--- _id: '1374' abstract: - lang: eng text: 'We study two-player zero-sum games over infinite-state graphs equipped with ωB and finitary conditions. Our first contribution is about the strategy complexity, i.e the memory required for winning strategies: we prove that over general infinite-state graphs, memoryless strategies are sufficient for finitary Büchi, and finite-memory suffices for finitary parity games. We then study pushdown games with boundedness conditions, with two contributions. First we prove a collapse result for pushdown games with ωB-conditions, implying the decidability of solving these games. Second we consider pushdown games with finitary parity along with stack boundedness conditions, and show that solving these games is EXPTIME-complete.' alternative_title: - LIPIcs author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Nathanaël full_name: Fijalkow, Nathanaël last_name: Fijalkow citation: ama: 'Chatterjee K, Fijalkow N. Infinite-state games with finitary conditions. In: 22nd EACSL Annual Conference on Computer Science Logic. Vol 23. Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2013:181-196. doi:10.4230/LIPIcs.CSL.2013.181' apa: 'Chatterjee, K., & Fijalkow, N. (2013). Infinite-state games with finitary conditions. In 22nd EACSL Annual Conference on Computer Science Logic (Vol. 23, pp. 181–196). Torino, Italy: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.CSL.2013.181' chicago: Chatterjee, Krishnendu, and Nathanaël Fijalkow. “Infinite-State Games with Finitary Conditions.” In 22nd EACSL Annual Conference on Computer Science Logic, 23:181–96. Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2013. https://doi.org/10.4230/LIPIcs.CSL.2013.181. ieee: K. Chatterjee and N. Fijalkow, “Infinite-state games with finitary conditions,” in 22nd EACSL Annual Conference on Computer Science Logic, Torino, Italy, 2013, vol. 23, pp. 181–196. ista: 'Chatterjee K, Fijalkow N. 2013. Infinite-state games with finitary conditions. 22nd EACSL Annual Conference on Computer Science Logic. CSL: Computer Science LogicLeibniz International Proceedings in Informatics, LIPIcs, vol. 23, 181–196.' mla: Chatterjee, Krishnendu, and Nathanaël Fijalkow. “Infinite-State Games with Finitary Conditions.” 22nd EACSL Annual Conference on Computer Science Logic, vol. 23, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2013, pp. 181–96, doi:10.4230/LIPIcs.CSL.2013.181. short: K. Chatterjee, N. Fijalkow, in:, 22nd EACSL Annual Conference on Computer Science Logic, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2013, pp. 181–196. conference: end_date: 2013-09-05 location: Torino, Italy name: 'CSL: Computer Science Logic' start_date: 203-09-02 date_created: 2018-12-11T11:51:39Z date_published: 2013-09-01T00:00:00Z date_updated: 2021-01-12T06:50:14Z day: '01' ddc: - '000' department: - _id: KrCh doi: 10.4230/LIPIcs.CSL.2013.181 ec_funded: 1 file: - access_level: open_access checksum: b7091a3866db573c0db5ec486952255e content_type: application/pdf creator: system date_created: 2018-12-12T10:13:38Z date_updated: 2020-07-14T12:44:47Z file_id: '5023' file_name: IST-2016-624-v1+1_ChKr_Infinite-state_games_2013_17.pdf file_size: 547296 relation: main_file file_date_updated: 2020-07-14T12:44:47Z has_accepted_license: '1' intvolume: ' 23' language: - iso: eng license: https://creativecommons.org/licenses/by/4.0/ month: '09' oa: 1 oa_version: Published Version page: 181 - 196 project: - _id: 2584A770-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P 23499-N23 name: Modern Graph Algorithmic Techniques in Formal Verification - _id: 25863FF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11407 name: Game Theory - _id: 2581B60A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '279307' name: 'Quantitative Graph Games: Theory and Applications' - _id: 2587B514-B435-11E9-9278-68D0E5697425 name: Microsoft Research Faculty Fellowship publication: 22nd EACSL Annual Conference on Computer Science Logic publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik publist_id: '5837' pubrep_id: '624' quality_controlled: '1' scopus_import: 1 series_title: Leibniz International Proceedings in Informatics status: public title: Infinite-state games with finitary conditions tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 23 year: '2013' ... --- _id: '2238' abstract: - lang: eng text: "We study the problem of achieving a given value in Markov decision processes (MDPs) with several independent discounted reward objectives. We consider a generalised version of discounted reward objectives, in which the amount of discounting depends on the states visited and on the objective. This definition extends the usual definition of discounted reward, and allows to capture the systems in which the value of different commodities diminish at different and variable rates.