--- _id: '2444' abstract: - lang: eng text: 'We consider two core algorithmic problems for probabilistic verification: the maximal end-component decomposition and the almost-sure reachability set computation for Markov decision processes (MDPs). For MDPs with treewidth k, we present two improved static algorithms for both the problems that run in time O(n·k 2.38·2k ) and O(m·logn· k), respectively, where n is the number of states and m is the number of edges, significantly improving the previous known O(n·k·√n· k) bound for low treewidth. We also present decremental algorithms for both problems for MDPs with constant treewidth that run in amortized logarithmic time, which is a huge improvement over the previously known algorithms that require amortized linear time.' alternative_title: - LNCS author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Jakub full_name: Ła̧Cki, Jakub last_name: Ła̧Cki citation: ama: Chatterjee K, Ła̧Cki J. Faster algorithms for Markov decision processes with low treewidth. 2013;8044:543-558. doi:10.1007/978-3-642-39799-8_36 apa: 'Chatterjee, K., & Ła̧Cki, J. (2013). Faster algorithms for Markov decision processes with low treewidth. Presented at the CAV: Computer Aided Verification, St. Petersburg, Russia: Springer. https://doi.org/10.1007/978-3-642-39799-8_36' chicago: Chatterjee, Krishnendu, and Jakub Ła̧Cki. “Faster Algorithms for Markov Decision Processes with Low Treewidth.” Lecture Notes in Computer Science. Springer, 2013. https://doi.org/10.1007/978-3-642-39799-8_36. ieee: K. Chatterjee and J. Ła̧Cki, “Faster algorithms for Markov decision processes with low treewidth,” vol. 8044. Springer, pp. 543–558, 2013. ista: Chatterjee K, Ła̧Cki J. 2013. Faster algorithms for Markov decision processes with low treewidth. 8044, 543–558. mla: Chatterjee, Krishnendu, and Jakub Ła̧Cki. Faster Algorithms for Markov Decision Processes with Low Treewidth. Vol. 8044, Springer, 2013, pp. 543–58, doi:10.1007/978-3-642-39799-8_36. short: K. Chatterjee, J. Ła̧Cki, 8044 (2013) 543–558. conference: end_date: 2013-07-19 location: St. Petersburg, Russia name: 'CAV: Computer Aided Verification' start_date: 2013-07-13 date_created: 2018-12-11T11:57:42Z date_published: 2013-07-01T00:00:00Z date_updated: 2020-08-11T10:09:47Z day: '01' department: - _id: KrCh doi: 10.1007/978-3-642-39799-8_36 ec_funded: 1 external_id: arxiv: - '1304.0084' intvolume: ' 8044' language: - iso: eng main_file_link: - open_access: '1' url: http://arxiv.org/abs/1304.0084 month: '07' oa: 1 oa_version: Preprint page: 543 - 558 project: - _id: 2584A770-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P 23499-N23 name: Modern Graph Algorithmic Techniques in Formal Verification - _id: 25863FF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11407 name: Game Theory - _id: 2581B60A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '279307' name: 'Quantitative Graph Games: Theory and Applications' - _id: 2587B514-B435-11E9-9278-68D0E5697425 name: Microsoft Research Faculty Fellowship publication_status: published publisher: Springer publist_id: '4459' quality_controlled: '1' scopus_import: 1 series_title: Lecture Notes in Computer Science status: public title: Faster algorithms for Markov decision processes with low treewidth type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 8044 year: '2013' ... --- _id: '2814' abstract: - lang: eng text: We study the problem of generating a test sequence that achieves maximal coverage for a reactive system under test. We formulate the problem as a repeated game between the tester and the system, where the system state space is partitioned according to some coverage criterion and the objective of the tester is to maximize the set of partitions (or coverage goals) visited during the game. We show the complexity of the maximal coverage problem for non-deterministic systems is PSPACE-complete, but is NP-complete for deterministic systems. For the special case of non-deterministic systems with a re-initializing "reset" action, which represent running a new test input on a re-initialized system, we show that the complexity is coNP-complete. Our proof technique for reset games uses randomized testing strategies that circumvent the exponentially large memory requirement of deterministic testing strategies. We also discuss the memory requirement for deterministic strategies and extensions of our results to other models, such as pushdown systems and timed systems. author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Luca full_name: Alfaro, Luca last_name: Alfaro - first_name: Ritankar full_name: Majumdar, Ritankar last_name: Majumdar citation: ama: Chatterjee K, Alfaro L, Majumdar R. The complexity of coverage. International Journal of Foundations of Computer Science. 