TY - JOUR
AB -
We introduce quantitative timed refinement and timed simulation (directed) metrics, incorporating zenoness checks, for timed systems. These metrics assign positive real numbers which quantify the timing mismatches between two timed systems, amongst non-zeno runs. We quantify timing mismatches in three ways: (1) the maximal timing mismatch that can arise, (2) the “steady-state” maximal timing mismatches, where initial transient timing mismatches are ignored; and (3) the (long-run) average timing mismatches amongst two systems. These three kinds of mismatches constitute three important types of timing differences. Our event times are the global times, measured from the start of the system execution, not just the time durations of individual steps. We present algorithms over timed automata for computing the three quantitative simulation distances to within any desired degree of accuracy. In order to compute the values of the quantitative simulation distances, we use a game theoretic formulation. We introduce two new kinds of objectives for two player games on finite-state game graphs: (1) eventual debit-sum level objectives, and (2) average debit-sum level objectives. We present algorithms for computing the optimal values for these objectives in graph games, and then use these algorithms to compute the values of the timed simulation distances over timed automata.
AU - Chatterjee, Krishnendu
AU - Prabhu, Vinayak
ID - 1694
IS - 9
JF - IEEE Transactions on Automatic Control
TI - Quantitative temporal simulation and refinement distances for timed systems
VL - 60
ER -
TY - JOUR
AB - In mean-payoff games, the objective of the protagonist is to ensure that the limit average of an infinite sequence of numeric weights is nonnegative. In energy games, the objective is to ensure that the running sum of weights is always nonnegative. Multi-mean-payoff and multi-energy games replace individual weights by tuples, and the limit average (resp., running sum) of each coordinate must be (resp., remain) nonnegative. We prove finite-memory determinacy of multi-energy games and show inter-reducibility of multi-mean-payoff and multi-energy games for finite-memory strategies. We improve the computational complexity for solving both classes with finite-memory strategies: we prove coNP-completeness improving the previous known EXPSPACE bound. For memoryless strategies, we show that deciding the existence of a winning strategy for the protagonist is NP-complete. We present the first solution of multi-mean-payoff games with infinite-memory strategies: we show that mean-payoff-sup objectives can be decided in NP∩coNP, whereas mean-payoff-inf objectives are coNP-complete.
AU - Velner, Yaron
AU - Chatterjee, Krishnendu
AU - Doyen, Laurent
AU - Henzinger, Thomas A
AU - Rabinovich, Alexander
AU - Raskin, Jean
ID - 1698
IS - 4
JF - Information and Computation
TI - The complexity of multi-mean-payoff and multi-energy games
VL - 241
ER -
TY - JOUR
AB - The competition for resources among cells, individuals or species is a fundamental characteristic of evolution. Biological all-pay auctions have been used to model situations where multiple individuals compete for a single resource. However, in many situations multiple resources with various values exist and single reward auctions are not applicable. We generalize the model to multiple rewards and study the evolution of strategies. In biological all-pay auctions the bid of an individual corresponds to its strategy and is equivalent to its payment in the auction. The decreasingly ordered rewards are distributed according to the decreasingly ordered bids of the participating individuals. The reproductive success of an individual is proportional to its fitness given by the sum of the rewards won minus its payments. Hence, successful bidding strategies spread in the population. We find that the results for the multiple reward case are very different from the single reward case. While the mixed strategy equilibrium in the single reward case with more than two players consists of mostly low-bidding individuals, we show that the equilibrium can convert to many high-bidding individuals and a few low-bidding individuals in the multiple reward case. Some reward values lead to a specialization among the individuals where one subpopulation competes for the rewards and the other subpopulation largely avoids costly competitions. Whether the mixed strategy equilibrium is an evolutionarily stable strategy (ESS) depends on the specific values of the rewards.
AU - Reiter, Johannes
AU - Kanodia, Ayush
AU - Gupta, Raghav
AU - Nowak, Martin
AU - Chatterjee, Krishnendu
ID - 1709
IS - 1812
JF - Proceedings of the Royal Society of London Series B Biological Sciences
TI - Biological auctions with multiple rewards
VL - 282
ER -
TY - CONF
AB - We present a flexible framework for the automated competitive analysis of on-line scheduling algorithms for firm-deadline real-time tasks based on multi-objective graphs: Given a task set and an on-line scheduling algorithm specified as a labeled transition system, along with some optional safety, liveness, and/or limit-average constraints for the adversary, we automatically compute the competitive ratio of the algorithm w.r.t. A clairvoyant scheduler. We demonstrate the flexibility and power of our approach by comparing the competitive ratio of several on-line algorithms, including Dover, that have been proposed in the past, for various task sets. Our experimental results reveal that none of these algorithms is universally optimal, in the sense that there are task sets where other schedulers provide better performance. Our framework is hence a very useful design tool for selecting optimal algorithms for a given application.
AU - Chatterjee, Krishnendu
AU - Pavlogiannis, Andreas
AU - Kößler, Alexander
AU - Schmid, Ulrich
ID - 1714
IS - January
T2 - Real-Time Systems Symposium
TI - A framework for automated competitive analysis of on-line scheduling of firm-deadline tasks
VL - 2015
ER -
TY - JOUR
AB - We consider two-player zero-sum games on graphs. These games can be classified on the basis of the information of the players and on the mode of interaction between them. On the basis of information the classification is as follows: (a) partial-observation (both players have partial view of the game); (b) one-sided complete-observation (one player has complete observation); and (c) complete-observation (both players have complete view of the game). On the basis of mode of interaction we have the following classification: (a) concurrent (both players interact simultaneously); and (b) turn-based (both players interact in turn). The two sources of randomness in these games are randomness in transition function and randomness in strategies. In general, randomized strategies are more powerful than deterministic strategies, and randomness in transitions gives more general classes of games. In this work we present a complete characterization for the classes of games where randomness is not helpful in: (a) the transition function probabilistic transition can be simulated by deterministic transition); and (b) strategies (pure strategies are as powerful as randomized strategies). As consequence of our characterization we obtain new undecidability results for these games.
