--- _id: '11591' abstract: - lang: eng text: We investigate the deterministic generation and distribution of entanglement in large quantum networks by driving distant qubits with the output fields of a nondegenerate parametric amplifier. In this setting, the amplifier produces a continuous Gaussian two-mode squeezed state, which acts as a quantum-correlated reservoir for the qubits and relaxes them into a highly entangled steady state. Here we are interested in the maximal amount of entanglement and the optimal entanglement generation rates that can be achieved with this scheme under realistic conditions taking, in particular, the finite amplifier bandwidth, waveguide losses, and propagation delays into account. By combining exact numerical simulations of the full network with approximate analytic results, we predict the optimal working point for the amplifier and the corresponding qubit-qubit entanglement under various conditions. Our findings show that this passive conversion of Gaussian into discrete-variable entanglement offers a robust and experimentally very attractive approach for operating large optical, microwave, or hybrid quantum networks, for which efficient parametric amplifiers are currently developed. acknowledgement: We thank T. Mavrogordatos and D. Zhu for initial contribution on the presented topic and K. Fedorov for stimulating discussions on entangled microwave beams. This work was supported by the Austrian Science Fund (FWF) through Grant No. P32299 (PHONED) and the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No. 899354 (SuperQuLAN). Most of the computational results presented were obtained using the CLIP cluster [65]. article_number: '062454' article_processing_charge: No article_type: original author: - first_name: J. full_name: Agustí, J. last_name: Agustí - first_name: Y. full_name: Minoguchi, Y. last_name: Minoguchi - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X - first_name: P. full_name: Rabl, P. last_name: Rabl citation: ama: Agustí J, Minoguchi Y, Fink JM, Rabl P. Long-distance distribution of qubit-qubit entanglement using Gaussian-correlated photonic beams. Physical Review A. 2022;105(6). doi:10.1103/PhysRevA.105.062454 apa: Agustí, J., Minoguchi, Y., Fink, J. M., & Rabl, P. (2022). Long-distance distribution of qubit-qubit entanglement using Gaussian-correlated photonic beams. Physical Review A. American Physical Society. https://doi.org/10.1103/PhysRevA.105.062454 chicago: Agustí, J., Y. Minoguchi, Johannes M Fink, and P. Rabl. “Long-Distance Distribution of Qubit-Qubit Entanglement Using Gaussian-Correlated Photonic Beams.” Physical Review A. American Physical Society, 2022. https://doi.org/10.1103/PhysRevA.105.062454. ieee: J. Agustí, Y. Minoguchi, J. M. Fink, and P. Rabl, “Long-distance distribution of qubit-qubit entanglement using Gaussian-correlated photonic beams,” Physical Review A, vol. 105, no. 6. American Physical Society, 2022. ista: Agustí J, Minoguchi Y, Fink JM, Rabl P. 2022. Long-distance distribution of qubit-qubit entanglement using Gaussian-correlated photonic beams. Physical Review A. 105(6), 062454. mla: Agustí, J., et al. “Long-Distance Distribution of Qubit-Qubit Entanglement Using Gaussian-Correlated Photonic Beams.” Physical Review A, vol. 105, no. 6, 062454, American Physical Society, 2022, doi:10.1103/PhysRevA.105.062454. short: J. Agustí, Y. Minoguchi, J.M. Fink, P. Rabl, Physical Review A 105 (2022). date_created: 2022-07-17T22:01:55Z date_published: 2022-06-29T00:00:00Z date_updated: 2023-08-03T11:58:16Z day: '29' department: - _id: JoFi doi: 10.1103/PhysRevA.105.062454 ec_funded: 1 external_id: arxiv: - '2204.02993' isi: - '000824330200003' intvolume: ' 105' isi: 1 issue: '6' language: - iso: eng main_file_link: - open_access: '1' url: ' https://doi.org/10.48550/arXiv.2204.02993' month: '06' oa: 1 oa_version: Preprint project: - _id: 9B868D20-BA93-11EA-9121-9846C619BF3A call_identifier: H2020 grant_number: '899354' name: Quantum Local Area Networks with Superconducting Qubits publication: Physical Review A publication_identifier: eissn: - 2469-9934 issn: - 2469-9926 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Long-distance distribution of qubit-qubit entanglement using Gaussian-correlated photonic beams type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 105 year: '2022' ... --- _id: '14520' abstract: - lang: eng text: 'This dataset comprises all data shown in the figures of the submitted article "Compact vacuum gap transmon qubits: Selective and sensitive probes for superconductor surface losses" at arxiv.org/abs/2206.14104. Additional raw data are available from the corresponding author on reasonable request.' article_processing_charge: No author: - first_name: Martin full_name: Zemlicka, Martin id: 2DCF8DE6-F248-11E8-B48F-1D18A9856A87 last_name: Zemlicka - first_name: Elena full_name: Redchenko, Elena id: 2C21D6E8-F248-11E8-B48F-1D18A9856A87 last_name: Redchenko - first_name: Matilda full_name: Peruzzo, Matilda id: 3F920B30-F248-11E8-B48F-1D18A9856A87 last_name: Peruzzo orcid: 0000-0002-3415-4628 - first_name: Farid full_name: Hassani, Farid id: 2AED110C-F248-11E8-B48F-1D18A9856A87 last_name: Hassani orcid: 0000-0001-6937-5773 - first_name: Andrea full_name: Trioni, Andrea id: 42F71B44-F248-11E8-B48F-1D18A9856A87 last_name: Trioni - first_name: Shabir full_name: Barzanjeh, Shabir id: 2D25E1F6-F248-11E8-B48F-1D18A9856A87 last_name: Barzanjeh orcid: 0000-0003-0415-1423 - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X citation: ama: 'Zemlicka M, Redchenko E, Peruzzo M, et al. Compact vacuum gap transmon qubits: Selective and sensitive probes for superconductor surface losses. 2022. doi:10.5281/ZENODO.8408897' apa: 'Zemlicka, M., Redchenko, E., Peruzzo, M., Hassani, F., Trioni, A., Barzanjeh, S., & Fink, J. M. (2022). Compact vacuum gap transmon qubits: Selective and sensitive probes for superconductor surface losses. Zenodo. https://doi.org/10.5281/ZENODO.8408897' chicago: 'Zemlicka, Martin, Elena Redchenko, Matilda Peruzzo, Farid Hassani, Andrea Trioni, Shabir Barzanjeh, and Johannes M Fink. “Compact Vacuum Gap Transmon Qubits: Selective and Sensitive Probes for Superconductor Surface Losses.” Zenodo, 2022. https://doi.org/10.5281/ZENODO.8408897.' ieee: 'M. Zemlicka et al., “Compact vacuum gap transmon qubits: Selective and sensitive probes for superconductor surface losses.” Zenodo, 2022.' ista: 'Zemlicka M, Redchenko E, Peruzzo M, Hassani F, Trioni A, Barzanjeh S, Fink JM. 2022. Compact vacuum gap transmon qubits: Selective and sensitive probes for superconductor surface losses, Zenodo, 10.5281/ZENODO.8408897.' mla: 'Zemlicka, Martin, et al. Compact Vacuum Gap Transmon Qubits: Selective and Sensitive Probes for Superconductor Surface Losses. Zenodo, 2022, doi:10.5281/ZENODO.8408897.' short: M. Zemlicka, E. Redchenko, M. Peruzzo, F. Hassani, A. Trioni, S. Barzanjeh, J.M. Fink, (2022). date_created: 2023-11-13T08:09:10Z date_published: 2022-06-28T00:00:00Z date_updated: 2023-11-13T09:22:48Z day: '28' ddc: - '530' department: - _id: JoFi doi: 10.5281/ZENODO.8408897 has_accepted_license: '1' license: https://creativecommons.org/publicdomain/zero/1.0/ main_file_link: - open_access: '1' url: https://doi.org/10.5281/ZENODO.8408897 month: '06' oa: 1 oa_version: Published Version publisher: Zenodo related_material: record: - id: '14517' relation: used_in_publication status: public status: public title: 'Compact vacuum gap transmon qubits: Selective and sensitive probes for superconductor surface losses' tmp: image: /images/cc_0.png legal_code_url: https://creativecommons.org/publicdomain/zero/1.0/legalcode name: Creative Commons Public Domain Dedication (CC0 1.0) short: CC0 (1.0) type: research_data_reference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2022' ... --- _id: '12366' abstract: - lang: eng text: "Recent substantial advances in the feld of superconducting circuits have shown its\r\npotential as a leading platform for future quantum computing. In contrast to classical\r\ncomputers based on bits that are represented by a single binary value, 0 or 1, quantum\r\nbits (or qubits) can be in a superposition of both. Thus, quantum computers can store\r\nand handle more information at the same time and a quantum advantage has already\r\nbeen demonstrated for two types of computational tasks. Rapid progress in academic\r\nand industry labs accelerates the development of superconducting processors which may\r\nsoon fnd applications in complex computations, chemical simulations, cryptography, and\r\noptimization. Now that these machines are scaled up to tackle such problems the questions\r\nof qubit interconnects and networks becomes very relevant. How to route signals on-chip\r\nbetween diferent processor components? What is the most efcient way to entangle\r\nqubits? And how to then send and process entangled signals between distant cryostats\r\nhosting superconducting processors?\r\nIn this thesis, we are looking for solutions to these problems by studying the collective\r\nbehavior of superconducting qubit ensembles. We frst demonstrate on-demand tunable\r\ndirectional scattering of microwave photons from a pair of qubits in a waveguide. Such a\r\ndevice can route microwave photons on-chip with a high diode efciency. Then we focus\r\non studying ultra-strong coupling regimes between light (microwave photons) and matter\r\n(superconducting qubits), a regime that could be promising for extremely fast multi-qubit\r\nentanglement generation. Finally, we show coherent pulse storage and periodic revivals\r\nin a fve qubit ensemble strongly coupled to a resonator. Such a reconfgurable storage\r\ndevice could be used as part of a quantum repeater that is needed for longer-distance\r\nquantum communication.\r\nThe achieved high degree of control over multi-qubit ensembles highlights not only the\r\nbeautiful physics of circuit quantum electrodynamics, it also represents the frst step\r\ntoward new quantum simulation and communication methods, and certain techniques\r\nmay also fnd applications in future superconducting quantum computing hardware.\r\n" acknowledged_ssus: - _id: NanoFab - _id: M-Shop - _id: EM-Fac alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Elena full_name: Redchenko, Elena id: 2C21D6E8-F248-11E8-B48F-1D18A9856A87 last_name: Redchenko citation: ama: Redchenko E. Controllable states of superconducting Qubit ensembles. 2022. doi:10.15479/at:ista:12132 apa: Redchenko, E. (2022). Controllable states of superconducting Qubit ensembles. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:12132 chicago: Redchenko, Elena. “Controllable States of Superconducting Qubit Ensembles.” Institute of Science and Technology Austria, 2022. https://doi.org/10.15479/at:ista:12132. ieee: E. Redchenko, “Controllable states of superconducting Qubit ensembles,” Institute of Science and Technology Austria, 2022. ista: Redchenko E. 2022. Controllable states of superconducting Qubit ensembles. Institute of Science and Technology Austria. mla: Redchenko, Elena. Controllable States of Superconducting Qubit Ensembles. Institute of Science and Technology Austria, 2022, doi:10.15479/at:ista:12132. short: E. Redchenko, Controllable States of Superconducting Qubit Ensembles, Institute of Science and Technology Austria, 2022. date_created: 2023-01-25T09:17:02Z date_published: 2022-09-26T00:00:00Z date_updated: 2023-05-26T09:29:07Z day: '26' ddc: - '530' degree_awarded: PhD department: - _id: GradSch - _id: JoFi doi: 10.15479/at:ista:12132 ec_funded: 1 file: - access_level: open_access checksum: 39eabb1e006b41335f17f3b29af09648 content_type: application/pdf creator: cchlebak date_created: 2023-01-25T09:41:49Z date_updated: 2023-01-26T23:30:44Z embargo: 2022-12-28 file_id: '12367' file_name: Final_Thesis_ES_Redchenko.pdf file_size: 56076868 relation: main_file file_date_updated: 2023-01-26T23:30:44Z has_accepted_license: '1' language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: '168' project: - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program - _id: 26336814-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '758053' name: A Fiber Optic Transceiver for Superconducting Qubits - _id: 237CBA6C-32DE-11EA-91FC-C7463DDC885E call_identifier: H2020 grant_number: '862644' name: Quantum readout techniques and technologies publication_identifier: isbn: - 978-3-99078-024-4 issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria status: public supervisor: - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X title: Controllable states of superconducting Qubit ensembles type: dissertation user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2022' ... --- _id: '10645' abstract: - lang: eng text: "Superconducting qubits have emerged as a highly versatile and useful platform for quantum technological applications [1]. Bluefors and Zurich Instruments have supported the growth of this field from the 2010s onwards by providing well-engineered and reliable measurement infrastructure [2]– [6]. Having a long and stable qubit lifetime is a critical system property. Therefore, considerable effort has already gone into measuring qubit energy-relaxation timescales and their fluctuations, see Refs. [7]–[10] among others. Accurately extracting the statistics of a quantum device requires users to perform time consuming measurements. One measurement challenge is that the detection of the state-dependent\r\nresponse of a superconducting resonator due to a dispersively-coupled qubit requires an inherently low signal level. Consequently, measurements must be performed using a microwave probe that contains only a few microwave photons. Improving the signal-to-noise ratio (SNR) by using near-quantum limited parametric amplifiers as well as the use of optimized signal processing enabled by efficient room temperature instrumentation help to reduce measurement time. An empirical observation for fixed frequency transmons from recent literature is that as the energy-relaxation time \U0001D447\U0001D4471 increases, so do its natural temporal fluctuations [7], [10]. This necessitates many repeated measurements to understand the statistics (see for example, Ref. [10]). In addition, as state-of-the-art qubits increase in lifetime, longer\r\nmeasurement times are expected to obtain accurate statistics. As described below, the scaling of the widths of the qubit energy-relaxation distributions also reveal clues about the origin of the energy-relaxation." alternative_title: - Bluefors Blog article_processing_charge: No author: - first_name: Slawomir full_name: Simbierowicz, Slawomir last_name: Simbierowicz - first_name: Chunyan full_name: Shi, Chunyan last_name: Shi - first_name: Michele full_name: Collodo, Michele last_name: Collodo - first_name: Moritz full_name: Kirste, Moritz last_name: Kirste - first_name: Farid full_name: Hassani, Farid id: 2AED110C-F248-11E8-B48F-1D18A9856A87 last_name: Hassani - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X - first_name: Jonas full_name: Bylander, Jonas last_name: Bylander - first_name: Daniel full_name: Perez Lozano, Daniel last_name: Perez Lozano - first_name: Russell full_name: Lake, Russell last_name: Lake citation: ama: 'Simbierowicz S, Shi C, Collodo M, et al. Qubit Energy-Relaxation Statistics in the Bluefors Quantum Measurement System. Helsinki, Finland: Bluefors Oy; 2021.' apa: 'Simbierowicz, S., Shi, C., Collodo, M., Kirste, M., Hassani, F., Fink, J. M., … Lake, R. (2021). Qubit energy-relaxation statistics in the Bluefors quantum measurement system. Helsinki, Finland: Bluefors Oy.' chicago: 'Simbierowicz, Slawomir, Chunyan Shi, Michele Collodo, Moritz Kirste, Farid Hassani, Johannes M Fink, Jonas Bylander, Daniel Perez Lozano, and Russell Lake. Qubit Energy-Relaxation Statistics in the Bluefors Quantum Measurement System. Helsinki, Finland: Bluefors Oy, 2021.' ieee: 'S. Simbierowicz et al., Qubit energy-relaxation statistics in the Bluefors quantum measurement system. Helsinki, Finland: Bluefors Oy, 2021.' ista: 'Simbierowicz S, Shi C, Collodo M, Kirste M, Hassani F, Fink JM, Bylander J, Perez Lozano D, Lake R. 2021. Qubit energy-relaxation statistics in the Bluefors quantum measurement system, Helsinki, Finland: Bluefors Oy, 8p.' mla: Simbierowicz, Slawomir, et al. Qubit Energy-Relaxation Statistics in the Bluefors Quantum Measurement System. Bluefors Oy, 2021. short: S. Simbierowicz, C. Shi, M. Collodo, M. Kirste, F. Hassani, J.M. Fink, J. Bylander, D. Perez Lozano, R. Lake, Qubit Energy-Relaxation Statistics in the Bluefors Quantum Measurement System, Bluefors Oy, Helsinki, Finland, 2021. date_created: 2022-01-19T08:41:14Z date_published: 2021-06-03T00:00:00Z date_updated: 2022-01-19T09:11:39Z day: '03' department: - _id: JoFi keyword: - Application note language: - iso: eng main_file_link: - open_access: '1' url: https://bluefors.com/blog/application-note-qubit-energy-relaxation-statistics-bluefors-quantum-measurement-system/ month: '06' oa: 1 oa_version: Published Version page: '8' place: Helsinki, Finland publication_status: published publisher: Bluefors Oy quality_controlled: '1' status: public title: Qubit energy-relaxation statistics in the Bluefors quantum measurement system type: other_academic_publication user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2021' ... --- _id: '10644' abstract: - lang: eng text: The purpose of this application note is to demonstrate a working example of a superconducting qubit measurement in a Bluefors cryostat using the Keysight quantum control hardware. Our motivation is twofold. First, we provide pre-qualification data that the Bluefors cryostat, including filtering and wiring, can support long-lived qubits. Second, we demonstrate that the Keysight system (controlled using Labber) provides a straightforward solution to perform these characterization measurements. This document is intended as a brief guide for starting an experimental platform for testing superconducting qubits. The setup described here is an immediate jumping off point for a suite of applications including testing quantum logical gates, quantum optics with microwaves, or even using the qubit itself as a sensitive probe of local electromagnetic fields. Qubit measurements rely on high performance of both the physical sample environment and the measurement electronics. An overview of the cryogenic system is shown in Figure 1, and an overview of the integration between the electronics and cryostat (including wiring details) is shown in Figure 2. alternative_title: - Bluefors Blog article_processing_charge: No author: - first_name: Russell full_name: Lake, Russell last_name: Lake - first_name: Slawomir full_name: Simbierowicz, Slawomir last_name: Simbierowicz - first_name: Philip full_name: Krantz, Philip last_name: Krantz - first_name: Farid full_name: Hassani, Farid id: 2AED110C-F248-11E8-B48F-1D18A9856A87 last_name: Hassani - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X citation: ama: 'Lake R, Simbierowicz S, Krantz P, Hassani F, Fink JM. The Bluefors Dilution Refrigerator as an Integrated Quantum Measurement System. Helsinki, Finland: Bluefors Oy; 2021.' apa: 'Lake, R., Simbierowicz, S., Krantz, P., Hassani, F., & Fink, J. M. (2021). The Bluefors dilution refrigerator as an integrated quantum measurement system. Helsinki, Finland: Bluefors Oy.' chicago: 'Lake, Russell, Slawomir Simbierowicz, Philip Krantz, Farid Hassani, and Johannes M Fink. The Bluefors Dilution Refrigerator as an Integrated Quantum Measurement System. Helsinki, Finland: Bluefors Oy, 2021.' ieee: 'R. Lake, S. Simbierowicz, P. Krantz, F. Hassani, and J. M. Fink, The Bluefors dilution refrigerator as an integrated quantum measurement system. Helsinki, Finland: Bluefors Oy, 2021.' ista: 'Lake R, Simbierowicz S, Krantz P, Hassani F, Fink JM. 2021. The Bluefors dilution refrigerator as an integrated quantum measurement system, Helsinki, Finland: Bluefors Oy, 9p.' mla: Lake, Russell, et al. The Bluefors Dilution Refrigerator as an Integrated Quantum Measurement System. Bluefors Oy, 2021. short: R. Lake, S. Simbierowicz, P. Krantz, F. Hassani, J.M. Fink, The Bluefors Dilution Refrigerator as an Integrated Quantum Measurement System, Bluefors Oy, Helsinki, Finland, 2021. date_created: 2022-01-19T08:29:57Z date_published: 2021-04-20T00:00:00Z date_updated: 2022-01-19T09:11:33Z day: '20' department: - _id: JoFi keyword: - Application note language: - iso: eng main_file_link: - open_access: '1' url: https://bluefors.com/blog/integrated-quantum-measurement-system/ month: '04' oa: 1 oa_version: Published Version page: '9' place: Helsinki, Finland publication_status: published publisher: Bluefors Oy quality_controlled: '1' status: public title: The Bluefors dilution refrigerator as an integrated quantum measurement system type: other_academic_publication user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2021' ... --- _id: '9242' abstract: - lang: eng text: In the recent years important experimental advances in resonant electro-optic modulators as high-efficiency sources for coherent frequency combs and as devices for quantum information transfer have been realized, where strong optical and microwave mode coupling were achieved. These features suggest electro-optic-based devices as candidates for entangled optical frequency comb sources. In the present work, I study the generation of entangled optical frequency combs in millimeter-sized resonant electro-optic modulators. These devices profit from the experimentally proven advantages such as nearly constant optical free spectral ranges over several gigahertz, and high optical and microwave quality factors. The generation of frequency multiplexed quantum channels with spectral bandwidth in the MHz range for conservative parameter values paves the way towards novel uses in long-distance hybrid quantum networks, quantum key distribution, enhanced optical metrology, and quantum computing. acknowledgement: "I thank Prof. Shabir Barzanjeh and Dr. Ulrich Vogl for the fruitful discussions.