@inproceedings{949, abstract = {The notion of treewidth of graphs has been exploited for faster algorithms for several problems arising in verification and program analysis. Moreover, various notions of balanced tree decompositions have been used for improved algorithms supporting dynamic updates and analysis of concurrent programs. In this work, we present a tool for constructing tree-decompositions of CFGs obtained from Java methods, which is implemented as an extension to the widely used Soot framework. The experimental results show that our implementation on real-world Java benchmarks is very efficient. Our tool also provides the first implementation for balancing tree-decompositions. In summary, we present the first tool support for exploiting treewidth in the static analysis problems on Java programs.}, author = {Chatterjee, Krishnendu and Goharshady, Amir and Pavlogiannis, Andreas}, editor = {D'Souza, Deepak}, issn = {03029743}, location = {Pune, India}, pages = {59 -- 66}, publisher = {Springer}, title = {{JTDec: A tool for tree decompositions in soot}}, doi = {10.1007/978-3-319-68167-2_4}, volume = {10482}, year = {2017}, } @inproceedings{1068, abstract = {Games on graphs provide the appropriate framework to study several central problems in computer science, such as verification and synthesis of reactive systems. One of the most basic objectives for games on graphs is the liveness (or Büchi) objective that given a target set of vertices requires that some vertex in the target set is visited infinitely often. We study generalized Büchi objectives (i.e., conjunction of liveness objectives), and implications between two generalized Büchi objectives (known as GR(1) objectives), that arise in numerous applications in computer-aided verification. We present improved algorithms and conditional super-linear lower bounds based on widely believed assumptions about the complexity of (A1) combinatorial Boolean matrix multiplication and (A2) CNF-SAT. We consider graph games with n vertices, m edges, and generalized Büchi objectives with k conjunctions. First, we present an algorithm with running time O(k*n^2), improving the previously known O(k*n*m) and O(k^2*n^2) worst-case bounds. Our algorithm is optimal for dense graphs under (A1). Second, we show that the basic algorithm for the problem is optimal for sparse graphs when the target sets have constant size under (A2). Finally, we consider GR(1) objectives, with k_1 conjunctions in the antecedent and k_2 conjunctions in the consequent, and present an O(k_1 k_2 n^{2.5})-time algorithm, improving the previously known O(k_1*k_2*n*m)-time algorithm for m > n^{1.5}. }, author = {Chatterjee, Krishnendu and Dvorák, Wolfgang and Henzinger, Monika H and Loitzenbauer, Veronika}, location = {Krakow, Poland}, publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik}, title = {{Conditionally optimal algorithms for generalized Büchi Games}}, doi = {10.4230/LIPIcs.MFCS.2016.25}, volume = {58}, year = {2016}, } @inproceedings{1069, abstract = {The Continuous Skolem Problem asks whether a real-valued function satisfying a linear differen- tial equation has a zero in a given interval of real numbers. This is a fundamental reachability problem for continuous linear dynamical systems, such as linear hybrid automata and continuous- time Markov chains. Decidability of the problem is currently open – indeed decidability is open even for the sub-problem in which a zero is sought in a bounded interval. In this paper we show decidability of the bounded problem subject to Schanuel’s Conjecture, a unifying conjecture in transcendental number theory. We furthermore analyse the unbounded problem in terms of the frequencies of the differential equation, that is, the imaginary parts of the characteristic roots. We show that the unbounded problem can be reduced to the bounded problem if there is at most one rationally linearly independent frequency, or if there are two rationally linearly independent frequencies and all characteristic roots are simple. We complete the picture by showing that de- cidability of the unbounded problem in the case of two (or more) rationally linearly independent frequencies would entail a major new effectiveness result in Diophantine approximation, namely computability of the Diophantine-approximation types of all real algebraic numbers.