@article{512,
abstract = {The fixation probability is the probability that a new mutant introduced in a homogeneous population eventually takes over the entire population. The fixation probability is a fundamental quantity of natural selection, and known to depend on the population structure. Amplifiers of natural selection are population structures which increase the fixation probability of advantageous mutants, as compared to the baseline case of well-mixed populations. In this work we focus on symmetric population structures represented as undirected graphs. In the regime of undirected graphs, the strongest amplifier known has been the Star graph, and the existence of undirected graphs with stronger amplification properties has remained open for over a decade. In this work we present the Comet and Comet-swarm families of undirected graphs. We show that for a range of fitness values of the mutants, the Comet and Cometswarm graphs have fixation probability strictly larger than the fixation probability of the Star graph, for fixed population size and at the limit of large populations, respectively. },
author = {Pavlogiannis, Andreas and Tkadlec, Josef and Chatterjee, Krishnendu and Nowak, Martin},
issn = {20452322},
journal = {Scientific Reports},
number = {1},
publisher = {Nature Publishing Group},
title = {{Amplification on undirected population structures: Comets beat stars}},
doi = {10.1038/s41598-017-00107-w},
volume = {7},
year = {2017},
}
@misc{5455,
abstract = {A fundamental algorithmic problem at the heart of static analysis is Dyck reachability. The input is a graphwhere the edges are labeled with different types of opening and closing parentheses, and the reachabilityinformation is computed via paths whose parentheses are properly matched. We present new results for Dyckreachability problems with applications to alias analysis and data-dependence analysis. Our main contributions,that include improved upper bounds as well as lower bounds that establish optimality guarantees, are asfollows:First, we consider Dyck reachability on bidirected graphs, which is the standard way of performing field-sensitive points-to analysis. Given a bidirected graph withnnodes andmedges, we present: (i) an algorithmwith worst-case running timeO(m+n·α(n)), whereα(n)is the inverse Ackermann function, improving thepreviously knownO(n2)time bound; (ii) a matching lower bound that shows that our algorithm is optimalwrt to worst-case complexity; and (iii) an optimal average-case upper bound ofO(m)time, improving thepreviously knownO(m·logn)bound.Second, we consider the problem of context-sensitive data-dependence analysis, where the task is to obtainanalysis summaries of library code in the presence of callbacks. Our algorithm preprocesses libraries in almostlinear time, after which the contribution of the library in the complexity of the client analysis is only linear,and only wrt the number of call sites.Third, we prove that combinatorial algorithms for Dyck reachability on general graphs with truly sub-cubic bounds cannot be obtained without obtaining sub-cubic combinatorial algorithms for Boolean MatrixMultiplication, which is a long-standing open problem. Thus we establish that the existing combinatorialalgorithms for Dyck reachability are (conditionally) optimal for general graphs. We also show that the samehardness holds for graphs of constant treewidth.Finally, we provide a prototype implementation of our algorithms for both alias analysis and data-dependenceanalysis. Our experimental evaluation demonstrates that the new algorithms significantly outperform allexisting methods on the two problems, over real-world benchmarks.},
author = {Chatterjee, Krishnendu and Choudhary, Bhavya and Pavlogiannis, Andreas},
issn = {2664-1690},
pages = {37},
publisher = {IST Austria},
title = {{Optimal Dyck reachability for data-dependence and alias analysis}},
doi = {10.15479/AT:IST-2017-870-v1-1},
year = {2017},
}
@misc{5456,
abstract = {We present a new dynamic partial-order reduction method for stateless model checking of concurrent programs. A common approach for exploring program behaviors relies on enumerating the traces of the program, without storing the visited states (aka stateless exploration). As the number of distinct traces grows exponentially, dynamic partial-order reduction (DPOR) techniques have been successfully used to partition the space of traces into equivalence classes (Mazurkiewicz partitioning), with the goal of exploring only few representative traces from each class.
