--- _id: '14821' alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Heloisa full_name: Chiossi, Heloisa id: 2BBA502C-F248-11E8-B48F-1D18A9856A87 last_name: Chiossi citation: ama: Chiossi HSC. Adaptive hierarchical representations in the hippocampus. 2024. doi:10.15479/at:ista:14821 apa: Chiossi, H. S. C. (2024). Adaptive hierarchical representations in the hippocampus. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:14821 chicago: Chiossi, Heloisa S. C. “Adaptive Hierarchical Representations in the Hippocampus.” Institute of Science and Technology Austria, 2024. https://doi.org/10.15479/at:ista:14821. ieee: H. S. C. Chiossi, “Adaptive hierarchical representations in the hippocampus,” Institute of Science and Technology Austria, 2024. ista: Chiossi HSC. 2024. Adaptive hierarchical representations in the hippocampus. Institute of Science and Technology Austria. mla: Chiossi, Heloisa S. C. Adaptive Hierarchical Representations in the Hippocampus. Institute of Science and Technology Austria, 2024, doi:10.15479/at:ista:14821. short: H.S.C. Chiossi, Adaptive Hierarchical Representations in the Hippocampus, Institute of Science and Technology Austria, 2024. date_created: 2024-01-16T14:25:21Z date_published: 2024-01-19T00:00:00Z date_updated: 2024-02-01T09:50:29Z day: '19' ddc: - '570' degree_awarded: PhD department: - _id: GradSch - _id: JoCs doi: 10.15479/at:ista:14821 ec_funded: 1 file: - access_level: closed checksum: d3fa3de1abd5af5204c13e9d55375615 content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: hchiossi date_created: 2024-01-19T11:04:05Z date_updated: 2024-01-19T11:04:05Z file_id: '14838' file_name: PhD_Thesis_190124.docx file_size: 8656268 relation: source_file - access_level: closed checksum: 13adc8dcfb5b6b18107f89f0a98fa8bd content_type: application/pdf creator: hchiossi date_created: 2024-01-19T11:03:59Z date_updated: 2024-01-19T11:03:59Z embargo: 2025-01-19 embargo_to: open_access file_id: '14839' file_name: PhD_Thesis_190124.pdf file_size: 6567275 relation: main_file file_date_updated: 2024-01-19T11:04:05Z has_accepted_license: '1' language: - iso: eng month: '01' oa_version: Published Version page: '89' project: - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication_identifier: issn: - 2663 - 337X publication_status: published publisher: Institute of Science and Technology Austria status: public supervisor: - first_name: Jozsef L full_name: Csicsvari, Jozsef L id: 3FA14672-F248-11E8-B48F-1D18A9856A87 last_name: Csicsvari orcid: 0000-0002-5193-4036 title: Adaptive hierarchical representations in the hippocampus type: dissertation user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2024' ... --- _id: '12862' abstract: - lang: eng text: Despite the considerable progress of in vivo neural recording techniques, inferring the biophysical mechanisms underlying large scale coordination of brain activity from neural data remains challenging. One obstacle is the difficulty to link high dimensional functional connectivity measures to mechanistic models of network activity. We address this issue by investigating spike-field coupling (SFC) measurements, which quantify the synchronization between, on the one hand, the action potentials produced by neurons, and on the other hand mesoscopic “field” signals, reflecting subthreshold activities at possibly multiple recording sites. As the number of recording sites gets large, the amount of pairwise SFC measurements becomes overwhelmingly challenging to interpret. We develop Generalized Phase Locking Analysis (GPLA) as an interpretable dimensionality reduction of this multivariate SFC. GPLA describes the dominant coupling between field activity and neural ensembles across space and frequencies. We show that GPLA features are biophysically interpretable when used in conjunction with appropriate network models, such that we can identify the influence of underlying circuit properties on these features. We demonstrate the statistical benefits and interpretability of this approach in various computational models and Utah array recordings. The results suggest that GPLA, used jointly with biophysical modeling, can help uncover the contribution of recurrent microcircuits to the spatio-temporal dynamics observed in multi-channel experimental recordings. acknowledgement: "We thank Britni Crocker for help with preprocessing of the data and spike sorting; Joachim Werner and Michael Schnabel for their excellent IT support; Andreas Tolias for help with the initial implantation’s of the Utah arrays.\r\nAll authors were supported by the Max Planck Society. M.B. was supported by the German\r\nFederal Ministry of Education and Research (BMBF) through the funding scheme received by\r\nthe Tübingen AI Center, FKZ: 01IS18039B. N.K.L. and V.K. acknowledge the support from the\r\nShanghai Municipal Science and Technology Major Project (Grant No. 2019SHZDZX02). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. " article_number: e1010983 article_processing_charge: No article_type: original author: - first_name: Shervin full_name: Safavi, Shervin last_name: Safavi - first_name: Theofanis I. full_name: Panagiotaropoulos, Theofanis I. last_name: Panagiotaropoulos - first_name: Vishal full_name: Kapoor, Vishal last_name: Kapoor - first_name: Juan F full_name: Ramirez Villegas, Juan F id: 44B06F76-F248-11E8-B48F-1D18A9856A87 last_name: Ramirez Villegas - first_name: Nikos K. full_name: Logothetis, Nikos K. last_name: Logothetis - first_name: Michel full_name: Besserve, Michel last_name: Besserve citation: ama: Safavi S, Panagiotaropoulos TI, Kapoor V, Ramirez Villegas JF, Logothetis NK, Besserve M. Uncovering the organization of neural circuits with Generalized Phase Locking Analysis. PLoS Computational Biology. 2023;19(4). doi:10.1371/journal.pcbi.1010983 apa: Safavi, S., Panagiotaropoulos, T. I., Kapoor, V., Ramirez Villegas, J. F., Logothetis, N. K., & Besserve, M. (2023). Uncovering the organization of neural circuits with Generalized Phase Locking Analysis. PLoS Computational Biology. Public Library of Science. https://doi.org/10.1371/journal.pcbi.1010983 chicago: Safavi, Shervin, Theofanis I. Panagiotaropoulos, Vishal Kapoor, Juan F Ramirez Villegas, Nikos K. Logothetis, and Michel Besserve. “Uncovering the Organization of Neural Circuits with Generalized Phase Locking Analysis.” PLoS Computational Biology. Public Library of Science, 2023. https://doi.org/10.1371/journal.pcbi.1010983. ieee: S. Safavi, T. I. Panagiotaropoulos, V. Kapoor, J. F. Ramirez Villegas, N. K. Logothetis, and M. Besserve, “Uncovering the organization of neural circuits with Generalized Phase Locking Analysis,” PLoS Computational Biology, vol. 19, no. 4. Public Library of Science, 2023. ista: Safavi S, Panagiotaropoulos TI, Kapoor V, Ramirez Villegas JF, Logothetis NK, Besserve M. 2023. Uncovering the organization of neural circuits with Generalized Phase Locking Analysis. PLoS Computational Biology. 19(4), e1010983. mla: Safavi, Shervin, et al. “Uncovering the Organization of Neural Circuits with Generalized Phase Locking Analysis.” PLoS Computational Biology, vol. 19, no. 4, e1010983, Public Library of Science, 2023, doi:10.1371/journal.pcbi.1010983. short: S. Safavi, T.I. Panagiotaropoulos, V. Kapoor, J.F. Ramirez Villegas, N.K. Logothetis, M. Besserve, PLoS Computational Biology 19 (2023). date_created: 2023-04-23T22:01:03Z date_published: 2023-04-01T00:00:00Z date_updated: 2023-08-01T14:15:16Z day: '01' ddc: - '570' department: - _id: JoCs doi: 10.1371/journal.pcbi.1010983 external_id: isi: - '000962668700002' file: - access_level: open_access checksum: edeb9d09f3e41ba7c0251308b9e372e7 content_type: application/pdf creator: dernst date_created: 2023-04-25T08:59:18Z date_updated: 2023-04-25T08:59:18Z file_id: '12867' file_name: 2023_PLoSCompBio_Safavi.pdf file_size: 4737671 relation: main_file success: 1 file_date_updated: 2023-04-25T08:59:18Z has_accepted_license: '1' intvolume: ' 19' isi: 1 issue: '4' language: - iso: eng license: https://creativecommons.org/licenses/by/4.0/ month: '04' oa: 1 oa_version: Published Version publication: PLoS Computational Biology publication_identifier: eissn: - 1553-7358 publication_status: published publisher: Public Library of Science quality_controlled: '1' related_material: link: - relation: software url: https://github.com/shervinsafavi/gpla.git scopus_import: '1' status: public title: Uncovering the organization of neural circuits with Generalized Phase Locking Analysis tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 19 year: '2023' ... --- _id: '14314' abstract: - lang: eng text: The execution of cognitive functions requires coordinated circuit activity across different brain areas that involves the associated firing of neuronal assemblies. Here, we tested the circuit mechanism behind assembly interactions between the hippocampus and the medial prefrontal cortex (mPFC) of adult rats by recording neuronal populations during a rule-switching task. We identified functionally coupled CA1-mPFC cells that synchronized their activity beyond that expected from common spatial coding or oscillatory firing. When such cell pairs fired together, the mPFC cell strongly phase locked to CA1 theta oscillations and maintained consistent theta firing phases, independent of the theta timing of their CA1 counterpart. These functionally connected CA1-mPFC cells formed interconnected assemblies. While firing together with their CA1 assembly partners, mPFC cells fired along specific theta sequences. Our results suggest that upregulated theta oscillatory firing of mPFC cells can signal transient interactions with specific CA1 assemblies, thus enabling distributed computations. acknowledgement: We thank A. Cumpelik, H. Chiossi, and L. Bollman for comments on an earlier version of this manuscript. This work was funded by EU-FP7 MC-ITN IN-SENS (grant 607616). article_number: '113015' article_processing_charge: Yes article_type: original author: - first_name: Michele full_name: Nardin, Michele id: 30BD0376-F248-11E8-B48F-1D18A9856A87 last_name: Nardin orcid: 0000-0001-8849-6570 - first_name: Karola full_name: Käfer, Karola id: 2DAA49AA-F248-11E8-B48F-1D18A9856A87 last_name: Käfer - first_name: Federico full_name: Stella, Federico id: 39AF1E74-F248-11E8-B48F-1D18A9856A87 last_name: Stella orcid: 0000-0001-9439-3148 - first_name: Jozsef L full_name: Csicsvari, Jozsef L id: 3FA14672-F248-11E8-B48F-1D18A9856A87 last_name: Csicsvari orcid: 0000-0002-5193-4036 citation: ama: Nardin M, Käfer K, Stella F, Csicsvari JL. Theta oscillations as a substrate for medial prefrontal-hippocampal assembly interactions. Cell Reports. 2023;42(9). doi:10.1016/j.celrep.2023.113015 apa: Nardin, M., Käfer, K., Stella, F., & Csicsvari, J. L. (2023). Theta oscillations as a substrate for medial prefrontal-hippocampal assembly interactions. Cell Reports. Elsevier. https://doi.org/10.1016/j.celrep.2023.113015 chicago: Nardin, Michele, Karola Käfer, Federico Stella, and Jozsef L Csicsvari. “Theta Oscillations as a Substrate for Medial Prefrontal-Hippocampal Assembly Interactions.” Cell Reports. Elsevier, 2023. https://doi.org/10.1016/j.celrep.2023.113015. ieee: M. Nardin, K. Käfer, F. Stella, and J. L. Csicsvari, “Theta oscillations as a substrate for medial prefrontal-hippocampal assembly interactions,” Cell Reports, vol. 42, no. 9. Elsevier, 2023. ista: Nardin M, Käfer K, Stella F, Csicsvari JL. 2023. Theta oscillations as a substrate for medial prefrontal-hippocampal assembly interactions. Cell Reports. 42(9), 113015. mla: Nardin, Michele, et al. “Theta Oscillations as a Substrate for Medial Prefrontal-Hippocampal Assembly Interactions.” Cell Reports, vol. 42, no. 9, 113015, Elsevier, 2023, doi:10.1016/j.celrep.2023.113015. short: M. Nardin, K. Käfer, F. Stella, J.L. Csicsvari, Cell Reports 42 (2023). date_created: 2023-09-10T22:01:11Z date_published: 2023-09-26T00:00:00Z date_updated: 2023-09-15T07:14:12Z day: '26' ddc: - '570' department: - _id: JoCs doi: 10.1016/j.celrep.2023.113015 ec_funded: 1 external_id: pmid: - '37632747' file: - access_level: open_access checksum: ca77a304fb813c292550b8604b0fb41d content_type: application/pdf creator: dernst date_created: 2023-09-15T07:12:46Z date_updated: 2023-09-15T07:12:46Z file_id: '14337' file_name: 2023_CellPress_Nardin.pdf file_size: 4879455 relation: main_file success: 1 file_date_updated: 2023-09-15T07:12:46Z has_accepted_license: '1' intvolume: ' 42' issue: '9' language: - iso: eng month: '09' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 257BBB4C-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '607616' name: Inter-and intracellular signalling in schizophrenia publication: Cell Reports publication_identifier: eissn: - 2211-1247 publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: Theta oscillations as a substrate for medial prefrontal-hippocampal assembly interactions tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 42 year: '2023' ... --- _id: '14656' abstract: - lang: eng text: Although much is known about how single neurons in the hippocampus represent an animal's position, how circuit interactions contribute to spatial coding is less well understood. Using a novel statistical estimator and theoretical modeling, both developed in the framework of maximum entropy models, we reveal highly structured CA1 cell-cell interactions in male rats during open field exploration. The statistics of these interactions depend on whether the animal is in a familiar or novel environment. In both conditions the circuit interactions optimize the encoding of spatial information, but for regimes that differ in the informativeness of their spatial inputs. This structure facilitates linear decodability, making the information easy to read out by downstream circuits. Overall, our findings suggest that the efficient coding hypothesis is not only applicable to individual neuron properties in the sensory periphery, but also to neural interactions in the central brain. acknowledgement: M.N. was supported by the European Union Horizon 2020 Grant 665385. J.C. was supported by the European Research Council Consolidator Grant 281511. G.T. was supported by the Austrian Science Fund (FWF) Grant P34015. C.S. was supported by an Institute of Science and Technology fellow award and by the National Science Foundation (NSF) Award No. 1922658. We thank Peter Baracskay, Karola Kaefer, and Hugo Malagon-Vina for the acquisition of the data. We also thank Federico Stella, Wiktor Młynarski, Dori Derdikman, Colin Bredenberg, Roman Huszar, Heloisa Chiossi, Lorenzo Posani, and Mohamady El-Gaby for comments on an earlier version of the manuscript. article_processing_charge: Yes (in subscription journal) article_type: original author: - first_name: Michele full_name: Nardin, Michele id: 30BD0376-F248-11E8-B48F-1D18A9856A87 last_name: Nardin orcid: 0000-0001-8849-6570 - first_name: Jozsef L full_name: Csicsvari, Jozsef L id: 3FA14672-F248-11E8-B48F-1D18A9856A87 last_name: Csicsvari orcid: 0000-0002-5193-4036 - first_name: Gašper full_name: Tkačik, Gašper id: 3D494DCA-F248-11E8-B48F-1D18A9856A87 last_name: Tkačik orcid: 0000-0002-6699-1455 - first_name: Cristina full_name: Savin, Cristina id: 3933349E-F248-11E8-B48F-1D18A9856A87 last_name: Savin citation: ama: Nardin M, Csicsvari JL, Tkačik G, Savin C. The structure of hippocampal CA1 interactions optimizes spatial coding across experience. The Journal of Neuroscience. 2023;43(48):8140-8156. doi:10.1523/JNEUROSCI.0194-23.2023 apa: Nardin, M., Csicsvari, J. L., Tkačik, G., & Savin, C. (2023). The structure of hippocampal CA1 interactions optimizes spatial coding across experience. The Journal of Neuroscience. Society of Neuroscience. https://doi.org/10.1523/JNEUROSCI.0194-23.2023 chicago: Nardin, Michele, Jozsef L Csicsvari, Gašper Tkačik, and Cristina Savin. “The Structure of Hippocampal CA1 Interactions Optimizes Spatial Coding across Experience.” The Journal of Neuroscience. Society of Neuroscience, 2023. https://doi.org/10.1523/JNEUROSCI.0194-23.2023. ieee: M. Nardin, J. L. Csicsvari, G. Tkačik, and C. Savin, “The structure of hippocampal CA1 interactions optimizes spatial coding across experience,” The Journal of Neuroscience, vol. 43, no. 48. Society of Neuroscience, pp. 8140–8156, 2023. ista: Nardin M, Csicsvari JL, Tkačik G, Savin C. 2023. The structure of hippocampal CA1 interactions optimizes spatial coding across experience. The Journal of Neuroscience. 43(48), 8140–8156. mla: Nardin, Michele, et al. “The Structure of Hippocampal CA1 Interactions Optimizes Spatial Coding across Experience.” The Journal of Neuroscience, vol. 43, no. 48, Society of Neuroscience, 2023, pp. 8140–56, doi:10.1523/JNEUROSCI.0194-23.2023. short: M. Nardin, J.L. Csicsvari, G. Tkačik, C. Savin, The Journal of Neuroscience 43 (2023) 8140–8156. date_created: 2023-12-10T23:00:58Z date_published: 2023-11-29T00:00:00Z date_updated: 2023-12-11T11:37:20Z day: '29' ddc: - '570' department: - _id: JoCs - _id: GaTk doi: 10.1523/JNEUROSCI.0194-23.2023 ec_funded: 1 external_id: pmid: - '37758476' file: - access_level: closed checksum: e2503c8f84be1050e28f64320f1d5bd2 content_type: application/pdf creator: dernst date_created: 2023-12-11T11:30:37Z date_updated: 2023-12-11T11:30:37Z embargo: 2024-06-01 embargo_to: open_access file_id: '14674' file_name: 2023_JourNeuroscience_Nardin.pdf file_size: 2280632 relation: main_file file_date_updated: 2023-12-11T11:30:37Z has_accepted_license: '1' intvolume: ' 43' issue: '48' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1523/JNEUROSCI.0194-23.2023 month: '11' oa: 1 oa_version: Published Version page: 8140-8156 pmid: 1 project: - _id: 257A4776-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '281511' name: Memory-related information processing in neuronal circuits of the hippocampus and entorhinal cortex - _id: 626c45b5-2b32-11ec-9570-e509828c1ba6 grant_number: P34015 name: Efficient coding with biophysical realism - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication: The Journal of Neuroscience publication_identifier: eissn: - 1529-2401 publication_status: published publisher: Society of Neuroscience quality_controlled: '1' scopus_import: '1' status: public title: The structure of hippocampal CA1 interactions optimizes spatial coding across experience tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 43 year: '2023' ... --- _id: '11951' abstract: - lang: eng text: The mammalian hippocampal formation (HF) plays a key role in several higher brain functions, such as spatial coding, learning and memory. Its simple circuit architecture is often viewed as a trisynaptic loop, processing input originating from the superficial layers of the entorhinal cortex (EC) and sending it back to its deeper layers. Here, we show that excitatory neurons in layer 6b of the mouse EC project to all sub-regions comprising the HF and receive input from the CA1, thalamus and claustrum. Furthermore, their output is characterized by unique slow-decaying excitatory postsynaptic currents capable of driving plateau-like potentials in their postsynaptic targets. Optogenetic inhibition of the EC-6b pathway affects spatial coding in CA1 pyramidal neurons, while cell ablation impairs not only acquisition of new spatial memories, but also degradation of previously acquired ones. Our results provide evidence of a functional role for cortical layer 6b neurons in the adult brain. acknowledged_ssus: - _id: Bio - _id: SSU acknowledgement: We thank F. Marr and A. Schlögl for technical assistance, E. Kralli-Beller for manuscript editing, as well as C. Sommer and the Imaging and Optics Facility of the Institute of Science and Technology Austria (ISTA) for image analysis scripts and microscopy support. We extend our gratitude to J. Wallenschus and D. Rangel Guerrero for technical assistance acquiring single-unit data and I. Gridchyn for help with single-unit clustering. Finally, we also thank B. Suter for discussions, A. Saunders, M. Jösch, and H. Monyer for critically reading earlier versions of the manuscript, C. Petersen for sharing clearing protocols, and the Scientific Service Units of ISTA for efficient support. This project was funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (ERC advanced grant No 692692 to P.J.) and the Fond zur Förderung der Wissenschaftlichen Forschung (Z 312-B27, Wittgenstein award for P.J. and I3600-B27 for J.G.D. and P.V.). article_number: '4826' article_processing_charge: No article_type: original author: - first_name: Yoav full_name: Ben Simon, Yoav id: 43DF3136-F248-11E8-B48F-1D18A9856A87 last_name: Ben Simon - first_name: Karola full_name: Käfer, Karola id: 2DAA49AA-F248-11E8-B48F-1D18A9856A87 last_name: Käfer - first_name: Philipp full_name: Velicky, Philipp id: 39BDC62C-F248-11E8-B48F-1D18A9856A87 last_name: Velicky orcid: 0000-0002-2340-7431 - first_name: Jozsef L full_name: Csicsvari, Jozsef L id: 3FA14672-F248-11E8-B48F-1D18A9856A87 last_name: Csicsvari orcid: 0000-0002-5193-4036 - first_name: Johann G full_name: Danzl, Johann G id: 42EFD3B6-F248-11E8-B48F-1D18A9856A87 last_name: Danzl orcid: 0000-0001-8559-3973 - first_name: Peter M full_name: Jonas, Peter M id: 353C1B58-F248-11E8-B48F-1D18A9856A87 last_name: Jonas orcid: 0000-0001-5001-4804 citation: ama: Ben Simon Y, Käfer K, Velicky P, Csicsvari JL, Danzl JG, Jonas PM. A direct excitatory projection from entorhinal layer 6b neurons to the hippocampus contributes to spatial coding and memory. Nature Communications. 2022;13. doi:10.1038/s41467-022-32559-8 apa: Ben Simon, Y., Käfer, K., Velicky, P., Csicsvari, J. L., Danzl, J. G., & Jonas, P. M. (2022). A direct excitatory projection from entorhinal layer 6b neurons to the hippocampus contributes to spatial coding and memory. Nature Communications. Springer Nature. https://doi.org/10.1038/s41467-022-32559-8 chicago: Ben Simon, Yoav, Karola Käfer, Philipp Velicky, Jozsef L Csicsvari, Johann G Danzl, and Peter M Jonas. “A Direct Excitatory Projection from Entorhinal Layer 6b Neurons to the Hippocampus Contributes to Spatial Coding and Memory.” Nature Communications. Springer Nature, 2022. https://doi.org/10.1038/s41467-022-32559-8. ieee: Y. Ben Simon, K. Käfer, P. Velicky, J. L. Csicsvari, J. G. Danzl, and P. M. Jonas, “A direct excitatory projection from entorhinal layer 6b neurons to the hippocampus contributes to spatial coding and memory,” Nature Communications, vol. 13. Springer Nature, 2022. ista: Ben Simon Y, Käfer K, Velicky P, Csicsvari JL, Danzl JG, Jonas PM. 2022. A direct excitatory projection from entorhinal layer 6b neurons to the hippocampus contributes to spatial coding and memory. Nature Communications. 13, 4826. mla: Ben Simon, Yoav, et al. “A Direct Excitatory Projection from Entorhinal Layer 6b Neurons to the Hippocampus Contributes to Spatial Coding and Memory.” Nature Communications, vol. 13, 4826, Springer Nature, 2022, doi:10.1038/s41467-022-32559-8. short: Y. Ben Simon, K. Käfer, P. Velicky, J.L. Csicsvari, J.G. Danzl, P.M. Jonas, Nature Communications 13 (2022). date_created: 2022-08-24T08:25:50Z date_published: 2022-08-16T00:00:00Z date_updated: 2023-08-03T13:01:19Z day: '16' ddc: - '570' department: - _id: JoCs - _id: PeJo - _id: JoDa doi: 10.1038/s41467-022-32559-8 ec_funded: 1 external_id: isi: - '000841396400008' file: - access_level: open_access checksum: 405936d9e4d33625d80c093c9713a91f content_type: application/pdf creator: dernst date_created: 2022-08-26T11:51:40Z date_updated: 2022-08-26T11:51:40Z file_id: '11990' file_name: 2022_NatureCommunications_BenSimon.pdf file_size: 5910357 relation: main_file success: 1 file_date_updated: 2022-08-26T11:51:40Z has_accepted_license: '1' intvolume: ' 13' isi: 1 keyword: - General Physics and Astronomy - General Biochemistry - Genetics and Molecular Biology - General Chemistry - Multidisciplinary language: - iso: eng month: '08' oa: 1 oa_version: Published Version project: - _id: 25B7EB9E-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '692692' name: Biophysics and circuit function of a giant cortical glumatergic synapse - _id: 265CB4D0-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I03600 name: Optical control of synaptic function via adhesion molecules - _id: 25C5A090-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z00312 name: The Wittgenstein Prize publication: Nature Communications publication_identifier: issn: - 2041-1723 publication_status: published publisher: Springer Nature quality_controlled: '1' status: public title: A direct excitatory projection from entorhinal layer 6b neurons to the hippocampus contributes to spatial coding and memory tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 13 year: '2022' ... --- _id: '12149' abstract: - lang: eng text: Editorial on the Research Topic acknowledgement: This work was supported by a DFG grant ZA990/1 to DZ. This work was supported by the MSCA EU proposal 841301 - DREAM, European Commission; Horizon 2020 - Research and Innovation Framework Programme to JFRV. article_number: '1028154' article_processing_charge: No article_type: letter_note author: - first_name: Giuditta full_name: Gambino, Giuditta last_name: Gambino - first_name: Rebecca full_name: Bhik-Ghanie, Rebecca last_name: Bhik-Ghanie - first_name: Giuseppe full_name: Giglia, Giuseppe last_name: Giglia - first_name: M. Victoria full_name: Puig, M. Victoria last_name: Puig - first_name: Juan F full_name: Ramirez Villegas, Juan F id: 44B06F76-F248-11E8-B48F-1D18A9856A87 last_name: Ramirez Villegas - first_name: Daniel full_name: Zaldivar, Daniel last_name: Zaldivar citation: ama: 'Gambino G, Bhik-Ghanie R, Giglia G, Puig MV, Ramirez Villegas JF, Zaldivar D. Editorial: Neuromodulatory ascending systems: Their influence at the microscopic and macroscopic levels. Frontiers in Neural Circuits. 