TY - CONF
AB - We study synthesis of controllers for real-time systems, where the objective is to stay in a given safe set. The problem is solved by obtaining winning strategies in the setting of concurrent two-player timed automaton games with safety objectives. To prevent a player from winning by blocking time, we restrict each player to strategies that ensure that the player cannot be responsible for causing a zeno run. We construct winning strategies for the controller which require access only to (1) the system clocks (thus, controllers which require their own internal infinitely precise clocks are not necessary), and (2) a linear (in the number of clocks) number of memory bits. Precisely, we show that for safety objectives, a memory of size (3 · |C|+lg(|C|+1)) bits suffices for winning controller strategies, where C is the set of clocks of the timed automaton game, significantly improving the previous known exponential bound. We also settle the open question of whether winning region controller strategies require memory for safety objectives by showing with an example the necessity of memory for region strategies to win for safety objectives.
AU - Chatterjee, Krishnendu
AU - Prabhu, Vinayak
ID - 3348
TI - Synthesis of memory efficient real time controllers for safety objectives
ER -
TY - CONF
AB - Games on graphs provide a natural model for reactive non-terminating systems. In such games, the interaction of two players on an arena results in an infinite path that describes a run of the system. Different settings are used to model various open systems in computer science, as for instance turn-based or concurrent moves, and deterministic or stochastic transitions. In this paper, we are interested in turn-based games, and specifically in deterministic parity games and stochastic reachability games (also known as simple stochastic games). We present a simple, direct and efficient reduction from deterministic parity games to simple stochastic games: it yields an arena whose size is linear up to a logarithmic factor in size of the original arena.
AU - Chatterjee, Krishnendu
AU - Fijalkow, Nathanaël
ID - 3349
TI - A reduction from parity games to simple stochastic games
VL - 54
ER -
TY - CONF
AB - A controller for a discrete game with ω-regular objectives requires attention if, intuitively, it requires measuring the state and switching from the current control action. Minimum attention controllers are preferable in modern shared implementations of cyber-physical systems because they produce the least burden on system resources such as processor time or communication bandwidth. We give algorithms to compute minimum attention controllers for ω-regular objectives in imperfect information discrete two-player games. We show a polynomial-time reduction from minimum attention controller synthesis to synthesis of controllers for mean-payoff parity objectives in games of incomplete information. This gives an optimal EXPTIME-complete synthesis algorithm. We show that the minimum attention controller problem is decidable for infinite state systems with finite bisimulation quotients. In particular, the problem is decidable for timed and rectangular automata.
AU - Chatterjee, Krishnendu
AU - Majumdar, Ritankar
ED - Fahrenberg, Uli
ED - Tripakis, Stavros
ID - 3350
TI - Minimum attention controller synthesis for omega regular objectives
VL - 6919
ER -
TY - CONF
AB - In two-player games on graph, the players construct an infinite path through the game graph and get a reward computed by a payoff function over infinite paths. Over weighted graphs, the typical and most studied payoff functions compute the limit-average or the discounted sum of the rewards along the path. Besides their simple definition, these two payoff functions enjoy the property that memoryless optimal strategies always exist. In an attempt to construct other simple payoff functions, we define a class of payoff functions which compute an (infinite) weighted average of the rewards. This new class contains both the limit-average and the discounted sum functions, and we show that they are the only members of this class which induce memoryless optimal strategies, showing that there is essentially no other simple payoff functions.
AU - Chatterjee, Krishnendu
AU - Doyen, Laurent
AU - Singh, Rohit
ED - Owe, Olaf
ED - Steffen, Martin
ED - Telle, Jan Arne
ID - 3351
TI - On memoryless quantitative objectives
VL - 6914
ER -
TY - GEN
AB - Turn-based stochastic games and its important subclass Markov decision processes (MDPs) provide models for systems with both probabilistic and nondeterministic behaviors. We consider turn-based stochastic games with two classical quantitative objectives: discounted-sum and long-run average objectives. The game models and the quantitative objectives are widely used in probabilistic verification, planning, optimal inventory control, network protocol and performance analysis. Games and MDPs that model realistic systems often have very large state spaces, and probabilistic abstraction techniques are necessary to handle the state-space explosion. The commonly used full-abstraction techniques do not yield space-savings for systems that have many states with similar value, but does not necessarily have similar transition structure. A semi-abstraction technique, namely Magnifying-lens abstractions (MLA), that clusters states based on value only, disregarding differences in their transition relation was proposed for qualitative objectives (reachability and safety objectives). In this paper we extend the MLA technique to solve stochastic games with discounted-sum and long-run average objectives. We present the MLA technique based abstraction-refinement algorithm for stochastic games and MDPs with discounted-sum objectives. For long-run average objectives, our solution works for all MDPs and a sub-class of stochastic games where every state has the same value.