2013;24(2):165-185. doi:10.1142/S0129054113400066 apa: Chatterjee, K., Alfaro, L., & Majumdar, R. (2013). The complexity of coverage. International Journal of Foundations of Computer Science. World Scientific Publishing. https://doi.org/10.1142/S0129054113400066 chicago: Chatterjee, Krishnendu, Luca Alfaro, and Ritankar Majumdar. “The Complexity of Coverage.” International Journal of Foundations of Computer Science. World Scientific Publishing, 2013. https://doi.org/10.1142/S0129054113400066. ieee: K. Chatterjee, L. Alfaro, and R. Majumdar, “The complexity of coverage,” International Journal of Foundations of Computer Science, vol. 24, no. 2. World Scientific Publishing, pp. 165–185, 2013. ista: Chatterjee K, Alfaro L, Majumdar R. 2013. The complexity of coverage. International Journal of Foundations of Computer Science. 24(2), 165–185. mla: Chatterjee, Krishnendu, et al. “The Complexity of Coverage.” International Journal of Foundations of Computer Science, vol. 24, no. 2, World Scientific Publishing, 2013, pp. 165–85, doi:10.1142/S0129054113400066. short: K. Chatterjee, L. Alfaro, R. Majumdar, International Journal of Foundations of Computer Science 24 (2013) 165–185. date_created: 2018-12-11T11:59:44Z date_published: 2013-02-01T00:00:00Z date_updated: 2021-01-12T06:59:54Z day: '01' department: - _id: KrCh doi: 10.1142/S0129054113400066 ec_funded: 1 external_id: arxiv: - '0804.4525' intvolume: ' 24' issue: '2' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/0804.4525 month: '02' oa: 1 oa_version: Preprint page: 165 - 185 project: - _id: 25863FF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11407 name: Game Theory - _id: 2581B60A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '279307' name: 'Quantitative Graph Games: Theory and Applications' - _id: 2587B514-B435-11E9-9278-68D0E5697425 name: Microsoft Research Faculty Fellowship publication: International Journal of Foundations of Computer Science publication_status: published publisher: World Scientific Publishing publist_id: '4070' quality_controlled: '1' scopus_import: 1 status: public title: The complexity of coverage type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 24 year: '2013' ... --- _id: '2817' abstract: - lang: eng text: The basic idea of evolutionary game theory is that payoff determines reproductive rate. Successful individuals have a higher payoff and produce more offspring. But in evolutionary and ecological situations there is not only reproductive rate but also carrying capacity. Individuals may differ in their exposure to density limiting effects. Here we explore an alternative approach to evolutionary game theory by assuming that the payoff from the game determines the carrying capacity of individual phenotypes. Successful strategies are less affected by density limitation (crowding) and reach higher equilibrium abundance. We demonstrate similarities and differences between our framework and the standard replicator equation. Our equation is defined on the positive orthant, instead of the simplex, but has the same equilibrium points as the replicator equation. Linear stability analysis produces the classical conditions for asymptotic stability of pure strategies, but the stability properties of internal equilibria can differ in the two frameworks. For example, in a two-strategy game with an internal equilibrium that is always stable under the replicator equation, the corresponding equilibrium can be unstable in the new framework resulting in a limit cycle. author: - first_name: Sebastian full_name: Novak, Sebastian id: 461468AE-F248-11E8-B48F-1D18A9856A87 last_name: Novak - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Martin full_name: Nowak, Martin last_name: Nowak citation: ama: Novak S, Chatterjee K, Nowak M. Density games. Journal of Theoretical Biology. 2013;334:26-34. doi:10.1016/j.jtbi.2013.05.029 apa: Novak, S., Chatterjee, K., & Nowak, M. (2013). Density games. Journal of Theoretical Biology. Elsevier. https://doi.org/10.1016/j.jtbi.2013.05.029 chicago: Novak, Sebastian, Krishnendu Chatterjee, and Martin Nowak. “Density Games.” Journal of Theoretical Biology. Elsevier, 2013. https://doi.org/10.1016/j.jtbi.2013.05.029. ieee: S. Novak, K. Chatterjee, and M. Nowak, “Density games,” Journal of Theoretical Biology, vol. 334. Elsevier, pp. 26–34, 2013. ista: Novak S, Chatterjee K, Nowak M. 2013. Density games. Journal of Theoretical Biology. 334, 26–34. mla: Novak, Sebastian, et al. “Density Games.” Journal of Theoretical Biology, vol. 334, Elsevier, 2013, pp. 26–34, doi:10.1016/j.jtbi.2013.05.029. short: S. Novak, K. Chatterjee, M. Nowak, Journal of Theoretical Biology 334 (2013) 26–34. date_created: 2018-12-11T11:59:45Z date_published: 2013-10-07T00:00:00Z date_updated: 2021-01-12T06:59:55Z day: '07' ddc: - '000' department: - _id: NiBa - _id: KrCh doi: 10.1016/j.jtbi.2013.05.029 ec_funded: 1 file: - access_level: open_access checksum: 3c29059ab03a4b8f97a07646b817ddbb content_type: application/pdf creator: system date_created: 2018-12-12T10:14:54Z date_updated: 2020-07-14T12:45:49Z file_id: '5110' file_name: IST-2016-400-v1+1_1-s2.0-S0022519313002609-main.pdf file_size: 834604 relation: main_file file_date_updated: 2020-07-14T12:45:49Z has_accepted_license: '1' intvolume: ' 334' language: - iso: eng month: '10' oa: 1 oa_version: Published Version page: 26 - 34 project: - _id: 25B07788-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '250152' name: Limits to selection in biology and in evolutionary computation - _id: 2584A770-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P 23499-N23 name: Modern Graph Algorithmic Techniques in Formal Verification - _id: 25863FF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11407 name: Game Theory - _id: 2581B60A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '279307' name: 'Quantitative Graph Games: Theory and Applications' - _id: 2587B514-B435-11E9-9278-68D0E5697425 name: Microsoft Research Faculty Fellowship publication: Journal of Theoretical Biology publication_status: published publisher: Elsevier publist_id: '3984' pubrep_id: '400' quality_controlled: '1' scopus_import: 1 status: public title: Density games tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 334 year: '2013' ... --- _id: '2819' abstract: - lang: eng text: 'We introduce quantatitive timed refinement metrics and quantitative timed simulation functions, incorporating zenoness checks, for timed systems. These functions assign positive real numbers between zero and infinity which quantify the timing mismatches between two timed systems, amongst non-zeno runs. We quantify timing mismatches in three ways: (1) the maximum timing mismatch that can arise, (2) the "steady-state" maximum timing mismatches, where initial transient timing mismatches are ignored; and (3) the (long-run) average timing mismatches amongst two systems. These three kinds of mismatches constitute three important types of timing differences. Our event times are the global times, measured from the start of the system execution, not just the time durations of individual steps. We present algorithms over timed automata for computing the three quantitative simulation functions to within any desired degree of accuracy. In order to compute the values of the quantitative simulation functions, we use a game theoretic formulation. We introduce two new kinds of objectives for two player games on finite state game graphs: (1) eventual debit-sum level objectives, and (2) average debit-sum level objectives. We present algorithms for computing the optimal values for these objectives for player 1, and then use these algorithms to compute the values of the quantitative timed simulation functions. ' acknowledgement: 'This work has been financially supported in part by the European Commission FP7-ICT Cognitive Systems, Interaction, and Robotics under the contract # 270180 (NOP-TILUS); by Fundacao para Ciencia e Tecnologia under project PTDC/EEA-CRO/104901/2008 (Modeling and control of Networked vehicle systems in persistent autonomous operations); by Austrian Science Fund (FWF) Grant No P 23499-N23 on Modern Graph Algorithmic Techniques in Formal Verification; FWF NFN Grant No S11407-N23 (RiSE); ERC Start grant (279307: Graph Games); and the Microsoft faculty fellows award' author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Vinayak full_name: Prabhu, Vinayak last_name: Prabhu citation: ama: 'Chatterjee K, Prabhu V. Quantitative timed simulation functions and refinement metrics for real-time systems. In: Proceedings of the 16th International Conference on Hybrid Systems: Computation and Control. Vol 1. Springer; 2013:273-282. doi:10.1145/2461328.2461370' apa: 'Chatterjee, K., & Prabhu, V. (2013). Quantitative timed simulation functions and refinement metrics for real-time systems. In Proceedings of the 16th International Conference on Hybrid Systems: Computation and Control (Vol. 1, pp. 273–282). Philadelphia, PA USA: Springer. https://doi.org/10.1145/2461328.2461370' chicago: 'Chatterjee, Krishnendu, and Vinayak Prabhu. “Quantitative Timed Simulation Functions and Refinement Metrics for Real-Time Systems.” In Proceedings of the 16th International Conference on Hybrid Systems: Computation and Control, 1:273–82. Springer, 2013. https://doi.org/10.1145/2461328.2461370.' ieee: 'K. Chatterjee and V. Prabhu, “Quantitative timed simulation functions and refinement metrics for real-time systems,” in Proceedings of the 16th International Conference on Hybrid Systems: Computation and Control, Philadelphia, PA USA, 2013, vol. 1, pp. 273–282.' ista: 'Chatterjee K, Prabhu V. 2013. Quantitative timed simulation functions and refinement metrics for real-time systems. Proceedings of the 16th International Conference on Hybrid Systems: Computation and Control. HSCC: Hybrid Systems - Computation and Control vol. 1, 273–282.' mla: 'Chatterjee, Krishnendu, and Vinayak Prabhu. “Quantitative Timed Simulation Functions and Refinement Metrics for Real-Time Systems.” Proceedings of the 16th International Conference on Hybrid Systems: Computation and Control, vol. 1, Springer, 2013, pp. 273–82, doi:10.1145/2461328.2461370.' short: 'K. Chatterjee, V. Prabhu, in:, Proceedings of the 16th International Conference on Hybrid Systems: Computation and Control, Springer, 2013, pp. 273–282.' conference: end_date: 2013-04-11 location: Philadelphia, PA USA name: 'HSCC: Hybrid Systems - Computation and