\r\n\r\nWe establish results for two prominent subclasses of the problem, namely state-discount models where the discount factors are only dependent on the state of the MDP (and independent of the objective), and reward-discount models where they are only dependent on the objective (but not on the state of the MDP). For the state-discount models we use a straightforward reduction to expected total reward and show that the problem whether a value is achievable can be solved in polynomial time. For the reward-discount model we show that memory and randomisation of the strategies are required, but nevertheless that the problem is decidable and it is sufficient to consider strategies which after a certain number of steps behave in a memoryless way.\r\n\r\nFor the general case, we show that when restricted to graphs (i.e. MDPs with no randomisation), pure strategies and discount factors of the form 1/n where n is an integer, the problem is in PSPACE and finite memory suffices for achieving a given value. We also show that when the discount factors are not of the form 1/n, the memory required by a strategy can be infinite.\r\n" alternative_title: - LNCS author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Vojtěch full_name: Forejt, Vojtěch last_name: Forejt - first_name: Dominik full_name: Wojtczak, Dominik last_name: Wojtczak citation: ama: Chatterjee K, Forejt V, Wojtczak D. Multi-objective discounted reward verification in graphs and MDPs. 2013;8312:228-242. doi:10.1007/978-3-642-45221-5_17 apa: 'Chatterjee, K., Forejt, V., & Wojtczak, D. (2013). Multi-objective discounted reward verification in graphs and MDPs. Presented at the LPAR: Logic for Programming, Artificial Intelligence, and Reasoning, Stellenbosch, South Africa: Springer. https://doi.org/10.1007/978-3-642-45221-5_17' chicago: Chatterjee, Krishnendu, Vojtěch Forejt, and Dominik Wojtczak. “Multi-Objective Discounted Reward Verification in Graphs and MDPs.” Lecture Notes in Computer Science. Springer, 2013. https://doi.org/10.1007/978-3-642-45221-5_17. ieee: K. Chatterjee, V. Forejt, and D. Wojtczak, “Multi-objective discounted reward verification in graphs and MDPs,” vol. 8312. Springer, pp. 228–242, 2013. ista: Chatterjee K, Forejt V, Wojtczak D. 2013. Multi-objective discounted reward verification in graphs and MDPs. 8312, 228–242. mla: Chatterjee, Krishnendu, et al. Multi-Objective Discounted Reward Verification in Graphs and MDPs. Vol. 8312, Springer, 2013, pp. 228–42, doi:10.1007/978-3-642-45221-5_17. short: K. Chatterjee, V. Forejt, D. Wojtczak, 8312 (2013) 228–242. conference: end_date: 2013-12-19 location: Stellenbosch, South Africa name: 'LPAR: Logic for Programming, Artificial Intelligence, and Reasoning' start_date: 2013-12-14 date_created: 2018-12-11T11:56:30Z date_published: 2013-12-01T00:00:00Z date_updated: 2020-08-11T10:09:42Z day: '01' department: - _id: KrCh doi: 10.1007/978-3-642-45221-5_17 ec_funded: 1 intvolume: ' 8312' language: - iso: eng month: '12' oa_version: None page: 228 - 242 project: - _id: 2581B60A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '279307' name: 'Quantitative Graph Games: Theory and Applications' publication_status: published publisher: Springer publist_id: '4723' quality_controlled: '1' scopus_import: 1 series_title: Lecture Notes in Computer Science status: public title: Multi-objective discounted reward verification in graphs and MDPs type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 8312 year: '2013' ... --- _id: '2292' abstract: - lang: eng text: This book constitutes the thoroughly refereed conference proceedings of the 38th International Symposium on Mathematical Foundations of Computer Science, MFCS 2013, held in Klosterneuburg, Austria, in August 2013. The 67 revised full papers presented together with six invited talks were carefully selected from 191 submissions. Topics covered include algorithmic game theory, algorithmic learning theory, algorithms and data structures, automata, formal languages, bioinformatics, complexity, computational geometry, computer-assisted reasoning, concurrency theory, databases and knowledge-based systems, foundations of computing, logic in computer science, models of computation, semantics and verification of programs, and theoretical issues in artificial intelligence. alternative_title: - LNCS citation: ama: Chatterjee K, Sgall J, eds. Mathematical Foundations of Computer Science 2013. Vol 8087. Springer; 2013:VI-854. doi:10.1007/978-3-642-40313-2 apa: 'Chatterjee, K., & Sgall, J. (Eds.). (2013). Mathematical Foundations of Computer Science 2013 (Vol. 8087, p. VI-854). Presented at the MFCS: Mathematical Foundations of Computer Science, Klosterneuburg, Austria: Springer. https://doi.org/10.1007/978-3-642-40313-2' chicago: Chatterjee, Krishnendu, and Jiri Sgall, eds. Mathematical Foundations of Computer Science 2013. Vol. 8087. Lecture Notes in Computer Science. Springer, 2013. https://doi.org/10.1007/978-3-642-40313-2. ieee: K. Chatterjee and J. Sgall, Eds., Mathematical Foundations of Computer Science 2013, vol. 8087. Springer, 2013, p. VI-854. ista: Chatterjee K, Sgall J eds. 2013. Mathematical