AU - Chatterjee, Krishnendu
AU - De Alfaro, Luca
AU - Pritam, Roy
ID - 3339
T2 - arXiv
TI - Magnifying lens abstraction for stochastic games with discounted and long-run average objectives
ER -
TY - CONF
AB - We consider Markov decision processes (MDPs) with ω-regular specifications given as parity objectives. We consider the problem of computing the set of almost-sure winning states from where the objective can be ensured with probability 1. The algorithms for the computation of the almost-sure winning set for parity objectives iteratively use the solutions for the almost-sure winning set for Büchi objectives (a special case of parity objectives). Our contributions are as follows: First, we present the first subquadratic symbolic algorithm to compute the almost-sure winning set for MDPs with Büchi objectives; our algorithm takes O(nm) symbolic steps as compared to the previous known algorithm that takes O(n 2) symbolic steps, where n is the number of states and m is the number of edges of the MDP. In practice MDPs often have constant out-degree, and then our symbolic algorithm takes O(nn) symbolic steps, as compared to the previous known O(n 2) symbolic steps algorithm. Second, we present a new algorithm, namely win-lose algorithm, with the following two properties: (a) the algorithm iteratively computes subsets of the almost-sure winning set and its complement, as compared to all previous algorithms that discover the almost-sure winning set upon termination; and (b) requires O(nK) symbolic steps, where K is the maximal number of edges of strongly connected components (scc’s) of the MDP. The win-lose algorithm requires symbolic computation of scc’s. Third, we improve the algorithm for symbolic scc computation; the previous known algorithm takes linear symbolic steps, and our new algorithm improves the constants associated with the linear number of steps. In the worst case the previous known algorithm takes 5·n symbolic steps, whereas our new algorithm takes 4 ·n symbolic steps.
AU - Chatterjee, Krishnendu
AU - Henzinger, Monika
AU - Joglekar, Manas
AU - Nisarg, Shah
ED - Gopalakrishnan, Ganesh
ED - Qadeer, Shaz
ID - 3342
TI - Symbolic algorithms for qualitative analysis of Markov decision processes with Büchi objectives
VL - 6806
ER -
TY - CONF
AB - We present faster and dynamic algorithms for the following problems arising in probabilistic verification: Computation of the maximal end-component (mec) decomposition of Markov decision processes (MDPs), and of the almost sure winning set for reachability and parity objectives in MDPs. We achieve the following running time for static algorithms in MDPs with graphs of n vertices and m edges: (1) O(m · min{ √m, n2/3 }) for the mec decomposition, improving the longstanding O(m·n) bound; (2) O(m·n2/3) for reachability objectives, improving the previous O(m · √m) bound for m > n4/3; and (3) O(m · min{ √m, n2/3 } · log(d)) for parity objectives with d priorities, improving the previous O(m · √m · d) bound. We also give incremental and decremental algorithms in linear time for mec decomposition and reachability objectives and O(m · log d) time for parity ob jectives.
AU - Chatterjee, Krishnendu
AU - Henzinger, Monika
ID - 3343
TI - Faster and dynamic algorithms for maximal end component decomposition and related graph problems in probabilistic verification
ER -
TY - CONF
AB - Games played on graphs provide the mathematical framework to analyze several important problems in computer science as well as mathematics, such as the synthesis problem of Church, model checking of open reactive systems and many others. On the basis of mode of interaction of the players these games can be classified as follows: (a) turn-based (players make moves in turns); and (b) concurrent (players make moves simultaneously). On the basis of the information available to the players these games can be classified as follows: (a) perfect-information (players have perfect view of the game); and (b) partial-information (players have partial view of the game). In this talk we will consider all these classes of games with reachability objectives, where the goal of one player is to reach a set of target vertices of the graph, and the goal of the opponent player is to prevent the player from reaching the target. We will survey the results for various classes of games, and the results range from linear time decision algorithms to EXPTIME-complete problems to undecidable problems.
