@misc{5453,
author = {Pavlogiannis, Andreas and Tkadlec, Josef and Chatterjee, Krishnendu and Nowak, Martin},
issn = {2664-1690},
pages = {34},
publisher = {IST Austria},
title = {{Arbitrarily strong amplifiers of natural selection}},
doi = {10.15479/AT:IST-2017-749-v3-1},
year = {2016},
}
@inproceedings{1182,
abstract = {Balanced knockout tournaments are ubiquitous in sports competitions and are also used in decisionmaking and elections. The traditional computational question, that asks to compute a draw (optimal draw) that maximizes the winning probability for a distinguished player, has received a lot of attention. Previous works consider the problem where the pairwise winning probabilities are known precisely, while we study how robust is the winning probability with respect to small errors in the pairwise winning probabilities. First, we present several illuminating examples to establish: (a) there exist deterministic tournaments (where the pairwise winning probabilities are 0 or 1) where one optimal draw is much more robust than the other; and (b) in general, there exist tournaments with slightly suboptimal draws that are more robust than all the optimal draws. The above examples motivate the study of the computational problem of robust draws that guarantee a specified winning probability. Second, we present a polynomial-time algorithm for approximating the robustness of a draw for sufficiently small errors in pairwise winning probabilities, and obtain that the stated computational problem is NP-complete. We also show that two natural cases of deterministic tournaments where the optimal draw could be computed in polynomial time also admit polynomial-time algorithms to compute robust optimal draws.},
author = {Chatterjee, Krishnendu and Ibsen-Jensen, Rasmus and Tkadlec, Josef},
location = {New York, NY, USA},
pages = {172 -- 179},
publisher = {AAAI Press},
title = {{Robust draws in balanced knockout tournaments}},
volume = {2016-January},
year = {2016},
}
@article{1200,
author = {Hilbe, Christian and Traulsen, Arne},
journal = {Physics of Life Reviews},
pages = {29 -- 31},
publisher = {Elsevier},
title = {{Only the combination of mathematics and agent based simulations can leverage the full potential of evolutionary modeling: Comment on “Evolutionary game theory using agent-based methods” by C. Adami, J. Schossau and A. Hintze}},
doi = {10.1016/j.plrev.2016.10.004},
volume = {19},
year = {2016},
}
@inproceedings{1245,
abstract = {To facilitate collaboration in massive online classrooms, instructors must make many decisions. For instance, the following parameters need to be decided when designing a peer-feedback system where students review each others' essays: the number of students each student must provide feedback to, an algorithm to map feedback providers to receivers, constraints that ensure students do not become free-riders (receiving feedback but not providing it), the best times to receive feedback to improve learning etc. While instructors can answer these questions by running experiments or invoking past experience, game-theoretic models with data from online learning platforms can identify better initial designs for further improvements. As an example, we explore the design space of a peer feedback system by modeling it using game theory. Our simulations show that incentivizing students to provide feedback requires the value obtained from receiving a feedback to exceed the cost of providing it by a large factor (greater than 7). Furthermore, hiding feedback from low-effort students incentivizes them to provide more feedback.},
author = {Pandey, Vineet and Chatterjee, Krishnendu},
booktitle = {Proceedings of the ACM Conference on Computer Supported Cooperative Work},
location = {San Francisco, CA, USA},
number = {Februar-2016},
pages = {365 -- 368},
publisher = {ACM},
title = {{Game-theoretic models identify useful principles for peer collaboration in online learning platforms}},
doi = {10.1145/2818052.2869122},
volume = {26},
year = {2016},
}
@article{1322,
abstract = {Direct reciprocity is a major mechanism for the evolution of cooperation. Several classical studies have suggested that humans should quickly learn to adopt reciprocal strategies to establish mutual cooperation in repeated interactions. On the other hand, the recently discovered theory of ZD strategies has found that subjects who use extortionate strategies are able to exploit and subdue cooperators. Although such extortioners have been predicted to succeed in any population of adaptive opponents, theoretical follow-up studies questioned whether extortion can evolve in reality. However, most of these studies presumed that individuals have similar strategic possibilities and comparable outside options, whereas asymmetries are ubiquitous in real world applications. Here we show with a model and an economic experiment that extortionate strategies readily emerge once subjects differ in their strategic power. Our experiment combines a repeated social dilemma with asymmetric partner choice. In our main treatment there is one randomly chosen group member who is unilaterally allowed to exchange one of the other group members after every ten rounds of the social dilemma. We find that this asymmetric replacement opportunity generally promotes cooperation, but often the resulting payoff distribution reflects the underlying power structure. Almost half of the subjects in a better strategic position turn into extortioners, who quickly proceed to exploit their peers. By adapting their cooperation probabilities consistent with ZD theory, extortioners force their co-players to cooperate without being similarly cooperative themselves. Comparison to non-extortionate players under the same conditions indicates a substantial net gain to extortion. Our results thus highlight how power asymmetries can endanger mutually beneficial interactions, and transform them into exploitative relationships. In particular, our results indicate that the extortionate strategies predicted from ZD theory could play a more prominent role in our daily interactions than previously thought.},
author = {Hilbe, Christian and Hagel, Kristin and Milinski, Manfred},
journal = {PLoS One},
number = {10},
publisher = {Public Library of Science},
title = {{Asymmetric power boosts extortion in an economic experiment}},
doi = {10.1371/journal.pone.0163867},
volume = {11},
year = {2016},
}
@inproceedings{1324,
abstract = {DEC-POMDPs extend POMDPs to a multi-agent setting, where several agents operate in an uncertain environment independently to achieve a joint objective. DEC-POMDPs have been studied with finite-horizon and infinite-horizon discounted-sum objectives, and there exist solvers both for exact and approximate solutions. In this work we consider Goal-DEC-POMDPs, where given a set of target states, the objective is to ensure that the target set is reached with minimal cost. We consider the indefinite-horizon (infinite-horizon with either discounted-sum, or undiscounted-sum, where absorbing goal states have zero-cost) problem. We present a new and novel method to solve the problem that extends methods for finite-horizon DEC-POMDPs and the RTDP-Bel approach for POMDPs. We present experimental results on several examples, and show that our approach presents promising results. Copyright },
author = {Chatterjee, Krishnendu and Chmelik, Martin},
booktitle = {Proceedings of the Twenty-Sixth International Conference on International Conference on Automated Planning and Scheduling},
location = {London, United Kingdom},
pages = {88 -- 96},
publisher = {AAAI Press},
title = {{Indefinite-horizon reachability in Goal-DEC-POMDPs}},
volume = {2016-January},
year = {2016},
}
@inproceedings{1325,
abstract = {We study graphs and two-player games in which rewards are assigned to states, and the goal of the players is to satisfy or dissatisfy certain property of the generated outcome, given as a mean payoff property. Since the notion of mean-payoff does not reflect possible fluctuations from the mean-payoff along a run, we propose definitions and algorithms for capturing the stability of the system, and give algorithms for deciding if a given mean payoff and stability objective can be ensured in the system.},
author = {Brázdil, Tomáš and Forejt, Vojtěch and Kučera, Antonín and Novotny, Petr},
location = {Quebec City, Canada},
publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik},
title = {{Stability in graphs and games}},
doi = {10.4230/LIPIcs.CONCUR.2016.10},
volume = {59},
year = {2016},
}
@inproceedings{1326,
abstract = {Energy Markov Decision Processes (EMDPs) are finite-state Markov decision processes where each transition is assigned an integer counter update and a rational payoff. An EMDP configuration is a pair s(n), where s is a control state and n is the current counter value. The configurations are changed by performing transitions in the standard way. We consider the problem of computing a safe strategy (i.e., a strategy that keeps the counter non-negative) which maximizes the expected mean payoff. },
author = {Brázdil, Tomáš and Kučera, Antonín and Novotny, Petr},
location = {Chiba, Japan},
pages = {32 -- 49},
publisher = {Springer},
title = {{Optimizing the expected mean payoff in Energy Markov Decision Processes}},
doi = {10.1007/978-3-319-46520-3_3},
volume = {9938},
year = {2016},
}
@inproceedings{1327,