2022;16. doi:10.3389/fncir.2022.1028154' apa: 'Gambino, G., Bhik-Ghanie, R., Giglia, G., Puig, M. V., Ramirez Villegas, J. F., & Zaldivar, D. (2022). Editorial: Neuromodulatory ascending systems: Their influence at the microscopic and macroscopic levels. Frontiers in Neural Circuits. Frontiers Media. https://doi.org/10.3389/fncir.2022.1028154' chicago: 'Gambino, Giuditta, Rebecca Bhik-Ghanie, Giuseppe Giglia, M. Victoria Puig, Juan F Ramirez Villegas, and Daniel Zaldivar. “Editorial: Neuromodulatory Ascending Systems: Their Influence at the Microscopic and Macroscopic Levels.” Frontiers in Neural Circuits. Frontiers Media, 2022. https://doi.org/10.3389/fncir.2022.1028154.' ieee: 'G. Gambino, R. Bhik-Ghanie, G. Giglia, M. V. Puig, J. F. Ramirez Villegas, and D. Zaldivar, “Editorial: Neuromodulatory ascending systems: Their influence at the microscopic and macroscopic levels,” Frontiers in Neural Circuits, vol. 16. Frontiers Media, 2022.' ista: 'Gambino G, Bhik-Ghanie R, Giglia G, Puig MV, Ramirez Villegas JF, Zaldivar D. 2022. Editorial: Neuromodulatory ascending systems: Their influence at the microscopic and macroscopic levels. Frontiers in Neural Circuits. 16, 1028154.' mla: 'Gambino, Giuditta, et al. “Editorial: Neuromodulatory Ascending Systems: Their Influence at the Microscopic and Macroscopic Levels.” Frontiers in Neural Circuits, vol. 16, 1028154, Frontiers Media, 2022, doi:10.3389/fncir.2022.1028154.' short: G. Gambino, R. Bhik-Ghanie, G. Giglia, M.V. Puig, J.F. Ramirez Villegas, D. Zaldivar, Frontiers in Neural Circuits 16 (2022). date_created: 2023-01-12T12:07:39Z date_published: 2022-10-26T00:00:00Z date_updated: 2023-08-04T09:01:06Z day: '26' ddc: - '570' department: - _id: JoCs doi: 10.3389/fncir.2022.1028154 ec_funded: 1 external_id: isi: - '000886671400001' file: - access_level: open_access checksum: 457aa00e1800847abb340853058531de content_type: application/pdf creator: dernst date_created: 2023-01-24T10:10:43Z date_updated: 2023-01-24T10:10:43Z file_id: '12357' file_name: 2022_FrontiersNeuralCircuits_Gambino.pdf file_size: 110031 relation: main_file success: 1 file_date_updated: 2023-01-24T10:10:43Z has_accepted_license: '1' intvolume: ' 16' isi: 1 keyword: - Cellular and Molecular Neuroscience - Cognitive Neuroscience - Sensory Systems - Neuroscience (miscellaneous) language: - iso: eng month: '10' oa: 1 oa_version: Published Version project: - _id: 26BAE2E4-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '841301' name: 'The Brainstem-Hippocampus Network Uncovered: Dynamics, Reactivation and Memory Consolidation' publication: Frontiers in Neural Circuits publication_identifier: issn: - 1662-5110 publication_status: published publisher: Frontiers Media quality_controlled: '1' scopus_import: '1' status: public title: 'Editorial: Neuromodulatory ascending systems: Their influence at the microscopic and macroscopic levels' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 16 year: '2022' ... --- _id: '11932' abstract: - lang: eng text: "The ability to form and retrieve memories is central to survival. In mammals, the hippocampus\r\nis a brain region essential to the acquisition and consolidation of new memories. It is also\r\ninvolved in keeping track of one’s position in space and aids navigation. Although this\r\nspace-memory has been a source of contradiction, evidence supports the view that the role of\r\nthe hippocampus in navigation is memory, thanks to the formation of cognitive maps. First\r\nintroduced by Tolman in 1948, cognitive maps are generally used to organize experiences in\r\nmemory; however, the detailed mechanisms by which these maps are formed and stored are not\r\nyet agreed upon. Some influential theories describe this process as involving three fundamental\r\nsteps: initial encoding by the hippocampus, interactions between the hippocampus and other\r\ncortical areas, and long-term extra-hippocampal consolidation. In this thesis, I will show how\r\nthe investigation of cognitive maps of space helped to shed light on each of these three memory\r\nprocesses.\r\nThe first study included in this thesis deals with the initial encoding of spatial memories in\r\nthe hippocampus. Much is known about encoding at the level of single cells, but less about\r\ntheir co-activity or joint contribution to the encoding of novel spatial information. I will\r\ndescribe the structure of an interaction network that allows for efficient encoding of noisy\r\nspatial information during the first exploration of a novel environment.\r\nThe second study describes the interactions between the hippocampus and the prefrontal\r\ncortex (PFC), two areas directly and indirectly connected. It is known that the PFC, in concert\r\nwith the hippocampus, is involved in various processes, including memory storage and spatial\r\nnavigation. Nonetheless, the detailed mechanisms by which PFC receives information from the\r\nhippocampus are not clear. I will show how a transient improvement in theta phase locking of\r\nPFC cells enables interactions of cell pairs across the two regions.\r\nThe third study describes the learning of behaviorally-relevant spatial locations in the hippocampus and the medial entorhinal cortex. I will show how the accumulation of firing around\r\ngoal locations, a correlate of learning, can shed light on the transition from short- to long-term\r\nspatial memories and the speed of consolidation in different brain areas.\r\nThe studies included in this thesis represent the main scientific contributions of my Ph.D. They\r\ninvolve statistical analyses and models of neural responses of cells in different brain areas of\r\nrats executing spatial tasks. I will conclude the thesis by discussing the impact of the findings\r\non principles of memory formation and retention, including the mechanisms, the speed, and\r\nthe duration of these processes." acknowledgement: I acknowledge the support from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie Grant Agreement No. 665385. alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Michele full_name: Nardin, Michele id: 30BD0376-F248-11E8-B48F-1D18A9856A87 last_name: Nardin orcid: 0000-0001-8849-6570 citation: ama: Nardin M. On the encoding, transfer, and consolidation of spatial memories. 2022. doi:10.15479/at:ista:11932 apa: Nardin, M. (2022). On the encoding, transfer, and consolidation of spatial memories. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:11932 chicago: Nardin, Michele. “On the Encoding, Transfer, and Consolidation of Spatial Memories.” Institute of Science and Technology Austria, 2022. https://doi.org/10.15479/at:ista:11932. ieee: M. Nardin, “On the encoding, transfer, and consolidation of spatial memories,” Institute of Science and Technology Austria, 2022. ista: Nardin M. 2022. On the encoding, transfer, and consolidation of spatial memories. Institute of Science and Technology Austria. mla: Nardin, Michele. On the Encoding, Transfer, and Consolidation of Spatial Memories. Institute of Science and Technology Austria, 2022, doi:10.15479/at:ista:11932. short: M. Nardin, On the Encoding, Transfer, and Consolidation of Spatial Memories, Institute of Science and Technology Austria, 2022. date_created: 2022-08-19T08:52:30Z date_published: 2022-08-19T00:00:00Z date_updated: 2023-09-05T12:02:14Z day: '19' ddc: - '573' degree_awarded: PhD department: - _id: GradSch - _id: JoCs doi: 10.15479/at:ista:11932 ec_funded: 1 file: - access_level: closed checksum: 2dbb70c74aaa3b64c1f463e943baf09c content_type: application/zip creator: mnardin date_created: 2022-08-19T16:31:34Z date_updated: 2023-06-20T22:30:04Z embargo_to: open_access file_id: '11935' file_name: Michele Nardin, Ph.D. Thesis - ISTA (1).zip file_size: 13515457 relation: source_file - access_level: open_access checksum: 0ec94035ea35a47a9f589ed168e60b48 content_type: application/pdf creator: mnardin date_created: 2022-08-22T09:43:50Z date_updated: 2023-06-20T22:30:04Z embargo: 2023-06-19 file_id: '11941' file_name: Michele_Nardin_Phd_Thesis_PDFA.pdf file_size: 9906458 relation: main_file file_date_updated: 2023-06-20T22:30:04Z has_accepted_license: '1' language: - iso: eng month: '08' oa: 1 oa_version: Published Version page: '136' project: - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '10077' relation: part_of_dissertation status: public - id: '6194' relation: part_of_dissertation status: public status: public supervisor: - first_name: Jozsef L full_name: Csicsvari, Jozsef L id: 3FA14672-F248-11E8-B48F-1D18A9856A87 last_name: Csicsvari orcid: 0000-0002-5193-4036 title: On the encoding, transfer, and consolidation of spatial memories type: dissertation user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2022' ... --- _id: '10614' abstract: - lang: eng text: 'The infiltration of immune cells into tissues underlies the establishment of tissue-resident macrophages and responses to infections and tumors. Yet the mechanisms immune cells utilize to negotiate tissue barriers in living organisms are not well understood, and a role for cortical actin has not been examined. Here, we find that the tissue invasion of Drosophila macrophages, also known as plasmatocytes or hemocytes, utilizes enhanced cortical F-actin levels stimulated by the Drosophila member of the fos proto oncogene transcription factor family (Dfos, Kayak). RNA sequencing analysis and live imaging show that Dfos enhances F-actin levels around the entire macrophage surface by increasing mRNA levels of the membrane spanning molecular scaffold tetraspanin TM4SF, and the actin cross-linking filamin Cheerio, which are themselves required for invasion. Both the filamin and the tetraspanin enhance the cortical activity of Rho1 and the formin Diaphanous and thus the assembly of cortical actin, which is a critical function since expressing a dominant active form of Diaphanous can rescue the Dfos macrophage invasion defect. In vivo imaging shows that Dfos enhances the efficiency of the initial phases of macrophage tissue entry. Genetic evidence argues that this Dfos-induced program in macrophages counteracts the constraint produced by the tension of surrounding tissues and buffers the properties of the macrophage nucleus from affecting tissue entry. We thus identify strengthening the cortical actin cytoskeleton through Dfos as a key process allowing efficient forward movement of an immune cell into surrounding tissues. ' acknowledged_ssus: - _id: LifeSc acknowledgement: 'We thank the following for their contributions: Plasmids were supplied by the Drosophila Genomics Resource Center (NIH 2P40OD010949-10A1); fly stocks were provided by K. Brueckner, B. Stramer, M. Uhlirova, O. Schuldiner, the Bloomington Drosophila Stock Center (NIH P40OD018537) and the Vienna Drosophila Resource Center, FlyBase for essential genomic information, and the BDGP in situ database for data. For antibodies, we thank the Developmental Studies Hybridoma Bank, which was created by the Eunice Kennedy Shriver National Institute of Child Health and Human Development of the NIH and is maintained at the University of Iowa, as well as J. Zeitlinger for her generous gift of Dfos antibody. We thank the Vienna BioCenter Core Facilities for RNA sequencing and analysis and the Life Scientific Service Units at IST Austria for technical support and assistance with microscopy and FACS analysis. We thank C. P. Heisenberg, P. Martin, M. Sixt, and Siekhaus group members for discussions and T. Hurd, A. Ratheesh, and P. Rangan for comments on the manuscript.' article_processing_charge: No article_type: original author: - first_name: Vera full_name: Belyaeva, Vera id: 47F080FE-F248-11E8-B48F-1D18A9856A87 last_name: Belyaeva - first_name: Stephanie full_name: Wachner, Stephanie id: 2A95E7B0-F248-11E8-B48F-1D18A9856A87 last_name: Wachner - first_name: Attila full_name: György, Attila id: 3BCEDBE0-F248-11E8-B48F-1D18A9856A87 last_name: György orcid: 0000-0002-1819-198X - first_name: Shamsi full_name: Emtenani, Shamsi id: 49D32318-F248-11E8-B48F-1D18A9856A87 last_name: Emtenani orcid: 0000-0001-6981-6938 - first_name: Igor full_name: Gridchyn, Igor id: 4B60654C-F248-11E8-B48F-1D18A9856A87 last_name: Gridchyn orcid: 0000-0002-1807-1929 - first_name: Maria full_name: Akhmanova, Maria id: 3425EC26-F248-11E8-B48F-1D18A9856A87 last_name: Akhmanova orcid: 0000-0003-1522-3162 - first_name: M full_name: Linder, M last_name: Linder - first_name: Marko full_name: Roblek, Marko id: 3047D808-F248-11E8-B48F-1D18A9856A87 last_name: Roblek orcid: 0000-0001-9588-1389 - first_name: M full_name: Sibilia, M last_name: Sibilia - first_name: Daria E full_name: Siekhaus, Daria E id: 3D224B9E-F248-11E8-B48F-1D18A9856A87 last_name: Siekhaus orcid: 0000-0001-8323-8353 citation: ama: Belyaeva V, Wachner S, György A, et al. Fos regulates macrophage infiltration against surrounding tissue resistance by a cortical actin-based mechanism in Drosophila. PLoS Biology. 2022;20(1):e3001494. doi:10.1371/journal.pbio.3001494 apa: Belyaeva, V., Wachner, S., György, A., Emtenani, S., Gridchyn, I., Akhmanova, M., … Siekhaus, D. E. (2022). Fos regulates macrophage infiltration against surrounding tissue resistance by a cortical actin-based mechanism in Drosophila. PLoS Biology. Public Library of Science. https://doi.org/10.1371/journal.pbio.3001494 chicago: Belyaeva, Vera, Stephanie Wachner, Attila György, Shamsi Emtenani, Igor Gridchyn, Maria Akhmanova, M Linder, Marko Roblek, M Sibilia, and Daria E Siekhaus. “Fos Regulates Macrophage Infiltration against Surrounding Tissue Resistance by a Cortical Actin-Based Mechanism in Drosophila.” PLoS Biology. Public Library of Science, 2022. https://doi.org/10.1371/journal.pbio.3001494. ieee: V. Belyaeva et al., “Fos regulates macrophage infiltration against surrounding tissue resistance by a cortical actin-based mechanism in Drosophila,” PLoS Biology, vol. 20, no. 1. Public Library of Science, p. e3001494, 2022. ista: Belyaeva V, Wachner S, György A, Emtenani S, Gridchyn I, Akhmanova M, Linder M, Roblek M, Sibilia M, Siekhaus DE. 2022. Fos regulates macrophage infiltration against surrounding tissue resistance by a cortical actin-based mechanism in Drosophila. PLoS Biology. 20(1), e3001494. mla: Belyaeva, Vera, et al. “Fos Regulates Macrophage Infiltration against Surrounding Tissue Resistance by a Cortical Actin-Based Mechanism in Drosophila.” PLoS Biology, vol. 20, no. 1, Public Library of Science, 2022, p. e3001494, doi:10.1371/journal.pbio.3001494. short: V. Belyaeva, S. Wachner, A. György, S. Emtenani, I. Gridchyn, M. Akhmanova, M. Linder, M. Roblek, M. Sibilia, D.E. Siekhaus, PLoS Biology 20 (2022) e3001494. date_created: 2022-01-12T10:18:17Z date_published: 2022-01-06T00:00:00Z date_updated: 2024-03-27T23:30:28Z day: '06' ddc: - '570' department: - _id: DaSi - _id: JoCs doi: 10.1371/journal.pbio.3001494 ec_funded: 1 external_id: isi: - '000971223700001' pmid: - '34990456' file: - access_level: open_access checksum: f454212a5522a7818ba4b2892315c478 content_type: application/pdf creator: cchlebak date_created: 2022-01-12T13:50:04Z date_updated: 2022-01-12T13:50:04Z file_id: '10615' file_name: 2022_PLOSBio_Belyaeva.pdf file_size: 5426932 relation: main_file success: 1 file_date_updated: 2022-01-12T13:50:04Z has_accepted_license: '1' intvolume: ' 20' isi: 1 issue: '1' language: - iso: eng month: '01' oa: 1 oa_version: Published Version page: e3001494 pmid: 1 project: - _id: 253B6E48-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P29638 name: Drosophila TNFa´s Funktion in Immunzellen - _id: 26199CA4-B435-11E9-9278-68D0E5697425 grant_number: '24800' name: Tissue barrier penetration is crucial for immunity and metastasis - _id: 2536F660-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '334077' name: Investigating the role of transporters in invasive migration through junctions publication: PLoS Biology publication_identifier: eissn: - 1545-7885 issn: - 1544-9173 publication_status: published publisher: Public Library of Science quality_controlled: '1' related_material: link: - relation: earlier_version url: https://www.biorxiv.org/content/10.1101/2020.09.18.301481 - description: News on the ISTA Website relation: press_release url: https://ista.ac.at/en/news/resisting-the-pressure/ record: - id: '8557' relation: earlier_version status: public - id: '11193' relation: dissertation_contains status: public scopus_import: '1' status: public title: Fos regulates macrophage infiltration against surrounding tissue resistance by a cortical actin-based mechanism in Drosophila tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 20 year: '2022' ... --- _id: '10080' abstract: - lang: eng text: Hippocampal and neocortical neural activity is modulated by the position of the individual in space. While hippocampal neurons provide the basis for a spatial map, prefrontal cortical neurons generalize over environmental features. Whether these generalized representations result from a bidirectional interaction with, or are mainly derived from hippocampal spatial representations is not known. By examining simultaneously recorded hippocampal and medial prefrontal neurons, we observed that prefrontal spatial representations show a delayed coherence with hippocampal ones. We also identified subpopulations of cells in the hippocampus and medial prefrontal cortex that formed functional cross-area couplings; these resembled the optimal connections predicted by a probabilistic model of spatial information transfer and generalization. Moreover, cross-area couplings were strongest and had the shortest delay preceding spatial decision-making. Our results suggest that generalized spatial coding in the medial prefrontal cortex is inherited from spatial representations in the hippocampus, and that the routing of information can change dynamically with behavioral demands. acknowledgement: We thank Federico Stella for invaluable suggestions and discussions. We thank Yosman BapatDhar and Andrea Cumpelik for comments, help and suggestions on the exposure of the text. We thank Predrag Živadinović and Juliana Couras for comments on the text and the figures. This work was supported by the EU-FP7 MC-ITN IN-SENS (grant 607616). article_processing_charge: No author: - first_name: Michele full_name: Nardin, Michele id: 30BD0376-F248-11E8-B48F-1D18A9856A87 last_name: Nardin orcid: 0000-0001-8849-6570 - first_name: Karola full_name: Käfer, Karola id: 2DAA49AA-F248-11E8-B48F-1D18A9856A87 last_name: Käfer - first_name: Jozsef L full_name: Csicsvari, Jozsef L id: 3FA14672-F248-11E8-B48F-1D18A9856A87 last_name: Csicsvari orcid: 0000-0002-5193-4036 citation: ama: Nardin M, Käfer K, Csicsvari JL. The generalized spatial representation in the prefrontal cortex is inherited from the hippocampus. bioRxiv. doi:10.1101/2021.09.30.462269 apa: Nardin, M., Käfer, K., & Csicsvari, J. L. (n.d.). The generalized spatial representation in the prefrontal cortex is inherited from the hippocampus. bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2021.09.30.462269 chicago: Nardin, Michele, Karola Käfer, and Jozsef L Csicsvari. “The Generalized Spatial Representation in the Prefrontal Cortex Is Inherited from the Hippocampus.” BioRxiv. Cold Spring Harbor Laboratory, n.d. https://doi.org/10.1101/2021.09.30.462269. ieee: M. Nardin, K. Käfer, and J. L. Csicsvari, “The generalized spatial representation in the prefrontal cortex is inherited from the hippocampus,” bioRxiv. Cold Spring Harbor Laboratory. ista: Nardin M, Käfer K, Csicsvari JL. The generalized spatial representation in the prefrontal cortex is inherited from the hippocampus. bioRxiv, 10.1101/2021.09.30.462269. mla: Nardin, Michele, et al. “The Generalized Spatial Representation in the Prefrontal Cortex Is Inherited from the Hippocampus.” BioRxiv, Cold Spring Harbor Laboratory, doi:10.1101/2021.09.30.462269. short: M. Nardin, K. Käfer, J.L. Csicsvari, BioRxiv (n.d.). date_created: 2021-10-04T06:28:32Z date_published: 2021-10-02T00:00:00Z date_updated: 2021-10-05T12:34:26Z day: '02' department: - _id: GradSch - _id: JoCs doi: 10.1101/2021.09.30.462269 ec_funded: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://www.biorxiv.org/content/10.1101/2021.09.30.462269 month: '10' oa: 1 oa_version: Preprint project: - _id: 257BBB4C-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '607616' name: Inter-and intracellular signalling in schizophrenia publication: bioRxiv publication_status: submitted publisher: Cold Spring Harbor Laboratory status: public title: The generalized spatial representation in the prefrontal cortex is inherited from the hippocampus type: preprint user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2021' ... --- _id: '10635' abstract: - lang: eng text: The brain efficiently performs nonlinear computations through its intricate networks of spiking neurons, but how this is done remains elusive. While nonlinear computations can be implemented successfully in spiking neural networks, this requires supervised training and the resulting connectivity can be hard to interpret. In contrast, the required connectivity for any computation in the form of a linear dynamical system can be directly derived and understood with the spike coding network (SCN) framework. These networks also have biologically realistic activity patterns and are highly robust to cell death. Here we extend the SCN framework to directly implement any polynomial dynamical system, without the need for training. This results in networks requiring a mix of synapse types (fast, slow, and multiplicative), which we term multiplicative spike coding networks (mSCNs). Using mSCNs, we demonstrate how to directly derive the required connectivity for several nonlinear dynamical systems. We also show how to carry out higher-order polynomials with coupled networks that use only pair-wise multiplicative synapses, and provide expected numbers of connections for each synapse type. Overall, our work demonstrates a novel method for implementing nonlinear computations in spiking neural networks, while keeping the attractive features of standard SCNs (robustness, realistic activity patterns, and interpretable connectivity). Finally, we discuss the biological plausibility of our approach, and how the high accuracy and robustness of the approach may be of interest for neuromorphic computing. acknowledgement: "A preprint version of this article has been peer-reviewed and recommended by Peer Community In Neuroscience (DOI link to the recommendation: https://doi.org/10.24072/pci.cneuro.100003).\r\nWe thank Christian Machens and Nuno Calaim for useful discussions on the project. This report\r\ncame out of a collaboration started at the CAJAL Advanced Neuroscience Training Programme in\r\nComputational Neuroscience in Lisbon, Portugal, during the 2019 summer. The authors would\r\nlike to thank the participants, TAs, lecturers, and organizers of the summer school. SWK was\r\nsupported by the Simons Collaboration on the Global Brain (543009). WFP was supported by\r\nFCT (032077). MN was supported by European Union Horizon 2020 (665385).\r\n" article_number: e68 article_processing_charge: No article_type: original author: - first_name: Michele full_name: Nardin, Michele id: 30BD0376-F248-11E8-B48F-1D18A9856A87 last_name: Nardin orcid: 0000-0001-8849-6570 - first_name: James W. full_name: Phillips, James W. last_name: Phillips - first_name: William F. full_name: Podlaski, William F. last_name: Podlaski - first_name: Sander W. full_name: Keemink, Sander W. last_name: Keemink citation: ama: Nardin M, Phillips JW, Podlaski WF, Keemink SW. Nonlinear computations in spiking neural networks through multiplicative synapses. Peer Community Journal. 2021;1. doi:10.24072/pcjournal.69 apa: Nardin, M., Phillips, J. W., Podlaski, W. F., & Keemink, S. W. (2021). Nonlinear computations in spiking neural networks through multiplicative synapses. Peer Community Journal. Centre Mersenne ; Peer Community In. https://doi.org/10.24072/pcjournal.69 chicago: Nardin, Michele, James W. Phillips, William F. Podlaski, and Sander W. Keemink. “Nonlinear Computations in Spiking Neural Networks through Multiplicative Synapses.” Peer Community Journal. Centre Mersenne ; Peer Community In, 2021. https://doi.org/10.24072/pcjournal.69. ieee: M. Nardin, J. W. Phillips, W. F. Podlaski, and S. W. Keemink, “Nonlinear computations in spiking neural networks through multiplicative synapses,” Peer Community Journal, vol. 1. Centre Mersenne ; Peer Community In, 2021. ista: Nardin M, Phillips JW, Podlaski WF, Keemink SW. 2021. Nonlinear computations in spiking neural networks through multiplicative synapses. Peer Community Journal. 