We introduce a new equivalence on traces under sequential consistency semantics, which we call the observation equivalence. Two traces are observationally equivalent if every read event observes the same write event in both traces. While the traditional Mazurkiewicz equivalence is control-centric, our new definition is data-centric. We show that our observation equivalence is coarser than the Mazurkiewicz equivalence, and in many cases even exponentially coarser. We devise a DPOR exploration of the trace space, called data-centric DPOR, based on the observation equivalence.
1. For acyclic architectures, our algorithm is guaranteed to explore exactly one representative trace from each observation class, while spending polynomial time per class. Hence, our algorithm is optimal wrt the observation equivalence, and in several cases explores exponentially fewer traces than any enumerative method based on the Mazurkiewicz equivalence.
2. For cyclic architectures, we consider an equivalence between traces which is finer than the observation equivalence; but coarser than the Mazurkiewicz equivalence, and in some cases is exponentially coarser. Our data-centric DPOR algorithm remains optimal under this trace equivalence.
Finally, we perform a basic experimental comparison between the existing Mazurkiewicz-based DPOR and our data-centric DPOR on a set of academic benchmarks. Our results show a significant reduction in both running time and the number of explored equivalence classes.},
author = {Chalupa, Marek and Chatterjee, Krishnendu and Pavlogiannis, Andreas and Sinha, Nishant and Vaidya, Kapil},
issn = {2664-1690},
pages = {36},
publisher = {IST Austria},
title = {{Data-centric dynamic partial order reduction}},
doi = {10.15479/AT:IST-2017-872-v1-1},
year = {2017},
}
@inproceedings{551,
abstract = {Evolutionary graph theory studies the evolutionary dynamics in a population structure given as a connected graph. Each node of the graph represents an individual of the population, and edges determine how offspring are placed. We consider the classical birth-death Moran process where there are two types of individuals, namely, the residents with fitness 1 and mutants with fitness r. The fitness indicates the reproductive strength. The evolutionary dynamics happens as follows: in the initial step, in a population of all resident individuals a mutant is introduced, and then at each step, an individual is chosen proportional to the fitness of its type to reproduce, and the offspring replaces a neighbor uniformly at random. The process stops when all individuals are either residents or mutants. The probability that all individuals in the end are mutants is called the fixation probability, which is a key factor in the rate of evolution. We consider the problem of approximating the fixation probability. The class of algorithms that is extremely relevant for approximation of the fixation probabilities is the Monte-Carlo simulation of the process. Previous results present a polynomial-time Monte-Carlo algorithm for undirected graphs when r is given in unary. First, we present a simple modification: instead of simulating each step, we discard ineffective steps, where no node changes type (i.e., either residents replace residents, or mutants replace mutants). Using the above simple modification and our result that the number of effective steps is concentrated around the expected number of effective steps, we present faster polynomial-time Monte-Carlo algorithms for undirected graphs. Our algorithms are always at least a factor O(n2/ log n) faster as compared to the previous algorithms, where n is the number of nodes, and is polynomial even if r is given in binary. We also present lower bounds showing that the upper bound on the expected number of effective steps we present is asymptotically tight for undirected graphs. },
author = {Chatterjee, Krishnendu and Ibsen-Jensen, Rasmus and Nowak, Martin},
booktitle = {Leibniz International Proceedings in Informatics},
isbn = {978-395977046-0},
location = {Aalborg, Denmark},
publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik},
title = {{Faster Monte Carlo algorithms for fixation probability of the Moran process on undirected graphs}},
doi = {10.4230/LIPIcs.MFCS.2017.61},
volume = {83},
year = {2017},
}
@inproceedings{552,
