--- _id: '9195' abstract: - lang: eng text: Quantum information technology based on solid state qubits has created much interest in converting quantum states from the microwave to the optical domain. Optical photons, unlike microwave photons, can be transmitted by fiber, making them suitable for long distance quantum communication. Moreover, the optical domain offers access to a large set of very well‐developed quantum optical tools, such as highly efficient single‐photon detectors and long‐lived quantum memories. For a high fidelity microwave to optical transducer, efficient conversion at single photon level and low added noise is needed. Currently, the most promising approaches to build such systems are based on second‐order nonlinear phenomena such as optomechanical and electro‐optic interactions. Alternative approaches, although not yet as efficient, include magneto‐optical coupling and schemes based on isolated quantum systems like atoms, ions, or quantum dots. Herein, the necessary theoretical foundations for the most important microwave‐to‐optical conversion experiments are provided, their implementations are described, and the current limitations and future prospects are discussed. acknowledgement: The authors thank Amita Deb for useful comments on this manuscript. The authors acknowledge support from the MBIE of New Zealand Endeavour Smart Ideas fund. The reference numbers in Figure 8 were corrected in April 2020, after online publication. article_number: '1900077' article_processing_charge: No article_type: original author: - first_name: Nicholas J. full_name: Lambert, Nicholas J. last_name: Lambert - first_name: Alfredo R full_name: Rueda Sanchez, Alfredo R id: 3B82B0F8-F248-11E8-B48F-1D18A9856A87 last_name: Rueda Sanchez orcid: 0000-0001-6249-5860 - first_name: Florian full_name: Sedlmeir, Florian last_name: Sedlmeir - first_name: Harald G. L. full_name: Schwefel, Harald G. L. last_name: Schwefel citation: ama: Lambert NJ, Rueda Sanchez AR, Sedlmeir F, Schwefel HGL. Coherent conversion between microwave and optical photons - An overview of physical implementations. Advanced Quantum Technologies. 2020;3(1). doi:10.1002/qute.201900077 apa: Lambert, N. J., Rueda Sanchez, A. R., Sedlmeir, F., & Schwefel, H. G. L. (2020). Coherent conversion between microwave and optical photons - An overview of physical implementations. Advanced Quantum Technologies. Wiley. https://doi.org/10.1002/qute.201900077 chicago: Lambert, Nicholas J., Alfredo R Rueda Sanchez, Florian Sedlmeir, and Harald G. L. Schwefel. “Coherent Conversion between Microwave and Optical Photons - An Overview of Physical Implementations.” Advanced Quantum Technologies. Wiley, 2020. https://doi.org/10.1002/qute.201900077. ieee: N. J. Lambert, A. R. Rueda Sanchez, F. Sedlmeir, and H. G. L. Schwefel, “Coherent conversion between microwave and optical photons - An overview of physical implementations,” Advanced Quantum Technologies, vol. 3, no. 1. Wiley, 2020. ista: Lambert NJ, Rueda Sanchez AR, Sedlmeir F, Schwefel HGL. 2020. Coherent conversion between microwave and optical photons - An overview of physical implementations. Advanced Quantum Technologies. 3(1), 1900077. mla: Lambert, Nicholas J., et al. “Coherent Conversion between Microwave and Optical Photons - An Overview of Physical Implementations.” Advanced Quantum Technologies, vol. 3, no. 1, 1900077, Wiley, 2020, doi:10.1002/qute.201900077. short: N.J. Lambert, A.R. Rueda Sanchez, F. Sedlmeir, H.G.L. Schwefel, Advanced Quantum Technologies 3 (2020). date_created: 2021-02-25T08:52:36Z date_published: 2020-01-01T00:00:00Z date_updated: 2023-08-24T13:53:02Z day: '01' ddc: - '530' department: - _id: JoFi doi: 10.1002/qute.201900077 external_id: isi: - '000548088300001' file: - access_level: open_access checksum: 157e95abd6883c3b35b0fa78ae10775e content_type: application/pdf creator: dernst date_created: 2021-03-02T12:30:03Z date_updated: 2021-03-02T12:30:03Z file_id: '9216' file_name: 2020_AdvQuantumTech_Lambert.pdf file_size: 2410114 relation: main_file success: 1 file_date_updated: 2021-03-02T12:30:03Z has_accepted_license: '1' intvolume: ' 3' isi: 1 issue: '1' language: - iso: eng license: https://creativecommons.org/licenses/by-nc/4.0/ month: '01' oa: 1 oa_version: Published Version publication: Advanced Quantum Technologies publication_identifier: issn: - 2511-9044 publication_status: published publisher: Wiley quality_controlled: '1' related_material: link: - description: Cover Page relation: poster url: https://doi.org/10.1002/qute.202070011 status: public title: Coherent conversion between microwave and optical photons - An overview of physical implementations tmp: image: /images/cc_by_nc.png legal_code_url: https://creativecommons.org/licenses/by-nc/4.0/legalcode name: Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) short: CC BY-NC (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 3 year: '2020' ... --- _id: '8755' abstract: - lang: eng text: 'The superconducting circuit community has recently discovered the promising potential of superinductors. These circuit elements have a characteristic impedance exceeding the resistance quantum RQ ≈ 6.45 kΩ which leads to a suppression of ground state charge fluctuations. Applications include the realization of hardware protected qubits for fault tolerant quantum computing, improved coupling to small dipole moment objects and defining a new quantum metrology standard for the ampere. In this work we refute the widespread notion that superinductors can only be implemented based on kinetic inductance, i.e. using disordered superconductors or Josephson junction arrays. We present modeling, fabrication and characterization of 104 planar aluminum coil resonators with a characteristic impedance up to 30.9 kΩ at 5.6 GHz and a capacitance down to ≤ 1 fF, with lowloss and a power handling reaching 108 intra-cavity photons. Geometric superinductors are free of uncontrolled tunneling events and offer high reproducibility, linearity and the ability to couple magnetically - properties that significantly broaden the scope of future quantum circuits. ' acknowledged_ssus: - _id: NanoFab acknowledgement: "The authors acknowledge the support from I. Prieto and the IST Nanofabrication Facility. This work was supported by IST Austria and a NOMIS foundation research grant and the Austrian Science Fund (FWF) through BeyondC (F71). MP is the recipient of a P¨ottinger scholarship at IST Austria. JMF acknowledges support from the European Union’s Horizon 2020 research and innovation programs under grant agreement No 732894 (FET Proactive HOT), 862644 (FET Open QUARTET), and the European Research Council under grant agreement\r\nnumber 758053 (ERC StG QUNNECT). " article_number: '044055' article_processing_charge: No article_type: original author: - first_name: Matilda full_name: Peruzzo, Matilda id: 3F920B30-F248-11E8-B48F-1D18A9856A87 last_name: Peruzzo orcid: 0000-0002-3415-4628 - first_name: Andrea full_name: Trioni, Andrea id: 42F71B44-F248-11E8-B48F-1D18A9856A87 last_name: Trioni - first_name: Farid full_name: Hassani, Farid id: 2AED110C-F248-11E8-B48F-1D18A9856A87 last_name: Hassani orcid: 0000-0001-6937-5773 - first_name: Martin full_name: Zemlicka, Martin id: 2DCF8DE6-F248-11E8-B48F-1D18A9856A87 last_name: Zemlicka - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X citation: ama: Peruzzo M, Trioni A, Hassani F, Zemlicka M, Fink JM. Surpassing the resistance quantum with a geometric superinductor. Physical Review Applied. 2020;14(4). doi:10.1103/PhysRevApplied.14.044055 apa: Peruzzo, M., Trioni, A., Hassani, F., Zemlicka, M., & Fink, J. M. (2020). Surpassing the resistance quantum with a geometric superinductor. Physical Review Applied. American Physical Society. https://doi.org/10.1103/PhysRevApplied.14.044055 chicago: Peruzzo, Matilda, Andrea Trioni, Farid Hassani, Martin Zemlicka, and Johannes M Fink. “Surpassing the Resistance Quantum with a Geometric Superinductor.” Physical Review Applied. American Physical Society, 2020. https://doi.org/10.1103/PhysRevApplied.14.044055. ieee: M. Peruzzo, A. Trioni, F. Hassani, M. Zemlicka, and J. M. Fink, “Surpassing the resistance quantum with a geometric superinductor,” Physical Review Applied, vol. 14, no. 4. American Physical Society, 2020. ista: Peruzzo M, Trioni A, Hassani F, Zemlicka M, Fink JM. 2020. Surpassing the resistance quantum with a geometric superinductor. Physical Review Applied. 14(4), 044055. mla: Peruzzo, Matilda, et al. “Surpassing the Resistance Quantum with a Geometric Superinductor.” Physical Review Applied, vol. 14, no. 4, 044055, American Physical Society, 2020, doi:10.1103/PhysRevApplied.14.044055. short: M. Peruzzo, A. Trioni, F. Hassani, M. Zemlicka, J.M. Fink, Physical Review Applied 14 (2020). date_created: 2020-11-15T23:01:17Z date_published: 2020-10-29T00:00:00Z date_updated: 2023-09-07T13:31:22Z day: '29' ddc: - '530' department: - _id: JoFi doi: 10.1103/PhysRevApplied.14.044055 ec_funded: 1 external_id: arxiv: - '2007.01644' isi: - '000582797300003' file: - access_level: open_access checksum: 2a634abe75251ae7628cd54c8a4ce2e8 content_type: application/pdf creator: dernst date_created: 2021-03-29T11:43:20Z date_updated: 2021-03-29T11:43:20Z file_id: '9300' file_name: 2020_PhysReviewApplied_Peruzzo.pdf file_size: 2607823 relation: main_file success: 1 file_date_updated: 2021-03-29T11:43:20Z has_accepted_license: '1' intvolume: ' 14' isi: 1 issue: '4' language: - iso: eng month: '10' oa: 1 oa_version: Published Version project: - _id: 26927A52-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: F07105 name: Integrating superconducting quantum circuits - _id: 257EB838-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '732894' name: Hybrid Optomechanical Technologies - _id: 237CBA6C-32DE-11EA-91FC-C7463DDC885E call_identifier: H2020 grant_number: '862644' name: Quantum readout techniques and technologies - _id: 26336814-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '758053' name: A Fiber Optic Transceiver for Superconducting Qubits publication: Physical Review Applied publication_identifier: eissn: - '23317019' publication_status: published publisher: American Physical Society quality_controlled: '1' related_material: record: - id: '13070' relation: research_data status: public - id: '9920' relation: dissertation_contains status: public scopus_import: '1' status: public title: Surpassing the resistance quantum with a geometric superinductor type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 14 year: '2020' ... --- _id: '10328' abstract: - lang: eng text: We discus noise channels in coherent electro-optic up-conversion between microwave and optical fields, in particular due to optical heating. We also report on a novel configuration, which promises to be flexible and highly efficient. alternative_title: - OSA Technical Digest article_number: QTu8A.1 article_processing_charge: No author: - first_name: Nicholas J. full_name: Lambert, Nicholas J. last_name: Lambert - first_name: Sonia full_name: Mobassem, Sonia last_name: Mobassem - first_name: Alfredo R full_name: Rueda Sanchez, Alfredo R id: 3B82B0F8-F248-11E8-B48F-1D18A9856A87 last_name: Rueda Sanchez orcid: 0000-0001-6249-5860 - first_name: Harald G.L. full_name: Schwefel, Harald G.L. last_name: Schwefel citation: ama: 'Lambert NJ, Mobassem S, Rueda Sanchez AR, Schwefel HGL. New designs and noise channels in electro-optic microwave to optical up-conversion. In: OSA Quantum 2.0 Conference. Optica Publishing Group; 2020. doi:10.1364/QUANTUM.2020.QTu8A.1' apa: 'Lambert, N. J., Mobassem, S., Rueda Sanchez, A. R., & Schwefel, H. G. L. (2020). New designs and noise channels in electro-optic microwave to optical up-conversion. In OSA Quantum 2.0 Conference. Washington, DC, United States: Optica Publishing Group. https://doi.org/10.1364/QUANTUM.2020.QTu8A.1' chicago: Lambert, Nicholas J., Sonia Mobassem, Alfredo R Rueda Sanchez, and Harald G.L. Schwefel. “New Designs and Noise Channels in Electro-Optic Microwave to Optical up-Conversion.” In OSA Quantum 2.0 Conference. Optica Publishing Group, 2020. https://doi.org/10.1364/QUANTUM.2020.QTu8A.1. ieee: N. J. Lambert, S. Mobassem, A. R. Rueda Sanchez, and H. G. L. Schwefel, “New designs and noise channels in electro-optic microwave to optical up-conversion,” in OSA Quantum 2.0 Conference, Washington, DC, United States, 2020. ista: 'Lambert NJ, Mobassem S, Rueda Sanchez AR, Schwefel HGL. 2020. New designs and noise channels in electro-optic microwave to optical up-conversion. OSA Quantum 2.0 Conference. OSA: Optical Society of America, OSA Technical Digest, , QTu8A.1.' mla: Lambert, Nicholas J., et al. “New Designs and Noise Channels in Electro-Optic Microwave to Optical up-Conversion.” OSA Quantum 2.0 Conference, QTu8A.1, Optica Publishing Group, 2020, doi:10.1364/QUANTUM.2020.QTu8A.1. short: N.J. Lambert, S. Mobassem, A.R. Rueda Sanchez, H.G.L. Schwefel, in:, OSA Quantum 2.0 Conference, Optica Publishing Group, 2020. conference: end_date: 2020-09-17 location: Washington, DC, United States name: 'OSA: Optical Society of America' start_date: 2020-09-14 date_created: 2021-11-21T23:01:31Z date_published: 2020-01-01T00:00:00Z date_updated: 2023-10-18T08:32:34Z day: '01' department: - _id: JoFi doi: 10.1364/QUANTUM.2020.QTu8A.1 language: - iso: eng month: '01' oa_version: None publication: OSA Quantum 2.0 Conference publication_identifier: isbn: - 9-781-5575-2820-9 publication_status: published publisher: Optica Publishing Group quality_controlled: '1' scopus_import: '1' status: public title: New designs and noise channels in electro-optic microwave to optical up-conversion type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ... --- _id: '15059' abstract: - lang: eng text: "In this paper we present a room temperature radiometer that can eliminate the need of using cryostats in satellite payload reducing its weight and improving reliability. The proposed radiometer is based on an electro-optic upconverter that boosts up microwave photons energy by upconverting them into an optical domain what makes them immune to thermal noise even if operating at room temperature. The converter uses a high-quality factor whispering gallery\r\nmode (WGM) resonator providing naturally narrow bandwidth and therefore might be useful for applications like microwave hyperspectral sensing. The upconversion process is explained by\r\nproviding essential information about photon conversion efficiency and sensitivity. To prove the concept, we describe an experiment which shows state-of-the-art photon conversion efficiency n=10-5 per mW of pump power at the frequency of 80 GHz." acknowledgement: This work has been financially supported by Comunidad de Madrid S2018/NMT-4333 ARTINLARA-CM projects, and “FUNDACIÓN SENER” REFTA projects. article_processing_charge: No author: - first_name: Michal full_name: Wasiak, Michal last_name: Wasiak - first_name: Gabriel Santamaria full_name: Botello, Gabriel Santamaria last_name: Botello - first_name: Kerlos Atia full_name: Abdalmalak, Kerlos Atia last_name: Abdalmalak - first_name: Florian full_name: Sedlmeir, Florian last_name: Sedlmeir - first_name: Alfredo R full_name: Rueda Sanchez, Alfredo R id: 3B82B0F8-F248-11E8-B48F-1D18A9856A87 last_name: Rueda Sanchez orcid: 0000-0001-6249-5860 - first_name: Daniel full_name: Segovia-Vargas, Daniel last_name: Segovia-Vargas - first_name: Harald G. L. full_name: Schwefel, Harald G. L. last_name: Schwefel - first_name: Luis Enrique Garcia full_name: Munoz, Luis Enrique Garcia last_name: Munoz citation: ama: 'Wasiak M, Botello GS, Abdalmalak KA, et al. Compact millimeter and submillimeter-wave photonic radiometer for cubesats. In: 14th European Conference on Antennas and Propagation. IEEE; 2020. doi:10.23919/eucap48036.2020.9135962' apa: 'Wasiak, M., Botello, G. S., Abdalmalak, K. A., Sedlmeir, F., Rueda Sanchez, A. R., Segovia-Vargas, D., … Munoz, L. E. G. (2020). Compact millimeter and submillimeter-wave photonic radiometer for cubesats. In 14th European Conference on Antennas and Propagation. Copenhagen, Denmark: IEEE. https://doi.org/10.23919/eucap48036.2020.9135962' chicago: Wasiak, Michal, Gabriel Santamaria Botello, Kerlos Atia Abdalmalak, Florian Sedlmeir, Alfredo R Rueda Sanchez, Daniel Segovia-Vargas, Harald G. L. Schwefel, and Luis Enrique Garcia Munoz. “Compact Millimeter and Submillimeter-Wave Photonic Radiometer for Cubesats.” In 14th European Conference on Antennas and Propagation. IEEE, 2020. https://doi.org/10.23919/eucap48036.2020.9135962. ieee: M. Wasiak et al., “Compact millimeter and submillimeter-wave photonic radiometer for cubesats,” in 14th European Conference on Antennas and Propagation, Copenhagen, Denmark, 2020. ista: 'Wasiak M, Botello GS, Abdalmalak KA, Sedlmeir F, Rueda Sanchez AR, Segovia-Vargas D, Schwefel HGL, Munoz LEG. 2020. Compact millimeter and submillimeter-wave photonic radiometer for cubesats. 14th European Conference on Antennas and Propagation. EuCAP: European Conference on Antennas and Propagation.' mla: Wasiak, Michal, et al. “Compact Millimeter and Submillimeter-Wave Photonic Radiometer for Cubesats.” 