TY - JOUR
AB - Cooperation is a ubiquitous and beneficial behavioural trait despite being prone to exploitation by free-riders. Hence, cooperative populations are prone to invasions by selfish individuals. However, a population consisting of only free-riders typically does not survive. Thus, cooperators and free-riders often coexist in some proportion. An evolutionary version of a Snowdrift Game proved its efficiency in analysing this phenomenon. However, what if the system has already reached its stable state but was perturbed due to a change in environmental conditions? Then, individuals may have to re-learn their effective strategies. To address this, we consider behavioural mistakes in strategic choice execution, which we refer to as incompetence. Parametrising the propensity to make such mistakes allows for a mathematical description of learning. We compare strategies based on their relative strategic advantage relying on both fitness and learning factors. When strategies are learned at distinct rates, allowing learning according to a prescribed order is optimal. Interestingly, the strategy with the lowest strategic advantage should be learnt first if we are to optimise fitness over the learning path. Then, the differences between strategies are balanced out in order to minimise the effect of behavioural uncertainty.
AU - Kleshnina, Maria
AU - Streipert, Sabrina
AU - Filar, Jerzy
AU - Chatterjee, Krishnendu
ID - 8789
IS - 11
JF - Mathematics
TI - Prioritised learning in snowdrift-type games
VL - 8
ER -
TY - THES
AB - In this thesis we study certain mathematical aspects of evolution. The two primary forces that drive an evolutionary process are mutation and selection. Mutation generates new variants in a population. Selection chooses among the variants depending on the reproductive rates of individuals. Evolutionary processes are intrinsically random – a new mutation that is initially present in the population at low frequency can go extinct, even if it confers a reproductive advantage. The overall rate of evolution is largely determined by two quantities: the probability that an invading advantageous mutation spreads through the population (called fixation probability) and the time until it does so (called fixation time). Both those quantities crucially depend not only on the strength of the invading mutation but also on the population structure. In this thesis, we aim to understand how the underlying population structure affects the overall rate of evolution. Specifically, we study population structures that increase the fixation probability of advantageous mutants (called amplifiers of selection). Broadly speaking, our results are of three different types: We present various strong amplifiers, we identify regimes under which only limited amplification is feasible, and we propose population structures that provide different tradeoffs between high fixation probability and short fixation time.
AU - Tkadlec, Josef
ID - 7196
TI - A role of graphs in evolutionary processes
ER -
TY - JOUR
AB - The fixation probability of a single mutant invading a population of residents is among the most widely-studied quantities in evolutionary dynamics. Amplifiers of natural selection are population structures that increase the fixation probability of advantageous mutants, compared to well-mixed populations. Extensive studies have shown that many amplifiers exist for the Birth-death Moran process, some of them substantially increasing the fixation probability or even guaranteeing fixation in the limit of large population size. On the other hand, no amplifiers are known for the death-Birth Moran process, and computer-assisted exhaustive searches have failed to discover amplification. In this work we resolve this disparity, by showing that any amplification under death-Birth updating is necessarily bounded and transient. Our boundedness result states that even if a population structure does amplify selection, the resulting fixation probability is close to that of the well-mixed population. Our transience result states that for any population structure there exists a threshold r⋆ such that the population structure ceases to amplify selection if the mutant fitness advantage r is larger than r⋆. Finally, we also extend the above results to δ-death-Birth updating, which is a combination of Birth-death and death-Birth updating. On the positive side, we identify population structures that maintain amplification for a wide range of values r and δ. These results demonstrate that amplification of natural selection depends on the specific mechanisms of the evolutionary process.
AU - Tkadlec, Josef
AU - Pavlogiannis, Andreas
AU - Chatterjee, Krishnendu
AU - Nowak, Martin A.
ID - 7212
JF - PLoS computational biology
TI - Limits on amplifiers of natural selection under death-Birth updating
VL - 16
ER -
TY - JOUR
AB - Coinfections with multiple pathogens can result in complex within‐host dynamics affecting virulence and transmission. While multiple infections are intensively studied in solitary hosts, it is so far unresolved how social host interactions interfere with pathogen competition, and if this depends on coinfection diversity. We studied how the collective disease defences of ants – their social immunity – influence pathogen competition in coinfections of same or different fungal pathogen species. Social immunity reduced virulence for all pathogen combinations, but interfered with spore production only in different‐species coinfections. Here, it decreased overall pathogen sporulation success while increasing co‐sporulation on individual cadavers and maintaining a higher pathogen diversity at the community level. Mathematical modelling revealed that host sanitary care alone can modulate competitive outcomes between pathogens, giving advantage to fast‐germinating, thus less grooming‐sensitive ones. Host social interactions can hence modulate infection dynamics in coinfected group members, thereby altering pathogen communities at the host level and population level.