Control' start_date: 2013-04-08 date_created: 2018-12-11T11:59:46Z date_published: 2013-04-01T00:00:00Z date_updated: 2021-01-12T06:59:56Z day: '01' department: - _id: KrCh doi: 10.1145/2461328.2461370 ec_funded: 1 intvolume: ' 1' language: - iso: eng main_file_link: - open_access: '1' url: http://arxiv.org/abs/1212.6556 month: '04' oa: 1 oa_version: Preprint page: 273 - 282 project: - _id: 2584A770-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P 23499-N23 name: Modern Graph Algorithmic Techniques in Formal Verification - _id: 2581B60A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '279307' name: 'Quantitative Graph Games: Theory and Applications' - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering - _id: 2587B514-B435-11E9-9278-68D0E5697425 name: Microsoft Research Faculty Fellowship publication: 'Proceedings of the 16th International Conference on Hybrid Systems: Computation and Control' publication_status: published publisher: Springer publist_id: '3982' quality_controlled: '1' scopus_import: 1 status: public title: Quantitative timed simulation functions and refinement metrics for real-time systems type: conference user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 1 year: '2013' ... --- _id: '2824' abstract: - lang: eng text: We study synthesis of controllers for real-time systems, where the objective is to stay in a given safe set. The problem is solved by obtaining winning strategies in the setting of concurrent two player timed automaton games with safety objectives. To prevent a player from winning by blocking time, we restrict each player to strategies that ensure that the player cannot be responsible for causing a Zeno run. We construct winning strategies for the controller which require access only to (1) the system clocks (thus, controllers which require their own internal infinitely precise clocks are not necessary), and (2) a logarithmic (in the number of clocks) number of memory bits (i.e. a linear number of memory states). Precisely, we show that for safety objectives, a memory of size (3 + lg (| C | + 1)) bits suffices for winning controller strategies, where C is the set of clocks of the timed automaton game, significantly improving the previous known exponential memory states bound. We also settle the open question of whether winning region-based strategies require memory for safety objectives by showing with an example the necessity of memory for such strategies to win for safety objectives. Finally, we show that the decision problem of determining if there exists a receptive player-1 winning strategy for safety objectives is EXPTIME-complete over timed automaton games. author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Vinayak full_name: Prabhu, Vinayak last_name: Prabhu citation: ama: Chatterjee K, Prabhu V. Synthesis of memory-efficient, clock-memory free, and non-Zeno safety controllers for timed systems. Information and Computation. 2013;228-229:83-119. doi:10.1016/j.ic.2013.04.003 apa: Chatterjee, K., & Prabhu, V. (2013). Synthesis of memory-efficient, clock-memory free, and non-Zeno safety controllers for timed systems. Information and Computation. Elsevier. https://doi.org/10.1016/j.ic.2013.04.003 chicago: Chatterjee, Krishnendu, and Vinayak Prabhu. “Synthesis of Memory-Efficient, Clock-Memory Free, and Non-Zeno Safety Controllers for Timed Systems.” Information and Computation. Elsevier, 2013. https://doi.org/10.1016/j.ic.2013.04.003. ieee: K. Chatterjee and V. Prabhu, “Synthesis of memory-efficient, clock-memory free, and non-Zeno safety controllers for timed systems,” Information and Computation, vol. 228–229. Elsevier, pp. 83–119, 2013. ista: Chatterjee K, Prabhu V. 2013. Synthesis of memory-efficient, clock-memory free, and non-Zeno safety controllers for timed systems. Information and Computation. 228–229, 83–119. mla: Chatterjee, Krishnendu, and Vinayak Prabhu. “Synthesis of Memory-Efficient, Clock-Memory Free, and Non-Zeno Safety Controllers for Timed Systems.” Information and Computation, vol. 228–229, Elsevier, 2013, pp. 83–119, doi:10.1016/j.ic.2013.04.003. short: K. Chatterjee, V. Prabhu, Information and Computation 228–229 (2013) 83–119. date_created: 2018-12-11T11:59:47Z date_published: 2013-04-24T00:00:00Z date_updated: 2021-01-12T06:59:58Z day: '24' department: - _id: KrCh doi: 10.1016/j.ic.2013.04.003 ec_funded: 1 language: - iso: eng month: '04' oa_version: None page: 83-119 project: - _id: 2584A770-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P 23499-N23 name: Modern Graph Algorithmic Techniques in Formal Verification - _id: 25863FF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11407 name: Game Theory - _id: 2581B60A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '279307' name: 'Quantitative Graph Games: Theory and Applications' - _id: 2587B514-B435-11E9-9278-68D0E5697425 name: Microsoft Research Faculty Fellowship publication: Information and Computation publication_status: published publisher: Elsevier publist_id: '3977' quality_controlled: '1' scopus_import: 1 status: public title: Synthesis of memory-efficient, clock-memory free, and non-Zeno safety controllers for timed systems type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 228-229 year: '2013' ... --- _id: '2836' abstract: - lang: eng text: 'We study the automatic synthesis of fair non-repudiation protocols, a class of fair exchange protocols, used for digital contract signing. First, we show how to specify the objectives of the participating agents and the trusted third party as path formulas in linear temporal logic and prove that the satisfaction of these objectives imply fairness; a property required of fair exchange protocols. We then show that weak (co-operative) co-synthesis and classical (strictly competitive) co-synthesis fail, whereas assume-guarantee synthesis (AGS) succeeds. We demonstrate the success of AGS as follows: (a) any solution of AGS is attack-free; no subset of participants can violate the objectives of the other participants; (b) the Asokan-Shoup-Waidner certified mail protocol that has known vulnerabilities is not a solution of AGS; (c) the Kremer-Markowitch non-repudiation protocol is a solution of AGS; and (d) AGS presents a new and symmetric fair non-repudiation protocol that is attack-free. To our knowledge this is the first application of synthesis to fair non-repudiation protocols, and our results show how synthesis can both automatically discover vulnerabilities in protocols and generate correct protocols. The solution to AGS can be computed efficiently as the secure equilibrium solution of three-player graph games. ' author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Vishwanath full_name: Raman, Vishwanath last_name: Raman citation: ama: Chatterjee K, Raman V. Assume-guarantee synthesis for digital contract signing. Formal Aspects of Computing. 2013;26(4):825-859. doi:10.1007/s00165-013-0283-6 apa: Chatterjee, K., & Raman, V. (2013). Assume-guarantee synthesis for digital contract signing. Formal Aspects of Computing. Springer. https://doi.org/10.1007/s00165-013-0283-6 chicago: Chatterjee, Krishnendu, and Vishwanath Raman. “Assume-Guarantee Synthesis for Digital Contract Signing.” Formal Aspects of Computing. Springer, 2013. https://doi.org/10.1007/s00165-013-0283-6. ieee: K. Chatterjee and V. Raman, “Assume-guarantee synthesis for digital contract signing,” Formal Aspects of Computing, vol. 26, no. 4. Springer, pp. 825–859, 2013. ista: Chatterjee K, Raman V. 2013. Assume-guarantee synthesis for digital contract signing. Formal Aspects of Computing. 26(4), 825–859. mla: Chatterjee, Krishnendu, and Vishwanath Raman. “Assume-Guarantee Synthesis for Digital Contract Signing.” Formal Aspects of Computing, vol. 26, no. 4, Springer, 2013, pp. 825–59, doi:10.1007/s00165-013-0283-6. short: K. Chatterjee, V. Raman, Formal Aspects of Computing 26 (2013) 825–859. date_created: 2018-12-11T11:59:51Z date_published: 2013-07-04T00:00:00Z date_updated: 2021-01-12T07:00:06Z day: '04' department: - _id: KrCh doi: 10.1007/s00165-013-0283-6 ec_funded: 1 external_id: arxiv: - '1004.2697' intvolume: ' 26' issue: '4' language: - iso: eng main_file_link: - open_access: '1' url: http://arxiv.org/abs/1004.2697 month: '07' oa: 1 oa_version: Preprint page: 825 - 859 project: - _id: 2584A770-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P 23499-N23 name: Modern Graph Algorithmic Techniques in Formal Verification - _id: 25863FF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11407 name: Game Theory - _id: 2581B60A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '279307' name: 'Quantitative Graph Games: Theory and Applications' - _id: 2587B514-B435-11E9-9278-68D0E5697425 name: Microsoft Research Faculty Fellowship publication: Formal Aspects of Computing publication_status: published publisher: Springer publist_id: '3963' quality_controlled: '1' scopus_import: 1 status: public title: Assume-guarantee synthesis for digital contract signing type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 26 year: '2013' ... --- _id: '2854' abstract: - lang: eng text: We consider concurrent games played on graphs. At every round of a game, each player simultaneously and independently selects a move; the moves jointly determine the transition to a successor state. Two basic objectives are the safety objective to stay forever in a given set of states, and its dual, the reachability objective to reach a given set of states. First, we present a simple proof of the fact that in concurrent reachability games, for all ε>0, memoryless ε-optimal strategies exist. A memoryless strategy is independent of the history of plays, and an ε-optimal strategy achieves the objective with probability within ε of the value of the game. In contrast to previous proofs of this fact, our proof is more elementary and more combinatorial. Second, we present a strategy-improvement (a.k.a. policy-iteration) algorithm for concurrent games with reachability objectives. Finally, we present a strategy-improvement algorithm for turn-based stochastic games (where each player selects moves in turns) with safety objectives. Our