Foundations of Computer Science 2013, Springer,p. mla: Chatterjee, Krishnendu, and Jiri Sgall, editors. Mathematical Foundations of Computer Science 2013. Vol. 8087, Springer, 2013, p. VI-854, doi:10.1007/978-3-642-40313-2. short: K. Chatterjee, J. Sgall, eds., Mathematical Foundations of Computer Science 2013, Springer, 2013. conference: end_date: 2013-08-30 location: Klosterneuburg, Austria name: 'MFCS: Mathematical Foundations of Computer Science' start_date: 2013-08-26 date_created: 2018-12-11T11:56:48Z date_published: 2013-08-08T00:00:00Z date_updated: 2020-08-11T10:09:45Z day: '08' department: - _id: KrCh doi: 10.1007/978-3-642-40313-2 editor: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Jiri full_name: Sgall, Jiri last_name: Sgall intvolume: ' 8087' language: - iso: eng month: '08' oa_version: None page: VI - 854 publication_identifier: isbn: - 978-3-642-40312-5 publication_status: published publisher: Springer publist_id: '4636' quality_controlled: '1' scopus_import: 1 series_title: Lecture Notes in Computer Science status: public title: Mathematical Foundations of Computer Science 2013 type: conference_editor user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 8087 year: '2013' ... --- _id: '2299' abstract: - lang: eng text: 'The standard hardware design flow involves: (a) design of an integrated circuit using a hardware description language, (b) extensive functional and formal verification, and (c) logical synthesis. However, the above-mentioned processes consume significant effort and time. An alternative approach is to use a formal specification language as a high-level hardware description language and synthesize hardware from formal specifications. Our work is a case study of the synthesis of the widely and industrially used AMBA AHB protocol from formal specifications. Bloem et al. presented the first formal specifications for the AMBA AHB Arbiter and synthesized the AHB Arbiter circuit. However, in the first formal specification some important assumptions were missing. Our contributions are as follows: (a) We present detailed formal specifications for the AHB Arbiter incorporating the missing details, and obtain significant improvements in the synthesis results (both with respect to the number of gates in the synthesized circuit and with respect to the time taken to synthesize the circuit), and (b) we present formal specifications to generate compact circuits for the remaining two main components of AMBA AHB, namely, AHB Master and AHB Slave. Thus with systematic description we are able to automatically and completely synthesize an important and widely used industrial protocol.' author: - first_name: Yashdeep full_name: Godhal, Yashdeep id: 5B547124-EB61-11E9-8887-89D9C04DBDF5 last_name: Godhal - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000−0002−2985−7724 citation: ama: 'Godhal Y, Chatterjee K, Henzinger TA. Synthesis of AMBA AHB from formal specification: A case study. International Journal on Software Tools for Technology Transfer. 2013;15(5-6):585-601. doi:10.1007/s10009-011-0207-9' apa: 'Godhal, Y., Chatterjee, K., & Henzinger, T. A. (2013). Synthesis of AMBA AHB from formal specification: A case study. International Journal on Software Tools for Technology Transfer. Springer. https://doi.org/10.1007/s10009-011-0207-9' chicago: 'Godhal, Yashdeep, Krishnendu Chatterjee, and Thomas A Henzinger. “Synthesis of AMBA AHB from Formal Specification: A Case Study.” International Journal on Software Tools for Technology Transfer. Springer, 2013. https://doi.org/10.1007/s10009-011-0207-9.' ieee: 'Y. Godhal, K. Chatterjee, and T. A. Henzinger, “Synthesis of AMBA AHB from formal specification: A case study,” International Journal on Software Tools for Technology Transfer, vol. 15, no. 5–6. Springer, pp. 585–601, 2013.' ista: 'Godhal Y, Chatterjee K, Henzinger TA. 2013. Synthesis of AMBA AHB from formal specification: A case study. International Journal on Software Tools for Technology Transfer. 15(5–6), 585–601.' mla: 'Godhal, Yashdeep, et al. “Synthesis of AMBA AHB from Formal Specification: A Case Study.” International Journal on Software Tools for Technology Transfer, vol. 15, no. 5–6, Springer, 2013, pp. 585–601, doi:10.1007/s10009-011-0207-9.' short: Y. Godhal, K. Chatterjee, T.A. Henzinger, International Journal on Software Tools for Technology Transfer 15 (2013) 585–601. date_created: 2018-12-11T11:56:51Z date_published: 2013-10-01T00:00:00Z date_updated: 2021-01-12T06:56:37Z day: '01' ddc: - '000' department: - _id: KrCh - _id: ToHe doi: 10.1007/s10009-011-0207-9 file: - access_level: open_access checksum: 57b06a732dd8d6349190dba6b5b0d33b content_type: application/pdf creator: system date_created: 2018-12-12T10:11:53Z date_updated: 2020-07-14T12:45:37Z file_id: '4910' file_name: IST-2012-87-v1+1_Synthesis_of_AMBA_AHB_from_formal_specifications-_A_case_study.pdf file_size: 277372 relation: main_file file_date_updated: 2020-07-14T12:45:37Z has_accepted_license: '1' intvolume: ' 15' issue: 5-6 language: - iso: eng month: '10' oa: 1 oa_version: Submitted Version page: 585 - 601 project: - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering - _id: 2587B514-B435-11E9-9278-68D0E5697425 name: Microsoft Research Faculty Fellowship publication: International Journal on Software Tools for Technology Transfer publication_status: published publisher: Springer publist_id: '4629' pubrep_id: '87' quality_controlled: '1' scopus_import: 1 status: public title: 'Synthesis of AMBA AHB from formal specification: A case study' type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 15 year: '2013' ... --- _id: '2446' abstract: - lang: eng text: The model-checking problem for probabilistic systems crucially relies on the translation of LTL to deterministic Rabin automata (DRW). Our recent Safraless translation [KE12, GKE12] for the LTL(F,G) fragment produces smaller automata as compared to the traditional approach. In this work, instead of DRW we consider deterministic automata with acceptance condition given as disjunction of generalized Rabin pairs (DGRW). The Safraless translation of LTL(F,G) formulas to DGRW results in smaller automata as compared to DRW. We present algorithms for probabilistic model-checking as well as game solving for DGRW conditions. Our new algorithms lead to improvement both in terms of theoretical bounds as well as practical evaluation. We compare PRISM with and without our new translation, and show that the new translation leads to significant improvements. alternative_title: - LNCS author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Andreas full_name: Gaiser, Andreas last_name: Gaiser - first_name: Jan full_name: Kretinsky, Jan id: 44CEF464-F248-11E8-B48F-1D18A9856A87 last_name: Kretinsky orcid: 0000-0002-8122-2881 citation: ama: Chatterjee K, Gaiser A, Kretinsky J. Automata with generalized Rabin pairs for probabilistic model checking and LTL synthesis. 2013;8044:559-575. doi:10.1007/978-3-642-39799-8_37 apa: 'Chatterjee, K., Gaiser, A., & Kretinsky, J. (2013). Automata with generalized Rabin pairs for probabilistic model checking and LTL synthesis. Presented at the CAV: Computer Aided Verification, St. Petersburg, Russia: Springer. https://doi.org/10.1007/978-3-642-39799-8_37' chicago: Chatterjee, Krishnendu, Andreas Gaiser, and Jan Kretinsky. “Automata with Generalized Rabin Pairs for Probabilistic Model Checking and LTL Synthesis.” Lecture Notes in Computer Science. Springer, 2013. https://doi.org/10.1007/978-3-642-39799-8_37. ieee: K. Chatterjee, A. Gaiser, and J. Kretinsky, “Automata with generalized Rabin pairs for probabilistic model checking and LTL synthesis,” vol. 8044. Springer, pp. 559–575, 2013. ista: Chatterjee K, Gaiser A, Kretinsky J. 2013. Automata with generalized Rabin pairs for probabilistic model checking and LTL synthesis. 8044, 559–575. mla: Chatterjee, Krishnendu, et al. Automata with Generalized Rabin Pairs for Probabilistic Model Checking and LTL Synthesis. Vol. 8044, Springer, 2013, pp. 559–75, doi:10.1007/978-3-642-39799-8_37. short: K. Chatterjee, A. Gaiser, J. Kretinsky, 8044 (2013) 559–575. conference: end_date: 2013-07-19 location: St. Petersburg, Russia name: 'CAV: Computer Aided Verification' start_date: 2013-07-13 date_created: 2018-12-11T11:57:42Z date_published: 2013-07-01T00:00:00Z date_updated: 2020-08-11T10:09:47Z day: '01' department: - _id: KrCh doi: 10.1007/978-3-642-39799-8_37 ec_funded: 1 external_id: arxiv: - '1304.5281' intvolume: ' 8044' language: - iso: eng main_file_link: - open_access: '1' url: http://arxiv.org/abs/1304.5281 month: '07' oa: 1 oa_version: Preprint page: 559 - 575 project: - _id: 2584A770-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P 23499-N23 name: Modern Graph Algorithmic Techniques in Formal Verification - _id: 25863FF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11407 name: Game Theory - _id: 2581B60A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '279307' name: 'Quantitative Graph Games: Theory and Applications' - _id: 2587B514-B435-11E9-9278-68D0E5697425 name: Microsoft Research Faculty Fellowship publication_status: published publisher: Springer publist_id: '4457' quality_controlled: '1' scopus_import: 1 series_title: Lecture Notes in Computer Science status: public title: Automata with generalized Rabin pairs for probabilistic model checking and LTL synthesis type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 8044 year: '2013' ... --- _id: '2444' abstract: - lang: eng text: 'We consider two core algorithmic problems for probabilistic verification: the maximal end-component decomposition and the almost-sure reachability set computation for Markov decision processes (MDPs). For MDPs with treewidth k, we present two improved static algorithms for both the problems that run in time O(n·k 2.38·2k ) and O(m·logn· k), respectively, where n is the number of states and m is the number of edges, significantly improving the previous known O(n·k·√n· k) bound for low treewidth. We also present decremental algorithms for both problems for MDPs with constant treewidth that run in amortized logarithmic time, which is a huge improvement over the previously known algorithms that require amortized linear time.' alternative_title: - LNCS author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Jakub full_name: Ła̧Cki, Jakub last_name: Ła̧Cki citation: ama: Chatterjee K, Ła̧Cki J. Faster algorithms for Markov decision processes with low treewidth. 