14th European Conference on Antennas and Propagation, IEEE, 2020, doi:10.23919/eucap48036.2020.9135962. short: M. Wasiak, G.S. Botello, K.A. Abdalmalak, F. Sedlmeir, A.R. Rueda Sanchez, D. Segovia-Vargas, H.G.L. Schwefel, L.E.G. Munoz, in:, 14th European Conference on Antennas and Propagation, IEEE, 2020. conference: end_date: 2020-03-20 location: Copenhagen, Denmark name: 'EuCAP: European Conference on Antennas and Propagation' start_date: 2020-03-15 date_created: 2024-03-04T09:57:48Z date_published: 2020-07-08T00:00:00Z date_updated: 2024-03-04T10:02:49Z day: '08' department: - _id: JoFi doi: 10.23919/eucap48036.2020.9135962 language: - iso: eng month: '07' oa_version: None publication: 14th European Conference on Antennas and Propagation publication_identifier: eisbn: - '9788831299008' publication_status: published publisher: IEEE quality_controlled: '1' status: public title: Compact millimeter and submillimeter-wave photonic radiometer for cubesats type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ... --- _id: '6053' abstract: - lang: eng text: Recent technical developments in the fields of quantum electromechanics and optomechanics have spawned nanoscale mechanical transducers with the sensitivity to measure mechanical displacements at the femtometre scale and the ability to convert electromagnetic signals at the single photon level. A key challenge in this field is obtaining strong coupling between motion and electromagnetic fields without adding additional decoherence. Here we present an electromechanical transducer that integrates a high-frequency (0.42 GHz) hypersonic phononic crystal with a superconducting microwave circuit. The use of a phononic bandgap crystal enables quantum-level transduction of hypersonic mechanical motion and concurrently eliminates decoherence caused by acoustic radiation. Devices with hypersonic mechanical frequencies provide a natural pathway for integration with Josephson junction quantum circuits, a leading quantum computing technology, and nanophotonic systems capable of optical networking and distributing quantum information. article_processing_charge: No article_type: original author: - first_name: Mahmoud full_name: Kalaee, Mahmoud last_name: Kalaee - first_name: Mohammad full_name: Mirhosseini, Mohammad last_name: Mirhosseini - first_name: Paul B. full_name: Dieterle, Paul B. last_name: Dieterle - first_name: Matilda full_name: Peruzzo, Matilda id: 3F920B30-F248-11E8-B48F-1D18A9856A87 last_name: Peruzzo orcid: 0000-0002-3415-4628 - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X - first_name: Oskar full_name: Painter, Oskar last_name: Painter citation: ama: Kalaee M, Mirhosseini M, Dieterle PB, Peruzzo M, Fink JM, Painter O. Quantum electromechanics of a hypersonic crystal. Nature Nanotechnology. 2019;14(4):334–339. doi:10.1038/s41565-019-0377-2 apa: Kalaee, M., Mirhosseini, M., Dieterle, P. B., Peruzzo, M., Fink, J. M., & Painter, O. (2019). Quantum electromechanics of a hypersonic crystal. Nature Nanotechnology. Springer Nature. https://doi.org/10.1038/s41565-019-0377-2 chicago: Kalaee, Mahmoud, Mohammad Mirhosseini, Paul B. Dieterle, Matilda Peruzzo, Johannes M Fink, and Oskar Painter. “Quantum Electromechanics of a Hypersonic Crystal.” Nature Nanotechnology. Springer Nature, 2019. https://doi.org/10.1038/s41565-019-0377-2. ieee: M. Kalaee, M. Mirhosseini, P. B. Dieterle, M. Peruzzo, J. M. Fink, and O. Painter, “Quantum electromechanics of a hypersonic crystal,” Nature Nanotechnology, vol. 14, no. 4. Springer Nature, pp. 334–339, 2019. ista: Kalaee M, Mirhosseini M, Dieterle PB, Peruzzo M, Fink JM, Painter O. 2019. Quantum electromechanics of a hypersonic crystal. Nature Nanotechnology. 14(4), 334–339. mla: Kalaee, Mahmoud, et al. “Quantum Electromechanics of a Hypersonic Crystal.” Nature Nanotechnology, vol. 14, no. 4, Springer Nature, 2019, pp. 334–339, doi:10.1038/s41565-019-0377-2. short: M. Kalaee, M. Mirhosseini, P.B. Dieterle, M. Peruzzo, J.M. Fink, O. Painter, Nature Nanotechnology 14 (2019) 334–339. date_created: 2019-02-24T22:59:21Z date_published: 2019-04-01T00:00:00Z date_updated: 2023-08-24T14:48:08Z day: '01' department: - _id: JoFi doi: 10.1038/s41565-019-0377-2 external_id: isi: - '000463195700014' intvolume: ' 14' isi: 1 issue: '4' language: - iso: eng main_file_link: - open_access: '1' url: https://authors.library.caltech.edu/92123/ month: '04' oa: 1 oa_version: Submitted Version page: 334–339 publication: Nature Nanotechnology publication_identifier: eissn: - 1748-3395 issn: - 1748-3387 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Quantum electromechanics of a hypersonic crystal type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 14 year: '2019' ... --- _id: '6102' abstract: - lang: eng text: 'Light is a union of electric and magnetic fields, and nowhere is the complex relationship between these fields more evident than in the near fields of nanophotonic structures. There, complicated electric and magnetic fields varying over subwavelength scales are generally present, which results in photonic phenomena such as extraordinary optical momentum, superchiral fields, and a complex spatial evolution of optical singularities. An understanding of such phenomena requires nanoscale measurements of the complete optical field vector. Although the sensitivity of near- field scanning optical microscopy to the complete electromagnetic field was recently demonstrated, a separation of different components required a priori knowledge of the sample. Here, we introduce a robust algorithm that can disentangle all six electric and magnetic field components from a single near-field measurement without any numerical modeling of the structure. As examples, we unravel the fields of two prototypical nanophotonic structures: a photonic crystal waveguide and a plasmonic nanowire. These results pave the way for new studies of complex photonic phenomena at the nanoscale and for the design of structures that optimize their optical behavior.' article_number: '28' article_processing_charge: No author: - first_name: B. full_name: Le Feber, B. last_name: Le Feber - first_name: J. E. full_name: Sipe, J. E. last_name: Sipe - first_name: Matthias full_name: Wulf, Matthias id: 45598606-F248-11E8-B48F-1D18A9856A87 last_name: Wulf orcid: 0000-0001-6613-1378 - first_name: L. full_name: Kuipers, L. last_name: Kuipers - first_name: N. full_name: Rotenberg, N. last_name: Rotenberg citation: ama: 'Le Feber B, Sipe JE, Wulf M, Kuipers L, Rotenberg N. A full vectorial mapping of nanophotonic light fields. Light: Science and Applications. 2019;8(1). doi:10.1038/s41377-019-0124-3' apa: 'Le Feber, B., Sipe, J. E., Wulf, M., Kuipers, L., & Rotenberg, N. (2019). A full vectorial mapping of nanophotonic light fields. Light: Science and Applications. Springer Nature. https://doi.org/10.1038/s41377-019-0124-3' chicago: 'Le Feber, B., J. E. Sipe, Matthias Wulf, L. Kuipers, and N. Rotenberg. “A Full Vectorial Mapping of Nanophotonic Light Fields.” Light: Science and Applications. Springer Nature, 2019. https://doi.org/10.1038/s41377-019-0124-3.' ieee: 'B. Le Feber, J. E. Sipe, M. Wulf, L. Kuipers, and N. Rotenberg, “A full vectorial mapping of nanophotonic light fields,” Light: Science and Applications, vol. 8, no. 1. Springer Nature, 2019.' ista: 'Le Feber B, Sipe JE, Wulf M, Kuipers L, Rotenberg N. 2019. A full vectorial mapping of nanophotonic light fields. Light: Science and Applications. 8(1), 28.' mla: 'Le Feber, B., et al. “A Full Vectorial Mapping of Nanophotonic Light Fields.” Light: Science and Applications, vol. 8, no. 1, 28, Springer Nature, 2019, doi:10.1038/s41377-019-0124-3.' short: 'B. Le Feber, J.E. Sipe, M. Wulf, L. Kuipers, N. Rotenberg, Light: Science and Applications 8 (2019).' date_created: 2019-03-17T22:59:13Z date_published: 2019-03-06T00:00:00Z date_updated: 2023-08-25T08:06:10Z day: '06' ddc: - '530' department: - _id: JoFi doi: 10.1038/s41377-019-0124-3 external_id: arxiv: - '1803.10145' isi: - '000460470700004' file: - access_level: open_access checksum: d71e528cff9c56f70ccc29dd7005257f content_type: application/pdf creator: dernst date_created: 2019-03-18T08:08:22Z date_updated: 2020-07-14T12:47:19Z file_id: '6108' file_name: 2019_Light_LeFeber.pdf file_size: 1119947 relation: main_file file_date_updated: 2020-07-14T12:47:19Z has_accepted_license: '1' intvolume: ' 8' isi: 1 issue: '1' language: - iso: eng license: https://creativecommons.org/licenses/by/4.0/ month: '03' oa: 1 oa_version: Published Version publication: 'Light: Science and Applications' publication_identifier: eissn: - '20477538' issn: - '20955545' publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: A full vectorial mapping of nanophotonic light fields tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 8 year: '2019' ... --- _id: '6348' abstract: - lang: eng text: 'High-speed optical telecommunication is enabled by wavelength-division multiplexing, whereby hundreds of individually stabilized lasers encode information within a single-mode optical fibre. Higher bandwidths require higher total optical power, but the power sent into the fibre is limited by optical nonlinearities within the fibre, and energy consumption by the light sources starts to become a substantial cost factor1. Optical frequency combs have been suggested to remedy this problem by generating numerous discrete, equidistant laser lines within a monolithic device; however, at present their stability and coherence allow them to operate only within small parameter ranges2,3,4. Here we show that a broadband frequency comb realized through the electro-optic effect within a high-quality whispering-gallery-mode resonator can operate at low microwave and optical powers. Unlike the usual third-order Kerr nonlinear optical frequency combs, our combs rely on the second-order nonlinear effect, which is much more efficient. Our result uses a fixed microwave signal that is mixed with an optical-pump signal to generate a coherent frequency comb with a precisely determined carrier separation. The resonant enhancement enables us to work with microwave powers that are three orders of magnitude lower than those in commercially available devices. We emphasize the practical relevance of our results to high rates of data communication. To circumvent the limitations imposed by nonlinear effects in optical communication fibres, one has to solve two problems: to provide a compact and fully integrated, yet high-quality and coherent, frequency comb generator; and to calculate nonlinear signal propagation in real time5. We report a solution to the first problem.' article_processing_charge: No author: - first_name: Alfredo R full_name: Rueda Sanchez, Alfredo R id: 3B82B0F8-F248-11E8-B48F-1D18A9856A87 last_name: Rueda Sanchez orcid: 0000-0001-6249-5860 - first_name: Florian full_name: Sedlmeir, Florian last_name: Sedlmeir - first_name: Madhuri full_name: Kumari, Madhuri last_name: Kumari - first_name: Gerd full_name: Leuchs, Gerd last_name: Leuchs - first_name: Harald G.L. full_name: Schwefel, Harald G.L. last_name: Schwefel citation: ama: Rueda Sanchez AR, Sedlmeir F, Kumari M, Leuchs G, Schwefel HGL. Resonant electro-optic frequency comb. Nature. 2019;568(7752):378-381. doi:10.1038/s41586-019-1110-x apa: Rueda Sanchez, A. R., Sedlmeir, F., Kumari, M., Leuchs, G., & Schwefel, H. G. L. (2019). Resonant electro-optic frequency comb. Nature. Springer Nature. https://doi.org/10.1038/s41586-019-1110-x chicago: Rueda Sanchez, Alfredo R, Florian Sedlmeir, Madhuri Kumari, Gerd Leuchs, and Harald G.L. Schwefel. “Resonant Electro-Optic Frequency Comb.” Nature. Springer Nature, 2019. https://doi.org/10.1038/s41586-019-1110-x. ieee: A. R. Rueda Sanchez, F. Sedlmeir, M. Kumari, G. Leuchs, and H. G. L. Schwefel, “Resonant electro-optic frequency comb,” Nature, vol. 568, no. 7752. Springer Nature, pp. 378–381, 2019. ista: Rueda Sanchez AR, Sedlmeir F, Kumari M, Leuchs G, Schwefel HGL. 2019. Resonant electro-optic frequency comb. Nature. 568(7752), 378–381. mla: Rueda Sanchez, Alfredo R., et al. “Resonant Electro-Optic Frequency Comb.” Nature, vol. 568, no. 7752, Springer Nature, 2019, pp. 378–81, doi:10.1038/s41586-019-1110-x. short: A.R. Rueda Sanchez, F. Sedlmeir, M. Kumari, G. Leuchs, H.G.L. Schwefel, Nature 568 (2019) 378–381. date_created: 2019-04-28T21:59:13Z date_published: 2019-04-18T00:00:00Z date_updated: 2023-08-25T10:15:25Z day: '18' department: - _id: JoFi doi: 10.1038/s41586-019-1110-x external_id: arxiv: - '1808.10608' isi: - '000464950700053' intvolume: ' 568' isi: 1 issue: '7752' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1808.10608 month: '04' oa: 1 oa_version: Preprint page: 378-381 publication: Nature publication_identifier: eissn: - '14764687' issn: - '00280836' publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: link: - relation: erratum url: https://doi.org/10.1038/s41586-019-1220-5 scopus_import: '1' status: public title: Resonant electro-optic frequency comb type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 568 year: '2019' ... --- _id: '6609' abstract: - lang: eng text: Mechanical systems facilitate the development of a hybrid quantum technology comprising electrical, optical, atomic and acoustic degrees of freedom1, and entanglement is essential to realize quantum-enabled devices. Continuous-variable entangled fields—known as Einstein–Podolsky–Rosen (EPR) states—are spatially separated two-mode squeezed states that can be used for quantum teleportation and quantum communication2. In the optical domain, EPR states are typically generated using nondegenerate optical amplifiers3, and at microwave frequencies Josephson circuits can serve as a nonlinear medium4,5,6. An outstanding goal is to deterministically generate and distribute entangled states with a mechanical oscillator, which requires a carefully arranged balance between excitation, cooling and dissipation in an ultralow noise environment. Here we observe stationary emission of path-entangled microwave radiation from a parametrically driven 30-micrometre-long silicon nanostring oscillator, squeezing the joint field operators of two thermal modes by 3.40 decibels below the vacuum level. The motion of this micromechanical system correlates up to 50 photons per second per hertz, giving rise to a quantum discord that is robust with respect to microwave noise7. Such generalized quantum correlations of separable states are important for quantum-enhanced detection8 and provide direct evidence of the non-classical nature of the mechanical oscillator without directly measuring its state9. This noninvasive measurement scheme allows to infer information about otherwise inaccessible objects, with potential implications for sensing, open-system dynamics and fundamental tests of quantum gravity. In the future, similar on-chip devices could be used to entangle subsystems on very different energy scales, such as microwave and optical photons. acknowledged_ssus: - _id: NanoFab article_processing_charge: No author: - first_name: Shabir full_name: Barzanjeh, Shabir id: 2D25E1F6-F248-11E8-B48F-1D18A9856A87 last_name: Barzanjeh orcid: 0000-0003-0415-1423 - first_name: Elena full_name: Redchenko, Elena id: 2C21D6E8-F248-11E8-B48F-1D18A9856A87 last_name: Redchenko - first_name: Matilda full_name: Peruzzo, Matilda id: 3F920B30-F248-11E8-B48F-1D18A9856A87 last_name: Peruzzo orcid: 0000-0002-3415-4628 - first_name: Matthias full_name: Wulf, Matthias id: 45598606-F248-11E8-B48F-1D18A9856A87 last_name: Wulf orcid: 0000-0001-6613-1378 - first_name: Dylan full_name: Lewis, Dylan last_name: Lewis - first_name: Georg M full_name: Arnold, Georg M id: 3770C838-F248-11E8-B48F-1D18A9856A87 last_name: Arnold orcid: 0000-0003-1397-7876 - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X citation: ama: Barzanjeh S, Redchenko E, Peruzzo M, et al. Stationary entangled radiation from micromechanical motion. Nature. 2019;570:480-483. doi:10.1038/s41586-019-1320-2 apa: Barzanjeh, S., Redchenko, E., Peruzzo, M., Wulf, M., Lewis, D., Arnold, G. M., & Fink, J. M. (2019). Stationary entangled radiation from micromechanical motion. Nature. Nature Publishing Group. https://doi.org/10.1038/s41586-019-1320-2 chicago: Barzanjeh, Shabir, Elena Redchenko, Matilda Peruzzo, Matthias Wulf, Dylan Lewis, Georg M Arnold, and Johannes M Fink. “Stationary Entangled Radiation from Micromechanical Motion.” Nature. Nature Publishing Group, 2019. https://doi.org/10.1038/s41586-019-1320-2. ieee: S. Barzanjeh et al., “Stationary entangled radiation from micromechanical motion,” Nature, vol. 570. Nature Publishing Group, pp. 480–483, 2019. ista: Barzanjeh S, Redchenko E, Peruzzo M, Wulf M, Lewis D, Arnold GM, Fink JM. 2019. Stationary entangled radiation from micromechanical motion. Nature. 