}, author = {Chonev, Ventsislav K and Ouaknine, Joël and Worrell, James}, location = {Rome, Italy}, publisher = {Schloss Dagstuhl- Leibniz-Zentrum fur Informatik}, title = {{On the skolem problem for continuous linear dynamical systems}}, doi = {10.4230/LIPIcs.ICALP.2016.100}, volume = {55}, year = {2016}, } @inproceedings{1070, abstract = {We present a logic that extends CTL (Computation Tree Logic) with operators that express synchronization properties. A property is synchronized in a system if it holds in all paths of a certain length. The new logic is obtained by using the same path quantifiers and temporal operators as in CTL, but allowing a different order of the quantifiers. This small syntactic variation induces a logic that can express non-regular properties for which known extensions of MSO with equality of path length are undecidable. We show that our variant of CTL is decidable and that the model-checking problem is in Delta_3^P = P^{NP^NP}, and is DP-hard. We analogously consider quantifier exchange in extensions of CTL, and we present operators defined using basic operators of CTL* that express the occurrence of infinitely many synchronization points. We show that the model-checking problem remains in Delta_3^P. The distinguishing power of CTL and of our new logic coincide if the Next operator is allowed in the logics, thus the classical bisimulation quotient can be used for state-space reduction before model checking. }, author = {Chatterjee, Krishnendu and Doyen, Laurent}, location = {Rome, Italy}, publisher = {Schloss Dagstuhl- Leibniz-Zentrum fur Informatik}, title = {{Computation tree logic for synchronization properties}}, doi = {10.4230/LIPIcs.ICALP.2016.98}, volume = {55}, year = {2016}, } @inproceedings{1090, abstract = { While weighted automata provide a natural framework to express quantitative properties, many basic properties like average response time cannot be expressed with weighted automata. Nested weighted automata extend weighted automata and consist of a master automaton and a set of slave automata that are invoked by the master automaton. Nested weighted automata are strictly more expressive than weighted automata (e.g., average response time can be expressed with nested weighted automata), but the basic decision questions have higher complexity (e.g., for deterministic automata, the emptiness question for nested weighted automata is PSPACE-hard, whereas the corresponding complexity for weighted automata is PTIME). We consider a natural subclass of nested weighted automata where at any point at most a bounded number k of slave automata can be active. We focus on automata whose master value function is the limit average. We show that these nested weighted automata with bounded width are strictly more expressive than weighted automata (e.g., average response time with no overlapping requests can be expressed with bound k=1, but not with non-nested weighted automata). We show that the complexity of the basic decision problems (i.e., emptiness and universality) for the subclass with k constant matches the complexity for weighted automata. Moreover, when k is part of the input given in unary we establish PSPACE-completeness.}, author = {Chatterjee, Krishnendu and Henzinger, Thomas A and Otop, Jan}, location = {Krakow; Poland}, publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik}, title = {{Nested weighted limit-average automata of bounded width}}, doi = {10.4230/LIPIcs.MFCS.2016.24}, volume = {58}, year = {2016}, } @inproceedings{1138, abstract = {Automata with monitor counters, where the transitions do not depend on counter values, and nested weighted automata are two expressive automata-theoretic frameworks for quantitative properties. For a well-studied and wide class of quantitative functions, we establish that automata with monitor counters and nested weighted automata are equivalent. We study for the first time such quantitative automata under probabilistic semantics. We show that several problems that are undecidable for the classical questions of emptiness and universality become decidable under the probabilistic semantics. We present a complete picture of decidability for such automata, and even an almost-complete picture of computational complexity, for the probabilistic questions we consider. © 2016 ACM.}, author = {Chatterjee, Krishnendu and Henzinger, Thomas A and Otop, Jan}, booktitle = {Proceedings of the 31st Annual ACM/IEEE Symposium}, location = {New York, NY, USA}, pages = {76 -- 85}, publisher = {IEEE}, title = {{Quantitative automata under probabilistic semantics}}, doi = {10.1145/2933575.2933588}, year = {2016}, } @inproceedings{1140, abstract = {Given a model of a system and an objective, the model-checking question asks whether the model satisfies the objective. We study polynomial-time problems in two classical models, graphs and Markov Decision Processes (MDPs), with respect to several fundamental -regular objectives, e.g., Rabin and Streett objectives. For many of these problems the best-known upper bounds are quadratic or cubic, yet no super-linear lower bounds are known. In this work our contributions are two-fold: First, we present several improved algorithms, and second, we present the first conditional super-linear lower bounds based on widely believed assumptions about the complexity of CNF-SAT and combinatorial Boolean matrix multiplication. A separation result for two models with respect to an objective means a conditional lower bound for one model that is strictly higher than the existing upper bound for the other model, and similarly for two