2013;8044:543-558. doi:10.1007/978-3-642-39799-8_36 apa: 'Chatterjee, K., & Ła̧Cki, J. (2013). Faster algorithms for Markov decision processes with low treewidth. Presented at the CAV: Computer Aided Verification, St. Petersburg, Russia: Springer. https://doi.org/10.1007/978-3-642-39799-8_36' chicago: Chatterjee, Krishnendu, and Jakub Ła̧Cki. “Faster Algorithms for Markov Decision Processes with Low Treewidth.” Lecture Notes in Computer Science. Springer, 2013. https://doi.org/10.1007/978-3-642-39799-8_36. ieee: K. Chatterjee and J. Ła̧Cki, “Faster algorithms for Markov decision processes with low treewidth,” vol. 8044. Springer, pp. 543–558, 2013. ista: Chatterjee K, Ła̧Cki J. 2013. Faster algorithms for Markov decision processes with low treewidth. 8044, 543–558. mla: Chatterjee, Krishnendu, and Jakub Ła̧Cki. Faster Algorithms for Markov Decision Processes with Low Treewidth. Vol. 8044, Springer, 2013, pp. 543–58, doi:10.1007/978-3-642-39799-8_36. short: K. Chatterjee, J. Ła̧Cki, 8044 (2013) 543–558. conference: end_date: 2013-07-19 location: St. Petersburg, Russia name: 'CAV: Computer Aided Verification' start_date: 2013-07-13 date_created: 2018-12-11T11:57:42Z date_published: 2013-07-01T00:00:00Z date_updated: 2020-08-11T10:09:47Z day: '01' department: - _id: KrCh doi: 10.1007/978-3-642-39799-8_36 ec_funded: 1 external_id: arxiv: - '1304.0084' intvolume: ' 8044' language: - iso: eng main_file_link: - open_access: '1' url: http://arxiv.org/abs/1304.0084 month: '07' oa: 1 oa_version: Preprint page: 543 - 558 project: - _id: 2584A770-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P 23499-N23 name: Modern Graph Algorithmic Techniques in Formal Verification - _id: 25863FF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11407 name: Game Theory - _id: 2581B60A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '279307' name: 'Quantitative Graph Games: Theory and Applications' - _id: 2587B514-B435-11E9-9278-68D0E5697425 name: Microsoft Research Faculty Fellowship publication_status: published publisher: Springer publist_id: '4459' quality_controlled: '1' scopus_import: 1 series_title: Lecture Notes in Computer Science status: public title: Faster algorithms for Markov decision processes with low treewidth type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 8044 year: '2013' ... --- _id: '2814' abstract: - lang: eng text: We study the problem of generating a test sequence that achieves maximal coverage for a reactive system under test. We formulate the problem as a repeated game between the tester and the system, where the system state space is partitioned according to some coverage criterion and the objective of the tester is to maximize the set of partitions (or coverage goals) visited during the game. We show the complexity of the maximal coverage problem for non-deterministic systems is PSPACE-complete, but is NP-complete for deterministic systems. For the special case of non-deterministic systems with a re-initializing "reset" action, which represent running a new test input on a re-initialized system, we show that the complexity is coNP-complete. Our proof technique for reset games uses randomized testing strategies that circumvent the exponentially large memory requirement of deterministic testing strategies. We also discuss the memory requirement for deterministic strategies and extensions of our results to other models, such as pushdown systems and timed systems. author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Luca full_name: Alfaro, Luca last_name: Alfaro - first_name: Ritankar full_name: Majumdar, Ritankar last_name: Majumdar citation: ama: Chatterjee K, Alfaro L, Majumdar R. The complexity of coverage. International Journal of Foundations of Computer Science. 2013;24(2):165-185. doi:10.1142/S0129054113400066 apa: Chatterjee, K., Alfaro, L., & Majumdar, R. (2013). The complexity of coverage. International Journal of Foundations of Computer Science. World Scientific Publishing. https://doi.org/10.1142/S0129054113400066 chicago: Chatterjee, Krishnendu, Luca Alfaro, and Ritankar Majumdar. “The Complexity of Coverage.” International Journal of Foundations of Computer Science. World Scientific Publishing, 2013. https://doi.org/10.1142/S0129054113400066. ieee: K. Chatterjee, L. Alfaro, and R. Majumdar, “The complexity of coverage,” International Journal of Foundations of Computer Science, vol. 24, no. 2. World Scientific Publishing, pp. 165–185, 2013. ista: Chatterjee K, Alfaro L, Majumdar R. 2013. The complexity of coverage. International Journal of Foundations of Computer Science. 