1, e68. mla: Nardin, Michele, et al. “Nonlinear Computations in Spiking Neural Networks through Multiplicative Synapses.” Peer Community Journal, vol. 1, e68, Centre Mersenne ; Peer Community In, 2021, doi:10.24072/pcjournal.69. short: M. Nardin, J.W. Phillips, W.F. Podlaski, S.W. Keemink, Peer Community Journal 1 (2021). date_created: 2022-01-17T11:12:40Z date_published: 2021-12-15T00:00:00Z date_updated: 2022-01-17T13:30:01Z day: '15' ddc: - '519' department: - _id: GradSch - _id: JoCs doi: 10.24072/pcjournal.69 ec_funded: 1 external_id: arxiv: - '2009.03857' file: - access_level: open_access checksum: cd9af6b331918608f2e3d1c7940cbf4f content_type: application/pdf creator: mnardin date_created: 2022-01-17T11:15:26Z date_updated: 2022-01-17T11:15:26Z file_id: '10636' file_name: 10_24072_pcjournal_69.pdf file_size: 3311494 relation: main_file success: 1 file_date_updated: 2022-01-17T11:15:26Z has_accepted_license: '1' intvolume: ' 1' language: - iso: eng month: '12' oa: 1 oa_version: Published Version project: - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication: Peer Community Journal publication_identifier: eissn: - 2804-3871 publication_status: published publisher: Centre Mersenne ; Peer Community In quality_controlled: '1' status: public title: Nonlinear computations in spiking neural networks through multiplicative synapses tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 volume: 1 year: '2021' ... --- _id: '8818' abstract: - lang: eng text: The hippocampus has a major role in encoding and consolidating long-term memories, and undergoes plastic changes during sleep1. These changes require precise homeostatic control by subcortical neuromodulatory structures2. The underlying mechanisms of this phenomenon, however, remain unknown. Here, using multi-structure recordings in macaque monkeys, we show that the brainstem transiently modulates hippocampal network events through phasic pontine waves known as pontogeniculooccipital waves (PGO waves). Two physiologically distinct types of PGO wave appear to occur sequentially, selectively influencing high-frequency ripples and low-frequency theta events, respectively. The two types of PGO wave are associated with opposite hippocampal spike-field coupling, prompting periods of high neural synchrony of neural populations during periods of ripple and theta instances. The coupling between PGO waves and ripples, classically associated with distinct sleep stages, supports the notion that a global coordination mechanism of hippocampal sleep dynamics by cholinergic pontine transients may promote systems and synaptic memory consolidation as well as synaptic homeostasis. acknowledgement: We thank O. Eschenko and M. Constantinou for providing feedback on earlier versions of this work, and J. Werner and M. Schnabel for technical support during the development of this study. This research was supported by the Max Planck Society. article_processing_charge: No article_type: original author: - first_name: Juan F full_name: Ramirez Villegas, Juan F id: 44B06F76-F248-11E8-B48F-1D18A9856A87 last_name: Ramirez Villegas - first_name: Michel full_name: Besserve, Michel last_name: Besserve - first_name: Yusuke full_name: Murayama, Yusuke last_name: Murayama - first_name: Henry C. full_name: Evrard, Henry C. last_name: Evrard - first_name: Axel full_name: Oeltermann, Axel last_name: Oeltermann - first_name: Nikos K. full_name: Logothetis, Nikos K. last_name: Logothetis citation: ama: Ramirez Villegas JF, Besserve M, Murayama Y, Evrard HC, Oeltermann A, Logothetis NK. Coupling of hippocampal theta and ripples with pontogeniculooccipital waves. Nature. 2021;589(7840):96-102. doi:10.1038/s41586-020-2914-4 apa: Ramirez Villegas, J. F., Besserve, M., Murayama, Y., Evrard, H. C., Oeltermann, A., & Logothetis, N. K. (2021). Coupling of hippocampal theta and ripples with pontogeniculooccipital waves. Nature. Springer Nature. https://doi.org/10.1038/s41586-020-2914-4 chicago: Ramirez Villegas, Juan F, Michel Besserve, Yusuke Murayama, Henry C. Evrard, Axel Oeltermann, and Nikos K. Logothetis. “Coupling of Hippocampal Theta and Ripples with Pontogeniculooccipital Waves.” Nature. Springer Nature, 2021. https://doi.org/10.1038/s41586-020-2914-4. ieee: J. F. Ramirez Villegas, M. Besserve, Y. Murayama, H. C. Evrard, A. Oeltermann, and N. K. Logothetis, “Coupling of hippocampal theta and ripples with pontogeniculooccipital waves,” Nature, vol. 589, no. 7840. Springer Nature, pp. 96–102, 2021. ista: Ramirez Villegas JF, Besserve M, Murayama Y, Evrard HC, Oeltermann A, Logothetis NK. 2021. Coupling of hippocampal theta and ripples with pontogeniculooccipital waves. Nature. 589(7840), 96–102. mla: Ramirez Villegas, Juan F., et al. “Coupling of Hippocampal Theta and Ripples with Pontogeniculooccipital Waves.” Nature, vol. 589, no. 7840, Springer Nature, 2021, pp. 96–102, doi:10.1038/s41586-020-2914-4. short: J.F. Ramirez Villegas, M. Besserve, Y. Murayama, H.C. Evrard, A. Oeltermann, N.K. Logothetis, Nature 589 (2021) 96–102. date_created: 2020-11-29T23:01:19Z date_published: 2021-01-07T00:00:00Z date_updated: 2023-08-04T11:13:08Z day: '07' department: - _id: JoCs doi: 10.1038/s41586-020-2914-4 external_id: isi: - '000591047800005' pmid: - '33208951' intvolume: ' 589' isi: 1 issue: '7840' language: - iso: eng month: '01' oa_version: None page: 96-102 pmid: 1 publication: Nature publication_identifier: eissn: - '14764687' issn: - '00280836' publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: link: - relation: erratum url: https://doi.org/10.1038/s41586-020-03068-9 scopus_import: '1' status: public title: Coupling of hippocampal theta and ripples with pontogeniculooccipital waves type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 589 year: '2021' ... --- _id: '10077' abstract: - lang: eng text: Although much is known about how single neurons in the hippocampus represent an animal’s position, how cell-cell interactions contribute to spatial coding remains poorly understood. Using a novel statistical estimator and theoretical modeling, both developed in the framework of maximum entropy models, we reveal highly structured cell-to-cell interactions whose statistics depend on familiar vs. novel environment. In both conditions the circuit interactions optimize the encoding of spatial information, but for regimes that differ in the signal-to-noise ratio of their spatial inputs. Moreover, the topology of the interactions facilitates linear decodability, making the information easy to read out by downstream circuits. These findings suggest that the efficient coding hypothesis is not applicable only to individual neuron properties in the sensory periphery, but also to neural interactions in the central brain. acknowledgement: We thank Peter Baracskay, Karola Kaefer and Hugo Malagon-Vina for the acquisition of the data. We thank Federico Stella for comments on an earlier version of the manuscript. MN was supported by European Union Horizon 2020 grant 665385, JC was supported by European Research Council consolidator grant 281511, GT was supported by the Austrian Science Fund (FWF) grant P34015, CS was supported by an IST fellow grant, National Institute of Mental Health Award 1R01MH125571-01, by the National Science Foundation under NSF Award No. 1922658 and a Google faculty award. article_processing_charge: No author: - first_name: Michele full_name: Nardin, Michele id: 30BD0376-F248-11E8-B48F-1D18A9856A87 last_name: Nardin orcid: 0000-0001-8849-6570 - first_name: Jozsef L full_name: Csicsvari, Jozsef L id: 3FA14672-F248-11E8-B48F-1D18A9856A87 last_name: Csicsvari orcid: 0000-0002-5193-4036 - first_name: Gašper full_name: Tkačik, Gašper id: 3D494DCA-F248-11E8-B48F-1D18A9856A87 last_name: Tkačik orcid: 0000-0002-6699-1455 - first_name: Cristina full_name: Savin, Cristina id: 3933349E-F248-11E8-B48F-1D18A9856A87 last_name: Savin citation: ama: Nardin M, Csicsvari JL, Tkačik G, Savin C. The structure of hippocampal CA1 interactions optimizes spatial coding across experience. bioRxiv. doi:10.1101/2021.09.28.460602 apa: Nardin, M., Csicsvari, J. L., Tkačik, G., & Savin, C. (n.d.). The structure of hippocampal CA1 interactions optimizes spatial coding across experience. bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2021.09.28.460602 chicago: Nardin, Michele, Jozsef L Csicsvari, Gašper Tkačik, and Cristina Savin. “The Structure of Hippocampal CA1 Interactions Optimizes Spatial Coding across Experience.” BioRxiv. Cold Spring Harbor Laboratory, n.d. https://doi.org/10.1101/2021.09.28.460602. ieee: M. Nardin, J. L. Csicsvari, G. Tkačik, and C. Savin, “The structure of hippocampal CA1 interactions optimizes spatial coding across experience,” bioRxiv. Cold Spring Harbor Laboratory. ista: Nardin M, Csicsvari JL, Tkačik G, Savin C. The structure of hippocampal CA1 interactions optimizes spatial coding across experience. bioRxiv, 10.1101/2021.09.28.460602. mla: Nardin, Michele, et al. “The Structure of Hippocampal CA1 Interactions Optimizes Spatial Coding across Experience.” BioRxiv, Cold Spring Harbor Laboratory, doi:10.1101/2021.09.28.460602. short: M. Nardin, J.L. Csicsvari, G. Tkačik, C. Savin, BioRxiv (n.d.). date_created: 2021-10-04T06:23:34Z date_published: 2021-09-29T00:00:00Z date_updated: 2024-03-27T23:30:16Z day: '29' department: - _id: GradSch - _id: JoCs - _id: GaTk doi: 10.1101/2021.09.28.460602 ec_funded: 1 language: - iso: eng license: https://creativecommons.org/licenses/by-nc-nd/4.0/ main_file_link: - open_access: '1' url: https://www.biorxiv.org/content/10.1101/2021.09.28.460602 month: '09' oa: 1 oa_version: Preprint project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program - _id: 257A4776-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '281511' name: Memory-related information processing in neuronal circuits of the hippocampus and entorhinal cortex - _id: 626c45b5-2b32-11ec-9570-e509828c1ba6 grant_number: P34015 name: Efficient coding with biophysical realism publication: bioRxiv publication_status: submitted publisher: Cold Spring Harbor Laboratory related_material: record: - id: '11932' relation: dissertation_contains status: public status: public title: The structure of hippocampal CA1 interactions optimizes spatial coding across experience tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: preprint user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2021' ... --- _id: '6796' abstract: - lang: eng text: Nearby grid cells have been observed to express a remarkable degree of long-rangeorder, which is often idealized as extending potentially to infinity. Yet their strict peri-odic firing and ensemble coherence are theoretically possible only in flat environments, much unlike the burrows which rodents usually live in. Are the symmetrical, coherent grid maps inferred in the lab relevant to chart their way in their natural habitat? We consider spheres as simple models of curved environments and waiting for the appropriate experiments to be performed, we use our adaptation model to predict what grid maps would emerge in a network with the same type of recurrent connections, which on the plane produce coherence among the units. We find that on the sphere such connections distort the maps that single grid units would express on their own, and aggregate them into clusters. When remapping to a different spherical environment, units in each cluster maintain only partial coherence, similar to what is observed in disordered materials, such as spin glasses. article_processing_charge: No article_type: original author: - first_name: Federico full_name: Stella, Federico id: 39AF1E74-F248-11E8-B48F-1D18A9856A87 last_name: Stella orcid: 0000-0001-9439-3148 - first_name: Eugenio full_name: Urdapilleta, Eugenio last_name: Urdapilleta - first_name: Yifan full_name: Luo, Yifan last_name: Luo - first_name: Alessandro full_name: Treves, Alessandro last_name: Treves citation: ama: Stella F, Urdapilleta E, Luo Y, Treves A. Partial coherence and frustration in self-organizing spherical grids. Hippocampus. 2020;30(4):302-313. doi:10.1002/hipo.23144 apa: Stella, F., Urdapilleta, E., Luo, Y., & Treves, A. (2020). Partial coherence and frustration in self-organizing spherical grids. Hippocampus. Wiley. https://doi.org/10.1002/hipo.23144 chicago: Stella, Federico, Eugenio Urdapilleta, Yifan Luo, and Alessandro Treves. “Partial Coherence and Frustration in Self-Organizing Spherical Grids.” Hippocampus. Wiley, 2020. https://doi.org/10.1002/hipo.23144. ieee: F. Stella, E. Urdapilleta, Y. Luo, and A. Treves, “Partial coherence and frustration in self-organizing spherical grids,” Hippocampus, vol. 30, no. 4. Wiley, pp. 302–313, 2020. ista: Stella F, Urdapilleta E, Luo Y, Treves A. 2020. Partial coherence and frustration in self-organizing spherical grids. Hippocampus. 30(4), 302–313. mla: Stella, Federico, et al. “Partial Coherence and Frustration in Self-Organizing Spherical Grids.” Hippocampus, vol. 30, no. 4, Wiley, 2020, pp. 302–13, doi:10.1002/hipo.23144. short: F. Stella, E. Urdapilleta, Y. Luo, A. Treves, Hippocampus 30 (2020) 302–313. date_created: 2019-08-11T21:59:24Z date_published: 2020-04-01T00:00:00Z date_updated: 2023-08-17T13:53:14Z day: '01' ddc: - '570' department: - _id: JoCs doi: 10.1002/hipo.23144 external_id: isi: - '000477299600001' pmid: - '31339190' file: - access_level: open_access checksum: 7b54d22bfbfc0d1188a9ea24d985bfb2 content_type: application/pdf creator: dernst date_created: 2019-08-12T07:53:33Z date_updated: 2020-07-14T12:47:40Z file_id: '6800' file_name: 2019_Hippocampus_Stella.pdf file_size: 2370658 relation: main_file file_date_updated: 2020-07-14T12:47:40Z has_accepted_license: '1' intvolume: ' 30' isi: 1 issue: '4' language: - iso: eng month: '04' oa: 1 oa_version: Published Version page: 302-313 pmid: 1 publication: Hippocampus publication_identifier: eissn: - '10981063' issn: - '10509631' publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: Partial coherence and frustration in self-organizing spherical grids tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 30 year: '2020' ... --- _id: '7472' abstract: - lang: eng text: Temporally organized reactivation of experiences during awake immobility periods is thought to underlie cognitive processes like planning and evaluation. While replay of trajectories is well established for the hippocampus, it is unclear whether the medial prefrontal cortex (mPFC) can reactivate sequential behavioral experiences in the awake state to support task execution. We simultaneously recorded from hippocampal and mPFC principal neurons in rats performing a mPFC-dependent rule-switching task on a plus maze. We found that mPFC neuronal activity encoded relative positions between the start and goal. During awake immobility periods, the mPFC replayed temporally organized sequences of these generalized positions, resembling entire spatial trajectories. The occurrence of mPFC trajectory replay positively correlated with rule-switching performance. However, hippocampal and mPFC trajectory replay occurred independently, indicating different functions. These results demonstrate that the mPFC can replay ordered activity patterns representing generalized locations and suggest that mPFC replay might have a role in flexible behavior. acknowledged_ssus: - _id: M-Shop acknowledgement: We thank Todor Asenov and Thomas Menner from the Machine Shop for the drive design and production, Hugo Malagon-Vina for assistance in maze automatization, Jago Wallenschus for taking the images of the histology, and Federico Stella and Juan Felipe Ramirez-Villegas for comments on an earlier version of the manuscript. This work was supported by the EU-FP7 MC-ITN IN-SENS (grant 607616 ). article_processing_charge: No article_type: original author: - first_name: Karola full_name: Käfer, Karola id: 2DAA49AA-F248-11E8-B48F-1D18A9856A87 last_name: Käfer - first_name: Michele full_name: Nardin, Michele id: 30BD0376-F248-11E8-B48F-1D18A9856A87 last_name: Nardin orcid: 0000-0001-8849-6570 - first_name: Karel full_name: Blahna, Karel id: 3EA859AE-F248-11E8-B48F-1D18A9856A87 last_name: Blahna - first_name: Jozsef L full_name: Csicsvari, Jozsef L id: 3FA14672-F248-11E8-B48F-1D18A9856A87 last_name: Csicsvari orcid: 0000-0002-5193-4036 citation: ama: Käfer K, Nardin M, Blahna K, Csicsvari JL. Replay of behavioral sequences in the medial prefrontal cortex during rule switching. Neuron. 2020;106(1):P154-165.e6. doi:10.1016/j.neuron.2020.01.015 apa: Käfer, K., Nardin, M., Blahna, K., & Csicsvari, J. L. (2020). Replay of behavioral sequences in the medial prefrontal cortex during rule switching. Neuron. Elsevier. https://doi.org/10.1016/j.neuron.2020.01.015 chicago: Käfer, Karola, Michele Nardin, Karel Blahna, and Jozsef L Csicsvari. “Replay of Behavioral Sequences in the Medial Prefrontal Cortex during Rule Switching.” Neuron. Elsevier, 2020. https://doi.org/10.1016/j.neuron.2020.01.015. ieee: K. Käfer, M. Nardin, K. Blahna, and J. L. Csicsvari, “Replay of behavioral sequences in the medial prefrontal cortex during rule switching,” Neuron, vol. 106, no. 1. Elsevier, p. P154–165.e6, 2020. ista: Käfer K, Nardin M, Blahna K, Csicsvari JL. 2020. Replay of behavioral sequences in the medial prefrontal cortex during rule switching. Neuron. 106(1), P154–165.e6. mla: Käfer, Karola, et al. “Replay of Behavioral Sequences in the Medial Prefrontal Cortex during Rule Switching.” Neuron, vol. 106, no. 1, Elsevier, 2020, p. P154–165.e6, doi:10.1016/j.neuron.2020.01.015. short: K. Käfer, M. Nardin, K. Blahna, J.L. Csicsvari, Neuron 106 (2020) P154–165.e6. date_created: 2020-02-10T15:45:48Z date_published: 2020-04-08T00:00:00Z date_updated: 2023-08-17T14:38:02Z day: '08' department: - _id: JoCs doi: 10.1016/j.neuron.2020.01.015 ec_funded: 1 external_id: isi: - '000525319300016' pmid: - '32032512' intvolume: ' 106' isi: 1 issue: '1' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1016/j.neuron.2020.01.015 month: '04' oa: 1 oa_version: Published Version page: P154-165.e6 pmid: 1 project: - _id: 257BBB4C-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '607616' name: Inter-and intracellular signalling in schizophrenia publication: Neuron publication_identifier: issn: - 0896-6273 publication_status: published publisher: Elsevier quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/this-brain-area-helps-us-decide/ scopus_import: '1' status: public title: Replay of behavioral sequences in the medial prefrontal cortex during rule switching type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 106 year: '2020' ... --- _id: '7684' article_processing_charge: No article_type: original author: - first_name: Igor full_name: Gridchyn, Igor id: 4B60654C-F248-11E8-B48F-1D18A9856A87 last_name: Gridchyn orcid: 0000-0002-1807-1929 - first_name: Philipp full_name: Schönenberger, Philipp id: 3B9D816C-F248-11E8-B48F-1D18A9856A87 last_name: Schönenberger - first_name: Joseph full_name: O'Neill, Joseph id: 426376DC-F248-11E8-B48F-1D18A9856A87 last_name: O'Neill - first_name: Jozsef L full_name: Csicsvari, Jozsef L id: 3FA14672-F248-11E8-B48F-1D18A9856A87 last_name: Csicsvari orcid: 0000-0002-5193-4036 citation: ama: Gridchyn I, Schönenberger P, O’Neill J, Csicsvari JL. Assembly-specific disruption of hippocampal replay leads to selective memory deficit. Neuron. 2020;106(2):291-300.e6. doi:10.1016/j.neuron.2020.01.021 apa: Gridchyn, I., Schönenberger, P., O’Neill, J., & Csicsvari, J. L. (2020). Assembly-specific disruption of hippocampal replay leads to selective memory deficit. Neuron. Elsevier. https://doi.org/10.1016/j.neuron.2020.01.021 chicago: Gridchyn, Igor, Philipp Schönenberger, Joseph O’Neill, and Jozsef L Csicsvari. “Assembly-Specific Disruption of Hippocampal Replay Leads to Selective Memory Deficit.” Neuron. Elsevier, 2020. https://doi.org/10.1016/j.neuron.2020.01.021. ieee: I. Gridchyn, P. Schönenberger, J. O’Neill, and J. L. Csicsvari, “Assembly-specific disruption of hippocampal replay leads to selective memory deficit,” Neuron, vol. 106, no. 2. Elsevier, p. 291–300.e6, 2020. ista: Gridchyn I, Schönenberger P, O’Neill J, Csicsvari JL. 2020. Assembly-specific disruption of hippocampal replay leads to selective memory deficit. Neuron. 106(2), 291–300.e6. mla: Gridchyn, Igor, et al. “Assembly-Specific Disruption of Hippocampal Replay Leads to Selective Memory Deficit.” Neuron, vol. 106, no. 2, Elsevier, 2020, p. 291–300.e6, doi:10.1016/j.neuron.2020.01.021. short: I. Gridchyn, P. Schönenberger, J. O’Neill, J.L. Csicsvari, Neuron 106 (2020) 291–300.e6. date_created: 2020-04-26T22:00:45Z date_published: 2020-04-22T00:00:00Z date_updated: 2023-08-21T06:15:31Z day: '22' department: - _id: JoCs doi: 10.1016/j.neuron.2020.01.021 ec_funded: 1 external_id: isi: - '000528268200013' pmid: - '32070475' intvolume: ' 106' isi: 1 issue: '2' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1016/j.neuron.2020.01.021 month: '04' oa: 1 oa_version: Published Version page: 291-300.e6 pmid: 1 project: - _id: 257A4776-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '281511' name: Memory-related information processing in neuronal circuits of the hippocampus and entorhinal cortex publication: Neuron publication_identifier: eissn: - '10974199' issn: - '08966273' publication_status: published publisher: Elsevier quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/librarian-of-memory/ scopus_import: '1' status: public title: Assembly-specific disruption of hippocampal replay leads to selective memory deficit type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 106 year: '2020' ... --- _id: '8740' abstract: - lang: eng text: In vitro work revealed that excitatory synaptic inputs to hippocampal inhibitory interneurons could undergo Hebbian, associative, or non-associative plasticity. Both behavioral and learning-dependent reorganization of these connections has also been demonstrated by measuring spike transmission probabilities in pyramidal cell-interneuron spike cross-correlations that indicate monosynaptic connections. Here we investigated the activity-dependent modification of these connections during exploratory behavior in rats by optogenetically inhibiting pyramidal cell and interneuron subpopulations. Light application and associated firing alteration of pyramidal and interneuron populations led to lasting changes in pyramidal-interneuron connection weights as indicated by spike transmission changes. Spike transmission alterations were predicted by the light-mediated changes in the number of pre- and postsynaptic spike pairing events and by firing rate changes of interneurons but not pyramidal cells. This work demonstrates the presence of activity-dependent associative and non-associative reorganization of pyramidal-interneuron connections triggered by the optogenetic modification of the firing rate and spike synchrony of cells. acknowledgement: We thank Michele Nardin and Federico Stella for comments on an earlier version of the manuscript. K Deisseroth for providing the pAAV-CaMKIIα::eNpHR3.0-YFP plasmid through Addgene. E Boyden for providing AAV2/1.CaMKII::ArchT.GFP.WPRE.SV40 plasmid through Penn Vector Core. This work was supported by the Austrian Science Fund (I02072 and I03713) and a Swiss National Science Foundation grant to PS. The authors declare no conflicts of interest. article_number: '61106' article_processing_charge: No article_type: original author: - first_name: Igor full_name: Gridchyn, Igor id: 4B60654C-F248-11E8-B48F-1D18A9856A87 last_name: Gridchyn orcid: 0000-0002-1807-1929 - first_name: Philipp full_name: Schönenberger, Philipp id: 3B9D816C-F248-11E8-B48F-1D18A9856A87 last_name: Schönenberger - first_name: Joseph full_name: O'Neill, Joseph id: 426376DC-F248-11E8-B48F-1D18A9856A87 last_name: O'Neill - first_name: Jozsef L full_name: Csicsvari, Jozsef L id: 3FA14672-F248-11E8-B48F-1D18A9856A87 last_name: Csicsvari orcid: 0000-0002-5193-4036 citation: ama: Gridchyn I, Schönenberger P, O’Neill J, Csicsvari JL. Optogenetic inhibition-mediated activity-dependent modification of CA1 pyramidal-interneuron connections during behavior. eLife. 2020;9. doi:10.7554/eLife.61106 apa: Gridchyn, I., Schönenberger, P., O’Neill, J., & Csicsvari, J. L. (2020). Optogenetic inhibition-mediated activity-dependent modification of CA1 pyramidal-interneuron connections during behavior. ELife. eLife Sciences Publications. https://doi.org/10.7554/eLife.61106 chicago: Gridchyn, Igor, Philipp Schönenberger, Joseph O’Neill, and Jozsef L Csicsvari. “Optogenetic Inhibition-Mediated Activity-Dependent Modification of CA1 Pyramidal-Interneuron Connections during Behavior.” ELife. eLife Sciences Publications, 2020. https://doi.org/10.7554/eLife.61106. ieee: I. Gridchyn, P. Schönenberger, J. O’Neill, and J. L. Csicsvari, “Optogenetic inhibition-mediated activity-dependent modification of CA1 pyramidal-interneuron connections during behavior,” eLife, vol. 9. eLife Sciences Publications, 2020. ista: Gridchyn I, Schönenberger P, O’Neill J, Csicsvari JL. 2020. Optogenetic inhibition-mediated activity-dependent modification of CA1 pyramidal-interneuron connections during behavior. eLife. 