AU - Milutinovic, Barbara
AU - Stock, Miriam
AU - Grasse, Anna V
AU - Naderlinger, Elisabeth
AU - Hilbe, Christian
AU - Cremer, Sylvia
ID - 7343
IS - 3
JF - Ecology Letters
SN - 1461-023X
TI - Social immunity modulates competition between coinfecting pathogens
VL - 23
ER -
TY - CONF
AB - The Price of Anarchy (PoA) is a well-established game-theoretic concept to shed light on coordination issues arising in open distributed systems. Leaving agents to selfishly optimize comes with the risk of ending up in sub-optimal states (in terms of performance and/or costs), compared to a centralized system design. However, the PoA relies on strong assumptions about agents' rationality (e.g., resources and information) and interactions, whereas in many distributed systems agents interact locally with bounded resources. They do so repeatedly over time (in contrast to "one-shot games"), and their strategies may evolve. Using a more realistic evolutionary game model, this paper introduces a realized evolutionary Price of Anarchy (ePoA). The ePoA allows an exploration of equilibrium selection in dynamic distributed systems with multiple equilibria, based on local interactions of simple memoryless agents. Considering a fundamental game related to virus propagation on networks, we present analytical bounds on the ePoA in basic network topologies and for different strategy update dynamics. In particular, deriving stationary distributions of the stochastic evolutionary process, we find that the Nash equilibria are not always the most abundant states, and that different processes can feature significant off-equilibrium behavior, leading to a significantly higher ePoA compared to the PoA studied traditionally in the literature.
AU - Schmid, Laura
AU - Chatterjee, Krishnendu
AU - Schmid, Stefan
ID - 7346
T2 - Proceedings of the 23rd International Conference on Principles of Distributed Systems
TI - The evolutionary price of anarchy: Locally bounded agents in a dynamic virus game
VL - 153
ER -
TY - CONF
AB - Simple stochastic games are turn-based 2½-player games with a reachability objective. The basic question asks whether one player can ensure reaching a given target with at least a given probability. A natural extension is games with a conjunction of such conditions as objective. Despite a plethora of recent results on the analysis of systems with multiple objectives, the decidability of this basic problem remains open. In this paper, we present an algorithm approximating the Pareto frontier of the achievable values to a given precision. Moreover, it is an anytime algorithm, meaning it can be stopped at any time returning the current approximation and its error bound.
AU - Ashok, Pranav
AU - Chatterjee, Krishnendu
AU - Kretinsky, Jan
AU - Weininger, Maximilian
AU - Winkler, Tobias
ID - 7955
SN - 9781450371049
T2 - Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science
TI - Approximating values of generalized-reachability stochastic games
ER -
TY - JOUR
AB - In this paper we introduce and study all-pay bidding games, a class of two player, zero-sum games on graphs. The game proceeds as follows. We place a token on some vertex in the graph and assign budgets to the two players. Each turn, each player submits a sealed legal bid (non-negative and below their remaining budget), which is deducted from their budget and the highest bidder moves the token onto an adjacent vertex. The game ends once a sink is reached, and Player 1 pays Player 2 the outcome that is associated with the sink. The players attempt to maximize their expected outcome. Our games model settings where effort (of no inherent value) needs to be invested in an ongoing and stateful manner. On the negative side, we show that even in simple games on DAGs, optimal strategies may require a distribution over bids with infinite support. A central quantity in bidding games is the ratio of the players budgets. On the positive side, we show a simple FPTAS for DAGs, that, for each budget ratio, outputs an approximation for the optimal strategy for that ratio. We also implement it, show that it performs well, and suggests interesting properties of these games. Then, given an outcome c, we show an algorithm for finding the necessary and sufficient initial ratio for guaranteeing outcome c with probability 1 and a strategy ensuring such. Finally, while the general case has not previously been studied, solving the specific game in which Player 1 wins iff he wins the first two auctions, has been long stated as an open question, which we solve.