abstract = {We consider partially observable Markov decision processes (POMDPs) with a set of target states and positive integer costs associated with every transition. The traditional optimization objective (stochastic shortest path) asks to minimize the expected total cost until the target set is reached. We extend the traditional framework of POMDPs to model energy consumption, which represents a hard constraint. The energy levels may increase and decrease with transitions, and the hard constraint requires that the energy level must remain positive in all steps till the target is reached. First, we present a novel algorithm for solving POMDPs with energy levels, developing on existing POMDP solvers and using RTDP as its main method. Our second contribution is related to policy representation. For larger POMDP instances the policies computed by existing solvers are too large to be understandable. We present an automated procedure based on machine learning techniques that automatically extracts important decisions of the policy allowing us to compute succinct human readable policies. Finally, we show experimentally that our algorithm performs well and computes succinct policies on a number of POMDP instances from the literature that were naturally enhanced with energy levels. },
author = {Brázdil, Tomáš and Chatterjee, Krishnendu and Chmelik, Martin and Gupta, Anchit and Novotny, Petr},
booktitle = {Proceedings of the 15th International Conference on Autonomous Agents and Multiagent Systems},
location = {Singapore},
pages = {1465 -- 1466},
publisher = {ACM},
title = {{Stochastic shortest path with energy constraints in POMDPs}},
year = {2016},
}
@article{1333,
abstract = {Social dilemmas force players to balance between personal and collective gain. In many dilemmas, such as elected governments negotiating climate-change mitigation measures, the decisions are made not by individual players but by their representatives. However, the behaviour of representatives in social dilemmas has not been investigated experimentally. Here inspired by the negotiations for greenhouse-gas emissions reductions, we experimentally study a collective-risk social dilemma that involves representatives deciding on behalf of their fellow group members. Representatives can be re-elected or voted out after each consecutive collective-risk game. Selfish players are preferentially elected and are hence found most frequently in the "representatives" treatment. Across all treatments, we identify the selfish players as extortioners. As predicted by our mathematical model, their steadfast strategies enforce cooperation from fair players who finally compensate almost completely the deficit caused by the extortionate co-players. Everybody gains, but the extortionate representatives and their groups gain the most.},
author = {Milinski, Manfred and Hilbe, Christian and Semmann, Dirk and Sommerfeld, Ralf and Marotzke, Jochem},
journal = {Nature Communications},
publisher = {Nature Publishing Group},
title = {{Humans choose representatives who enforce cooperation in social dilemmas through extortion}},
doi = {10.1038/ncomms10915},
volume = {7},
year = {2016},
}
@inproceedings{1335,
abstract = {In this paper we review various automata-theoretic formalisms for expressing quantitative properties. We start with finite-state Boolean automata that express the traditional regular properties. We then consider weighted ω-automata that can measure the average density of events, which finite-state Boolean automata cannot. However, even weighted ω-automata cannot express basic performance properties like average response time. We finally consider two formalisms of weighted ω-automata with monitors, where the monitors are either (a) counters or (b) weighted automata themselves. We present a translation result to establish that these two formalisms are equivalent. Weighted ω-automata with monitors generalize weighted ω-automata, and can express average response time property. They present a natural, robust, and expressive framework for quantitative specifications, with important decidable properties.},
author = {Chatterjee, Krishnendu and Henzinger, Thomas A and Otop, Jan},
location = {Edinburgh, United Kingdom},
pages = {23 -- 38},
publisher = {Springer},
title = {{Quantitative monitor automata}},
doi = {10.1007/978-3-662-53413-7_2},
volume = {9837},
year = {2016},
}
@inproceedings{1340,
abstract = {We study repeated games with absorbing states, a type of two-player, zero-sum concurrent mean-payoff games with the prototypical example being the Big Match of Gillete (1957). These games may not allow optimal strategies but they always have ε-optimal strategies. In this paper we design ε-optimal strategies for Player 1 in these games that use only O(log log T) space. Furthermore, we construct strategies for Player 1 that use space s(T), for an arbitrary small unbounded non-decreasing function s, and which guarantee an ε-optimal value for Player 1 in the limit superior sense. The previously known strategies use space Ω(log T) and it was known that no strategy can use constant space if it is ε-optimal even in the limit superior sense. We also give a complementary lower bound. Furthermore, we also show that no Markov strategy, even extended with finite memory, can ensure value greater than 0 in the Big Match, answering a question posed by Neyman [11].},
author = {Hansen, Kristoffer and Ibsen-Jensen, Rasmus and Koucký, Michal},
location = {Liverpool, United Kingdom},
pages = {64 -- 76},
publisher = {Springer},
title = {{The big match in small space}},
doi = {10.1007/978-3-662-53354-3_6},
volume = {9928},
year = {2016},
}
@article{1380,
abstract = {We consider higher-dimensional versions of Kannan and Lipton's Orbit Problem - determining whether a target vector space V may be reached from a starting point x under repeated applications of a linear transformation A. Answering two questions posed by Kannan and Lipton in the 1980s, we show that when V has dimension one, this problem is solvable in polynomial time, and when V has dimension two or three, the problem is in NPRP.},
author = {Chonev, Ventsislav K and Ouaknine, Joël and Worrell, James},
journal = {Journal of the ACM},
number = {3},
publisher = {ACM},
title = {{On the complexity of the orbit problem}},
doi = {10.1145/2857050},
volume = {63},
year = {2016},
}
@inproceedings{1386,
abstract = {We consider nondeterministic probabilistic programs with the most basic liveness property of termination. We present efficient methods for termination analysis of nondeterministic probabilistic programs with polynomial guards and assignments. Our approach is through synthesis of polynomial ranking supermartingales, that on one hand significantly generalizes linear ranking supermartingales and on the other hand is a counterpart of polynomial ranking-functions for proving termination of nonprobabilistic programs. The approach synthesizes polynomial ranking-supermartingales through Positivstellensatz's, yielding an efficient method which is not only sound, but also semi-complete over a large subclass of programs. We show experimental results to demonstrate that our approach can handle several classical programs with complex polynomial guards and assignments, and can synthesize efficient quadratic ranking-supermartingales when a linear one does not exist even for simple affine programs.},
author = {Chatterjee, Krishnendu and Fu, Hongfei and Goharshady, Amir},
location = {Toronto, Canada},
pages = {3 -- 22},
publisher = {Springer},
title = {{Termination analysis of probabilistic programs through Positivstellensatz's}},
doi = {10.1007/978-3-319-41528-4_1},
volume = {9779},
year = {2016},
}
@inproceedings{1389,
abstract = {The continuous evolution of a wide variety of systems, including continous-time Markov chains and linear hybrid automata, can be
described in terms of linear differential equations. In this paper we study the decision problem of whether the solution x(t) of a system of linear differential equations dx/dt = Ax reaches a target halfspace infinitely often. This recurrent reachability problem can
equivalently be formulated as the following Infinite Zeros Problem: does a real-valued function f:R≥0 --> R satisfying a given linear
differential equation have infinitely many zeros? Our main decidability result is that if the differential equation has order at most 7, then the Infinite Zeros Problem is decidable. On the other hand, we show that a decision procedure for the Infinite Zeros Problem at order 9 (and above) would entail a major breakthrough in Diophantine Approximation, specifically an algorithm for computing the Lagrange constants of arbitrary real algebraic numbers to arbitrary precision.},
author = {Chonev, Ventsislav K and Ouaknine, Joël and Worrell, James},
booktitle = {LICS '16},
location = {New York, NY, USA},
pages = {515 -- 524},
publisher = {IEEE},
title = {{On recurrent reachability for continuous linear dynamical systems}},
doi = {10.1145/2933575.2934548},
year = {2016},
}
@phdthesis{1397,