algorithms yield sequences of player-1 strategies which ensure probabilities of winning that converge monotonically (from below) to the value of the game. © 2012 Elsevier Inc. acknowledgement: This work was partially supported in part by the NSF grants CCR-0132780, CNS-0720884, CCR-0225610, by the Swiss National Science Foundation, ERC Start Grant Graph Games (Project No. 279307), FWF NFN Grant S11407-N23 (RiSE), and a Microsoft faculty fellows article_processing_charge: No article_type: original author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Luca full_name: De Alfaro, Luca last_name: De Alfaro - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000−0002−2985−7724 citation: ama: Chatterjee K, De Alfaro L, Henzinger TA. Strategy improvement for concurrent reachability and turn based stochastic safety games. Journal of Computer and System Sciences. 2013;79(5):640-657. doi:10.1016/j.jcss.2012.12.001 apa: Chatterjee, K., De Alfaro, L., & Henzinger, T. A. (2013). Strategy improvement for concurrent reachability and turn based stochastic safety games. Journal of Computer and System Sciences. Elsevier. https://doi.org/10.1016/j.jcss.2012.12.001 chicago: Chatterjee, Krishnendu, Luca De Alfaro, and Thomas A Henzinger. “Strategy Improvement for Concurrent Reachability and Turn Based Stochastic Safety Games.” Journal of Computer and System Sciences. Elsevier, 2013. https://doi.org/10.1016/j.jcss.2012.12.001. ieee: K. Chatterjee, L. De Alfaro, and T. A. Henzinger, “Strategy improvement for concurrent reachability and turn based stochastic safety games,” Journal of Computer and System Sciences, vol. 79, no. 5. Elsevier, pp. 640–657, 2013. ista: Chatterjee K, De Alfaro L, Henzinger TA. 2013. Strategy improvement for concurrent reachability and turn based stochastic safety games. Journal of Computer and System Sciences. 79(5), 640–657. mla: Chatterjee, Krishnendu, et al. “Strategy Improvement for Concurrent Reachability and Turn Based Stochastic Safety Games.” Journal of Computer and System Sciences, vol. 79, no. 5, Elsevier, 2013, pp. 640–57, doi:10.1016/j.jcss.2012.12.001. short: K. Chatterjee, L. De Alfaro, T.A. Henzinger, Journal of Computer and System Sciences 79 (2013) 640–657. date_created: 2018-12-11T11:59:57Z date_published: 2013-08-01T00:00:00Z date_updated: 2021-01-12T07:00:16Z day: '01' ddc: - '000' department: - _id: KrCh - _id: ToHe doi: 10.1016/j.jcss.2012.12.001 ec_funded: 1 file: - access_level: open_access checksum: 6d3ee12cceb946a0abe69594b6a22409 content_type: application/pdf creator: system date_created: 2018-12-12T10:18:48Z date_updated: 2020-07-14T12:45:51Z file_id: '5370' file_name: IST-2015-388-v1+1_1-s2.0-S0022000012001778-main.pdf file_size: 425488 relation: main_file file_date_updated: 2020-07-14T12:45:51Z has_accepted_license: '1' intvolume: ' 79' issue: '5' language: - iso: eng license: https://creativecommons.org/licenses/by-nc-nd/4.0/ month: '08' oa: 1 oa_version: Published Version page: 640 - 657 project: - _id: 2581B60A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '279307' name: 'Quantitative Graph Games: Theory and Applications' - _id: 25863FF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11407 name: Game Theory - _id: 2587B514-B435-11E9-9278-68D0E5697425 name: Microsoft Research Faculty Fellowship publication: Journal of Computer and System Sciences publication_status: published publisher: Elsevier publist_id: '3938' pubrep_id: '388' quality_controlled: '1' scopus_import: 1 status: public title: Strategy improvement for concurrent reachability and turn based stochastic safety games tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 79 year: '2013' ... --- _id: '2886' abstract: - lang: eng text: We focus on the realizability problem of Message Sequence Graphs (MSG), i.e. the problem whether a given MSG specification is correctly distributable among parallel components communicating via messages. This fundamental problem of MSG is known to be undecidable. We introduce a well motivated restricted class of MSG, so called controllable-choice MSG, and show that all its models are realizable and moreover it is decidable whether a given MSG model is a member of this class. In more detail, this class of MSG specifications admits a deadlock-free realization by overloading existing messages with additional bounded control data. We also show that the presented class is the largest known subclass of MSG that allows for deadlock-free realization. alternative_title: - LNCS author: - first_name: Martin full_name: Chmelik, Martin id: 3624234E-F248-11E8-B48F-1D18A9856A87 last_name: Chmelik - first_name: Vojtěch full_name: Řehák, Vojtěch last_name: Řehák citation: ama: Chmelik M, Řehák V. Controllable-choice message sequence graphs. 