9, 61106. mla: Gridchyn, Igor, et al. “Optogenetic Inhibition-Mediated Activity-Dependent Modification of CA1 Pyramidal-Interneuron Connections during Behavior.” ELife, vol. 9, 61106, eLife Sciences Publications, 2020, doi:10.7554/eLife.61106. short: I. Gridchyn, P. Schönenberger, J. O’Neill, J.L. Csicsvari, ELife 9 (2020). date_created: 2020-11-08T23:01:25Z date_published: 2020-10-05T00:00:00Z date_updated: 2024-02-21T12:43:40Z day: '05' ddc: - '570' department: - _id: JoCs doi: 10.7554/eLife.61106 external_id: isi: - '000584369000001' file: - access_level: open_access checksum: 6a7b0543c440f4c000a1864e69377d95 content_type: application/pdf creator: dernst date_created: 2020-11-09T09:17:40Z date_updated: 2020-11-09T09:17:40Z file_id: '8749' file_name: 2020_eLife_Gridchyn.pdf file_size: 447669 relation: main_file success: 1 file_date_updated: 2020-11-09T09:17:40Z has_accepted_license: '1' intvolume: ' 9' isi: 1 language: - iso: eng month: '10' oa: 1 oa_version: Published Version project: - _id: 257D4372-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I2072-B27 name: Interneuron plasticity during spatial learning - _id: 2654F984-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I03713 name: Interneuro Plasticity During Spatial Learning publication: eLife publication_identifier: eissn: - 2050084X publication_status: published publisher: eLife Sciences Publications quality_controlled: '1' related_material: record: - id: '8563' relation: research_data status: public scopus_import: '1' status: public title: Optogenetic inhibition-mediated activity-dependent modification of CA1 pyramidal-interneuron connections during behavior tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 9 year: '2020' ... --- _id: '8563' abstract: - lang: eng text: "Supplementary data provided for the provided for the publication:\r\nIgor Gridchyn , Philipp Schoenenberger , Joseph O'Neill , Jozsef Csicsvari (2020) Optogenetic inhibition-mediated activity-dependent modification of CA1 pyramidal-interneuron connections during behavior. Elife." article_processing_charge: No author: - first_name: Jozsef L full_name: Csicsvari, Jozsef L id: 3FA14672-F248-11E8-B48F-1D18A9856A87 last_name: Csicsvari orcid: 0000-0002-5193-4036 - first_name: Igor full_name: Gridchyn, Igor id: 4B60654C-F248-11E8-B48F-1D18A9856A87 last_name: Gridchyn orcid: 0000-0002-1807-1929 - first_name: Philipp full_name: Schönenberger, Philipp id: 3B9D816C-F248-11E8-B48F-1D18A9856A87 last_name: Schönenberger citation: ama: Csicsvari JL, Gridchyn I, Schönenberger P. Optogenetic alteration of hippocampal network activity. 2020. doi:10.15479/AT:ISTA:8563 apa: Csicsvari, J. L., Gridchyn, I., & Schönenberger, P. (2020). Optogenetic alteration of hippocampal network activity. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:8563 chicago: Csicsvari, Jozsef L, Igor Gridchyn, and Philipp Schönenberger. “Optogenetic Alteration of Hippocampal Network Activity.” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:8563. ieee: J. L. Csicsvari, I. Gridchyn, and P. Schönenberger, “Optogenetic alteration of hippocampal network activity.” Institute of Science and Technology Austria, 2020. ista: Csicsvari JL, Gridchyn I, Schönenberger P. 2020. Optogenetic alteration of hippocampal network activity, Institute of Science and Technology Austria, 10.15479/AT:ISTA:8563. mla: Csicsvari, Jozsef L., et al. Optogenetic Alteration of Hippocampal Network Activity. Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:8563. short: J.L. Csicsvari, I. Gridchyn, P. Schönenberger, (2020). contributor: - contributor_type: project_leader first_name: Jozsef L id: 3FA14672-F248-11E8-B48F-1D18A9856A87 last_name: Csicsvari orcid: 0000-0002-5193-4036 date_created: 2020-09-23T14:39:54Z date_published: 2020-10-19T00:00:00Z date_updated: 2024-02-21T12:43:41Z day: '19' ddc: - '570' department: - _id: JoCs doi: 10.15479/AT:ISTA:8563 file: - access_level: open_access checksum: a16098a6d172f9c42ab5af5f6991668c content_type: application/x-compressed creator: jozsef date_created: 2020-09-23T14:36:17Z date_updated: 2020-09-23T14:36:17Z file_id: '8564' file_name: upload.tgz file_size: 145243906 relation: main_file success: 1 - access_level: open_access checksum: 0bfc54b7e14c0694cd081617318ba606 content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: jozsef date_created: 2020-10-19T10:12:29Z date_updated: 2020-10-19T10:12:29Z file_id: '8675' file_name: redme.docx file_size: 11648 relation: main_file success: 1 file_date_updated: 2020-10-19T10:12:29Z has_accepted_license: '1' month: '10' oa: 1 oa_version: Published Version publisher: Institute of Science and Technology Austria related_material: record: - id: '8740' relation: used_in_publication status: public status: public title: Optogenetic alteration of hippocampal network activity tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: research_data user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ... --- _id: '8557' abstract: - lang: eng text: The infiltration of immune cells into tissues underlies the establishment of tissue resident macrophages, and responses to infections and tumors. Yet the mechanisms immune cells utilize to negotiate tissue barriers in living organisms are not well understood, and a role for cortical actin has not been examined. Here we find that the tissue invasion of Drosophila macrophages, also known as plasmatocytes or hemocytes, utilizes enhanced cortical F-actin levels stimulated by the Drosophila member of the fos proto oncogene transcription factor family (Dfos, Kayak). RNA sequencing analysis and live imaging show that Dfos enhances F-actin levels around the entire macrophage surface by increasing mRNA levels of the membrane spanning molecular scaffold tetraspanin TM4SF, and the actin cross-linking filamin Cheerio which are themselves required for invasion. Cortical F-actin levels are critical as expressing a dominant active form of Diaphanous, a actin polymerizing Formin, can rescue the Dfos Dominant Negative macrophage invasion defect. In vivo imaging shows that Dfos is required to enhance the efficiency of the initial phases of macrophage tissue entry. Genetic evidence argues that this Dfos-induced program in macrophages counteracts the constraint produced by the tension of surrounding tissues and buffers the mechanical properties of the macrophage nucleus from affecting tissue entry. We thus identify tuning the cortical actin cytoskeleton through Dfos as a key process allowing efficient forward movement of an immune cell into surrounding tissues. acknowledged_ssus: - _id: LifeSc acknowledgement: 'We thank the following for their contributions: The Drosophila Genomics Resource Center supported by NIH grant 2P40OD010949-10A1 for plasmids, K. Brueckner. B. Stramer, M. Uhlirova, O. Schuldiner, the Bloomington Drosophila Stock Center supported by NIH grant P40OD018537 and the Vienna Drosophila Resource Center for fly stocks, FlyBase (Thurmond et al., 2019) for essential genomic information, and the BDGP in situ database for data (Tomancak et al., 2002, 2007). For antibodies, we thank the Developmental Studies Hybridoma Bank, which was created by the Eunice Kennedy Shriver National Institute of Child Health and Human Development of the NIH, and is maintained at the University of Iowa, as well as J. Zeitlinger for her generous gift of Dfos antibody. We thank the Vienna BioCenter Core Facilities for RNA sequencing and analysis and the Life Scientific Service Units at IST Austria for technical support and assistance with microscopy and FACS analysis. We thank C.P. Heisenberg, P. Martin, M. Sixt and Siekhaus group members for discussions and T.Hurd, A. Ratheesh and P. Rangan for comments on the manuscript. A.G. was supported by the Austrian Science Fund (FWF) grant DASI_FWF01_P29638S, D.E.S. by Marie Curie CIG 334077/IRTIM. M.S. is supported by the FWF, PhD program W1212 915 and the European Research Council (ERC) Advanced grant (ERC-2015-AdG TNT-Tumors 694883). S.W. is supported by an OEAW, DOC fellowship.' article_processing_charge: No author: - first_name: Vera full_name: Belyaeva, Vera id: 47F080FE-F248-11E8-B48F-1D18A9856A87 last_name: Belyaeva - first_name: Stephanie full_name: Wachner, Stephanie id: 2A95E7B0-F248-11E8-B48F-1D18A9856A87 last_name: Wachner - first_name: Igor full_name: Gridchyn, Igor id: 4B60654C-F248-11E8-B48F-1D18A9856A87 last_name: Gridchyn orcid: 0000-0002-1807-1929 - first_name: Markus full_name: Linder, Markus last_name: Linder - first_name: Shamsi full_name: Emtenani, Shamsi id: 49D32318-F248-11E8-B48F-1D18A9856A87 last_name: Emtenani orcid: 0000-0001-6981-6938 - first_name: Attila full_name: György, Attila id: 3BCEDBE0-F248-11E8-B48F-1D18A9856A87 last_name: György orcid: 0000-0002-1819-198X - first_name: Maria full_name: Sibilia, Maria last_name: Sibilia - first_name: Daria E full_name: Siekhaus, Daria E id: 3D224B9E-F248-11E8-B48F-1D18A9856A87 last_name: Siekhaus orcid: 0000-0001-8323-8353 citation: ama: Belyaeva V, Wachner S, Gridchyn I, et al. Cortical actin properties controlled by Drosophila Fos aid macrophage infiltration against surrounding tissue resistance. bioRxiv. doi:10.1101/2020.09.18.301481 apa: Belyaeva, V., Wachner, S., Gridchyn, I., Linder, M., Emtenani, S., György, A., … Siekhaus, D. E. (n.d.). Cortical actin properties controlled by Drosophila Fos aid macrophage infiltration against surrounding tissue resistance. bioRxiv. https://doi.org/10.1101/2020.09.18.301481 chicago: Belyaeva, Vera, Stephanie Wachner, Igor Gridchyn, Markus Linder, Shamsi Emtenani, Attila György, Maria Sibilia, and Daria E Siekhaus. “Cortical Actin Properties Controlled by Drosophila Fos Aid Macrophage Infiltration against Surrounding Tissue Resistance.” BioRxiv, n.d. https://doi.org/10.1101/2020.09.18.301481. ieee: V. Belyaeva et al., “Cortical actin properties controlled by Drosophila Fos aid macrophage infiltration against surrounding tissue resistance,” bioRxiv. . ista: Belyaeva V, Wachner S, Gridchyn I, Linder M, Emtenani S, György A, Sibilia M, Siekhaus DE. Cortical actin properties controlled by Drosophila Fos aid macrophage infiltration against surrounding tissue resistance. bioRxiv, 10.1101/2020.09.18.301481. mla: Belyaeva, Vera, et al. “Cortical Actin Properties Controlled by Drosophila Fos Aid Macrophage Infiltration against Surrounding Tissue Resistance.” BioRxiv, doi:10.1101/2020.09.18.301481. short: V. Belyaeva, S. Wachner, I. Gridchyn, M. Linder, S. Emtenani, A. György, M. Sibilia, D.E. Siekhaus, BioRxiv (n.d.). date_created: 2020-09-23T09:36:47Z date_published: 2020-09-18T00:00:00Z date_updated: 2024-03-27T23:30:24Z day: '18' department: - _id: DaSi - _id: JoCs doi: 10.1101/2020.09.18.301481 ec_funded: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1101/2020.09.18.301481 month: '09' oa: 1 oa_version: Preprint project: - _id: 253B6E48-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P29638 name: Drosophila TNFa´s Funktion in Immunzellen - _id: 2536F660-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '334077' name: Investigating the role of transporters in invasive migration through junctions - _id: 26199CA4-B435-11E9-9278-68D0E5697425 grant_number: '24800' name: Tissue barrier penetration is crucial for immunity and metastasis publication: bioRxiv publication_status: submitted related_material: record: - id: '10614' relation: later_version status: public - id: '8983' relation: dissertation_contains status: public status: public title: Cortical actin properties controlled by Drosophila Fos aid macrophage infiltration against surrounding tissue resistance type: preprint user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ... --- _id: '6338' abstract: - lang: eng text: Hippocampal activity patterns representing movement trajectories are reactivated in immobility and sleep periods, a process associated with memory recall, consolidation, and decision making. It is thought that only fixed, behaviorally relevant patterns can be reactivated, which are stored across hippocampal synaptic connections. To test whether some generalized rules govern reactivation, we examined trajectory reactivation following non-stereotypical exploration of familiar open-field environments. We found that random trajectories of varying lengths and timescales were reactivated, resembling that of Brownian motion of particles. The animals’ behavioral trajectory did not follow Brownian diffusion demonstrating that the exact behavioral experience is not reactivated. Therefore, hippocampal circuits are able to generate random trajectories of any recently active map by following diffusion dynamics. This ability of hippocampal circuits to generate representations of all behavioral outcome combinations, experienced or not, may underlie a wide variety of hippocampal-dependent cognitive functions such as learning, generalization, and planning. article_processing_charge: No article_type: original author: - first_name: Federico full_name: Stella, Federico id: 39AF1E74-F248-11E8-B48F-1D18A9856A87 last_name: Stella orcid: 0000-0001-9439-3148 - first_name: Peter full_name: Baracskay, Peter id: 361CC00E-F248-11E8-B48F-1D18A9856A87 last_name: Baracskay - first_name: Joseph full_name: O'Neill, Joseph id: 426376DC-F248-11E8-B48F-1D18A9856A87 last_name: O'Neill - first_name: Jozsef L full_name: Csicsvari, Jozsef L id: 3FA14672-F248-11E8-B48F-1D18A9856A87 last_name: Csicsvari orcid: 0000-0002-5193-4036 citation: ama: Stella F, Baracskay P, O’Neill J, Csicsvari JL. Hippocampal reactivation of random trajectories resembling Brownian diffusion. Neuron. 2019;102:450-461. doi:10.1016/j.neuron.2019.01.052 apa: Stella, F., Baracskay, P., O’Neill, J., & Csicsvari, J. L. (2019). Hippocampal reactivation of random trajectories resembling Brownian diffusion. Neuron. Elsevier. https://doi.org/10.1016/j.neuron.2019.01.052 chicago: Stella, Federico, Peter Baracskay, Joseph O’Neill, and Jozsef L Csicsvari. “Hippocampal Reactivation of Random Trajectories Resembling Brownian Diffusion.” Neuron. Elsevier, 2019. https://doi.org/10.1016/j.neuron.2019.01.052. ieee: F. Stella, P. Baracskay, J. O’Neill, and J. L. Csicsvari, “Hippocampal reactivation of random trajectories resembling Brownian diffusion,” Neuron, vol. 102. Elsevier, pp. 450–461, 2019. ista: Stella F, Baracskay P, O’Neill J, Csicsvari JL. 2019. Hippocampal reactivation of random trajectories resembling Brownian diffusion. Neuron. 102, 450–461. mla: Stella, Federico, et al. “Hippocampal Reactivation of Random Trajectories Resembling Brownian Diffusion.” Neuron, vol. 102, Elsevier, 2019, pp. 450–61, doi:10.1016/j.neuron.2019.01.052. short: F. Stella, P. Baracskay, J. O’Neill, J.L. Csicsvari, Neuron 102 (2019) 450–461. date_created: 2019-04-17T08:28:59Z date_published: 2019-04-17T00:00:00Z date_updated: 2023-08-25T10:13:07Z day: '17' department: - _id: JoCs doi: 10.1016/j.neuron.2019.01.052 ec_funded: 1 external_id: isi: - '000465169700017' pmid: - '30819547' intvolume: ' 102' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1016/j.neuron.2019.01.052 month: '04' oa: 1 oa_version: Published Version page: 450-461 pmid: 1 project: - _id: 257A4776-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '281511' name: Memory-related information processing in neuronal circuits of the hippocampus and entorhinal cortex - _id: 2654F984-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I03713 name: Interneuro Plasticity During Spatial Learning publication: Neuron publication_status: published publisher: Elsevier quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/memories-of-movement-are-replayed-randomly-during-sleep/ scopus_import: '1' status: public title: Hippocampal reactivation of random trajectories resembling Brownian diffusion type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 102 year: '2019' ... --- _id: '5828' abstract: - lang: eng text: Hippocampus is needed for both spatial working and reference memories. Here, using a radial eight-arm maze, we examined how the combined demand on these memories influenced CA1 place cell assemblies while reference memories were partially updated. This was contrasted with control tasks requiring only working memory or the update of reference memory. Reference memory update led to the reward-directed place field shifts at newly rewarded arms and to the gradual strengthening of firing in passes between newly rewarded arms but not between those passes that included a familiar-rewarded arm. At the maze center, transient network synchronization periods preferentially replayed trajectories of the next chosen arm in reference memory tasks but the previously visited arm in the working memory task. Hence, reference memory demand was uniquely associated with a gradual, goal novelty-related reorganization of place cell assemblies and with trajectory replay that reflected the animal's decision of which arm to visit next. article_processing_charge: No article_type: original author: - first_name: Haibing full_name: Xu, Haibing id: 310349D0-F248-11E8-B48F-1D18A9856A87 last_name: Xu - first_name: Peter full_name: Baracskay, Peter id: 361CC00E-F248-11E8-B48F-1D18A9856A87 last_name: Baracskay - first_name: Joseph full_name: O'Neill, Joseph id: 426376DC-F248-11E8-B48F-1D18A9856A87 last_name: O'Neill - first_name: Jozsef L full_name: Csicsvari, Jozsef L id: 3FA14672-F248-11E8-B48F-1D18A9856A87 last_name: Csicsvari orcid: 0000-0002-5193-4036 citation: ama: Xu H, Baracskay P, O’Neill J, Csicsvari JL. Assembly responses of hippocampal CA1 place cells predict learned behavior in goal-directed spatial tasks on the radial eight-arm maze. Neuron. 2019;101(1):119-132.e4. doi:10.1016/j.neuron.2018.11.015 apa: Xu, H., Baracskay, P., O’Neill, J., & Csicsvari, J. L. (2019). Assembly responses of hippocampal CA1 place cells predict learned behavior in goal-directed spatial tasks on the radial eight-arm maze. Neuron. Elsevier. https://doi.org/10.1016/j.neuron.2018.11.015 chicago: Xu, Haibing, Peter Baracskay, Joseph O’Neill, and Jozsef L Csicsvari. “Assembly Responses of Hippocampal CA1 Place Cells Predict Learned Behavior in Goal-Directed Spatial Tasks on the Radial Eight-Arm Maze.” Neuron. Elsevier, 2019. https://doi.org/10.1016/j.neuron.2018.11.015. ieee: H. Xu, P. Baracskay, J. O’Neill, and J. L. Csicsvari, “Assembly responses of hippocampal CA1 place cells predict learned behavior in goal-directed spatial tasks on the radial eight-arm maze,” Neuron, vol. 101, no. 1. Elsevier, p. 119–132.e4, 2019. ista: Xu H, Baracskay P, O’Neill J, Csicsvari JL. 2019. Assembly responses of hippocampal CA1 place cells predict learned behavior in goal-directed spatial tasks on the radial eight-arm maze. Neuron. 101(1), 119–132.e4. mla: Xu, Haibing, et al. “Assembly Responses of Hippocampal CA1 Place Cells Predict Learned Behavior in Goal-Directed Spatial Tasks on the Radial Eight-Arm Maze.” Neuron, vol. 101, no. 1, Elsevier, 2019, p. 119–132.e4, doi:10.1016/j.neuron.2018.11.015. short: H. Xu, P. Baracskay, J. O’Neill, J.L. Csicsvari, Neuron 101 (2019) 119–132.e4. date_created: 2019-01-13T22:59:10Z date_published: 2019-01-02T00:00:00Z date_updated: 2023-09-07T12:06:37Z day: '02' department: - _id: JoCs doi: 10.1016/j.neuron.2018.11.015 ec_funded: 1 external_id: isi: - '000454791500014' intvolume: ' 101' isi: 1 issue: '1' language: - iso: eng main_file_link: - open_access: '1' url: https://www.doi.org/10.1016/j.neuron.2018.11.015 month: '01' oa: 1 oa_version: Published Version page: 119-132.e4 project: - _id: 257A4776-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '281511' name: Memory-related information processing in neuronal circuits of the hippocampus and entorhinal cortex publication: Neuron publication_identifier: issn: - '10974199' publication_status: published publisher: Elsevier quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/reading-rats-minds/ record: - id: '837' relation: dissertation_contains status: public scopus_import: '1' status: public title: Assembly responses of hippocampal CA1 place cells predict learned behavior in goal-directed spatial tasks on the radial eight-arm maze type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 101 year: '2019' ... --- _id: '6062' abstract: - lang: eng text: Open the files in Jupyter Notebook (reccomended https://www.anaconda.com/distribution/#download-section with Python 3.7). article_processing_charge: No author: - first_name: Michele full_name: Nardin, Michele id: 30BD0376-F248-11E8-B48F-1D18A9856A87 last_name: Nardin orcid: 0000-0001-8849-6570 citation: ama: Nardin M. Supplementary Code and Data for the paper “The Entorhinal Cognitive Map is Attracted to Goals.” 2019. doi:10.15479/AT:ISTA:6062 apa: Nardin, M. (2019). Supplementary Code and Data for the paper “The Entorhinal Cognitive Map is Attracted to Goals.” Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:6062 chicago: Nardin, Michele. “Supplementary Code and Data for the Paper ‘The Entorhinal Cognitive Map Is Attracted to Goals.’” Institute of Science and Technology Austria, 2019. https://doi.org/10.15479/AT:ISTA:6062. ieee: M. Nardin, “Supplementary Code and Data for the paper ‘The Entorhinal Cognitive Map is Attracted to Goals.’” Institute of Science and Technology Austria, 2019. ista: Nardin M. 2019. Supplementary Code and Data for the paper ‘The Entorhinal Cognitive Map is Attracted to Goals’, Institute of Science and Technology Austria, 10.15479/AT:ISTA:6062. mla: Nardin, Michele. Supplementary Code and Data for the Paper “The Entorhinal Cognitive Map Is Attracted to Goals.” Institute of Science and Technology Austria, 2019, doi:10.15479/AT:ISTA:6062. short: M. Nardin, (2019). date_created: 2019-03-04T14:20:58Z date_published: 2019-03-29T00:00:00Z date_updated: 2024-02-21T12:46:04Z day: '29' department: - _id: JoCs doi: 10.15479/AT:ISTA:6062 file: - access_level: open_access checksum: 48e7b9a02939b763417733239522a236 content_type: application/zip creator: mnardin date_created: 2019-03-05T09:29:37Z date_updated: 2020-07-14T12:47:18Z file_id: '6068' file_name: Online_data.zip file_size: 37002186 relation: main_file title: Data for the paper "The Entorhinal Cognitive Map is Attracted to Goals" file_date_updated: 2020-07-14T12:47:18Z has_accepted_license: '1' license: https://creativecommons.org/licenses/by-sa/4.0/ month: '03' oa: 1 oa_version: Published Version publisher: Institute of Science and Technology Austria related_material: record: - id: '6194' relation: research_paper status: public status: public title: Supplementary Code and Data for the paper "The Entorhinal Cognitive Map is Attracted to Goals" tmp: image: /images/cc_by_sa.png legal_code_url: https://creativecommons.org/licenses/by-sa/4.0/legalcode name: Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY-SA 4.0) short: CC BY-SA (4.0) type: research_data user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2019' ... --- _id: '6849' abstract: - lang: eng text: 'Brain function is mediated by complex dynamical interactions between excitatory and inhibitory cell types. The Cholecystokinin-expressing inhibitory cells (CCK-interneurons) are one of the least studied types, despite being suspected to play important roles in cognitive processes. We studied the network effects of optogenetic silencing of CCK-interneurons in the CA1 hippocampal area during exploration and sleep states. The cell firing pattern in response to light pulses allowed us to classify the recorded neurons in 5 classes, including disinhibited and non-responsive pyramidal cell and interneurons, and the inhibited interneurons corresponding to the CCK group. The light application, which inhibited the activity of CCK interneurons triggered wider changes in the firing dynamics of cells. We observed rate changes (i.e. remapping) of pyramidal cells during the exploration session in which the light was applied relative to the previous control session that was not restricted neither in time nor space to the light delivery. Also, the disinhibited pyramidal cells had higher increase in bursting than in single spike firing rate as a result of CCK silencing. In addition, the firing activity patterns during exploratory periods were more weakly reactivated in sleep for those periods in which CCK-interneuron were silenced than in the unaffected periods. Furthermore, light pulses during sleep disrupted the reactivation of recent waking patterns. Hence, silencing CCK neurons during exploration suppressed the reactivation of waking firing patterns in sleep and CCK interneuron activity was also required during sleep for the normal reactivation of waking patterns. These findings demonstrate the involvement of CCK cells in reactivation-related memory consolidation. An important part of our analysis was to test the relationship of the identified CCKinterneurons to brain oscillations. Our findings showed that these cells exhibited different oscillatory behaviour during anaesthesia and natural waking and sleep conditions. We showed that: 1) Contrary to the past studies performed under anaesthesia, the identified CCKinterneurons fired on the descending portion of the theta phase in waking exploration. 2) CCKinterneuron preferred phases around the trough of gamma oscillations. 3) Contrary to anaesthesia conditions, the average firing rate of the CCK-interneurons increased around the peak activity of the sharp-wave ripple (SWR) events in natural sleep, which is congruent with new reports about their functional connectivity. We also found that light driven CCK-interneuron silencing altered the dynamics on the CA1 network oscillatory activity: 1) Pyramidal cells negatively shifted their preferred theta phases when the light was applied, while interneurons responses were less consistent. 2) As a population, pyramidal cells negatively shifted their preferred activity during gamma oscillations, albeit we did not find gamma modulation differences related to the light application when pyramidal cells were subdivided into the disinhibited and unaffected groups. 