570, 480–483. mla: Barzanjeh, Shabir, et al. “Stationary Entangled Radiation from Micromechanical Motion.” Nature, vol. 570, Nature Publishing Group, 2019, pp. 480–83, doi:10.1038/s41586-019-1320-2. short: S. Barzanjeh, E. Redchenko, M. Peruzzo, M. Wulf, D. Lewis, G.M. Arnold, J.M. Fink, Nature 570 (2019) 480–483. date_created: 2019-07-07T21:59:20Z date_published: 2019-06-27T00:00:00Z date_updated: 2023-08-28T12:29:56Z day: '27' department: - _id: JoFi doi: 10.1038/s41586-019-1320-2 ec_funded: 1 external_id: arxiv: - '1809.05865' isi: - '000472860000042' intvolume: ' 570' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1809.05865 month: '06' oa: 1 oa_version: Preprint page: 480-483 project: - _id: 257EB838-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '732894' name: Hybrid Optomechanical Technologies - _id: 26336814-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '758053' name: A Fiber Optic Transceiver for Superconducting Qubits - _id: 258047B6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '707438' name: 'Microwave-to-Optical Quantum Link: Quantum Teleportation and Quantum Illumination with cavity Optomechanics' - _id: 2671EB66-B435-11E9-9278-68D0E5697425 name: Coherent on-chip conversion of superconducting qubit signals from microwaves to optical frequencies publication: Nature publication_status: published publisher: Nature Publishing Group quality_controlled: '1' scopus_import: '1' status: public title: Stationary entangled radiation from micromechanical motion type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 570 year: '2019' ... --- _id: '7032' abstract: - lang: eng text: Optical frequency combs (OFCs) are light sources whose spectra consists of equally spaced frequency lines in the optical domain [1]. They have great potential for improving high-capacity data transfer, all-optical atomic clocks, spectroscopy, and high-precision measurements [2]. article_number: '8873300' article_processing_charge: No author: - first_name: Alfredo R full_name: Rueda Sanchez, Alfredo R id: 3B82B0F8-F248-11E8-B48F-1D18A9856A87 last_name: Rueda Sanchez orcid: 0000-0001-6249-5860 - first_name: Florian full_name: Sedlmeir, Florian last_name: Sedlmeir - first_name: Gerd full_name: Leuchs, Gerd last_name: Leuchs - first_name: Madhuri full_name: Kuamri, Madhuri last_name: Kuamri - first_name: Harald G. L. full_name: Schwefel, Harald G. L. last_name: Schwefel citation: ama: 'Rueda Sanchez AR, Sedlmeir F, Leuchs G, Kuamri M, Schwefel HGL. Electro-optic frequency comb generation in lithium niobate whispering gallery mode resonators. In: 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference. IEEE; 2019. doi:10.1109/cleoe-eqec.2019.8873300' apa: 'Rueda Sanchez, A. R., Sedlmeir, F., Leuchs, G., Kuamri, M., & Schwefel, H. G. L. (2019). Electro-optic frequency comb generation in lithium niobate whispering gallery mode resonators. In 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference. Munich, Germany: IEEE. https://doi.org/10.1109/cleoe-eqec.2019.8873300' chicago: Rueda Sanchez, Alfredo R, Florian Sedlmeir, Gerd Leuchs, Madhuri Kuamri, and Harald G. L. Schwefel. “Electro-Optic Frequency Comb Generation in Lithium Niobate Whispering Gallery Mode Resonators.” In 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference. IEEE, 2019. https://doi.org/10.1109/cleoe-eqec.2019.8873300. ieee: A. R. Rueda Sanchez, F. Sedlmeir, G. Leuchs, M. Kuamri, and H. G. L. Schwefel, “Electro-optic frequency comb generation in lithium niobate whispering gallery mode resonators,” in 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference, Munich, Germany, 2019. ista: 'Rueda Sanchez AR, Sedlmeir F, Leuchs G, Kuamri M, Schwefel HGL. 2019. Electro-optic frequency comb generation in lithium niobate whispering gallery mode resonators. 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference. CLEO: Conference on Lasers and Electro-Optics Europe, 8873300.' mla: Rueda Sanchez, Alfredo R., et al. “Electro-Optic Frequency Comb Generation in Lithium Niobate Whispering Gallery Mode Resonators.” 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference, 8873300, IEEE, 2019, doi:10.1109/cleoe-eqec.2019.8873300. short: A.R. Rueda Sanchez, F. Sedlmeir, G. Leuchs, M. Kuamri, H.G.L. Schwefel, in:, 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference, IEEE, 2019. conference: end_date: 2019-06-27 location: Munich, Germany name: 'CLEO: Conference on Lasers and Electro-Optics Europe' start_date: 2019-06-23 date_created: 2019-11-18T13:58:22Z date_published: 2019-10-17T00:00:00Z date_updated: 2023-08-30T07:26:01Z day: '17' department: - _id: JoFi doi: 10.1109/cleoe-eqec.2019.8873300 external_id: isi: - '000630002701617' isi: 1 language: - iso: eng month: '10' oa_version: None publication: 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference publication_identifier: isbn: - '9781728104690' publication_status: published publisher: IEEE quality_controlled: '1' scopus_import: '1' status: public title: Electro-optic frequency comb generation in lithium niobate whispering gallery mode resonators type: conference user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 year: '2019' ... --- _id: '7156' abstract: - lang: eng text: We propose an efficient microwave-photonic modulator as a resource for stationary entangled microwave-optical fields and develop the theory for deterministic entanglement generation and quantum state transfer in multi-resonant electro-optic systems. The device is based on a single crystal whispering gallery mode resonator integrated into a 3D-microwave cavity. The specific design relies on a new combination of thin-film technology and conventional machining that is optimized for the lowest dissipation rates in the microwave, optical, and mechanical domains. We extract important device properties from finite-element simulations and predict continuous variable entanglement generation rates on the order of a Mebit/s for optical pump powers of only a few tens of microwatts. We compare the quantum state transfer fidelities of coherent, squeezed, and non-Gaussian cat states for both teleportation and direct conversion protocols under realistic conditions. Combining the unique capabilities of circuit quantum electrodynamics with the resilience of fiber optic communication could facilitate long-distance solid-state qubit networks, new methods for quantum signal synthesis, quantum key distribution, and quantum enhanced detection, as well as more power-efficient classical sensing and modulation. article_number: '108' article_processing_charge: No article_type: original author: - first_name: Alfredo R full_name: Rueda Sanchez, Alfredo R id: 3B82B0F8-F248-11E8-B48F-1D18A9856A87 last_name: Rueda Sanchez orcid: 0000-0001-6249-5860 - first_name: William J full_name: Hease, William J id: 29705398-F248-11E8-B48F-1D18A9856A87 last_name: Hease orcid: 0000-0001-9868-2166 - first_name: Shabir full_name: Barzanjeh, Shabir id: 2D25E1F6-F248-11E8-B48F-1D18A9856A87 last_name: Barzanjeh orcid: 0000-0003-0415-1423 - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X citation: ama: Rueda Sanchez AR, Hease WJ, Barzanjeh S, Fink JM. Electro-optic entanglement source for microwave to telecom quantum state transfer. npj Quantum Information. 2019;5. doi:10.1038/s41534-019-0220-5 apa: Rueda Sanchez, A. R., Hease, W. J., Barzanjeh, S., & Fink, J. M. (2019). Electro-optic entanglement source for microwave to telecom quantum state transfer. Npj Quantum Information. Springer Nature. https://doi.org/10.1038/s41534-019-0220-5 chicago: Rueda Sanchez, Alfredo R, William J Hease, Shabir Barzanjeh, and Johannes M Fink. “Electro-Optic Entanglement Source for Microwave to Telecom Quantum State Transfer.” Npj Quantum Information. Springer Nature, 2019. https://doi.org/10.1038/s41534-019-0220-5. ieee: A. R. Rueda Sanchez, W. J. Hease, S. Barzanjeh, and J. M. Fink, “Electro-optic entanglement source for microwave to telecom quantum state transfer,” npj Quantum Information, vol. 5. Springer Nature, 2019. ista: Rueda Sanchez AR, Hease WJ, Barzanjeh S, Fink JM. 2019. Electro-optic entanglement source for microwave to telecom quantum state transfer. npj Quantum Information. 5, 108. mla: Rueda Sanchez, Alfredo R., et al. “Electro-Optic Entanglement Source for Microwave to Telecom Quantum State Transfer.” Npj Quantum Information, vol. 5, 108, Springer Nature, 2019, doi:10.1038/s41534-019-0220-5. short: A.R. Rueda Sanchez, W.J. Hease, S. Barzanjeh, J.M. Fink, Npj Quantum Information 5 (2019). date_created: 2019-12-09T08:18:56Z date_published: 2019-12-01T00:00:00Z date_updated: 2023-09-06T11:22:39Z day: '01' ddc: - '530' department: - _id: JoFi doi: 10.1038/s41534-019-0220-5 ec_funded: 1 external_id: arxiv: - '1909.01470' isi: - '000502996200003' file: - access_level: open_access checksum: 13e0ea1d4f9b5f5710780d9473364f58 content_type: application/pdf creator: dernst date_created: 2019-12-09T08:25:06Z date_updated: 2020-07-14T12:47:50Z file_id: '7157' file_name: 2019_NPJ_Rueda.pdf file_size: 1580132 relation: main_file file_date_updated: 2020-07-14T12:47:50Z has_accepted_license: '1' intvolume: ' 5' isi: 1 language: - iso: eng month: '12' oa: 1 oa_version: Published Version project: - _id: 26336814-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '758053' name: A Fiber Optic Transceiver for Superconducting Qubits - _id: 258047B6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '707438' name: 'Microwave-to-Optical Quantum Link: Quantum Teleportation and Quantum Illumination with cavity Optomechanics SUPEREOM' - _id: 257EB838-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '732894' name: Hybrid Optomechanical Technologies - _id: 26927A52-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: F07105 name: Integrating superconducting quantum circuits publication: npj Quantum Information publication_identifier: issn: - 2056-6387 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Electro-optic entanglement source for microwave to telecom quantum state transfer tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 5 year: '2019' ... --- _id: '7451' abstract: - lang: eng text: We prove that the observable telegraph signal accompanying the bistability in the photon-blockade-breakdown regime of the driven and lossy Jaynes–Cummings model is the finite-size precursor of what in the thermodynamic limit is a genuine first-order phase transition. We construct a finite-size scaling of the system parameters to a well-defined thermodynamic limit, in which the system remains the same microscopic system, but the telegraph signal becomes macroscopic both in its timescale and intensity. The existence of such a finite-size scaling completes and justifies the classification of the photon-blockade-breakdown effect as a first-order dissipative quantum phase transition. article_number: '150' article_processing_charge: No article_type: original author: - first_name: A. full_name: Vukics, A. last_name: Vukics - first_name: A. full_name: Dombi, A. last_name: Dombi - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X - first_name: P. full_name: Domokos, P. last_name: Domokos citation: ama: Vukics A, Dombi A, Fink JM, Domokos P. Finite-size scaling of the photon-blockade breakdown dissipative quantum phase transition. Quantum. 2019;3. doi:10.22331/q-2019-06-03-150 apa: Vukics, A., Dombi, A., Fink, J. M., & Domokos, P. (2019). Finite-size scaling of the photon-blockade breakdown dissipative quantum phase transition. Quantum. Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften. https://doi.org/10.22331/q-2019-06-03-150 chicago: Vukics, A., A. Dombi, Johannes M Fink, and P. Domokos. “Finite-Size Scaling of the Photon-Blockade Breakdown Dissipative Quantum Phase Transition.” Quantum. Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften, 2019. https://doi.org/10.22331/q-2019-06-03-150. ieee: A. Vukics, A. Dombi, J. M. Fink, and P. Domokos, “Finite-size scaling of the photon-blockade breakdown dissipative quantum phase transition,” Quantum, vol. 3. Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften, 2019. ista: Vukics A, Dombi A, Fink JM, Domokos P. 2019. Finite-size scaling of the photon-blockade breakdown dissipative quantum phase transition. Quantum. 3, 150. mla: Vukics, A., et al. “Finite-Size Scaling of the Photon-Blockade Breakdown Dissipative Quantum Phase Transition.” Quantum, vol. 3, 150, Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften, 2019, doi:10.22331/q-2019-06-03-150. short: A. Vukics, A. Dombi, J.M. Fink, P. Domokos, Quantum 3 (2019). date_created: 2020-02-05T09:57:57Z date_published: 2019-06-03T00:00:00Z date_updated: 2023-09-07T14:57:39Z day: '03' ddc: - '530' department: - _id: JoFi doi: 10.22331/q-2019-06-03-150 external_id: arxiv: - '1809.09737' isi: - '000469987500004' file: - access_level: open_access checksum: 26b9ba8f0155d183f1ee55295934a17f content_type: application/pdf creator: dernst date_created: 2020-02-11T09:25:23Z date_updated: 2020-07-14T12:47:58Z file_id: '7483' file_name: 2019_Quantum_Vukics.pdf file_size: 5805248 relation: main_file file_date_updated: 2020-07-14T12:47:58Z has_accepted_license: '1' intvolume: ' 3' isi: 1 language: - iso: eng month: '06' oa: 1 oa_version: Published Version publication: Quantum publication_identifier: issn: - 2521-327X publication_status: published publisher: Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften quality_controlled: '1' status: public title: Finite-size scaling of the photon-blockade breakdown dissipative quantum phase transition tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 3 year: '2019' ... --- _id: '7233' abstract: - lang: eng text: We demonstrate electro-optic frequency comb generation using a doubly resonant system comprising a whispering gallery mode disk resonator made of lithium niobate mounted inside a three dimensional copper cavity. We observe 180 sidebands centred at 1550 nm. article_number: NM2A.5 article_processing_charge: No author: - first_name: Alfredo R full_name: Rueda Sanchez, Alfredo R id: 3B82B0F8-F248-11E8-B48F-1D18A9856A87 last_name: Rueda Sanchez orcid: 0000-0001-6249-5860 - first_name: Florian full_name: Sedlmeir, Florian last_name: Sedlmeir - first_name: Gerd full_name: Leuchs, Gerd last_name: Leuchs - first_name: Madhuri full_name: Kumari, Madhuri last_name: Kumari - first_name: Harald G.L. full_name: Schwefel, Harald G.L. last_name: Schwefel citation: ama: 'Rueda Sanchez AR, Sedlmeir F, Leuchs G, Kumari M, Schwefel HGL. Resonant electro-optic frequency comb generation in lithium niobate disk resonator inside a microwave cavity. In: Nonlinear Optics, OSA Technical Digest. Optica  Publishing Group; 2019. doi:10.1364/NLO.2019.NM2A.5' apa: 'Rueda Sanchez, A. R., Sedlmeir, F., Leuchs, G., Kumari, M., & Schwefel, H. G. L. (2019). Resonant electro-optic frequency comb generation in lithium niobate disk resonator inside a microwave cavity. In Nonlinear Optics, OSA Technical Digest. Waikoloa Beach, Hawaii (HI), United States: Optica  Publishing Group. https://doi.org/10.1364/NLO.2019.NM2A.5' chicago: Rueda Sanchez, Alfredo R, Florian Sedlmeir, Gerd Leuchs, Madhuri Kumari, and Harald G.L. Schwefel. “Resonant Electro-Optic Frequency Comb Generation in Lithium Niobate Disk Resonator inside a Microwave Cavity.” In Nonlinear Optics, OSA Technical Digest. Optica  Publishing Group, 2019. https://doi.org/10.1364/NLO.2019.NM2A.5. ieee: A. R. Rueda Sanchez, F. Sedlmeir, G. Leuchs, M. Kumari, and H. G. L. Schwefel, “Resonant electro-optic frequency comb generation in lithium niobate disk resonator inside a microwave cavity,” in Nonlinear Optics, OSA Technical Digest, Waikoloa Beach, Hawaii (HI), United States, 2019. ista: 'Rueda Sanchez AR, Sedlmeir F, Leuchs G, Kumari M, Schwefel HGL. 2019. Resonant electro-optic frequency comb generation in lithium niobate disk resonator inside a microwave cavity. Nonlinear Optics, OSA Technical Digest. NLO: Nonlinear Optics, NM2A.5.' mla: Rueda Sanchez, Alfredo R., et al. “Resonant Electro-Optic Frequency Comb Generation in Lithium Niobate Disk Resonator inside a Microwave Cavity.” Nonlinear Optics, OSA Technical Digest, NM2A.5, Optica  Publishing Group, 2019, doi:10.1364/NLO.2019.NM2A.5. short: A.R. Rueda Sanchez, F. Sedlmeir, G. Leuchs, M. Kumari, H.G.L. Schwefel, in:, Nonlinear Optics, OSA Technical Digest, Optica  Publishing Group, 2019. conference: end_date: 2019-07-19 location: Waikoloa Beach, Hawaii (HI), United States name: 'NLO: Nonlinear Optics' start_date: 2019-07-15 date_created: 2020-01-05T23:00:48Z date_published: 2019-07-15T00:00:00Z date_updated: 2023-10-17T12:14:46Z day: '15' department: - _id: JoFi doi: 10.1364/NLO.2019.NM2A.5 language: - iso: eng month: '07' oa_version: None publication: Nonlinear Optics, OSA Technical Digest publication_identifier: isbn: - '9781557528209' publication_status: published publisher: Optica Publishing Group quality_controlled: '1' scopus_import: '1' status: public title: Resonant electro-optic frequency comb generation in lithium niobate disk resonator inside a microwave cavity type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2019' ... --- _id: '287' abstract: - lang: eng text: In this paper, we discuss biological effects of electromagnetic (EM) fields in the context of cancer biology. In particular, we review the nanomechanical properties of microtubules (MTs), the latter being one of the most successful targets for cancer therapy. We propose an investigation on the coupling of electromagnetic radiation to mechanical vibrations of MTs as an important basis for biological and medical applications. In our opinion, optomechanical methods can accurately monitor and control the mechanical properties of isolated MTs in a liquid environment. Consequently, studying nanomechanical properties of MTs may give useful information for future applications to diagnostic and therapeutic technologies involving non-invasive externally applied physical fields. For example, electromagnetic fields or high intensity ultrasound can be used therapeutically avoiding harmful side effects of chemotherapeutic agents or classical radiation therapy. acknowledgement: The work of SB has been supported by the European Unions Horizon 2020 research and innovation program under the Marie Sklodowska Curie grant agreement No MSC-IF 707438 SUPEREOM. JAT gratefully acknowledges funding support from NSERC (Canada) for his research. MC acknowledges support from the Czech Science Foundation, projects 15-17102S and 17-11898S and he participates in COST Action BM1309, CA15211 and bilateral exchange project between Czech and Slovak Academies of Sciences, SAV-15-22. article_processing_charge: No author: - first_name: Vahid full_name: Salari, Vahid last_name: Salari - first_name: Shabir full_name: Barzanjeh, Shabir id: 2D25E1F6-F248-11E8-B48F-1D18A9856A87 last_name: Barzanjeh orcid: 0000-0003-0415-1423 - first_name: Michal full_name: Cifra, Michal last_name: Cifra - first_name: Christoph full_name: Simon, Christoph last_name: Simon - first_name: Felix full_name: Scholkmann, Felix last_name: Scholkmann - first_name: Zahra full_name: Alirezaei, Zahra last_name: Alirezaei - first_name: Jack full_name: Tuszynski, Jack last_name: Tuszynski citation: ama: Salari V, Barzanjeh S, Cifra M, et al. Electromagnetic fields and optomechanics In cancer diagnostics and treatment. Frontiers in Bioscience - Landmark. 