - '2101.03928' intvolume: ' 12635' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2101.03928 month: '02' oa: 1 oa_version: Preprint page: 221-233 project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships - _id: 268116B8-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z00342 name: The Wittgenstein Prize - _id: 2581B60A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '279307' name: 'Quantitative Graph Games: Theory and Applications' - _id: 2584A770-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P 23499-N23 name: Modern Graph Algorithmic Techniques in Formal Verification - _id: 25863FF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11407 name: Game Theory publication: 15th International Conference on Algorithms and Computation publication_identifier: eissn: - '16113349' isbn: - '9783030682101' issn: - '03029743' publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: record: - id: '11938' relation: later_version status: public scopus_import: '1' status: public title: On compatible matchings type: conference user_id: D865714E-FA4E-11E9-B85B-F5C5E5697425 volume: 12635 year: '2021' ... --- _id: '9403' abstract: - lang: eng text: Optimal decision making requires individuals to know their available options and to anticipate correctly what consequences these options have. In many social interactions, however, we refrain from gathering all relevant information, even if this information would help us make better decisions and is costless to obtain. This chapter examines several examples of “deliberate ignorance.” Two simple models are proposed to illustrate how ignorance can evolve among self-interested and payoff - maximizing individuals, and open problems are highlighted that lie ahead for future research to explore. article_processing_charge: No author: - first_name: Laura full_name: Schmid, Laura id: 38B437DE-F248-11E8-B48F-1D18A9856A87 last_name: Schmid orcid: 0000-0002-6978-7329 - first_name: Christian full_name: Hilbe, Christian last_name: Hilbe citation: ama: 'Schmid L, Hilbe C. The evolution of strategic ignorance in strategic interaction. In: Hertwig R, Engel C, eds. Deliberate Ignorance: Choosing Not To Know. Vol 29. Strüngmann Forum Reports. MIT Press; 2021:139-152.' apa: 'Schmid, L., & Hilbe, C. (2021). The evolution of strategic ignorance in strategic interaction. In R. Hertwig & C. Engel (Eds.), Deliberate Ignorance: Choosing Not To Know (Vol. 29, pp. 139–152). MIT Press.' chicago: 'Schmid, Laura, and Christian Hilbe. “The Evolution of Strategic Ignorance in Strategic Interaction.” In Deliberate Ignorance: Choosing Not To Know, edited by Ralph Hertwig and Christoph Engel, 29:139–52. Strüngmann Forum Reports. MIT Press, 2021.' ieee: 'L. Schmid and C. Hilbe, “The evolution of strategic ignorance in strategic interaction,” in Deliberate Ignorance: Choosing Not To Know, vol. 29, R. Hertwig and C. Engel, Eds. MIT Press, 2021, pp. 139–152.' ista: 'Schmid L, Hilbe C. 2021.The evolution of strategic ignorance in strategic interaction. In: Deliberate Ignorance: Choosing Not To Know. vol. 29, 139–152.' mla: 'Schmid, Laura, and Christian Hilbe. “The Evolution of Strategic Ignorance in Strategic Interaction.” Deliberate Ignorance: Choosing Not To Know, edited by Ralph Hertwig and Christoph Engel, vol. 29, MIT Press, 2021, pp. 139–52.' short: 'L. Schmid, C. Hilbe, in:, R. Hertwig, C. Engel (Eds.), Deliberate Ignorance: Choosing Not To Know, MIT Press, 2021, pp. 139–152.' date_created: 2021-05-19T12:25:42Z date_published: 2021-03-01T00:00:00Z date_updated: 2023-02-23T13:57:04Z day: '01' department: - _id: GradSch - _id: KrCh editor: - first_name: Ralph full_name: Hertwig, Ralph last_name: Hertwig - first_name: Christoph full_name: Engel, Christoph last_name: Engel intvolume: ' 29' language: - iso: eng main_file_link: - open_access: '1' url: https://esforum.de/publications/PDFs/sfr29/SFR29_09_Hilbe%20and%20Schmid.pdf month: '03' oa: 1 oa_version: Published Version page: 139-152 publication: 'Deliberate Ignorance: Choosing Not To Know' publication_identifier: isbn: - 978-0-262-04559-9 publisher: MIT Press quality_controlled: '1' series_title: Strüngmann Forum Reports status: public title: The evolution of strategic ignorance in strategic interaction type: book_chapter user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 29 year: '2021' ...