3) During the peak of SWR events, all but the CCK-interneurons had a reduction in their relative firing rate change during the light application as compared to the change observed at SWR initiation. Finally, regarding to the place field activity of the recorded pyramidal neurons, we showed that the disinhibited pyramidal cells had reduced place field similarity, coherence and spatial information, but only during the light application. The mechanisms behind such observed behaviours might involve eCB signalling and plastic changes in CCK-interneuron synapses. In conclusion, the observed changes related to the light-mediated silencing of CCKinterneurons have unravelled characteristics of this interneuron subpopulation that might change the understanding not only of their particular network interactions, but also of the current theories about the emergence of certain cognitive processes such as place coding needed for navigation or hippocampus-dependent memory consolidation. ' acknowledged_ssus: - _id: Bio - _id: PreCl - _id: M-Shop alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Dámaris K full_name: Rangel Guerrero, Dámaris K id: 4871BCE6-F248-11E8-B48F-1D18A9856A87 last_name: Rangel Guerrero orcid: 0000-0002-8602-4374 citation: ama: Rangel Guerrero DK. The role of CCK-interneurons in regulating hippocampal network dynamics. 2019. doi:10.15479/AT:ISTA:6849 apa: Rangel Guerrero, D. K. (2019). The role of CCK-interneurons in regulating hippocampal network dynamics. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:6849 chicago: Rangel Guerrero, Dámaris K. “The Role of CCK-Interneurons in Regulating Hippocampal Network Dynamics.” Institute of Science and Technology Austria, 2019. https://doi.org/10.15479/AT:ISTA:6849. ieee: D. K. Rangel Guerrero, “The role of CCK-interneurons in regulating hippocampal network dynamics,” Institute of Science and Technology Austria, 2019. ista: Rangel Guerrero DK. 2019. The role of CCK-interneurons in regulating hippocampal network dynamics. Institute of Science and Technology Austria. mla: Rangel Guerrero, Dámaris K. The Role of CCK-Interneurons in Regulating Hippocampal Network Dynamics. Institute of Science and Technology Austria, 2019, doi:10.15479/AT:ISTA:6849. short: D.K. Rangel Guerrero, The Role of CCK-Interneurons in Regulating Hippocampal Network Dynamics, Institute of Science and Technology Austria, 2019. date_created: 2019-09-06T06:54:16Z date_published: 2019-09-09T00:00:00Z date_updated: 2023-09-19T10:01:12Z day: '09' ddc: - '570' degree_awarded: PhD department: - _id: JoCs doi: 10.15479/AT:ISTA:6849 file: - access_level: closed checksum: 244dc4f74dbfc94f414156092298831f content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: drangel date_created: 2019-09-09T13:09:45Z date_updated: 2021-02-10T23:30:09Z embargo_to: open_access file_id: '6865' file_name: Thesis_Damaris_Rangel_source.docx file_size: 18253100 relation: source_file - access_level: open_access checksum: 59c73be40eeaa1c4db24067270151555 content_type: application/pdf creator: drangel date_created: 2019-09-09T13:09:52Z date_updated: 2020-09-11T22:30:04Z embargo: 2020-09-10 file_id: '6866' file_name: Thesis_Damaris_Rangel_pdfa.pdf file_size: 2160109 relation: main_file request_a_copy: 0 file_date_updated: 2021-02-10T23:30:09Z has_accepted_license: '1' language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: '97' publication_identifier: isbn: - '9783990780039' issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '5914' relation: part_of_dissertation status: public status: public supervisor: - first_name: Jozsef L full_name: Csicsvari, Jozsef L id: 3FA14672-F248-11E8-B48F-1D18A9856A87 last_name: Csicsvari orcid: 0000-0002-5193-4036 title: The role of CCK-interneurons in regulating hippocampal network dynamics type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2019' ... --- _id: '6194' abstract: - lang: eng text: Grid cells with their rigid hexagonal firing fields are thought to provide an invariant metric to the hippocampal cognitive map, yet environmental geometrical features have recently been shown to distort the grid structure. Given that the hippocampal role goes beyond space, we tested the influence of nonspatial information on the grid organization. We trained rats to daily learn three new reward locations on a cheeseboard maze while recording from the medial entorhinal cortex and the hippocampal CA1 region. Many grid fields moved toward goal location, leading to long-lasting deformations of the entorhinal map. Therefore, distortions in the grid structure contribute to goal representation during both learning and recall, which demonstrates that grid cells participate in mnemonic coding and do not merely provide a simple metric of space. article_processing_charge: No article_type: original author: - first_name: Charlotte N. full_name: Boccara, Charlotte N. id: 3FC06552-F248-11E8-B48F-1D18A9856A87 last_name: Boccara orcid: 0000-0001-7237-5109 - first_name: Michele full_name: Nardin, Michele id: 30BD0376-F248-11E8-B48F-1D18A9856A87 last_name: Nardin orcid: 0000-0001-8849-6570 - first_name: Federico full_name: Stella, Federico id: 39AF1E74-F248-11E8-B48F-1D18A9856A87 last_name: Stella orcid: 0000-0001-9439-3148 - first_name: Joseph full_name: O'Neill, Joseph id: 426376DC-F248-11E8-B48F-1D18A9856A87 last_name: O'Neill - first_name: Jozsef L full_name: Csicsvari, Jozsef L id: 3FA14672-F248-11E8-B48F-1D18A9856A87 last_name: Csicsvari orcid: 0000-0002-5193-4036 citation: ama: Boccara CN, Nardin M, Stella F, O’Neill J, Csicsvari JL. The entorhinal cognitive map is attracted to goals. Science. 2019;363(6434):1443-1447. doi:10.1126/science.aav4837 apa: Boccara, C. N., Nardin, M., Stella, F., O’Neill, J., & Csicsvari, J. L. (2019). The entorhinal cognitive map is attracted to goals. Science. American Association for the Advancement of Science. https://doi.org/10.1126/science.aav4837 chicago: Boccara, Charlotte N., Michele Nardin, Federico Stella, Joseph O’Neill, and Jozsef L Csicsvari. “The Entorhinal Cognitive Map Is Attracted to Goals.” Science. American Association for the Advancement of Science, 2019. https://doi.org/10.1126/science.aav4837. ieee: C. N. Boccara, M. Nardin, F. Stella, J. O’Neill, and J. L. Csicsvari, “The entorhinal cognitive map is attracted to goals,” Science, vol. 363, no. 6434. American Association for the Advancement of Science, pp. 1443–1447, 2019. ista: Boccara CN, Nardin M, Stella F, O’Neill J, Csicsvari JL. 2019. The entorhinal cognitive map is attracted to goals. Science. 363(6434), 1443–1447. mla: Boccara, Charlotte N., et al. “The Entorhinal Cognitive Map Is Attracted to Goals.” Science, vol. 363, no. 6434, American Association for the Advancement of Science, 2019, pp. 1443–47, doi:10.1126/science.aav4837. short: C.N. Boccara, M. Nardin, F. Stella, J. O’Neill, J.L. Csicsvari, Science 363 (2019) 1443–1447. date_created: 2019-04-04T08:39:30Z date_published: 2019-03-29T00:00:00Z date_updated: 2024-03-27T23:30:16Z day: '29' ddc: - '570' department: - _id: JoCs doi: 10.1126/science.aav4837 ec_funded: 1 external_id: isi: - '000462738000034' file: - access_level: open_access checksum: 5e6b16742cde10a560cfaf2130764da1 content_type: application/pdf creator: dernst date_created: 2020-05-14T09:11:10Z date_updated: 2020-07-14T12:47:23Z file_id: '7826' file_name: 2019_Science_Boccara.pdf file_size: 9045923 relation: main_file file_date_updated: 2020-07-14T12:47:23Z has_accepted_license: '1' intvolume: ' 363' isi: 1 issue: '6434' language: - iso: eng month: '03' oa: 1 oa_version: Submitted Version page: 1443-1447 project: - _id: 257A4776-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '281511' name: Memory-related information processing in neuronal circuits of the hippocampus and entorhinal cortex - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication: Science publication_identifier: eissn: - 1095-9203 issn: - 0036-8075 publication_status: published publisher: American Association for the Advancement of Science quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/grid-cells-create-treasure-map-in-rat-brain/ record: - id: '6062' relation: popular_science status: public - id: '11932' relation: dissertation_contains status: public scopus_import: '1' status: public title: The entorhinal cognitive map is attracted to goals type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 363 year: '2019' ... --- _id: '5949' abstract: - lang: eng text: Aberrant proteostasis of protein aggregation may lead to behavior disorders including chronic mental illnesses (CMI). Furthermore, the neuronal activity alterations that underlie CMI are not well understood. We recorded the local field potential and single-unit activity of the hippocampal CA1 region in vivo in rats transgenically overexpressing the Disrupted-in-Schizophrenia 1 (DISC1) gene (tgDISC1), modeling sporadic CMI. These tgDISC1 rats have previously been shown to exhibit DISC1 protein aggregation, disturbances in the dopaminergic system and attention-related deficits. Recordings were performed during exploration of familiar and novel open field environments and during sleep, allowing investigation of neuronal abnormalities in unconstrained behavior. Compared to controls, tgDISC1 place cells exhibited smaller place fields and decreased speed-modulation of their firing rates, demonstrating altered spatial coding and deficits in encoding location-independent sensory inputs. Oscillation analyses showed that tgDISC1 pyramidal neurons had higher theta phase locking strength during novelty, limiting their phase coding ability. However, their mean theta phases were more variable at the population level, reducing oscillatory network synchronization. Finally, tgDISC1 pyramidal neurons showed a lack of novelty-induced shift in their preferred theta and gamma firing phases, indicating deficits in coding of novel environments with oscillatory firing. By combining single cell and neuronal population analyses, we link DISC1 protein pathology with abnormal hippocampal neural coding and network synchrony, and thereby gain a more comprehensive understanding of CMI mechanisms. article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Karola full_name: Käfer, Karola id: 2DAA49AA-F248-11E8-B48F-1D18A9856A87 last_name: Käfer - first_name: Hugo full_name: Malagon-Vina, Hugo last_name: Malagon-Vina - first_name: Desiree full_name: Dickerson, Desiree id: 444EB89E-F248-11E8-B48F-1D18A9856A87 last_name: Dickerson - first_name: Joseph full_name: O'Neill, Joseph last_name: O'Neill - first_name: Svenja V. full_name: Trossbach, Svenja V. last_name: Trossbach - first_name: Carsten full_name: Korth, Carsten last_name: Korth - first_name: Jozsef L full_name: Csicsvari, Jozsef L id: 3FA14672-F248-11E8-B48F-1D18A9856A87 last_name: Csicsvari orcid: 0000-0002-5193-4036 citation: ama: Käfer K, Malagon-Vina H, Dickerson D, et al. Disrupted-in-schizophrenia 1 overexpression disrupts hippocampal coding and oscillatory synchronization. Hippocampus. 2019;29(9):802-816. doi:10.1002/hipo.23076 apa: Käfer, K., Malagon-Vina, H., Dickerson, D., O’Neill, J., Trossbach, S. V., Korth, C., & Csicsvari, J. L. (2019). Disrupted-in-schizophrenia 1 overexpression disrupts hippocampal coding and oscillatory synchronization. Hippocampus. Wiley. https://doi.org/10.1002/hipo.23076 chicago: Käfer, Karola, Hugo Malagon-Vina, Desiree Dickerson, Joseph O’Neill, Svenja V. Trossbach, Carsten Korth, and Jozsef L Csicsvari. “Disrupted-in-Schizophrenia 1 Overexpression Disrupts Hippocampal Coding and Oscillatory Synchronization.” Hippocampus. Wiley, 2019. https://doi.org/10.1002/hipo.23076. ieee: K. Käfer et al., “Disrupted-in-schizophrenia 1 overexpression disrupts hippocampal coding and oscillatory synchronization,” Hippocampus, vol. 29, no. 9. Wiley, pp. 802–816, 2019. ista: Käfer K, Malagon-Vina H, Dickerson D, O’Neill J, Trossbach SV, Korth C, Csicsvari JL. 2019. Disrupted-in-schizophrenia 1 overexpression disrupts hippocampal coding and oscillatory synchronization. Hippocampus. 29(9), 802–816. mla: Käfer, Karola, et al. “Disrupted-in-Schizophrenia 1 Overexpression Disrupts Hippocampal Coding and Oscillatory Synchronization.” Hippocampus, vol. 29, no. 9, Wiley, 2019, pp. 802–16, doi:10.1002/hipo.23076. short: K. Käfer, H. Malagon-Vina, D. Dickerson, J. O’Neill, S.V. Trossbach, C. Korth, J.L. Csicsvari, Hippocampus 29 (2019) 802–816. date_created: 2019-02-10T22:59:18Z date_published: 2019-09-01T00:00:00Z date_updated: 2024-03-27T23:30:22Z day: '01' ddc: - '570' department: - _id: JoCs doi: 10.1002/hipo.23076 ec_funded: 1 external_id: isi: - '000480635400003' file: - access_level: open_access checksum: 5e8de271ca04aef92a5de42d6aac4404 content_type: application/pdf creator: dernst date_created: 2019-02-11T10:42:51Z date_updated: 2020-07-14T12:47:13Z file_id: '5950' file_name: 2019_Hippocampus_Kaefer.pdf file_size: 2132893 relation: main_file file_date_updated: 2020-07-14T12:47:13Z has_accepted_license: '1' intvolume: ' 29' isi: 1 issue: '9' language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: 802-816 project: - _id: 257BBB4C-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '607616' name: Inter-and intracellular signalling in schizophrenia publication: Hippocampus publication_status: published publisher: Wiley quality_controlled: '1' related_material: record: - id: '6825' relation: dissertation_contains status: public scopus_import: '1' status: public title: Disrupted-in-schizophrenia 1 overexpression disrupts hippocampal coding and oscillatory synchronization tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 29 year: '2019' ... --- _id: '6825' abstract: - lang: eng text: "The solving of complex tasks requires the functions of more than one brain area and their interaction. Whilst spatial navigation and memory is dependent on the hippocampus, flexible behavior relies on the medial prefrontal cortex (mPFC). To further examine the roles of the hippocampus and mPFC, we recorded their neural activity during a task that depends on both of these brain regions.\r\nWith tetrodes, we recorded the extracellular activity of dorsal hippocampal CA1 (HPC) and mPFC neurons in Long-Evans rats performing a rule-switching task on the plus-maze. The plus-maze task had a spatial component since it required navigation along one of the two start arms and at the maze center a choice between one of the two goal arms. Which goal contained a reward depended on the rule currently in place. After an uncued rule change the animal had to abandon the old strategy and switch to the new rule, testing cognitive flexibility. Investigating the coordination of activity between the HPC and mPFC allows determination during which task stages their interaction is required. Additionally, comparing neural activity patterns in these two brain regions allows delineation of the specialized functions of the HPC and mPFC in this task. We analyzed neural activity in the HPC and mPFC in terms of oscillatory interactions, rule coding and replay.\r\nWe found that theta coherence between the HPC and mPFC is increased at the center and goals of the maze, both when the rule was stable or has changed. Similar results were found for locking of HPC and mPFC neurons to HPC theta oscillations. However, no differences in HPC-mPFC theta coordination were observed between the spatially- and cue-guided rule. Phase locking of HPC and mPFC neurons to HPC gamma oscillations was not modulated by\r\nmaze position or rule type. We found that the HPC coded for the two different rules with cofiring relationships between\r\ncell pairs. However, we could not find conclusive evidence for rule coding in the mPFC. Spatially-selective firing in the mPFC generalized between the two start and two goal arms. With Bayesian positional decoding, we found that the mPFC reactivated non-local positions during awake immobility periods. Replay of these non-local positions could represent entire behavioral trajectories resembling trajectory replay of the HPC. Furthermore, mPFC\r\ntrajectory-replay at the goal positively correlated with rule-switching performance. \r\nFinally, HPC and mPFC trajectory replay occurred independently of each other. These results show that the mPFC can replay ordered patterns of activity during awake immobility, possibly underlying its role in flexible behavior. " alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Karola full_name: Käfer, Karola id: 2DAA49AA-F248-11E8-B48F-1D18A9856A87 last_name: Käfer citation: ama: Käfer K. The hippocampus and medial prefrontal cortex during flexible behavior. 2019. doi:10.15479/AT:ISTA:6825 apa: Käfer, K. (2019). The hippocampus and medial prefrontal cortex during flexible behavior. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:6825 chicago: Käfer, Karola. “The Hippocampus and Medial Prefrontal Cortex during Flexible Behavior.” Institute of Science and Technology Austria, 2019. https://doi.org/10.15479/AT:ISTA:6825. ieee: K. Käfer, “The hippocampus and medial prefrontal cortex during flexible behavior,” Institute of Science and Technology Austria, 2019. ista: Käfer K. 2019. The hippocampus and medial prefrontal cortex during flexible behavior. Institute of Science and Technology Austria. mla: Käfer, Karola. The Hippocampus and Medial Prefrontal Cortex during Flexible Behavior. Institute of Science and Technology Austria, 2019, doi:10.15479/AT:ISTA:6825. short: K. Käfer, The Hippocampus and Medial Prefrontal Cortex during Flexible Behavior, Institute of Science and Technology Austria, 2019. date_created: 2019-08-21T15:00:57Z date_published: 2019-08-24T00:00:00Z date_updated: 2023-09-07T13:01:42Z day: '24' ddc: - '570' degree_awarded: PhD department: - _id: JoCs doi: 10.15479/AT:ISTA:6825 file: - access_level: open_access checksum: 2664420e332a33338568f4f3bfc59287 content_type: application/pdf creator: kkaefer date_created: 2019-09-03T08:07:13Z date_updated: 2020-09-06T22:30:03Z embargo: 2020-09-05 file_id: '6846' file_name: Thesis_Kaefer_PDFA.pdf file_size: 3205202 relation: main_file request_a_copy: 0 - access_level: closed checksum: 9a154eab6f07aa590a3d2651dc0d926a content_type: application/zip creator: kkaefer date_created: 2019-09-03T08:07:17Z date_updated: 2020-09-15T22:30:05Z embargo_to: open_access file_id: '6847' file_name: Thesis_Kaefer.zip file_size: 2506835 relation: main_file file_date_updated: 2020-09-15T22:30:05Z has_accepted_license: '1' language: - iso: eng month: '08' oa: 1 oa_version: Published Version page: '89' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '5949' relation: part_of_dissertation status: public status: public supervisor: - first_name: Jozsef L full_name: Csicsvari, Jozsef L id: 3FA14672-F248-11E8-B48F-1D18A9856A87 last_name: Csicsvari orcid: 0000-0002-5193-4036 title: The hippocampus and medial prefrontal cortex during flexible behavior type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2019' ... --- _id: '5914' abstract: - lang: eng text: With the advent of optogenetics, it became possible to change the activity of a targeted population of neurons in a temporally controlled manner. To combine the advantages of 60-channel in vivo tetrode recording and laser-based optogenetics, we have developed a closed-loop recording system that allows for the actual electrophysiological signal to be used as a trigger for the laser light mediating the optogenetic intervention. We have optimized the weight, size, and shape of the corresponding implant to make it compatible with the size, force, and movements of a behaving mouse, and we have shown that the system can efficiently block sharp wave ripple (SWR) events using those events themselves as a trigger. To demonstrate the full potential of the optogenetic recording system we present a pilot study addressing the contribution of SWR events to learning in a complex behavioral task. article_number: e0087 article_processing_charge: No author: - first_name: Dámaris K full_name: Rangel Guerrero, Dámaris K id: 4871BCE6-F248-11E8-B48F-1D18A9856A87 last_name: Rangel Guerrero orcid: 0000-0002-8602-4374 - first_name: James G. full_name: Donnett, James G. last_name: Donnett - first_name: Jozsef L full_name: Csicsvari, Jozsef L id: 3FA14672-F248-11E8-B48F-1D18A9856A87 last_name: Csicsvari orcid: 0000-0002-5193-4036 - first_name: Krisztián full_name: Kovács, Krisztián id: 2AB5821E-F248-11E8-B48F-1D18A9856A87 last_name: Kovács orcid: 0000-0001-6251-1007 citation: ama: 'Rangel Guerrero DK, Donnett JG, Csicsvari JL, Kovács K. Tetrode recording from the hippocampus of behaving mice coupled with four-point-irradiation closed-loop optogenetics: A technique to study the contribution of Hippocampal SWR events to learning. eNeuro. 2018;5(4). doi:10.1523/ENEURO.0087-18.2018' apa: 'Rangel Guerrero, D. K., Donnett, J. G., Csicsvari, J. L., & Kovács, K. (2018). Tetrode recording from the hippocampus of behaving mice coupled with four-point-irradiation closed-loop optogenetics: A technique to study the contribution of Hippocampal SWR events to learning. ENeuro. Society of Neuroscience. https://doi.org/10.1523/ENEURO.0087-18.2018' chicago: 'Rangel Guerrero, Dámaris K, James G. Donnett, Jozsef L Csicsvari, and Krisztián Kovács. “Tetrode Recording from the Hippocampus of Behaving Mice Coupled with Four-Point-Irradiation Closed-Loop Optogenetics: A Technique to Study the Contribution of Hippocampal SWR Events to Learning.” ENeuro. Society of Neuroscience, 2018. https://doi.org/10.1523/ENEURO.0087-18.2018.' ieee: 'D. K. Rangel Guerrero, J. G. Donnett, J. L. Csicsvari, and K. Kovács, “Tetrode recording from the hippocampus of behaving mice coupled with four-point-irradiation closed-loop optogenetics: A technique to study the contribution of Hippocampal SWR events to learning,” eNeuro, vol. 5, no. 4. Society of Neuroscience, 2018.' ista: 'Rangel Guerrero DK, Donnett JG, Csicsvari JL, Kovács K. 2018. Tetrode recording from the hippocampus of behaving mice coupled with four-point-irradiation closed-loop optogenetics: A technique to study the contribution of Hippocampal SWR events to learning. eNeuro. 5(4), e0087.' mla: 'Rangel Guerrero, Dámaris K., et al. “Tetrode Recording from the Hippocampus of Behaving Mice Coupled with Four-Point-Irradiation Closed-Loop Optogenetics: A Technique to Study the Contribution of Hippocampal SWR Events to Learning.” ENeuro, vol. 5, no. 4, e0087, Society of Neuroscience, 2018, doi:10.1523/ENEURO.0087-18.2018.' short: D.K. Rangel Guerrero, J.G. Donnett, J.L. Csicsvari, K. Kovács, ENeuro 5 (2018). date_created: 2019-02-03T22:59:16Z date_published: 2018-07-27T00:00:00Z date_updated: 2024-03-27T23:30:10Z day: '27' ddc: - '570' department: - _id: JoCs doi: 10.1523/ENEURO.0087-18.2018 ec_funded: 1 external_id: isi: - '000443994700007' file: - access_level: open_access checksum: f4915d45fc7ad4648b7b7a13fdecca01 content_type: application/pdf creator: dernst date_created: 2019-02-05T12:48:36Z date_updated: 2020-07-14T12:47:13Z file_id: '5921' file_name: 2018_ENeuro_Guerrero.pdf file_size: 3746884 relation: main_file file_date_updated: 2020-07-14T12:47:13Z has_accepted_license: '1' intvolume: ' 5' isi: 1 issue: '4' language: - iso: eng month: '07' oa: 1 oa_version: Published Version project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme - _id: 257D4372-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I2072-B27 name: Interneuron plasticity during spatial learning publication: eNeuro publication_status: published publisher: Society of Neuroscience quality_controlled: '1' related_material: record: - id: '6849' relation: dissertation_contains status: public scopus_import: '1' status: public title: 'Tetrode recording from the hippocampus of behaving mice coupled with four-point-irradiation closed-loop optogenetics: A technique to study the contribution of Hippocampal SWR events to learning' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 5 year: '2018' ... --- _id: '48' abstract: - lang: eng text: 'The hippocampus is a key brain region for spatial memory and navigation and is needed at all stages of memory, including encoding, consolidation, and recall. Hippocampal place cells selectively discharge at specific locations of the environment to form a cognitive map of the space. During the rest period and sleep following spatial navigation and/or learning, the waking activity of the place cells is reactivated within high synchrony events. This reactivation is thought to be important for memory consolidation and stabilization of the spatial representations. The aim of my thesis was to directly test whether the reactivation content encoded in firing patterns of place cells is important for consolidation of spatial memories. In particular, I aimed to test whether, in cases when multiple spatial memory traces are acquired during learning, the specific disruption of the reactivation of a subset of these memories leads to the selective disruption of the corresponding memory traces or through memory interference the other learned memories are disrupted as well. In this thesis, using a modified cheeseboard paradigm and a closed-loop recording setup with feedback optogenetic stimulation, I examined how the disruption of the reactivation of specific spiking patterns affects consolidation of the corresponding memory traces. To obtain multiple distinctive memories, animals had to perform a spatial task in two distinct cheeseboard environments and the reactivation of spiking patterns associated with one of the environments (target) was disrupted after learning during four hours rest period using a real-time decoding method. This real-time decoding method was capable of selectively affecting the firing rates and cofiring correlations of the target environment-encoding cells. The selective disruption led to behavioural impairment in the memory tests after the rest periods in the target environment but not in the other undisrupted control environment. In addition, the map of the target environment was less stable in the impaired memory tests compared to the learning session before than the map of the control environment. However, when the animal relearned the task, the same map recurred in the target environment that was present during learning before the disruption. Altogether my work demonstrated that the reactivation content is important: assembly-related disruption of reactivation can lead to a selective memory impairment and deficiency in map stability. These findings indeed suggest that reactivated assembly patterns reflect processes associated with the consolidation of memory traces. ' alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Igor full_name: Gridchyn, Igor id: 4B60654C-F248-11E8-B48F-1D18A9856A87 last_name: Gridchyn orcid: 0000-0002-1807-1929 citation: ama: Gridchyn I. Reactivation content is important for consolidation of spatial memory. 