abstract = {We study partially observable Markov decision processes (POMDPs) with objectives used in verification and artificial intelligence. The qualitative analysis problem given a POMDP and an objective asks whether there is a strategy (policy) to ensure that the objective is satisfied almost surely (with probability 1), resp. with positive probability (with probability greater than 0). For POMDPs with limit-average payoff, where a reward value in the interval [0,1] is associated to every transition, and the payoff of an infinite path is the long-run average of the rewards, we consider two types of path constraints: (i) a quantitative limit-average constraint defines the set of paths where the payoff is at least a given threshold L1 = 1. Our main results for qualitative limit-average constraint under almost-sure winning are as follows: (i) the problem of deciding the existence of a finite-memory controller is EXPTIME-complete; and (ii) the problem of deciding the existence of an infinite-memory controller is undecidable. For quantitative limit-average constraints we show that the problem of deciding the existence of a finite-memory controller is undecidable. We present a prototype implementation of our EXPTIME algorithm. For POMDPs with w-regular conditions specified as parity objectives, while the qualitative analysis problems are known to be undecidable even for very special case of parity objectives, we establish decidability (with optimal complexity) of the qualitative analysis problems for POMDPs with parity objectives under finite-memory strategies. We establish optimal (exponential) memory bounds and EXPTIME-completeness of the qualitative analysis problems under finite-memory strategies for POMDPs with parity objectives. Based on our theoretical algorithms we also present a practical approach, where we design heuristics to deal with the exponential complexity, and have applied our implementation on a number of well-known POMDP examples for robotics applications. For POMDPs with a set of target states and an integer cost associated with every transition, we study the optimization objective that asks to minimize the expected total cost of reaching a state in the target set, while ensuring that the target set is reached almost surely. We show that for general integer costs approximating the optimal cost is undecidable. For positive costs, our results are as follows: (i) we establish matching lower and upper bounds for the optimal cost, both double and exponential in the POMDP state space size; (ii) we show that the problem of approximating the optimal cost is decidable and present approximation algorithms that extend existing algorithms for POMDPs with finite-horizon objectives. We show experimentally that it performs well in many examples of interest. We study more deeply the problem of almost-sure reachability, where given a set of target states, the question is to decide whether there is a strategy to ensure that the target set is reached almost surely. While in general the problem EXPTIME-complete, in many practical cases strategies with a small amount of memory suffice. Moreover, the existing solution to the problem is explicit, which first requires to construct explicitly an exponential reduction to a belief-support MDP. We first study the existence of observation-stationary strategies, which is NP-complete, and then small-memory strategies. We present a symbolic algorithm by an efficient encoding to SAT and using a SAT solver for the problem. We report experimental results demonstrating the scalability of our symbolic (SAT-based) approach. Decentralized POMDPs (DEC-POMDPs) extend POMDPs to a multi-agent setting, where several agents operate in an uncertain environment independently to achieve a joint objective. In this work we consider Goal DEC-POMDPs, where given a set of target states, the objective is to ensure that the target set is reached with minimal cost. We consider the indefinite-horizon (infinite-horizon with either discounted-sum, or undiscounted-sum, where absorbing goal states have zero-cost) problem. We present a new and novel method to solve the problem that extends methods for finite-horizon DEC-POMDPs and the real-time dynamic programming approach for POMDPs. We present experimental results on several examples, and show that our approach presents promising results. In the end we present a short summary of a few other results related to verification of MDPs and POMDPs.},
author = {Chmelik, Martin},
pages = {232},
publisher = {IST Austria},
title = {{Algorithms for partially observable markov decision processes}},
year = {2016},
}
@article{1423,
abstract = {Direct reciprocity is a mechanism for the evolution of cooperation based on repeated interactions. When individuals meet repeatedly, they can use conditional strategies to enforce cooperative outcomes that would not be feasible in one-shot social dilemmas. Direct reciprocity requires that individuals keep track of their past interactions and find the right response. However, there are natural bounds on strategic complexity: Humans find it difficult to remember past interactions accurately, especially over long timespans. Given these limitations, it is natural to ask how complex strategies need to be for cooperation to evolve. Here, we study stochastic evolutionary game dynamics in finite populations to systematically compare the evolutionary performance of reactive strategies, which only respond to the co-player's previous move, and memory-one strategies, which take into account the own and the co-player's previous move. In both cases, we compare deterministic strategy and stochastic strategy spaces. For reactive strategies and small costs, we find that stochasticity benefits cooperation, because it allows for generous-tit-for-tat. For memory one strategies and small costs, we find that stochasticity does not increase the propensity for cooperation, because the deterministic rule of win-stay, lose-shift works best. For memory one strategies and large costs, however, stochasticity can augment cooperation.},
author = {Baek, Seung and Jeong, Hyeongchai and Hilbe, Christian and Nowak, Martin},
journal = {Scientific Reports},
publisher = {Nature Publishing Group},
title = {{Comparing reactive and memory-one strategies of direct reciprocity}},
doi = {10.1038/srep25676},
volume = {6},
year = {2016},
}
@article{1426,
abstract = {Brood parasites exploit their host in order to increase their own fitness. Typically, this results in an arms race between parasite trickery and host defence. Thus, it is puzzling to observe hosts that accept parasitism without any resistance. The ‘mafia’ hypothesis suggests that these hosts accept parasitism to avoid retaliation. Retaliation has been shown to evolve when the hosts condition their response to mafia parasites, who use depredation as a targeted response to rejection. However, it is unclear if acceptance would also emerge when ‘farming’ parasites are present in the population. Farming parasites use depredation to synchronize the timing with the host, destroying mature clutches to force the host to re-nest. Herein, we develop an evolutionary model to analyse the interaction between depredatory parasites and their hosts. We show that coevolutionary cycles between farmers and mafia can still induce host acceptance of brood parasites. However, this equilibrium is unstable and in the long-run the dynamics of this host–parasite interaction exhibits strong oscillations: when farmers are the majority, accepters conditional to mafia (the host will reject first and only accept after retaliation by the parasite) have a higher fitness than unconditional accepters (the host always accepts parasitism). This leads to an increase in mafia parasites’ fitness and in turn induce an optimal environment for accepter hosts.},
author = {Chakra, Maria and Hilbe, Christian and Traulsen, Arne},
journal = {Royal Society Open Science},
number = {5},
publisher = {Royal Society, The},
title = {{Coevolutionary interactions between farmers and mafia induce host acceptance of avian brood parasites}},
doi = {10.1098/rsos.160036},
volume = {3},
year = {2016},
}
@inproceedings{1437,
abstract = {We study algorithmic questions for concurrent systems where the transitions are labeled from a complete, closed semiring, and path properties are algebraic with semiring operations. The algebraic path properties can model dataflow analysis problems, the shortest path problem, and many other natural problems that arise in program analysis. We consider that each component of the concurrent system is a graph with constant treewidth, a property satisfied by the controlflow graphs of most programs. We allow for multiple possible queries, which arise naturally in demand driven dataflow analysis. The study of multiple queries allows us to consider the tradeoff between the resource usage of the one-time preprocessing and for each individual query. The traditional approach constructs the product graph of all components and applies the best-known graph algorithm on the product. In this approach, even the answer to a single query requires the transitive closure (i.e., the results of all possible queries), which provides no room for tradeoff between preprocessing and query time. Our main contributions are algorithms that significantly improve the worst-case running time of the traditional approach, and provide various tradeoffs depending on the number of queries. For example, in a concurrent system of two components, the traditional approach requires hexic time in the worst case for answering one query as well as computing the transitive closure, whereas we show that with one-time preprocessing in almost cubic time, each subsequent query can be answered in at most linear time, and even the transitive closure can be computed in almost quartic time. Furthermore, we establish conditional optimality results showing that the worst-case running time of our algorithms cannot be improved without achieving major breakthroughs in graph algorithms (i.e., improving the worst-case bound for the shortest path problem in general graphs). Preliminary experimental results show that our algorithms perform favorably on several benchmarks.},
author = {Chatterjee, Krishnendu and Goharshady, Amir and Ibsen-Jensen, Rasmus and Pavlogiannis, Andreas},
location = {St. Petersburg, FL, USA},
pages = {733 -- 747},
publisher = {ACM},
title = {{Algorithms for algebraic path properties in concurrent systems of constant treewidth components}},
doi = {10.1145/2837614.2837624},
volume = {20-22},
year = {2016},