2018;23(8):1391-1406. doi:10.2741/4651 apa: Salari, V., Barzanjeh, S., Cifra, M., Simon, C., Scholkmann, F., Alirezaei, Z., & Tuszynski, J. (2018). Electromagnetic fields and optomechanics In cancer diagnostics and treatment. Frontiers in Bioscience - Landmark. Frontiers in Bioscience. https://doi.org/10.2741/4651 chicago: Salari, Vahid, Shabir Barzanjeh, Michal Cifra, Christoph Simon, Felix Scholkmann, Zahra Alirezaei, and Jack Tuszynski. “Electromagnetic Fields and Optomechanics In Cancer Diagnostics and Treatment.” Frontiers in Bioscience - Landmark. Frontiers in Bioscience, 2018. https://doi.org/10.2741/4651. ieee: V. Salari et al., “Electromagnetic fields and optomechanics In cancer diagnostics and treatment,” Frontiers in Bioscience - Landmark, vol. 23, no. 8. Frontiers in Bioscience, pp. 1391–1406, 2018. ista: Salari V, Barzanjeh S, Cifra M, Simon C, Scholkmann F, Alirezaei Z, Tuszynski J. 2018. Electromagnetic fields and optomechanics In cancer diagnostics and treatment. Frontiers in Bioscience - Landmark. 23(8), 1391–1406. mla: Salari, Vahid, et al. “Electromagnetic Fields and Optomechanics In Cancer Diagnostics and Treatment.” Frontiers in Bioscience - Landmark, vol. 23, no. 8, Frontiers in Bioscience, 2018, pp. 1391–406, doi:10.2741/4651. short: V. Salari, S. Barzanjeh, M. Cifra, C. Simon, F. Scholkmann, Z. Alirezaei, J. Tuszynski, Frontiers in Bioscience - Landmark 23 (2018) 1391–1406. date_created: 2018-12-11T11:45:37Z date_published: 2018-03-01T00:00:00Z date_updated: 2023-09-11T13:38:14Z day: '01' department: - _id: JoFi doi: 10.2741/4651 ec_funded: 1 external_id: isi: - '000439042800001' pmid: - '29293441' intvolume: ' 23' isi: 1 issue: '8' language: - iso: eng main_file_link: - open_access: '1' url: https://www.bioscience.org/2018/v23/af/4651/fulltext.htm month: '03' oa: 1 oa_version: Submitted Version page: 1391 - 1406 pmid: 1 project: - _id: 258047B6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '707438' name: 'Microwave-to-Optical Quantum Link: Quantum Teleportation and Quantum Illumination with cavity Optomechanics SUPEREOM' publication: Frontiers in Bioscience - Landmark publication_status: published publisher: Frontiers in Bioscience quality_controlled: '1' scopus_import: '1' status: public title: Electromagnetic fields and optomechanics In cancer diagnostics and treatment type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 23 year: '2018' ... --- _id: '436' abstract: - lang: eng text: There has been significant interest recently in using complex quantum systems to create effective nonreciprocal dynamics. Proposals have been put forward for the realization of artificial magnetic fields for photons and phonons; experimental progress is fast making these proposals a reality. Much work has concentrated on the use of such systems for controlling the flow of signals, e.g., to create isolators or directional amplifiers for optical signals. In this Letter, we build on this work but move in a different direction. We develop the theory of and discuss a potential realization for the controllable flow of thermal noise in quantum systems. We demonstrate theoretically that the unidirectional flow of thermal noise is possible within quantum cascaded systems. Viewing an optomechanical platform as a cascaded system we show here that one can ultimately control the direction of the flow of thermal noise. By appropriately engineering the mechanical resonator, which acts as an artificial reservoir, the flow of thermal noise can be constrained to a desired direction, yielding a thermal rectifier. The proposed quantum thermal noise rectifier could potentially be used to develop devices such as a thermal modulator, a thermal router, and a thermal amplifier for nanoelectronic devices and superconducting circuits. article_number: '060601 ' article_processing_charge: No author: - first_name: Shabir full_name: Barzanjeh, Shabir id: 2D25E1F6-F248-11E8-B48F-1D18A9856A87 last_name: Barzanjeh orcid: 0000-0003-0415-1423 - first_name: Matteo full_name: Aquilina, Matteo last_name: Aquilina - first_name: André full_name: Xuereb, André last_name: Xuereb citation: ama: Barzanjeh S, Aquilina M, Xuereb A. Manipulating the flow of thermal noise in quantum devices. Physical Review Letters. 2018;120(6). doi:10.1103/PhysRevLett.120.060601 apa: Barzanjeh, S., Aquilina, M., & Xuereb, A. (2018). Manipulating the flow of thermal noise in quantum devices. Physical Review Letters. American Physical Society. https://doi.org/10.1103/PhysRevLett.120.060601 chicago: Barzanjeh, Shabir, Matteo Aquilina, and André Xuereb. “Manipulating the Flow of Thermal Noise in Quantum Devices.” Physical Review Letters. American Physical Society, 2018. https://doi.org/10.1103/PhysRevLett.120.060601. ieee: S. Barzanjeh, M. Aquilina, and A. Xuereb, “Manipulating the flow of thermal noise in quantum devices,” Physical Review Letters, vol. 120, no. 6. American Physical Society, 2018. ista: Barzanjeh S, Aquilina M, Xuereb A. 2018. Manipulating the flow of thermal noise in quantum devices. Physical Review Letters. 120(6), 060601. mla: Barzanjeh, Shabir, et al. “Manipulating the Flow of Thermal Noise in Quantum Devices.” Physical Review Letters, vol. 120, no. 6, 060601, American Physical Society, 2018, doi:10.1103/PhysRevLett.120.060601. short: S. Barzanjeh, M. Aquilina, A. Xuereb, Physical Review Letters 120 (2018). date_created: 2018-12-11T11:46:28Z date_published: 2018-02-07T00:00:00Z date_updated: 2023-09-13T08:52:27Z day: '07' department: - _id: JoFi doi: 10.1103/PhysRevLett.120.060601 ec_funded: 1 external_id: arxiv: - '1706.09051' isi: - '000424382100004' intvolume: ' 120' isi: 1 issue: '6' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1706.09051 month: '02' oa: 1 oa_version: Preprint project: - _id: 257EB838-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '732894' name: Hybrid Optomechanical Technologies - _id: 258047B6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '707438' name: 'Microwave-to-Optical Quantum Link: Quantum Teleportation and Quantum Illumination with cavity Optomechanics SUPEREOM' publication: Physical Review Letters publication_status: published publisher: American Physical Society publist_id: '7387' quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/interference-as-a-new-method-for-cooling-quantum-devices/ scopus_import: '1' status: public title: Manipulating the flow of thermal noise in quantum devices type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 120 year: '2018' ... --- _id: '307' abstract: - lang: eng text: 'Spontaneous emission spectra of two initially excited closely spaced identical atoms are very sensitive to the strength and the direction of the applied magnetic field. We consider the relevant schemes that ensure the determination of the mutual spatial orientation of the atoms and the distance between them by entirely optical means. A corresponding theoretical description is given accounting for the dipole-dipole interaction between the two atoms in the presence of a magnetic field and for polarizations of the quantum field interacting with magnetic sublevels of the two-atom system. ' acknowledgement: The work was partially supported by Russian Foundation for Basic Research (Grant No. 15-02-05657a) and by the Basic research program of Higher School of Economics (HSE). article_number: ' 043812 ' article_processing_charge: No article_type: original author: - first_name: Elena full_name: Redchenko, Elena id: 2C21D6E8-F248-11E8-B48F-1D18A9856A87 last_name: Redchenko - first_name: Alexander full_name: Makarov, Alexander last_name: Makarov - first_name: Vladimir full_name: Yudson, Vladimir last_name: Yudson citation: ama: Redchenko E, Makarov A, Yudson V. Nanoscopy of pairs of atoms by fluorescence in a magnetic field. Physical Review A - Atomic, Molecular, and Optical Physics. 2018;97(4). doi:10.1103/PhysRevA.97.043812 apa: Redchenko, E., Makarov, A., & Yudson, V. (2018). Nanoscopy of pairs of atoms by fluorescence in a magnetic field. Physical Review A - Atomic, Molecular, and Optical Physics. American Physical Society. https://doi.org/10.1103/PhysRevA.97.043812 chicago: Redchenko, Elena, Alexander Makarov, and Vladimir Yudson. “Nanoscopy of Pairs of Atoms by Fluorescence in a Magnetic Field.” Physical Review A - Atomic, Molecular, and Optical Physics. American Physical Society, 2018. https://doi.org/10.1103/PhysRevA.97.043812. ieee: E. Redchenko, A. Makarov, and V. Yudson, “Nanoscopy of pairs of atoms by fluorescence in a magnetic field,” Physical Review A - Atomic, Molecular, and Optical Physics, vol. 97, no. 4. American Physical Society, 2018. ista: Redchenko E, Makarov A, Yudson V. 2018. Nanoscopy of pairs of atoms by fluorescence in a magnetic field. Physical Review A - Atomic, Molecular, and Optical Physics. 97(4), 043812. mla: Redchenko, Elena, et al. “Nanoscopy of Pairs of Atoms by Fluorescence in a Magnetic Field.” Physical Review A - Atomic, Molecular, and Optical Physics, vol. 97, no. 4, 043812, American Physical Society, 2018, doi:10.1103/PhysRevA.97.043812. short: E. Redchenko, A. Makarov, V. Yudson, Physical Review A - Atomic, Molecular, and Optical Physics 97 (2018). date_created: 2018-12-11T11:45:44Z date_published: 2018-04-09T00:00:00Z date_updated: 2023-09-13T09:00:41Z day: '09' department: - _id: JoFi doi: 10.1103/PhysRevA.97.043812 external_id: arxiv: - '1712.10127' isi: - '000429454000015' intvolume: ' 97' isi: 1 issue: '4' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1712.10127 month: '04' oa: 1 oa_version: Submitted Version publication: ' Physical Review A - Atomic, Molecular, and Optical Physics' publication_status: published publisher: American Physical Society publist_id: '7572' quality_controlled: '1' scopus_import: '1' status: public title: Nanoscopy of pairs of atoms by fluorescence in a magnetic field type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 97 year: '2018' ... --- _id: '155' abstract: - lang: eng text: There is currently significant interest in operating devices in the quantum regime, where their behaviour cannot be explained through classical mechanics. Quantum states, including entangled states, are fragile and easily disturbed by excessive thermal noise. Here we address the question of whether it is possible to create non-reciprocal devices that encourage the flow of thermal noise towards or away from a particular quantum device in a network. Our work makes use of the cascaded systems formalism to answer this question in the affirmative, showing how a three-port device can be used as an effective thermal transistor, and illustrates how this formalism maps onto an experimentally-realisable optomechanical system. Our results pave the way to more resilient quantum devices and to the use of thermal noise as a resource. alternative_title: - Proceedings of SPIE article_number: 106721N article_processing_charge: No author: - first_name: André full_name: Xuereb, André last_name: Xuereb - first_name: Matteo full_name: Aquilina, Matteo last_name: Aquilina - first_name: Shabir full_name: Barzanjeh, Shabir id: 2D25E1F6-F248-11E8-B48F-1D18A9856A87 last_name: Barzanjeh orcid: 0000-0003-0415-1423 citation: ama: 'Xuereb A, Aquilina M, Barzanjeh S. Routing thermal noise through quantum networks. In: Andrews DL, Ostendorf A, Bain AJ, Nunzi JM, eds. Vol 10672. SPIE; 2018. doi:10.1117/12.2309928' apa: 'Xuereb, A., Aquilina, M., & Barzanjeh, S. (2018). Routing thermal noise through quantum networks. In D. L. Andrews, A. Ostendorf, A. J. Bain, & J. M. Nunzi (Eds.) (Vol. 10672). Presented at the SPIE: The international society for optical engineering, Strasbourg, France: SPIE. https://doi.org/10.1117/12.2309928' chicago: Xuereb, André, Matteo Aquilina, and Shabir Barzanjeh. “Routing Thermal Noise through Quantum Networks.” edited by D L Andrews, A Ostendorf, A J Bain, and J M Nunzi, Vol. 10672. SPIE, 2018. https://doi.org/10.1117/12.2309928. ieee: 'A. Xuereb, M. Aquilina, and S. Barzanjeh, “Routing thermal noise through quantum networks,” presented at the SPIE: The international society for optical engineering, Strasbourg, France, 2018, vol. 10672.' ista: 'Xuereb A, Aquilina M, Barzanjeh S. 2018. Routing thermal noise through quantum networks. SPIE: The international society for optical engineering, Proceedings of SPIE, vol. 10672, 106721N.' mla: Xuereb, André, et al. Routing Thermal Noise through Quantum Networks. Edited by D L Andrews et al., vol. 10672, 106721N, SPIE, 2018, doi:10.1117/12.2309928. short: A. Xuereb, M. Aquilina, S. Barzanjeh, in:, D.L. Andrews, A. Ostendorf, A.J. Bain, J.M. Nunzi (Eds.), SPIE, 2018. conference: end_date: 2018-04-26 location: Strasbourg, France name: 'SPIE: The international society for optical engineering' start_date: 2018-04-22 date_created: 2018-12-11T11:44:55Z date_published: 2018-05-04T00:00:00Z date_updated: 2023-09-18T08:12:24Z day: '04' department: - _id: JoFi doi: 10.1117/12.2309928 editor: - first_name: D L full_name: Andrews, D L last_name: Andrews - first_name: A full_name: Ostendorf, A last_name: Ostendorf - first_name: A J full_name: Bain, A J last_name: Bain - first_name: J M full_name: Nunzi, J M last_name: Nunzi external_id: arxiv: - '1806.01000' isi: - '000453298500019' intvolume: ' 10672' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1806.01000 month: '05' oa: 1 oa_version: Preprint publication_status: published publisher: SPIE publist_id: '7766' quality_controlled: '1' scopus_import: '1' status: public title: Routing thermal noise through quantum networks type: conference user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 10672 year: '2018' ... --- _id: '22' abstract: - lang: eng text: Conventional ultra-high sensitivity detectors in the millimeter-wave range are usually cooled as their own thermal noise at room temperature would mask the weak received radiation. The need for cryogenic systems increases the cost and complexity of the instruments, hindering the development of, among others, airborne and space applications. In this work, the nonlinear parametric upconversion of millimeter-wave radiation to the optical domain inside high-quality (Q) lithium niobate whispering-gallery mode (WGM) resonators is proposed for ultra-low noise detection. We experimentally demonstrate coherent upconversion of millimeter-wave signals to a 1550 nm telecom carrier, with a photon conversion efficiency surpassing the state-of-the-art by 2 orders of magnitude. Moreover, a theoretical model shows that the thermal equilibrium of counterpropagating WGMs is broken by overcoupling the millimeter-wave WGM, effectively cooling the upconverted mode and allowing ultra-low noise detection. By theoretically estimating the sensitivity of a correlation radiometer based on the presented scheme, it is found that room-temperature radiometers with better sensitivity than state-of-the-art high-electron-mobility transistor (HEMT)-based radiometers can be designed. This detection paradigm can be used to develop room-temperature instrumentation for radio astronomy, earth observation, planetary missions, and imaging systems. article_processing_charge: No article_type: original author: - first_name: Gabriel full_name: Botello, Gabriel last_name: Botello - first_name: Florian full_name: Sedlmeir, Florian last_name: Sedlmeir - first_name: Alfredo R full_name: Rueda Sanchez, Alfredo R id: 3B82B0F8-F248-11E8-B48F-1D18A9856A87 last_name: Rueda Sanchez orcid: 0000-0001-6249-5860 - first_name: Kerlos full_name: Abdalmalak, Kerlos last_name: Abdalmalak - first_name: Elliott full_name: Brown, Elliott last_name: Brown - first_name: Gerd full_name: Leuchs, Gerd last_name: Leuchs - first_name: Sascha full_name: Preu, Sascha last_name: Preu - first_name: Daniel full_name: Segovia Vargas, Daniel last_name: Segovia Vargas - first_name: Dmitry full_name: Strekalov, Dmitry last_name: Strekalov - first_name: Luis full_name: Munoz, Luis last_name: Munoz - first_name: Harald full_name: Schwefel, Harald last_name: Schwefel citation: ama: Botello G, Sedlmeir F, Rueda Sanchez AR, et al. Sensitivity limits of millimeter-wave photonic radiometers based on efficient electro-optic upconverters. Optica. 2018;5(10):1210-1219. doi:10.1364/OPTICA.5.001210 apa: Botello, G., Sedlmeir, F., Rueda Sanchez, A. R., Abdalmalak, K., Brown, E., Leuchs, G., … Schwefel, H. (2018). Sensitivity limits of millimeter-wave photonic radiometers based on efficient electro-optic upconverters. Optica. https://doi.org/10.1364/OPTICA.5.001210 chicago: Botello, Gabriel, Florian Sedlmeir, Alfredo R Rueda Sanchez, Kerlos Abdalmalak, Elliott Brown, Gerd Leuchs, Sascha Preu, et al. “Sensitivity Limits of Millimeter-Wave Photonic Radiometers Based on Efficient Electro-Optic Upconverters.” Optica, 2018. https://doi.org/10.1364/OPTICA.5.001210. ieee: G. Botello et al., “Sensitivity limits of millimeter-wave photonic radiometers based on efficient electro-optic upconverters,” Optica, vol. 5, no. 10. pp. 1210–1219, 2018. ista: Botello G, Sedlmeir F, Rueda Sanchez AR, Abdalmalak K, Brown E, Leuchs G, Preu S, Segovia Vargas D, Strekalov D, Munoz L, Schwefel H. 2018. Sensitivity limits of millimeter-wave photonic radiometers based on efficient electro-optic upconverters. Optica. 