AU - Avni, Guy
AU - Ibsen-Jensen, Rasmus
AU - Tkadlec, Josef
ID - 9197
IS - 02
JF - Proceedings of the AAAI Conference on Artificial Intelligence
SN - 2374-3468
TI - All-pay bidding games on graphs
VL - 34
ER -
TY - CONF
AB - Interprocedural data-flow analyses form an expressive and useful paradigm of numerous static analysis applications, such as live variables analysis, alias analysis and null pointers analysis. The most widely-used framework for interprocedural data-flow analysis is IFDS, which encompasses distributive data-flow functions over a finite domain. On-demand data-flow analyses restrict the focus of the analysis on specific program locations and data facts. This setting provides a natural split between (i) an offline (or preprocessing) phase, where the program is partially analyzed and analysis summaries are created, and (ii) an online (or query) phase, where analysis queries arrive on demand and the summaries are used to speed up answering queries.
In this work, we consider on-demand IFDS analyses where the queries concern program locations of the same procedure (aka same-context queries). We exploit the fact that flow graphs of programs have low treewidth to develop faster algorithms that are space and time optimal for many common data-flow analyses, in both the preprocessing and the query phase. We also use treewidth to develop query solutions that are embarrassingly parallelizable, i.e. the total work for answering each query is split to a number of threads such that each thread performs only a constant amount of work. Finally, we implement a static analyzer based on our algorithms, and perform a series of on-demand analysis experiments on standard benchmarks. Our experimental results show a drastic speed-up of the queries after only a lightweight preprocessing phase, which significantly outperforms existing techniques.
AU - Chatterjee, Krishnendu
AU - Goharshady, Amir Kafshdar
AU - Ibsen-Jensen, Rasmus
AU - Pavlogiannis, Andreas
ID - 7810
SN - 03029743
T2 - European Symposium on Programming
TI - Optimal and perfectly parallel algorithms for on-demand data-flow analysis
VL - 12075
ER -
TY - CONF
AB - Discrete-time Markov Chains (MCs) and Markov Decision Processes (MDPs) are two standard formalisms in system analysis. Their main associated quantitative objectives are hitting probabilities, discounted sum, and mean payoff. Although there are many techniques for computing these objectives in general MCs/MDPs, they have not been thoroughly studied in terms of parameterized algorithms, particularly when treewidth is used as the parameter. This is in sharp contrast to qualitative objectives for MCs, MDPs and graph games, for which treewidth-based algorithms yield significant complexity improvements. In this work, we show that treewidth can also be used to obtain faster algorithms for the quantitative problems. For an MC with n states and m transitions, we show that each of the classical quantitative objectives can be computed in O((n+m)⋅t2) time, given a tree decomposition of the MC with width t. Our results also imply a bound of O(κ⋅(n+m)⋅t2) for each objective on MDPs, where κ is the number of strategy-iteration refinements required for the given input and objective. Finally, we make an experimental evaluation of our new algorithms on low-treewidth MCs and MDPs obtained from the DaCapo benchmark suite. Our experiments show that on low-treewidth MCs and MDPs, our algorithms outperform existing well-established methods by one or more orders of magnitude.
AU - Asadi, Ali
AU - Chatterjee, Krishnendu
AU - Goharshady, Amir Kafshdar
AU - Mohammadi, Kiarash
AU - Pavlogiannis, Andreas
ID - 8728
SN - 0302-9743
T2 - Automated Technology for Verification and Analysis
TI - Faster algorithms for quantitative analysis of MCs and MDPs with small treewidth
VL - 12302
ER -
TY - CONF
AB - We consider the classical problem of invariant generation for programs with polynomial assignments and focus on synthesizing invariants that are a conjunction of strict polynomial inequalities. We present a sound and semi-complete method based on positivstellensaetze, i.e. theorems in semi-algebraic geometry that characterize positive polynomials over a semi-algebraic set.
On the theoretical side, the worst-case complexity of our approach is subexponential, whereas the worst-case complexity of the previous complete method (Kapur, ACA 2004) is doubly-exponential. Even when restricted to linear invariants, the best previous complexity for complete invariant generation is exponential (Colon et al, CAV 2003). On the practical side, we reduce the invariant generation problem to quadratic programming (QCLP), which is a classical optimization problem with many industrial solvers. We demonstrate the applicability of our approach by providing experimental results on several academic benchmarks. To the best of our knowledge, the only previous invariant generation method that provides completeness guarantees for invariants consisting of polynomial inequalities is (Kapur, ACA 2004), which relies on quantifier elimination and cannot even handle toy programs such as our running example.