2018. doi:10.15479/AT:ISTA:th_1042 apa: Gridchyn, I. (2018). Reactivation content is important for consolidation of spatial memory. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:th_1042 chicago: Gridchyn, Igor. “Reactivation Content Is Important for Consolidation of Spatial Memory.” Institute of Science and Technology Austria, 2018. https://doi.org/10.15479/AT:ISTA:th_1042. ieee: I. Gridchyn, “Reactivation content is important for consolidation of spatial memory,” Institute of Science and Technology Austria, 2018. ista: Gridchyn I. 2018. Reactivation content is important for consolidation of spatial memory. Institute of Science and Technology Austria. mla: Gridchyn, Igor. Reactivation Content Is Important for Consolidation of Spatial Memory. Institute of Science and Technology Austria, 2018, doi:10.15479/AT:ISTA:th_1042. short: I. Gridchyn, Reactivation Content Is Important for Consolidation of Spatial Memory, Institute of Science and Technology Austria, 2018. date_created: 2018-12-11T11:44:21Z date_published: 2018-08-27T00:00:00Z date_updated: 2023-09-07T12:42:44Z day: '27' ddc: - '573' degree_awarded: PhD department: - _id: JoCs doi: 10.15479/AT:ISTA:th_1042 file: - access_level: closed checksum: 7db4415e435590fa33542c7b0a0321d7 content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: dernst date_created: 2019-04-08T13:36:01Z date_updated: 2021-02-11T23:30:22Z embargo_to: open_access file_id: '6236' file_name: 2018_Thesis_Gridchyn_source.docx file_size: 7666687 relation: source_file - access_level: open_access checksum: f96f3fe8979f7b1e6db6acaca962b10c content_type: application/pdf creator: dernst date_created: 2019-04-08T13:36:01Z date_updated: 2021-02-11T11:17:18Z embargo: 2019-08-29 file_id: '6237' file_name: 2018_Thesis_Gridchyn.pdf file_size: 6034153 relation: main_file file_date_updated: 2021-02-11T23:30:22Z has_accepted_license: '1' language: - iso: eng month: '08' oa: 1 oa_version: Published Version page: '104' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '8006' pubrep_id: '1042' status: public supervisor: - first_name: Jozsef L full_name: Csicsvari, Jozsef L id: 3FA14672-F248-11E8-B48F-1D18A9856A87 last_name: Csicsvari orcid: 0000-0002-5193-4036 title: Reactivation content is important for consolidation of spatial memory tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2018' ... --- _id: '514' abstract: - lang: eng text: 'Orientation in space is represented in specialized brain circuits. Persistent head direction signals are transmitted from anterior thalamus to the presubiculum, but the identity of the presubicular target neurons, their connectivity and function in local microcircuits are unknown. Here, we examine how thalamic afferents recruit presubicular principal neurons and Martinotti interneurons, and the ensuing synaptic interactions between these cells. Pyramidal neuron activation of Martinotti cells in superficial layers is strongly facilitating such that high-frequency head directional stimulation efficiently unmutes synaptic excitation. Martinotti-cell feedback plays a dual role: precisely timed spikes may not inhibit the firing of in-tune head direction cells, while exerting lateral inhibition. Autonomous attractor dynamics emerge from a modelled network implementing wiring motifs and timing sensitive synaptic interactions in the pyramidal - Martinotti-cell feedback loop. This inhibitory microcircuit is therefore tuned to refine and maintain head direction information in the presubiculum.' article_number: '16032' author: - first_name: Jean full_name: Simonnet, Jean last_name: Simonnet - first_name: Mérie full_name: Nassar, Mérie last_name: Nassar - first_name: Federico full_name: Stella, Federico id: 39AF1E74-F248-11E8-B48F-1D18A9856A87 last_name: Stella orcid: 0000-0001-9439-3148 - first_name: Ivan full_name: Cohen, Ivan last_name: Cohen - first_name: Bertrand full_name: Mathon, Bertrand last_name: Mathon - first_name: Charlotte full_name: Boccara, Charlotte id: 3FC06552-F248-11E8-B48F-1D18A9856A87 last_name: Boccara orcid: 0000-0001-7237-5109 - first_name: Richard full_name: Miles, Richard last_name: Miles - first_name: Desdemona full_name: Fricker, Desdemona last_name: Fricker citation: ama: Simonnet J, Nassar M, Stella F, et al. Activity dependent feedback inhibition may maintain head direction signals in mouse presubiculum. Nature Communications. 2017;8. doi:10.1038/ncomms16032 apa: Simonnet, J., Nassar, M., Stella, F., Cohen, I., Mathon, B., Boccara, C. N., … Fricker, D. (2017). Activity dependent feedback inhibition may maintain head direction signals in mouse presubiculum. Nature Communications. Nature Publishing Group. https://doi.org/10.1038/ncomms16032 chicago: Simonnet, Jean, Mérie Nassar, Federico Stella, Ivan Cohen, Bertrand Mathon, Charlotte N. Boccara, Richard Miles, and Desdemona Fricker. “Activity Dependent Feedback Inhibition May Maintain Head Direction Signals in Mouse Presubiculum.” Nature Communications. Nature Publishing Group, 2017. https://doi.org/10.1038/ncomms16032. ieee: J. Simonnet et al., “Activity dependent feedback inhibition may maintain head direction signals in mouse presubiculum,” Nature Communications, vol. 8. Nature Publishing Group, 2017. ista: Simonnet J, Nassar M, Stella F, Cohen I, Mathon B, Boccara CN, Miles R, Fricker D. 2017. Activity dependent feedback inhibition may maintain head direction signals in mouse presubiculum. Nature Communications. 8, 16032. mla: Simonnet, Jean, et al. “Activity Dependent Feedback Inhibition May Maintain Head Direction Signals in Mouse Presubiculum.” Nature Communications, vol. 8, 16032, Nature Publishing Group, 2017, doi:10.1038/ncomms16032. short: J. Simonnet, M. Nassar, F. Stella, I. Cohen, B. Mathon, C.N. Boccara, R. Miles, D. Fricker, Nature Communications 8 (2017). date_created: 2018-12-11T11:46:54Z date_published: 2017-07-01T00:00:00Z date_updated: 2021-01-12T08:01:16Z day: '01' ddc: - '571' department: - _id: JoCs doi: 10.1038/ncomms16032 file: - access_level: open_access checksum: 76d8a2b72a58e56adb410ec37dfa7eee content_type: application/pdf creator: system date_created: 2018-12-12T10:14:31Z date_updated: 2020-07-14T12:46:36Z file_id: '5083' file_name: IST-2018-937-v1+1_2017_Stella_Activity_dependent.pdf file_size: 2948357 relation: main_file file_date_updated: 2020-07-14T12:46:36Z has_accepted_license: '1' intvolume: ' 8' language: - iso: eng month: '07' oa: 1 oa_version: Published Version publication: Nature Communications publication_identifier: issn: - '20411723' publication_status: published publisher: Nature Publishing Group publist_id: '7305' pubrep_id: '937' quality_controlled: '1' scopus_import: 1 status: public title: Activity dependent feedback inhibition may maintain head direction signals in mouse presubiculum tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 8 year: '2017' ... --- _id: '837' abstract: - lang: eng text: 'The hippocampus is a key brain region for memory and notably for spatial memory, and is needed for both spatial working and reference memories. Hippocampal place cells selectively discharge in specific locations of the environment to form mnemonic represen tations of space. Several behavioral protocols have been designed to test spatial memory which requires the experimental subject to utilize working memory and reference memory. However, less is known about how these memory traces are presented in the hippo campus, especially considering tasks that require both spatial working and long -term reference memory demand. The aim of my thesis was to elucidate how spatial working memory, reference memory, and the combination of both are represented in the hippocampus. In this thesis, using a radial eight -arm maze, I examined how the combined demand on these memories influenced place cell assemblies while reference memories were partially updated by changing some of the reward- arms. This was contrasted with task varian ts requiring working or reference memories only. Reference memory update led to gradual place field shifts towards the rewards on the switched arms. Cells developed enhanced firing in passes between newly -rewarded arms as compared to those containing an unchanged reward. The working memory task did not show such gradual changes. Place assemblies on occasions replayed trajectories of the maze; at decision points the next arm choice was preferentially replayed in tasks needing reference memory while in the pure working memory task the previously visited arm was replayed. Hence trajectory replay only reflected the decision of the animal in tasks needing reference memory update. At the reward locations, in all three tasks outbound trajectories of the current arm were preferentially replayed, showing the animals’ next path to the center. At reward locations trajectories were replayed preferentially in reverse temporal order. Moreover, in the center reverse replay was seen in the working memory task but in the other tasks forward replay was seen. Hence, the direction of reactivation was determined by the goal locations so that part of the trajectory which was closer to the goal was reactivated later in an HSE while places further away from the goal were reactivated earlier. Altogether my work demonstrated that reference memory update triggers several levels of reorganization of the hippocampal cognitive map which are not seen in simpler working memory demand s. Moreover, hippocampus is likely to be involved in spatial decisions through reactivating planned trajectories when reference memory recall is required for such a decision. ' acknowledgement: 'I am very grateful for the opportunity I have had as a graduate student to explore and incredibly interesting branch of neuroscience, and for the people who made it possible. Firstly, I would like to offer my thanks to my supervisor Professor Jozsef Csicsvari for his great support, guidance and patience offered over the years. The door to his office was always open whenever I had questions. I have learned a lot from him about carefully designing experiments, asking interesting questions and how to integrate results into a broader picture. I also express my gratitude to the remarkable post- doc , Dr. Joseph O’Neill. He is a gre at scientific role model who is always willing to teach , and advice and talk through problems with his full attention. Many thanks to my wonderful “office mates” over the years and their support and encouragement, Alice Avernhe, Philipp Schönenberger, Desiree Dickerson, Karel Blahna, Charlotte Boccara, Igor Gridchyn, Peter Baracskay, Krisztián Kovács, Dámaris Rangel, Karola Käfer and Federico Stella. They were the ones in the lab for the many useful discussions about science and for making the laboratory such a nice and friendly place to work in. A special thank goes to Michael LoBianco and Jago Wallenschus for wonderful technical support. I would also like to thank Professor Peter Jonas and Professor David M Bannerman for being my qualifying exam and thesi s committee members despite their busy schedule. I am also very thankful to IST Austria for their support all throughout my PhD. ' alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Haibing full_name: Xu, Haibing id: 310349D0-F248-11E8-B48F-1D18A9856A87 last_name: Xu citation: ama: Xu H. Reactivation of the hippocampal cognitive map in goal-directed spatial tasks. 2017. doi:10.15479/AT:ISTA:th_858 apa: Xu, H. (2017). Reactivation of the hippocampal cognitive map in goal-directed spatial tasks. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:th_858 chicago: Xu, Haibing. “Reactivation of the Hippocampal Cognitive Map in Goal-Directed Spatial Tasks.” Institute of Science and Technology Austria, 2017. https://doi.org/10.15479/AT:ISTA:th_858. ieee: H. Xu, “Reactivation of the hippocampal cognitive map in goal-directed spatial tasks,” Institute of Science and Technology Austria, 2017. ista: Xu H. 2017. Reactivation of the hippocampal cognitive map in goal-directed spatial tasks. Institute of Science and Technology Austria. mla: Xu, Haibing. Reactivation of the Hippocampal Cognitive Map in Goal-Directed Spatial Tasks. Institute of Science and Technology Austria, 2017, doi:10.15479/AT:ISTA:th_858. short: H. Xu, Reactivation of the Hippocampal Cognitive Map in Goal-Directed Spatial Tasks, Institute of Science and Technology Austria, 2017. date_created: 2018-12-11T11:48:46Z date_published: 2017-08-23T00:00:00Z date_updated: 2023-09-07T12:06:38Z day: '23' ddc: - '571' degree_awarded: PhD department: - _id: JoCs doi: 10.15479/AT:ISTA:th_858 file: - access_level: closed checksum: f11925fbbce31e495124b6bc4f10573c content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: dernst date_created: 2019-04-05T08:59:51Z date_updated: 2020-07-14T12:48:12Z file_id: '6213' file_name: 2017_Xu_Haibing_Thesis_Source.docx file_size: 3589490 relation: source_file - access_level: open_access checksum: ffb10749a537d615fab1ef0937ccb157 content_type: application/pdf creator: dernst date_created: 2019-04-05T08:59:51Z date_updated: 2020-07-14T12:48:12Z file_id: '6214' file_name: 2017_Xu_Thesis_IST.pdf file_size: 11668613 relation: main_file file_date_updated: 2020-07-14T12:48:12Z has_accepted_license: '1' language: - iso: eng month: '08' oa: 1 oa_version: Published Version page: '93' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '6811' pubrep_id: '858' related_material: record: - id: '5828' relation: part_of_dissertation status: public status: public supervisor: - first_name: Jozsef L full_name: Csicsvari, Jozsef L id: 3FA14672-F248-11E8-B48F-1D18A9856A87 last_name: Csicsvari orcid: 0000-0002-5193-4036 title: Reactivation of the hippocampal cognitive map in goal-directed spatial tasks tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2017' ... --- _id: '1118' abstract: - lang: eng text: Sharp wave-ripple (SWR) oscillations play a key role in memory consolidation during non-rapid eye movement sleep, immobility, and consummatory behavior. However, whether temporally modulated synaptic excitation or inhibition underlies the ripples is controversial. To address this question, we performed simultaneous recordings of excitatory and inhibitory postsynaptic currents (EPSCs and IPSCs) and local field potentials (LFPs) in the CA1 region of awake mice in vivo. During SWRs, inhibition dominated over excitation, with a peak conductance ratio of 4.1 ± 0.5. Furthermore, the amplitude of SWR-associated IPSCs was positively correlated with SWR magnitude, whereas that of EPSCs was not. Finally, phase analysis indicated that IPSCs were phase-locked to individual ripple cycles, whereas EPSCs were uniformly distributed in phase space. Optogenetic inhibition indicated that PV+ interneurons provided a major contribution to SWR-associated IPSCs. Thus, phasic inhibition, but not excitation, shapes SWR oscillations in the hippocampal CA1 region in vivo. acknowledged_ssus: - _id: M-Shop - _id: ScienComp - _id: PreCl article_processing_charge: No author: - first_name: Jian full_name: Gan, Jian id: 3614E438-F248-11E8-B48F-1D18A9856A87 last_name: Gan - first_name: Shih-Ming full_name: Weng, Shih-Ming id: 2F9C5AC8-F248-11E8-B48F-1D18A9856A87 last_name: Weng - first_name: Alejandro full_name: Pernia-Andrade, Alejandro id: 36963E98-F248-11E8-B48F-1D18A9856A87 last_name: Pernia-Andrade - first_name: Jozsef L full_name: Csicsvari, Jozsef L id: 3FA14672-F248-11E8-B48F-1D18A9856A87 last_name: Csicsvari orcid: 0000-0002-5193-4036 - first_name: Peter M full_name: Jonas, Peter M id: 353C1B58-F248-11E8-B48F-1D18A9856A87 last_name: Jonas orcid: 0000-0001-5001-4804 citation: ama: Gan J, Weng S-M, Pernia-Andrade A, Csicsvari JL, Jonas PM. Phase-locked inhibition, but not excitation, underlies hippocampal ripple oscillations in awake mice in vivo. Neuron. 2017;93(2):308-314. doi:10.1016/j.neuron.2016.12.018 apa: Gan, J., Weng, S.-M., Pernia-Andrade, A., Csicsvari, J. L., & Jonas, P. M. (2017). Phase-locked inhibition, but not excitation, underlies hippocampal ripple oscillations in awake mice in vivo. Neuron. Elsevier. https://doi.org/10.1016/j.neuron.2016.12.018 chicago: Gan, Jian, Shih-Ming Weng, Alejandro Pernia-Andrade, Jozsef L Csicsvari, and Peter M Jonas. “Phase-Locked Inhibition, but Not Excitation, Underlies Hippocampal Ripple Oscillations in Awake Mice in Vivo.” Neuron. Elsevier, 2017. https://doi.org/10.1016/j.neuron.2016.12.018. ieee: J. Gan, S.-M. Weng, A. Pernia-Andrade, J. L. Csicsvari, and P. M. Jonas, “Phase-locked inhibition, but not excitation, underlies hippocampal ripple oscillations in awake mice in vivo,” Neuron, vol. 93, no. 2. Elsevier, pp. 308–314, 2017. ista: Gan J, Weng S-M, Pernia-Andrade A, Csicsvari JL, Jonas PM. 2017. Phase-locked inhibition, but not excitation, underlies hippocampal ripple oscillations in awake mice in vivo. Neuron. 93(2), 308–314. mla: Gan, Jian, et al. “Phase-Locked Inhibition, but Not Excitation, Underlies Hippocampal Ripple Oscillations in Awake Mice in Vivo.” Neuron, vol. 93, no. 2, Elsevier, 2017, pp. 308–14, doi:10.1016/j.neuron.2016.12.018. short: J. Gan, S.-M. Weng, A. Pernia-Andrade, J.L. Csicsvari, P.M. Jonas, Neuron 93 (2017) 308–314. date_created: 2018-12-11T11:50:15Z date_published: 2017-01-18T00:00:00Z date_updated: 2023-09-20T11:31:48Z day: '18' ddc: - '571' department: - _id: PeJo - _id: JoCs doi: 10.1016/j.neuron.2016.12.018 ec_funded: 1 external_id: isi: - '000396428200010' file: - access_level: open_access content_type: application/pdf creator: system date_created: 2018-12-12T10:08:56Z date_updated: 2018-12-12T10:08:56Z file_id: '4719' file_name: IST-2017-752-v1+1_1-s2.0-S0896627316309606-main.pdf file_size: 2738950 relation: main_file file_date_updated: 2018-12-12T10:08:56Z has_accepted_license: '1' intvolume: ' 93' isi: 1 issue: '2' language: - iso: eng month: '01' oa: 1 oa_version: Published Version page: 308 - 314 project: - _id: 25C26B1E-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P24909-B24 name: Mechanisms of transmitter release at GABAergic synapses - _id: 25C0F108-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '268548' name: Nanophysiology of fast-spiking, parvalbumin-expressing GABAergic interneurons publication: Neuron publication_status: published publisher: Elsevier publist_id: '6244' pubrep_id: '752' quality_controlled: '1' scopus_import: '1' status: public title: Phase-locked inhibition, but not excitation, underlies hippocampal ripple oscillations in awake mice in vivo tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 93 year: '2017' ... --- _id: '1132' abstract: - lang: eng text: The hippocampus is thought to initiate systems-wide mnemonic processes through the reactivation of previously acquired spatial and episodic memory traces, which can recruit the entorhinal cortex as a first stage of memory redistribution to other brain areas. Hippocampal reactivation occurs during sharp wave-ripples, in which synchronous network firing encodes sequences of places.We investigated the coordination of this replay by recording assembly activity simultaneously in the CA1 region of the hippocampus and superficial layers of the medial entorhinal cortex. We found that entorhinal cell assemblies can replay trajectories independently of the hippocampus and sharp wave-ripples. This suggests that the hippocampus is not the sole initiator of spatial and episodic memory trace reactivation. Memory systems involved in these processes may include nonhierarchical, parallel components. article_processing_charge: No author: - first_name: Joseph full_name: O'Neill, Joseph id: 426376DC-F248-11E8-B48F-1D18A9856A87 last_name: O'Neill - first_name: Charlotte full_name: Boccara, Charlotte id: 3FC06552-F248-11E8-B48F-1D18A9856A87 last_name: Boccara orcid: 0000-0001-7237-5109 - first_name: Federico full_name: Stella, Federico id: 39AF1E74-F248-11E8-B48F-1D18A9856A87 last_name: Stella orcid: 0000-0001-9439-3148 - first_name: Philipp full_name: Schönenberger, Philipp id: 3B9D816C-F248-11E8-B48F-1D18A9856A87 last_name: Schönenberger - first_name: Jozsef L full_name: Csicsvari, Jozsef L id: 3FA14672-F248-11E8-B48F-1D18A9856A87 last_name: Csicsvari orcid: 0000-0002-5193-4036 citation: ama: O’Neill J, Boccara CN, Stella F, Schönenberger P, Csicsvari JL. Superficial layers of the medial entorhinal cortex replay independently of the hippocampus. Science. 2017;355(6321):184-188. doi:10.1126/science.aag2787 apa: O’Neill, J., Boccara, C. N., Stella, F., Schönenberger, P., & Csicsvari, J. L. (2017). Superficial layers of the medial entorhinal cortex replay independently of the hippocampus. Science. American Association for the Advancement of Science. https://doi.org/10.1126/science.aag2787 chicago: O’Neill, Joseph, Charlotte N. Boccara, Federico Stella, Philipp Schönenberger, and Jozsef L Csicsvari. “Superficial Layers of the Medial Entorhinal Cortex Replay Independently of the Hippocampus.” Science. American Association for the Advancement of Science, 2017. https://doi.org/10.1126/science.aag2787. ieee: J. O’Neill, C. N. Boccara, F. Stella, P. Schönenberger, and J. L. Csicsvari, “Superficial layers of the medial entorhinal cortex replay independently of the hippocampus,” Science, vol. 355, no. 6321. American Association for the Advancement of Science, pp. 184–188, 2017. ista: O’Neill J, Boccara CN, Stella F, Schönenberger P, Csicsvari JL. 2017. Superficial layers of the medial entorhinal cortex replay independently of the hippocampus. Science. 355(6321), 184–188. mla: O’Neill, Joseph, et al. “Superficial Layers of the Medial Entorhinal Cortex Replay Independently of the Hippocampus.” Science, vol. 355, no. 6321, American Association for the Advancement of Science, 2017, pp. 184–88, doi:10.1126/science.aag2787. short: J. O’Neill, C.N. Boccara, F. Stella, P. Schönenberger, J.L. Csicsvari, Science 355 (2017) 184–188. date_created: 2018-12-11T11:50:19Z date_published: 2017-01-13T00:00:00Z date_updated: 2023-09-20T11:30:35Z day: '13' ddc: - '571' department: - _id: JoCs doi: 10.1126/science.aag2787 ec_funded: 1 external_id: isi: - '000391743700044' file: - access_level: open_access content_type: application/pdf creator: system date_created: 2018-12-12T10:10:22Z date_updated: 2018-12-12T10:10:22Z file_id: '4809' file_name: IST-2018-976-v1+1_2017Preprint_ONeill_Superficial_layers.pdf file_size: 3761201 relation: main_file file_date_updated: 2018-12-12T10:10:22Z has_accepted_license: '1' intvolume: ' 355' isi: 1 issue: '6321' language: - iso: eng month: '01' oa: 1 oa_version: Submitted Version page: 184 - 188 project: - _id: 257A4776-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '281511' name: Memory-related information processing in neuronal circuits of the hippocampus and entorhinal cortex publication: Science publication_identifier: issn: - '00368075' publication_status: published publisher: American Association for the Advancement of Science publist_id: '6226' pubrep_id: '976' quality_controlled: '1' scopus_import: '1' status: public title: Superficial layers of the medial entorhinal cortex replay independently of the hippocampus type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 355 year: '2017' ... --- _id: '993' abstract: - lang: eng text: In real-world applications, observations are often constrained to a small fraction of a system. Such spatial subsampling can be caused by the inaccessibility or the sheer size of the system, and cannot be overcome by longer sampling. Spatial subsampling can strongly bias inferences about a system’s aggregated properties. To overcome the bias, we derive analytically a subsampling scaling framework that is applicable to different observables, including distributions of neuronal avalanches, of number of people infected during an epidemic outbreak, and of node degrees. We demonstrate how to infer the correct distributions of the underlying full system, how to apply it to distinguish critical from subcritical systems, and how to disentangle subsampling and finite size effects. Lastly, we apply subsampling scaling to neuronal avalanche models and to recordings from developing neural networks. We show that only mature, but not young networks follow power-law scaling, indicating self-organization to criticality during development. article_number: '15140' article_processing_charge: Yes (in subscription journal) author: - first_name: Anna full_name: Levina (Martius), Anna id: 35AF8020-F248-11E8-B48F-1D18A9856A87 last_name: Levina (Martius) - first_name: Viola full_name: Priesemann, Viola last_name: Priesemann citation: ama: Levina (Martius) A, Priesemann V. Subsampling scaling. Nature Communications. 2017;8. doi:10.1038/ncomms15140 apa: Levina (Martius), A., & Priesemann, V. (2017). Subsampling scaling. Nature Communications. Nature Publishing Group. https://doi.org/10.1038/ncomms15140 chicago: Levina (Martius), Anna, and Viola Priesemann. “Subsampling Scaling.” Nature Communications. Nature Publishing Group, 2017. https://doi.org/10.1038/ncomms15140. ieee: A. Levina (Martius) and V. Priesemann, “Subsampling scaling,” Nature Communications, vol. 8. Nature Publishing Group, 2017. ista: Levina (Martius) A, Priesemann V. 2017. Subsampling scaling. Nature Communications. 