5(10), 1210–1219. mla: Botello, Gabriel, et al. “Sensitivity Limits of Millimeter-Wave Photonic Radiometers Based on Efficient Electro-Optic Upconverters.” Optica, vol. 5, no. 10, 2018, pp. 1210–19, doi:10.1364/OPTICA.5.001210. short: G. Botello, F. Sedlmeir, A.R. Rueda Sanchez, K. Abdalmalak, E. Brown, G. Leuchs, S. Preu, D. Segovia Vargas, D. Strekalov, L. Munoz, H. Schwefel, Optica 5 (2018) 1210–1219. date_created: 2018-12-11T11:44:12Z date_published: 2018-10-20T00:00:00Z date_updated: 2023-10-17T12:12:40Z day: '20' department: - _id: JoFi doi: 10.1364/OPTICA.5.001210 external_id: isi: - '000447853100007' intvolume: ' 5' isi: 1 issue: '10' language: - iso: eng main_file_link: - open_access: '1' url: 'www.doi.org/10.1364/OPTICA.5.001210 ' month: '10' oa: 1 oa_version: Published Version page: 1210 - 1219 publication: Optica publication_identifier: issn: - '23342536' publication_status: published publist_id: '8033' quality_controlled: '1' scopus_import: '1' status: public title: Sensitivity limits of millimeter-wave photonic radiometers based on efficient electro-optic upconverters type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 5 year: '2018' ... --- _id: '1013' abstract: - lang: eng text: From microwave ovens to satellite television to the GPS and data services on our mobile phones, microwave technology is everywhere today. But one technology that has so far failed to prove its worth in this wavelength regime is quantum communication that uses the states of single photons as information carriers. This is because single microwave photons, as opposed to classical microwave signals, are extremely vulnerable to noise from thermal excitations in the channels through which they travel. Two new independent studies, one by Ze-Liang Xiang at Technische Universität Wien (Vienna), Austria, and colleagues [1] and another by Benoît Vermersch at the University of Innsbruck, also in Austria, and colleagues [2] now describe a theoretical protocol for microwave quantum communication that is resilient to thermal and other types of noise. Their approach could become a powerful technique to establish fast links between superconducting data processors in a future all-microwave quantum network. article_processing_charge: No article_type: review author: - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X citation: ama: 'Fink JM. Viewpoint: Microwave quantum states beat the heat. Physics. 2017;10(32). doi:10.1103/Physics.10.32' apa: 'Fink, J. M. (2017). Viewpoint: Microwave quantum states beat the heat. Physics. American Physical Society. https://doi.org/10.1103/Physics.10.32' chicago: 'Fink, Johannes M. “Viewpoint: Microwave Quantum States Beat the Heat.” Physics. American Physical Society, 2017. https://doi.org/10.1103/Physics.10.32.' ieee: 'J. M. Fink, “Viewpoint: Microwave quantum states beat the heat,” Physics, vol. 10, no. 32. American Physical Society, 2017.' ista: 'Fink JM. 2017. Viewpoint: Microwave quantum states beat the heat. Physics. 10(32).' mla: 'Fink, Johannes M. “Viewpoint: Microwave Quantum States Beat the Heat.” Physics, vol. 10, no. 32, American Physical Society, 2017, doi:10.1103/Physics.10.32.' short: J.M. Fink, Physics 10 (2017). date_created: 2018-12-11T11:49:41Z date_published: 2017-03-27T00:00:00Z date_updated: 2022-06-07T10:58:31Z day: '27' ddc: - '530' department: - _id: JoFi doi: 10.1103/Physics.10.32 file: - access_level: open_access content_type: application/pdf creator: dernst date_created: 2019-10-24T11:38:14Z date_updated: 2019-10-24T11:38:14Z file_id: '6968' file_name: 2017_Physics_Fink.pdf file_size: 193622 relation: main_file success: 1 file_date_updated: 2019-10-24T11:38:14Z has_accepted_license: '1' intvolume: ' 10' issue: '32' language: - iso: eng month: '03' oa: 1 oa_version: Published Version publication: Physics publication_status: published publisher: American Physical Society publist_id: '6382' quality_controlled: '1' status: public title: 'Viewpoint: Microwave quantum states beat the heat' type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 10 year: '2017' ... --- _id: '700' abstract: - lang: eng text: Microtubules provide the mechanical force required for chromosome separation during mitosis. However, little is known about the dynamic (high-frequency) mechanical properties of microtubules. Here, we theoretically propose to control the vibrations of a doubly clamped microtubule by tip electrodes and to detect its motion via the optomechanical coupling between the vibrational modes of the microtubule and an optical cavity. In the presence of a red-detuned strong pump laser, this coupling leads to optomechanical-induced transparency of an optical probe field, which can be detected with state-of-the art technology. The center frequency and line width of the transparency peak give the resonance frequency and damping rate of the microtubule, respectively, while the height of the peak reveals information about the microtubule-cavity field coupling. Our method opens the new possibilities to gain information about the physical properties of microtubules, which will enhance our capability to design physical cancer treatment protocols as alternatives to chemotherapeutic drugs. article_number: '012404' author: - first_name: Shabir full_name: Barzanjeh, Shabir id: 2D25E1F6-F248-11E8-B48F-1D18A9856A87 last_name: Barzanjeh orcid: 0000-0003-0415-1423 - first_name: Vahid full_name: Salari, Vahid last_name: Salari - first_name: Jack full_name: Tuszynski, Jack last_name: Tuszynski - first_name: Michal full_name: Cifra, Michal last_name: Cifra - first_name: Christoph full_name: Simon, Christoph last_name: Simon citation: ama: Barzanjeh S, Salari V, Tuszynski J, Cifra M, Simon C. Optomechanical proposal for monitoring microtubule mechanical vibrations. Physical Review E Statistical Nonlinear and Soft Matter Physics . 2017;96(1). doi:10.1103/PhysRevE.96.012404 apa: Barzanjeh, S., Salari, V., Tuszynski, J., Cifra, M., & Simon, C. (2017). Optomechanical proposal for monitoring microtubule mechanical vibrations. Physical Review E Statistical Nonlinear and Soft Matter Physics . American Institute of Physics. https://doi.org/10.1103/PhysRevE.96.012404 chicago: Barzanjeh, Shabir, Vahid Salari, Jack Tuszynski, Michal Cifra, and Christoph Simon. “Optomechanical Proposal for Monitoring Microtubule Mechanical Vibrations.” Physical Review E Statistical Nonlinear and Soft Matter Physics . American Institute of Physics, 2017. https://doi.org/10.1103/PhysRevE.96.012404. ieee: S. Barzanjeh, V. Salari, J. Tuszynski, M. Cifra, and C. Simon, “Optomechanical proposal for monitoring microtubule mechanical vibrations,” Physical Review E Statistical Nonlinear and Soft Matter Physics , vol. 96, no. 1. American Institute of Physics, 2017. ista: Barzanjeh S, Salari V, Tuszynski J, Cifra M, Simon C. 2017. Optomechanical proposal for monitoring microtubule mechanical vibrations. Physical Review E Statistical Nonlinear and Soft Matter Physics . 96(1), 012404. mla: Barzanjeh, Shabir, et al. “Optomechanical Proposal for Monitoring Microtubule Mechanical Vibrations.” Physical Review E Statistical Nonlinear and Soft Matter Physics , vol. 96, no. 1, 012404, American Institute of Physics, 2017, doi:10.1103/PhysRevE.96.012404. short: S. Barzanjeh, V. Salari, J. Tuszynski, M. Cifra, C. Simon, Physical Review E Statistical Nonlinear and Soft Matter Physics 96 (2017). date_created: 2018-12-11T11:48:00Z date_published: 2017-07-12T00:00:00Z date_updated: 2023-02-23T12:56:35Z day: '12' department: - _id: JoFi doi: 10.1103/PhysRevE.96.012404 ec_funded: 1 intvolume: ' 96' issue: '1' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/pdf/1612.07061.pdf month: '07' oa: 1 oa_version: Submitted Version project: - _id: 258047B6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '707438' name: 'Microwave-to-Optical Quantum Link: Quantum Teleportation and Quantum Illumination with cavity Optomechanics' publication: ' Physical Review E Statistical Nonlinear and Soft Matter Physics ' publication_identifier: issn: - '24700045' publication_status: published publisher: American Institute of Physics publist_id: '6997' quality_controlled: '1' scopus_import: 1 status: public title: Optomechanical proposal for monitoring microtubule mechanical vibrations type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 96 year: '2017' ... --- _id: '797' abstract: - lang: ger text: Phasenübergänge helfen beim Verständnis von Vielteilchensystemen in der Festkörperphysik und Fluiddynamik bis hin zur Teilchenphysik. Unserer internationalen Kollaboration ist es gelungen, einen neuartigen Phasenübergang in einem Quantensystem zu beobachten [1]. In einem Mikrowellenresonator konnte erstmals die spontane Zustandsänderung von undurchsichtig zu transparent nachgewiesen werden. article_processing_charge: No article_type: original author: - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X citation: ama: Fink JM. Photonenblockade aufgelöst. Physik in unserer Zeit. 2017;48(3):111-113. doi:10.1002/piuz.201770305 apa: Fink, J. M. (2017). Photonenblockade aufgelöst. Physik in Unserer Zeit. Wiley. https://doi.org/10.1002/piuz.201770305 chicago: Fink, Johannes M. “Photonenblockade Aufgelöst.” Physik in Unserer Zeit. Wiley, 2017. https://doi.org/10.1002/piuz.201770305. ieee: J. M. Fink, “Photonenblockade aufgelöst,” Physik in unserer Zeit, vol. 48, no. 3. Wiley, pp. 111–113, 2017. ista: Fink JM. 2017. Photonenblockade aufgelöst. Physik in unserer Zeit. 48(3), 111–113. mla: Fink, Johannes M. “Photonenblockade Aufgelöst.” Physik in Unserer Zeit, vol. 48, no. 3, Wiley, 2017, pp. 111–13, doi:10.1002/piuz.201770305. short: J.M. Fink, Physik in Unserer Zeit 48 (2017) 111–113. date_created: 2018-12-11T11:48:33Z date_published: 2017-05-01T00:00:00Z date_updated: 2022-03-24T09:16:20Z day: '01' department: - _id: JoFi doi: 10.1002/piuz.201770305 intvolume: ' 48' issue: '3' language: - iso: eng month: '05' oa_version: None page: 111 - 113 publication: Physik in unserer Zeit publication_status: published publisher: Wiley publist_id: '6856' quality_controlled: '1' status: public title: Photonenblockade aufgelöst type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 48 year: '2017' ... --- _id: '1114' abstract: - lang: eng text: Nonequilibrium phase transitions exist in damped-driven open quantum systems when the continuous tuning of an external parameter leads to a transition between two robust steady states. In second-order transitions this change is abrupt at a critical point, whereas in first-order transitions the two phases can coexist in a critical hysteresis domain. Here, we report the observation of a first-order dissipative quantum phase transition in a driven circuit quantum electrodynamics system. It takes place when the photon blockade of the driven cavity-atom system is broken by increasing the drive power. The observed experimental signature is a bimodal phase space distribution with varying weights controlled by the drive strength. Our measurements show an improved stabilization of the classical attractors up to the millisecond range when the size of the quantum system is increased from one to three artificial atoms. The formation of such robust pointer states could be used for new quantum measurement schemes or to investigate multiphoton phases of finite-size, nonlinear, open quantum systems. article_number: '011012' article_processing_charge: Yes author: - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X - first_name: András full_name: Dombi, András last_name: Dombi - first_name: András full_name: Vukics, András last_name: Vukics - first_name: Andreas full_name: Wallraff, Andreas last_name: Wallraff - first_name: Peter full_name: Domokos, Peter last_name: Domokos citation: ama: Fink JM, Dombi A, Vukics A, Wallraff A, Domokos P. Observation of the photon blockade breakdown phase transition. Physical Review X. 2017;7(1). doi:10.1103/PhysRevX.7.011012 apa: Fink, J. M., Dombi, A., Vukics, A., Wallraff, A., & Domokos, P. (2017). Observation of the photon blockade breakdown phase transition. Physical Review X. American Physical Society. https://doi.org/10.1103/PhysRevX.7.011012 chicago: Fink, Johannes M, András Dombi, András Vukics, Andreas Wallraff, and Peter Domokos. “Observation of the Photon Blockade Breakdown Phase Transition.” Physical Review X. American Physical Society, 2017. https://doi.org/10.1103/PhysRevX.7.011012. ieee: J. M. Fink, A. Dombi, A. Vukics, A. Wallraff, and P. Domokos, “Observation of the photon blockade breakdown phase transition,” Physical Review X, vol. 7, no. 1. American Physical Society, 2017. ista: Fink JM, Dombi A, Vukics A, Wallraff A, Domokos P. 2017. Observation of the photon blockade breakdown phase transition. Physical Review X. 7(1), 011012. mla: Fink, Johannes M., et al. “Observation of the Photon Blockade Breakdown Phase Transition.” Physical Review X, vol. 7, no. 1, 011012, American Physical Society, 2017, doi:10.1103/PhysRevX.7.011012. short: J.M. Fink, A. Dombi, A. Vukics, A. Wallraff, P. Domokos, Physical Review X 7 (2017). date_created: 2018-12-11T11:50:13Z date_published: 2017-01-31T00:00:00Z date_updated: 2023-09-20T11:33:07Z day: '31' ddc: - '539' department: - _id: JoFi doi: 10.1103/PhysRevX.7.011012 external_id: isi: - '000397450500001' file: - access_level: open_access content_type: application/pdf creator: system date_created: 2018-12-12T10:12:52Z date_updated: 2018-12-12T10:12:52Z file_id: '4972' file_name: IST-2017-753-v1+1_PhysRevX.7.011012.pdf file_size: 1172926 relation: main_file file_date_updated: 2018-12-12T10:12:52Z has_accepted_license: '1' intvolume: ' 7' isi: 1 issue: '1' language: - iso: eng month: '01' oa: 1 oa_version: Published Version publication: Physical Review X publication_identifier: issn: - '21603308' publication_status: published publisher: American Physical Society publist_id: '6252' pubrep_id: '753' quality_controlled: '1' scopus_import: '1' status: public title: Observation of the photon blockade breakdown phase transition tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 7 year: '2017' ... --- _id: '1020' abstract: - lang: eng text: Cellulose is the most abundant biopolymer on Earth. Cellulose fibers, such as the one extracted form cotton or woodpulp, have been used by humankind for hundreds of years to make textiles and paper. Here we show how, by engineering light-matter interaction, we can optimize light scattering using exclusively cellulose nanocrystals. The produced material is sustainable, biocompatible, and when compared to ordinary microfiber-based paper, it shows enhanced scattering strength (×4), yielding a transport mean free path as low as 3.5 μm in the visible light range. The experimental results are in a good agreement with the theoretical predictions obtained with a diffusive model for light propagation. acknowledgement: This research was funded by the EPSRC (EP/M027961/1), the Leverhulme Trust (RPG-2014-238), Royal Society (RG140457), the BBSRC David Phillips fellowship (BB/K014617/1), and the European Research Council (ERC-2014-STG H2020 639088). All data created during this research are provided in full in the results section and Supporting Information. They are openly available from figshare and can be accessed at ref 30. article_processing_charge: No author: - first_name: Soraya full_name: Caixeiro, Soraya last_name: Caixeiro - first_name: Matilda full_name: Peruzzo, Matilda id: 3F920B30-F248-11E8-B48F-1D18A9856A87 last_name: Peruzzo orcid: 0000-0002-3415-4628 - first_name: Olimpia full_name: Onelli, Olimpia last_name: Onelli - first_name: Silvia full_name: Vignolini, Silvia last_name: Vignolini - first_name: Riccardo full_name: Sapienza, Riccardo last_name: Sapienza citation: ama: Caixeiro S, Peruzzo M, Onelli O, Vignolini S, Sapienza R. Disordered cellulose based nanostructures for enhanced light scattering. ACS Applied Materials and Interfaces. 2017;9(9):7885-7890. doi:10.1021/acsami.6b15986 apa: Caixeiro, S., Peruzzo, M., Onelli, O., Vignolini, S., & Sapienza, R. (2017). Disordered cellulose based nanostructures for enhanced light scattering. ACS Applied Materials and Interfaces. American Chemical Society. https://doi.org/10.1021/acsami.6b15986 chicago: Caixeiro, Soraya, Matilda Peruzzo, Olimpia Onelli, Silvia Vignolini, and Riccardo Sapienza. “Disordered Cellulose Based Nanostructures for Enhanced Light Scattering.” ACS Applied Materials and Interfaces. American Chemical Society, 2017. https://doi.org/10.1021/acsami.6b15986. ieee: S. Caixeiro, M. Peruzzo, O. Onelli, S. Vignolini, and R. Sapienza, “Disordered cellulose based nanostructures for enhanced light scattering,” ACS Applied Materials and Interfaces, vol. 9, no. 9. American Chemical Society, pp. 7885–7890, 2017. ista: Caixeiro S, Peruzzo M, Onelli O, Vignolini S, Sapienza R. 2017. Disordered cellulose based nanostructures for enhanced light scattering. ACS Applied Materials and Interfaces. 