\r\n" article_number: '023708' article_processing_charge: No article_type: original author: - first_name: Alfredo R full_name: Rueda Sanchez, Alfredo R id: 3B82B0F8-F248-11E8-B48F-1D18A9856A87 last_name: Rueda Sanchez orcid: 0000-0001-6249-5860 citation: ama: Rueda Sanchez AR. Frequency-multiplexed hybrid optical entangled source based on the Pockels effect. Physical Review A. 2021;103(2). doi:10.1103/PhysRevA.103.023708 apa: Rueda Sanchez, A. R. (2021). Frequency-multiplexed hybrid optical entangled source based on the Pockels effect. Physical Review A. American Physical Society. https://doi.org/10.1103/PhysRevA.103.023708 chicago: Rueda Sanchez, Alfredo R. “Frequency-Multiplexed Hybrid Optical Entangled Source Based on the Pockels Effect.” Physical Review A. American Physical Society, 2021. https://doi.org/10.1103/PhysRevA.103.023708. ieee: A. R. Rueda Sanchez, “Frequency-multiplexed hybrid optical entangled source based on the Pockels effect,” Physical Review A, vol. 103, no. 2. American Physical Society, 2021. ista: Rueda Sanchez AR. 2021. Frequency-multiplexed hybrid optical entangled source based on the Pockels effect. Physical Review A. 103(2), 023708. mla: Rueda Sanchez, Alfredo R. “Frequency-Multiplexed Hybrid Optical Entangled Source Based on the Pockels Effect.” Physical Review A, vol. 103, no. 2, 023708, American Physical Society, 2021, doi:10.1103/PhysRevA.103.023708. short: A.R. Rueda Sanchez, Physical Review A 103 (2021). date_created: 2021-03-14T23:01:33Z date_published: 2021-02-11T00:00:00Z date_updated: 2023-08-07T14:11:18Z day: '11' department: - _id: JoFi doi: 10.1103/PhysRevA.103.023708 external_id: arxiv: - '2010.05356' isi: - '000617037900013' intvolume: ' 103' isi: 1 issue: '2' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2010.05356 month: '02' oa: 1 oa_version: Preprint publication: Physical Review A publication_identifier: eissn: - 2469-9934 issn: - 2469-9926 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Frequency-multiplexed hybrid optical entangled source based on the Pockels effect type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 103 year: '2021' ... --- _id: '13057' abstract: - lang: eng text: 'This dataset comprises all data shown in the figures of the submitted article "Geometric superinductance qubits: Controlling phase delocalization across a single Josephson junction". Additional raw data are available from the corresponding author on reasonable request.' article_processing_charge: No author: - first_name: Matilda full_name: Peruzzo, Matilda id: 3F920B30-F248-11E8-B48F-1D18A9856A87 last_name: Peruzzo orcid: 0000-0002-3415-4628 - first_name: Farid full_name: Hassani, Farid id: 2AED110C-F248-11E8-B48F-1D18A9856A87 last_name: Hassani orcid: 0000-0001-6937-5773 - first_name: Grisha full_name: Szep, Grisha last_name: Szep - first_name: Andrea full_name: Trioni, Andrea id: 42F71B44-F248-11E8-B48F-1D18A9856A87 last_name: Trioni - first_name: Elena full_name: Redchenko, Elena id: 2C21D6E8-F248-11E8-B48F-1D18A9856A87 last_name: Redchenko - first_name: Martin full_name: Zemlicka, Martin id: 2DCF8DE6-F248-11E8-B48F-1D18A9856A87 last_name: Zemlicka - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X citation: ama: 'Peruzzo M, Hassani F, Szep G, et al. Geometric superinductance qubits: Controlling phase delocalization across a single Josephson junction. 2021. doi:10.5281/ZENODO.5592103' apa: 'Peruzzo, M., Hassani, F., Szep, G., Trioni, A., Redchenko, E., Zemlicka, M., & Fink, J. M. (2021). Geometric superinductance qubits: Controlling phase delocalization across a single Josephson junction. Zenodo. https://doi.org/10.5281/ZENODO.5592103' chicago: 'Peruzzo, Matilda, Farid Hassani, Grisha Szep, Andrea Trioni, Elena Redchenko, Martin Zemlicka, and Johannes M Fink. “Geometric Superinductance Qubits: Controlling Phase Delocalization across a Single Josephson Junction.” Zenodo, 2021. https://doi.org/10.5281/ZENODO.5592103.' ieee: 'M. Peruzzo et al., “Geometric superinductance qubits: Controlling phase delocalization across a single Josephson junction.” Zenodo, 2021.' ista: 'Peruzzo M, Hassani F, Szep G, Trioni A, Redchenko E, Zemlicka M, Fink JM. 2021. Geometric superinductance qubits: Controlling phase delocalization across a single Josephson junction, Zenodo, 10.5281/ZENODO.5592103.' mla: 'Peruzzo, Matilda, et al. Geometric Superinductance Qubits: Controlling Phase Delocalization across a Single Josephson Junction. Zenodo, 2021, doi:10.5281/ZENODO.5592103.' short: M. Peruzzo, F. Hassani, G. Szep, A. Trioni, E. Redchenko, M. Zemlicka, J.M. Fink, (2021). date_created: 2023-05-23T13:42:27Z date_published: 2021-10-22T00:00:00Z date_updated: 2023-08-11T10:44:21Z day: '22' ddc: - '530' department: - _id: JoFi doi: 10.5281/ZENODO.5592103 main_file_link: - open_access: '1' url: https://doi.org/10.5281/zenodo.5592104 month: '10' oa: 1 oa_version: Published Version publisher: Zenodo related_material: record: - id: '9928' relation: used_in_publication status: public status: public title: 'Geometric superinductance qubits: Controlling phase delocalization across a single Josephson junction' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: research_data_reference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2021' ... --- _id: '9928' abstract: - lang: eng text: There are two elementary superconducting qubit types that derive directly from the quantum harmonic oscillator. In one, the inductor is replaced by a nonlinear Josephson junction to realize the widely used charge qubits with a compact phase variable and a discrete charge wave function. In the other, the junction is added in parallel, which gives rise to an extended phase variable, continuous wave functions, and a rich energy-level structure due to the loop topology. While the corresponding rf superconducting quantum interference device Hamiltonian was introduced as a quadratic quasi-one-dimensional potential approximation to describe the fluxonium qubit implemented with long Josephson-junction arrays, in this work we implement it directly using a linear superinductor formed by a single uninterrupted aluminum wire. We present a large variety of qubits, all stemming from the same circuit but with drastically different characteristic energy scales. This includes flux and fluxonium qubits but also the recently introduced quasicharge qubit with strongly enhanced zero-point phase fluctuations and a heavily suppressed flux dispersion. The use of a geometric inductor results in high reproducibility of the inductive energy as guaranteed by top-down lithography—a key ingredient for intrinsically protected superconducting qubits. acknowledged_ssus: - _id: NanoFab - _id: M-Shop acknowledgement: We thank W. Hughes for analytic and numerical modeling during the early stages of this work, J. Koch for discussions and support with the scqubits package, R. Sett, P. Zielinski, and L. Drmic for software development, and G. Katsaros for equipment support, as well as the MIBA workshop and the Institute of Science and Technology Austria nanofabrication facility. We thank I. Pop, S. Deleglise, and E. Flurin for discussions. This work was supported by a NOMIS Foundation research grant, the Austrian Science Fund (FWF) through BeyondC (F7105), and IST Austria. M.P. is the recipient of a Pöttinger scholarship at IST Austria. E.R. is the recipient of a DOC fellowship of the Austrian Academy of Sciences at IST Austria. article_processing_charge: No article_type: original author: - first_name: Matilda full_name: Peruzzo, Matilda id: 3F920B30-F248-11E8-B48F-1D18A9856A87 last_name: Peruzzo orcid: 0000-0002-3415-4628 - first_name: Farid full_name: Hassani, Farid id: 2AED110C-F248-11E8-B48F-1D18A9856A87 last_name: Hassani orcid: 0000-0001-6937-5773 - first_name: Gregory full_name: Szep, Gregory last_name: Szep - first_name: Andrea full_name: Trioni, Andrea id: 42F71B44-F248-11E8-B48F-1D18A9856A87 last_name: Trioni - first_name: Elena full_name: Redchenko, Elena id: 2C21D6E8-F248-11E8-B48F-1D18A9856A87 last_name: Redchenko - first_name: Martin full_name: Zemlicka, Martin id: 2DCF8DE6-F248-11E8-B48F-1D18A9856A87 last_name: Zemlicka - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X citation: ama: 'Peruzzo M, Hassani F, Szep G, et al. Geometric superinductance qubits: Controlling phase delocalization across a single Josephson junction. PRX Quantum. 2021;2(4):040341. doi:10.1103/PRXQuantum.2.040341' apa: 'Peruzzo, M., Hassani, F., Szep, G., Trioni, A., Redchenko, E., Zemlicka, M., & Fink, J. M. (2021). Geometric superinductance qubits: Controlling phase delocalization across a single Josephson junction. PRX Quantum. American Physical Society. https://doi.org/10.1103/PRXQuantum.2.040341' chicago: 'Peruzzo, Matilda, Farid Hassani, Gregory Szep, Andrea Trioni, Elena Redchenko, Martin Zemlicka, and Johannes M Fink. “Geometric Superinductance Qubits: Controlling Phase Delocalization across a Single Josephson Junction.” PRX Quantum. American Physical Society, 2021. https://doi.org/10.1103/PRXQuantum.2.040341.' ieee: 'M. Peruzzo et al., “Geometric superinductance qubits: Controlling phase delocalization across a single Josephson junction,” PRX Quantum, vol. 2, no. 4. American Physical Society, p. 040341, 2021.' ista: 'Peruzzo M, Hassani F, Szep G, Trioni A, Redchenko E, Zemlicka M, Fink JM. 2021. Geometric superinductance qubits: Controlling phase delocalization across a single Josephson junction. PRX Quantum. 2(4), 040341.' mla: 'Peruzzo, Matilda, et al. “Geometric Superinductance Qubits: Controlling Phase Delocalization across a Single Josephson Junction.” PRX Quantum, vol. 2, no. 4, American Physical Society, 2021, p. 040341, doi:10.1103/PRXQuantum.2.040341.' short: M. Peruzzo, F. Hassani, G. Szep, A. Trioni, E. Redchenko, M. Zemlicka, J.M. Fink, PRX Quantum 2 (2021) 040341. date_created: 2021-08-17T08:14:18Z date_published: 2021-11-24T00:00:00Z date_updated: 2023-09-07T13:31:22Z day: '24' ddc: - '530' department: - _id: JoFi - _id: NanoFab - _id: M-Shop doi: 10.1103/PRXQuantum.2.040341 ec_funded: 1 external_id: arxiv: - '2106.05882' isi: - '000723015100001' file: - access_level: open_access checksum: 36eb41ea43d8ca22b0efab12419e4eb2 content_type: application/pdf creator: cchlebak date_created: 2022-01-18T11:29:33Z date_updated: 2022-01-18T11:29:33Z file_id: '10641' file_name: 2021_PRXQuantum_Peruzzo.pdf file_size: 4247422 relation: main_file success: 1 file_date_updated: 2022-01-18T11:29:33Z has_accepted_license: '1' intvolume: ' 2' isi: 1 issue: '4' keyword: - quantum physics - mesoscale and nanoscale physics language: - iso: eng month: '11' oa: 1 oa_version: Published Version page: '040341' project: - _id: 26927A52-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: F07105 name: Integrating superconducting quantum circuits - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program - _id: 2622978C-B435-11E9-9278-68D0E5697425 name: Hybrid Semiconductor - Superconductor Quantum Devices publication: PRX Quantum publication_identifier: eissn: - 2691-3399 publication_status: published publisher: American Physical Society quality_controlled: '1' related_material: record: - id: '13057' relation: research_data status: public - id: '9920' relation: dissertation_contains status: public scopus_import: '1' status: public title: 'Geometric superinductance qubits: Controlling phase delocalization across a single Josephson junction' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 2 year: '2021' ... --- _id: '9920' abstract: - lang: eng text: 'This work is concerned with two fascinating circuit quantum electrodynamics components, the Josephson junction and the geometric superinductor, and the interesting experiments that can be done by combining the two. The Josephson junction has revolutionized the field of superconducting circuits as a non-linear dissipation-less circuit element