@inproceedings{3165,
abstract = {Computing the winning set for Büchi objectives in alternating games on graphs is a central problem in computer aided verification with a large number of applications. The long standing best known upper bound for solving the problem is Õ(n·m), where n is the number of vertices and m is the number of edges in the graph. We are the first to break the Õ(n·m) boundary by presenting a new technique that reduces the running time to O(n 2). This bound also leads to O(n 2) time algorithms for computing the set of almost-sure winning vertices for Büchi objectives (1) in alternating games with probabilistic transitions (improving an earlier bound of Õ(n·m)), (2) in concurrent graph games with constant actions (improving an earlier bound of O(n 3)), and (3) in Markov decision processes (improving for m > n 4/3 an earlier bound of O(min(m 1.5, m·n 2/3)). We also show that the same technique can be used to compute the maximal end-component decomposition of a graph in time O(n 2), which is an improvement over earlier bounds for m > n 4/3. Finally, we show how to maintain the winning set for Büchi objectives in alternating games under a sequence of edge insertions or a sequence of edge deletions in O(n) amortized time per operation. This is the first dynamic algorithm for this problem.},
author = {Chatterjee, Krishnendu and Henzinger, Monika},
booktitle = {Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms},
location = {Kyoto, Japan},
pages = {1386 -- 1399},
publisher = {SIAM},
title = {{An O(n2) time algorithm for alternating Büchi games}},
doi = {10.1137/1.9781611973099.109},
year = {2012},
}
@inproceedings{3252,
abstract = {We study the automatic synthesis of fair non-repudiation protocols, a class of fair exchange protocols, used for digital contract signing. First, we show how to specify the objectives of the participating agents, the trusted third party (TTP) and the protocols as path formulas in Linear Temporal Logic (LTL) and prove that the satisfaction of the objectives of the agents and the TTP imply satisfaction of the protocol objectives. We then show that weak (co-operative) co-synthesis and classical (strictly competitive) co-synthesis fail in synthesizing these protocols, whereas assume-guarantee synthesis (AGS) succeeds. We demonstrate the success of assume-guarantee synthesis as follows: (a) any solution of assume-guarantee synthesis is attack-free; no subset of participants can violate the objectives of the other participants without violating their own objectives; (b) the Asokan-Shoup-Waidner (ASW) certified mail protocol that has known vulnerabilities is not a solution of AGS; and (c) the Kremer-Markowitch (KM) non-repudiation protocol is a solution of AGS. To our knowledge this is the first application of synthesis to fair non-repudiation protocols, and our results show how synthesis can generate correct protocols and automatically discover vulnerabilities. The solution to assume-guarantee synthesis can be computed efficiently as the secure equilibrium solution of three-player graph games. © 2012 Springer-Verlag.},
author = {Chatterjee, Krishnendu and Raman, Vishwanath},
location = {Philadelphia, PA, USA},
pages = {152 -- 168},
publisher = {Springer},
title = {{Synthesizing protocols for digital contract signing}},
doi = {10.1007/978-3-642-27940-9_11},
volume = {7148},
year = {2012},
}
@article{3254,
abstract = {The theory of graph games with ω-regular winning conditions is the foundation for modeling and synthesizing reactive processes. In the case of stochastic reactive processes, the corresponding stochastic graph games have three players, two of them (System and Environment) behaving adversarially, and the third (Uncertainty) behaving probabilistically. We consider two problems for stochastic graph games: the qualitative problem asks for the set of states from which a player can win with probability 1 (almost-sure winning); and the quantitative problem asks for the maximal probability of winning (optimal winning) from each state. We consider ω-regular winning conditions formalized as Müller winning conditions. We present optimal memory bounds for pure (deterministic) almost-sure winning and optimal winning strategies in stochastic graph games with Müller winning conditions. We also study the complexity of stochastic Müller games and show that both the qualitative and quantitative analysis problems are PSPACE-complete. Our results are relevant in synthesis of stochastic reactive processes.},
author = {Chatterjee, Krishnendu},
journal = {Information and Computation},
pages = {29 -- 48},
publisher = {Elsevier},
title = {{The complexity of stochastic Müller games}},
doi = {10.1016/j.ic.2011.11.004},
volume = {211},
year = {2012},
}
@inproceedings{3255,
abstract = {In this paper we survey results of two-player games on graphs and Markov decision processes with parity, mean-payoff and energy objectives, and the combination of mean-payoff and energy objectives with parity objectives. These problems have applications in verification and synthesis of reactive systems in resource-constrained environments.},
author = {Chatterjee, Krishnendu and Doyen, Laurent},
location = {Lednice, Czech Republic},
pages = {37 -- 46},
publisher = {Springer},
title = {{Games and Markov decision processes with mean payoff parity and energy parity objectives}},
doi = {10.1007/978-3-642-25929-6_3},
volume = {7119},
year = {2012},
}
@article{3260,
abstract = {Many scenarios in the living world, where individual organisms compete for winning positions (or resources), have properties of auctions. Here we study the evolution of bids in biological auctions. For each auction, n individuals are drawn at random from a population of size N. Each individual makes a bid which entails a cost. The winner obtains a benefit of a certain value. Costs and benefits are translated into reproductive success (fitness). Therefore, successful bidding strategies spread in the population. We compare two types of auctions. In “biological all-pay auctions”, the costs are the bid for every participating individual. In “biological second price all-pay auctions”, the cost for everyone other than the winner is the bid, but the cost for the winner is the second highest bid. Second price all-pay auctions are generalizations of the “war of attrition” introduced by Maynard Smith. We study evolutionary dynamics in both types of auctions. We calculate pairwise invasion plots and evolutionarily stable distributions over the continuous strategy space. We find that the average bid in second price all-pay auctions is higher than in all-pay auctions, but the average cost for the winner is similar in both auctions. In both cases, the average bid is a declining function of the number of participants, n. The more individuals participate in an auction the smaller is the chance of winning, and thus expensive bids must be avoided.