abstract = {Graph games provide the foundation for modeling and synthesis of reactive processes. Such games are played over graphs where the vertices are controlled by two adversarial players. We consider graph games where the objective of the first player is the conjunction of a qualitative objective (specified as a parity condition) and a quantitative objective (specified as a meanpayoff condition). There are two variants of the problem, namely, the threshold problem where the quantitative goal is to ensure that the mean-payoff value is above a threshold, and the value problem where the quantitative goal is to ensure the optimal mean-payoff value; in both cases ensuring the qualitative parity objective. The previous best-known algorithms for game graphs with n vertices, m edges, parity objectives with d priorities, and maximal absolute reward value W for mean-payoff objectives, are as follows: O(nd+1 . m . w) for the threshold problem, and O(nd+2 · m · W) for the value problem. Our main contributions are faster algorithms, and the running times of our algorithms are as follows: O(nd-1 · m ·W) for the threshold problem, and O(nd · m · W · log(n · W)) for the value problem. For mean-payoff parity objectives with two priorities, our algorithms match the best-known bounds of the algorithms for mean-payoff games (without conjunction with parity objectives). Our results are relevant in synthesis of reactive systems with both functional requirement (given as a qualitative objective) and performance requirement (given as a quantitative objective).},
author = {Chatterjee, Krishnendu and Henzinger, Monika and Svozil, Alexander},
booktitle = {Leibniz International Proceedings in Informatics},
isbn = {978-395977046-0},
location = {Aalborg, Denmark},
publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik},
title = {{Faster algorithms for mean payoff parity games}},
doi = {10.4230/LIPIcs.MFCS.2017.39},
volume = {83},
year = {2017},
}
@inproceedings{553,
abstract = {We consider two player, zero-sum, finite-state concurrent reachability games, played for an infinite number of rounds, where in every round, each player simultaneously and independently of the other players chooses an action, whereafter the successor state is determined by a probability distribution given by the current state and the chosen actions. Player 1 wins iff a designated goal state is eventually visited. We are interested in the complexity of stationary strategies measured by their patience, which is defined as the inverse of the smallest non-zero probability employed. Our main results are as follows: We show that: (i) the optimal bound on the patience of optimal and -optimal strategies, for both players is doubly exponential; and (ii) even in games with a single non-absorbing state exponential (in the number of actions) patience is necessary. },
author = {Chatterjee, Krishnendu and Hansen, Kristofer and Ibsen-Jensen, Rasmus},
booktitle = {Leibniz International Proceedings in Informatics},
isbn = {978-395977046-0},
location = {Aalborg, Denmark},
publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik},
title = {{Strategy complexity of concurrent safety games}},
doi = {10.4230/LIPIcs.MFCS.2017.55},
volume = {83},
year = {2017},
}
@misc{5559,
abstract = {Strong amplifiers of natural selection},
author = {Pavlogiannis, Andreas and Tkadlec, Josef and Chatterjee, Krishnendu and Nowak , Martin},
keywords = {natural selection},
publisher = {IST Austria},
title = {{Strong amplifiers of natural selection}},
doi = {10.15479/AT:ISTA:51},
year = {2017},
}
@inbook{625,
abstract = {In the analysis of reactive systems a quantitative objective assigns a real value to every trace of the system. The value decision problem for a quantitative objective requires a trace whose value is at least a given threshold, and the exact value decision problem requires a trace whose value is exactly the threshold. We compare the computational complexity of the value and exact value decision problems for classical quantitative objectives, such as sum, discounted sum, energy, and mean-payoff for two standard models of reactive systems, namely, graphs and graph games.},
author = {Chatterjee, Krishnendu and Doyen, Laurent and Henzinger, Thomas A},
booktitle = {Models, Algorithms, Logics and Tools},
editor = {Aceto, Luca and Bacci, Giorgio and Ingólfsdóttir, Anna and Legay, Axel and Mardare, Radu},
issn = {03029743},
pages = {367 -- 381},
publisher = {Springer},
title = {{The cost of exactness in quantitative reachability}},
doi = {10.1007/978-3-319-63121-9_18},
volume = {10460},
year = {2017},
}
@inproceedings{628,