24(2), 165–185. mla: Chatterjee, Krishnendu, et al. “The Complexity of Coverage.” International Journal of Foundations of Computer Science, vol. 24, no. 2, World Scientific Publishing, 2013, pp. 165–85, doi:10.1142/S0129054113400066. short: K. Chatterjee, L. Alfaro, R. Majumdar, International Journal of Foundations of Computer Science 24 (2013) 165–185. date_created: 2018-12-11T11:59:44Z date_published: 2013-02-01T00:00:00Z date_updated: 2021-01-12T06:59:54Z day: '01' department: - _id: KrCh doi: 10.1142/S0129054113400066 ec_funded: 1 external_id: arxiv: - '0804.4525' intvolume: ' 24' issue: '2' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/0804.4525 month: '02' oa: 1 oa_version: Preprint page: 165 - 185 project: - _id: 25863FF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11407 name: Game Theory - _id: 2581B60A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '279307' name: 'Quantitative Graph Games: Theory and Applications' - _id: 2587B514-B435-11E9-9278-68D0E5697425 name: Microsoft Research Faculty Fellowship publication: International Journal of Foundations of Computer Science publication_status: published publisher: World Scientific Publishing publist_id: '4070' quality_controlled: '1' scopus_import: 1 status: public title: The complexity of coverage type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 24 year: '2013' ... --- _id: '2817' abstract: - lang: eng text: The basic idea of evolutionary game theory is that payoff determines reproductive rate. Successful individuals have a higher payoff and produce more offspring. But in evolutionary and ecological situations there is not only reproductive rate but also carrying capacity. Individuals may differ in their exposure to density limiting effects. Here we explore an alternative approach to evolutionary game theory by assuming that the payoff from the game determines the carrying capacity of individual phenotypes. Successful strategies are less affected by density limitation (crowding) and reach higher equilibrium abundance. We demonstrate similarities and differences between our framework and the standard replicator equation. Our equation is defined on the positive orthant, instead of the simplex, but has the same equilibrium points as the replicator equation. Linear stability analysis produces the classical conditions for asymptotic stability of pure strategies, but the stability properties of internal equilibria can differ in the two frameworks. For example, in a two-strategy game with an internal equilibrium that is always stable under the replicator equation, the corresponding equilibrium can be unstable in the new framework resulting in a limit cycle. author: - first_name: Sebastian full_name: Novak, Sebastian id: 461468AE-F248-11E8-B48F-1D18A9856A87 last_name: Novak - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Martin full_name: Nowak, Martin last_name: Nowak citation: ama: Novak S, Chatterjee K, Nowak M. Density games. Journal of Theoretical Biology. 2013;334:26-34. doi:10.1016/j.jtbi.2013.05.029 apa: Novak, S., Chatterjee, K., & Nowak, M. (2013). Density games. Journal of Theoretical Biology. Elsevier. https://doi.org/10.1016/j.jtbi.2013.05.029 chicago: Novak, Sebastian, Krishnendu Chatterjee, and Martin Nowak. “Density Games.” Journal of Theoretical Biology. Elsevier, 2013. https://doi.org/10.1016/j.jtbi.2013.05.029. ieee: S. Novak, K. Chatterjee, and M. Nowak, “Density games,” Journal of Theoretical Biology, vol. 334. Elsevier, pp. 26–34, 2013. ista: Novak S, Chatterjee K, Nowak M. 2013. Density games. Journal of Theoretical Biology. 334, 26–34. mla: Novak, Sebastian, et al. “Density Games.” Journal of Theoretical Biology, vol. 334, Elsevier, 2013, pp. 26–34, doi:10.1016/j.jtbi.2013.05.029. short: S. Novak, K. Chatterjee, M. Nowak, Journal of Theoretical Biology 334 (2013) 26–34. date_created: 2018-12-11T11:59:45Z date_published: 2013-10-07T00:00:00Z date_updated: 2021-01-12T06:59:55Z day: '07' ddc: - '000' department: - _id: NiBa - _id: KrCh doi: 10.1016/j.jtbi.2013.05.029 ec_funded: 1 file: - access_level: open_access checksum: 3c29059ab03a4b8f97a07646b817ddbb content_type: application/pdf creator: system date_created: 2018-12-12T10:14:54Z date_updated: 2020-07-14T12:45:49Z file_id: '5110' file_name: IST-2016-400-v1+1_1-s2.0-S0022519313002609-main.pdf file_size: 834604 relation: main_file file_date_updated: 2020-07-14T12:45:49Z has_accepted_license: '1' intvolume: ' 334' language: - iso: eng month: '10' oa: 1 oa_version: Published Version page: 26 - 34 project: - _id: 25B07788-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '250152' name: Limits to selection in biology and in evolutionary computation - _id: 2584A770-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P 23499-N23 name: Modern Graph Algorithmic Techniques in Formal Verification - _id: 25863FF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11407 