TY - JOUR
AB - The computation of the winning set for Büchi objectives in alternating games on graphs is a central problem in computer-aided verification with a large number of applications. The long-standing best known upper bound for solving the problem is Õ(n ⋅ m), where n is the number of vertices and m is the number of edges in the graph. We are the first to break the Õ(n ⋅ m) boundary by presenting a new technique that reduces the running time to O(n2). This bound also leads to O(n2)-time algorithms for computing the set of almost-sure winning vertices for Büchi objectives (1) in alternating games with probabilistic transitions (improving an earlier bound of Õ(n ⋅ m)), (2) in concurrent graph games with constant actions (improving an earlier bound of O(n3)), and (3) in Markov decision processes (improving for m>n4/3 an earlier bound of O(m ⋅ √m)). We then show how to maintain the winning set for Büchi objectives in alternating games under a sequence of edge insertions or a sequence of edge deletions in O(n) amortized time per operation. Our algorithms are the first dynamic algorithms for this problem. We then consider another core graph theoretic problem in verification of probabilistic systems, namely computing the maximal end-component decomposition of a graph. We present two improved static algorithms for the maximal end-component decomposition problem. Our first algorithm is an O(m ⋅ √m)-time algorithm, and our second algorithm is an O(n2)-time algorithm which is obtained using the same technique as for alternating Büchi games. Thus, we obtain an O(min &lcu;m ⋅ √m,n2})-time algorithm improving the long-standing O(n ⋅ m) time bound. Finally, we show how to maintain the maximal end-component decomposition of a graph under a sequence of edge insertions or a sequence of edge deletions in O(n) amortized time per edge deletion, and O(m) worst-case time per edge insertion. Again, our algorithms are the first dynamic algorithms for this problem.
AU - Chatterjee, Krishnendu
AU - Henzinger, Monika
ID - 2141
IS - 3
JF - Journal of the ACM
TI - Efficient and dynamic algorithms for alternating Büchi games and maximal end-component decomposition
VL - 61
ER -
TY - CONF
AB - We study two-player (zero-sum) concurrent mean-payoff games played on a finite-state graph. We focus on the important sub-class of ergodic games where all states are visited infinitely often with probability 1. The algorithmic study of ergodic games was initiated in a seminal work of Hoffman and Karp in 1966, but all basic complexity questions have remained unresolved. Our main results for ergodic games are as follows: We establish (1) an optimal exponential bound on the patience of stationary strategies (where patience of a distribution is the inverse of the smallest positive probability and represents a complexity measure of a stationary strategy); (2) the approximation problem lies in FNP; (3) the approximation problem is at least as hard as the decision problem for simple stochastic games (for which NP ∩ coNP is the long-standing best known bound). We present a variant of the strategy-iteration algorithm by Hoffman and Karp; show that both our algorithm and the classical value-iteration algorithm can approximate the value in exponential time; and identify a subclass where the value-iteration algorithm is a FPTAS. We also show that the exact value can be expressed in the existential theory of the reals, and establish square-root sum hardness for a related class of games.
AU - Chatterjee, Krishnendu
AU - Ibsen-Jensen, Rasmus
ID - 2162
IS - Part 2
TI - The complexity of ergodic mean payoff games
VL - 8573
ER -
TY - CONF
AB - We consider multi-player graph games with partial-observation and parity objective. While the decision problem for three-player games with a coalition of the first and second players against the third player is undecidable in general, we present a decidability result for partial-observation games where the first and third player are in a coalition against the second player, thus where the second player is adversarial but weaker due to partial-observation. We establish tight complexity bounds in the case where player 1 is less informed than player 2, namely 2-EXPTIME-completeness for parity objectives. The symmetric case of player 1 more informed than player 2 is much more complicated, and we show that already in the case where player 1 has perfect observation, memory of size non-elementary is necessary in general for reachability objectives, and the problem is decidable for safety and reachability objectives. From our results we derive new complexity results for partial-observation stochastic games.
AU - Chatterjee, Krishnendu
AU - Doyen, Laurent
ID - 2163
IS - Part 2
T2 - Lecture Notes in Computer Science
TI - Games with a weak adversary
VL - 8573
ER -
TY - JOUR
AB - Systems should not only be correct but also robust in the sense that they behave reasonably in unexpected situations. This article addresses synthesis of robust reactive systems from temporal specifications. Existing methods allow arbitrary behavior if assumptions in the specification are violated. To overcome this, we define two robustness notions, combine them, and show how to enforce them in synthesis. The first notion applies to safety properties: If safety assumptions are violated temporarily, we require that the system recovers to normal operation with as few errors as possible. The second notion requires that, if liveness assumptions are violated, as many guarantees as possible should be fulfilled nevertheless. We present a synthesis procedure achieving this for the important class of GR(1) specifications, and establish complexity bounds. We also present an implementation of a special case of robustness, and show experimental results.
AU - Bloem, Roderick
AU - Chatterjee, Krishnendu
AU - Greimel, Karin
AU - Henzinger, Thomas A
AU - Hofferek, Georg
AU - Jobstmann, Barbara
AU - Könighofer, Bettina
AU - Könighofer, Robert
ID - 2187
IS - 3-4
JF - Acta Informatica
TI - Synthesizing robust systems
VL - 51
ER -
TY - CONF
AB - We present a new algorithm to construct a (generalized) deterministic Rabin automaton for an LTL formula φ. The automaton is the product of a master automaton and an array of slave automata, one for each G-subformula of φ. The slave automaton for G ψ is in charge of recognizing whether FG ψ holds. As opposed to standard determinization procedures, the states of all our automata have a clear logical structure, which allows for various optimizations. Our construction subsumes former algorithms for fragments of LTL. Experimental results show improvement in the sizes of the resulting automata compared to existing methods.
AU - Esparza, Javier
AU - Kretinsky, Jan
ID - 2190
TI - From LTL to deterministic automata: A safraless compositional approach
VL - 8559
ER -