AU - Chatterjee, Krishnendu
ED - Delzanno, Giorgo
ED - Potapov, Igor
ID - 3344
TI - Graph games with reachability objectives
VL - 6945
ER -
TY - CONF
AB - We consider two-player graph games whose objectives are request-response condition, i.e conjunctions of conditions of the form "if a state with property Rq is visited, then later a state with property Rp is visited". The winner of such games can be decided in EXPTIME and the problem is known to be NP-hard. In this paper, we close this gap by showing that this problem is, in fact, EXPTIME-complete. We show that the problem becomes PSPACE-complete if we only consider games played on DAGs, and NP-complete or PTIME-complete if there is only one player (depending on whether he wants to enforce or spoil the request-response condition). We also present near-optimal bounds on the memory needed to design winning strategies for each player, in each case.
AU - Chatterjee, Krishnendu
AU - Henzinger, Thomas A
AU - Horn, Florian
ED - Dediu, Adrian-Horia
ED - Inenaga, Shunsuke
ED - Martín-Vide, Carlos
ID - 3357
TI - The complexity of request-response games
VL - 6638
ER -
TY - CONF
AB - In this paper, we investigate the computational complexity of quantitative information flow (QIF) problems. Information-theoretic quantitative relaxations of noninterference (based on Shannon entropy)have been introduced to enable more fine-grained reasoning about programs in situations where limited information flow is acceptable. The QIF bounding problem asks whether the information flow in a given program is bounded by a constant $d$. Our first result is that the QIF bounding problem is PSPACE-complete. The QIF memoryless synthesis problem asks whether it is possible to resolve nondeterministic choices in a given partial program in such a way that in the resulting deterministic program, the quantitative information flow is bounded by a given constant $d$. Our second result is that the QIF memoryless synthesis problem is also EXPTIME-complete. The QIF memoryless synthesis problem generalizes to QIF general synthesis problem which does not impose the memoryless requirement (that is, by allowing the synthesized program to have more variables then the original partial program). Our third result is that the QIF general synthesis problem is EXPTIME-hard.
AU - Cerny, Pavol
AU - Chatterjee, Krishnendu
AU - Henzinger, Thomas A
ID - 3361
TI - The complexity of quantitative information flow problems
ER -
TY - GEN
AB - We consider probabilistic automata on infinite words with acceptance defined by safety, reachability, Büchi, coBüchi, and limit-average conditions. We consider quantitative and qualitative decision problems. We present extensions and adaptations of proofs for probabilistic finite automata and present a complete characterization of the decidability and undecidability frontier of the quantitative and qualitative decision problems for probabilistic automata on infinite words.
AU - Chatterjee, Krishnendu
AU - Henzinger, Thomas A
AU - Tracol, Mathieu
ID - 3363
TI - The decidability frontier for probabilistic automata on infinite words
ER -
TY - JOUR
AB - We consider two-player games played on a finite state space for an infinite number of rounds. The games are concurrent: in each round, the two players (player 1 and player 2) choose their moves independently and simultaneously; the current state and the two moves determine the successor state. We consider ω-regular winning conditions specified as parity objectives. Both players are allowed to use randomization when choosing their moves. We study the computation of the limit-winning set of states, consisting of the states where the sup-inf value of the game for player 1 is 1: in other words, a state is limit-winning if player 1 can ensure a probability of winning arbitrarily close to 1. We show that the limit-winning set can be computed in O(n2d+2) time, where n is the size of the game structure and 2d is the number of priorities (or colors). The membership problem of whether a state belongs to the limit-winning set can be decided in NP ∩ coNP. While this complexity is the same as for the simpler class of turn-based parity games, where in each state only one of the two players has a choice of moves, our algorithms are considerably more involved than those for turn-based games. This is because concurrent games do not satisfy two of the most fundamental properties of turn-based parity games. First, in concurrent games limit-winning strategies require randomization; and second, they require infinite memory.