}
@inproceedings{1438,
abstract = {In this paper, we consider termination of probabilistic programs with real-valued variables. The questions concerned are: (a) qualitative ones that ask (i) whether the program terminates with probability 1 (almost-sure termination) and (ii) whether the expected termination time is finite (finite termination); (b) quantitative ones that ask (i) to approximate the expected termination time (expectation problem) and (ii) to compute a bound B such that the probability to terminate after B steps decreases exponentially (concentration problem). To solve these questions, we utilize the notion of ranking supermartingales which is a powerful approach for proving termination of probabilistic programs. In detail, we focus on algorithmic synthesis of linear ranking-supermartingales over affine probabilistic programs (APP's) with both angelic and demonic non-determinism. An important subclass of APP's is LRAPP which is defined as the class of all APP's over which a linear ranking-supermartingale exists. Our main contributions are as follows. Firstly, we show that the membership problem of LRAPP (i) can be decided in polynomial time for APP's with at most demonic non-determinism, and (ii) is NP-hard and in PSPACE for APP's with angelic non-determinism; moreover, the NP-hardness result holds already for APP's without probability and demonic non-determinism. Secondly, we show that the concentration problem over LRAPP can be solved in the same complexity as for the membership problem of LRAPP. Finally, we show that the expectation problem over LRAPP can be solved in 2EXPTIME and is PSPACE-hard even for APP's without probability and non-determinism (i.e., deterministic programs). Our experimental results demonstrate the effectiveness of our approach to answer the qualitative and quantitative questions over APP's with at most demonic non-determinism.},
author = {Chatterjee, Krishnendu and Fu, Hongfei and Novotny, Petr and Hasheminezhad, Rouzbeh},
location = {St. Petersburg, FL, USA},
pages = {327 -- 342},
publisher = {ACM},
title = {{Algorithmic analysis of qualitative and quantitative termination problems for affine probabilistic programs}},
doi = {10.1145/2837614.2837639},
volume = {20-22},
year = {2016},
}
@article{1477,
abstract = {We consider partially observable Markov decision processes (POMDPs) with ω-regular conditions specified as parity objectives. The class of ω-regular languages provides a robust specification language to express properties in verification, and parity objectives are canonical forms to express them. The qualitative analysis problem given a POMDP and a parity objective asks whether there is a strategy to ensure that the objective is satisfied with probability 1 (resp. positive probability). While the qualitative analysis problems are undecidable even for special cases of parity objectives, we establish decidability (with optimal complexity) for POMDPs with all parity objectives under finite-memory strategies. We establish optimal (exponential) memory bounds and EXPTIME-completeness of the qualitative analysis problems under finite-memory strategies for POMDPs with parity objectives. We also present a practical approach, where we design heuristics to deal with the exponential complexity, and have applied our implementation on a number of POMDP examples.},
author = {Chatterjee, Krishnendu and Chmelik, Martin and Tracol, Mathieu},
journal = {Journal of Computer and System Sciences},
number = {5},
pages = {878 -- 911},
publisher = {Elsevier},
title = {{What is decidable about partially observable Markov decision processes with ω-regular objectives}},
doi = {10.1016/j.jcss.2016.02.009},
volume = {82},
year = {2016},
}
@article{1518,
abstract = {The inference of demographic history from genome data is hindered by a lack of efficient computational approaches. In particular, it has proved difficult to exploit the information contained in the distribution of genealogies across the genome. We have previously shown that the generating function (GF) of genealogies can be used to analytically compute likelihoods of demographic models from configurations of mutations in short sequence blocks (Lohse et al. 2011). Although the GF has a simple, recursive form, the size of such likelihood calculations explodes quickly with the number of individuals and applications of this framework have so far been mainly limited to small samples (pairs and triplets) for which the GF can be written by hand. Here we investigate several strategies for exploiting the inherent symmetries of the coalescent. In particular, we show that the GF of genealogies can be decomposed into a set of equivalence classes that allows likelihood calculations from nontrivial samples. Using this strategy, we automated blockwise likelihood calculations for a general set of demographic scenarios in Mathematica. These histories may involve population size changes, continuous migration, discrete divergence, and admixture between multiple populations. To give a concrete example, we calculate the likelihood for a model of isolation with migration (IM), assuming two diploid samples without phase and outgroup information. We demonstrate the new inference scheme with an analysis of two individual butterfly genomes from the sister species Heliconius melpomene rosina and H. cydno.},
author = {Lohse, Konrad and Chmelik, Martin and Martin, Simon and Barton, Nicholas H},
journal = {Genetics},
number = {2},
pages = {775 -- 786},
publisher = {Genetics Society of America},
title = {{Efficient strategies for calculating blockwise likelihoods under the coalescent}},
doi = {10.1534/genetics.115.183814},
volume = {202},
year = {2016},
}
@article{1529,
abstract = {We consider partially observable Markov decision processes (POMDPs) with a set of target states and an integer cost associated with every transition. The optimization objective we study asks to minimize the expected total cost of reaching a state in the target set, while ensuring that the target set is reached almost surely (with probability 1). We show that for integer costs approximating the optimal cost is undecidable. For positive costs, our results are as follows: (i) we establish matching lower and upper bounds for the optimal cost, both double exponential in the POMDP state space size; (ii) we show that the problem of approximating the optimal cost is decidable and present approximation algorithms developing on the existing algorithms for POMDPs with finite-horizon objectives. While the worst-case running time of our algorithm is double exponential, we also present efficient stopping criteria for the algorithm and show experimentally that it performs well in many examples of interest.},
author = {Chatterjee, Krishnendu and Chmelik, Martin and Gupta, Raghav and Kanodia, Ayush},
journal = {Artificial Intelligence},
pages = {26 -- 48},
publisher = {Elsevier},
title = {{Optimal cost almost-sure reachability in POMDPs}},
doi = {10.1016/j.artint.2016.01.007},
volume = {234},
year = {2016},
}
@inproceedings{1068,
abstract = {Games on graphs provide the appropriate framework to study several central problems in computer science, such as verification and synthesis of reactive systems. One of the most basic objectives for games on graphs is the liveness (or Büchi) objective that given a target set of vertices requires that some vertex in the target set is visited infinitely often. We study generalized Büchi objectives (i.e., conjunction of liveness objectives), and implications between two generalized Büchi objectives (known as GR(1) objectives), that arise in numerous applications in computer-aided verification. We present improved algorithms and conditional super-linear lower bounds based on widely believed assumptions about the complexity of (A1) combinatorial Boolean matrix multiplication and (A2) CNF-SAT. We consider graph games with n vertices, m edges, and generalized Büchi objectives with k conjunctions. First, we present an algorithm with running time O(k*n^2), improving the previously known O(k*n*m) and O(k^2*n^2) worst-case bounds. Our algorithm is optimal for dense graphs under (A1). Second, we show that the basic algorithm for the problem is optimal for sparse graphs when the target sets have constant size under (A2). Finally, we consider GR(1) objectives, with k_1 conjunctions in the antecedent and k_2 conjunctions in the consequent, and present an O(k_1 k_2 n^{2.5})-time algorithm, improving the previously known O(k_1*k_2*n*m)-time algorithm for m > n^{1.5}. },
author = {Chatterjee, Krishnendu and Dvorák, Wolfgang and Henzinger, Monika and Loitzenbauer, Veronika},
location = {Krakow, Poland},
publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik},
title = {{Conditionally optimal algorithms for generalized Büchi Games}},
doi = {10.4230/LIPIcs.MFCS.2016.25},
volume = {58},
year = {2016},
}
@inproceedings{1069,
abstract = {The Continuous Skolem Problem asks whether a real-valued function satisfying a linear differen-
tial equation has a zero in a given interval of real numbers. This is a fundamental reachability
problem for continuous linear dynamical systems, such as linear hybrid automata and continuous-
time Markov chains. Decidability of the problem is currently open – indeed decidability is open
even for the sub-problem in which a zero is sought in a bounded interval. In this paper we show
decidability of the bounded problem subject to Schanuel’s Conjecture, a unifying conjecture in
transcendental number theory. We furthermore analyse the unbounded problem in terms of the
frequencies of the differential equation, that is, the imaginary parts of the characteristic roots.