and is used in almost all superconducting qubit implementations since the 90s. On the other hand, the superinductor is a relatively new circuit element introduced as a key component of the fluxonium qubit in 2009. This is an inductor with characteristic impedance larger than the resistance quantum and self-resonance frequency in the GHz regime. The combination of these two elements can occur in two fundamental ways: in parallel and in series. When connected in parallel the two create the fluxonium qubit, a loop with large inductance and a rich energy spectrum reliant on quantum tunneling. On the other hand placing the two elements in series aids with the measurement of the IV curve of a single Josephson junction in a high impedance environment. In this limit theory predicts that the junction will behave as its dual element: the phase-slip junction. While the Josephson junction acts as a non-linear inductor the phase-slip junction has the behavior of a non-linear capacitance and can be used to measure new Josephson junction phenomena, namely Coulomb blockade of Cooper pairs and phase-locked Bloch oscillations. The latter experiment allows for a direct link between frequency and current which is an elusive connection in quantum metrology. This work introduces the geometric superinductor, a superconducting circuit element where the high inductance is due to the geometry rather than the material properties of the superconductor, realized from a highly miniaturized superconducting planar coil. These structures will be described and characterized as resonators and qubit inductors and progress towards the measurement of phase-locked Bloch oscillations will be presented.' acknowledged_ssus: - _id: NanoFab - _id: M-Shop alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Matilda full_name: Peruzzo, Matilda id: 3F920B30-F248-11E8-B48F-1D18A9856A87 last_name: Peruzzo orcid: 0000-0002-3415-4628 citation: ama: Peruzzo M. Geometric superinductors and their applications in circuit quantum electrodynamics. 2021. doi:10.15479/at:ista:9920 apa: Peruzzo, M. (2021). Geometric superinductors and their applications in circuit quantum electrodynamics. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:9920 chicago: Peruzzo, Matilda. “Geometric Superinductors and Their Applications in Circuit Quantum Electrodynamics.” Institute of Science and Technology Austria, 2021. https://doi.org/10.15479/at:ista:9920. ieee: M. Peruzzo, “Geometric superinductors and their applications in circuit quantum electrodynamics,” Institute of Science and Technology Austria, 2021. ista: Peruzzo M. 2021. Geometric superinductors and their applications in circuit quantum electrodynamics. Institute of Science and Technology Austria. mla: Peruzzo, Matilda. Geometric Superinductors and Their Applications in Circuit Quantum Electrodynamics. Institute of Science and Technology Austria, 2021, doi:10.15479/at:ista:9920. short: M. Peruzzo, Geometric Superinductors and Their Applications in Circuit Quantum Electrodynamics, Institute of Science and Technology Austria, 2021. date_created: 2021-08-16T09:44:09Z date_published: 2021-08-19T00:00:00Z date_updated: 2023-09-07T13:31:22Z day: '19' ddc: - '539' degree_awarded: PhD department: - _id: GradSch - _id: JoFi doi: 10.15479/at:ista:9920 file: - access_level: closed checksum: 3cd1986efde5121d7581f6fcf9090da8 content_type: application/x-zip-compressed creator: mperuzzo date_created: 2021-08-16T09:33:21Z date_updated: 2021-09-06T08:39:47Z file_id: '9924' file_name: GeometricSuperinductorsForCQED.zip file_size: 151387283 relation: source_file - access_level: open_access checksum: 50928c621cdf0775d7a5906b9dc8602c content_type: application/pdf creator: mperuzzo date_created: 2021-08-18T14:20:06Z date_updated: 2021-09-06T08:39:47Z file_id: '9939' file_name: GeometricSuperinductorsAndTheirApplicationsIncQED-1b.pdf file_size: 17596344 relation: main_file - access_level: closed checksum: 37f486aa1b622fe44af00d627ec13f6c content_type: application/pdf creator: mperuzzo date_created: 2021-08-18T14:20:09Z date_updated: 2021-09-06T08:39:47Z description: Extra copy of the thesis as PDF/A-2b file_id: '9940' file_name: GeometricSuperinductorsAndTheirApplicationsIncQED-2b.pdf file_size: 17592425 relation: other file_date_updated: 2021-09-06T08:39:47Z has_accepted_license: '1' keyword: - quantum computing - superinductor - quantum metrology language: - iso: eng month: '08' oa: 1 oa_version: Published Version page: '149' publication_identifier: isbn: - 978-3-99078-013-8 issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '9928' relation: part_of_dissertation status: public - id: '8755' relation: part_of_dissertation status: public status: public supervisor: - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X title: Geometric superinductors and their applications in circuit quantum electrodynamics type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2021' ... --- _id: '9815' abstract: - lang: eng text: The quantum bits (qubits) on which superconducting quantum computers are based have energy scales corresponding to photons with GHz frequencies. The energy of photons in the gigahertz domain is too low to allow transmission through the noisy room-temperature environment, where the signal would be lost in thermal noise. Optical photons, on the other hand, have much higher energies, and signals can be detected using highly efficient single-photon detectors. Transduction from microwave to optical frequencies is therefore a potential enabling technology for quantum devices. However, in such a device the optical pump can be a source of thermal noise and thus degrade the fidelity; the similarity of input microwave state to the output optical state. In order to investigate the magnitude of this effect we model the sub-Kelvin thermal behavior of an electro-optic transducer based on a lithium niobate whispering gallery mode resonator. We find that there is an optimum power level for a continuous pump, whilst pulsed operation of the pump increases the fidelity of the conversion. acknowledgement: NJL is supported by the MBIE Endeavour Fund (UOOX1805) and GL is by the Julius von Haast Fellowship of New Zealand. SM acknowledges stimulating discussions with T M Jensen. article_number: '045005' article_processing_charge: Yes article_type: original author: - first_name: Sonia full_name: Mobassem, Sonia last_name: Mobassem - first_name: Nicholas J. full_name: Lambert, Nicholas J. last_name: Lambert - first_name: Alfredo R full_name: Rueda Sanchez, Alfredo R id: 3B82B0F8-F248-11E8-B48F-1D18A9856A87 last_name: Rueda Sanchez orcid: 0000-0001-6249-5860 - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X - first_name: Gerd full_name: Leuchs, Gerd last_name: Leuchs - first_name: Harald G.L. full_name: Schwefel, Harald G.L. last_name: Schwefel citation: ama: Mobassem S, Lambert NJ, Rueda Sanchez AR, Fink JM, Leuchs G, Schwefel HGL. Thermal noise in electro-optic devices at cryogenic temperatures. Quantum Science and Technology. 2021;6(4). doi:10.1088/2058-9565/ac0f36 apa: Mobassem, S., Lambert, N. J., Rueda Sanchez, A. R., Fink, J. M., Leuchs, G., & Schwefel, H. G. L. (2021). Thermal noise in electro-optic devices at cryogenic temperatures. Quantum Science and Technology. IOP Publishing. https://doi.org/10.1088/2058-9565/ac0f36 chicago: Mobassem, Sonia, Nicholas J. Lambert, Alfredo R Rueda Sanchez, Johannes M Fink, Gerd Leuchs, and Harald G.L. Schwefel. “Thermal Noise in Electro-Optic Devices at Cryogenic Temperatures.” Quantum Science and Technology. IOP Publishing, 2021. https://doi.org/10.1088/2058-9565/ac0f36. ieee: S. Mobassem, N. J. Lambert, A. R. Rueda Sanchez, J. M. Fink, G. Leuchs, and H. G. L. Schwefel, “Thermal noise in electro-optic devices at cryogenic temperatures,” Quantum Science and Technology, vol. 6, no. 4. IOP Publishing, 2021. ista: Mobassem S, Lambert NJ, Rueda Sanchez AR, Fink JM, Leuchs G, Schwefel HGL. 2021. Thermal noise in electro-optic devices at cryogenic temperatures. Quantum Science and Technology. 6(4), 045005. mla: Mobassem, Sonia, et al. “Thermal Noise in Electro-Optic Devices at Cryogenic Temperatures.” Quantum Science and Technology, vol. 6, no. 4, 045005, IOP Publishing, 2021, doi:10.1088/2058-9565/ac0f36. short: S. Mobassem, N.J. Lambert, A.R. Rueda Sanchez, J.M. Fink, G. Leuchs, H.G.L. Schwefel, Quantum Science and Technology 6 (2021). date_created: 2021-08-08T22:01:25Z date_published: 2021-07-15T00:00:00Z date_updated: 2023-10-17T12:54:54Z day: '15' ddc: - '530' department: - _id: JoFi doi: 10.1088/2058-9565/ac0f36 external_id: arxiv: - '2008.08764' isi: - '000673081500001' file: - access_level: open_access checksum: b15c2c228487a75002c3b52d56f23d5c content_type: application/pdf creator: cchlebak date_created: 2021-08-09T12:23:13Z date_updated: 2021-08-09T12:23:13Z file_id: '9836' file_name: 2021_QuantumScienceTechnology_Mobassem.pdf file_size: 2366118 relation: main_file file_date_updated: 2021-08-09T12:23:13Z has_accepted_license: '1' intvolume: ' 6' isi: 1 issue: '4' language: - iso: eng month: '07' oa: 1 oa_version: Published Version publication: Quantum Science and Technology publication_identifier: eissn: - 2058-9565 publication_status: published publisher: IOP Publishing quality_controlled: '1' scopus_import: '1' status: public title: Thermal noise in electro-optic devices at cryogenic temperatures tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 6 year: '2021' ... --- _id: '8038' abstract: - lang: eng text: Microelectromechanical systems and integrated photonics provide the basis for many reliable and compact circuit elements in modern communication systems. Electro-opto-mechanical devices are currently one of the leading approaches to realize ultra-sensitive, low-loss transducers for an emerging quantum information technology. Here we present an on-chip microwave frequency converter based on a planar aluminum on silicon nitride platform that is compatible with slot-mode coupled photonic crystal cavities. We show efficient frequency conversion between two propagating microwave modes mediated by the radiation pressure interaction with a metalized dielectric nanobeam oscillator. We achieve bidirectional coherent conversion with a total device efficiency of up to ~60%, a dynamic range of 2 × 10^9 photons/s and an instantaneous bandwidth of up to 1.7 kHz. A high fidelity quantum state transfer would be possible if the drive dependent output noise of currently ~14 photons s^−1 Hz^−1 is further reduced. Such a silicon nitride based transducer is in situ reconfigurable and could be used for on-chip classical and quantum signal routing and filtering, both for microwave and hybrid microwave-optical applications. article_number: '034011' article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X - first_name: M. full_name: Kalaee, M. last_name: Kalaee - first_name: R. full_name: Norte, R. last_name: Norte - first_name: A. full_name: Pitanti, A. last_name: Pitanti - first_name: O. full_name: Painter, O. last_name: Painter citation: ama: Fink JM, Kalaee M, Norte R, Pitanti A, Painter O. Efficient microwave frequency conversion mediated by a photonics compatible silicon nitride nanobeam oscillator. Quantum Science and Technology. 