2013;7721:118-130. doi:10.1007/978-3-642-36046-6_12 apa: 'Chmelik, M., & Řehák, V. (2013). Controllable-choice message sequence graphs. Presented at the MEMICS: Mathematical and Engineering Methods in Computer Science, Znojmo, Czech Republic: Springer. https://doi.org/10.1007/978-3-642-36046-6_12' chicago: Chmelik, Martin, and Vojtěch Řehák. “Controllable-Choice Message Sequence Graphs.” Lecture Notes in Computer Science. Springer, 2013. https://doi.org/10.1007/978-3-642-36046-6_12. ieee: M. Chmelik and V. Řehák, “Controllable-choice message sequence graphs,” vol. 7721. Springer, pp. 118–130, 2013. ista: Chmelik M, Řehák V. 2013. Controllable-choice message sequence graphs. 7721, 118–130. mla: Chmelik, Martin, and Vojtěch Řehák. Controllable-Choice Message Sequence Graphs. Vol. 7721, Springer, 2013, pp. 118–30, doi:10.1007/978-3-642-36046-6_12. short: M. Chmelik, V. Řehák, 7721 (2013) 118–130. conference: end_date: 2012-10-28 location: Znojmo, Czech Republic name: 'MEMICS: Mathematical and Engineering Methods in Computer Science' start_date: 2012-10-25 date_created: 2018-12-11T12:00:09Z date_published: 2013-01-09T00:00:00Z date_updated: 2020-08-11T10:09:52Z day: '09' department: - _id: KrCh doi: 10.1007/978-3-642-36046-6_12 ec_funded: 1 intvolume: ' 7721' language: - iso: eng main_file_link: - open_access: '1' url: http://arxiv.org/abs/1209.4499 month: '01' oa: 1 oa_version: Submitted Version page: 118 - 130 project: - _id: 2584A770-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P 23499-N23 name: Modern Graph Algorithmic Techniques in Formal Verification - _id: 25863FF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11407 name: Game Theory - _id: 2581B60A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '279307' name: 'Quantitative Graph Games: Theory and Applications' - _id: 2587B514-B435-11E9-9278-68D0E5697425 name: Microsoft Research Faculty Fellowship publication_status: published publisher: Springer publist_id: '3873' quality_controlled: '1' scopus_import: 1 series_title: Lecture Notes in Computer Science status: public title: Controllable-choice message sequence graphs type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 7721 year: '2013' ... --- _id: '3116' abstract: - lang: eng text: Multithreaded programs coordinate their interaction through synchronization primitives like mutexes and semaphores, which are managed by an OS-provided resource manager. We propose algorithms for the automatic construction of code-aware resource managers for multithreaded embedded applications. Such managers use knowledge about the structure and resource usage (mutex and semaphore usage) of the threads to guarantee deadlock freedom and progress while managing resources in an efficient way. Our algorithms compute managers as winning strategies in certain infinite games, and produce a compact code description of these strategies. We have implemented the algorithms in the tool Cynthesis. Given a multithreaded program in C, the tool produces C code implementing a code-aware resource manager. We show in experiments that Cynthesis produces compact resource managers within a few minutes on a set of embedded benchmarks with up to 6 threads. © 2012 Springer Science+Business Media, LLC. acknowledgement: This research was supported in part by the National Science Foundation CAREER award CCR-0132780, by the ONR grant N00014-02-1-0671, by the National Science Foundation grants CCR-0427202 and CCR-0234690, and by the ARP award TO.030.MM.D. author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Luca full_name: De Alfaro, Luca last_name: De Alfaro - first_name: Marco full_name: Faella, Marco last_name: Faella - first_name: Ritankar full_name: Majumdar, Ritankar last_name: Majumdar - first_name: Vishwanath full_name: Raman, Vishwanath last_name: Raman citation: ama: Chatterjee K, De Alfaro L, Faella M, Majumdar R, Raman V. Code aware resource management. Formal Methods in System Design. 2013;42(2):142-174. doi:10.1007/s10703-012-0170-4 apa: Chatterjee, K., De Alfaro, L., Faella, M., Majumdar, R., & Raman, V. (2013). Code aware resource management. Formal Methods in System Design. Springer. https://doi.org/10.1007/s10703-012-0170-4 chicago: Chatterjee, Krishnendu, Luca De Alfaro, Marco Faella, Ritankar Majumdar, and Vishwanath Raman. “Code Aware Resource Management.” Formal Methods in System Design. Springer, 2013. https://doi.org/10.1007/s10703-012-0170-4. ieee: K. Chatterjee, L. De Alfaro, M. Faella, R. Majumdar, and V. Raman, “Code aware resource management,” Formal Methods in System Design, vol. 42, no. 2. Springer, pp. 142–174, 2013. ista: Chatterjee K, De Alfaro L, Faella M, Majumdar R, Raman V. 2013. Code aware resource management. Formal Methods in System Design. 