We show that the unbounded problem can be reduced to the bounded problem if there is at most
one rationally linearly independent frequency, or if there are two rationally linearly independent
frequencies and all characteristic roots are simple. We complete the picture by showing that de-
cidability of the unbounded problem in the case of two (or more) rationally linearly independent
frequencies would entail a major new effectiveness result in Diophantine approximation, namely
computability of the Diophantine-approximation types of all real algebraic numbers.},
author = {Chonev, Ventsislav K and Ouaknine, Joël and Worrell, James},
location = {Rome, Italy},
publisher = {Schloss Dagstuhl- Leibniz-Zentrum fur Informatik},
title = {{On the skolem problem for continuous linear dynamical systems}},
doi = {10.4230/LIPIcs.ICALP.2016.100},
volume = {55},
year = {2016},
}
@inproceedings{1070,
abstract = {We present a logic that extends CTL (Computation Tree Logic) with operators that express synchronization properties. A property is synchronized in a system if it holds in all paths of a certain length. The new logic is obtained by using the same path quantifiers and temporal operators as in CTL, but allowing a different order of the quantifiers. This small syntactic variation induces a logic that can express non-regular properties for which known extensions of MSO with equality of path length are undecidable. We show that our variant of CTL is decidable and that the model-checking problem is in Delta_3^P = P^{NP^NP}, and is DP-hard. We analogously consider quantifier exchange in extensions of CTL, and we present operators defined using basic operators of CTL* that express the occurrence of infinitely many synchronization points. We show that the model-checking problem remains in Delta_3^P. The distinguishing power of CTL and of our new logic coincide if the Next operator is allowed in the logics, thus the classical bisimulation quotient can be used for state-space reduction before model checking. },
author = {Chatterjee, Krishnendu and Doyen, Laurent},
location = {Rome, Italy},
publisher = {Schloss Dagstuhl- Leibniz-Zentrum fur Informatik},
title = {{Computation tree logic for synchronization properties}},
doi = {10.4230/LIPIcs.ICALP.2016.98},
volume = {55},
year = {2016},
}
@inproceedings{1071,
abstract = {We consider data-structures for answering reachability and distance queries on constant-treewidth graphs with n nodes, on the standard RAM computational model with wordsize W=Theta(log n). Our first contribution is a data-structure that after O(n) preprocessing time, allows (1) pair reachability queries in O(1) time; and (2) single-source reachability queries in O(n/log n) time. This is (asymptotically) optimal and is faster than DFS/BFS when answering more than a constant number of single-source queries. The data-structure uses at all times O(n) space. Our second contribution is a space-time tradeoff data-structure for distance queries. For any epsilon in [1/2,1], we provide a data-structure with polynomial preprocessing time that allows pair queries in O(n^{1-\epsilon} alpha(n)) time, where alpha is the inverse of the Ackermann function, and at all times uses O(n^epsilon) space. The input graph G is not considered in the space complexity. },
author = {Chatterjee, Krishnendu and Ibsen-Jensen, Rasmus and Pavlogiannis, Andreas},
location = {Aarhus, Denmark},
publisher = {Schloss Dagstuhl- Leibniz-Zentrum fur Informatik},
title = {{Optimal reachability and a space time tradeoff for distance queries in constant treewidth graphs}},
doi = {10.4230/LIPIcs.ESA.2016.28},
volume = {57},
year = {2016},
}
@inproceedings{1090,
abstract = { While weighted automata provide a natural framework to express quantitative properties, many basic properties like average response time cannot be expressed with weighted automata. Nested weighted automata extend weighted automata and consist of a master automaton and a set of slave automata that are invoked by the master automaton. Nested weighted automata are strictly more expressive than weighted automata (e.g., average response time can be expressed with nested weighted automata), but the basic decision questions have higher complexity (e.g., for deterministic automata, the emptiness question for nested weighted automata is PSPACE-hard, whereas the corresponding complexity for weighted automata is PTIME). We consider a natural subclass of nested weighted automata where at any point at most a bounded number k of slave automata can be active. We focus on automata whose master value function is the limit average. We show that these nested weighted automata with bounded width are strictly more expressive than weighted automata (e.g., average response time with no overlapping requests can be expressed with bound k=1, but not with non-nested weighted automata). We show that the complexity of the basic decision problems (i.e., emptiness and universality) for the subclass with k constant matches the complexity for weighted automata. Moreover, when k is part of the input given in unary we establish PSPACE-completeness.},
author = {Chatterjee, Krishnendu and Henzinger, Thomas A and Otop, Jan},
location = {Krakow; Poland},
publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik},
title = {{Nested weighted limit-average automata of bounded width}},
doi = {10.4230/LIPIcs.MFCS.2016.24},
volume = {58},
year = {2016},
}
@inproceedings{1093,
abstract = {We introduce a general class of distances (metrics) between Markov chains, which are based on linear behaviour. This class encompasses distances given topologically (such as the total variation distance or trace distance) as well as by temporal logics or automata. We investigate which of the distances can be approximated by observing the systems, i.e. by black-box testing or simulation, and we provide both negative and positive results. },
author = {Daca, Przemyslaw and Henzinger, Thomas A and Kretinsky, Jan and Petrov, Tatjana},
location = {Quebec City; Canada},
publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik},
title = {{Linear distances between Markov chains}},
doi = {10.4230/LIPIcs.CONCUR.2016.20},
volume = {59},
year = {2016},
}
@inproceedings{1138,
abstract = {Automata with monitor counters, where the transitions do not depend on counter values, and nested weighted automata are two expressive automata-theoretic frameworks for quantitative properties. For a well-studied and wide class of quantitative functions, we establish that automata with monitor counters and nested weighted automata are equivalent. We study for the first time such quantitative automata under probabilistic semantics. We show that several problems that are undecidable for the classical questions of emptiness and universality become decidable under the probabilistic semantics. We present a complete picture of decidability for such automata, and even an almost-complete picture of computational complexity, for the probabilistic questions we consider. © 2016 ACM.},
author = {Chatterjee, Krishnendu and Henzinger, Thomas A and Otop, Jan},
booktitle = {Proceedings of the 31st Annual ACM/IEEE Symposium},
location = {New York, NY, USA},
pages = {76 -- 85},
publisher = {IEEE},
title = {{Quantitative automata under probabilistic semantics}},
doi = {10.1145/2933575.2933588},
year = {2016},
}
@inproceedings{1140,
abstract = {Given a model of a system and an objective, the model-checking question asks whether the model satisfies the objective. We study polynomial-time problems in two classical models, graphs and Markov Decision Processes (MDPs), with respect to several fundamental -regular objectives, e.g., Rabin and Streett objectives. For many of these problems the best-known upper bounds are quadratic or cubic, yet no super-linear lower bounds are known. In this work our contributions are two-fold: First, we present several improved algorithms, and second, we present the first conditional super-linear lower bounds based on widely believed assumptions about the complexity of CNF-SAT and combinatorial Boolean matrix multiplication. A separation result for two models with respect to an objective means a conditional lower bound for one model that is strictly higher than the existing upper bound for the other model, and similarly for two objectives with respect to a model. Our results establish the following separation results: (1) A separation of models (graphs and MDPs) for disjunctive queries of reachability and Büchi objectives. (2) Two kinds of separations of objectives, both for graphs and MDPs, namely, (2a) the separation of dual objectives such as Streett/Rabin objectives, and (2b) the separation of conjunction and disjunction of multiple objectives of the same type such as safety, Büchi, and coBüchi. In summary, our results establish the first model and objective separation results for graphs and MDPs for various classical -regular objectives. Quite strikingly, we establish conditional lower bounds for the disjunction of objectives that are strictly higher than the existing upper bounds for the conjunction of the same objectives. © 2016 ACM.},
author = {Chatterjee, Krishnendu and Dvoák, Wolfgang and Henzinger, Monika and Loitzenbauer, Veronika},
booktitle = {Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science},
location = {New York, NY, USA},
pages = {197 -- 206},
publisher = {IEEE},
title = {{Model and objective separation with conditional lower bounds disjunction is harder than conjunction}},
doi = {10.1145/2933575.2935304},
year = {2016},
}
@inproceedings{1166,
abstract = {POMDPs are standard models for probabilistic planning problems, where an agent interacts with an uncertain environment. We study the problem of almost-sure reachability, where given a set of target states, the question is to decide whether there is a policy to ensure that the target set is reached with probability 1 (almost-surely). While in general the problem is EXPTIMEcomplete, in many practical cases policies with a small amount of memory suffice. Moreover, the existing solution to the problem is explicit, which first requires to construct explicitly an exponential reduction to a belief-support MDP. In this work, we first study the existence of observation-stationary strategies, which is NP-complete, and then small-memory strategies. We present a symbolic algorithm by an efficient encoding to SAT and using a SAT solver for the problem. We report experimental results demonstrating the scalability of our symbolic (SAT-based) approach. © 2016, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.},
