TY - CONF
AB - A standard objective in partially-observable Markov decision processes (POMDPs) is to find a policy that maximizes the expected discounted-sum payoff. However, such policies may still permit unlikely but highly undesirable outcomes, which is problematic especially in safety-critical applications. Recently, there has been a surge of interest in POMDPs where the goal is to maximize the probability to ensure that the payoff is at least a given threshold, but these approaches do not consider any optimization beyond satisfying this threshold constraint. In this work we go beyond both the “expectation” and “threshold” approaches and consider a “guaranteed payoff optimization (GPO)” problem for POMDPs, where we are given a threshold t and the objective is to find a policy σ such that a) each possible outcome of σ yields a discounted-sum payoff of at least t, and b) the expected discounted-sum payoff of σ is optimal (or near-optimal) among all policies satisfying a). We present a practical approach to tackle the GPO problem and evaluate it on standard POMDP benchmarks.
AU - Chatterjee, Krishnendu
AU - Novotny, Petr
AU - Pérez, Guillermo
AU - Raskin, Jean
AU - Zikelic, Djordje
ID - 1009
T2 - Proceedings of the 31st AAAI Conference on Artificial Intelligence
TI - Optimizing expectation with guarantees in POMDPs
VL - 5
ER -
TY - CONF
AB - Pushdown systems (PDSs) and recursive state machines (RSMs), which are linearly equivalent, are standard models for interprocedural analysis. Yet RSMs are more convenient as they (a) explicitly model function calls and returns, and (b) specify many natural parameters for algorithmic analysis, e.g., the number of entries and exits. We consider a general framework where RSM transitions are labeled from a semiring and path properties are algebraic with semiring operations, which can model, e.g., interprocedural reachability and dataflow analysis problems. Our main contributions are new algorithms for several fundamental problems. As compared to a direct translation of RSMs to PDSs and the best-known existing bounds of PDSs, our analysis algorithm improves the complexity for finite-height semirings (that subsumes reachability and standard dataflow properties). We further consider the problem of extracting distance values from the representation structures computed by our algorithm, and give efficient algorithms that distinguish the complexity of a one-time preprocessing from the complexity of each individual query. Another advantage of our algorithm is that our improvements carry over to the concurrent setting, where we improve the bestknown complexity for the context-bounded analysis of concurrent RSMs. Finally, we provide a prototype implementation that gives a significant speed-up on several benchmarks from the SLAM/SDV project.
AU - Chatterjee, Krishnendu
AU - Kragl, Bernhard
AU - Mishra, Samarth
AU - Pavlogiannis, Andreas
ED - Yang, Hongseok
ID - 1011
SN - 03029743
TI - Faster algorithms for weighted recursive state machines
VL - 10201
ER -
TY - JOUR
AB - We consider the problem of reachability in pushdown graphs. We study the problem for pushdown graphs with constant treewidth. Even for pushdown graphs with treewidth 1, for the reachability problem we establish the following: (i) the problem is PTIME-complete, and (ii) any subcubic algorithm for the problem would contradict the k-clique conjecture and imply faster combinatorial algorithms for cliques in graphs.
AU - Chatterjee, Krishnendu
AU - Osang, Georg F
ID - 1065
JF - Information Processing Letters
SN - 00200190
TI - Pushdown reachability with constant treewidth
VL - 122
ER -
TY - JOUR
AB - Simulation is an attractive alternative to language inclusion for automata as it is an under-approximation of language inclusion, but usually has much lower complexity. Simulation has also been extended in two orthogonal directions, namely, (1) fair simulation, for simulation over specified set of infinite runs; and (2) quantitative simulation, for simulation between weighted automata. While fair trace inclusion is PSPACE-complete, fair simulation can be computed in polynomial time. For weighted automata, the (quantitative) language inclusion problem is undecidable in general, whereas the (quantitative) simulation reduces to quantitative games, which admit pseudo-polynomial time algorithms.
In this work, we study (quantitative) simulation for weighted automata with Büchi acceptance conditions, i.e., we generalize fair simulation from non-weighted automata to weighted automata. We show that imposing Büchi acceptance conditions on weighted automata changes many fundamental properties of the simulation games, yet they still admit pseudo-polynomial time algorithms.