42(2), 142–174. mla: Chatterjee, Krishnendu, et al. “Code Aware Resource Management.” Formal Methods in System Design, vol. 42, no. 2, Springer, 2013, pp. 142–74, doi:10.1007/s10703-012-0170-4. short: K. Chatterjee, L. De Alfaro, M. Faella, R. Majumdar, V. Raman, Formal Methods in System Design 42 (2013) 142–174. date_created: 2018-12-11T12:01:29Z date_published: 2013-04-01T00:00:00Z date_updated: 2021-01-12T07:41:10Z day: '01' department: - _id: KrCh doi: 10.1007/s10703-012-0170-4 intvolume: ' 42' issue: '2' language: - iso: eng month: '04' oa_version: None page: 142 - 174 publication: Formal Methods in System Design publication_status: published publisher: Springer publist_id: '3583' quality_controlled: '1' scopus_import: 1 status: public title: Code aware resource management type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 42 year: '2013' ... --- _id: '2831' abstract: - lang: eng text: 'We consider Markov decision processes (MDPs) with Büchi (liveness) objectives. We consider the problem of computing the set of almost-sure winning states from where the objective can be ensured with probability 1. Our contributions are as follows: First, we present the first subquadratic symbolic algorithm to compute the almost-sure winning set for MDPs with Büchi objectives; our algorithm takes O(n · √ m) symbolic steps as compared to the previous known algorithm that takes O(n 2) symbolic steps, where n is the number of states and m is the number of edges of the MDP. In practice MDPs have constant out-degree, and then our symbolic algorithm takes O(n · √ n) symbolic steps, as compared to the previous known O(n 2) symbolic steps algorithm. Second, we present a new algorithm, namely win-lose algorithm, with the following two properties: (a) the algorithm iteratively computes subsets of the almost-sure winning set and its complement, as compared to all previous algorithms that discover the almost-sure winning set upon termination; and (b) requires O(n · √ K) symbolic steps, where K is the maximal number of edges of strongly connected components (scc''s) of the MDP. The win-lose algorithm requires symbolic computation of scc''s. Third, we improve the algorithm for symbolic scc computation; the previous known algorithm takes linear symbolic steps, and our new algorithm improves the constants associated with the linear number of steps. In the worst case the previous known algorithm takes 5×n symbolic steps, whereas our new algorithm takes 4×n symbolic steps.' article_processing_charge: No author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Monika H full_name: Henzinger, Monika H id: 540c9bbd-f2de-11ec-812d-d04a5be85630 last_name: Henzinger orcid: 0000-0002-5008-6530 - first_name: Manas full_name: Joglekar, Manas last_name: Joglekar - first_name: Nisarg full_name: Shah, Nisarg last_name: Shah citation: ama: Chatterjee K, Henzinger MH, Joglekar M, Shah N. Symbolic algorithms for qualitative analysis of Markov decision processes with Büchi objectives. Formal Methods in System Design. 2013;42(3):301-327. doi:10.1007/s10703-012-0180-2 apa: Chatterjee, K., Henzinger, M. H., Joglekar, M., & Shah, N. (2013). Symbolic algorithms for qualitative analysis of Markov decision processes with Büchi objectives. Formal Methods in System Design. Springer. https://doi.org/10.1007/s10703-012-0180-2 chicago: Chatterjee, Krishnendu, Monika H Henzinger, Manas Joglekar, and Nisarg Shah. “Symbolic Algorithms for Qualitative Analysis of Markov Decision Processes with Büchi Objectives.” Formal Methods in System Design. Springer, 2013. https://doi.org/10.1007/s10703-012-0180-2. ieee: K. Chatterjee, M. H. Henzinger, M. Joglekar, and N. Shah, “Symbolic algorithms for qualitative analysis of Markov decision processes with Büchi objectives,” Formal Methods in System Design, vol. 42, no. 3. Springer, pp. 301–327, 2013. ista: Chatterjee K, Henzinger MH, Joglekar M, Shah N. 2013. Symbolic algorithms for qualitative analysis of Markov decision processes with Büchi objectives. Formal Methods in System Design. 42(3), 301–327. mla: Chatterjee, Krishnendu, et al. “Symbolic Algorithms for Qualitative Analysis of Markov Decision Processes with Büchi Objectives.” Formal Methods in System Design, vol. 42, no. 3, Springer, 2013, pp. 301–27, doi:10.1007/s10703-012-0180-2. short: K. Chatterjee, M.H. Henzinger, M. Joglekar, N. Shah, Formal Methods in System Design 42 (2013) 301–327. date_created: 2018-12-11T11:59:49Z date_published: 2013-06-01T00:00:00Z date_updated: 2023-02-23T11:23:04Z day: '01' department: - _id: KrCh doi: 10.1007/s10703-012-0180-2 ec_funded: 1 external_id: arxiv: - '1104.3348' intvolume: ' 42' issue: '3' language: - iso: eng main_file_link: - open_access: '1' url: http://arxiv.org/abs/1104.3348 month: '06' oa: 1 oa_version: Preprint page: 301 - 327 project: - _id: 2584A770-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P 23499-N23 name: Modern Graph Algorithmic Techniques in Formal Verification - _id: 25863FF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11407 name: Game Theory - _id: 2581B60A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '279307' name: 'Quantitative Graph Games: Theory and Applications' - _id: 2587B514-B435-11E9-9278-68D0E5697425 name: Microsoft Research Faculty Fellowship publication: Formal Methods in System Design publication_status: published publisher: Springer publist_id: '3968' quality_controlled: '1' related_material: record: - id: '3342' relation: earlier_version status: public scopus_import: '1' status: public title: Symbolic algorithms for qualitative analysis of Markov decision processes with Büchi objectives type: journal_article user_id: 72615eeb-f1f3-11ec-aa25-d4573ddc34fd volume: 42 year: '2013' ...