author = {Chatterjee, Krishnendu and Chmelik, Martin and Davies, Jessica},
booktitle = {Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence},
location = {Phoenix, AZ, USA},
pages = {3225 -- 3232},
publisher = {AAAI Press},
title = {{A symbolic SAT based algorithm for almost sure reachability with small strategies in pomdps}},
volume = {2016},
year = {2016},
}
@article{2034,
abstract = {Opacity is a generic security property, that has been defined on (non-probabilistic) transition systems and later on Markov chains with labels. For a secret predicate, given as a subset of runs, and a function describing the view of an external observer, the value of interest for opacity is a measure of the set of runs disclosing the secret. We extend this definition to the richer framework of Markov decision processes, where non-deterministicchoice is combined with probabilistic transitions, and we study related decidability problems with partial or complete observation hypotheses for the schedulers. We prove that all questions are decidable with complete observation and ω-regular secrets. With partial observation, we prove that all quantitative questions are undecidable but the question whether a system is almost surely non-opaquebecomes decidable for a restricted class of ω-regular secrets, as well as for all ω-regular secrets under finite-memory schedulers.},
author = {Bérard, Béatrice and Chatterjee, Krishnendu and Sznajder, Nathalie},
journal = { Information Processing Letters},
number = {1},
pages = {52 -- 59},
publisher = {Elsevier},
title = {{Probabilistic opacity for Markov decision processes}},
doi = {10.1016/j.ipl.2014.09.001},
volume = {115},
year = {2015},
}
@article{523,
abstract = {We consider two-player games played on weighted directed graphs with mean-payoff and total-payoff objectives, two classical quantitative objectives. While for single-dimensional games the complexity and memory bounds for both objectives coincide, we show that in contrast to multi-dimensional mean-payoff games that are known to be coNP-complete, multi-dimensional total-payoff games are undecidable. We introduce conservative approximations of these objectives, where the payoff is considered over a local finite window sliding along a play, instead of the whole play. For single dimension, we show that (i) if the window size is polynomial, deciding the winner takes polynomial time, and (ii) the existence of a bounded window can be decided in NP ∩ coNP, and is at least as hard as solving mean-payoff games. For multiple dimensions, we show that (i) the problem with fixed window size is EXPTIME-complete, and (ii) there is no primitive-recursive algorithm to decide the existence of a bounded window.},
author = {Chatterjee, Krishnendu and Doyen, Laurent and Randour, Mickael and Raskin, Jean},
journal = {Information and Computation},
number = {6},
pages = {25 -- 52},
publisher = {Elsevier},
title = {{Looking at mean-payoff and total-payoff through windows}},
doi = {10.1016/j.ic.2015.03.010},
volume = {242},
year = {2015},
}
@article{524,
abstract = {We consider concurrent games played by two players on a finite-state graph, where in every round the players simultaneously choose a move, and the current state along with the joint moves determine the successor state. We study the most fundamental objective for concurrent games, namely, mean-payoff or limit-average objective, where a reward is associated to each transition, and the goal of player 1 is to maximize the long-run average of the rewards, and the objective of player 2 is strictly the opposite (i.e., the games are zero-sum). The path constraint for player 1 could be qualitative, i.e., the mean-payoff is the maximal reward, or arbitrarily close to it; or quantitative, i.e., a given threshold between the minimal and maximal reward. We consider the computation of the almost-sure (resp. positive) winning sets, where player 1 can ensure that the path constraint is satisfied with probability 1 (resp. positive probability). Almost-sure winning with qualitative constraint exactly corresponds to the question of whether there exists a strategy to ensure that the payoff is the maximal reward of the game. Our main results for qualitative path constraints are as follows: (1) we establish qualitative determinacy results that show that for every state either player 1 has a strategy to ensure almost-sure (resp. positive) winning against all player-2 strategies, or player 2 has a spoiling strategy to falsify almost-sure (resp. positive) winning against all player-1 strategies; (2) we present optimal strategy complexity results that precisely characterize the classes of strategies required for almost-sure and positive winning for both players; and (3) we present quadratic time algorithms to compute the almost-sure and the positive winning sets, matching the best known bound of the algorithms for much simpler problems (such as reachability objectives). For quantitative constraints we show that a polynomial time solution for the almost-sure or the positive winning set would imply a solution to a long-standing open problem (of solving the value problem of turn-based deterministic mean-payoff games) that is not known to be solvable in polynomial time.},
author = {Chatterjee, Krishnendu and Ibsen-Jensen, Rasmus},
journal = {Information and Computation},
number = {6},
pages = {2 -- 24},
publisher = {Elsevier},
title = {{Qualitative analysis of concurrent mean payoff games}},
doi = {10.1016/j.ic.2015.03.009},
volume = {242},
year = {2015},
}
@misc{5429,
abstract = {We consider Markov decision processes (MDPs) with multiple limit-average (or mean-payoff) objectives.
There have been two different views: (i) the expectation semantics, where the goal is to optimize the expected mean-payoff objective, and (ii) the satisfaction semantics, where the goal is to maximize the probability of runs such that the mean-payoff value stays above a given vector.
We consider the problem where the goal is to optimize the expectation under the constraint that the satisfaction semantics is ensured, and thus consider a generalization that unifies the existing semantics.
Our problem captures the notion of optimization with respect to strategies that are risk-averse (i.e., ensures certain probabilistic guarantee).
Our main results are algorithms for the decision problem which are always polynomial in the size of the MDP. We also show that an approximation of the Pareto-curve can be computed in time polynomial in the size of the MDP, and the approximation factor, but exponential in the number of dimensions.
Finally, we present a complete characterization of the strategy complexity (in terms of memory bounds and randomization) required to solve our problem.},
author = {Chatterjee, Krishnendu and Komarkova, Zuzana and Kretinsky, Jan},
issn = {2664-1690},
pages = {41},
publisher = {IST Austria},
title = {{Unifying two views on multiple mean-payoff objectives in Markov decision processes}},
doi = {10.15479/AT:IST-2015-318-v1-1},
year = {2015},
}
@misc{5430,
abstract = {We consider the core algorithmic problems related to verification of systems with respect to three classical quantitative properties, namely, the mean- payoff property, the ratio property, and the minimum initial credit for energy property. The algorithmic problem given a graph and a quantitative property asks to compute the optimal value (the infimum value over all traces) from every node of the graph. We consider graphs with constant treewidth, and it is well-known that the control-flow graphs of most programs have constant treewidth. Let n denote the number of nodes of a graph, m the number of edges (for constant treewidth graphs m = O ( n ) ) and W the largest absolute value of the weights. Our main theoretical results are as follows. First, for constant treewidth graphs we present an algorithm that approximates the mean-payoff value within a mul- tiplicative factor of ∊ in time O ( n · log( n/∊ )) and linear space, as compared to the classical algorithms that require quadratic time. Second, for the ratio property we present an algorithm that for constant treewidth graphs works in time O ( n · log( | a · b · n | )) = O ( n · log( n · W )) , when the output is a b , as compared to the previously best known algorithm with running time O ( n 2 · log( n · W )) . Third, for the minimum initial credit problem we show that (i) for general graphs the problem can be solved in O ( n 2 · m ) time and the associated decision problem can be solved in O ( n · m ) time, improving the previous known O ( n 3 · m · log( n · W )) and O ( n 2 · m ) bounds, respectively; and (ii) for constant treewidth graphs we present an algorithm that requires O ( n · log n ) time, improving the previous known O ( n 4 · log( n · W )) bound. We have implemented some of our algorithms and show that they present a significant speedup on standard benchmarks.},
author = {Chatterjee, Krishnendu and Ibsen-Jensen, Rasmus and Pavlogiannis, Andreas},
issn = {2664-1690},
pages = {31},
publisher = {IST Austria},
title = {{Faster algorithms for quantitative verification in constant treewidth graphs}},
doi = {10.15479/AT:IST-2015-319-v1-1},
year = {2015},
}
@misc{5431,
abstract = {We consider finite-state concurrent stochastic games, played by k>=2 players for an infinite number of rounds, where in every round, each player simultaneously and independently of the other players chooses an action, whereafter the successor state is determined by a probability distribution given by the current state and the chosen actions. We consider reachability objectives that given a target set of states require that some state in the target set is visited, and the dual safety objectives that given a target set require that only states in the target set are visited. We are interested in the complexity of stationary strategies measured by their patience, which is defined as the inverse of the smallest non-zero probability employed.