abstract = {We consider the problem of developing automated techniques for solving recurrence relations to aid the expected-runtime analysis of programs. The motivation is that several classical textbook algorithms have quite efficient expected-runtime complexity, whereas the corresponding worst-case bounds are either inefficient (e.g., Quick-Sort), or completely ineffective (e.g., Coupon-Collector). Since the main focus of expected-runtime analysis is to obtain efficient bounds, we consider bounds that are either logarithmic, linear or almost-linear (O(log n), O(n), O(n · log n), respectively, where n represents the input size). Our main contribution is an efficient (simple linear-time algorithm) sound approach for deriving such expected-runtime bounds for the analysis of recurrence relations induced by randomized algorithms. The experimental results show that our approach can efficiently derive asymptotically optimal expected-runtime bounds for recurrences of classical randomized algorithms, including Randomized-Search, Quick-Sort, Quick-Select, Coupon-Collector, where the worst-case bounds are either inefficient (such as linear as compared to logarithmic expected-runtime complexity, or quadratic as compared to linear or almost-linear expected-runtime complexity), or ineffective.},
author = {Chatterjee, Krishnendu and Fu, Hongfei and Murhekar, Aniket},
editor = {Majumdar, Rupak and Kunčak, Viktor},
isbn = {978-331963386-2},
location = {Heidelberg, Germany},
pages = {118 -- 139},
publisher = {Springer},
title = {{Automated recurrence analysis for almost linear expected runtime bounds}},
doi = {10.1007/978-3-319-63387-9_6},
volume = {10426},
year = {2017},
}
@inproceedings{645,
abstract = {Markov decision processes (MDPs) are standard models for probabilistic systems with non-deterministic behaviours. Long-run average rewards provide a mathematically elegant formalism for expressing long term performance. Value iteration (VI) is one of the simplest and most efficient algorithmic approaches to MDPs with other properties, such as reachability objectives. Unfortunately, a naive extension of VI does not work for MDPs with long-run average rewards, as there is no known stopping criterion. In this work our contributions are threefold. (1) We refute a conjecture related to stopping criteria for MDPs with long-run average rewards. (2) We present two practical algorithms for MDPs with long-run average rewards based on VI. First, we show that a combination of applying VI locally for each maximal end-component (MEC) and VI for reachability objectives can provide approximation guarantees. Second, extending the above approach with a simulation-guided on-demand variant of VI, we present an anytime algorithm that is able to deal with very large models. (3) Finally, we present experimental results showing that our methods significantly outperform the standard approaches on several benchmarks.},
author = {Ashok, Pranav and Chatterjee, Krishnendu and Daca, Przemyslaw and Kretinsky, Jan and Meggendorfer, Tobias},
editor = {Majumdar, Rupak and Kunčak, Viktor},
isbn = {978-331963386-2},
location = {Heidelberg, Germany},
pages = {201 -- 221},
publisher = {Springer},
title = {{Value iteration for long run average reward in markov decision processes}},
doi = {10.1007/978-3-319-63387-9_10},
volume = {10426},
year = {2017},
}
@inproceedings{6519,
abstract = {Graph games with omega-regular winning conditions provide a mathematical framework to analyze a wide range of problems in the analysis of reactive systems and programs (such as the synthesis of reactive systems, program repair, and the verification of branching time properties). Parity conditions are canonical forms to specify omega-regular winning conditions. Graph games with parity conditions are equivalent to mu-calculus model checking, and thus a very important algorithmic problem. Symbolic algorithms are of great significance because they provide scalable algorithms for the analysis of large finite-state systems, as well as algorithms for the analysis of infinite-state systems with finite quotient. A set-based symbolic algorithm uses the basic set operations and the one-step predecessor operators. We consider graph games with n vertices and parity conditions with c priorities (equivalently, a mu-calculus formula with c alternations of least and greatest fixed points). While many explicit algorithms exist for graph games with parity conditions, for set-based symbolic algorithms there are only two algorithms (notice that we use space to refer to the number of sets stored by a symbolic algorithm): (a) the basic algorithm that requires O(n^c) symbolic operations and linear space; and (b) an improved algorithm that requires O(n^{c/2+1}) symbolic operations but also O(n^{c/2+1}) space (i.e., exponential space). In this work we present two set-based symbolic algorithms for parity games: (a) our first algorithm requires O(n^{c/2+1}) symbolic operations and only requires linear space; and (b) developing on our first algorithm, we present an algorithm that requires O(n^{c/3+1}) symbolic operations and only linear space. We also present the first linear space set-based symbolic algorithm for parity games that requires at most a sub-exponential number of symbolic operations. },
author = {Chatterjee, Krishnendu and Dvorák, Wolfgang and Henzinger, Monika and Loitzenbauer, Veronika},
location = {Stockholm, Sweden},
publisher = {Schloss Dagstuhl -Leibniz-Zentrum fuer Informatik},
title = {{Improved set-based symbolic algorithms for parity games}},
doi = {10.4230/LIPICS.CSL.2017.18},
volume = {82},
year = {2017},
}
@article{653,
abstract = {The extent of heterogeneity among driver gene mutations present in naturally occurring metastases - that is, treatment-naive metastatic disease - is largely unknown. To address this issue, we carried out 60× whole-genome sequencing of 26 metastases from four patients with pancreatic cancer. We found that identical mutations in known driver genes were present in every metastatic lesion for each patient studied. Passenger gene mutations, which do not have known or predicted functional consequences, accounted for all intratumoral heterogeneity. Even with respect to these passenger mutations, our analysis suggests that the genetic similarity among the founding cells of metastases was higher than that expected for any two cells randomly taken from a normal tissue. The uniformity of known driver gene mutations among metastases in the same patient has critical and encouraging implications for the success of future targeted therapies in advanced-stage disease.},
author = {Makohon Moore, Alvin and Zhang, Ming and Reiter, Johannes and Božić, Ivana and Allen, Benjamin and Kundu, Deepanjan and Chatterjee, Krishnendu and Wong, Fay and Jiao, Yuchen and Kohutek, Zachary and Hong, Jungeui and Attiyeh, Marc and Javier, Breanna and Wood, Laura and Hruban, Ralph and Nowak, Martin and Papadopoulos, Nickolas and Kinzler, Kenneth and Vogelstein, Bert and Iacobuzio Donahue, Christine},
issn = {10614036},
journal = {Nature Genetics},
number = {3},
pages = {358 -- 366},
publisher = {Nature Publishing Group},
title = {{Limited heterogeneity of known driver gene mutations among the metastases of individual patients with pancreatic cancer}},
doi = {10.1038/ng.3764},
volume = {49},
year = {2017},
}
@article{671,
abstract = {Humans routinely use conditionally cooperative strategies when interacting in repeated social dilemmas. They are more likely to cooperate if others cooperated before, and are ready to retaliate if others defected. To capture the emergence of reciprocity, most previous models consider subjects who can only choose from a restricted set of representative strategies, or who react to the outcome of the very last round only. As players memorize more rounds, the dimension of the strategy space increases exponentially. This increasing computational complexity renders simulations for individuals with higher cognitive abilities infeasible, especially if multiplayer interactions are taken into account. Here, we take an axiomatic approach instead. We propose several properties that a robust cooperative strategy for a repeated multiplayer dilemma should have. These properties naturally lead to a unique class of cooperative strategies, which contains the classical Win-Stay Lose-Shift rule as a special case. A comprehensive numerical analysis for the prisoner's dilemma and for the public goods game suggests that strategies of this class readily evolve across various memory-n spaces. Our results reveal that successful strategies depend not only on how cooperative others were in the past but also on the respective context of cooperation.},
author = {Hilbe, Christian and Martinez, Vaquero and Chatterjee, Krishnendu and Nowak, Martin},
issn = {00278424},
journal = {PNAS},
number = {18},
pages = {4715 -- 4720},
publisher = {National Academy of Sciences},
title = {{Memory-n strategies of direct reciprocity}},
doi = {10.1073/pnas.1621239114},
volume = {114},
year = {2017},
}
@article{681,
abstract = {Two-player games on graphs provide the theoretical framework for many important problems such as reactive synthesis. While the traditional study of two-player zero-sum games has been extended to multi-player games with several notions of equilibria, they are decidable only for perfect-information games, whereas several applications require imperfect-information. In this paper we propose a new notion of equilibria, called doomsday equilibria, which is a strategy profile where all players satisfy their own objective, and if any coalition of players deviates and violates even one of the players' objective, then the objective of every player is violated. We present algorithms and complexity results for deciding the existence of doomsday equilibria for various classes of ω-regular objectives, both for imperfect-information games, and for perfect-information games. We provide optimal complexity bounds for imperfect-information games, and in most cases for perfect-information games.},
author = {Chatterjee, Krishnendu and Doyen, Laurent and Filiot, Emmanuel and Raskin, Jean},
issn = {08905401},
journal = {Information and Computation},
pages = {296 -- 315},
publisher = {Elsevier},
title = {{Doomsday equilibria for omega-regular games}},
doi = {10.1016/j.ic.2016.10.012},
volume = {254},
year = {2017},
}
@article{684,
abstract = {We generalize winning conditions in two-player games by adding a structural acceptance condition called obligations. Obligations are orthogonal to the linear winning conditions that define whether a play is winning. Obligations are a declaration that player 0 can achieve a certain value from a configuration. If the obligation is met, the value of that configuration for player 0 is 1. We define the value in such games and show that obligation games are determined. For Markov chains with Borel objectives and obligations, and finite turn-based stochastic parity games with obligations we give an alternative and simpler characterization of the value function. Based on this simpler definition we show that the decision problem of winning finite turn-based stochastic parity games with obligations is in NP∩co-NP. We also show that obligation games provide a game framework for reasoning about p-automata. © 2017 The Association for Symbolic Logic.},
author = {Chatterjee, Krishnendu and Piterman, Nir},
issn = {Obligation blackwell games and p-automata},
journal = {Journal of Symbolic Logic},
number = {2},
pages = {420 -- 452},
publisher = {Cambridge University Press},
title = {{Obligation blackwell games and p-automata}},
doi = {10.1017/jsl.2016.71},
volume = {82},
year = {2017},
}
@article{699,
abstract = {In antagonistic symbioses, such as host–parasite interactions, one population’s success is the other’s loss. In mutualistic symbioses, such as division of labor, both parties can gain, but they might have different preferences over the possible mutualistic arrangements. The rates of evolution of the two populations in a symbiosis are important determinants of which population will be more successful: Faster evolution is thought to be favored in antagonistic symbioses (the “Red Queen effect”), but disfavored in certain mutualistic symbioses (the “Red King effect”). However, it remains unclear which biological parameters drive these effects. Here, we analyze the effects of the various determinants of evolutionary rate: generation time, mutation rate, population size, and the intensity of natural selection. Our main results hold for the case where mutation is infrequent. Slower evolution causes a long-term advantage in an important class of mutualistic interactions. Surprisingly, less intense selection is the strongest driver of this Red King effect, whereas relative mutation rates and generation times have little effect. In antagonistic interactions, faster evolution by any means is beneficial. Our results provide insight into the demographic evolution of symbionts. },
author = {Veller, Carl and Hayward, Laura and Nowak, Martin and Hilbe, Christian},
issn = {00278424},
journal = {PNAS},
number = {27},
pages = {E5396 -- E5405},
publisher = {National Academy of Sciences},
title = {{The red queen and king in finite populations}},
doi = {10.1073/pnas.1702020114},
volume = {114},
year = {2017},
}
@inproceedings{711,
abstract = {Nested weighted automata (NWA) present a robust and convenient automata-theoretic formalism for quantitative specifications. Previous works have considered NWA that processed input words only in the forward direction. It is natural to allow the automata to process input words backwards as well, for example, to measure the maximal or average time between a response and the preceding request. We therefore introduce and study bidirectional NWA that can process input words in both directions. First, we show that bidirectional NWA can express interesting quantitative properties that are not expressible by forward-only NWA. Second, for the fundamental decision problems of emptiness and universality, we establish decidability and complexity results for the new framework which match the best-known results for the special case of forward-only NWA. Thus, for NWA, the increased expressiveness of bidirectionality is achieved at no additional computational complexity. This is in stark contrast to the unweighted case, where bidirectional finite automata are no more expressive but exponentially more succinct than their forward-only counterparts.},