},
author = {Chatterjee, Krishnendu and Reiter, Johannes and Nowak, Martin},
journal = {Theoretical Population Biology},
number = {1},
pages = {69 -- 80},
publisher = {Academic Press},
title = {{Evolutionary dynamics of biological auctions}},
doi = {10.1016/j.tpb.2011.11.003},
volume = {81},
year = {2012},
}
@article{3314,
abstract = {We introduce two-level discounted and mean-payoff games played by two players on a perfect-information stochastic game graph. The upper level game is a discounted or mean-payoff game and the lower level game is a (undiscounted) reachability game. Two-level games model hierarchical and sequential decision making under uncertainty across different time scales. For both discounted and mean-payoff two-level games, we show the existence of pure memoryless optimal strategies for both players and an ordered field property. We show that if there is only one player (Markov decision processes), then the values can be computed in polynomial time. It follows that whether the value of a player is equal to a given rational constant in two-level discounted or mean-payoff games can be decided in NP ∩ coNP. We also give an alternate strategy improvement algorithm to compute the value. © 2012 World Scientific Publishing Company.},
author = {Chatterjee, Krishnendu and Majumdar, Ritankar},
journal = {International Journal of Foundations of Computer Science},
number = {3},
pages = {609 -- 625},
publisher = {World Scientific Publishing},
title = {{Discounting and averaging in games across time scales}},
doi = {10.1142/S0129054112400308},
volume = {23},
year = {2012},
}
@inproceedings{3341,
abstract = {We consider two-player stochastic games played on a finite state space for an infinite number of rounds. The games are concurrent: in each round, the two players (player 1 and player 2) choose their moves independently and simultaneously; the current state and the two moves determine a probability distribution over the successor states. We also consider the important special case of turn-based stochastic games where players make moves in turns, rather than concurrently. We study concurrent games with \omega-regular winning conditions specified as parity objectives. The value for player 1 for a parity objective is the maximal probability with which the player can guarantee the satisfaction of the objective against all strategies of the opponent. We study the problem of continuity and robustness of the value function in concurrent and turn-based stochastic parity gameswith respect to imprecision in the transition probabilities. We present quantitative bounds on the difference of the value function (in terms of the imprecision of the transition probabilities) and show the value continuity for structurally equivalent concurrent games (two games are structurally equivalent if the support of the transition function is same and the probabilities differ). We also show robustness of optimal strategies for structurally equivalent turn-based stochastic parity games. Finally we show that the value continuity property breaks without the structurally equivalent assumption (even for Markov chains) and show that our quantitative bound is asymptotically optimal. Hence our results are tight (the assumption is both necessary and sufficient) and optimal (our quantitative bound is asymptotically optimal).},
author = {Chatterjee, Krishnendu},
location = {Tallinn, Estonia},
pages = {270 -- 285},
publisher = {Springer},
title = {{Robustness of structurally equivalent concurrent parity games}},
doi = {10.1007/978-3-642-28729-9_18},
volume = {7213},
year = {2012},
}
@misc{5379,
abstract = {Computing the winning set for Büchi objectives in alternating games on graphs is a central problem in computer aided verification with a large number of applications. The long standing best known upper bound for solving the problem is ̃O(n·m), where n is the number of vertices and m is the number of edges in the graph. We are the first to break the ̃O(n·m) boundary by presenting a new technique that reduces the running time to O(n2). This bound also leads to O(n2) time algorithms for computing the set of almost-sure winning vertices for Büchi objectives (1) in alternating games with probabilistic transitions (improving an earlier bound of O(n·m)), (2) in concurrent graph games with constant actions (improving an earlier bound of O(n3)), and (3) in Markov decision processes (improving for m > n4/3 an earlier bound of O(min(m1.5, m·n2/3)). We also show that the same technique can be used to compute the maximal end-component decomposition of a graph in time O(n2), which is an improvement over earlier bounds for m > n4/3. Finally, we show how to maintain the winning set for Büchi objectives in alternating games under a sequence of edge insertions or a sequence of edge deletions in O(n) amortized time per operation. This is the first dynamic algorithm for this problem.},
author = {Chatterjee, Krishnendu and Henzinger, Monika},
issn = {2664-1690},
pages = {20},
publisher = {IST Austria},
title = {{An O(n2) time algorithm for alternating Büchi games}},
doi = {10.15479/AT:IST-2011-0009},