Our main results are as follows: We show that in two-player zero-sum concurrent stochastic games (with reachability objective for one player and the complementary safety objective for the other player): (i) the optimal bound on the patience of optimal and epsilon-optimal strategies, for both players is doubly exponential; and (ii) even in games with a single non-absorbing state exponential (in the number of actions) patience is necessary. In general we study the class of non-zero-sum games admitting epsilon-Nash equilibria. We show that if there is at least one player with reachability objective, then doubly-exponential patience is needed in general for epsilon-Nash equilibrium strategies, whereas in contrast if all players have safety objectives, then the optimal bound on patience for epsilon-Nash equilibrium strategies is only exponential.},
author = {Chatterjee, Krishnendu and Ibsen-Jensen, Rasmus and Hansen, Kristoffer},
issn = {2664-1690},
pages = {25},
publisher = {IST Austria},
title = {{The patience of concurrent stochastic games with safety and reachability objectives}},
doi = {10.15479/AT:IST-2015-322-v1-1},
year = {2015},
}
@misc{5432,
abstract = {Evolution occurs in populations of reproducing individuals. The structure of the population affects the outcome of the evolutionary process. Evolutionary graph theory is a powerful approach to study this phenomenon. There are two graphs. The interaction graph specifies who interacts with whom in the context of evolution.The replacement graph specifies who competes with whom for reproduction.
The vertices of the two graphs are the same, and each vertex corresponds to an individual of the population. A key quantity is the fixation probability of a new mutant. It is defined as the probability that a newly introduced mutant (on a single vertex) generates a lineage of offspring which eventually takes over the entire population of resident individuals. The basic computational questions are as follows: (i) the qualitative question asks whether the fixation probability is positive; and (ii) the quantitative approximation question asks for an approximation of the fixation probability.
Our main results are:
(1) We show that the qualitative question is NP-complete and the quantitative approximation question is #P-hard in the special case when the interaction and the replacement graphs coincide and even with the restriction that the resident individuals do not reproduce (which corresponds to an invading population taking over an empty structure).
(2) We show that in general the qualitative question is PSPACE-complete and the quantitative approximation question is PSPACE-hard and can be solved in exponential time.
},
author = {Chatterjee, Krishnendu and Ibsen-Jensen, Rasmus and Nowak, Martin},
issn = {2664-1690},
pages = {29},
publisher = {IST Austria},
title = {{The complexity of evolutionary games on graphs}},
doi = {10.15479/AT:IST-2015-323-v1-1},
year = {2015},
}
@misc{5435,
abstract = {We consider Markov decision processes (MDPs) with multiple limit-average (or mean-payoff) objectives.
There have been two different views: (i) the expectation semantics, where the goal is to optimize the expected mean-payoff objective, and (ii) the satisfaction semantics, where the goal is to maximize the probability of runs such that the mean-payoff value stays above a given vector.
We consider the problem where the goal is to optimize the expectation under the constraint that the satisfaction semantics is ensured, and thus consider a generalization that unifies the existing semantics. Our problem captures the notion of optimization with respect to strategies that are risk-averse (i.e., ensures certain probabilistic guarantee).
Our main results are algorithms for the decision problem which are always polynomial in the size of the MDP.
We also show that an approximation of the Pareto-curve can be computed in time polynomial in the size of the MDP, and the approximation factor, but exponential in the number of dimensions. Finally, we present a complete characterization of the strategy complexity (in terms of memory bounds and randomization) required to solve our problem.},
author = {Chatterjee, Krishnendu and Komarkova, Zuzana and Kretinsky, Jan},
issn = {2664-1690},
pages = {51},
publisher = {IST Austria},
title = {{Unifying two views on multiple mean-payoff objectives in Markov decision processes}},
doi = {10.15479/AT:IST-2015-318-v2-1},
year = {2015},
}
@misc{5436,
abstract = {Recently there has been a significant effort to handle quantitative properties in formal verification and synthesis. While weighted automata over finite and infinite words provide a natural and flexible framework to express quantitative properties, perhaps surprisingly, some basic system properties such as average response time cannot be expressed using weighted automata, nor in any other know decidable formalism. In this work, we introduce nested weighted automata as a natural extension of weighted automata which makes it possible to express important quantitative properties such as average response time.
In nested weighted automata, a master automaton spins off and collects results from weighted slave automata, each of which computes a quantity along a finite portion of an infinite word. Nested weighted automata can be viewed as the quantitative analogue of monitor automata, which are used in run-time verification. We establish an almost complete decidability picture for the basic decision problems about nested weighted automata, and illustrate their applicability in several domains. In particular, nested weighted automata can be used to decide average response time properties.},
author = {Chatterjee, Krishnendu and Henzinger, Thomas A and Otop, Jan},
issn = {2664-1690},
pages = {29},
publisher = {IST Austria},
title = {{Nested weighted automata}},
doi = {10.15479/AT:IST-2015-170-v2-2},
year = {2015},
}
@misc{5437,
abstract = {We consider the core algorithmic problems related to verification of systems with respect to three classical quantitative properties, namely, the mean-payoff property, the ratio property, and the minimum initial credit for energy property.
The algorithmic problem given a graph and a quantitative property asks to compute the optimal value (the infimum value over all traces) from every node of the graph. We consider graphs with constant treewidth, and it is well-known that the control-flow graphs of most programs have constant treewidth. Let $n$ denote the number of nodes of a graph, $m$ the number of edges (for constant treewidth graphs $m=O(n)$) and $W$ the largest absolute value of the weights.
Our main theoretical results are as follows.
First, for constant treewidth graphs we present an algorithm that approximates the mean-payoff value within a multiplicative factor of $\epsilon$ in time $O(n \cdot \log (n/\epsilon))$ and linear space, as compared to the classical algorithms that require quadratic time. Second, for the ratio property we present an algorithm that for constant treewidth graphs works in time $O(n \cdot \log (|a\cdot b|))=O(n\cdot\log (n\cdot W))$, when the output is $\frac{a}{b}$, as compared to the previously best known algorithm with running time $O(n^2 \cdot \log (n\cdot W))$. Third, for the minimum initial credit problem we show that (i)~for general graphs the problem can be solved in $O(n^2\cdot m)$ time and the associated decision problem can be solved in $O(n\cdot m)$ time, improving the previous known $O(n^3\cdot m\cdot \log (n\cdot W))$ and $O(n^2 \cdot m)$ bounds, respectively; and (ii)~for constant treewidth graphs we present an algorithm that requires $O(n\cdot \log n)$ time, improving the previous known $O(n^4 \cdot \log (n \cdot W))$ bound.
We have implemented some of our algorithms and show that they present a significant speedup on standard benchmarks. },
author = {Chatterjee, Krishnendu and Ibsen-Jensen, Rasmus and Pavlogiannis, Andreas},
issn = {2664-1690},
pages = {27},
publisher = {IST Austria},
title = {{Faster algorithms for quantitative verification in constant treewidth graphs}},
doi = {10.15479/AT:IST-2015-330-v2-1},
year = {2015},
}
@misc{5438,
abstract = {The edit distance between two words w1, w2 is the minimal number of word operations (letter insertions, deletions, and substitutions) necessary to transform w1 to w2. The edit distance generalizes to languages L1, L2, where the edit distance is the minimal number k such that for every word from L1 there exists a word in L2 with edit distance at most k. We study the edit distance computation problem between pushdown automata and their subclasses.