2020;5(3). doi:10.1088/2058-9565/ab8dce apa: Fink, J. M., Kalaee, M., Norte, R., Pitanti, A., & Painter, O. (2020). Efficient microwave frequency conversion mediated by a photonics compatible silicon nitride nanobeam oscillator. Quantum Science and Technology. IOP Publishing. https://doi.org/10.1088/2058-9565/ab8dce chicago: Fink, Johannes M, M. Kalaee, R. Norte, A. Pitanti, and O. Painter. “Efficient Microwave Frequency Conversion Mediated by a Photonics Compatible Silicon Nitride Nanobeam Oscillator.” Quantum Science and Technology. IOP Publishing, 2020. https://doi.org/10.1088/2058-9565/ab8dce. ieee: J. M. Fink, M. Kalaee, R. Norte, A. Pitanti, and O. Painter, “Efficient microwave frequency conversion mediated by a photonics compatible silicon nitride nanobeam oscillator,” Quantum Science and Technology, vol. 5, no. 3. IOP Publishing, 2020. ista: Fink JM, Kalaee M, Norte R, Pitanti A, Painter O. 2020. Efficient microwave frequency conversion mediated by a photonics compatible silicon nitride nanobeam oscillator. Quantum Science and Technology. 5(3), 034011. mla: Fink, Johannes M., et al. “Efficient Microwave Frequency Conversion Mediated by a Photonics Compatible Silicon Nitride Nanobeam Oscillator.” Quantum Science and Technology, vol. 5, no. 3, 034011, IOP Publishing, 2020, doi:10.1088/2058-9565/ab8dce. short: J.M. Fink, M. Kalaee, R. Norte, A. Pitanti, O. Painter, Quantum Science and Technology 5 (2020). date_created: 2020-06-29T07:59:35Z date_published: 2020-05-25T00:00:00Z date_updated: 2023-08-22T07:49:01Z day: '25' ddc: - '530' department: - _id: JoFi doi: 10.1088/2058-9565/ab8dce ec_funded: 1 external_id: isi: - '000539300800001' file: - access_level: open_access checksum: 8f25f05053f511f892ae8fa93f341e61 content_type: application/pdf creator: cziletti date_created: 2020-06-30T10:29:10Z date_updated: 2020-07-14T12:48:08Z file_id: '8072' file_name: 2020_QuantumSciTechnol_Fink.pdf file_size: 2600967 relation: main_file file_date_updated: 2020-07-14T12:48:08Z has_accepted_license: '1' intvolume: ' 5' isi: 1 issue: '3' language: - iso: eng month: '05' oa: 1 oa_version: Published Version project: - _id: 26336814-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '758053' name: A Fiber Optic Transceiver for Superconducting Qubits - _id: 26927A52-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: F07105 name: Integrating superconducting quantum circuits - _id: 257EB838-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '732894' name: Hybrid Optomechanical Technologies - _id: 2622978C-B435-11E9-9278-68D0E5697425 name: Hybrid Semiconductor - Superconductor Quantum Devices publication: Quantum Science and Technology publication_identifier: eissn: - '20589565' publication_status: published publisher: IOP Publishing quality_controlled: '1' scopus_import: '1' status: public title: Efficient microwave frequency conversion mediated by a photonics compatible silicon nitride nanobeam oscillator tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 5 year: '2020' ... --- _id: '8529' abstract: - lang: eng text: Practical quantum networks require low-loss and noise-resilient optical interconnects as well as non-Gaussian resources for entanglement distillation and distributed quantum computation. The latter could be provided by superconducting circuits but existing solutions to interface the microwave and optical domains lack either scalability or efficiency, and in most cases the conversion noise is not known. In this work we utilize the unique opportunities of silicon photonics, cavity optomechanics and superconducting circuits to demonstrate a fully integrated, coherent transducer interfacing the microwave X and the telecom S bands with a total (internal) bidirectional transduction efficiency of 1.2% (135%) at millikelvin temperatures. The coupling relies solely on the radiation pressure interaction mediated by the femtometer-scale motion of two silicon nanobeams reaching a Vπ as low as 16 μV for sub-nanowatt pump powers. Without the associated optomechanical gain, we achieve a total (internal) pure conversion efficiency of up to 0.019% (1.6%), relevant for future noise-free operation on this qubit-compatible platform. acknowledged_ssus: - _id: NanoFab acknowledgement: We thank Yuan Chen for performing supplementary FEM simulations and Andrew Higginbotham, Ralf Riedinger, Sungkun Hong, and Lorenzo Magrini for valuable discussions. This work was supported by IST Austria, the IST nanofabrication facility (NFF), the European Union’s Horizon 2020 research and innovation program under grant agreement no. 732894 (FET Proactive HOT) and the European Research Council under grant agreement no. 758053 (ERC StG QUNNECT). G.A. is the recipient of a DOC fellowship of the Austrian Academy of Sciences at IST Austria. W.H. is the recipient of an ISTplus postdoctoral fellowship with funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement no. 754411. J.M.F. acknowledges support from the Austrian Science Fund (FWF) through BeyondC (F71), a NOMIS foundation research grant, and the EU’s Horizon 2020 research and innovation program under grant agreement no. 862644 (FET Open QUARTET). article_number: '4460' article_processing_charge: No article_type: original author: - first_name: Georg M full_name: Arnold, Georg M id: 3770C838-F248-11E8-B48F-1D18A9856A87 last_name: Arnold orcid: 0000-0003-1397-7876 - first_name: Matthias full_name: Wulf, Matthias id: 45598606-F248-11E8-B48F-1D18A9856A87 last_name: Wulf orcid: 0000-0001-6613-1378 - first_name: Shabir full_name: Barzanjeh, Shabir id: 2D25E1F6-F248-11E8-B48F-1D18A9856A87 last_name: Barzanjeh orcid: 0000-0003-0415-1423 - first_name: Elena full_name: Redchenko, Elena id: 2C21D6E8-F248-11E8-B48F-1D18A9856A87 last_name: Redchenko - first_name: Alfredo R full_name: Rueda Sanchez, Alfredo R id: 3B82B0F8-F248-11E8-B48F-1D18A9856A87 last_name: Rueda Sanchez orcid: 0000-0001-6249-5860 - first_name: William J full_name: Hease, William J id: 29705398-F248-11E8-B48F-1D18A9856A87 last_name: Hease orcid: 0000-0001-9868-2166 - first_name: Farid full_name: Hassani, Farid id: 2AED110C-F248-11E8-B48F-1D18A9856A87 last_name: Hassani orcid: 0000-0001-6937-5773 - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X citation: ama: Arnold GM, Wulf M, Barzanjeh S, et al. Converting microwave and telecom photons with a silicon photonic nanomechanical interface. Nature Communications. 2020;11. doi:10.1038/s41467-020-18269-z apa: Arnold, G. M., Wulf, M., Barzanjeh, S., Redchenko, E., Rueda Sanchez, A. R., Hease, W. J., … Fink, J. M. (2020). Converting microwave and telecom photons with a silicon photonic nanomechanical interface. Nature Communications. Springer Nature. https://doi.org/10.1038/s41467-020-18269-z chicago: Arnold, Georg M, Matthias Wulf, Shabir Barzanjeh, Elena Redchenko, Alfredo R Rueda Sanchez, William J Hease, Farid Hassani, and Johannes M Fink. “Converting Microwave and Telecom Photons with a Silicon Photonic Nanomechanical Interface.” Nature Communications. Springer Nature, 2020. https://doi.org/10.1038/s41467-020-18269-z. ieee: G. M. Arnold et al., “Converting microwave and telecom photons with a silicon photonic nanomechanical interface,” Nature Communications, vol. 11. Springer Nature, 2020. ista: Arnold GM, Wulf M, Barzanjeh S, Redchenko E, Rueda Sanchez AR, Hease WJ, Hassani F, Fink JM. 2020. Converting microwave and telecom photons with a silicon photonic nanomechanical interface. Nature Communications. 11, 4460. mla: Arnold, Georg M., et al. “Converting Microwave and Telecom Photons with a Silicon Photonic Nanomechanical Interface.” Nature Communications, vol. 11, 4460, Springer Nature, 2020, doi:10.1038/s41467-020-18269-z. short: G.M. Arnold, M. Wulf, S. Barzanjeh, E. Redchenko, A.R. Rueda Sanchez, W.J. Hease, F. Hassani, J.M. Fink, Nature Communications 11 (2020). date_created: 2020-09-18T10:56:20Z date_published: 2020-09-08T00:00:00Z date_updated: 2023-08-22T09:27:12Z day: '08' ddc: - '530' department: - _id: JoFi doi: 10.1038/s41467-020-18269-z ec_funded: 1 external_id: isi: - '000577280200001' file: - access_level: open_access checksum: 88f92544889eb18bb38e25629a422a86 content_type: application/pdf creator: dernst date_created: 2020-09-18T13:02:37Z date_updated: 2020-09-18T13:02:37Z file_id: '8530' file_name: 2020_NatureComm_Arnold.pdf file_size: 1002818 relation: main_file success: 1 file_date_updated: 2020-09-18T13:02:37Z has_accepted_license: '1' intvolume: ' 11' isi: 1 keyword: - General Biochemistry - Genetics and Molecular Biology - General Physics and Astronomy - General Chemistry language: - iso: eng month: '09' oa: 1 oa_version: Published Version project: - _id: 257EB838-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '732894' name: Hybrid Optomechanical Technologies - _id: 26336814-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '758053' name: A Fiber Optic Transceiver for Superconducting Qubits - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships - _id: 237CBA6C-32DE-11EA-91FC-C7463DDC885E call_identifier: H2020 grant_number: '862644' name: Quantum readout techniques and technologies - _id: 2671EB66-B435-11E9-9278-68D0E5697425 name: Coherent on-chip conversion of superconducting qubit signals from microwaves to optical frequencies publication: Nature Communications publication_identifier: issn: - 2041-1723 publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: link: - relation: erratum url: https://doi.org/10.1038/s41467-020-18912-9 - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/how-to-transport-microwave-quantum-information-via-optical-fiber/ record: - id: '13056' relation: research_data status: public status: public title: Converting microwave and telecom photons with a silicon photonic nanomechanical interface tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 11 year: '2020' ... --- _id: '13056' abstract: - lang: eng text: This datasets comprises all data shown in plots of the submitted article "Converting microwave and telecom photons with a silicon photonic nanomechanical interface". Additional raw data are available from the corresponding author on reasonable request. article_processing_charge: No author: - first_name: Georg M full_name: Arnold, Georg M id: 3770C838-F248-11E8-B48F-1D18A9856A87 last_name: Arnold orcid: 0000-0003-1397-7876 - first_name: Matthias full_name: Wulf, Matthias id: 45598606-F248-11E8-B48F-1D18A9856A87 last_name: Wulf orcid: 0000-0001-6613-1378 - first_name: Shabir full_name: Barzanjeh, Shabir id: 2D25E1F6-F248-11E8-B48F-1D18A9856A87 last_name: Barzanjeh orcid: 0000-0003-0415-1423 - first_name: Elena full_name: Redchenko, Elena id: 2C21D6E8-F248-11E8-B48F-1D18A9856A87 last_name: Redchenko - first_name: Alfredo R full_name: Rueda Sanchez, Alfredo R id: 3B82B0F8-F248-11E8-B48F-1D18A9856A87 last_name: Rueda Sanchez orcid: 0000-0001-6249-5860 - first_name: William J full_name: Hease, William J id: 29705398-F248-11E8-B48F-1D18A9856A87 last_name: Hease orcid: 0000-0001-9868-2166 - first_name: Farid full_name: Hassani, Farid id: 2AED110C-F248-11E8-B48F-1D18A9856A87 last_name: Hassani orcid: 0000-0001-6937-5773 - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X citation: ama: Arnold GM, Wulf M, Barzanjeh S, et al. Converting microwave and telecom photons with a silicon photonic nanomechanical interface. 