AU - Chatterjee, Krishnendu
AU - Doyen, Laurent
AU - Gimbert, Hugo
AU - Henzinger, Thomas A
ID - 1731
IS - 12
JF - Information and Computation
TI - Randomness for free
VL - 245
ER -
TY - CONF
AB - We consider partially observable Markov decision processes (POMDPs), that are a standard framework for robotics applications to model uncertainties present in the real world, with temporal logic specifications. All temporal logic specifications in linear-time temporal logic (LTL) can be expressed as parity objectives. We study the qualitative analysis problem for POMDPs with parity objectives that asks whether there is a controller (policy) to ensure that the objective holds with probability 1 (almost-surely). While the qualitative analysis of POMDPs with parity objectives is undecidable, recent results show that when restricted to finite-memory policies the problem is EXPTIME-complete. While the problem is intractable in theory, we present a practical approach to solve the qualitative analysis problem. We designed several heuristics to deal with the exponential complexity, and have used our implementation on a number of well-known POMDP examples for robotics applications. Our results provide the first practical approach to solve the qualitative analysis of robot motion planning with LTL properties in the presence of uncertainty.
AU - Chatterjee, Krishnendu
AU - Chmelik, Martin
AU - Gupta, Raghav
AU - Kanodia, Ayush
ID - 1732
TI - Qualitative analysis of POMDPs with temporal logic specifications for robotics applications
ER -
TY - CONF
AB - We consider partially observable Markov decision processes (POMDPs) with a set of target states and every transition is associated with an integer cost. The optimization objec- tive we study asks to minimize the expected total cost till the target set is reached, while ensuring that the target set is reached almost-surely (with probability 1). We show that for integer costs approximating the optimal cost is undecidable. For positive costs, our results are as follows: (i) we establish matching lower and upper bounds for the optimal cost and the bound is double exponential; (ii) we show that the problem of approximating the optimal cost is decidable and present ap- proximation algorithms developing on the existing algorithms for POMDPs with finite-horizon objectives. While the worst- case running time of our algorithm is double exponential, we present efficient stopping criteria for the algorithm and show experimentally that it performs well in many examples.
AU - Chatterjee, Krishnendu
AU - Chmelik, Martin
AU - Gupta, Raghav
AU - Kanodia, Ayush
ID - 1820
T2 - Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence
TI - Optimal cost almost-sure reachability in POMDPs
VL - 5
ER -
TY - CONF
AB - Synthesis of program parts is particularly useful for concurrent systems. However, most approaches do not support common design tasks, like modifying a single process without having to re-synthesize or verify the whole system. Assume-guarantee synthesis (AGS) provides robustness against modifications of system parts, but thus far has been limited to the perfect information setting. This means that local variables cannot be hidden from other processes, which renders synthesis results cumbersome or even impossible to realize.We resolve this shortcoming by defining AGS under partial information. We analyze the complexity and decidability in different settings, showing that the problem has a high worstcase complexity and is undecidable in many interesting cases. Based on these observations, we present a pragmatic algorithm based on bounded synthesis, and demonstrate its practical applicability on several examples.
AU - Bloem, Roderick
AU - Chatterjee, Krishnendu
AU - Jacobs, Swen
AU - Könighofer, Robert
ID - 1838
TI - Assume-guarantee synthesis for concurrent reactive programs with partial information
VL - 9035
ER -
TY - CONF
AB - We present MultiGain, a tool to synthesize strategies for Markov decision processes (MDPs) with multiple mean-payoff objectives. Our models are described in PRISM, and our tool uses the existing interface and simulator of PRISM. Our tool extends PRISM by adding novel algorithms for multiple mean-payoff objectives, and also provides features such as (i) generating strategies and exploring them for simulation, and checking them with respect to other properties; and (ii) generating an approximate Pareto curve for two mean-payoff objectives. In addition, we present a new practical algorithm for the analysis of MDPs with multiple mean-payoff objectives under memoryless strategies.
AU - Brázdil, Tomáš
AU - Chatterjee, Krishnendu
AU - Forejt, Vojtěch
AU - Kučera, Antonín
ID - 1839
TI - Multigain: A controller synthesis tool for MDPs with multiple mean-payoff objectives
VL - 9035
ER -
TY - JOUR
AB - Modal transition systems (MTS) is a well-studied specification formalism of reactive systems supporting a step-wise refinement methodology. Despite its many advantages, the formalism as well as its currently known extensions are incapable of expressing some practically needed aspects in the refinement process like exclusive, conditional and persistent choices. We introduce a new model called parametric modal transition systems (PMTS) together with a general modal refinement notion that overcomes many of the limitations. We investigate the computational complexity of modal and thorough refinement checking on PMTS and its subclasses and provide a direct encoding of the modal refinement problem into quantified Boolean formulae, allowing us to employ state-of-the-art QBF solvers for modal refinement checking. The experiments we report on show that the feasibility of refinement checking is more influenced by the degree of nondeterminism rather than by the syntactic restrictions on the types of formulae allowed in the description of the PMTS.
AU - Beneš, Nikola
AU - Kretinsky, Jan
AU - Larsen, Kim
AU - Möller, Mikael
AU - Sickert, Salomon
AU - Srba, Jiří
ID - 1846
IS - 2-3
JF - Acta Informatica
TI - Refinement checking on parametric modal transition systems
VL - 52
ER -