AU - Chatterjee, Krishnendu
AU - De Alfaro, Luca
AU - Henzinger, Thomas A
ID - 3354
IS - 4
JF - ACM Transactions on Computational Logic (TOCL)
TI - Qualitative concurrent parity games
VL - 12
ER -
TY - CONF
AB - We present the tool Quasy, a quantitative synthesis tool. Quasy takes qualitative and quantitative specifications and automatically constructs a system that satisfies the qualitative specification and optimizes the quantitative specification, if such a system exists. The user can choose between a system that satisfies and optimizes the specifications (a) under all possible environment behaviors or (b) under the most-likely environment behaviors given as a probability distribution on the possible input sequences. Quasy solves these two quantitative synthesis problems by reduction to instances of 2-player games and Markov Decision Processes (MDPs) with quantitative winning objectives. Quasy can also be seen as a game solver for quantitative games. Most notable, it can solve lexicographic mean-payoff games with 2 players, MDPs with mean-payoff objectives, and ergodic MDPs with mean-payoff parity objectives.
AU - Chatterjee, Krishnendu
AU - Henzinger, Thomas A
AU - Jobstmann, Barbara
AU - Singh, Rohit
ID - 3365
TI - QUASY: quantitative synthesis tool
VL - 6605
ER -
TY - JOUR
AB - We consider two-player games played in real time on game structures with clocks where the objectives of players are described using parity conditions. The games are concurrent in that at each turn, both players independently propose a time delay and an action, and the action with the shorter delay is chosen. To prevent a player from winning by blocking time, we restrict each player to play strategies that ensure that the player cannot be responsible for causing a zeno run. First, we present an efficient reduction of these games to turn-based (i.e., not concurrent) finite-state (i.e., untimed) parity games. Our reduction improves the best known complexity for solving timed parity games. Moreover, the rich class of algorithms for classical parity games can now be applied to timed parity games. The states of the resulting game are based on clock regions of the original game, and the state space of the finite game is linear in the size of the region graph. Second, we consider two restricted classes of strategies for the player that represents the controller in a real-time synthesis problem, namely, limit-robust and bounded-robust winning strategies. Using a limit-robust winning strategy, the controller cannot choose an exact real-valued time delay but must allow for some nonzero jitter in each of its actions. If there is a given lower bound on the jitter, then the strategy is bounded-robust winning. We show that exact strategies are more powerful than limit-robust strategies, which are more powerful than bounded-robust winning strategies for any bound. For both kinds of robust strategies, we present efficient reductions to standard timed automaton games. These reductions provide algorithms for the synthesis of robust real-time controllers.
AU - Chatterjee, Krishnendu
AU - Henzinger, Thomas A
AU - Prabhu, Vinayak
ID - 3315
IS - 4
JF - Logical Methods in Computer Science
TI - Timed parity games: Complexity and robustness
VL - 7
ER -
TY - GEN
AB - Computing the winning set for Büchi objectives in alternating games on graphs is a central problem in computer aided verification with a large number of applications. The long standing best known upper bound for solving the problem is ̃O(n·m), where n is the number of vertices and m is the number of edges in the graph. We are the first to break the ̃O(n·m) boundary by presenting a new technique that reduces the running time to O(n2). This bound also leads to O(n2) time algorithms for computing the set of almost-sure winning vertices for Büchi objectives (1) in alternating games with probabilistic transitions (improving an earlier bound of O(n·m)), (2) in concurrent graph games with constant actions (improving an earlier bound of O(n3)), and (3) in Markov decision processes (improving for m > n4/3 an earlier bound of O(min(m1.5, m·n2/3)). We also show that the same technique can be used to compute the maximal end-component decomposition of a graph in time O(n2), which is an improvement over earlier bounds for m > n4/3. Finally, we show how to maintain the winning set for Büchi objectives in alternating games under a sequence of edge insertions or a sequence of edge deletions in O(n) amortized time per operation. This is the first dynamic algorithm for this problem.