AU - Chatterjee, Krishnendu
AU - Fu, Hongfei
AU - Goharshady, Amir Kafshdar
AU - Goharshady, Ehsan Kafshdar
ID - 8089
SN - 9781450376136
T2 - Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation
TI - Polynomial invariant generation for non-deterministic recursive programs
ER -
TY - JOUR
AB - We consider the classic problem of Network Reliability. A network is given together with a source vertex, one or more target vertices, and probabilities assigned to each of the edges. Each edge of the network is operable with its associated probability and the problem is to determine the probability of having at least one source-to-target path that is entirely composed of operable edges. This problem is known to be NP-hard.
We provide a novel scalable algorithm to solve the Network Reliability problem when the treewidth of the underlying network is small. We also show our algorithm’s applicability for real-world transit networks that have small treewidth, including the metro networks of major cities, such as London and Tokyo. Our algorithm leverages tree decompositions to shrink the original graph into much smaller graphs, for which reliability can be efficiently and exactly computed using a brute force method. To the best of our knowledge, this is the first exact algorithm for Network Reliability that can scale to handle real-world instances of the problem.
AU - Goharshady, Amir Kafshdar
AU - Mohammadi, Fatemeh
ID - 6918
JF - Reliability Engineering and System Safety
SN - 09518320
TI - An efficient algorithm for computing network reliability in small treewidth
VL - 193
ER -
TY - CONF
AB - A probabilistic vector addition system with states (pVASS) is a finite state Markov process augmented with non-negative integer counters that can be incremented or decremented during each state transition, blocking any behaviour that would cause a counter to decrease below zero. The pVASS can be used as abstractions of probabilistic programs with many decidable properties. The use of pVASS as abstractions requires the presence of nondeterminism in the model. In this paper, we develop techniques for checking fast termination of pVASS with nondeterminism. That is, for every initial configuration of size n, we consider the worst expected number of transitions needed to reach a configuration with some counter negative (the expected termination time). We show that the problem whether the asymptotic expected termination time is linear is decidable in polynomial time for a certain natural class of pVASS with nondeterminism. Furthermore, we show the following dichotomy: if the asymptotic expected termination time is not linear, then it is at least quadratic, i.e., in Ω(n2).
AU - Brázdil, Tomás
AU - Chatterjee, Krishnendu
AU - Kucera, Antonín
AU - Novotný, Petr
AU - Velan, Dominik
ID - 7183
SN - 03029743
T2 - International Symposium on Automated Technology for Verification and Analysis
TI - Deciding fast termination for probabilistic VASS with nondeterminism
VL - 11781
ER -
TY - JOUR
AB - The rate of biological evolution depends on the fixation probability and on the fixation time of new mutants. Intensive research has focused on identifying population structures that augment the fixation probability of advantageous mutants. But these amplifiers of natural selection typically increase fixation time. Here we study population structures that achieve a tradeoff between fixation probability and time. First, we show that no amplifiers can have an asymptotically lower absorption time than the well-mixed population. Then we design population structures that substantially augment the fixation probability with just a minor increase in fixation time. Finally, we show that those structures enable higher effective rate of evolution than the well-mixed population provided that the rate of generating advantageous mutants is relatively low. Our work sheds light on how population structure affects the rate of evolution. Moreover, our structures could be useful for lab-based, medical, or industrial applications of evolutionary optimization.
AU - Tkadlec, Josef
AU - Pavlogiannis, Andreas
AU - Chatterjee, Krishnendu
AU - Nowak, Martin A.
ID - 7210
JF - Communications Biology
SN - 2399-3642
TI - Population structure determines the tradeoff between fixation probability and fixation time
VL - 2
ER -
TY - CONF
AB - Graph planning gives rise to fundamental algorithmic questions such as shortest path, traveling salesman problem, etc. A classical problem in discrete planning is to consider a weighted graph and construct a path that maximizes the sum of weights for a given time horizon T. However, in many scenarios, the time horizon is not fixed, but the stopping time is chosen according to some distribution such that the expected stopping time is T. If the stopping time distribution is not known, then to ensure robustness, the distribution is chosen by an adversary, to represent the worst-case scenario. A stationary plan for every vertex always chooses the same outgoing edge. For fixed horizon or fixed stopping-time distribution, stationary plans are not sufficient for optimality. Quite surprisingly we show that when an adversary chooses the stopping-time distribution with expected stopping time T, then stationary plans are sufficient. While computing optimal stationary plans for fixed horizon is NP-complete, we show that computing optimal stationary plans under adversarial stopping-time distribution can be achieved in polynomial time. Consequently, our polynomial-time algorithm for adversarial stopping time also computes an optimal plan among all possible plans.