The problem of computing edit distance to a pushdown automaton is undecidable, and in practice, the interesting question is to compute the edit distance from a pushdown automaton (the implementation, a standard model for programs with recursion) to a regular language (the specification). In this work, we present a complete picture of decidability and complexity for deciding whether, for a given threshold k, the edit distance from a pushdown automaton to a finite automaton is at most k. },
author = {Chatterjee, Krishnendu and Henzinger, Thomas A and Ibsen-Jensen, Rasmus and Otop, Jan},
issn = {2664-1690},
pages = {15},
publisher = {IST Austria},
title = {{Edit distance for pushdown automata}},
doi = {10.15479/AT:IST-2015-334-v1-1},
year = {2015},
}
@misc{5440,
abstract = {Evolution occurs in populations of reproducing individuals. The structure of the population affects the outcome of the evolutionary process. Evolutionary graph theory is a powerful approach to study this phenomenon. There are two graphs. The interaction graph specifies who interacts with whom for payoff in the context of evolution. The replacement graph specifies who competes with whom for reproduction. The vertices of the two graphs are the same, and each vertex corresponds to an individual of the population. The fitness (or the reproductive rate) is a non-negative number, and depends on the payoff. A key quantity is the fixation probability of a new mutant. It is defined as the probability that a newly introduced mutant (on a single vertex) generates a lineage of offspring which eventually takes over the entire population of resident individuals. The basic computational questions are as follows: (i) the qualitative question asks whether the fixation probability is positive; and (ii) the quantitative approximation question asks for an approximation of the fixation probability. Our main results are as follows: First, we consider a special case of the general problem, where the residents do not reproduce. We show that the qualitative question is NP-complete, and the quantitative approximation question is #P-complete, and the hardness results hold even in the special case where the interaction and the replacement graphs coincide. Second, we show that in general both the qualitative and the quantitative approximation questions are PSPACE-complete. The PSPACE-hardness result for quantitative approximation holds even when the fitness is always positive.},
author = {Chatterjee, Krishnendu and Ibsen-Jensen, Rasmus and Nowak, Martin},
issn = {2664-1690},
pages = {18},
publisher = {IST Austria},
title = {{The complexity of evolutionary games on graphs}},
doi = {10.15479/AT:IST-2015-323-v2-2},
year = {2015},
}
@misc{5441,
abstract = {We study algorithmic questions for concurrent systems where the transitions are labeled from a complete, closed semiring, and path properties are algebraic with semiring operations. The algebraic path properties can model dataflow analysis problems, the shortest path problem, and many other natural problems that arise in program analysis. We consider that each component of the concurrent system is a graph with constant treewidth, a property satisfied by the controlflow graphs of most programs. We allow for multiple possible queries, which arise naturally in demand driven dataflow analysis. The study of multiple queries allows us to consider the tradeoff between the resource usage of the one-time preprocessing and for each individual query. The traditional approach constructs the product graph of all components and applies the best-known graph algorithm on the product. In this approach, even the answer to a single query requires the transitive closure (i.e., the results of all possible queries), which provides no room for tradeoff between preprocessing and query time. Our main contributions are algorithms that significantly improve the worst-case running time of the traditional approach, and provide various tradeoffs depending on the number of queries. For example, in a concurrent system of two components, the traditional approach requires hexic time in the worst case for answering one query as well as computing the transitive closure, whereas we show that with one-time preprocessing in almost cubic time, each subsequent query can be answered in at most linear time, and even the transitive closure can be computed in almost quartic time. Furthermore, we establish conditional optimality results showing that the worst-case running time of our algorithms cannot be improved without achieving major breakthroughs in graph algorithms (i.e., improving the worst-case bound for the shortest path problem in general graphs). Preliminary experimental results show that our algorithms perform favorably on several benchmarks.},
author = {Chatterjee, Krishnendu and Ibsen-Jensen, Rasmus and Goharshady, Amir and Pavlogiannis, Andreas},
issn = {2664-1690},
pages = {24},
publisher = {IST Austria},
title = {{Algorithms for algebraic path properties in concurrent systems of constant treewidth components}},
doi = {10.15479/AT:IST-2015-340-v1-1},
year = {2015},
}
@misc{5443,
abstract = {POMDPs are standard models for probabilistic planning problems, where an agent interacts with an uncertain environment. We study the problem of almost-sure reachability, where given a set of target states, the question is to decide whether there is a policy to ensure that the target set is reached with probability 1 (almost-surely). While in general the problem is EXPTIME-complete, in many practical cases policies with a small amount of memory suffice. Moreover, the existing solution to the problem is explicit, which first requires to construct explicitly an exponential reduction to a belief-support MDP. In this work, we first study the existence of observation-stationary strategies, which is NP-complete, and then small-memory strategies. We present a symbolic algorithm by an efficient encoding to SAT and using a SAT solver for the problem. We report experimental results demonstrating the scalability of our symbolic (SAT-based) approach.},
author = {Chatterjee, Krishnendu and Chmelik, Martin and Davies, Jessica},
issn = {2664-1690},
pages = {23},
publisher = {IST Austria},
title = {{A symbolic SAT-based algorithm for almost-sure reachability with small strategies in POMDPs}},
doi = {10.15479/AT:IST-2015-325-v2-1},
year = {2015},
}
@misc{5444,
abstract = {A comprehensive understanding of the clonal evolution of cancer is critical for understanding neoplasia. Genome-wide sequencing data enables evolutionary studies at unprecedented depth. However, classical phylogenetic methods often struggle with noisy sequencing data of impure DNA samples and fail to detect subclones that have different evolutionary trajectories. We have developed a tool, called Treeomics, that allows us to reconstruct the phylogeny of a cancer with commonly available sequencing technologies. Using Bayesian inference and Integer Linear Programming, robust phylogenies consistent with the biological processes underlying cancer evolution were obtained for pancreatic, ovarian, and prostate cancers. Furthermore, Treeomics correctly identified sequencing artifacts such as those resulting from low statistical power; nearly 7% of variants were misclassified by conventional statistical methods. These artifacts can skew phylogenies by creating illusory tumor heterogeneity among distinct samples. Importantly, we show that the evolutionary trees generated with Treeomics are mathematically optimal.},
author = {Reiter, Johannes and Makohon-Moore, Alvin and Gerold, Jeffrey and Bozic, Ivana and Chatterjee, Krishnendu and Iacobuzio-Donahue, Christine and Vogelstein, Bert and Nowak, Martin},
issn = {2664-1690},
pages = {25},
publisher = {IST Austria},
title = {{Reconstructing robust phylogenies of metastatic cancers}},
doi = {10.15479/AT:IST-2015-399-v1-1},
year = {2015},
}
@misc{5549,
abstract = {This repository contains the experimental part of the CAV 2015 publication Counterexample Explanation by Learning Small Strategies in Markov Decision Processes.
We extended the probabilistic model checker PRISM to represent strategies of Markov Decision Processes as Decision Trees.
The archive contains a java executable version of the extended tool (prism_dectree.jar) together with a few examples of the PRISM benchmark library.
To execute the program, please have a look at the README.txt, which provides instructions and further information on the archive.
The archive contains scripts that (if run often enough) reproduces the data presented in the publication.},
author = {Fellner, Andreas},
keywords = {Markov Decision Process, Decision Tree, Probabilistic Verification, Counterexample Explanation},
publisher = {IST Austria},
title = {{Experimental part of CAV 2015 publication: Counterexample Explanation by Learning Small Strategies in Markov Decision Processes}},
doi = {10.15479/AT:ISTA:28},
year = {2015},
}
@article{1559,
abstract = {There are deep, yet largely unexplored, connections between computer science and biology. Both disciplines examine how information proliferates in time and space. Central results in computer science describe the complexity of algorithms that solve certain classes of problems. An algorithm is deemed efficient if it can solve a problem in polynomial time, which means the running time of the algorithm is a polynomial function of the length of the input. There are classes of harder problems for which the fastest possible algorithm requires exponential time. Another criterion is the space requirement of the algorithm. There is a crucial distinction between algorithms that can find a solution, verify a solution, or list several distinct solutions in given time and space. The complexity hierarchy that is generated in this way is the foundation of theoretical computer science. Precise complexity results can be notoriously difficult. The famous question whether polynomial time equals nondeterministic polynomial time (i.e., P = NP) is one of the hardest open problems in computer science and all of mathematics. Here, we consider simple processes of ecological and evolutionary spatial dynamics. The basic question is: What is the probability that a new invader (or a new mutant)will take over a resident population?We derive precise complexity results for a variety of scenarios. We therefore show that some fundamental questions in this area cannot be answered by simple equations (assuming that P is not equal to NP).},
author = {Ibsen-Jensen, Rasmus and Chatterjee, Krishnendu and Nowak, Martin},
journal = {PNAS},
number = {51},
pages = {15636 -- 15641},
publisher = {National Academy of Sciences},
title = {{Computational complexity of ecological and evolutionary spatial dynamics}},
doi = {10.1073/pnas.1511366112},
volume = {112},
year = {2015},
}
@inproceedings{1594,
abstract = {Quantitative extensions of temporal logics have recently attracted significant attention. In this work, we study frequency LTL (fLTL), an extension of LTL which allows to speak about frequencies of events along an execution. Such an extension is particularly useful for probabilistic systems that often cannot fulfil strict qualitative guarantees on the behaviour. It has been recently shown that controller synthesis for Markov decision processes and fLTL is decidable when all the bounds on frequencies are 1. As a step towards a complete quantitative solution, we show that the problem is decidable for the fragment fLTL\GU, where U does not occur in the scope of G (but still F can). Our solution is based on a novel translation of such quantitative formulae into equivalent deterministic automata.},
author = {Forejt, Vojtěch and Krčál, Jan and Kretinsky, Jan},
location = {Suva, Fiji},
pages = {162 -- 177},
publisher = {Springer},
title = {{Controller synthesis for MDPs and frequency LTL\GU}},
doi = {10.1007/978-3-662-48899-7_12},
volume = {9450},
year = {2015},
}