AU - Chatterjee, Krishnendu
AU - Henzinger, Monika
ID - 5379
SN - 2664-1690
TI - An O(n2) time algorithm for alternating Büchi games
ER -
TY - GEN
AB - We consider 2-player games played on a finite state space for an infinite number of rounds. The games are concurrent: in each round, the two players (player 1 and player 2) choose their moves inde- pendently and simultaneously; the current state and the two moves determine the successor state. We study concurrent games with ω-regular winning conditions specified as parity objectives. We consider the qualitative analysis problems: the computation of the almost-sure and limit-sure winning set of states, where player 1 can ensure to win with probability 1 and with probability arbitrarily close to 1, respec- tively. In general the almost-sure and limit-sure winning strategies require both infinite-memory as well as infinite-precision (to describe probabilities). We study the bounded-rationality problem for qualitative analysis of concurrent parity games, where the strategy set for player 1 is restricted to bounded-resource strategies. In terms of precision, strategies can be deterministic, uniform, finite-precision or infinite- precision; and in terms of memory, strategies can be memoryless, finite-memory or infinite-memory. We present a precise and complete characterization of the qualitative winning sets for all combinations of classes of strategies. In particular, we show that uniform memoryless strategies are as powerful as finite-precision infinite-memory strategies, and infinite-precision memoryless strategies are as power- ful as infinite-precision finite-memory strategies. We show that the winning sets can be computed in O(n2d+3) time, where n is the size of the game structure and 2d is the number of priorities (or colors), and our algorithms are symbolic. The membership problem of whether a state belongs to a winning set can be decided in NP ∩ coNP. While this complexity is the same as for the simpler class of turn-based parity games, where in each state only one of the two players has a choice of moves, our algorithms, that are obtained by characterization of the winning sets as μ-calculus formulas, are considerably more involved than those for turn-based games.
AU - Chatterjee, Krishnendu
ID - 3338
T2 - arXiv
TI - Bounded rationality in concurrent parity games
ER -
TY - GEN
AB - In two-player finite-state stochastic games of partial obser- vation on graphs, in every state of the graph, the players simultaneously choose an action, and their joint actions determine a probability distri- bution over the successor states. The game is played for infinitely many rounds and thus the players construct an infinite path in the graph. We consider reachability objectives where the first player tries to ensure a target state to be visited almost-surely (i.e., with probability 1) or pos- itively (i.e., with positive probability), no matter the strategy of the second player.
We classify such games according to the information and to the power of randomization available to the players. On the basis of information, the game can be one-sided with either (a) player 1, or (b) player 2 having partial observation (and the other player has perfect observation), or two- sided with (c) both players having partial observation. On the basis of randomization, (a) the players may not be allowed to use randomization (pure strategies), or (b) they may choose a probability distribution over actions but the actual random choice is external and not visible to the player (actions invisible), or (c) they may use full randomization.
Our main results for pure strategies are as follows: (1) For one-sided games with player 2 perfect observation we show that (in contrast to full randomized strategies) belief-based (subset-construction based) strate- gies are not sufficient, and present an exponential upper bound on mem- ory both for almost-sure and positive winning strategies; we show that the problem of deciding the existence of almost-sure and positive winning strategies for player 1 is EXPTIME-complete and present symbolic algo- rithms that avoid the explicit exponential construction. (2) For one-sided games with player 1 perfect observation we show that non-elementary memory is both necessary and sufficient for both almost-sure and posi- tive winning strategies. (3) We show that for the general (two-sided) case finite-memory strategies are sufficient for both positive and almost-sure winning, and at least non-elementary memory is required. We establish the equivalence of the almost-sure winning problems for pure strategies and for randomized strategies with actions invisible. Our equivalence re- sult exhibit serious flaws in previous results in the literature: we show a non-elementary memory lower bound for almost-sure winning whereas an exponential upper bound was previously claimed.