author = {Chatterjee, Krishnendu and Henzinger, Thomas A and Otop, Jan},
issn = {18688969},
location = {Berlin, Germany},
publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik},
title = {{Bidirectional nested weighted automata}},
doi = {10.4230/LIPIcs.CONCUR.2017.5},
volume = {85},
year = {2017},
}
@article{1294,
abstract = {We study controller synthesis problems for finite-state Markov decision processes, where the objective is to optimize the expected mean-payoff performance and stability (also known as variability in the literature). We argue that the basic notion of expressing the stability using the statistical variance of the mean payoff is sometimes insufficient, and propose an alternative definition. We show that a strategy ensuring both the expected mean payoff and the variance below given bounds requires randomization and memory, under both the above definitions. We then show that the problem of finding such a strategy can be expressed as a set of constraints.},
author = {Brázdil, Tomáš and Chatterjee, Krishnendu and Forejt, Vojtěch and Kučera, Antonín},
journal = {Journal of Computer and System Sciences},
pages = {144 -- 170},
publisher = {Elsevier},
title = {{Trading performance for stability in Markov decision processes}},
doi = {10.1016/j.jcss.2016.09.009},
volume = {84},
year = {2017},
}
@article{1407,
abstract = {We consider the problem of computing the set of initial states of a dynamical system such that there exists a control strategy to ensure that the trajectories satisfy a temporal logic specification with probability 1 (almost-surely). We focus on discrete-time, stochastic linear dynamics and specifications given as formulas of the Generalized Reactivity(1) fragment of Linear Temporal Logic over linear predicates in the states of the system. We propose a solution based on iterative abstraction-refinement, and turn-based 2-player probabilistic games. While the theoretical guarantee of our algorithm after any finite number of iterations is only a partial solution, we show that if our algorithm terminates, then the result is the set of all satisfying initial states. Moreover, for any (partial) solution our algorithm synthesizes witness control strategies to ensure almost-sure satisfaction of the temporal logic specification. While the proposed algorithm guarantees progress and soundness in every iteration, it is computationally demanding. We offer an alternative, more efficient solution for the reachability properties that decomposes the problem into a series of smaller problems of the same type. All algorithms are demonstrated on an illustrative case study.},
author = {Svoreňová, Mária and Kretinsky, Jan and Chmelik, Martin and Chatterjee, Krishnendu and Cěrná, Ivana and Belta, Cǎlin},
journal = {Nonlinear Analysis: Hybrid Systems},
number = {2},
pages = {230 -- 253},
publisher = {Elsevier},
title = {{Temporal logic control for stochastic linear systems using abstraction refinement of probabilistic games}},
doi = {10.1016/j.nahs.2016.04.006},
volume = {23},
year = {2017},
}
@inproceedings{1009,
abstract = {A standard objective in partially-observable Markov decision processes (POMDPs) is to find a policy that maximizes the expected discounted-sum payoff. However, such policies may still permit unlikely but highly undesirable outcomes, which is problematic especially in safety-critical applications. Recently, there has been a surge of interest in POMDPs where the goal is to maximize the probability to ensure that the payoff is at least a given threshold, but these approaches do not consider any optimization beyond satisfying this threshold constraint. In this work we go beyond both the “expectation” and “threshold” approaches and consider a “guaranteed payoff optimization (GPO)” problem for POMDPs, where we are given a threshold t and the objective is to find a policy σ such that a) each possible outcome of σ yields a discounted-sum payoff of at least t, and b) the expected discounted-sum payoff of σ is optimal (or near-optimal) among all policies satisfying a). We present a practical approach to tackle the GPO problem and evaluate it on standard POMDP benchmarks.},
author = {Chatterjee, Krishnendu and Novotny, Petr and Pérez, Guillermo and Raskin, Jean and Zikelic, Djordje},
booktitle = {Proceedings of the 31st AAAI Conference on Artificial Intelligence},
location = {San Francisco, CA, United States},
pages = {3725 -- 3732},
publisher = {AAAI Press},
title = {{Optimizing expectation with guarantees in POMDPs}},
volume = {5},
year = {2017},
}