AU - Chatterjee, Krishnendu
AU - Henzinger, Thomas A
AU - Otop, Jan
AU - Velner, Yaron
ID - 1066
IS - 2
JF - Information and Computation
TI - Quantitative fair simulation games
VL - 254
ER -
TY - JOUR
AB - Reconstructing the evolutionary history of metastases is critical for understanding their basic biological principles and has profound clinical implications. Genome-wide sequencing data has enabled modern phylogenomic methods to accurately dissect subclones and their phylogenies from noisy and impure bulk tumour samples at unprecedented depth. However, existing methods are not designed to infer metastatic seeding patterns. Here we develop a tool, called Treeomics, to reconstruct the phylogeny of metastases and map subclones to their anatomic locations. Treeomics infers comprehensive seeding patterns for pancreatic, ovarian, and prostate cancers. Moreover, Treeomics correctly disambiguates true seeding patterns from sequencing artifacts; 7% of variants were misclassified by conventional statistical methods. These artifacts can skew phylogenies by creating illusory tumour heterogeneity among distinct samples. In silico benchmarking on simulated tumour phylogenies across a wide range of sample purities (15–95%) and sequencing depths (25-800 × ) demonstrates the accuracy of Treeomics compared with existing methods.
AU - Reiter, Johannes
AU - Makohon Moore, Alvin
AU - Gerold, Jeffrey
AU - Božić, Ivana
AU - Chatterjee, Krishnendu
AU - Iacobuzio Donahue, Christine
AU - Vogelstein, Bert
AU - Nowak, Martin
ID - 1080
JF - Nature Communications
SN - 20411723
TI - Reconstructing metastatic seeding patterns of human cancers
VL - 8
ER -
TY - CONF
AB - Termination is one of the basic liveness properties, and we study the termination problem for probabilistic programs with real-valued variables. Previous works focused on the qualitative problem that asks whether an input program terminates with probability~1 (almost-sure termination). A powerful approach for this qualitative problem is the notion of ranking supermartingales with respect to a given set of invariants. The quantitative problem (probabilistic termination) asks for bounds on the termination probability. A fundamental and conceptual drawback of the existing approaches to address probabilistic termination is that even though the supermartingales consider the probabilistic behavior of the programs, the invariants are obtained completely ignoring the probabilistic aspect. In this work we address the probabilistic termination problem for linear-arithmetic probabilistic programs with nondeterminism. We define the notion of {\em stochastic invariants}, which are constraints along with a probability bound that the constraints hold. We introduce a concept of {\em repulsing supermartingales}. First, we show that repulsing supermartingales can be used to obtain bounds on the probability of the stochastic invariants. Second, we show the effectiveness of repulsing supermartingales in the following three ways: (1)~With a combination of ranking and repulsing supermartingales we can compute lower bounds on the probability of termination; (2)~repulsing supermartingales provide witnesses for refutation of almost-sure termination; and (3)~with a combination of ranking and repulsing supermartingales we can establish persistence properties of probabilistic programs. We also present results on related computational problems and an experimental evaluation of our approach on academic examples.
AU - Chatterjee, Krishnendu
AU - Novotny, Petr
AU - Zikelic, Djordje
ID - 1194
IS - 1
SN - 07308566
TI - Stochastic invariants for probabilistic termination
VL - 52
ER -
TY - CONF
AB - Two-player games on graphs are widely studied in formal methods as they model the interaction between a system and its environment. The game is played by moving a token throughout a graph to produce an infinite path. There are several common modes to determine how the players move the token through the graph; e.g., in turn-based games the players alternate turns in moving the token. We study the bidding mode of moving the token, which, to the best of our knowledge, has never been studied in infinite-duration games. Both players have separate budgets, which sum up to $1$. In each turn, a bidding takes place. Both players submit bids simultaneously, and a bid is legal if it does not exceed the available budget. The winner of the bidding pays his bid to the other player and moves the token. For reachability objectives, repeated bidding games have been studied and are called Richman games. There, a central question is the existence and computation of threshold budgets; namely, a value t\in [0,1] such that if\PO's budget exceeds $t$, he can win the game, and if\PT's budget exceeds 1-t, he can win the game. We focus on parity games and mean-payoff games. We show the existence of threshold budgets in these games, and reduce the problem of finding them to Richman games. We also determine the strategy-complexity of an optimal strategy. Our most interesting result shows that memoryless strategies suffice for mean-payoff bidding games.