AU - Chatterjee, Krishnendu
AU - Doyen, Laurent
ID - 7402
SN - 9781728136080
T2 - 34th Annual ACM/IEEE Symposium on Logic in Computer Science
TI - Graph planning with expected finite horizon
ER -
TY - GEN
AB - The input to the token swapping problem is a graph with vertices v1, v2, . . . , vn, and n tokens with labels 1,2, . . . , n, one on each vertex. The goal is to get token i to vertex vi for all i= 1, . . . , n using a minimum number of swaps, where a swap exchanges the tokens on the endpoints of an edge.Token swapping on a tree, also known as “sorting with a transposition tree,” is not known to be in P nor NP-complete. We present some partial results:
1. An optimum swap sequence may need to perform a swap on a leaf vertex that has the correct token (a “happy leaf”), disproving a conjecture of Vaughan.
2. Any algorithm that fixes happy leaves—as all known approximation algorithms for the problem do—has approximation factor at least 4/3. Furthermore, the two best-known 2-approximation algorithms have approximation factor exactly 2.
3. A generalized problem—weighted coloured token swapping—is NP-complete on trees, but solvable in polynomial time on paths and stars. In this version, tokens and vertices have colours, and colours have weights. The goal is to get every token to a vertex of the same colour, and the cost of a swap is the sum of the weights of the two tokens involved.
AU - Biniaz, Ahmad
AU - Jain, Kshitij
AU - Lubiw, Anna
AU - Masárová, Zuzana
AU - Miltzow, Tillmann
AU - Mondal, Debajyoti
AU - Naredla, Anurag Murty
AU - Tkadlec, Josef
AU - Turcotte, Alexi
ID - 7950
T2 - arXiv
TI - Token swapping on trees
ER -
TY - CONF
AB - We study the termination problem for nondeterministic probabilistic programs. We consider the bounded termination problem that asks whether the supremum of the expected termination time over all schedulers is bounded. First, we show that ranking supermartingales (RSMs) are both sound and complete for proving bounded termination over nondeterministic probabilistic programs. For nondeterministic probabilistic programs a previous result claimed that RSMs are not complete for bounded termination, whereas our result corrects the previous flaw and establishes completeness with a rigorous proof. Second, we present the first sound approach to establish lower bounds on expected termination time through RSMs.
AU - Fu, Hongfei
AU - Chatterjee, Krishnendu
ID - 5948
T2 - International Conference on Verification, Model Checking, and Abstract Interpretation
TI - Termination of nondeterministic probabilistic programs
VL - 11388
ER -
TY - CONF
AB - A controller is a device that interacts with a plant. At each time point,it reads the plant’s state and issues commands with the goal that the plant oper-ates optimally. Constructing optimal controllers is a fundamental and challengingproblem. Machine learning techniques have recently been successfully applied totrain controllers, yet they have limitations. Learned controllers are monolithic andhard to reason about. In particular, it is difficult to add features without retraining,to guarantee any level of performance, and to achieve acceptable performancewhen encountering untrained scenarios. These limitations can be addressed bydeploying quantitative run-timeshieldsthat serve as a proxy for the controller.At each time point, the shield reads the command issued by the controller andmay choose to alter it before passing it on to the plant. We show how optimalshields that interfere as little as possible while guaranteeing a desired level ofcontroller performance, can be generated systematically and automatically usingreactive synthesis. First, we abstract the plant by building a stochastic model.Second, we consider the learned controller to be a black box. Third, we mea-surecontroller performanceandshield interferenceby two quantitative run-timemeasures that are formally defined using weighted automata. Then, the problemof constructing a shield that guarantees maximal performance with minimal inter-ference is the problem of finding an optimal strategy in a stochastic2-player game“controller versus shield” played on the abstract state space of the plant with aquantitative objective obtained from combining the performance and interferencemeasures. We illustrate the effectiveness of our approach by automatically con-structing lightweight shields for learned traffic-light controllers in various roadnetworks. The shields we generate avoid liveness bugs, improve controller per-formance in untrained and changing traffic situations, and add features to learnedcontrollers, such as giving priority to emergency vehicles.