9(9), 7885–7890. mla: Caixeiro, Soraya, et al. “Disordered Cellulose Based Nanostructures for Enhanced Light Scattering.” ACS Applied Materials and Interfaces, vol. 9, no. 9, American Chemical Society, 2017, pp. 7885–90, doi:10.1021/acsami.6b15986. short: S. Caixeiro, M. Peruzzo, O. Onelli, S. Vignolini, R. Sapienza, ACS Applied Materials and Interfaces 9 (2017) 7885–7890. date_created: 2018-12-11T11:49:44Z date_published: 2017-03-08T00:00:00Z date_updated: 2023-09-22T09:40:14Z day: '08' department: - _id: JoFi doi: 10.1021/acsami.6b15986 external_id: isi: - '000396186000002' intvolume: ' 9' isi: 1 issue: '9' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1702.01415 month: '03' oa: 1 oa_version: Submitted Version page: 7885 - 7890 publication: ACS Applied Materials and Interfaces publication_identifier: issn: - '19448244' publication_status: published publisher: American Chemical Society publist_id: '6372' quality_controlled: '1' scopus_import: '1' status: public title: Disordered cellulose based nanostructures for enhanced light scattering type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 9 year: '2017' ... --- _id: '798' abstract: - lang: eng text: Nonreciprocal circuit elements form an integral part of modern measurement and communication systems. Mathematically they require breaking of time-reversal symmetry, typically achieved using magnetic materials and more recently using the quantum Hall effect, parametric permittivity modulation or Josephson nonlinearities. Here we demonstrate an on-chip magnetic-free circulator based on reservoir-engineered electromechanic interactions. Directional circulation is achieved with controlled phase-sensitive interference of six distinct electro-mechanical signal conversion paths. The presented circulator is compact, its silicon-on-insulator platform is compatible with both superconducting qubits and silicon photonics, and its noise performance is close to the quantum limit. With a high dynamic range, a tunable bandwidth of up to 30 MHz and an in situ reconfigurability as beam splitter or wavelength converter, it could pave the way for superconducting qubit processors with multiplexed on-chip signal processing and readout. article_number: '1304' article_processing_charge: Yes (in subscription journal) author: - first_name: Shabir full_name: Barzanjeh, Shabir id: 2D25E1F6-F248-11E8-B48F-1D18A9856A87 last_name: Barzanjeh orcid: 0000-0003-0415-1423 - first_name: Matthias full_name: Wulf, Matthias id: 45598606-F248-11E8-B48F-1D18A9856A87 last_name: Wulf orcid: 0000-0001-6613-1378 - first_name: Matilda full_name: Peruzzo, Matilda id: 3F920B30-F248-11E8-B48F-1D18A9856A87 last_name: Peruzzo orcid: 0000-0002-3415-4628 - first_name: Mahmoud full_name: Kalaee, Mahmoud last_name: Kalaee - first_name: Paul full_name: Dieterle, Paul last_name: Dieterle - first_name: Oskar full_name: Painter, Oskar last_name: Painter - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X citation: ama: Barzanjeh S, Wulf M, Peruzzo M, et al. Mechanical on chip microwave circulator. Nature Communications. 2017;8(1). doi:10.1038/s41467-017-01304-x apa: Barzanjeh, S., Wulf, M., Peruzzo, M., Kalaee, M., Dieterle, P., Painter, O., & Fink, J. M. (2017). Mechanical on chip microwave circulator. Nature Communications. Nature Publishing Group. https://doi.org/10.1038/s41467-017-01304-x chicago: Barzanjeh, Shabir, Matthias Wulf, Matilda Peruzzo, Mahmoud Kalaee, Paul Dieterle, Oskar Painter, and Johannes M Fink. “Mechanical on Chip Microwave Circulator.” Nature Communications. Nature Publishing Group, 2017. https://doi.org/10.1038/s41467-017-01304-x. ieee: S. Barzanjeh et al., “Mechanical on chip microwave circulator,” Nature Communications, vol. 8, no. 1. Nature Publishing Group, 2017. ista: Barzanjeh S, Wulf M, Peruzzo M, Kalaee M, Dieterle P, Painter O, Fink JM. 2017. Mechanical on chip microwave circulator. Nature Communications. 8(1), 1304. mla: Barzanjeh, Shabir, et al. “Mechanical on Chip Microwave Circulator.” Nature Communications, vol. 8, no. 1, 1304, Nature Publishing Group, 2017, doi:10.1038/s41467-017-01304-x. short: S. Barzanjeh, M. Wulf, M. Peruzzo, M. Kalaee, P. Dieterle, O. Painter, J.M. Fink, Nature Communications 8 (2017). date_created: 2018-12-11T11:48:33Z date_published: 2017-10-16T00:00:00Z date_updated: 2023-09-27T12:11:28Z day: '16' ddc: - '539' department: - _id: JoFi doi: 10.1038/s41467-017-01304-x ec_funded: 1 external_id: isi: - '000412999700021' file: - access_level: open_access checksum: b68dafa71d1834c23b742cd9987a3d5f content_type: application/pdf creator: system date_created: 2018-12-12T10:15:25Z date_updated: 2020-07-14T12:48:06Z file_id: '5145' file_name: IST-2017-867-v1+1_s41467-017-01304-x.pdf file_size: 1467696 relation: main_file file_date_updated: 2020-07-14T12:48:06Z has_accepted_license: '1' intvolume: ' 8' isi: 1 issue: '1' language: - iso: eng month: '10' oa: 1 oa_version: Published Version project: - _id: 257EB838-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '732894' name: Hybrid Optomechanical Technologies - _id: 258047B6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '707438' name: 'Microwave-to-Optical Quantum Link: Quantum Teleportation and Quantum Illumination with cavity Optomechanics' publication: Nature Communications publication_identifier: issn: - '20411723' publication_status: published publisher: Nature Publishing Group publist_id: '6855' pubrep_id: '867' quality_controlled: '1' scopus_import: '1' status: public title: Mechanical on chip microwave circulator tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 8 year: '2017' ... --- _id: '796' abstract: - lang: eng text: We present the fabrication and characterization of an aluminum transmon qubit on a silicon-on-insulator substrate. Key to the qubit fabrication is the use of an anhydrous hydrofluoric vapor process which selectively removes the lossy silicon oxide buried underneath the silicon device layer. For a 5.6 GHz qubit measured dispersively by a 7.1 GHz resonator, we find T1 = 3.5 μs and T∗2 = 2.2 μs. This process in principle permits the co-fabrication of silicon photonic and mechanical elements, providing a route towards chip-scale integration of electro-opto-mechanical transducers for quantum networking of superconducting microwave quantum circuits. The additional processing steps are compatible with established fabrication techniques for aluminum transmon qubits on silicon. acknowledgement: This work was supported by the AFOSR MURI Quantum Photonic Matter (Grant No. 16RT0696), the AFOSR MURI Wiring Quantum Networks with Mechanical Transducers (Grant No. FA9550-15-1-0015), the Institute for Quantum Information and Matter, an NSF Physics Frontiers Center (Grant No. PHY-1125565) with the support of the Gordon and Betty Moore Foundation, and the Kavli Nanoscience Institute at Caltech. A.J.K. acknowledges the IQIM Postdoctoral Fellowship. article_number: '042603' article_processing_charge: No author: - first_name: Andrew J full_name: Keller, Andrew J last_name: Keller - first_name: Paul full_name: Dieterle, Paul last_name: Dieterle - first_name: Michael full_name: Fang, Michael last_name: Fang - first_name: Brett full_name: Berger, Brett last_name: Berger - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X - first_name: Oskar full_name: Painter, Oskar last_name: Painter citation: ama: Keller AJ, Dieterle P, Fang M, Berger B, Fink JM, Painter O. Al transmon qubits on silicon on insulator for quantum device integration. Applied Physics Letters. 2017;111(4). doi:10.1063/1.4994661 apa: Keller, A. J., Dieterle, P., Fang, M., Berger, B., Fink, J. M., & Painter, O. (2017). Al transmon qubits on silicon on insulator for quantum device integration. Applied Physics Letters. American Institute of Physics. https://doi.org/10.1063/1.4994661 chicago: Keller, Andrew J, Paul Dieterle, Michael Fang, Brett Berger, Johannes M Fink, and Oskar Painter. “Al Transmon Qubits on Silicon on Insulator for Quantum Device Integration.” Applied Physics Letters. American Institute of Physics, 2017. https://doi.org/10.1063/1.4994661. ieee: A. J. Keller, P. Dieterle, M. Fang, B. Berger, J. M. Fink, and O. Painter, “Al transmon qubits on silicon on insulator for quantum device integration,” Applied Physics Letters, vol. 111, no. 4. American Institute of Physics, 2017. ista: Keller AJ, Dieterle P, Fang M, Berger B, Fink JM, Painter O. 2017. Al transmon qubits on silicon on insulator for quantum device integration. Applied Physics Letters. 111(4), 042603. mla: Keller, Andrew J., et al. “Al Transmon Qubits on Silicon on Insulator for Quantum Device Integration.” Applied Physics Letters, vol. 111, no. 4, 042603, American Institute of Physics, 2017, doi:10.1063/1.4994661. short: A.J. Keller, P. Dieterle, M. Fang, B. Berger, J.M. Fink, O. Painter, Applied Physics Letters 111 (2017). date_created: 2018-12-11T11:48:33Z date_published: 2017-07-01T00:00:00Z date_updated: 2023-09-27T12:13:36Z day: '01' department: - _id: JoFi doi: 10.1063/1.4994661 external_id: isi: - '000406779700031' intvolume: ' 111' isi: 1 issue: '4' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1703.10195 month: '07' oa: 1 oa_version: Submitted Version publication: Applied Physics Letters publication_identifier: issn: - '00036951' publication_status: published publisher: American Institute of Physics publist_id: '6857' quality_controlled: '1' scopus_import: '1' status: public title: Al transmon qubits on silicon on insulator for quantum device integration type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 111 year: '2017' ... --- _id: '485' abstract: - lang: eng text: We present results on nonlinear electro-optical conversion of microwave radiation into the optical telecommunication band with more than 0.1% photon number conversion efficiency with MHz bandwidth, in a crystalline whispering gallery mode resonator article_number: NM3A.1 article_processing_charge: No author: - first_name: Alfredo R full_name: Rueda Sanchez, Alfredo R id: 3B82B0F8-F248-11E8-B48F-1D18A9856A87 last_name: Rueda Sanchez orcid: 0000-0001-6249-5860 - first_name: Florian full_name: Sedlmeir, Florian last_name: Sedlmeir - first_name: Michele full_name: Collodo, Michele last_name: Collodo - first_name: Ulrich full_name: Vogl, Ulrich last_name: Vogl - first_name: Birgit full_name: Stiller, Birgit last_name: Stiller - first_name: Gerhard full_name: Schunk, Gerhard last_name: Schunk - first_name: Dmitry full_name: Strekalov, Dmitry last_name: Strekalov - first_name: Christoph full_name: Marquardt, Christoph last_name: Marquardt - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X - first_name: Oskar full_name: Painter, Oskar last_name: Painter - first_name: Gerd full_name: Leuchs, Gerd last_name: Leuchs - first_name: Harald full_name: Schwefel, Harald last_name: Schwefel citation: ama: 'Rueda Sanchez AR, Sedlmeir F, Collodo M, et al. Single sideband microwave to optical photon conversion-an-electro-optic-realization. In: Optics InfoBase Conference Papers. Vol F54. Optica  Publishing Group; 2017. doi:10.1364/NLO.2017.NM3A.1' apa: 'Rueda Sanchez, A. R., Sedlmeir, F., Collodo, M., Vogl, U., Stiller, B., Schunk, G., … Schwefel, H. (2017). Single sideband microwave to optical photon conversion-an-electro-optic-realization. In Optics InfoBase Conference Papers (Vol. F54). Waikoloa, HI, United States: Optica  Publishing Group. https://doi.org/10.1364/NLO.2017.NM3A.1' chicago: Rueda Sanchez, Alfredo R, Florian Sedlmeir, Michele Collodo, Ulrich Vogl, Birgit Stiller, Gerhard Schunk, Dmitry Strekalov, et al. “Single Sideband Microwave to Optical Photon Conversion-an-Electro-Optic-Realization.” In Optics InfoBase Conference Papers, Vol. F54. Optica  Publishing Group, 2017. https://doi.org/10.1364/NLO.2017.NM3A.1. ieee: A. R. Rueda Sanchez et al., “Single sideband microwave to optical photon conversion-an-electro-optic-realization,” in Optics InfoBase Conference Papers, Waikoloa, HI, United States, 2017, vol. F54. ista: 'Rueda Sanchez AR, Sedlmeir F, Collodo M, Vogl U, Stiller B, Schunk G, Strekalov D, Marquardt C, Fink JM, Painter O, Leuchs G, Schwefel H. 2017. Single sideband microwave to optical photon conversion-an-electro-optic-realization. Optics InfoBase Conference Papers. NLO: Nonlinear Optics vol. F54, NM3A.1.' mla: Rueda Sanchez, Alfredo R., et al. “Single Sideband Microwave to Optical Photon Conversion-an-Electro-Optic-Realization.” Optics InfoBase Conference Papers, vol. F54, NM3A.1, Optica  Publishing Group, 2017, doi:10.1364/NLO.2017.NM3A.1. short: A.R. Rueda Sanchez, F. Sedlmeir, M. Collodo, U. Vogl, B. Stiller, G. Schunk, D. Strekalov, C. Marquardt, J.M. Fink, O. Painter, G. Leuchs, H. Schwefel, in:, Optics InfoBase Conference Papers, Optica  Publishing Group, 2017. conference: end_date: 2017-07-21 location: Waikoloa, HI, United States name: 'NLO: Nonlinear Optics' start_date: 2017-07-17 date_created: 2018-12-11T11:46:44Z date_published: 2017-07-01T00:00:00Z date_updated: 2023-10-17T12:15:38Z day: '01' department: - _id: JoFi doi: 10.1364/NLO.2017.NM3A.1 language: - iso: eng month: '07' oa_version: None publication: Optics InfoBase Conference Papers publication_identifier: isbn: - 978-155752820-9 publication_status: published publisher: Optica Publishing Group publist_id: '7335' quality_controlled: '1' scopus_import: '1' status: public title: Single sideband microwave to optical photon conversion-an-electro-optic-realization type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: F54 year: '2017' ... --- _id: '1115' abstract: - lang: eng text: We present a coherent microwave to telecom signal converter based on the electro-optical effect using a crystalline WGM-resonator coupled to a 3D microwave cavity, achieving high photon conversion efficiency of 0.1% with MHz bandwidth. article_number: '7788479' article_processing_charge: No author: - first_name: Alfredo full_name: Rueda, Alfredo last_name: Rueda - first_name: Florian full_name: Sedlmeir, Florian last_name: Sedlmeir - first_name: Michele full_name: Collodo, Michele last_name: Collodo - first_name: Ulrich full_name: Vogl, Ulrich last_name: Vogl - first_name: Birgit full_name: Stiller, Birgit last_name: Stiller - first_name: Georg full_name: Schunk, Georg last_name: Schunk - first_name: Dimitry full_name: Strekalov, Dimitry last_name: Strekalov - first_name: Christoph full_name: Marquardt, Christoph last_name: Marquardt - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X - first_name: Oskar full_name: Painter, Oskar last_name: Painter - first_name: Gerd full_name: Leuchs, Gerd last_name: Leuchs - first_name: Harald full_name: Schwefel, Harald last_name: Schwefel citation: ama: 'Rueda A, Sedlmeir F, Collodo M, et al. Efficient single sideband microwave to optical conversion using a LiNbO₃ WGM-resonator. In: IEEE; 2016. doi:10.1364/CLEO_SI.2016.SF2G.3' apa: 'Rueda, A., Sedlmeir, F., Collodo, M., Vogl, U., Stiller, B., Schunk, G., … Schwefel, H. (2016). Efficient single sideband microwave to optical conversion using a LiNbO₃ WGM-resonator. Presented at the CLEO: Conference on Lasers and Electro Optics, San Jose, CA, USA: IEEE. https://doi.org/10.1364/CLEO_SI.2016.SF2G.3' chicago: Rueda, Alfredo, Florian Sedlmeir, Michele Collodo, Ulrich Vogl, Birgit Stiller, Georg Schunk, Dimitry Strekalov, et al. “Efficient Single Sideband Microwave to Optical Conversion Using a LiNbO₃ WGM-Resonator.” IEEE, 2016. https://doi.org/10.1364/CLEO_SI.2016.SF2G.3. ieee: 'A. Rueda et al., “Efficient single sideband microwave to optical conversion using a LiNbO₃ WGM-resonator,” presented at the CLEO: Conference on Lasers and Electro Optics, San Jose, CA, USA, 2016.' ista: 'Rueda A, Sedlmeir F, Collodo M, Vogl U, Stiller B, Schunk G, Strekalov D, Marquardt C, Fink JM, Painter O, Leuchs G, Schwefel H. 2016. Efficient single sideband microwave to optical conversion using a LiNbO₃ WGM-resonator. CLEO: Conference on Lasers and Electro Optics, 7788479.' mla: Rueda, Alfredo, et al. Efficient Single Sideband Microwave to Optical Conversion Using a LiNbO₃ WGM-Resonator. 7788479, IEEE, 2016, doi:10.1364/CLEO_SI.2016.SF2G.3. short: A. Rueda, F. Sedlmeir, M. Collodo, U. Vogl, B. Stiller, G. Schunk, D. Strekalov, C. Marquardt, J.M. Fink, O. Painter, G. Leuchs, H. Schwefel, in:, IEEE, 2016. conference: end_date: 2016-06-10 location: San Jose, CA, USA name: 'CLEO: Conference on Lasers and Electro Optics' start_date: 2016-06-05 date_created: 2018-12-11T11:50:14Z date_published: 2016-12-16T00:00:00Z date_updated: 2022-09-06T07:23:25Z day: '16' department: - _id: JoFi doi: 10.1364/CLEO_SI.2016.SF2G.3 language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1601.07261 month: '12' oa: 1 oa_version: Preprint publication_status: published publisher: IEEE publist_id: '6251' quality_controlled: '1' related_material: link: - relation: other url: http://ieeexplore.ieee.org/document/7788479/ scopus_import: '1' status: public title: Efficient single sideband microwave to optical conversion using a LiNbO₃ WGM-resonator type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2016' ... --- _id: '1206' abstract: - lang: eng text: We study a polar molecule immersed in a superfluid environment, such as a helium nanodroplet or a Bose–Einstein condensate, in the presence of a strong electrostatic field. We show that coupling of the molecular pendular motion, induced by the field, to the fluctuating bath leads to formation of pendulons—spherical harmonic librators dressed by a field of many-particle excitations. We study the behavior of the pendulon in a broad range of molecule–bath and molecule–field interaction strengths, and reveal that its spectrum features a series of instabilities which are absent in the field-free case of the angulon quasiparticle. Furthermore, we show that an external field allows to fine-tune the positions of these instabilities in the molecular rotational spectrum. This opens the door to detailed experimental studies of redistribution of orbital angular momentum in many-particle systems. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim author: - first_name: Elena full_name: Redchenko, Elena id: 2C21D6E8-F248-11E8-B48F-1D18A9856A87 last_name: Redchenko - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 citation: ama: Redchenko E, Lemeshko M. Libration of strongly oriented polar molecules inside a superfluid. ChemPhysChem. 2016;17(22):3649-3654. doi:10.1002/cphc.201601042 apa: Redchenko, E., & Lemeshko, M. (2016). Libration of strongly oriented polar molecules inside a superfluid. ChemPhysChem. Wiley-Blackwell. https://doi.org/10.1002/cphc.201601042 chicago: Redchenko, Elena, and Mikhail Lemeshko. “Libration of Strongly Oriented Polar Molecules inside a Superfluid.” ChemPhysChem. Wiley-Blackwell, 2016. https://doi.org/10.1002/cphc.201601042. ieee: E. Redchenko and M. Lemeshko, “Libration of strongly oriented polar molecules inside a superfluid,” ChemPhysChem, vol. 17, no. 22. Wiley-Blackwell, pp. 3649–3654, 2016. ista: Redchenko E, Lemeshko M. 2016. Libration of strongly oriented polar molecules inside a superfluid. ChemPhysChem. 17(22), 3649–3654. mla: Redchenko, Elena, and Mikhail Lemeshko. “Libration of Strongly Oriented Polar Molecules inside a Superfluid.” ChemPhysChem, vol. 17, no. 22, Wiley-Blackwell, 2016, pp. 3649–54, doi:10.1002/cphc.201601042. short: E. Redchenko, M. Lemeshko, ChemPhysChem 17 (2016) 3649–3654. date_created: 2018-12-11T11:50:43Z date_published: 2016-09-18T00:00:00Z date_updated: 2021-01-12T06:49:05Z day: '18' department: - _id: JoFi - _id: MiLe doi: 10.1002/cphc.201601042 ec_funded: 1 intvolume: ' 17' issue: '22' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1609.08161 month: '09' oa: 1 oa_version: Preprint page: 3649 - 3654 project: - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication: ChemPhysChem publication_status: published publisher: Wiley-Blackwell publist_id: '6140' quality_controlled: '1' scopus_import: 1 status: public title: Libration of strongly oriented polar molecules inside a superfluid type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 17 year: '2016' ... --- _id: '1246' abstract: - lang: eng text: Near-field imaging is a powerful tool to investigate the complex structure of light at the nanoscale. Recent advances in near-field imaging have indicated the possibility for the complete reconstruction of both electric and magnetic components of the evanescent field. Here we study the electro-magnetic field structure of surface plasmon polariton waves propagating along subwavelength gold nanowires by performing phase- and polarization-resolved near-field microscopy in collection mode. By applying the optical reciprocity theorem, we describe the signal collected by the probe as an overlap integral of the nanowire's evanescent field and the probe's response function. As a result, we find that the probe's sensitivity to the magnetic field is approximately equal to its sensitivity to the electric field. Through rigorous modeling of the nanowire mode as well as the aperture probe response function, we obtain a good agreement between experimentally measured signals and a numerical model. Our findings provide a better understanding of aperture-based near-field imaging of the nanoscopic plasmonic and photonic structures and are helpful for the interpretation of future near-field experiments. acknowledgement: 'This work is supported part of the research program of the Netherlands Foundation for Fundamental Research on Matter (FOM) and the Netherlands Organization for Scientific Research (NWO), and part of this work has been funded by the project ‘SPANGL4Q’, which acknowledges the financial support of the Future and Emerging Technologies (FET) program within the Seventh Framework Programme for Research of the European Commission, under FETOpen grant number: FP7-284743. L.K. acknowledges funding from ERC Advanced, Investigator Grant (no. 240438-CONSTANS).' article_number: '22665' author: - first_name: Irina full_name: Kabakova, Irina last_name: Kabakova - first_name: Anouk full_name: De Hoogh, Anouk last_name: De Hoogh - first_name: Ruben full_name: Van Der Wel, Ruben last_name: Van Der Wel - first_name: Matthias full_name: Wulf, Matthias id: 45598606-F248-11E8-B48F-1D18A9856A87 last_name: Wulf orcid: 0000-0001-6613-1378 - first_name: Boris full_name: Le Feber, Boris last_name: Le Feber - first_name: Laurens full_name: Kuipers, Laurens last_name: Kuipers citation: ama: Kabakova I, De Hoogh A, Van Der Wel R, Wulf M, Le Feber B, Kuipers L. Imaging of electric and magnetic fields near plasmonic nanowires. Scientific Reports. 2016;6. doi:10.1038/srep22665 apa: Kabakova, I., De Hoogh, A., Van Der Wel, R., Wulf, M., Le Feber, B., & Kuipers, L. (2016). Imaging of electric and magnetic fields near plasmonic nanowires. Scientific Reports. Nature Publishing Group. https://doi.org/10.1038/srep22665 chicago: Kabakova, Irina, Anouk De Hoogh, Ruben Van Der Wel, Matthias Wulf, Boris Le Feber, and Laurens Kuipers. “Imaging of Electric and Magnetic Fields near Plasmonic Nanowires.” Scientific Reports. Nature Publishing Group, 2016. https://doi.org/10.1038/srep22665. ieee: I. Kabakova, A. De Hoogh, R. Van Der Wel, M. Wulf, B. Le Feber, and L. Kuipers, “Imaging of electric and magnetic fields near plasmonic nanowires,” Scientific Reports, vol. 6. Nature Publishing Group, 2016. ista: Kabakova I, De Hoogh A, Van Der Wel R, Wulf M, Le Feber B, Kuipers L. 2016. Imaging of electric and magnetic fields near plasmonic nanowires. Scientific Reports. 6, 22665. mla: Kabakova, Irina, et al. “Imaging of Electric and Magnetic Fields near Plasmonic Nanowires.” Scientific Reports, vol. 6, 22665, Nature Publishing Group, 2016, doi:10.1038/srep22665. short: I. Kabakova, A. De Hoogh, R. Van Der Wel, M. Wulf, B. Le Feber, L. Kuipers, Scientific Reports 6 (2016). date_created: 2018-12-11T11:50:55Z date_published: 2016-03-07T00:00:00Z date_updated: 2021-01-12T06:49:22Z day: '07' ddc: - '539' department: - _id: JoFi doi: 10.1038/srep22665 file: - access_level: open_access checksum: ca76236cb1aae22cb90c65313e2c5e98 content_type: application/pdf creator: system date_created: 2018-12-12T10:14:11Z date_updated: 2020-07-14T12:44:41Z file_id: '5061' file_name: IST-2016-707-v1+1_srep22665.pdf file_size: 1425165 relation: main_file file_date_updated: 2020-07-14T12:44:41Z has_accepted_license: '1' intvolume: ' 6' language: - iso: eng month: '03' oa: 1 oa_version: Published Version publication: Scientific Reports publication_status: published publisher: Nature Publishing Group publist_id: '6082' pubrep_id: '707' quality_controlled: '1' scopus_import: 1 status: public title: Imaging of electric and magnetic fields near plasmonic nanowires tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 6 year: '2016' ... --- _id: '1339' abstract: - lang: eng text: "We present a microelectromechanical system, in which a silicon beam is attached to a comb-drive\r\nactuator, which is used to tune the tension in the silicon beam and thus its resonance frequency. By\r\nmeasuring the resonance frequencies of the system, we show that the comb-drive actuator and the\r\nsilicon beam behave as two strongly coupled resonators. Interestingly, the effective coupling rate\r\n(1.5 MHz) is tunable with the comb-drive actuator (10%) as well as with a side-gate (10%)\r\nplaced close to the silicon beam. In contrast, the effective spring constant of the system is insensitive\r\nto either of them and changes only by 60.5%. Finally, we show that the comb-drive actuator\r\ncan be used to switch between different coupling rates with a frequency of at least 10 kHz.\r\n" acknowledgement: We acknowledge the support from the Helmholtz Nanoelectronic Facility (HNF) and funding from the ERC (GA-Nr. 280140). article_number: '143507' author: - first_name: Gerard full_name: Verbiest, Gerard last_name: Verbiest - first_name: Duo full_name: Xu, Duo id: 3454D55E-F248-11E8-B48F-1D18A9856A87 last_name: Xu - first_name: Matthias full_name: Goldsche, Matthias last_name: Goldsche - first_name: Timofiy full_name: Khodkov, Timofiy last_name: Khodkov - first_name: Shabir full_name: Barzanjeh, Shabir id: 2D25E1F6-F248-11E8-B48F-1D18A9856A87 last_name: Barzanjeh orcid: 0000-0003-0415-1423 - first_name: Nils full_name: Von Den Driesch, Nils last_name: Von Den Driesch - first_name: Dan full_name: Buca, Dan last_name: Buca - first_name: Christoph full_name: Stampfer, Christoph last_name: Stampfer citation: ama: Verbiest G, Xu D, Goldsche M, et al. Tunable mechanical coupling between driven microelectromechanical resonators. Applied  Physics Letter. 2016;109. doi:10.1063/1.4964122 apa: Verbiest, G., Xu, D., Goldsche, M., Khodkov, T., Barzanjeh, S., Von Den Driesch, N., … Stampfer, C. (2016). Tunable mechanical coupling between driven microelectromechanical resonators. Applied  Physics Letter. American Institute of Physics. https://doi.org/10.1063/1.4964122 chicago: Verbiest, Gerard, Duo Xu, Matthias Goldsche, Timofiy Khodkov, Shabir Barzanjeh, Nils Von Den Driesch, Dan Buca, and Christoph Stampfer. “Tunable Mechanical Coupling between Driven Microelectromechanical Resonators.” Applied  Physics Letter. American Institute of Physics, 2016. https://doi.org/10.1063/1.4964122. ieee: G. Verbiest et al., “Tunable mechanical coupling between driven microelectromechanical resonators,” Applied  Physics Letter, vol. 109. American Institute of Physics, 2016. ista: Verbiest G, Xu D, Goldsche M, Khodkov T, Barzanjeh S, Von Den Driesch N, Buca D, Stampfer C. 2016. Tunable mechanical coupling between driven microelectromechanical resonators. Applied  Physics Letter. 109, 143507. mla: Verbiest, Gerard, et al. “Tunable Mechanical Coupling between Driven Microelectromechanical Resonators.” Applied  Physics Letter, vol. 109, 143507, American Institute of Physics, 2016, doi:10.1063/1.4964122. short: G. Verbiest, D. Xu, M. Goldsche, T. Khodkov, S. Barzanjeh, N. Von Den Driesch, D. Buca, C. Stampfer, Applied  Physics Letter 109 (2016). date_created: 2018-12-11T11:51:28Z date_published: 2016-10-04T00:00:00Z date_updated: 2023-02-21T10:35:06Z day: '04' department: - _id: JoFi doi: 10.1063/1.4964122 intvolume: ' 109' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1607.04406 month: '10' oa: 1 oa_version: Preprint publication: Applied Physics Letter publication_status: published publisher: American Institute of Physics publist_id: '5928' quality_controlled: '1' scopus_import: 1 status: public title: Tunable mechanical coupling between driven microelectromechanical resonators type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 109 year: '2016' ... --- _id: '1355' abstract: - lang: eng text: Radiation pressure has recently been used to effectively couple the quantum motion of mechanical elements to the fields of optical or microwave light. Integration of all three degrees of freedom—mechanical, optical and microwave—would enable a quantum interconnect between microwave and optical quantum systems. We present a platform based on silicon nitride nanomembranes for integrating superconducting microwave circuits with planar acoustic and optical devices such as phononic and photonic crystals. Using planar capacitors with vacuum gaps of 60 nm and spiral inductor coils of micron pitch we realize microwave resonant circuits with large electromechanical coupling to planar acoustic structures of nanoscale dimensions and femtoFarad motional capacitance. Using this enhanced coupling, we demonstrate microwave backaction cooling of the 4.48 MHz mechanical resonance of a nanobeam to an occupancy as low as 0.32. These results indicate the viability of silicon nitride nanomembranes as an all-in-one substrate for quantum electro-opto-mechanical experiments. acknowledgement: This work was supported by the DARPA MESO programme, the Institute for Quantum Information and Matter, an NSF Physics Frontiers Center with support of the Gordon and Betty Moore Foundation, and the Kavli Nanoscience Institute at Caltech. A.P. was supported by a Marie Curie International Outgoing Fellowship within the 7th European Community Framework Programme, NEMO (GA 298861). Certain commercial equipment and software are identified in this documentation to describe the subject adequately. Such identification does not imply recommendation or endorsement by the NIST, nor does it imply that the equipment identified is necessarily the best available for the purpose. article_number: '12396' author: - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X - first_name: Mahmoud full_name: Kalaee, Mahmoud last_name: Kalaee - first_name: Alessandro full_name: Pitanti, Alessandro last_name: Pitanti - first_name: Richard full_name: Norte, Richard last_name: Norte - first_name: Lukas full_name: Heinzle, Lukas last_name: Heinzle - first_name: Marcelo full_name: Davanço, Marcelo last_name: Davanço - first_name: Kartik full_name: Srinivasan, Kartik last_name: Srinivasan - first_name: Oskar full_name: Painter, Oskar last_name: Painter citation: ama: Fink JM, Kalaee M, Pitanti A, et al. Quantum electromechanics on silicon nitride nanomembranes. Nature Communications. 2016;7. doi:10.1038/ncomms12396 apa: Fink, J. M., Kalaee, M., Pitanti, A., Norte, R., Heinzle, L., Davanço, M., … Painter, O. (2016). Quantum electromechanics on silicon nitride nanomembranes. Nature Communications. Nature Publishing Group. https://doi.org/10.1038/ncomms12396 chicago: Fink, Johannes M, Mahmoud Kalaee, Alessandro Pitanti, Richard Norte, Lukas Heinzle, Marcelo Davanço, Kartik Srinivasan, and Oskar Painter. “Quantum Electromechanics on Silicon Nitride Nanomembranes.” Nature Communications. Nature Publishing Group, 2016. https://doi.org/10.1038/ncomms12396. ieee: J. M. Fink et al., “Quantum electromechanics on silicon nitride nanomembranes,” Nature Communications, vol. 7. Nature Publishing Group, 2016. ista: Fink JM, Kalaee M, Pitanti A, Norte R, Heinzle L, Davanço M, Srinivasan K, Painter O. 2016. Quantum electromechanics on silicon nitride nanomembranes. Nature Communications. 7, 12396. mla: Fink, Johannes M., et al. “Quantum Electromechanics on Silicon Nitride Nanomembranes.” Nature Communications, vol. 7, 12396, Nature Publishing Group, 2016, doi:10.1038/ncomms12396. short: J.M. Fink, M. Kalaee, A. Pitanti, R. Norte, L. Heinzle, M. Davanço, K. Srinivasan, O. Painter, Nature Communications 7 (2016). date_created: 2018-12-11T11:51:33Z date_published: 2016-08-03T00:00:00Z date_updated: 2021-01-12T06:50:06Z day: '03' ddc: - '530' department: - _id: JoFi doi: 10.1038/ncomms12396 file: - access_level: open_access checksum: 25513bd59d5bda495efa8f5920e91b22 content_type: application/pdf creator: system date_created: 2018-12-12T10:13:30Z date_updated: 2020-07-14T12:44:46Z file_id: '5014' file_name: IST-2016-629-v1+1_ncomms12396.pdf file_size: 2139802 relation: main_file file_date_updated: 2020-07-14T12:44:46Z has_accepted_license: '1' intvolume: ' 7' language: - iso: eng month: '08' oa: 1 oa_version: Published Version publication: Nature Communications publication_status: published publisher: Nature Publishing Group publist_id: '5891' pubrep_id: '629' quality_controlled: '1' scopus_import: 1 status: public title: Quantum electromechanics on silicon nitride nanomembranes tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 7 year: '2016' ... --- _id: '1354' abstract: - lang: eng text: Fabrication processes involving anhydrous hydrofluoric vapor etching are developed to create high-Q aluminum superconducting microwave resonators on free-standing silicon membranes formed from a silicon-on-insulator wafer. Using this fabrication process, a high-impedance 8.9-GHz coil resonator is coupled capacitively with a large participation ratio to a 9.7-MHz micromechanical resonator. Two-tone microwave spectroscopy and radiation pressure backaction are used to characterize the coupled system in a dilution refrigerator down to temperatures of Tf=11  mK, yielding a measured electromechanical vacuum coupling rate of g0/2π=24.6  Hz and a mechanical resonator Q factor of Qm=1.7×107. Microwave backaction cooling of the mechanical resonator is also studied, with a minimum phonon occupancy of nm≈16 phonons being realized at an elevated fridge temperature of Tf=211  mK. article_number: '014013' author: - first_name: Paul full_name: Dieterle, Paul last_name: Dieterle - first_name: Mahmoud full_name: Kalaee, Mahmoud last_name: Kalaee - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X - first_name: Oskar full_name: Painter, Oskar last_name: Painter citation: ama: Dieterle P, Kalaee M, Fink JM, Painter O. Superconducting cavity electromechanics on a silicon-on-insulator platform. Physical Review Applied. 2016;6(1). doi:10.1103/PhysRevApplied.6.014013 apa: Dieterle, P., Kalaee, M., Fink, J. M., & Painter, O. (2016). Superconducting cavity electromechanics on a silicon-on-insulator platform. Physical Review Applied. American Physical Society. https://doi.org/10.1103/PhysRevApplied.6.014013 chicago: Dieterle, Paul, Mahmoud Kalaee, Johannes M Fink, and Oskar Painter. “Superconducting Cavity Electromechanics on a Silicon-on-Insulator Platform.” Physical Review Applied. American Physical Society, 2016. https://doi.org/10.1103/PhysRevApplied.6.014013. ieee: P. Dieterle, M. Kalaee, J. M. Fink, and O. Painter, “Superconducting cavity electromechanics on a silicon-on-insulator platform,” Physical Review Applied, vol. 6, no. 1. American Physical Society, 2016. ista: Dieterle P, Kalaee M, Fink JM, Painter O. 2016. Superconducting cavity electromechanics on a silicon-on-insulator platform. Physical Review Applied. 