AU - Chatterjee, Krishnendu
AU - Doyen, Laurent
ID - 5381
SN - 2664-1690
TI - Partial-observation stochastic games: How to win when belief fails
ER -
TY - GEN
AB - We consider 2-player games played on a finite state space for an infinite number of rounds. The games are concurrent: in each round, the two players (player 1 and player 2) choose their moves independently and simultaneously; the current state and the two moves determine the successor state. We study concurrent games with ω-regular winning conditions specified as parity objectives. We consider the qualitative analysis problems: the computation of the almost-sure and limit-sure winning set of states, where player 1 can ensure to win with probability 1 and with probability arbitrarily close to 1, respectively. In general the almost-sure and limit-sure winning strategies require both infinite-memory as well as infinite-precision (to describe probabilities). We study the bounded-rationality problem for qualitative analysis of concurrent parity games, where the strategy set for player 1 is restricted to bounded-resource strategies. In terms of precision, strategies can be deterministic, uniform, finite-precision or infinite-precision; and in terms of memory, strategies can be memoryless, finite-memory or infinite-memory. We present a precise and complete characterization of the qualitative winning sets for all combinations of classes of strategies. In particular, we show that uniform memoryless strategies are as powerful as finite-precision infinite-memory strategies, and infinite-precision memoryless strategies are as powerful as infinite-precision finite-memory strategies. We show that the winning sets can be computed in O(n2d+3) time, where n is the size of the game structure and 2d is the number of priorities (or colors), and our algorithms are symbolic. The membership problem of whether a state belongs to a winning set can be decided in NP ∩ coNP. While this complexity is the same as for the simpler class of turn-based parity games, where in each state only one of the two players has a choice of moves, our algorithms,that are obtained by characterization of the winning sets as μ-calculus formulas, are considerably more involved than those for turn-based games.
AU - Chatterjee, Krishnendu
ID - 5380
SN - 2664-1690
TI - Bounded rationality in concurrent parity games
ER -
TY - GEN
AB - We consider two-player stochastic games played on a finite state space for an infinite num- ber of rounds. The games are concurrent: in each round, the two players (player 1 and player 2) choose their moves independently and simultaneously; the current state and the two moves determine a probability distribution over the successor states. We also consider the important special case of turn-based stochastic games where players make moves in turns, rather than concurrently. We study concurrent games with ω-regular winning conditions specified as parity objectives. The value for player 1 for a parity objective is the maximal probability with which the player can guarantee the satisfaction of the objective against all strategies of the opponent. We study the problem of continuity and robustness of the value function in concurrent and turn-based stochastic parity games with respect to imprecision in the transition probabilities. We present quantitative bounds on the difference of the value function (in terms of the imprecision of the transition probabilities) and show the value continuity for structurally equivalent concurrent games (two games are structurally equivalent if the support of the transition func- tion is same and the probabilities differ). We also show robustness of optimal strategies for structurally equivalent turn-based stochastic parity games. Finally we show that the value continuity property breaks without the structurally equivalent assumption (even for Markov chains) and show that our quantitative bound is asymptotically optimal. Hence our results are tight (the assumption is both necessary and sufficient) and optimal (our quantitative bound is asymptotically optimal).
AU - Chatterjee, Krishnendu
ID - 5382
SN - 2664-1690
TI - Robustness of structurally equivalent concurrent parity games
ER -
TY - GEN
AB - We consider Markov Decision Processes (MDPs) with mean-payoff parity and energy parity objectives. In system design, the parity objective is used to encode ω-regular specifications, and the mean-payoff and energy objectives can be used to model quantitative resource constraints. The energy condition re- quires that the resource level never drops below 0, and the mean-payoff condi- tion requires that the limit-average value of the resource consumption is within a threshold. While these two (energy and mean-payoff) classical conditions are equivalent for two-player games, we show that they differ for MDPs. We show that the problem of deciding whether a state is almost-sure winning (i.e., winning with probability 1) in energy parity MDPs is in NP ∩ coNP, while for mean- payoff parity MDPs, the problem is solvable in polynomial time, improving a recent PSPACE bound.
AU - Chatterjee, Krishnendu
AU - Doyen, Laurent
ID - 5387
SN - 2664-1690
TI - Energy and mean-payoff parity Markov decision processes
ER -