2020. doi:10.5281/ZENODO.3961561 apa: Arnold, G. M., Wulf, M., Barzanjeh, S., Redchenko, E., Rueda Sanchez, A. R., Hease, W. J., … Fink, J. M. (2020). Converting microwave and telecom photons with a silicon photonic nanomechanical interface. Zenodo. https://doi.org/10.5281/ZENODO.3961561 chicago: Arnold, Georg M, Matthias Wulf, Shabir Barzanjeh, Elena Redchenko, Alfredo R Rueda Sanchez, William J Hease, Farid Hassani, and Johannes M Fink. “Converting Microwave and Telecom Photons with a Silicon Photonic Nanomechanical Interface.” Zenodo, 2020. https://doi.org/10.5281/ZENODO.3961561. ieee: G. M. Arnold et al., “Converting microwave and telecom photons with a silicon photonic nanomechanical interface.” Zenodo, 2020. ista: Arnold GM, Wulf M, Barzanjeh S, Redchenko E, Rueda Sanchez AR, Hease WJ, Hassani F, Fink JM. 2020. Converting microwave and telecom photons with a silicon photonic nanomechanical interface, Zenodo, 10.5281/ZENODO.3961561. mla: Arnold, Georg M., et al. Converting Microwave and Telecom Photons with a Silicon Photonic Nanomechanical Interface. Zenodo, 2020, doi:10.5281/ZENODO.3961561. short: G.M. Arnold, M. Wulf, S. Barzanjeh, E. Redchenko, A.R. Rueda Sanchez, W.J. Hease, F. Hassani, J.M. Fink, (2020). date_created: 2023-05-23T13:37:41Z date_published: 2020-07-27T00:00:00Z date_updated: 2023-08-22T09:27:11Z day: '27' ddc: - '530' department: - _id: JoFi doi: 10.5281/ZENODO.3961561 main_file_link: - open_access: '1' url: https://doi.org/10.5281/zenodo.3961562 month: '07' oa: 1 oa_version: Published Version publisher: Zenodo related_material: record: - id: '8529' relation: used_in_publication status: public status: public title: Converting microwave and telecom photons with a silicon photonic nanomechanical interface tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: research_data_reference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ... --- _id: '13070' abstract: - lang: eng text: This dataset comprises all data shown in the figures of the submitted article "Surpassing the resistance quantum with a geometric superinductor". Additional raw data are available from the corresponding author on reasonable request. article_processing_charge: No author: - first_name: Matilda full_name: Peruzzo, Matilda id: 3F920B30-F248-11E8-B48F-1D18A9856A87 last_name: Peruzzo orcid: 0000-0002-3415-4628 - first_name: Andrea full_name: Trioni, Andrea id: 42F71B44-F248-11E8-B48F-1D18A9856A87 last_name: Trioni - first_name: Farid full_name: Hassani, Farid id: 2AED110C-F248-11E8-B48F-1D18A9856A87 last_name: Hassani orcid: 0000-0001-6937-5773 - first_name: Martin full_name: Zemlicka, Martin id: 2DCF8DE6-F248-11E8-B48F-1D18A9856A87 last_name: Zemlicka - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X citation: ama: Peruzzo M, Trioni A, Hassani F, Zemlicka M, Fink JM. Surpassing the resistance quantum with a geometric superinductor. 2020. doi:10.5281/ZENODO.4052882 apa: Peruzzo, M., Trioni, A., Hassani, F., Zemlicka, M., & Fink, J. M. (2020). Surpassing the resistance quantum with a geometric superinductor. Zenodo. https://doi.org/10.5281/ZENODO.4052882 chicago: Peruzzo, Matilda, Andrea Trioni, Farid Hassani, Martin Zemlicka, and Johannes M Fink. “Surpassing the Resistance Quantum with a Geometric Superinductor.” Zenodo, 2020. https://doi.org/10.5281/ZENODO.4052882. ieee: M. Peruzzo, A. Trioni, F. Hassani, M. Zemlicka, and J. M. Fink, “Surpassing the resistance quantum with a geometric superinductor.” Zenodo, 2020. ista: Peruzzo M, Trioni A, Hassani F, Zemlicka M, Fink JM. 2020. Surpassing the resistance quantum with a geometric superinductor, Zenodo, 10.5281/ZENODO.4052882. mla: Peruzzo, Matilda, et al. Surpassing the Resistance Quantum with a Geometric Superinductor. Zenodo, 2020, doi:10.5281/ZENODO.4052882. short: M. Peruzzo, A. Trioni, F. Hassani, M. Zemlicka, J.M. Fink, (2020). date_created: 2023-05-23T16:42:30Z date_published: 2020-09-27T00:00:00Z date_updated: 2023-08-22T13:23:57Z day: '27' ddc: - '530' department: - _id: JoFi doi: 10.5281/ZENODO.4052882 main_file_link: - open_access: '1' url: https://doi.org/10.5281/zenodo.4052883 month: '09' oa: 1 oa_version: Published Version publisher: Zenodo related_material: record: - id: '8755' relation: used_in_publication status: public status: public title: Surpassing the resistance quantum with a geometric superinductor tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: research_data_reference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ... --- _id: '8944' abstract: - lang: eng text: "Superconductor insulator transition in transverse magnetic field is studied in the highly disordered MoC film with the product of the Fermi momentum and the mean free path kF*l close to unity. Surprisingly, the Zeeman paramagnetic effects dominate over orbital coupling on both sides of the transition. In superconducting state it is evidenced by a high upper critical magnetic field \U0001D435\U0001D4502, by its square root dependence on temperature, as well as by the Zeeman splitting of the quasiparticle density of states (DOS) measured by scanning tunneling microscopy. At \U0001D435\U0001D4502 a logarithmic anomaly in DOS is observed. This anomaly is further enhanced in increasing magnetic field, which is explained by the Zeeman splitting of the Altshuler-Aronov DOS driving\r\nthe system into a more insulating or resistive state. Spin dependent Altshuler-Aronov correction is also needed to explain the transport behavior above \U0001D435\U0001D4502." acknowledgement: 'We gratefully acknowledge helpful conversations with B.L. Altshuler and R. Hlubina. The work was supported by the projects APVV-18-0358, VEGA 2/0058/20, VEGA 1/0743/19 the European Microkelvin Platform, the COST action CA16218 (Nanocohybri) and by U.S. Steel Košice. ' article_number: '180508' article_processing_charge: No article_type: original author: - first_name: Martin full_name: Zemlicka, Martin id: 2DCF8DE6-F248-11E8-B48F-1D18A9856A87 last_name: Zemlicka - first_name: M. full_name: Kopčík, M. last_name: Kopčík - first_name: P. full_name: Szabó, P. last_name: Szabó - first_name: T. full_name: Samuely, T. last_name: Samuely - first_name: J. full_name: Kačmarčík, J. last_name: Kačmarčík - first_name: P. full_name: Neilinger, P. last_name: Neilinger - first_name: M. full_name: Grajcar, M. last_name: Grajcar - first_name: P. full_name: Samuely, P. last_name: Samuely citation: ama: 'Zemlicka M, Kopčík M, Szabó P, et al. Zeeman-driven superconductor-insulator transition in strongly disordered MoC films: Scanning tunneling microscopy and transport studies in a transverse magnetic field. Physical Review B. 2020;102(18). doi:10.1103/PhysRevB.102.180508' apa: 'Zemlicka, M., Kopčík, M., Szabó, P., Samuely, T., Kačmarčík, J., Neilinger, P., … Samuely, P. (2020). Zeeman-driven superconductor-insulator transition in strongly disordered MoC films: Scanning tunneling microscopy and transport studies in a transverse magnetic field. Physical Review B. American Physical Society. https://doi.org/10.1103/PhysRevB.102.180508' chicago: 'Zemlicka, Martin, M. Kopčík, P. Szabó, T. Samuely, J. Kačmarčík, P. Neilinger, M. Grajcar, and P. Samuely. “Zeeman-Driven Superconductor-Insulator Transition in Strongly Disordered MoC Films: Scanning Tunneling Microscopy and Transport Studies in a Transverse Magnetic Field.” Physical Review B. American Physical Society, 2020. https://doi.org/10.1103/PhysRevB.102.180508.' ieee: 'M. Zemlicka et al., “Zeeman-driven superconductor-insulator transition in strongly disordered MoC films: Scanning tunneling microscopy and transport studies in a transverse magnetic field,” Physical Review B, vol. 102, no. 18. American Physical Society, 2020.' ista: 'Zemlicka M, Kopčík M, Szabó P, Samuely T, Kačmarčík J, Neilinger P, Grajcar M, Samuely P. 2020. Zeeman-driven superconductor-insulator transition in strongly disordered MoC films: Scanning tunneling microscopy and transport studies in a transverse magnetic field. Physical Review B. 102(18), 180508.' mla: 'Zemlicka, Martin, et al. “Zeeman-Driven Superconductor-Insulator Transition in Strongly Disordered MoC Films: Scanning Tunneling Microscopy and Transport Studies in a Transverse Magnetic Field.” Physical Review B, vol. 102, no. 18, 180508, American Physical Society, 2020, doi:10.1103/PhysRevB.102.180508.' short: M. Zemlicka, M. Kopčík, P. Szabó, T. Samuely, J. Kačmarčík, P. Neilinger, M. Grajcar, P. Samuely, Physical Review B 102 (2020). date_created: 2020-12-13T23:01:21Z date_published: 2020-11-01T00:00:00Z date_updated: 2023-08-24T10:53:36Z day: '01' department: - _id: JoFi doi: 10.1103/PhysRevB.102.180508 external_id: arxiv: - '2011.04329' isi: - '000591509900003' intvolume: ' 102' isi: 1 issue: '18' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2011.04329 month: '11' oa: 1 oa_version: Preprint publication: Physical Review B publication_identifier: eissn: - '24699969' issn: - '24699950' publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: 'Zeeman-driven superconductor-insulator transition in strongly disordered MoC films: Scanning tunneling microscopy and transport studies in a transverse magnetic field' type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 102 year: '2020' ... --- _id: '7910' abstract: - lang: eng text: Quantum illumination uses entangled signal-idler photon pairs to boost the detection efficiency of low-reflectivity objects in environments with bright thermal noise. Its advantage is particularly evident at low signal powers, a promising feature for applications such as noninvasive biomedical scanning or low-power short-range radar. Here, we experimentally investigate the concept of quantum illumination at microwave frequencies. We generate entangled fields to illuminate a room-temperature object at a distance of 1 m in a free-space detection setup. We implement a digital phase-conjugate receiver based on linear quadrature measurements that outperforms a symmetric classical noise radar in the same conditions, despite the entanglement-breaking signal path. Starting from experimental data, we also simulate the case of perfect idler photon number detection, which results in a quantum advantage compared with the relative classical benchmark. Our results highlight the opportunities and challenges in the way toward a first room-temperature application of microwave quantum circuits. article_number: eabb0451 article_processing_charge: No article_type: original author: - first_name: Shabir full_name: Barzanjeh, Shabir id: 2D25E1F6-F248-11E8-B48F-1D18A9856A87 last_name: Barzanjeh orcid: 0000-0003-0415-1423 - first_name: S. full_name: Pirandola, S. last_name: Pirandola - first_name: D full_name: Vitali, D last_name: Vitali - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X citation: ama: Barzanjeh S, Pirandola S, Vitali D, Fink JM. Microwave quantum illumination using a digital receiver. Science Advances. 2020;6(19). doi:10.1126/sciadv.abb0451 apa: Barzanjeh, S., Pirandola, S., Vitali, D., & Fink, J. M. (2020). Microwave quantum illumination using a digital receiver. Science Advances. AAAS. https://doi.org/10.1126/sciadv.abb0451 chicago: Barzanjeh, Shabir, S. Pirandola, D Vitali, and Johannes M Fink. “Microwave Quantum Illumination Using a Digital Receiver.” Science Advances. AAAS, 2020. https://doi.org/10.1126/sciadv.abb0451. ieee: S. Barzanjeh, S. Pirandola, D. Vitali, and J. M. Fink, “Microwave quantum illumination using a digital receiver,” Science Advances, vol. 6, no. 19. AAAS, 2020. ista: Barzanjeh S, Pirandola S, Vitali D, Fink JM. 2020. Microwave quantum illumination using a digital receiver. Science Advances. 