objectives with respect to a model. Our results establish the following separation results: (1) A separation of models (graphs and MDPs) for disjunctive queries of reachability and Büchi objectives. (2) Two kinds of separations of objectives, both for graphs and MDPs, namely, (2a) the separation of dual objectives such as Streett/Rabin objectives, and (2b) the separation of conjunction and disjunction of multiple objectives of the same type such as safety, Büchi, and coBüchi. In summary, our results establish the first model and objective separation results for graphs and MDPs for various classical -regular objectives. Quite strikingly, we establish conditional lower bounds for the disjunction of objectives that are strictly higher than the existing upper bounds for the conjunction of the same objectives. © 2016 ACM.}, author = {Chatterjee, Krishnendu and Dvoák, Wolfgang and Henzinger, Monika H and Loitzenbauer, Veronika}, booktitle = {Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science}, location = {New York, NY, USA}, pages = {197 -- 206}, publisher = {IEEE}, title = {{Model and objective separation with conditional lower bounds: disjunction is harder than conjunction}}, doi = {10.1145/2933575.2935304}, year = {2016}, } @inproceedings{1182, abstract = {Balanced knockout tournaments are ubiquitous in sports competitions and are also used in decisionmaking and elections. The traditional computational question, that asks to compute a draw (optimal draw) that maximizes the winning probability for a distinguished player, has received a lot of attention. Previous works consider the problem where the pairwise winning probabilities are known precisely, while we study how robust is the winning probability with respect to small errors in the pairwise winning probabilities. First, we present several illuminating examples to establish: (a) there exist deterministic tournaments (where the pairwise winning probabilities are 0 or 1) where one optimal draw is much more robust than the other; and (b) in general, there exist tournaments with slightly suboptimal draws that are more robust than all the optimal draws. The above examples motivate the study of the computational problem of robust draws that guarantee a specified winning probability. Second, we present a polynomial-time algorithm for approximating the robustness of a draw for sufficiently small errors in pairwise winning probabilities, and obtain that the stated computational problem is NP-complete. We also show that two natural cases of deterministic tournaments where the optimal draw could be computed in polynomial time also admit polynomial-time algorithms to compute robust optimal draws.}, author = {Chatterjee, Krishnendu and Ibsen-Jensen, Rasmus and Tkadlec, Josef}, location = {New York, NY, USA}, pages = {172 -- 179}, publisher = {AAAI Press}, title = {{Robust draws in balanced knockout tournaments}}, volume = {2016-January}, year = {2016}, } @article{1200, author = {Hilbe, Christian and Traulsen, Arne}, journal = {Physics of Life Reviews}, pages = {29 -- 31}, publisher = {Elsevier}, title = {{Only the combination of mathematics and agent based simulations can leverage the full potential of evolutionary modeling: Comment on “Evolutionary game theory using agent-based methods” by C. Adami, J. Schossau and A. Hintze}}, doi = {10.1016/j.plrev.2016.10.004}, volume = {19}, year = {2016}, } @inproceedings{1245, abstract = {To facilitate collaboration in massive online classrooms, instructors must make many decisions. For instance, the following parameters need to be decided when designing a peer-feedback system where students review each others' essays: the number of students each student must provide feedback to, an algorithm to map feedback providers to receivers, constraints that ensure students do not become free-riders (receiving feedback but not providing it), the best times to receive feedback to improve learning etc. While instructors can answer these questions by running experiments or invoking past experience, game-theoretic models with data from online learning platforms can identify better initial designs for further improvements. As an example, we explore the design space of a peer feedback system by modeling it using game theory. Our simulations show that incentivizing students to provide feedback requires the value obtained from receiving a feedback to exceed the cost of providing it by a large factor (greater than 7). Furthermore, hiding feedback from low-effort students incentivizes them to provide more feedback.}, author = {Pandey, Vineet and Chatterjee, Krishnendu}, booktitle = {Proceedings of the ACM Conference on Computer Supported Cooperative Work}, location = {San Francisco, CA, USA}, number = {Februar-2016}, pages = {365 -- 368}, publisher = {ACM}, title = {{Game-theoretic models identify useful principles for peer collaboration in online learning platforms}}, doi = {10.1145/2818052.2869122}, volume = {26}, year = {2016}, }