@inproceedings{1438,
abstract = {In this paper, we consider termination of probabilistic programs with real-valued variables. The questions concerned are: (a) qualitative ones that ask (i) whether the program terminates with probability 1 (almost-sure termination) and (ii) whether the expected termination time is finite (finite termination); (b) quantitative ones that ask (i) to approximate the expected termination time (expectation problem) and (ii) to compute a bound B such that the probability to terminate after B steps decreases exponentially (concentration problem). To solve these questions, we utilize the notion of ranking supermartingales which is a powerful approach for proving termination of probabilistic programs. In detail, we focus on algorithmic synthesis of linear ranking-supermartingales over affine probabilistic programs (APP's) with both angelic and demonic non-determinism. An important subclass of APP's is LRAPP which is defined as the class of all APP's over which a linear ranking-supermartingale exists. Our main contributions are as follows. Firstly, we show that the membership problem of LRAPP (i) can be decided in polynomial time for APP's with at most demonic non-determinism, and (ii) is NP-hard and in PSPACE for APP's with angelic non-determinism; moreover, the NP-hardness result holds already for APP's without probability and demonic non-determinism. Secondly, we show that the concentration problem over LRAPP can be solved in the same complexity as for the membership problem of LRAPP. Finally, we show that the expectation problem over LRAPP can be solved in 2EXPTIME and is PSPACE-hard even for APP's without probability and non-determinism (i.e., deterministic programs). Our experimental results demonstrate the effectiveness of our approach to answer the qualitative and quantitative questions over APP's with at most demonic non-determinism.},
author = {Chatterjee, Krishnendu and Fu, Hongfei and Novotny, Petr and Hasheminezhad, Rouzbeh},
location = {St. Petersburg, FL, USA},
pages = {327 -- 342},
publisher = {ACM},
title = {{Algorithmic analysis of qualitative and quantitative termination problems for affine probabilistic programs}},
doi = {10.1145/2837614.2837639},
volume = {20-22},
year = {2016},
}
@article{1477,
abstract = {We consider partially observable Markov decision processes (POMDPs) with ω-regular conditions specified as parity objectives. The class of ω-regular languages provides a robust specification language to express properties in verification, and parity objectives are canonical forms to express them. The qualitative analysis problem given a POMDP and a parity objective asks whether there is a strategy to ensure that the objective is satisfied with probability 1 (resp. positive probability). While the qualitative analysis problems are undecidable even for special cases of parity objectives, we establish decidability (with optimal complexity) for POMDPs with all parity objectives under finite-memory strategies. We establish optimal (exponential) memory bounds and EXPTIME-completeness of the qualitative analysis problems under finite-memory strategies for POMDPs with parity objectives. We also present a practical approach, where we design heuristics to deal with the exponential complexity, and have applied our implementation on a number of POMDP examples.},
author = {Chatterjee, Krishnendu and Chmelik, Martin and Tracol, Mathieu},
journal = {Journal of Computer and System Sciences},
number = {5},
pages = {878 -- 911},
publisher = {Elsevier},
title = {{What is decidable about partially observable Markov decision processes with ω-regular objectives}},
doi = {10.1016/j.jcss.2016.02.009},
volume = {82},
year = {2016},
}
@article{1518,
abstract = {The inference of demographic history from genome data is hindered by a lack of efficient computational approaches. In particular, it has proved difficult to exploit the information contained in the distribution of genealogies across the genome. We have previously shown that the generating function (GF) of genealogies can be used to analytically compute likelihoods of demographic models from configurations of mutations in short sequence blocks (Lohse et al. 2011). Although the GF has a simple, recursive form, the size of such likelihood calculations explodes quickly with the number of individuals and applications of this framework have so far been mainly limited to small samples (pairs and triplets) for which the GF can be written by hand. Here we investigate several strategies for exploiting the inherent symmetries of the coalescent. In particular, we show that the GF of genealogies can be decomposed into a set of equivalence classes that allows likelihood calculations from nontrivial samples. Using this strategy, we automated blockwise likelihood calculations for a general set of demographic scenarios in Mathematica. These histories may involve population size changes, continuous migration, discrete divergence, and admixture between multiple populations. To give a concrete example, we calculate the likelihood for a model of isolation with migration (IM), assuming two diploid samples without phase and outgroup information. We demonstrate the new inference scheme with an analysis of two individual butterfly genomes from the sister species Heliconius melpomene rosina and H. cydno.},
author = {Lohse, Konrad and Chmelik, Martin and Martin, Simon and Barton, Nicholas H},
journal = {Genetics},
number = {2},
pages = {775 -- 786},
publisher = {Genetics Society of America},
title = {{Efficient strategies for calculating blockwise likelihoods under the coalescent}},
doi = {10.1534/genetics.115.183814},
volume = {202},
year = {2016},
}
@article{1529,
abstract = {We consider partially observable Markov decision processes (POMDPs) with a set of target states and an integer cost associated with every transition. The optimization objective we study asks to minimize the expected total cost of reaching a state in the target set, while ensuring that the target set is reached almost surely (with probability 1). We show that for integer costs approximating the optimal cost is undecidable. For positive costs, our results are as follows: (i) we establish matching lower and upper bounds for the optimal cost, both double exponential in the POMDP state space size; (ii) we show that the problem of approximating the optimal cost is decidable and present approximation algorithms developing on the existing algorithms for POMDPs with finite-horizon objectives. While the worst-case running time of our algorithm is double exponential, we also present efficient stopping criteria for the algorithm and show experimentally that it performs well in many examples of interest.},
author = {Chatterjee, Krishnendu and Chmelik, Martin and Gupta, Raghav and Kanodia, Ayush},
journal = {Artificial Intelligence},
pages = {26 -- 48},
publisher = {Elsevier},
title = {{Optimal cost almost-sure reachability in POMDPs}},
doi = {10.1016/j.artint.2016.01.007},
volume = {234},
year = {2016},
}
@inproceedings{1068,
abstract = {Games on graphs provide the appropriate framework to study several central problems in computer science, such as verification and synthesis of reactive systems. One of the most basic objectives for games on graphs is the liveness (or Büchi) objective that given a target set of vertices requires that some vertex in the target set is visited infinitely often. We study generalized Büchi objectives (i.e., conjunction of liveness objectives), and implications between two generalized Büchi objectives (known as GR(1) objectives), that arise in numerous applications in computer-aided verification. We present improved algorithms and conditional super-linear lower bounds based on widely believed assumptions about the complexity of (A1) combinatorial Boolean matrix multiplication and (A2) CNF-SAT. We consider graph games with n vertices, m edges, and generalized Büchi objectives with k conjunctions. First, we present an algorithm with running time O(k*n^2), improving the previously known O(k*n*m) and O(k^2*n^2) worst-case bounds. Our algorithm is optimal for dense graphs under (A1). Second, we show that the basic algorithm for the problem is optimal for sparse graphs when the target sets have constant size under (A2). Finally, we consider GR(1) objectives, with k_1 conjunctions in the antecedent and k_2 conjunctions in the consequent, and present an O(k_1 k_2 n^{2.5})-time algorithm, improving the previously known O(k_1*k_2*n*m)-time algorithm for m > n^{1.5}. },
author = {Chatterjee, Krishnendu and Dvorák, Wolfgang and Henzinger, Monika and Loitzenbauer, Veronika},
location = {Krakow, Poland},
publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik},
title = {{Conditionally optimal algorithms for generalized Büchi Games}},
doi = {10.4230/LIPIcs.MFCS.2016.25},
volume = {58},
year = {2016},
}