6(19), eabb0451. mla: Barzanjeh, Shabir, et al. “Microwave Quantum Illumination Using a Digital Receiver.” Science Advances, vol. 6, no. 19, eabb0451, AAAS, 2020, doi:10.1126/sciadv.abb0451. short: S. Barzanjeh, S. Pirandola, D. Vitali, J.M. Fink, Science Advances 6 (2020). date_created: 2020-05-31T22:00:49Z date_published: 2020-05-06T00:00:00Z date_updated: 2023-08-24T11:10:49Z day: '06' ddc: - '530' department: - _id: JoFi doi: 10.1126/sciadv.abb0451 ec_funded: 1 external_id: arxiv: - '1908.03058' isi: - '000531171100045' file: - access_level: open_access checksum: 16fa61cc1951b444ee74c07188cda9da content_type: application/pdf creator: dernst date_created: 2020-06-02T09:18:36Z date_updated: 2020-07-14T12:48:05Z file_id: '7913' file_name: 2020_ScienceAdvances_Barzanjeh.pdf file_size: 795822 relation: main_file file_date_updated: 2020-07-14T12:48:05Z has_accepted_license: '1' intvolume: ' 6' isi: 1 issue: '19' language: - iso: eng month: '05' oa: 1 oa_version: Published Version project: - _id: 26336814-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '758053' name: A Fiber Optic Transceiver for Superconducting Qubits - _id: 237CBA6C-32DE-11EA-91FC-C7463DDC885E call_identifier: H2020 grant_number: '862644' name: Quantum readout techniques and technologies - _id: 258047B6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '707438' name: 'Microwave-to-Optical Quantum Link: Quantum Teleportation and Quantum Illumination with cavity Optomechanics SUPEREOM' - _id: 257EB838-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '732894' name: Hybrid Optomechanical Technologies - _id: 26927A52-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: F07105 name: Integrating superconducting quantum circuits publication: Science Advances publication_identifier: eissn: - '23752548' publication_status: published publisher: AAAS quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/scientists-demonstrate-quantum-radar-prototype/ record: - id: '9001' relation: later_version status: public scopus_import: '1' status: public title: Microwave quantum illumination using a digital receiver tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 6 year: '2020' ... --- _id: '9001' abstract: - lang: eng text: Quantum illumination is a sensing technique that employs entangled signal-idler beams to improve the detection efficiency of low-reflectivity objects in environments with large thermal noise. The advantage over classical strategies is evident at low signal brightness, a feature which could make the protocol an ideal prototype for non-invasive scanning or low-power short-range radar. Here we experimentally investigate the concept of quantum illumination at microwave frequencies, by generating entangled fields using a Josephson parametric converter which are then amplified to illuminate a room-temperature object at a distance of 1 meter. Starting from experimental data, we simulate the case of perfect idler photon number detection, which results in a quantum advantage compared to the relative classical benchmark. Our results highlight the opportunities and challenges on the way towards a first room-temperature application of microwave quantum circuits. acknowledgement: "This work was supported by the Institute of Science and Technology Austria (IST Austria), the European Research Council under grant agreement number 758053 (ERC StG QUNNECT) and the EU’s Horizon 2020 research and innovation programme under grant agreement number 862644 (FET Open QUARTET). S.B. acknowledges support from the Marie Skłodowska Curie\r\nfellowship number 707438 (MSC-IF SUPEREOM), DV acknowledge support from EU’s Horizon 2020 research and innovation programme under grant agreement number 732894 (FET Proactive HOT) and the Project QuaSeRT funded by the QuantERA ERANET Cofund in Quantum Technologies, and J.M.F from the Austrian Science Fund (FWF) through BeyondC (F71), a NOMIS foundation research grant, and the EU’s Horizon 2020 research and\r\ninnovation programme under grant agreement number 732894 (FET Proactive\r\nHOT)." article_number: '9266397' article_processing_charge: No author: - first_name: Shabir full_name: Barzanjeh, Shabir id: 2D25E1F6-F248-11E8-B48F-1D18A9856A87 last_name: Barzanjeh orcid: 0000-0003-0415-1423 - first_name: Stefano full_name: Pirandola, Stefano last_name: Pirandola - first_name: David full_name: Vitali, David last_name: Vitali - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X citation: ama: 'Barzanjeh S, Pirandola S, Vitali D, Fink JM. Microwave quantum illumination with a digital phase-conjugated receiver. In: IEEE National Radar Conference - Proceedings. Vol 2020. IEEE; 2020. doi:10.1109/RadarConf2043947.2020.9266397' apa: 'Barzanjeh, S., Pirandola, S., Vitali, D., & Fink, J. M. (2020). Microwave quantum illumination with a digital phase-conjugated receiver. In IEEE National Radar Conference - Proceedings (Vol. 2020). Florence, Italy: IEEE. https://doi.org/10.1109/RadarConf2043947.2020.9266397' chicago: Barzanjeh, Shabir, Stefano Pirandola, David Vitali, and Johannes M Fink. “Microwave Quantum Illumination with a Digital Phase-Conjugated Receiver.” In IEEE National Radar Conference - Proceedings, Vol. 2020. IEEE, 2020. https://doi.org/10.1109/RadarConf2043947.2020.9266397. ieee: S. Barzanjeh, S. Pirandola, D. Vitali, and J. M. Fink, “Microwave quantum illumination with a digital phase-conjugated receiver,” in IEEE National Radar Conference - Proceedings, Florence, Italy, 2020, vol. 2020, no. 9. ista: 'Barzanjeh S, Pirandola S, Vitali D, Fink JM. 2020. Microwave quantum illumination with a digital phase-conjugated receiver. IEEE National Radar Conference - Proceedings. RadarConf: National Conference on Radar vol. 2020, 9266397.' mla: Barzanjeh, Shabir, et al. “Microwave Quantum Illumination with a Digital Phase-Conjugated Receiver.” IEEE National Radar Conference - Proceedings, vol. 2020, no. 9, 9266397, IEEE, 2020, doi:10.1109/RadarConf2043947.2020.9266397. short: S. Barzanjeh, S. Pirandola, D. Vitali, J.M. Fink, in:, IEEE National Radar Conference - Proceedings, IEEE, 2020. conference: end_date: 2020-09-25 location: Florence, Italy name: 'RadarConf: National Conference on Radar' start_date: 2020-09-21 date_created: 2021-01-10T23:01:17Z date_published: 2020-09-21T00:00:00Z date_updated: 2023-08-24T11:10:49Z day: '21' department: - _id: JoFi doi: 10.1109/RadarConf2043947.2020.9266397 ec_funded: 1 external_id: arxiv: - '1908.03058' isi: - '000612224900089' intvolume: ' 2020' isi: 1 issue: '9' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1908.03058 month: '09' oa: 1 oa_version: Preprint project: - _id: 26336814-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '758053' name: A Fiber Optic Transceiver for Superconducting Qubits - _id: 237CBA6C-32DE-11EA-91FC-C7463DDC885E call_identifier: H2020 grant_number: '862644' name: Quantum readout techniques and technologies - _id: 258047B6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '707438' name: 'Microwave-to-Optical Quantum Link: Quantum Teleportation and Quantum Illumination with cavity Optomechanics SUPEREOM' - _id: 257EB838-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '732894' name: Hybrid Optomechanical Technologies publication: IEEE National Radar Conference - Proceedings publication_identifier: isbn: - '9781728189420' issn: - 1097-5659 publication_status: published publisher: IEEE quality_controlled: '1' related_material: record: - id: '7910' relation: earlier_version status: public scopus_import: '1' status: public title: Microwave quantum illumination with a digital phase-conjugated receiver type: conference user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 2020 year: '2020' ... --- _id: '9114' abstract: - lang: eng text: "Microwave photonics lends the advantages of fiber optics to electronic sensing and communication systems. In contrast to nonlinear optics, electro-optic devices so far require classical modulation fields whose variance is dominated by electronic or thermal noise rather than quantum fluctuations. Here we demonstrate bidirectional single-sideband conversion of X band microwave to C band telecom light with a microwave mode occupancy as low as 0.025 ± 0.005 and an added output noise of less than or equal to 0.074 photons. This is facilitated by radiative cooling and a triply resonant ultra-low-loss transducer operating at millikelvin temperatures. The high bandwidth of 10.7 MHz and total (internal) photon conversion\r\nefficiency of 0.03% (0.67%) combined with the extremely slow heating rate of 1.1 added output noise photons per second for the highest available pump power of 1.48 mW puts near-unity efficiency pulsed quantum transduction within reach. Together with the non-Gaussian resources of superconducting qubits this might provide the practical foundation to extend the range and scope of current quantum networks in analogy to electrical repeaters in classical fiber optic communication." acknowledged_ssus: - _id: M-Shop acknowledgement: "The authors acknowledge the support of T. Menner, A. Arslani, and T. Asenov from the Miba machine shop for machining the microwave cavity, and thank S. Barzanjeh, F. Sedlmeir, and C. Marquardt for fruitful discussions. This work is supported by IST Austria and the European Research Council under Grant No. 758053 (ERC StG QUNNECT). W.H. is the recipient of an ISTplus postdoctoral fellowship with funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie Grant No. 754411.\r\nG.A. is the recipient of a DOC fellowship of the Austrian Academy of Sciences at IST Austria. J.M.F. acknowledges support from the Austrian Science Fund (FWF) through BeyondC (F71) and the European Union’s Horizon 2020 research and innovation program under Grant No. 899354 (FET Open SuperQuLAN). H.G.L.S. acknowledges support from the Aotearoa/New Zealand’s MBIE Endeavour Smart Ideas Grant No UOOX1805." article_number: '020315' article_processing_charge: No article_type: original author: - first_name: William J full_name: Hease, William J id: 29705398-F248-11E8-B48F-1D18A9856A87 last_name: Hease orcid: 0000-0001-9868-2166 - first_name: Alfredo R full_name: Rueda Sanchez, Alfredo R id: 3B82B0F8-F248-11E8-B48F-1D18A9856A87 last_name: Rueda Sanchez orcid: 0000-0001-6249-5860 - first_name: Rishabh full_name: Sahu, Rishabh id: 47D26E34-F248-11E8-B48F-1D18A9856A87 last_name: Sahu orcid: 0000-0001-6264-2162 - first_name: Matthias full_name: Wulf, Matthias id: 45598606-F248-11E8-B48F-1D18A9856A87 last_name: Wulf orcid: 0000-0001-6613-1378 - first_name: Georg M full_name: Arnold, Georg M id: 3770C838-F248-11E8-B48F-1D18A9856A87 last_name: Arnold orcid: 0000-0003-1397-7876 - first_name: Harald G.L. full_name: Schwefel, Harald G.L. last_name: Schwefel - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X citation: ama: Hease WJ, Rueda Sanchez AR, Sahu R, et al. Bidirectional electro-optic wavelength conversion in the quantum ground state. PRX Quantum. 