AU - Avni, Guy
AU - Henzinger, Thomas A
AU - Chonev, Ventsislav K
ID - 950
SN - 1868-8969
TI - Infinite-duration bidding games
VL - 85
ER -
TY - JOUR
AB - We generalize winning conditions in two-player games by adding a structural acceptance condition called obligations. Obligations are orthogonal to the linear winning conditions that define whether a play is winning. Obligations are a declaration that player 0 can achieve a certain value from a configuration. If the obligation is met, the value of that configuration for player 0 is 1. We define the value in such games and show that obligation games are determined. For Markov chains with Borel objectives and obligations, and finite turn-based stochastic parity games with obligations we give an alternative and simpler characterization of the value function. Based on this simpler definition we show that the decision problem of winning finite turn-based stochastic parity games with obligations is in NP∩co-NP. We also show that obligation games provide a game framework for reasoning about p-automata. © 2017 The Association for Symbolic Logic.
AU - Chatterjee, Krishnendu
AU - Piterman, Nir
ID - 684
IS - 2
JF - Journal of Symbolic Logic
SN - 0022-4812
TI - Obligation blackwell games and p-automata
VL - 82
ER -
TY - GEN
AB - A fundamental algorithmic problem at the heart of static analysis is Dyck reachability. The input is a graphwhere the edges are labeled with different types of opening and closing parentheses, and the reachabilityinformation is computed via paths whose parentheses are properly matched. We present new results for Dyckreachability problems with applications to alias analysis and data-dependence analysis. Our main contributions,that include improved upper bounds as well as lower bounds that establish optimality guarantees, are asfollows:First, we consider Dyck reachability on bidirected graphs, which is the standard way of performing field-sensitive points-to analysis. Given a bidirected graph withnnodes andmedges, we present: (i) an algorithmwith worst-case running timeO(m+n·α(n)), whereα(n)is the inverse Ackermann function, improving thepreviously knownO(n2)time bound; (ii) a matching lower bound that shows that our algorithm is optimalwrt to worst-case complexity; and (iii) an optimal average-case upper bound ofO(m)time, improving thepreviously knownO(m·logn)bound.Second, we consider the problem of context-sensitive data-dependence analysis, where the task is to obtainanalysis summaries of library code in the presence of callbacks. Our algorithm preprocesses libraries in almostlinear time, after which the contribution of the library in the complexity of the client analysis is only linear,and only wrt the number of call sites.Third, we prove that combinatorial algorithms for Dyck reachability on general graphs with truly sub-cubic bounds cannot be obtained without obtaining sub-cubic combinatorial algorithms for Boolean MatrixMultiplication, which is a long-standing open problem. Thus we establish that the existing combinatorialalgorithms for Dyck reachability are (conditionally) optimal for general graphs. We also show that the samehardness holds for graphs of constant treewidth.Finally, we provide a prototype implementation of our algorithms for both alias analysis and data-dependenceanalysis. Our experimental evaluation demonstrates that the new algorithms significantly outperform allexisting methods on the two problems, over real-world benchmarks.
AU - Chatterjee, Krishnendu
AU - Choudhary, Bhavya
AU - Pavlogiannis, Andreas
ID - 5455
SN - 2664-1690
TI - Optimal Dyck reachability for data-dependence and alias analysis
ER -
TY - CONF
AB - The notion of treewidth of graphs has been exploited for faster algorithms for several problems arising in verification and program analysis. Moreover, various notions of balanced tree decompositions have been used for improved algorithms supporting dynamic updates and analysis of concurrent programs. In this work, we present a tool for constructing tree-decompositions of CFGs obtained from Java methods, which is implemented as an extension to the widely used Soot framework. The experimental results show that our implementation on real-world Java benchmarks is very efficient. Our tool also provides the first implementation for balancing tree-decompositions. In summary, we present the first tool support for exploiting treewidth in the static analysis problems on Java programs.
AU - Chatterjee, Krishnendu
AU - Goharshady, Amir
AU - Pavlogiannis, Andreas
ED - D'Souza, Deepak
ID - 949
SN - 03029743
TI - JTDec: A tool for tree decompositions in soot
VL - 10482
ER -