year = {2011},
}
@misc{5380,
abstract = {We consider 2-player games played on a finite state space for an infinite number of rounds. The games are concurrent: in each round, the two players (player 1 and player 2) choose their moves independently and simultaneously; the current state and the two moves determine the successor state. We study concurrent games with ω-regular winning conditions specified as parity objectives. We consider the qualitative analysis problems: the computation of the almost-sure and limit-sure winning set of states, where player 1 can ensure to win with probability 1 and with probability arbitrarily close to 1, respectively. In general the almost-sure and limit-sure winning strategies require both infinite-memory as well as infinite-precision (to describe probabilities). We study the bounded-rationality problem for qualitative analysis of concurrent parity games, where the strategy set for player 1 is restricted to bounded-resource strategies. In terms of precision, strategies can be deterministic, uniform, finite-precision or infinite-precision; and in terms of memory, strategies can be memoryless, finite-memory or infinite-memory. We present a precise and complete characterization of the qualitative winning sets for all combinations of classes of strategies. In particular, we show that uniform memoryless strategies are as powerful as finite-precision infinite-memory strategies, and infinite-precision memoryless strategies are as powerful as infinite-precision finite-memory strategies. We show that the winning sets can be computed in O(n2d+3) time, where n is the size of the game structure and 2d is the number of priorities (or colors), and our algorithms are symbolic. The membership problem of whether a state belongs to a winning set can be decided in NP ∩ coNP. While this complexity is the same as for the simpler class of turn-based parity games, where in each state only one of the two players has a choice of moves, our algorithms,that are obtained by characterization of the winning sets as μ-calculus formulas, are considerably more involved than those for turn-based games.},
author = {Chatterjee, Krishnendu},
issn = {2664-1690},
pages = {53},
publisher = {IST Austria},
title = {{Bounded rationality in concurrent parity games}},
doi = {10.15479/AT:IST-2011-0008},
year = {2011},
}
@misc{5381,
abstract = {In two-player finite-state stochastic games of partial obser- vation on graphs, in every state of the graph, the players simultaneously choose an action, and their joint actions determine a probability distri- bution over the successor states. The game is played for infinitely many rounds and thus the players construct an infinite path in the graph. We consider reachability objectives where the first player tries to ensure a target state to be visited almost-surely (i.e., with probability 1) or pos- itively (i.e., with positive probability), no matter the strategy of the second player.
We classify such games according to the information and to the power of randomization available to the players. On the basis of information, the game can be one-sided with either (a) player 1, or (b) player 2 having partial observation (and the other player has perfect observation), or two- sided with (c) both players having partial observation. On the basis of randomization, (a) the players may not be allowed to use randomization (pure strategies), or (b) they may choose a probability distribution over actions but the actual random choice is external and not visible to the player (actions invisible), or (c) they may use full randomization.
Our main results for pure strategies are as follows: (1) For one-sided games with player 2 perfect observation we show that (in contrast to full randomized strategies) belief-based (subset-construction based) strate- gies are not sufficient, and present an exponential upper bound on mem- ory both for almost-sure and positive winning strategies; we show that the problem of deciding the existence of almost-sure and positive winning strategies for player 1 is EXPTIME-complete and present symbolic algo- rithms that avoid the explicit exponential construction. (2) For one-sided games with player 1 perfect observation we show that non-elementary memory is both necessary and sufficient for both almost-sure and posi- tive winning strategies. (3) We show that for the general (two-sided) case finite-memory strategies are sufficient for both positive and almost-sure winning, and at least non-elementary memory is required. We establish the equivalence of the almost-sure winning problems for pure strategies and for randomized strategies with actions invisible. Our equivalence re- sult exhibit serious flaws in previous results in the literature: we show a non-elementary memory lower bound for almost-sure winning whereas an exponential upper bound was previously claimed.},
author = {Chatterjee, Krishnendu and Doyen, Laurent},
issn = {2664-1690},
pages = {43},
publisher = {IST Austria},
title = {{Partial-observation stochastic games: How to win when belief fails}},
doi = {10.15479/AT:IST-2011-0007},
year = {2011},
}