6(1), 014013. mla: Dieterle, Paul, et al. “Superconducting Cavity Electromechanics on a Silicon-on-Insulator Platform.” Physical Review Applied, vol. 6, no. 1, 014013, American Physical Society, 2016, doi:10.1103/PhysRevApplied.6.014013. short: P. Dieterle, M. Kalaee, J.M. Fink, O. Painter, Physical Review Applied 6 (2016). date_created: 2018-12-11T11:51:32Z date_published: 2016-07-22T00:00:00Z date_updated: 2021-01-12T06:50:06Z day: '22' department: - _id: JoFi doi: 10.1103/PhysRevApplied.6.014013 intvolume: ' 6' issue: '1' language: - iso: eng main_file_link: - open_access: '1' url: http://arxiv.org/abs/1601.04019 month: '07' oa: 1 oa_version: Preprint publication: Physical Review Applied publication_status: published publisher: American Physical Society publist_id: '5892' quality_controlled: '1' scopus_import: 1 status: public title: Superconducting cavity electromechanics on a silicon-on-insulator platform type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 6 year: '2016' ... --- _id: '1370' abstract: - lang: eng text: 'We study coherent phonon oscillations and tunneling between two coupled nonlinear nanomechanical resonators. We show that the coupling between two nanomechanical resonators creates an effective phonon Josephson junction, which exhibits two different dynamical behaviors: Josephson oscillation (phonon-Rabi oscillation) and macroscopic self-trapping (phonon blockade). Self-trapping originates from mechanical nonlinearities, meaning that when the nonlinearity exceeds its critical value, the energy exchange between the two resonators is suppressed, and phonon Josephson oscillations between them are completely blocked. An effective classical Hamiltonian for the phonon Josephson junction is derived and its mean-field dynamics is studied in phase space. Finally, we study the phonon-phonon coherence quantified by the mean fringe visibility, and show that the interaction between the two resonators may lead to the loss of coherence in the phononic junction.' acknowledgement: 'The work of S.B. has been supported by the European Commission (Belgium) via the SCALEQIT program and by the Alexander von Humboldt Foundation. ' article_number: '033846' author: - first_name: Shabir full_name: Barzanjeh, Shabir id: 2D25E1F6-F248-11E8-B48F-1D18A9856A87 last_name: Barzanjeh orcid: 0000-0003-0415-1423 - first_name: David full_name: Vitali, David last_name: Vitali citation: ama: Barzanjeh S, Vitali D. Phonon Josephson junction with nanomechanical resonators. Physical Review A - Atomic, Molecular, and Optical Physics. 2016;93(3). doi:10.1103/PhysRevA.93.033846 apa: Barzanjeh, S., & Vitali, D. (2016). Phonon Josephson junction with nanomechanical resonators. Physical Review A - Atomic, Molecular, and Optical Physics. American Physical Society. https://doi.org/10.1103/PhysRevA.93.033846 chicago: Barzanjeh, Shabir, and David Vitali. “Phonon Josephson Junction with Nanomechanical Resonators.” Physical Review A - Atomic, Molecular, and Optical Physics. American Physical Society, 2016. https://doi.org/10.1103/PhysRevA.93.033846. ieee: S. Barzanjeh and D. Vitali, “Phonon Josephson junction with nanomechanical resonators,” Physical Review A - Atomic, Molecular, and Optical Physics, vol. 93, no. 3. American Physical Society, 2016. ista: Barzanjeh S, Vitali D. 2016. Phonon Josephson junction with nanomechanical resonators. Physical Review A - Atomic, Molecular, and Optical Physics. 93(3), 033846. mla: Barzanjeh, Shabir, and David Vitali. “Phonon Josephson Junction with Nanomechanical Resonators.” Physical Review A - Atomic, Molecular, and Optical Physics, vol. 93, no. 3, 033846, American Physical Society, 2016, doi:10.1103/PhysRevA.93.033846. short: S. Barzanjeh, D. Vitali, Physical Review A - Atomic, Molecular, and Optical Physics 93 (2016). date_created: 2018-12-11T11:51:38Z date_published: 2016-03-28T00:00:00Z date_updated: 2023-02-21T10:36:32Z day: '28' department: - _id: JoFi doi: 10.1103/PhysRevA.93.033846 intvolume: ' 93' issue: '3' language: - iso: eng main_file_link: - open_access: '1' url: http://arxiv.org/abs/1601.01818 month: '03' oa: 1 oa_version: Preprint publication: Physical Review A - Atomic, Molecular, and Optical Physics publication_status: published publisher: American Physical Society publist_id: '5841' quality_controlled: '1' scopus_import: 1 status: public title: Phonon Josephson junction with nanomechanical resonators type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 93 year: '2016' ... --- _id: '1429' abstract: - lang: eng text: Solitons are localized waves formed by a balance of focusing and defocusing effects. These nonlinear waves exist in diverse forms of matter yet exhibit similar properties including stability, periodic recurrence and particle-like trajectories. One important property is soliton fission, a process by which an energetic higher-order soliton breaks apart due to dispersive or nonlinear perturbations. Here we demonstrate through both experiment and theory that nonlinear photocarrier generation can induce soliton fission. Using near-field measurements, we directly observe the nonlinear spatial and temporal evolution of optical pulses in situ in a nanophotonic semiconductor waveguide. We develop an analytic formalism describing the free-carrier dispersion (FCD) perturbation and show the experiment exceeds the minimum threshold by an order of magnitude. We confirm these observations with a numerical nonlinear Schrödinger equation model. These results provide a fundamental explanation and physical scaling of optical pulse evolution in free-carrier media and could enable improved supercontinuum sources in gas based and integrated semiconductor waveguides. acknowledgement: This research was supported by the Australian Research Council (ARC) Center of Excellence CUDOS (CE110001018), ARC Laureate Fellowship (FL120100029), ARC Discovery Early Career Researcher Award (DECRA DE120102069), the Netherlands Foundation for Fundamental Research on Matter (FOM) and the Netherlands Organization for Scientific Research (NWO). L.K. acknowledges funding from ERC Advanced Investigator Grant (no. 240438-CONSTANS). A.D.R, S.C., and G.L. acknowledge financial support from the ERC-Pharos programme lead by A. P. Mosk. article_number: 11332 (2016) author: - first_name: Chad full_name: Husko, Chad last_name: Husko - first_name: Matthias full_name: Wulf, Matthias id: 45598606-F248-11E8-B48F-1D18A9856A87 last_name: Wulf orcid: 0000-0001-6613-1378 - first_name: Simon full_name: Lefrançois, Simon last_name: Lefrançois - first_name: Sylvain full_name: Combrié, Sylvain last_name: Combrié - first_name: Gaëlle full_name: Lehoucq, Gaëlle last_name: Lehoucq - first_name: Alfredo full_name: De Rossi, Alfredo last_name: De Rossi - first_name: Benjamin full_name: Eggleton, Benjamin last_name: Eggleton - first_name: Laurens full_name: Kuipers, Laurens last_name: Kuipers citation: ama: Husko C, Wulf M, Lefrançois S, et al. Free-carrier-induced soliton fission unveiled by in situ measurements in nanophotonic waveguides. Nature Communications. 2016;7. doi:10.1038/ncomms11332 apa: Husko, C., Wulf, M., Lefrançois, S., Combrié, S., Lehoucq, G., De Rossi, A., … Kuipers, L. (2016). Free-carrier-induced soliton fission unveiled by in situ measurements in nanophotonic waveguides. Nature Communications. Nature Publishing Group. https://doi.org/10.1038/ncomms11332 chicago: Husko, Chad, Matthias Wulf, Simon Lefrançois, Sylvain Combrié, Gaëlle Lehoucq, Alfredo De Rossi, Benjamin Eggleton, and Laurens Kuipers. “Free-Carrier-Induced Soliton Fission Unveiled by in Situ Measurements in Nanophotonic Waveguides.” Nature Communications. Nature Publishing Group, 2016. https://doi.org/10.1038/ncomms11332. ieee: C. Husko et al., “Free-carrier-induced soliton fission unveiled by in situ measurements in nanophotonic waveguides,” Nature Communications, vol. 7. Nature Publishing Group, 2016. ista: Husko C, Wulf M, Lefrançois S, Combrié S, Lehoucq G, De Rossi A, Eggleton B, Kuipers L. 2016. Free-carrier-induced soliton fission unveiled by in situ measurements in nanophotonic waveguides. Nature Communications. 7, 11332 (2016). mla: Husko, Chad, et al. “Free-Carrier-Induced Soliton Fission Unveiled by in Situ Measurements in Nanophotonic Waveguides.” Nature Communications, vol. 7, 11332 (2016), Nature Publishing Group, 2016, doi:10.1038/ncomms11332. short: C. Husko, M. Wulf, S. Lefrançois, S. Combrié, G. Lehoucq, A. De Rossi, B. Eggleton, L. Kuipers, Nature Communications 7 (2016). date_created: 2018-12-11T11:51:58Z date_published: 2016-04-15T00:00:00Z date_updated: 2021-01-12T06:50:40Z day: '15' ddc: - '530' department: - _id: JoFi doi: 10.1038/ncomms11332 file: - access_level: open_access checksum: 6484fa81a2e52e4fdd7935e1ae6091d4 content_type: application/pdf creator: system date_created: 2018-12-12T10:15:53Z date_updated: 2020-07-14T12:44:53Z file_id: '5177' file_name: IST-2016-583-v1+1_ncomms11332.pdf file_size: 965176 relation: main_file file_date_updated: 2020-07-14T12:44:53Z has_accepted_license: '1' intvolume: ' 7' language: - iso: eng month: '04' oa: 1 oa_version: Published Version publication: Nature Communications publication_status: published publisher: Nature Publishing Group publist_id: '5769' pubrep_id: '583' quality_controlled: '1' scopus_import: 1 status: public title: Free-carrier-induced soliton fission unveiled by in situ measurements in nanophotonic waveguides tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 7 year: '2016' ... --- _id: '1263' abstract: - lang: eng text: Linking classical microwave electrical circuits to the optical telecommunication band is at the core of modern communication. Future quantum information networks will require coherent microwave-to-optical conversion to link electronic quantum processors and memories via low-loss optical telecommunication networks. Efficient conversion can be achieved with electro-optical modulators operating at the single microwave photon level. In the standard electro-optic modulation scheme, this is impossible because both up- and down-converted sidebands are necessarily present. Here, we demonstrate true single-sideband up- or down-conversion in a triply resonant whispering gallery mode resonator by explicitly addressing modes with asymmetric free spectral range. Compared to previous experiments, we show a 3 orders of magnitude improvement of the electro-optical conversion efficiency, reaching 0.1% photon number conversion for a 10 GHz microwave tone at 0.42 mW of optical pump power. The presented scheme is fully compatible with existing superconducting 3D circuit quantum electrodynamics technology and can be used for nonclassical state conversion and communication. Our conversion bandwidth is larger than 1 MHz and is not fundamentally limited. acknowledgement: Alexander von Humboldt Foundation; Studienstiftung des Deutschen Volkes. We would like to acknowledge our stimulating discussions with Konrad Lehnert and Alessandro Pitanti. article_processing_charge: No author: - first_name: Alfredo full_name: Rueda, Alfredo last_name: Rueda - first_name: Florian full_name: Sedlmeir, Florian last_name: Sedlmeir - first_name: Michele full_name: Collodo, Michele last_name: Collodo - first_name: Ulrich full_name: Vogl, Ulrich last_name: Vogl - first_name: Birgit full_name: Stiller, Birgit last_name: Stiller - first_name: Gerhard full_name: Schunk, Gerhard last_name: Schunk - first_name: Dmitry full_name: Strekalov, Dmitry last_name: Strekalov - first_name: Christoph full_name: Marquardt, Christoph last_name: Marquardt - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X - first_name: Oskar full_name: Painter, Oskar last_name: Painter - first_name: Gerd full_name: Leuchs, Gerd last_name: Leuchs - first_name: Harald full_name: Schwefel, Harald last_name: Schwefel citation: ama: 'Rueda A, Sedlmeir F, Collodo M, et al. Efficient microwave to optical photon conversion: An electro-optical realization. Optica. 2016;3(6):597-604. doi:10.1364/OPTICA.3.000597' apa: 'Rueda, A., Sedlmeir, F., Collodo, M., Vogl, U., Stiller, B., Schunk, G., … Schwefel, H. (2016). Efficient microwave to optical photon conversion: An electro-optical realization. Optica. Optica Publishing Group. https://doi.org/10.1364/OPTICA.3.000597' chicago: 'Rueda, Alfredo, Florian Sedlmeir, Michele Collodo, Ulrich Vogl, Birgit Stiller, Gerhard Schunk, Dmitry Strekalov, et al. “Efficient Microwave to Optical Photon Conversion: An Electro-Optical Realization.” Optica. Optica Publishing Group, 2016. https://doi.org/10.1364/OPTICA.3.000597.' ieee: 'A. Rueda et al., “Efficient microwave to optical photon conversion: An electro-optical realization,” Optica, vol. 3, no. 6. Optica Publishing Group, pp. 597–604, 2016.' ista: 'Rueda A, Sedlmeir F, Collodo M, Vogl U, Stiller B, Schunk G, Strekalov D, Marquardt C, Fink JM, Painter O, Leuchs G, Schwefel H. 2016. Efficient microwave to optical photon conversion: An electro-optical realization. Optica. 3(6), 597–604.' mla: 'Rueda, Alfredo, et al. “Efficient Microwave to Optical Photon Conversion: An Electro-Optical Realization.” Optica, vol. 3, no. 6, Optica Publishing Group, 2016, pp. 597–604, doi:10.1364/OPTICA.3.000597.' short: A. Rueda, F. Sedlmeir, M. Collodo, U. Vogl, B. Stiller, G. Schunk, D. Strekalov, C. Marquardt, J.M. Fink, O. Painter, G. Leuchs, H. Schwefel, Optica 3 (2016) 597–604. date_created: 2018-12-11T11:51:01Z date_published: 2016-06-20T00:00:00Z date_updated: 2023-10-17T12:17:15Z day: '20' department: - _id: JoFi doi: 10.1364/OPTICA.3.000597 intvolume: ' 3' issue: '6' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1364/OPTICA.3.000597 month: '06' oa: 1 oa_version: Published Version page: 597 - 604 publication: Optica publication_status: published publisher: Optica Publishing Group publist_id: '6061' quality_controlled: '1' scopus_import: '1' status: public title: 'Efficient microwave to optical photon conversion: An electro-optical realization' type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 3 year: '2016' ... --- _id: '482' abstract: - lang: eng text: Nonlinear electro-optical conversion of microwave radiation into the optical telecommunication band is achieved within a crystalline whispering gallery mode resonator, reaching 0.1% photon number conversion efficiency with MHz bandwidth. alternative_title: - Optics InfoBase Conference Papers article_processing_charge: No author: - first_name: Alfredo full_name: Rueda, Alfredo last_name: Rueda - first_name: Florian full_name: Sedlmeir, Florian last_name: Sedlmeir - first_name: Michele full_name: Collodo, Michele last_name: Collodo - first_name: Ulrich full_name: Vogl, Ulrich last_name: Vogl - first_name: Birgit full_name: Stiller, Birgit last_name: Stiller - first_name: Gerhard full_name: Schunk, Gerhard last_name: Schunk - first_name: Dmitry full_name: Strekalov, Dmitry last_name: Strekalov - first_name: Christoph full_name: Marquardt, Christoph last_name: Marquardt - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X - first_name: Oskar full_name: Painter, Oskar last_name: Painter - first_name: Gerd full_name: Leuchs, Gerd last_name: Leuchs - first_name: Harald full_name: Schwefel, Harald last_name: Schwefel citation: ama: 'Rueda A, Sedlmeir F, Collodo M, et al. Nonlinear single sideband microwave to optical conversion using an electro-optic WGM-resonator. In: Optica Publishing Group; 2016. doi:10.1364/NP.2016.NTh3A.6' apa: 'Rueda, A., Sedlmeir, F., Collodo, M., Vogl, U., Stiller, B., Schunk, G., … Schwefel, H. (2016). Nonlinear single sideband microwave to optical conversion using an electro-optic WGM-resonator. Presented at the NP: Nonlinear Photonics, Sydney, Australia: Optica Publishing Group. https://doi.org/10.1364/NP.2016.NTh3A.6' chicago: Rueda, Alfredo, Florian Sedlmeir, Michele Collodo, Ulrich Vogl, Birgit Stiller, Gerhard Schunk, Dmitry Strekalov, et al. “Nonlinear Single Sideband Microwave to Optical Conversion Using an Electro-Optic WGM-Resonator.” Optica Publishing Group, 2016. https://doi.org/10.1364/NP.2016.NTh3A.6. ieee: 'A. Rueda et al., “Nonlinear single sideband microwave to optical conversion using an electro-optic WGM-resonator,” presented at the NP: Nonlinear Photonics, Sydney, Australia, 2016.' ista: 'Rueda A, Sedlmeir F, Collodo M, Vogl U, Stiller B, Schunk G, Strekalov D, Marquardt C, Fink JM, Painter O, Leuchs G, Schwefel H. 2016. Nonlinear single sideband microwave to optical conversion using an electro-optic WGM-resonator. NP: Nonlinear Photonics, Optics InfoBase Conference Papers, .' mla: Rueda, Alfredo, et al. Nonlinear Single Sideband Microwave to Optical Conversion Using an Electro-Optic WGM-Resonator. Optica Publishing Group, 2016, doi:10.1364/NP.2016.NTh3A.6. short: A. Rueda, F. Sedlmeir, M. Collodo, U. Vogl, B. Stiller, G. Schunk, D. Strekalov, C. Marquardt, J.M. Fink, O. Painter, G. Leuchs, H. Schwefel, in:, Optica Publishing Group, 2016. conference: end_date: 2016-09-08 location: Sydney, Australia name: 'NP: Nonlinear Photonics' start_date: 2016-09-05 date_created: 2018-12-11T11:46:43Z date_published: 2016-08-29T00:00:00Z date_updated: 2023-10-17T12:16:43Z day: '29' department: - _id: JoFi doi: 10.1364/NP.2016.NTh3A.6 language: - iso: eng month: '08' oa_version: None publication_status: published publisher: Optica Publishing Group publist_id: '7339' quality_controlled: '1' scopus_import: '1' status: public title: Nonlinear single sideband microwave to optical conversion using an electro-optic WGM-resonator type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2016' ...