name: Game Theory - _id: 2581B60A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '279307' name: 'Quantitative Graph Games: Theory and Applications' - _id: 2587B514-B435-11E9-9278-68D0E5697425 name: Microsoft Research Faculty Fellowship publication: Journal of Theoretical Biology publication_status: published publisher: Elsevier publist_id: '3984' pubrep_id: '400' quality_controlled: '1' scopus_import: 1 status: public title: Density games tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 334 year: '2013' ... --- _id: '2819' abstract: - lang: eng text: 'We introduce quantatitive timed refinement metrics and quantitative timed simulation functions, incorporating zenoness checks, for timed systems. These functions assign positive real numbers between zero and infinity which quantify the timing mismatches between two timed systems, amongst non-zeno runs. We quantify timing mismatches in three ways: (1) the maximum timing mismatch that can arise, (2) the "steady-state" maximum timing mismatches, where initial transient timing mismatches are ignored; and (3) the (long-run) average timing mismatches amongst two systems. These three kinds of mismatches constitute three important types of timing differences. Our event times are the global times, measured from the start of the system execution, not just the time durations of individual steps. We present algorithms over timed automata for computing the three quantitative simulation functions to within any desired degree of accuracy. In order to compute the values of the quantitative simulation functions, we use a game theoretic formulation. We introduce two new kinds of objectives for two player games on finite state game graphs: (1) eventual debit-sum level objectives, and (2) average debit-sum level objectives. We present algorithms for computing the optimal values for these objectives for player 1, and then use these algorithms to compute the values of the quantitative timed simulation functions. ' acknowledgement: 'This work has been financially supported in part by the European Commission FP7-ICT Cognitive Systems, Interaction, and Robotics under the contract # 270180 (NOP-TILUS); by Fundacao para Ciencia e Tecnologia under project PTDC/EEA-CRO/104901/2008 (Modeling and control of Networked vehicle systems in persistent autonomous operations); by Austrian Science Fund (FWF) Grant No P 23499-N23 on Modern Graph Algorithmic Techniques in Formal Verification; FWF NFN Grant No S11407-N23 (RiSE); ERC Start grant (279307: Graph Games); and the Microsoft faculty fellows award' author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Vinayak full_name: Prabhu, Vinayak last_name: Prabhu citation: ama: 'Chatterjee K, Prabhu V. Quantitative timed simulation functions and refinement metrics for real-time systems. In: Proceedings of the 16th International Conference on Hybrid Systems: Computation and Control. Vol 1. Springer; 2013:273-282. doi:10.1145/2461328.2461370' apa: 'Chatterjee, K., & Prabhu, V. (2013). Quantitative timed simulation functions and refinement metrics for real-time systems. In Proceedings of the 16th International Conference on Hybrid Systems: Computation and Control (Vol. 1, pp. 273–282). Philadelphia, PA USA: Springer. https://doi.org/10.1145/2461328.2461370' chicago: 'Chatterjee, Krishnendu, and Vinayak Prabhu. “Quantitative Timed Simulation Functions and Refinement Metrics for Real-Time Systems.” In Proceedings of the 16th International Conference on Hybrid Systems: Computation and Control, 1:273–82. Springer, 2013. https://doi.org/10.1145/2461328.2461370.' ieee: 'K. Chatterjee and V. Prabhu, “Quantitative timed simulation functions and refinement metrics for real-time systems,” in Proceedings of the 16th International Conference on Hybrid Systems: Computation and Control, Philadelphia, PA USA, 2013, vol. 1, pp. 273–282.' ista: 'Chatterjee K, Prabhu V. 2013. Quantitative timed simulation functions and refinement metrics for real-time systems. Proceedings of the 16th International Conference on Hybrid Systems: Computation and Control. HSCC: Hybrid Systems - Computation and Control vol. 1, 273–282.' mla: 'Chatterjee, Krishnendu, and Vinayak Prabhu. “Quantitative Timed Simulation Functions and Refinement Metrics for Real-Time Systems.” Proceedings of the 16th International Conference on Hybrid Systems: Computation and Control, vol. 1, Springer, 2013, pp. 273–82, doi:10.1145/2461328.2461370.' short: 'K. Chatterjee, V. Prabhu, in:, Proceedings of the 16th International Conference on Hybrid Systems: Computation and Control, Springer, 2013, pp. 273–282.' conference: end_date: 2013-04-11 location: Philadelphia, PA USA name: 'HSCC: Hybrid Systems - Computation and Control' start_date: 2013-04-08 date_created: 2018-12-11T11:59:46Z date_published: 2013-04-01T00:00:00Z date_updated: 2021-01-12T06:59:56Z day: '01' department: - _id: KrCh doi: 10.1145/2461328.2461370 ec_funded: 1 intvolume: ' 1' language: - iso: eng main_file_link: - open_access: '1' url: http://arxiv.org/abs/1212.6556 month: '04' oa: 1 oa_version: Preprint page: 273 - 282 project: - _id: 2584A770-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P 23499-N23 name: Modern Graph Algorithmic Techniques in Formal Verification - _id: 2581B60A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '279307' name: 'Quantitative Graph Games: Theory and Applications' - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering - _id: 2587B514-B435-11E9-9278-68D0E5697425 name: Microsoft Research Faculty Fellowship publication: 'Proceedings of the 16th International Conference on Hybrid Systems: Computation and Control' publication_status: published publisher: Springer publist_id: '3982' quality_controlled: '1' scopus_import: 1 status: public title: Quantitative timed simulation functions and refinement metrics for real-time systems type: conference user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 1 year: '2013' ... --- _id: '2824' abstract: - lang: eng text: We study synthesis of controllers for real-time systems, where the objective is to stay in a given safe set. The problem is solved by obtaining winning strategies in the setting of concurrent two player timed automaton games with safety objectives. To prevent a player from winning by blocking time, we restrict each player to strategies that ensure that the player cannot be responsible for causing a Zeno run. We construct winning strategies for the controller which require access only to (1) the system clocks (thus, controllers which require their own internal infinitely precise clocks are not necessary), and (2) a logarithmic (in the number of clocks) number of memory bits (i.e. a linear number of memory states). Precisely, we show that for safety objectives, a memory of size (3 + lg (| C | + 1)) bits suffices for winning controller strategies, where C is the set of clocks of the timed automaton game, significantly improving the previous known exponential memory states bound. We also settle the open question of whether winning region-based strategies require memory for safety objectives by showing with an example the necessity of memory for such strategies to win for safety objectives. Finally, we show that the decision problem of determining if there exists a receptive player-1 winning strategy for safety objectives is EXPTIME-complete over timed automaton games. author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Vinayak full_name: Prabhu, Vinayak last_name: Prabhu citation: ama: Chatterjee K, Prabhu V. Synthesis of memory-efficient, clock-memory free, and non-Zeno safety controllers for timed systems. Information and Computation. 2013;228-229:83-119. doi:10.1016/j.ic.2013.04.003 apa: Chatterjee, K., & Prabhu, V. (2013). Synthesis of memory-efficient, clock-memory free, and non-Zeno safety controllers for timed systems. Information and Computation. Elsevier. https://doi.org/10.1016/j.ic.2013.04.003 chicago: Chatterjee, Krishnendu, and Vinayak Prabhu. “Synthesis of Memory-Efficient, Clock-Memory Free, and Non-Zeno Safety Controllers for Timed Systems.” Information and Computation. Elsevier, 2013. https://doi.org/10.1016/j.ic.2013.04.003. ieee: K. Chatterjee and V. Prabhu, “Synthesis of memory-efficient, clock-memory free, and non-Zeno safety controllers for timed systems,” Information and Computation, vol. 228–229. Elsevier, pp. 83–119, 2013. ista: Chatterjee K, Prabhu V. 2013. Synthesis of memory-efficient, clock-memory free, and non-Zeno safety controllers for timed systems. Information and Computation. 228–229, 83–119. mla: Chatterjee, Krishnendu, and Vinayak Prabhu. “Synthesis of Memory-Efficient, Clock-Memory Free, and Non-Zeno Safety Controllers for Timed Systems.” Information and Computation, vol. 228–229, Elsevier, 2013, pp. 83–119, doi:10.1016/j.ic.2013.04.003. short: K. Chatterjee, V. Prabhu, Information and Computation 228–229 (2013) 83–119. date_created: 2018-12-11T11:59:47Z date_published: 2013-04-24T00:00:00Z date_updated: 2021-01-12T06:59:58Z day: '24' department: - _id: KrCh doi: 10.1016/j.ic.2013.04.003 ec_funded: 1 language: - iso: eng month: '04' oa_version: None page: 83-119 project: - _id: 2584A770-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P 23499-N23 name: Modern Graph Algorithmic Techniques in Formal Verification - _id: 25863FF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11407 name: Game Theory - _id: 2581B60A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '279307' name: 'Quantitative Graph Games: Theory and Applications' - _id: 2587B514-B435-11E9-9278-68D0E5697425 name: Microsoft Research Faculty Fellowship publication: Information and Computation publication_status: published publisher: Elsevier publist_id: '3977' quality_controlled: '1' scopus_import: 1 status: public title: Synthesis of memory-efficient, clock-memory free, and non-Zeno safety controllers for timed systems type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 228-229 year: '2013' ...