AU - Avni, Guy
AU - Bloem, Roderick
AU - Chatterjee, Krishnendu
AU - Henzinger, Thomas A
AU - Konighofer, Bettina
AU - Pranger, Stefan
ID - 6462
SN - 0302-9743
T2 - 31st International Conference on Computer-Aided Verification
TI - Run-time optimization for learned controllers through quantitative games
VL - 11561
ER -
TY - JOUR
AB - Direct reciprocity is a powerful mechanism for the evolution of cooperation on the basis of repeated interactions1,2,3,4. It requires that interacting individuals are sufficiently equal, such that everyone faces similar consequences when they cooperate or defect. Yet inequality is ubiquitous among humans5,6 and is generally considered to undermine cooperation and welfare7,8,9,10. Most previous models of reciprocity do not include inequality11,12,13,14,15. These models assume that individuals are the same in all relevant aspects. Here we introduce a general framework to study direct reciprocity among unequal individuals. Our model allows for multiple sources of inequality. Subjects can differ in their endowments, their productivities and in how much they benefit from public goods. We find that extreme inequality prevents cooperation. But if subjects differ in productivity, some endowment inequality can be necessary for cooperation to prevail. Our mathematical predictions are supported by a behavioural experiment in which we vary the endowments and productivities of the subjects. We observe that overall welfare is maximized when the two sources of heterogeneity are aligned, such that more productive individuals receive higher endowments. By contrast, when endowments and productivities are misaligned, cooperation quickly breaks down. Our findings have implications for policy-makers concerned with equity, efficiency and the provisioning of public goods.
AU - Hauser, Oliver P.
AU - Hilbe, Christian
AU - Chatterjee, Krishnendu
AU - Nowak, Martin A.
ID - 6836
IS - 7770
JF - Nature
SN - 00280836
TI - Social dilemmas among unequals
VL - 572
ER -
TY - CONF
AB - A vector addition system with states (VASS) consists of a finite set of states and counters. A configuration is a state and a value for each counter; a transition changes the state and each counter is incremented, decremented, or left unchanged. While qualitative properties such as state and configuration reachability have been studied for VASS, we consider the long-run average cost of infinite computations of VASS. The cost of a configuration is for each state, a linear combination of the counter values. In the special case of uniform cost functions, the linear combination is the same for all states. The (regular) long-run emptiness problem is, given a VASS, a cost function, and a threshold value, if there is a (lasso-shaped) computation such that the long-run average value of the cost function does not exceed the threshold. For uniform cost functions, we show that the regular long-run emptiness problem is (a) decidable in polynomial time for integer-valued VASS, and (b) decidable but nonelementarily hard for natural-valued VASS (i.e., nonnegative counters). For general cost functions, we show that the problem is (c) NP-complete for integer-valued VASS, and (d) undecidable for natural-valued VASS. Our most interesting result is for (c) integer-valued VASS with general cost functions, where we establish a connection between the regular long-run emptiness problem and quadratic Diophantine inequalities. The general (nonregular) long-run emptiness problem is equally hard as the regular problem in all cases except (c), where it remains open.
AU - Chatterjee, Krishnendu
AU - Henzinger, Thomas A
AU - Otop, Jan
ID - 6885
TI - Long-run average behavior of vector addition systems with states
VL - 140
ER -
TY - CONF
AB - The fundamental model-checking problem, given as input a model and a specification, asks for the algorithmic verification of whether the model satisfies the specification. Two classical models for reactive systems are graphs and Markov decision processes (MDPs). A basic specification formalism in the verification of reactive systems is the strong fairness (aka Streett) objective, where given different types of requests and corresponding grants, the requirement is that for each type, if the request event happens infinitely often, then the corresponding grant event must also happen infinitely often. All omega-regular objectives can be expressed as Streett objectives and hence they are canonical in verification. Consider graphs/MDPs with n vertices, m edges, and a Streett objectives with k pairs, and let b denote the size of the description of the Streett objective for the sets of requests and grants. The current best-known algorithm for the problem requires time O(min(n^2, m sqrt{m log n}) + b log n). In this work we present randomized near-linear time algorithms, with expected running time O~(m + b), where the O~ notation hides poly-log factors. Our randomized algorithms are near-linear in the size of the input, and hence optimal up to poly-log factors.
AU - Chatterjee, Krishnendu
AU - Dvorák, Wolfgang
AU - Henzinger, Monika
AU - Svozil, Alexander
ID - 6887
T2 - Leibniz International Proceedings in Informatics
TI - Near-linear time algorithms for Streett objectives in graphs and MDPs
VL - 140
ER -