2020;1(2). doi:10.1103/prxquantum.1.020315 apa: Hease, W. J., Rueda Sanchez, A. R., Sahu, R., Wulf, M., Arnold, G. M., Schwefel, H. G. L., & Fink, J. M. (2020). Bidirectional electro-optic wavelength conversion in the quantum ground state. PRX Quantum. American Physical Society. https://doi.org/10.1103/prxquantum.1.020315 chicago: Hease, William J, Alfredo R Rueda Sanchez, Rishabh Sahu, Matthias Wulf, Georg M Arnold, Harald G.L. Schwefel, and Johannes M Fink. “Bidirectional Electro-Optic Wavelength Conversion in the Quantum Ground State.” PRX Quantum. American Physical Society, 2020. https://doi.org/10.1103/prxquantum.1.020315. ieee: W. J. Hease et al., “Bidirectional electro-optic wavelength conversion in the quantum ground state,” PRX Quantum, vol. 1, no. 2. American Physical Society, 2020. ista: Hease WJ, Rueda Sanchez AR, Sahu R, Wulf M, Arnold GM, Schwefel HGL, Fink JM. 2020. Bidirectional electro-optic wavelength conversion in the quantum ground state. PRX Quantum. 1(2), 020315. mla: Hease, William J., et al. “Bidirectional Electro-Optic Wavelength Conversion in the Quantum Ground State.” PRX Quantum, vol. 1, no. 2, 020315, American Physical Society, 2020, doi:10.1103/prxquantum.1.020315. short: W.J. Hease, A.R. Rueda Sanchez, R. Sahu, M. Wulf, G.M. Arnold, H.G.L. Schwefel, J.M. Fink, PRX Quantum 1 (2020). date_created: 2021-02-12T10:41:28Z date_published: 2020-11-23T00:00:00Z date_updated: 2023-08-24T11:16:36Z day: '23' ddc: - '530' department: - _id: JoFi doi: 10.1103/prxquantum.1.020315 ec_funded: 1 external_id: isi: - '000674680100001' file: - access_level: open_access checksum: b70b12ded6d7660d4c9037eb09bfed0c content_type: application/pdf creator: dernst date_created: 2021-02-12T11:16:16Z date_updated: 2021-02-12T11:16:16Z file_id: '9115' file_name: 2020_PRXQuantum_Hease.pdf file_size: 2146924 relation: main_file success: 1 file_date_updated: 2021-02-12T11:16:16Z has_accepted_license: '1' intvolume: ' 1' isi: 1 issue: '2' language: - iso: eng month: '11' oa: 1 oa_version: Published Version project: - _id: 26336814-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '758053' name: A Fiber Optic Transceiver for Superconducting Qubits - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships - _id: 9B868D20-BA93-11EA-9121-9846C619BF3A call_identifier: H2020 grant_number: '899354' name: Quantum Local Area Networks with Superconducting Qubits - _id: 26927A52-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: F07105 name: Integrating superconducting quantum circuits - _id: 2671EB66-B435-11E9-9278-68D0E5697425 name: Coherent on-chip conversion of superconducting qubit signals from microwaves to optical frequencies publication: PRX Quantum publication_identifier: issn: - 2691-3399 publication_status: published publisher: American Physical Society quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/how-to-transport-microwave-quantum-information-via-optical-fiber/ record: - id: '13071' relation: research_data status: public - id: '12900' relation: dissertation_contains status: public - id: '13175' relation: dissertation_contains status: public status: public title: Bidirectional electro-optic wavelength conversion in the quantum ground state tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 1 year: '2020' ... --- _id: '9194' abstract: - lang: eng text: Quantum transduction, the process of converting quantum signals from one form of energy to another, is an important area of quantum science and technology. The present perspective article reviews quantum transduction between microwave and optical photons, an area that has recently seen a lot of activity and progress because of its relevance for connecting superconducting quantum processors over long distances, among other applications. Our review covers the leading approaches to achieving such transduction, with an emphasis on those based on atomic ensembles, opto-electro-mechanics, and electro-optics. We briefly discuss relevant metrics from the point of view of different applications, as well as challenges for the future. acknowledgement: "During the writing of this article we became aware of another review of quantum transduction with somewhat different emphasis [99].\r\nWe would like to thank the participants of the transduction workshop at Caltech in September 2018 for helpful and stimulating discussions. We particularly thank John Bartholomew, Andrei Faraon, Johannes Fink, Jeff Holzgrafe, Linbo Shao, Marko Lončar, Daniel Oblak, and Oskar Painter.\r\nN L and N S acknowledge support from the Alliance for Quantum Technologies' (AQT) Intelligent Quantum Networks and Technologies (INQNET) research program and by DOE/HEP QuantISED program grant, QCCFP (Quantum Communication Channels for Fundamental Physics), award number DE-SC0019219. NS further acknowledges support by the Natural Sciences and Engineering Research Council of Canada (NSERC). SB acknowledges support from the Marie Skłodowska Curie fellowship number 707 438 (MSC-IF SUPEREOM). JPC acknowledges support from the Caltech PMA prize postdoctoral fellowship. MS acknowledges support from the ARL-CDQI and the National Science Foundation. CS acknowledges NSERC, Quantum Alberta, and the Alberta Major Innovation Fund." article_number: '020501' article_processing_charge: No article_type: review author: - first_name: Nikolai full_name: Lauk, Nikolai last_name: Lauk - first_name: Neil full_name: Sinclair, Neil last_name: Sinclair - first_name: Shabir full_name: Barzanjeh, Shabir id: 2D25E1F6-F248-11E8-B48F-1D18A9856A87 last_name: Barzanjeh orcid: 0000-0003-0415-1423 - first_name: Jacob P full_name: Covey, Jacob P last_name: Covey - first_name: Mark full_name: Saffman, Mark last_name: Saffman - first_name: Maria full_name: Spiropulu, Maria last_name: Spiropulu - first_name: Christoph full_name: Simon, Christoph last_name: Simon citation: ama: Lauk N, Sinclair N, Barzanjeh S, et al. Perspectives on quantum transduction. Quantum Science and Technology. 2020;5(2). doi:10.1088/2058-9565/ab788a apa: Lauk, N., Sinclair, N., Barzanjeh, S., Covey, J. P., Saffman, M., Spiropulu, M., & Simon, C. (2020). Perspectives on quantum transduction. Quantum Science and Technology. IOP Publishing. https://doi.org/10.1088/2058-9565/ab788a chicago: Lauk, Nikolai, Neil Sinclair, Shabir Barzanjeh, Jacob P Covey, Mark Saffman, Maria Spiropulu, and Christoph Simon. “Perspectives on Quantum Transduction.” Quantum Science and Technology. IOP Publishing, 2020. https://doi.org/10.1088/2058-9565/ab788a. ieee: N. Lauk et al., “Perspectives on quantum transduction,” Quantum Science and Technology, vol. 5, no. 2. IOP Publishing, 2020. ista: Lauk N, Sinclair N, Barzanjeh S, Covey JP, Saffman M, Spiropulu M, Simon C. 2020. Perspectives on quantum transduction. Quantum Science and Technology. 5(2), 020501. mla: Lauk, Nikolai, et al. “Perspectives on Quantum Transduction.” Quantum Science and Technology, vol. 5, no. 2, 020501, IOP Publishing, 2020, doi:10.1088/2058-9565/ab788a. short: N. Lauk, N. Sinclair, S. Barzanjeh, J.P. Covey, M. Saffman, M. Spiropulu, C. Simon, Quantum Science and Technology 5 (2020). date_created: 2021-02-25T08:32:29Z date_published: 2020-03-01T00:00:00Z date_updated: 2023-08-24T11:17:48Z day: '01' ddc: - '530' department: - _id: JoFi doi: 10.1088/2058-9565/ab788a ec_funded: 1 external_id: isi: - '000521449500001' file: - access_level: open_access checksum: a8562c42124a66b86836fe2489eb5f4f content_type: application/pdf creator: dernst date_created: 2021-03-02T09:47:13Z date_updated: 2021-03-02T09:47:13Z file_id: '9215' file_name: 2020_QuantumScience_Lauk.pdf file_size: 974399 relation: main_file success: 1 file_date_updated: 2021-03-02T09:47:13Z has_accepted_license: '1' intvolume: ' 5' isi: 1 issue: '2' language: - iso: eng month: '03' oa: 1 oa_version: Published Version project: - _id: 258047B6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '707438' name: 'Microwave-to-Optical Quantum Link: Quantum Teleportation and Quantum Illumination with cavity Optomechanics SUPEREOM' publication: Quantum Science and Technology publication_identifier: issn: - 2058-9565 publication_status: published publisher: IOP Publishing quality_controlled: '1' scopus_import: '1' status: public title: Perspectives on quantum transduction tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 5 year: '2020' ... --- _id: '13071' abstract: - lang: eng text: This dataset comprises all data shown in the plots of the main part of the submitted article "Bidirectional Electro-Optic Wavelength Conversion in the Quantum Ground State". Additional raw data are available from the corresponding author on reasonable request. article_processing_charge: No author: - first_name: William J full_name: Hease, William J id: 29705398-F248-11E8-B48F-1D18A9856A87 last_name: Hease orcid: 0000-0001-9868-2166 - first_name: Alfredo R full_name: Rueda Sanchez, Alfredo R id: 3B82B0F8-F248-11E8-B48F-1D18A9856A87 last_name: Rueda Sanchez orcid: 0000-0001-6249-5860 - first_name: Rishabh full_name: Sahu, Rishabh id: 47D26E34-F248-11E8-B48F-1D18A9856A87 last_name: Sahu orcid: 0000-0001-6264-2162 - first_name: Matthias full_name: Wulf, Matthias id: 45598606-F248-11E8-B48F-1D18A9856A87 last_name: Wulf orcid: 0000-0001-6613-1378 - first_name: Georg M full_name: Arnold, Georg M id: 3770C838-F248-11E8-B48F-1D18A9856A87 last_name: Arnold orcid: 0000-0003-1397-7876 - first_name: Harald full_name: Schwefel, Harald last_name: Schwefel - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X citation: ama: Hease WJ, Rueda Sanchez AR, Sahu R, et al. Bidirectional electro-optic wavelength conversion in the quantum ground state. 2020. doi:10.5281/ZENODO.4266025 apa: Hease, W. J., Rueda Sanchez, A. R., Sahu, R., Wulf, M., Arnold, G. M., Schwefel, H., & Fink, J. M. (2020). Bidirectional electro-optic wavelength conversion in the quantum ground state. Zenodo. https://doi.org/10.5281/ZENODO.4266025 chicago: Hease, William J, Alfredo R Rueda Sanchez, Rishabh Sahu, Matthias Wulf, Georg M Arnold, Harald Schwefel, and Johannes M Fink. “Bidirectional Electro-Optic Wavelength Conversion in the Quantum Ground State.” Zenodo, 2020. https://doi.org/10.5281/ZENODO.4266025. ieee: W. J. Hease et al., “Bidirectional electro-optic wavelength conversion in the quantum ground state.” Zenodo, 2020. ista: Hease WJ, Rueda Sanchez AR, Sahu R, Wulf M, Arnold GM, Schwefel H, Fink JM. 2020. Bidirectional electro-optic wavelength conversion in the quantum ground state, Zenodo, 10.5281/ZENODO.4266025. mla: Hease, William J., et al. Bidirectional Electro-Optic Wavelength Conversion in the Quantum Ground State. Zenodo, 2020, doi:10.5281/ZENODO.4266025. short: W.J. Hease, A.R. Rueda Sanchez, R. Sahu, M. Wulf, G.M. Arnold, H. Schwefel, J.M. Fink, (2020). date_created: 2023-05-23T16:44:11Z date_published: 2020-11-10T00:00:00Z date_updated: 2023-08-24T11:16:35Z day: '10' ddc: - '530' department: - _id: JoFi doi: 10.5281/ZENODO.4266025 main_file_link: - open_access: '1' url: https://doi.org/10.5281/zenodo.4266026 month: '11' oa: 1 oa_version: Published Version publisher: Zenodo related_material: record: - id: '9114' relation: used_in_publication status: public status: public title: Bidirectional electro-optic wavelength conversion in the quantum ground state tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: research_data_reference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ...