TY - JOUR
AB - This paper is devoted to automatic competitive analysis of real-time scheduling algorithms for firm-deadline tasksets, where only completed tasks con- tribute some utility to the system. Given such a taskset T , the competitive ratio of an on-line scheduling algorithm A for T is the worst-case utility ratio of A over the utility achieved by a clairvoyant algorithm. We leverage the theory of quantitative graph games to address the competitive analysis and competitive synthesis problems. For the competitive analysis case, given any taskset T and any finite-memory on- line scheduling algorithm A , we show that the competitive ratio of A in T can be computed in polynomial time in the size of the state space of A . Our approach is flexible as it also provides ways to model meaningful constraints on the released task sequences that determine the competitive ratio. We provide an experimental study of many well-known on-line scheduling algorithms, which demonstrates the feasibility of our competitive analysis approach that effectively replaces human ingenuity (required Preliminary versions of this paper have appeared in Chatterjee et al. ( 2013 , 2014 ). B Andreas Pavlogiannis pavlogiannis@ist.ac.at Krishnendu Chatterjee krish.chat@ist.ac.at Alexander Kößler koe@ecs.tuwien.ac.at Ulrich Schmid s@ecs.tuwien.ac.at 1 IST Austria (Institute of Science and Technology Austria), Am Campus 1, 3400 Klosterneuburg, Austria 2 Embedded Computing Systems Group, Vienna University of Technology, Treitlstrasse 3, 1040 Vienna, Austria 123 Real-Time Syst for finding worst-case scenarios) by computing power. For the competitive synthesis case, we are just given a taskset T , and the goal is to automatically synthesize an opti- mal on-line scheduling algorithm A , i.e., one that guarantees the largest competitive ratio possible for T . We show how the competitive synthesis problem can be reduced to a two-player graph game with partial information, and establish that the compu- tational complexity of solving this game is Np -complete. The competitive synthesis problem is hence in Np in the size of the state space of the non-deterministic labeled transition system encoding the taskset. Overall, the proposed framework assists in the selection of suitable scheduling algorithms for a given taskset, which is in fact the most common situation in real-time systems design.
AU - Chatterjee, Krishnendu
AU - Pavlogiannis, Andreas
AU - Kößler, Alexander
AU - Schmid, Ulrich
ID - 738
IS - 1
JF - Real-Time Systems
TI - Automated competitive analysis of real time scheduling with graph games
VL - 54
ER -
TY - CONF
AB - Markov Decision Processes (MDPs) are a popular class of models suitable for solving control decision problems in probabilistic reactive systems. We consider parametric MDPs (pMDPs) that include parameters in some of the transition probabilities to account for stochastic uncertainties of the environment such as noise or input disturbances. We study pMDPs with reachability objectives where the parameter values are unknown and impossible to measure directly during execution, but there is a probability distribution known over the parameter values. We study for the first time computing parameter-independent strategies that are expectation optimal, i.e., optimize the expected reachability probability under the probability distribution over the parameters. We present an encoding of our problem to partially observable MDPs (POMDPs), i.e., a reduction of our problem to computing optimal strategies in POMDPs. We evaluate our method experimentally on several benchmarks: a motivating (repeated) learner model; a series of benchmarks of varying configurations of a robot moving on a grid; and a consensus protocol.
AU - Arming, Sebastian
AU - Bartocci, Ezio
AU - Chatterjee, Krishnendu
AU - Katoen, Joost P
AU - Sokolova, Ana
ID - 79
TI - Parameter-independent strategies for pMDPs via POMDPs
VL - 11024
ER -
TY - CHAP
AB - Responsiveness—the requirement that every request to a system be eventually handled—is one of the fundamental liveness properties of a reactive system. Average response time is a quantitative measure for the responsiveness requirement used commonly in performance evaluation. We show how average response time can be computed on state-transition graphs, on Markov chains, and on game graphs. In all three cases, we give polynomial-time algorithms.
AU - Chatterjee, Krishnendu
AU - Henzinger, Thomas A
AU - Otop, Jan
ED - Lohstroh, Marten
ED - Derler, Patricia
ED - Sirjani, Marjan
ID - 86
T2 - Principles of Modeling
TI - Computing average response time
VL - 10760
ER -
TY - CONF
AB - Smart contracts are computer programs that are executed by a network of mutually distrusting agents, without the need of an external trusted authority. Smart contracts handle and transfer assets of considerable value (in the form of crypto-currency like Bitcoin). Hence, it is crucial that their implementation is bug-free. We identify the utility (or expected payoff) of interacting with such smart contracts as the basic and canonical quantitative property for such contracts. We present a framework for such quantitative analysis of smart contracts. Such a formal framework poses new and novel research challenges in programming languages, as it requires modeling of game-theoretic aspects to analyze incentives for deviation from honest behavior and modeling utilities which are not specified as standard temporal properties such as safety and termination. While game-theoretic incentives have been analyzed in the security community, their analysis has been restricted to the very special case of stateless games. However, to analyze smart contracts, stateful analysis is required as it must account for the different program states of the protocol. Our main contributions are as follows: we present (i)~a simplified programming language for smart contracts; (ii)~an automatic translation of the programs to state-based games; (iii)~an abstraction-refinement approach to solve such games; and (iv)~experimental results on real-world-inspired smart contracts.
AU - Chatterjee, Krishnendu
AU - Goharshady, Amir
AU - Velner, Yaron
ID - 311
TI - Quantitative analysis of smart contracts
VL - 10801
ER -
TY - CONF
AB - We present a secure approach for maintaining andreporting credit history records on the Blockchain. Our ap-proach removes third-parties such as credit reporting agen-cies from the lending process and replaces them with smartcontracts. This allows customers to interact directly with thelenders or banks while ensuring the integrity, unmalleabilityand privacy of their credit data. Additionally, each customerhas full control over complete or selective disclosure of hercredit records, eliminating the risk of privacy violations or databreaches. Moreover, our approach provides strong guaranteesfor the lenders as well. A lender can check both correctness andcompleteness of the credit data disclosed to her. This is the firstapproach that can perform all credit reporting tasks withouta central authority or changing the financial mechanisms*.
AU - Goharshady, Amir Kafshdar
AU - Behrouz, Ali
AU - Chatterjee, Krishnendu
ID - 6340
SN - 978-1-5386-7975-3
T2 - Proceedings of the IEEE International Conference on Blockchain
TI - Secure Credit Reporting on the Blockchain
ER -
TY - JOUR
AB - We study algorithmic questions wrt algebraic path properties in concurrent systems, where the transitions of the system are labeled from a complete, closed semiring. The algebraic path properties can model dataflow analysis problems, the shortest path problem, and many other natural problems that arise in program analysis. We consider that each component of the concurrent system is a graph with constant treewidth, a property satisfied by the controlflow graphs of most programs. We allow for multiple possible queries, which arise naturally in demand driven dataflow analysis. The study of multiple queries allows us to consider the tradeoff between the resource usage of the one-time preprocessing and for each individual query. The traditional approach constructs the product graph of all components and applies the best-known graph algorithm on the product. In this approach, even the answer to a single query requires the transitive closure (i.e., the results of all possible queries), which provides no room for tradeoff between preprocessing and query time.
Our main contributions are algorithms that significantly improve the worst-case running time of the traditional approach, and provide various tradeoffs depending on the number of queries. For example, in a concurrent system of two components, the traditional approach requires hexic time in the worst case for answering one query as well as computing the transitive closure, whereas we show that with one-time preprocessing in almost cubic time, each subsequent query can be answered in at most linear time, and even the transitive closure can be computed in almost quartic time. Furthermore, we establish conditional optimality results showing that the worst-case running time of our algorithms cannot be improved without achieving major breakthroughs in graph algorithms (i.e., improving the worst-case bound for the shortest path problem in general graphs). Preliminary experimental results show that our algorithms perform favorably on several benchmarks.
AU - Chatterjee, Krishnendu
AU - Ibsen-Jensen, Rasmus
AU - Goharshady, Amir Kafshdar
AU - Pavlogiannis, Andreas
ID - 6009
IS - 3
JF - ACM Transactions on Programming Languages and Systems
SN - 0164-0925
TI - Algorithms for algebraic path properties in concurrent systems of constant treewidth components
VL - 40
ER -
TY - CONF
AB - We consider the stochastic shortest path (SSP)problem for succinct Markov decision processes(MDPs), where the MDP consists of a set of vari-ables, and a set of nondeterministic rules that up-date the variables. First, we show that several ex-amples from the AI literature can be modeled assuccinct MDPs. Then we present computationalapproaches for upper and lower bounds for theSSP problem: (a) for computing upper bounds, ourmethod is polynomial-time in the implicit descrip-tion of the MDP; (b) for lower bounds, we present apolynomial-time (in the size of the implicit descrip-tion) reduction to quadratic programming. Our ap-proach is applicable even to infinite-state MDPs.Finally, we present experimental results to demon-strate the effectiveness of our approach on severalclassical examples from the AI literature.
AU - Chatterjee, Krishnendu
AU - Fu, Hongfei
AU - Goharshady, Amir
AU - Okati, Nastaran
ID - 5977
SN - 10450823
T2 - Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence
TI - Computational approaches for stochastic shortest path on succinct MDPs
VL - 2018
ER -
TY - CONF
AB - Crypto-currencies are digital assets designed to work as a medium of exchange, e.g., Bitcoin, but they are susceptible to attacks (dishonest behavior of participants). A framework for the analysis of attacks in crypto-currencies requires (a) modeling of game-theoretic aspects to analyze incentives for deviation from honest behavior; (b) concurrent interactions between participants; and (c) analysis of long-term monetary gains. Traditional game-theoretic approaches for the analysis of security protocols consider either qualitative temporal properties such as safety and termination, or the very special class of one-shot (stateless) games. However, to analyze general attacks on protocols for crypto-currencies, both stateful analysis and quantitative objectives are necessary. In this work our main contributions are as follows: (a) we show how a class of concurrent mean-payo games, namely ergodic games, can model various attacks that arise naturally in crypto-currencies; (b) we present the first practical implementation of algorithms for ergodic games that scales to model realistic problems for crypto-currencies; and (c) we present experimental results showing that our framework can handle games with thousands of states and millions of transitions.
AU - Chatterjee, Krishnendu
AU - Goharshady, Amir
AU - Ibsen-Jensen, Rasmus
AU - Velner, Yaron
ID - 66
SN - 978-3-95977-087-3
TI - Ergodic mean-payoff games for the analysis of attacks in crypto-currencies
VL - 118
ER -
TY - CONF
AB - A standard objective in partially-observable Markov decision processes (POMDPs) is to find a policy that maximizes the expected discounted-sum payoff. However, such policies may still permit unlikely but highly undesirable outcomes, which is problematic especially in safety-critical applications. Recently, there has been a surge of interest in POMDPs where the goal is to maximize the probability to ensure that the payoff is at least a given threshold, but these approaches do not consider any optimization beyond satisfying this threshold constraint. In this work we go beyond both the “expectation” and “threshold” approaches and consider a “guaranteed payoff optimization (GPO)” problem for POMDPs, where we are given a threshold t and the objective is to find a policy σ such that a) each possible outcome of σ yields a discounted-sum payoff of at least t, and b) the expected discounted-sum payoff of σ is optimal (or near-optimal) among all policies satisfying a). We present a practical approach to tackle the GPO problem and evaluate it on standard POMDP benchmarks.
AU - Chatterjee, Krishnendu
AU - Novotny, Petr
AU - Pérez, Guillermo
AU - Raskin, Jean
AU - Zikelic, Djordje
ID - 1009
T2 - Proceedings of the 31st AAAI Conference on Artificial Intelligence
TI - Optimizing expectation with guarantees in POMDPs
VL - 5
ER -
TY - CONF
AB - Pushdown systems (PDSs) and recursive state machines (RSMs), which are linearly equivalent, are standard models for interprocedural analysis. Yet RSMs are more convenient as they (a) explicitly model function calls and returns, and (b) specify many natural parameters for algorithmic analysis, e.g., the number of entries and exits. We consider a general framework where RSM transitions are labeled from a semiring and path properties are algebraic with semiring operations, which can model, e.g., interprocedural reachability and dataflow analysis problems. Our main contributions are new algorithms for several fundamental problems. As compared to a direct translation of RSMs to PDSs and the best-known existing bounds of PDSs, our analysis algorithm improves the complexity for finite-height semirings (that subsumes reachability and standard dataflow properties). We further consider the problem of extracting distance values from the representation structures computed by our algorithm, and give efficient algorithms that distinguish the complexity of a one-time preprocessing from the complexity of each individual query. Another advantage of our algorithm is that our improvements carry over to the concurrent setting, where we improve the bestknown complexity for the context-bounded analysis of concurrent RSMs. Finally, we provide a prototype implementation that gives a significant speed-up on several benchmarks from the SLAM/SDV project.
AU - Chatterjee, Krishnendu
AU - Kragl, Bernhard
AU - Mishra, Samarth
AU - Pavlogiannis, Andreas
ED - Yang, Hongseok
ID - 1011
SN - 03029743
TI - Faster algorithms for weighted recursive state machines
VL - 10201
ER -
TY - JOUR
AB - We consider the problem of reachability in pushdown graphs. We study the problem for pushdown graphs with constant treewidth. Even for pushdown graphs with treewidth 1, for the reachability problem we establish the following: (i) the problem is PTIME-complete, and (ii) any subcubic algorithm for the problem would contradict the k-clique conjecture and imply faster combinatorial algorithms for cliques in graphs.
AU - Chatterjee, Krishnendu
AU - Osang, Georg F
ID - 1065
JF - Information Processing Letters
SN - 00200190
TI - Pushdown reachability with constant treewidth
VL - 122
ER -
TY - JOUR
AB - Reconstructing the evolutionary history of metastases is critical for understanding their basic biological principles and has profound clinical implications. Genome-wide sequencing data has enabled modern phylogenomic methods to accurately dissect subclones and their phylogenies from noisy and impure bulk tumour samples at unprecedented depth. However, existing methods are not designed to infer metastatic seeding patterns. Here we develop a tool, called Treeomics, to reconstruct the phylogeny of metastases and map subclones to their anatomic locations. Treeomics infers comprehensive seeding patterns for pancreatic, ovarian, and prostate cancers. Moreover, Treeomics correctly disambiguates true seeding patterns from sequencing artifacts; 7% of variants were misclassified by conventional statistical methods. These artifacts can skew phylogenies by creating illusory tumour heterogeneity among distinct samples. In silico benchmarking on simulated tumour phylogenies across a wide range of sample purities (15–95%) and sequencing depths (25-800 × ) demonstrates the accuracy of Treeomics compared with existing methods.
AU - Reiter, Johannes
AU - Makohon Moore, Alvin
AU - Gerold, Jeffrey
AU - Božić, Ivana
AU - Chatterjee, Krishnendu
AU - Iacobuzio Donahue, Christine
AU - Vogelstein, Bert
AU - Nowak, Martin
ID - 1080
JF - Nature Communications
SN - 20411723
TI - Reconstructing metastatic seeding patterns of human cancers
VL - 8
ER -
TY - CONF
AB - Termination is one of the basic liveness properties, and we study the termination problem for probabilistic programs with real-valued variables. Previous works focused on the qualitative problem that asks whether an input program terminates with probability~1 (almost-sure termination). A powerful approach for this qualitative problem is the notion of ranking supermartingales with respect to a given set of invariants. The quantitative problem (probabilistic termination) asks for bounds on the termination probability. A fundamental and conceptual drawback of the existing approaches to address probabilistic termination is that even though the supermartingales consider the probabilistic behavior of the programs, the invariants are obtained completely ignoring the probabilistic aspect. In this work we address the probabilistic termination problem for linear-arithmetic probabilistic programs with nondeterminism. We define the notion of {\em stochastic invariants}, which are constraints along with a probability bound that the constraints hold. We introduce a concept of {\em repulsing supermartingales}. First, we show that repulsing supermartingales can be used to obtain bounds on the probability of the stochastic invariants. Second, we show the effectiveness of repulsing supermartingales in the following three ways: (1)~With a combination of ranking and repulsing supermartingales we can compute lower bounds on the probability of termination; (2)~repulsing supermartingales provide witnesses for refutation of almost-sure termination; and (3)~with a combination of ranking and repulsing supermartingales we can establish persistence properties of probabilistic programs. We also present results on related computational problems and an experimental evaluation of our approach on academic examples.
AU - Chatterjee, Krishnendu
AU - Novotny, Petr
AU - Zikelic, Djordje
ID - 1194
IS - 1
SN - 07308566
TI - Stochastic invariants for probabilistic termination
VL - 52
ER -
TY - JOUR
AB - We consider the problem of computing the set of initial states of a dynamical system such that there exists a control strategy to ensure that the trajectories satisfy a temporal logic specification with probability 1 (almost-surely). We focus on discrete-time, stochastic linear dynamics and specifications given as formulas of the Generalized Reactivity(1) fragment of Linear Temporal Logic over linear predicates in the states of the system. We propose a solution based on iterative abstraction-refinement, and turn-based 2-player probabilistic games. While the theoretical guarantee of our algorithm after any finite number of iterations is only a partial solution, we show that if our algorithm terminates, then the result is the set of all satisfying initial states. Moreover, for any (partial) solution our algorithm synthesizes witness control strategies to ensure almost-sure satisfaction of the temporal logic specification. While the proposed algorithm guarantees progress and soundness in every iteration, it is computationally demanding. We offer an alternative, more efficient solution for the reachability properties that decomposes the problem into a series of smaller problems of the same type. All algorithms are demonstrated on an illustrative case study.
AU - Svoreňová, Mária
AU - Kretinsky, Jan
AU - Chmelik, Martin
AU - Chatterjee, Krishnendu
AU - Cěrná, Ivana
AU - Belta, Cǎlin
ID - 1407
IS - 2
JF - Nonlinear Analysis: Hybrid Systems
TI - Temporal logic control for stochastic linear systems using abstraction refinement of probabilistic games
VL - 23
ER -
TY - JOUR
AB - We study controller synthesis problems for finite-state Markov decision processes, where the objective is to optimize the expected mean-payoff performance and stability (also known as variability in the literature). We argue that the basic notion of expressing the stability using the statistical variance of the mean payoff is sometimes insufficient, and propose an alternative definition. We show that a strategy ensuring both the expected mean payoff and the variance below given bounds requires randomization and memory, under both the above definitions. We then show that the problem of finding such a strategy can be expressed as a set of constraints.
AU - Brázdil, Tomáš
AU - Chatterjee, Krishnendu
AU - Forejt, Vojtěch
AU - Kučera, Antonín
ID - 1294
JF - Journal of Computer and System Sciences
TI - Trading performance for stability in Markov decision processes
VL - 84
ER -
TY - JOUR
AB - The computation of the winning set for parity objectives and for Streett objectives in graphs as well as in game graphs are central problems in computer-aided verification, with application to the verification of closed systems with strong fairness conditions, the verification of open systems, checking interface compatibility, well-formedness of specifications, and the synthesis of reactive systems. We show how to compute the winning set on n vertices for (1) parity-3 (aka one-pair Streett) objectives in game graphs in time O(n5/2) and for (2) k-pair Streett objectives in graphs in time O(n2+nklogn). For both problems this gives faster algorithms for dense graphs and represents the first improvement in asymptotic running time in 15 years.
AU - Chatterjee, Krishnendu
AU - Henzinger, Monika
AU - Loitzenbauer, Veronika
ID - 464
IS - 3
JF - Logical Methods in Computer Science
SN - 18605974
TI - Improved algorithms for parity and Streett objectives
VL - 13
ER -
TY - JOUR
AB - Simulation is an attractive alternative to language inclusion for automata as it is an under-approximation of language inclusion, but usually has much lower complexity. Simulation has also been extended in two orthogonal directions, namely, (1) fair simulation, for simulation over specified set of infinite runs; and (2) quantitative simulation, for simulation between weighted automata. While fair trace inclusion is PSPACE-complete, fair simulation can be computed in polynomial time. For weighted automata, the (quantitative) language inclusion problem is undecidable in general, whereas the (quantitative) simulation reduces to quantitative games, which admit pseudo-polynomial time algorithms.
In this work, we study (quantitative) simulation for weighted automata with Büchi acceptance conditions, i.e., we generalize fair simulation from non-weighted automata to weighted automata. We show that imposing Büchi acceptance conditions on weighted automata changes many fundamental properties of the simulation games, yet they still admit pseudo-polynomial time algorithms.
AU - Chatterjee, Krishnendu
AU - Henzinger, Thomas A
AU - Otop, Jan
AU - Velner, Yaron
ID - 1066
IS - 2
JF - Information and Computation
TI - Quantitative fair simulation games
VL - 254
ER -
TY - JOUR
AB - We consider Markov decision processes (MDPs) with multiple limit-average (or mean-payoff) objectives. There exist two different views: (i) the expectation semantics, where the goal is to optimize the expected mean-payoff objective, and (ii) the satisfaction semantics, where the goal is to maximize the probability of runs such that the mean-payoff value stays above a given vector. We consider optimization with respect to both objectives at once, thus unifying the existing semantics. Precisely, the goal is to optimize the expectation while ensuring the satisfaction constraint. Our problem captures the notion of optimization with respect to strategies that are risk-averse (i.e., ensure certain probabilistic guarantee). Our main results are as follows: First, we present algorithms for the decision problems which are always polynomial in the size of the MDP. We also show that an approximation of the Pareto-curve can be computed in time polynomial in the size of the MDP, and the approximation factor, but exponential in the number of dimensions. Second, we present a complete characterization of the strategy complexity (in terms of memory bounds and randomization) required to solve our problem.
AU - Chatterjee, Krishnendu
AU - Křetínská, Zuzana
AU - Kretinsky, Jan
ID - 466
IS - 2
JF - Logical Methods in Computer Science
SN - 18605974
TI - Unifying two views on multiple mean-payoff objectives in Markov decision processes
VL - 13
ER -
TY - JOUR
AB - Recently there has been a significant effort to handle quantitative properties in formal verification and synthesis. While weighted automata over finite and infinite words provide a natural and flexible framework to express quantitative properties, perhaps surprisingly, some basic system properties such as average response time cannot be expressed using weighted automata or in any other known decidable formalism. In this work, we introduce nested weighted automata as a natural extension of weighted automata, which makes it possible to express important quantitative properties such as average response time. In nested weighted automata, a master automaton spins off and collects results from weighted slave automata, each of which computes a quantity along a finite portion of an infinite word. Nested weighted automata can be viewed as the quantitative analogue of monitor automata, which are used in runtime verification. We establish an almost-complete decidability picture for the basic decision problems about nested weighted automata and illustrate their applicability in several domains. In particular, nested weighted automata can be used to decide average response time properties.
AU - Chatterjee, Krishnendu
AU - Henzinger, Thomas A
AU - Otop, Jan
ID - 467
IS - 4
JF - ACM Transactions on Computational Logic (TOCL)
SN - 15293785
TI - Nested weighted automata
VL - 18
ER -
TY - JOUR
AB - The edit distance between two words w 1 , w 2 is the minimal number of word operations (letter insertions, deletions, and substitutions) necessary to transform w 1 to w 2 . The edit distance generalizes to languages L 1 , L 2 , where the edit distance from L 1 to L 2 is the minimal number k such that for every word from L 1 there exists a word in L 2 with edit distance at most k . We study the edit distance computation problem between pushdown automata and their subclasses. The problem of computing edit distance to a pushdown automaton is undecidable, and in practice, the interesting question is to compute the edit distance from a pushdown automaton (the implementation, a standard model for programs with recursion) to a regular language (the specification). In this work, we present a complete picture of decidability and complexity for the following problems: (1) deciding whether, for a given threshold k , the edit distance from a pushdown automaton to a finite automaton is at most k , and (2) deciding whether the edit distance from a pushdown automaton to a finite automaton is finite.
AU - Chatterjee, Krishnendu
AU - Henzinger, Thomas A
AU - Ibsen-Jensen, Rasmus
AU - Otop, Jan
ID - 465
IS - 3
JF - Logical Methods in Computer Science
SN - 18605974
TI - Edit distance for pushdown automata
VL - 13
ER -