8, 15140. mla: Levina (Martius), Anna, and Viola Priesemann. “Subsampling Scaling.” Nature Communications, vol. 8, 15140, Nature Publishing Group, 2017, doi:10.1038/ncomms15140. short: A. Levina (Martius), V. Priesemann, Nature Communications 8 (2017). date_created: 2018-12-11T11:49:35Z date_published: 2017-05-04T00:00:00Z date_updated: 2023-09-22T09:54:07Z day: '04' ddc: - '005' - '571' department: - _id: GaTk - _id: JoCs doi: 10.1038/ncomms15140 ec_funded: 1 external_id: isi: - '000400560700001' file: - access_level: open_access checksum: 9880212f8c4c53404c7c6fbf9023c53a content_type: application/pdf creator: system date_created: 2018-12-12T10:15:05Z date_updated: 2020-07-14T12:48:19Z file_id: '5122' file_name: IST-2017-819-v1+1_2017_Levina_SubsamplingScaling.pdf file_size: 746224 relation: main_file file_date_updated: 2020-07-14T12:48:19Z has_accepted_license: '1' intvolume: ' 8' isi: 1 language: - iso: eng month: '05' oa: 1 oa_version: Published Version project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: Nature Communications publication_identifier: issn: - '20411723' publication_status: published publisher: Nature Publishing Group publist_id: '6406' pubrep_id: '819' quality_controlled: '1' scopus_import: '1' status: public title: Subsampling scaling tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 8 year: '2017' ... --- _id: '1279' abstract: - lang: eng text: During hippocampal sharp wave/ripple (SWR) events, previously occurring, sensory inputdriven neuronal firing patterns are replayed. Such replay is thought to be important for plasticity- related processes and consolidation of memory traces. It has previously been shown that the electrical stimulation-induced disruption of SWR events interferes with learning in rodents in different experimental paradigms. On the other hand, the cognitive map theory posits that the plastic changes of the firing of hippocampal place cells constitute the electrophysiological counterpart of the spatial learning, observable at the behavioral level. Therefore, we tested whether intact SWR events occurring during the sleep/rest session after the first exploration of a novel environment are needed for the stabilization of the CA1 code, which process requires plasticity. We found that the newly-formed representation in the CA1 has the same level of stability with optogenetic SWR blockade as with a control manipulation that delivered the same amount of light into the brain. Therefore our results suggest that at least in the case of passive exploratory behavior, SWR-related plasticity is dispensable for the stability of CA1 ensembles. acknowledgement: 'The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union''s Seventh Framework Programme (FP7/2007-2013) under REA grant agreement n° [291734] via the IST FELLOWSHIP awarded to Dr. Krisztián A. Kovács and the European Research Council starting grant (acronym: HIPECMEM Project reference: 281511) awarded to Dr. Jozsef Csicsvari. We thank Lauri Viljanto for technical help in building the ripple detector.' article_number: e0164675 author: - first_name: Krisztián full_name: Kovács, Krisztián id: 2AB5821E-F248-11E8-B48F-1D18A9856A87 last_name: Kovács - first_name: Joseph full_name: O'Neill, Joseph id: 426376DC-F248-11E8-B48F-1D18A9856A87 last_name: O'Neill - first_name: Philipp full_name: Schönenberger, Philipp id: 3B9D816C-F248-11E8-B48F-1D18A9856A87 last_name: Schönenberger - first_name: Markku full_name: Penttonen, Markku last_name: Penttonen - first_name: Dámaris K full_name: Rangel Guerrero, Dámaris K id: 4871BCE6-F248-11E8-B48F-1D18A9856A87 last_name: Rangel Guerrero orcid: 0000-0002-8602-4374 - first_name: Jozsef L full_name: Csicsvari, Jozsef L id: 3FA14672-F248-11E8-B48F-1D18A9856A87 last_name: Csicsvari orcid: 0000-0002-5193-4036 citation: ama: Kovács K, O’Neill J, Schönenberger P, Penttonen M, Rangel Guerrero DK, Csicsvari JL. Optogenetically blocking sharp wave ripple events in sleep does not interfere with the formation of stable spatial representation in the CA1 area of the hippocampus. PLoS One. 2016;11(10). doi:10.1371/journal.pone.0164675 apa: Kovács, K., O’Neill, J., Schönenberger, P., Penttonen, M., Rangel Guerrero, D. K., & Csicsvari, J. L. (2016). Optogenetically blocking sharp wave ripple events in sleep does not interfere with the formation of stable spatial representation in the CA1 area of the hippocampus. PLoS One. Public Library of Science. https://doi.org/10.1371/journal.pone.0164675 chicago: Kovács, Krisztián, Joseph O’Neill, Philipp Schönenberger, Markku Penttonen, Dámaris K Rangel Guerrero, and Jozsef L Csicsvari. “Optogenetically Blocking Sharp Wave Ripple Events in Sleep Does Not Interfere with the Formation of Stable Spatial Representation in the CA1 Area of the Hippocampus.” PLoS One. Public Library of Science, 2016. https://doi.org/10.1371/journal.pone.0164675. ieee: K. Kovács, J. O’Neill, P. Schönenberger, M. Penttonen, D. K. Rangel Guerrero, and J. L. Csicsvari, “Optogenetically blocking sharp wave ripple events in sleep does not interfere with the formation of stable spatial representation in the CA1 area of the hippocampus,” PLoS One, vol. 11, no. 10. Public Library of Science, 2016. ista: Kovács K, O’Neill J, Schönenberger P, Penttonen M, Rangel Guerrero DK, Csicsvari JL. 2016. Optogenetically blocking sharp wave ripple events in sleep does not interfere with the formation of stable spatial representation in the CA1 area of the hippocampus. PLoS One. 11(10), e0164675. mla: Kovács, Krisztián, et al. “Optogenetically Blocking Sharp Wave Ripple Events in Sleep Does Not Interfere with the Formation of Stable Spatial Representation in the CA1 Area of the Hippocampus.” PLoS One, vol. 11, no. 10, e0164675, Public Library of Science, 2016, doi:10.1371/journal.pone.0164675. short: K. Kovács, J. O’Neill, P. Schönenberger, M. Penttonen, D.K. Rangel Guerrero, J.L. Csicsvari, PLoS One 11 (2016). date_created: 2018-12-11T11:51:06Z date_published: 2016-10-19T00:00:00Z date_updated: 2021-01-12T06:49:35Z day: '19' ddc: - '570' - '571' department: - _id: JoCs doi: 10.1371/journal.pone.0164675 ec_funded: 1 file: - access_level: open_access checksum: 395895ecb2216e9c39135abaa56b28b3 content_type: application/pdf creator: system date_created: 2018-12-12T10:13:26Z date_updated: 2020-07-14T12:44:42Z file_id: '5009' file_name: IST-2016-690-v1+1_journal.pone.0164675.PDF file_size: 4353592 relation: main_file file_date_updated: 2020-07-14T12:44:42Z has_accepted_license: '1' intvolume: ' 11' issue: '10' language: - iso: eng month: '10' oa: 1 oa_version: Published Version project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme - _id: 257A4776-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '281511' name: Memory-related information processing in neuronal circuits of the hippocampus and entorhinal cortex publication: PLoS One publication_status: published publisher: Public Library of Science publist_id: '6037' pubrep_id: '690' quality_controlled: '1' scopus_import: 1 status: public title: Optogenetically blocking sharp wave ripple events in sleep does not interfere with the formation of stable spatial representation in the CA1 area of the hippocampus tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 11 year: '2016' ... --- _id: '1334' abstract: - lang: eng text: Hippocampal neurons encode a cognitive map of space. These maps are thought to be updated during learning and in response to changes in the environment through activity-dependent synaptic plasticity. Here we examine how changes in activity influence spatial coding in rats using halorhodopsin-mediated, spatially selective optogenetic silencing. Halorhoposin stimulation leads to light-induced suppression in many place cells and interneurons; some place cells increase their firing through disinhibition, whereas some show no effect. We find that place fields of the unaffected subpopulation remain stable. On the other hand, place fields of suppressed place cells were unstable, showing remapping across sessions before and after optogenetic inhibition. Disinhibited place cells had stable maps but sustained an elevated firing rate. These findings suggest that place representation in the hippocampus is constantly governed by activity-dependent processes, and that disinhibition may provide a mechanism for rate remapping. article_number: '11824' author: - first_name: Philipp full_name: Schönenberger, Philipp id: 3B9D816C-F248-11E8-B48F-1D18A9856A87 last_name: Schönenberger - first_name: Joseph full_name: O'Neill, Joseph id: 426376DC-F248-11E8-B48F-1D18A9856A87 last_name: O'Neill - first_name: Jozsef L full_name: Csicsvari, Jozsef L id: 3FA14672-F248-11E8-B48F-1D18A9856A87 last_name: Csicsvari orcid: 0000-0002-5193-4036 citation: ama: Schönenberger P, O’Neill J, Csicsvari JL. Activity dependent plasticity of hippocampal place maps. Nature Communications. 2016;7. doi:10.1038/ncomms11824 apa: Schönenberger, P., O’Neill, J., & Csicsvari, J. L. (2016). Activity dependent plasticity of hippocampal place maps. Nature Communications. Nature Publishing Group. https://doi.org/10.1038/ncomms11824 chicago: Schönenberger, Philipp, Joseph O’Neill, and Jozsef L Csicsvari. “Activity Dependent Plasticity of Hippocampal Place Maps.” Nature Communications. Nature Publishing Group, 2016. https://doi.org/10.1038/ncomms11824. ieee: P. Schönenberger, J. O’Neill, and J. L. Csicsvari, “Activity dependent plasticity of hippocampal place maps,” Nature Communications, vol. 7. Nature Publishing Group, 2016. ista: Schönenberger P, O’Neill J, Csicsvari JL. 2016. Activity dependent plasticity of hippocampal place maps. Nature Communications. 7, 11824. mla: Schönenberger, Philipp, et al. “Activity Dependent Plasticity of Hippocampal Place Maps.” Nature Communications, vol. 7, 11824, Nature Publishing Group, 2016, doi:10.1038/ncomms11824. short: P. Schönenberger, J. O’Neill, J.L. Csicsvari, Nature Communications 7 (2016). date_created: 2018-12-11T11:51:26Z date_published: 2016-06-10T00:00:00Z date_updated: 2021-01-12T06:49:57Z day: '10' ddc: - '570' department: - _id: JoCs doi: 10.1038/ncomms11824 ec_funded: 1 file: - access_level: open_access checksum: e43307754abe65b840a21939fe163618 content_type: application/pdf creator: system date_created: 2018-12-12T10:16:10Z date_updated: 2020-07-14T12:44:44Z file_id: '5196' file_name: IST-2016-660-v1+1_ncomms11824.pdf file_size: 1793846 relation: main_file file_date_updated: 2020-07-14T12:44:44Z has_accepted_license: '1' intvolume: ' 7' language: - iso: eng month: '06' oa: 1 oa_version: Published Version project: - _id: 257A4776-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '281511' name: Memory-related information processing in neuronal circuits of the hippocampus and entorhinal cortex - _id: 257D4372-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I2072-B27 name: Interneuron plasticity during spatial learning publication: Nature Communications publication_status: published publisher: Nature Publishing Group publist_id: '5934' pubrep_id: '660' quality_controlled: '1' scopus_import: 1 status: public title: Activity dependent plasticity of hippocampal place maps tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 7 year: '2016' ... --- _id: '1487' abstract: - lang: eng text: Rhythms with time scales of multiple cycles per second permeate the mammalian brain, yet neuroscientists are not certain of their functional roles. One leading idea is that coherent oscillation between two brain regions facilitates the exchange of information between them. In rats, the hippocampus and the vibrissal sensorimotor system both are characterized by rhythmic oscillation in the theta range, 5–12 Hz. Previous work has been divided as to whether the two rhythms are independent or coherent. To resolve this question, we acquired three measures from rats—whisker motion, hippocampal local field potential (LFP), and barrel cortex unit firing—during a whisker-mediated texture discrimination task and during control conditions (not engaged in a whisker-mediated memory task). Compared to control conditions, the theta band of hippocampal LFP showed a marked increase in power as the rats approached and then palpated the texture. Phase synchronization between whisking and hippocampal LFP increased by almost 50% during approach and texture palpation. In addition, a greater proportion of barrel cortex neurons showed firing that was phase-locked to hippocampal theta while rats were engaged in the discrimination task. Consistent with a behavioral consequence of phase synchronization, the rats identified the texture more rapidly and with lower error likelihood on trials in which there was an increase in theta-whisking coherence at the moment of texture palpation. These results suggest that coherence between the whisking rhythm, barrel cortex firing, and hippocampal LFP is augmented selectively during epochs in which the rat collects sensory information and that such coherence enhances the efficiency of integration of stimulus information into memory and decision-making centers. acknowledgement: We thank Eric Maris, Demian Battaglia, and Rodrigo Quian Quiroga for useful discussions. We are grateful to Fabrizio Manzino and Marco Gigante for construction of the behavioral apparatus, Igor Perkon for developing custom whisker tracking software and to Francesca Pulecchi for animal care and histological processing. article_number: e1002384 author: - first_name: Natalia full_name: Grion, Natalia last_name: Grion - first_name: Athena full_name: Akrami, Athena last_name: Akrami - first_name: Yangfang full_name: Zuo, Yangfang last_name: Zuo - first_name: Federico full_name: Stella, Federico id: 39AF1E74-F248-11E8-B48F-1D18A9856A87 last_name: Stella orcid: 0000-0001-9439-3148 - first_name: Mathew full_name: Diamond, Mathew last_name: Diamond citation: ama: Grion N, Akrami A, Zuo Y, Stella F, Diamond M. Coherence between rat sensorimotor system and hippocampus is enhanced during tactile discrimination. PLoS Biology. 2016;14(2). doi:10.1371/journal.pbio.1002384 apa: Grion, N., Akrami, A., Zuo, Y., Stella, F., & Diamond, M. (2016). Coherence between rat sensorimotor system and hippocampus is enhanced during tactile discrimination. PLoS Biology. Public Library of Science. https://doi.org/10.1371/journal.pbio.1002384 chicago: Grion, Natalia, Athena Akrami, Yangfang Zuo, Federico Stella, and Mathew Diamond. “Coherence between Rat Sensorimotor System and Hippocampus Is Enhanced during Tactile Discrimination.” PLoS Biology. Public Library of Science, 2016. https://doi.org/10.1371/journal.pbio.1002384. ieee: N. Grion, A. Akrami, Y. Zuo, F. Stella, and M. Diamond, “Coherence between rat sensorimotor system and hippocampus is enhanced during tactile discrimination,” PLoS Biology, vol. 14, no. 2. Public Library of Science, 2016. ista: Grion N, Akrami A, Zuo Y, Stella F, Diamond M. 2016. Coherence between rat sensorimotor system and hippocampus is enhanced during tactile discrimination. PLoS Biology. 14(2), e1002384. mla: Grion, Natalia, et al. “Coherence between Rat Sensorimotor System and Hippocampus Is Enhanced during Tactile Discrimination.” PLoS Biology, vol. 14, no. 2, e1002384, Public Library of Science, 2016, doi:10.1371/journal.pbio.1002384. short: N. Grion, A. Akrami, Y. Zuo, F. Stella, M. Diamond, PLoS Biology 14 (2016). date_created: 2018-12-11T11:52:18Z date_published: 2016-02-18T00:00:00Z date_updated: 2021-01-12T06:51:05Z day: '18' ddc: - '570' department: - _id: JoCs doi: 10.1371/journal.pbio.1002384 file: - access_level: open_access checksum: 3a5ce0d4e4e36bd6ceb4be761f85644a content_type: application/pdf creator: system date_created: 2018-12-12T10:15:11Z date_updated: 2020-07-14T12:44:57Z file_id: '5129' file_name: IST-2016-518-v1+1_journal.pbio.1002384.PDF file_size: 2879899 relation: main_file file_date_updated: 2020-07-14T12:44:57Z has_accepted_license: '1' intvolume: ' 14' issue: '2' language: - iso: eng month: '02' oa: 1 oa_version: Published Version publication: PLoS Biology publication_status: published publisher: Public Library of Science publist_id: '5700' pubrep_id: '518' quality_controlled: '1' scopus_import: 1 status: public title: Coherence between rat sensorimotor system and hippocampus is enhanced during tactile discrimination tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 14 year: '2016' ... --- _id: '1663' abstract: - lang: eng text: CREB-binding protein (CBP) and p300 are transcriptional coactivators involved in numerous biological processes that affect cell growth, transformation, differentiation, and development. In this study, we provide evidence of the involvement of homeodomain-interacting protein kinase 2 (HIPK2) in the regulation of CBP activity. We show that HIPK2 interacts with and phosphorylates several regions of CBP. We demonstrate that serines 2361, 2363, 2371, 2376, and 2381 are responsible for the HIPK2-induced mobility shift of CBP C-terminal activation domain. Moreover, we show that HIPK2 strongly potentiates the transcriptional activity of CBP. However, our data suggest that HIPK2 activates CBP mainly by counteracting the repressive action of cell cycle regulatory domain 1 (CRD1), located between amino acids 977 and 1076, independently of CBP phosphorylation. Our findings thus highlight a complex regulation of CBP activity by HIPK2, which might be relevant for the control of specific sets of target genes involved in cellular proliferation, differentiation and apoptosis. author: - first_name: Krisztián full_name: Kovács, Krisztián id: 2AB5821E-F248-11E8-B48F-1D18A9856A87 last_name: Kovács - first_name: Myriam full_name: Steinmann, Myriam last_name: Steinmann - first_name: Olivier full_name: Halfon, Olivier last_name: Halfon - first_name: Pierre full_name: Magistretti, Pierre last_name: Magistretti - first_name: Jean full_name: Cardinaux, Jean last_name: Cardinaux citation: ama: Kovács K, Steinmann M, Halfon O, Magistretti P, Cardinaux J. Complex regulation of CREB-binding protein by homeodomain-interacting protein kinase 2. Cellular Signalling. 2015;27(11):2252-2260. doi:10.1016/j.cellsig.2015.08.001 apa: Kovács, K., Steinmann, M., Halfon, O., Magistretti, P., & Cardinaux, J. (2015). Complex regulation of CREB-binding protein by homeodomain-interacting protein kinase 2. Cellular Signalling. Elsevier. https://doi.org/10.1016/j.cellsig.2015.08.001 chicago: Kovács, Krisztián, Myriam Steinmann, Olivier Halfon, Pierre Magistretti, and Jean Cardinaux. “Complex Regulation of CREB-Binding Protein by Homeodomain-Interacting Protein Kinase 2.” Cellular Signalling. Elsevier, 2015. https://doi.org/10.1016/j.cellsig.2015.08.001. ieee: K. Kovács, M. Steinmann, O. Halfon, P. Magistretti, and J. Cardinaux, “Complex regulation of CREB-binding protein by homeodomain-interacting protein kinase 2,” Cellular Signalling, vol. 27, no. 11. Elsevier, pp. 2252–2260, 2015. ista: Kovács K, Steinmann M, Halfon O, Magistretti P, Cardinaux J. 2015. Complex regulation of CREB-binding protein by homeodomain-interacting protein kinase 2. Cellular Signalling. 27(11), 2252–2260. mla: Kovács, Krisztián, et al. “Complex Regulation of CREB-Binding Protein by Homeodomain-Interacting Protein Kinase 2.” Cellular Signalling, vol. 27, no. 11, Elsevier, 2015, pp. 2252–60, doi:10.1016/j.cellsig.2015.08.001. short: K. Kovács, M. Steinmann, O. Halfon, P. Magistretti, J. Cardinaux, Cellular Signalling 27 (2015) 2252–2260. date_created: 2018-12-11T11:53:20Z date_published: 2015-11-01T00:00:00Z date_updated: 2021-01-12T06:52:22Z day: '01' ddc: - '570' department: - _id: JoCs doi: 10.1016/j.cellsig.2015.08.001 ec_funded: 1 file: - access_level: local checksum: 4ee690b6444b7a43523237f0941457d1 content_type: application/pdf creator: system date_created: 2018-12-12T10:18:03Z date_updated: 2020-07-14T12:45:10Z file_id: '5321' file_name: IST-2016-578-v1+1_CLS-D-15-00072R1_.pdf file_size: 1735337 relation: main_file file_date_updated: 2020-07-14T12:45:10Z has_accepted_license: '1' intvolume: ' 27' issue: '11' language: - iso: eng month: '11' oa_version: Published Version page: 2252 - 2260 project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: Cellular Signalling publication_status: published publisher: Elsevier publist_id: '5487' pubrep_id: '578' quality_controlled: '1' scopus_import: 1 status: public title: Complex regulation of CREB-binding protein by homeodomain-interacting protein kinase 2 tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 27 year: '2015' ... --- _id: '1874' abstract: - lang: eng text: 'The hippocampal region, comprising the hippocampal formation and the parahippocampal region, has been one of the most intensively studied parts of the brain for decades. Better understanding of its functional diversity and complexity has led to an increased demand for specificity in experimental procedures and manipulations. In view of the complex 3D structure of the hippocampal region, precisely positioned experimental approaches require a fine-grained architectural description that is available and readable to experimentalists lacking detailed anatomical experience. In this paper, we provide the first cyto- and chemoarchitectural description of the hippocampal formation and parahippocampal region in the rat at high resolution and in the three standard sectional planes: coronal, horizontal and sagittal. The atlas uses a series of adjacent sections stained for neurons and for a number of chemical marker substances, particularly parvalbumin and calbindin. All the borders defined in one plane have been cross-checked against their counterparts in the other two planes. The entire dataset will be made available as a web-based interactive application through the Rodent Brain WorkBench (http://www.rbwb.org) which, together with this paper, provides a unique atlas resource.' author: - first_name: Charlotte full_name: Boccara, Charlotte id: 3FC06552-F248-11E8-B48F-1D18A9856A87 last_name: Boccara orcid: 0000-0001-7237-5109 - first_name: Lisa full_name: Kjønigsen, Lisa last_name: Kjønigsen - first_name: Ingvild full_name: Hammer, Ingvild last_name: Hammer - first_name: Jan full_name: Bjaalie, Jan last_name: Bjaalie - first_name: Trygve full_name: Leergaard, Trygve last_name: Leergaard - first_name: Menno full_name: Witter, Menno last_name: Witter citation: ama: Boccara CN, Kjønigsen L, Hammer I, Bjaalie J, Leergaard T, Witter M. A three-plane architectonic atlas of the rat hippocampal region. Hippocampus. 2015;25(7):838-857. doi:10.1002/hipo.22407 apa: Boccara, C. N., Kjønigsen, L., Hammer, I., Bjaalie, J., Leergaard, T., & Witter, M. (2015). A three-plane architectonic atlas of the rat hippocampal region. Hippocampus. Wiley. https://doi.org/10.1002/hipo.22407 chicago: Boccara, Charlotte N., Lisa Kjønigsen, Ingvild Hammer, Jan Bjaalie, Trygve Leergaard, and Menno Witter. “A Three-Plane Architectonic Atlas of the Rat Hippocampal Region.” Hippocampus. Wiley, 2015. https://doi.org/10.1002/hipo.22407. ieee: C. N. Boccara, L. Kjønigsen, I. Hammer, J. Bjaalie, T. Leergaard, and M. Witter, “A three-plane architectonic atlas of the rat hippocampal region,” Hippocampus, vol. 25, no. 7. Wiley, pp. 838–857, 2015. ista: Boccara CN, Kjønigsen L, Hammer I, Bjaalie J, Leergaard T, Witter M. 2015. A three-plane architectonic atlas of the rat hippocampal region. Hippocampus. 25(7), 838–857. mla: Boccara, Charlotte N., et al. “A Three-Plane Architectonic Atlas of the Rat Hippocampal Region.” Hippocampus, vol. 25, no. 7, Wiley, 2015, pp. 838–57, doi:10.1002/hipo.22407. short: C.N. Boccara, L. Kjønigsen, I. Hammer, J. Bjaalie, T. Leergaard, M. Witter, Hippocampus 25 (2015) 838–857. date_created: 2018-12-11T11:54:29Z date_published: 2015-07-01T00:00:00Z date_updated: 2021-01-12T06:53:46Z day: '01' department: - _id: JoCs doi: 10.1002/hipo.22407 intvolume: ' 25' issue: '7' language: - iso: eng month: '07' oa_version: None page: 838 - 857 publication: Hippocampus publication_status: published publisher: Wiley publist_id: '5222' quality_controlled: '1' scopus_import: 1 status: public title: A three-plane architectonic atlas of the rat hippocampal region type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 25 year: '2015' ... --- _id: '2003' abstract: - lang: eng text: Learning can be facilitated by previous knowledge when it is organized into relational representations forming schemas. In this issue of Neuron, McKenzie et al. (2014) demonstrate that the hippocampus rapidly forms interrelated, hierarchical memory representations to support schema-based learning. author: - first_name: Joseph full_name: O'Neill, Joseph id: 426376DC-F248-11E8-B48F-1D18A9856A87 last_name: O'Neill - first_name: Jozsef L full_name: Csicsvari, Jozsef L id: 3FA14672-F248-11E8-B48F-1D18A9856A87 last_name: Csicsvari orcid: 0000-0002-5193-4036 citation: ama: O’Neill J, Csicsvari JL. Learning by example in the hippocampus. Neuron. 2014;83(1):8-10. doi:10.1016/j.neuron.2014.06.013 apa: O’Neill, J., & Csicsvari, J. L. (2014). Learning by example in the hippocampus. Neuron. Elsevier. https://doi.org/10.1016/j.neuron.2014.06.013 chicago: O’Neill, Joseph, and Jozsef L Csicsvari. “Learning by Example in the Hippocampus.” Neuron. Elsevier, 2014. https://doi.org/10.1016/j.neuron.2014.06.013. ieee: J. O’Neill and J. L. Csicsvari, “Learning by example in the hippocampus,” Neuron, vol. 83, no. 1. Elsevier, pp. 8–10, 2014. ista: O’Neill J, Csicsvari JL. 2014. Learning by example in the hippocampus. Neuron. 83(1), 8–10. mla: O’Neill, Joseph, and Jozsef L. Csicsvari. “Learning by Example in the Hippocampus.” Neuron, vol. 83, no. 1, Elsevier, 2014, pp. 8–10, doi:10.1016/j.neuron.2014.06.013. short: J. O’Neill, J.L. Csicsvari, Neuron 83 (2014) 8–10. date_created: 2018-12-11T11:55:09Z date_published: 2014-07-02T00:00:00Z date_updated: 2021-01-12T06:54:39Z day: '02' department: - _id: JoCs doi: 10.1016/j.neuron.2014.06.013 intvolume: ' 83' issue: '1' language: - iso: eng month: '07' oa_version: None page: 8 - 10 publication: Neuron publication_status: published publisher: Elsevier publist_id: '5073' quality_controlled: '1' scopus_import: 1 status: public title: Learning by example in the hippocampus type: journal_article user_id: 4435EBFC-F248-11E8-B48F-1D18A9856A87 volume: 83 year: '2014' ... --- _id: '2005' abstract: - lang: eng text: By eliciting a natural exploratory behavior in rats, head scanning, a study reveals that hippocampal place cells form new, stable firing fields in those locations where the behavior has just occurred. author: - first_name: David full_name: Dupret, David last_name: Dupret - first_name: Jozsef L full_name: Csicsvari, Jozsef L id: 3FA14672-F248-11E8-B48F-1D18A9856A87 last_name: Csicsvari orcid: 0000-0002-5193-4036 citation: ama: Dupret D, Csicsvari JL. Turning heads to remember places. Nature Neuroscience. 2014;17(5):643-644. doi:10.1038/nn.3700 apa: Dupret, D., & Csicsvari, J. L. (2014). Turning heads to remember places. Nature Neuroscience. Nature Publishing Group. https://doi.org/10.1038/nn.3700 chicago: Dupret, David, and Jozsef L Csicsvari. “Turning Heads to Remember Places.” Nature Neuroscience. Nature Publishing Group, 2014. https://doi.org/10.1038/nn.3700. ieee: D. Dupret and J. L. Csicsvari, “Turning heads to remember places,” Nature Neuroscience, vol. 17, no. 5. Nature Publishing Group, pp. 643–644, 2014. ista: Dupret D, Csicsvari JL. 2014. Turning heads to remember places. Nature Neuroscience. 17(5), 643–644. mla: Dupret, David, and Jozsef L. Csicsvari. “Turning Heads to Remember Places.” Nature Neuroscience, vol. 17, no. 5, Nature Publishing Group, 2014, pp. 643–44, doi:10.1038/nn.3700. short: D. Dupret, J.L. Csicsvari, Nature Neuroscience 17 (2014) 643–644. date_created: 2018-12-11T11:55:09Z date_published: 2014-04-25T00:00:00Z date_updated: 2021-01-12T06:54:40Z day: '25' department: - _id: JoCs doi: 10.1038/nn.3700 intvolume: ' 17' issue: '5' language: - iso: eng month: '04' oa_version: None page: 643 - 644 publication: Nature Neuroscience publication_status: published publisher: Nature Publishing Group publist_id: '5071' quality_controlled: '1' scopus_import: 1 status: public title: Turning heads to remember places type: journal_article user_id: 4435EBFC-F248-11E8-B48F-1D18A9856A87 volume: 17 year: '2014' ... --- _id: '2251' abstract: - lang: eng text: 'Sharp wave/ripple (SWR, 150–250 Hz) hippocampal events have long been postulated to be involved in memory consolidation. However, more recent work has investigated SWRs that occur during active waking behaviour: findings that suggest that SWRs may also play a role in cell assembly strengthening or spatial working memory. Do such theories of SWR function apply to animal learning? This review discusses how general theories linking SWRs to memory-related function may explain circuit mechanisms related to rodent spatial learning and to the associated stabilization of new cognitive maps.' acknowledgement: CC BY 3.0 article_number: '20120528' article_processing_charge: No author: - first_name: Jozsef L full_name: Csicsvari, Jozsef L id: 3FA14672-F248-11E8-B48F-1D18A9856A87 last_name: Csicsvari orcid: 0000-0002-5193-4036 - first_name: David full_name: Dupret, David last_name: Dupret citation: ama: Csicsvari JL, Dupret D. Sharp wave/ripple network oscillations and learning-associated hippocampal maps. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences. 2014;369(1635). doi:10.1098/rstb.2012.0528 apa: Csicsvari, J. L., & Dupret, D. (2014). Sharp wave/ripple network oscillations and learning-associated hippocampal maps. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. Royal Society, The. https://doi.org/10.1098/rstb.2012.0528 chicago: Csicsvari, Jozsef L, and David Dupret. “Sharp Wave/Ripple Network Oscillations and Learning-Associated Hippocampal Maps.” Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. Royal Society, The, 2014. https://doi.org/10.1098/rstb.2012.0528. ieee: J. L. Csicsvari and D. Dupret, “Sharp wave/ripple network oscillations and learning-associated hippocampal maps,” Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, vol. 369, no. 1635. Royal Society, The, 2014. ista: Csicsvari JL, Dupret D. 2014. Sharp wave/ripple network oscillations and learning-associated hippocampal maps. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 369(1635), 20120528. mla: Csicsvari, Jozsef L., and David Dupret. “Sharp Wave/Ripple Network Oscillations and Learning-Associated Hippocampal Maps.” Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, vol. 369, no. 1635, 20120528, Royal Society, The, 2014, doi:10.1098/rstb.2012.0528. short: J.L. Csicsvari, D. Dupret, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 369 (2014). date_created: 2018-12-11T11:56:34Z date_published: 2014-02-05T00:00:00Z date_updated: 2021-01-12T06:56:18Z day: '05' ddc: - '570' department: - _id: JoCs doi: 10.1098/rstb.2012.0528 external_id: pmid: - '24366138' file: - access_level: open_access checksum: 51beb33de71c9c19e0c205a20d206f9a content_type: application/pdf creator: system date_created: 2018-12-12T10:13:24Z date_updated: 2020-07-14T12:45:34Z file_id: '5006' file_name: IST-2016-527-v1+1_20120528.full.pdf file_size: 771896 relation: main_file file_date_updated: 2020-07-14T12:45:34Z has_accepted_license: '1' intvolume: ' 369' issue: '1635' language: - iso: eng month: '02' oa: 1 oa_version: Published Version pmid: 1 publication: Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences publication_identifier: issn: - '09628436' publication_status: published publisher: Royal Society, The publist_id: '4697' pubrep_id: '527' quality_controlled: '1' scopus_import: 1 status: public title: Sharp wave/ripple network oscillations and learning-associated hippocampal maps tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 369 year: '2014' ... --- _id: '2004' abstract: - lang: eng text: We have assembled a network of cell-fate determining transcription factors that play a key role in the specification of the ventral neuronal subtypes of the spinal cord on the basis of published transcriptional interactions. Asynchronous Boolean modelling of the network was used to compare simulation results with reported experimental observations. Such comparison highlighted the need to include additional regulatory connections in order to obtain the fixed point attractors of the model associated with the five known progenitor cell types located in the ventral spinal cord. The revised gene regulatory network reproduced previously observed cell state switches between progenitor cells observed in knock-out animal models or in experiments where the transcription factors were overexpressed. Furthermore the network predicted the inhibition of Irx3 by Nkx2.2 and this prediction was tested experimentally. Our results provide evidence for the existence of an as yet undescribed inhibitory connection which could potentially have significance beyond the ventral spinal cord. The work presented in this paper demonstrates the strength of Boolean modelling for identifying gene regulatory networks. article_number: e111430 author: - first_name: Anna full_name: Lovrics, Anna last_name: Lovrics - first_name: Yu full_name: Gao, Yu last_name: Gao - first_name: Bianka full_name: Juhász, Bianka last_name: Juhász - first_name: István full_name: Bock, István last_name: Bock - first_name: Helen full_name: Byrne, Helen last_name: Byrne - first_name: András full_name: Dinnyés, András last_name: Dinnyés - first_name: Krisztián full_name: Kovács, Krisztián id: 2AB5821E-F248-11E8-B48F-1D18A9856A87 last_name: Kovács citation: ama: Lovrics A, Gao Y, Juhász B, et al. Boolean modelling reveals new regulatory connections between transcription factors orchestrating the development of the ventral spinal cord. PLoS One. 2014;9(11). doi:10.1371/journal.pone.0111430 apa: Lovrics, A., Gao, Y., Juhász, B., Bock, I., Byrne, H., Dinnyés, A., & Kovács, K. (2014). Boolean modelling reveals new regulatory connections between transcription factors orchestrating the development of the ventral spinal cord. PLoS One. Public Library of Science. https://doi.org/10.1371/journal.pone.0111430 chicago: Lovrics, Anna, Yu Gao, Bianka Juhász, István Bock, Helen Byrne, András Dinnyés, and Krisztián Kovács. “Boolean Modelling Reveals New Regulatory Connections between Transcription Factors Orchestrating the Development of the Ventral Spinal Cord.” PLoS One. Public Library of Science, 2014. https://doi.org/10.1371/journal.pone.0111430. ieee: A. Lovrics et al., “Boolean modelling reveals new regulatory connections between transcription factors orchestrating the development of the ventral spinal cord,” PLoS One, vol. 9, no. 11. Public Library of Science, 2014. ista: Lovrics A, Gao Y, Juhász B, Bock I, Byrne H, Dinnyés A, Kovács K. 2014. Boolean modelling reveals new regulatory connections between transcription factors orchestrating the development of the ventral spinal cord. PLoS One. 9(11), e111430. mla: Lovrics, Anna, et al. “Boolean Modelling Reveals New Regulatory Connections between Transcription Factors Orchestrating the Development of the Ventral Spinal Cord.” PLoS One, vol. 9, no. 11, e111430, Public Library of Science, 2014, doi:10.1371/journal.pone.0111430. short: A. Lovrics, Y. Gao, B. Juhász, I. Bock, H. Byrne, A. Dinnyés, K. Kovács, PLoS One 9 (2014). date_created: 2018-12-11T11:55:09Z date_published: 2014-11-14T00:00:00Z date_updated: 2023-02-23T14:06:14Z day: '14' ddc: - '570' department: - _id: JoCs doi: 10.1371/journal.pone.0111430 ec_funded: 1 file: - access_level: open_access checksum: a2289b843f7463eb1233f9ce45e6a943 content_type: application/pdf creator: system date_created: 2018-12-12T10:10:58Z date_updated: 2020-07-14T12:45:24Z file_id: '4850' file_name: IST-2016-435-v1+1_journal.pone.0111430.pdf file_size: 829363 relation: main_file file_date_updated: 2020-07-14T12:45:24Z has_accepted_license: '1' intvolume: ' 9' issue: '11' language: - iso: eng month: '11' oa: 1 oa_version: Published Version project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: PLoS One publication_status: published publisher: Public Library of Science publist_id: '5072' pubrep_id: '435' quality_controlled: '1' related_material: record: - id: '9722' relation: research_data status: public scopus_import: 1 status: public title: Boolean modelling reveals new regulatory connections between transcription factors orchestrating the development of the ventral spinal cord tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4435EBFC-F248-11E8-B48F-1D18A9856A87 volume: 9 year: '2014' ... --- _id: '9722' article_processing_charge: No author: - first_name: Anna full_name: Lovrics, Anna last_name: Lovrics - first_name: Yu full_name: Gao, Yu last_name: Gao - first_name: Bianka full_name: Juhász, Bianka last_name: Juhász - first_name: István full_name: Bock, István last_name: Bock - first_name: Helen M. full_name: Byrne, Helen M. last_name: Byrne - first_name: András full_name: Dinnyés, András last_name: Dinnyés - first_name: Krisztián full_name: Kovács, Krisztián id: 2AB5821E-F248-11E8-B48F-1D18A9856A87 last_name: Kovács citation: ama: Lovrics A, Gao Y, Juhász B, et al. Transition probability between TF expression states when Dbx2 inhibits Nkx2.2. 2014. doi:10.1371/journal.pone.0111430.s006 apa: Lovrics, A., Gao, Y., Juhász, B., Bock, I., Byrne, H. M., Dinnyés, A., & Kovács, K. (2014). Transition probability between TF expression states when Dbx2 inhibits Nkx2.2. Public Library of Science. https://doi.org/10.1371/journal.pone.0111430.s006 chicago: Lovrics, Anna, Yu Gao, Bianka Juhász, István Bock, Helen M. Byrne, András Dinnyés, and Krisztián Kovács. “Transition Probability between TF Expression States When Dbx2 Inhibits Nkx2.2.” Public Library of Science, 2014. https://doi.org/10.1371/journal.pone.0111430.s006. ieee: A. Lovrics et al., “Transition probability between TF expression states when Dbx2 inhibits Nkx2.2.” Public Library of Science, 2014. ista: Lovrics A, Gao Y, Juhász B, Bock I, Byrne HM, Dinnyés A, Kovács K. 2014. Transition probability between TF expression states when Dbx2 inhibits Nkx2.2, Public Library of Science, 10.1371/journal.pone.0111430.s006. mla: Lovrics, Anna, et al. Transition Probability between TF Expression States When Dbx2 Inhibits Nkx2.2. Public Library of Science, 2014, doi:10.1371/journal.pone.0111430.s006. short: A. Lovrics, Y. Gao, B. Juhász, I. Bock, H.M. Byrne, A. Dinnyés, K. Kovács, (2014). date_created: 2021-07-26T14:35:00Z date_published: 2014-11-14T00:00:00Z date_updated: 2023-02-23T10:24:07Z day: '14' department: - _id: JoCs doi: 10.1371/journal.pone.0111430.s006 month: '11' oa_version: Published Version publisher: Public Library of Science related_material: record: - id: '2004' relation: used_in_publication status: public status: public title: Transition probability between TF expression states when Dbx2 inhibits Nkx2.2 type: research_data_reference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf year: '2014' ... --- _id: '2276' abstract: - lang: eng text: The problem of minimizing the Potts energy function frequently occurs in computer vision applications. One way to tackle this NP-hard problem was proposed by Kovtun [19, 20]. It identifies a part of an optimal solution by running k maxflow computations, where k is the number of labels. The number of “labeled” pixels can be significant in some applications, e.g. 50-93% in our tests for stereo. We show how to reduce the runtime to O (log k) maxflow computations (or one parametric maxflow computation). Furthermore, the output of our algorithm allows to speed-up the subsequent alpha expansion for the unlabeled part, or can be used as it is for time-critical applications. To derive our technique, we generalize the algorithm of Felzenszwalb et al. [7] for Tree Metrics . We also show a connection to k-submodular functions from combinatorial optimization, and discuss k-submodular relaxations for general energy functions. author: - first_name: Igor full_name: Gridchyn, Igor id: 4B60654C-F248-11E8-B48F-1D18A9856A87 last_name: Gridchyn - first_name: Vladimir full_name: Kolmogorov, Vladimir id: 3D50B0BA-F248-11E8-B48F-1D18A9856A87 last_name: Kolmogorov citation: ama: 'Gridchyn I, Kolmogorov V. Potts model, parametric maxflow and k-submodular functions. In: IEEE; 2013:2320-2327. doi:10.1109/ICCV.2013.288' apa: 'Gridchyn, I., & Kolmogorov, V. (2013). Potts model, parametric maxflow and k-submodular functions (pp. 2320–2327). Presented at the ICCV: International Conference on Computer Vision, Sydney, Australia: IEEE. https://doi.org/10.1109/ICCV.2013.288' chicago: Gridchyn, Igor, and Vladimir Kolmogorov. “Potts Model, Parametric Maxflow and k-Submodular Functions,” 2320–27. IEEE, 2013. https://doi.org/10.1109/ICCV.2013.288. ieee: 'I. Gridchyn and V. Kolmogorov, “Potts model, parametric maxflow and k-submodular functions,” presented at the ICCV: International Conference on Computer Vision, Sydney, Australia, 2013, pp. 2320–2327.' ista: 'Gridchyn I, Kolmogorov V. 2013. Potts model, parametric maxflow and k-submodular functions. ICCV: International Conference on Computer Vision, 2320–2327.' mla: Gridchyn, Igor, and Vladimir Kolmogorov. Potts Model, Parametric Maxflow and k-Submodular Functions. IEEE, 2013, pp. 2320–27, doi:10.1109/ICCV.2013.288. short: I. Gridchyn, V. Kolmogorov, in:, IEEE, 2013, pp. 2320–2327. conference: end_date: 2013-12-08 location: Sydney, Australia name: 'ICCV: International Conference on Computer Vision' start_date: 2013-12-01 date_created: 2018-12-11T11:56:43Z date_published: 2013-12-01T00:00:00Z date_updated: 2021-01-12T06:56:28Z day: '01' department: - _id: JoCs - _id: VlKo doi: 10.1109/ICCV.2013.288 external_id: arxiv: - '1310.1771' language: - iso: eng main_file_link: - open_access: '1' url: http://arxiv.org/abs/1310.1771 month: '12' oa: 1 oa_version: Preprint page: 2320 - 2327 publication_status: published publisher: IEEE publist_id: '4668' quality_controlled: '1' status: public title: Potts model, parametric maxflow and k-submodular functions type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2013' ... --- _id: '2840' abstract: - lang: eng text: It is known that the entorhinal cortex plays a crucial role in spatial cognition in rodents. Neuroanatomical and electrophysiological data suggest that there is a functional distinction between 2 subregions within the entorhinal cortex, the medial entorhinal cortex (MEC), and the lateral entorhinal cortex (LEC). Rats with MEC or LEC lesions were trained in 2 navigation tasks requiring allothetic (water maze task) or idiothetic (path integration) information processing and 2-object exploration tasks allowing testing of spatial and nonspatial processing of intramaze objects. MEC lesions mildly affected place navigation in the water maze and produced a path integration deficit. They also altered the processing of spatial information in both exploration tasks while sparing the processing of nonspatial information. LEC lesions did not affect navigation abilities in both the water maze and the path integration tasks. They altered spatial and nonspatial processing in the object exploration task but not in the one-trial recognition task. Overall, these results indicate that the MEC is important for spatial processing and path integration. The LEC has some influence on both spatial and nonspatial processes, suggesting that the 2 kinds of information interact at the level of the EC. author: - first_name: Tiffany full_name: Van Cauter, Tiffany last_name: Van Cauter - first_name: Jeremy full_name: Camon, Jeremy last_name: Camon - first_name: Alice full_name: Alvernhe, Alice id: 467FB3D4-F248-11E8-B48F-1D18A9856A87 last_name: Alvernhe - first_name: Coralie full_name: Elduayen, Coralie last_name: Elduayen - first_name: Francesca full_name: Sargolini, Francesca last_name: Sargolini - first_name: Étienne full_name: Save, Étienne last_name: Save citation: ama: Van Cauter T, Camon J, Alvernhe A, Elduayen C, Sargolini F, Save É. Distinct roles of medial and lateral entorhinal cortex in spatial cognition. Cerebral Cortex. 2013;23(2):451-459. doi:10.1093/cercor/bhs033 apa: Van Cauter, T., Camon, J., Alvernhe, A., Elduayen, C., Sargolini, F., & Save, É. (2013). Distinct roles of medial and lateral entorhinal cortex in spatial cognition. Cerebral Cortex. Oxford University Press. https://doi.org/10.1093/cercor/bhs033 chicago: Van Cauter, Tiffany, Jeremy Camon, Alice Alvernhe, Coralie Elduayen, Francesca Sargolini, and Étienne Save. “Distinct Roles of Medial and Lateral Entorhinal Cortex in Spatial Cognition.” Cerebral Cortex. Oxford University Press, 2013. https://doi.org/10.1093/cercor/bhs033. ieee: T. Van Cauter, J. Camon, A. Alvernhe, C. Elduayen, F. Sargolini, and É. Save, “Distinct roles of medial and lateral entorhinal cortex in spatial cognition,” Cerebral Cortex, vol. 23, no. 2. Oxford University Press, pp. 451–459, 2013. ista: Van Cauter T, Camon J, Alvernhe A, Elduayen C, Sargolini F, Save É. 2013. Distinct roles of medial and lateral entorhinal cortex in spatial cognition. Cerebral Cortex. 23(2), 451–459. mla: Van Cauter, Tiffany, et al. “Distinct Roles of Medial and Lateral Entorhinal Cortex in Spatial Cognition.” Cerebral Cortex, vol. 23, no. 2, Oxford University Press, 2013, pp. 451–59, doi:10.1093/cercor/bhs033. short: T. Van Cauter, J. Camon, A. Alvernhe, C. Elduayen, F. Sargolini, É. Save, Cerebral Cortex 23 (2013) 451–459. date_created: 2018-12-11T11:59:52Z date_published: 2013-02-01T00:00:00Z date_updated: 2021-01-12T07:00:08Z day: '01' department: - _id: JoCs doi: 10.1093/cercor/bhs033 intvolume: ' 23' issue: '2' language: - iso: eng month: '02' oa_version: None page: 451 - 459 publication: Cerebral Cortex publication_status: published publisher: Oxford University Press publist_id: '3958' quality_controlled: '1' scopus_import: 1 status: public title: Distinct roles of medial and lateral entorhinal cortex in spatial cognition type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 23 year: '2013' ... --- _id: '2845' abstract: - lang: eng text: At synapses formed between dissociated neurons, about half of all synaptic vesicles are refractory to evoked release, forming the so-called "resting pool." Here, we use optical measurements of vesicular pH to study developmental changes in pool partitioning and vesicle cycling in cultured hippocampal slices. Two-photon imaging of a genetically encoded two-color release sensor (ratio-sypHy) allowed us to perform calibrated measurements at individual Schaffer collateral boutons. Mature boutons released a large fraction of their vesicles during simulated place field activity, and vesicle retrieval rates were 7-fold higher compared to immature boutons. Saturating stimulation mobilized essentially all vesicles at mature synapses. Resting pool formation and a concomitant reduction in evoked release was induced by chronic depolarization but not by acute inhibition of the protein phosphatase calcineurin. We conclude that synapses in CA1 undergo a prominent refinement of vesicle use during early postnatal development that is not recapitulated in dissociated neuronal culture. author: - first_name: Tobias full_name: Rose, Tobias last_name: Rose - first_name: Philipp full_name: Schönenberger, Philipp id: 3B9D816C-F248-11E8-B48F-1D18A9856A87 last_name: Schönenberger - first_name: Karel full_name: Jezek, Karel last_name: Jezek - first_name: Thomas full_name: Oertner, Thomas last_name: Oertner citation: ama: Rose T, Schönenberger P, Jezek K, Oertner T. Developmental refinement of vesicle cycling at Schaffer collateral synapses. Neuron. 2013;77(6):1109-1121. doi:10.1016/j.neuron.2013.01.021 apa: Rose, T., Schönenberger, P., Jezek, K., & Oertner, T. (2013). Developmental refinement of vesicle cycling at Schaffer collateral synapses. Neuron. Elsevier. https://doi.org/10.1016/j.neuron.2013.01.021 chicago: Rose, Tobias, Philipp Schönenberger, Karel Jezek, and Thomas Oertner. “Developmental Refinement of Vesicle Cycling at Schaffer Collateral Synapses.” Neuron. Elsevier, 2013. https://doi.org/10.1016/j.neuron.2013.01.021. ieee: T. Rose, P. Schönenberger, K. Jezek, and T. Oertner, “Developmental refinement of vesicle cycling at Schaffer collateral synapses,” Neuron, vol. 77, no. 6. Elsevier, pp. 1109–1121, 2013. ista: Rose T, Schönenberger P, Jezek K, Oertner T. 2013. Developmental refinement of vesicle cycling at Schaffer collateral synapses. Neuron. 77(6), 1109–1121. mla: Rose, Tobias, et al. “Developmental Refinement of Vesicle Cycling at Schaffer Collateral Synapses.” Neuron, vol. 77, no. 6, Elsevier, 2013, pp. 1109–21, doi:10.1016/j.neuron.2013.01.021. short: T. Rose, P. Schönenberger, K. Jezek, T. Oertner, Neuron 77 (2013) 1109–1121. date_created: 2018-12-11T11:59:54Z date_published: 2013-03-20T00:00:00Z date_updated: 2021-01-12T07:00:11Z day: '20' department: - _id: JoCs doi: 10.1016/j.neuron.2013.01.021 intvolume: ' 77' issue: '6' language: - iso: eng month: '03' oa_version: None page: 1109 - 1121 publication: Neuron publication_status: published publisher: Elsevier publist_id: '3949' quality_controlled: '1' scopus_import: 1 status: public title: Developmental refinement of vesicle cycling at Schaffer collateral synapses type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 77 year: '2013' ... --- _id: '2860' abstract: - lang: eng text: 'In the hippocampus, cell assemblies forming mnemonic representations of space are thought to arise as a result of changes in functional connections of pyramidal cells. We have found that CA1 interneuron circuits are also reconfigured during goal-oriented spatial learning through modification of inputs from pyramidal cells. As learning progressed, new pyramidal assemblies expressed in theta cycles alternated with previously established ones, and eventually overtook them. The firing patterns of interneurons developed a relationship to new, learning-related assemblies: some interneurons associated their activity with new pyramidal assemblies while some others dissociated from them. These firing associations were explained by changes in the weight of monosynaptic inputs received by interneurons from new pyramidal assemblies, as these predicted the associational changes. Spatial learning thus engages circuit modifications in the hippocampus that incorporate a redistribution of inhibitory activity that might assist in the segregation of competing pyramidal cell assembly patterns in space and time.' acknowledgement: D.D. and J.C. were supported by a MRC Intramural Programme Grant U138197111 author: - first_name: David full_name: Dupret, David last_name: Dupret - first_name: Joseph full_name: O'Neill, Joseph id: 426376DC-F248-11E8-B48F-1D18A9856A87 last_name: O'Neill - first_name: Jozsef L full_name: Csicsvari, Jozsef L id: 3FA14672-F248-11E8-B48F-1D18A9856A87 last_name: Csicsvari orcid: 0000-0002-5193-4036 citation: ama: Dupret D, O’Neill J, Csicsvari JL. Dynamic reconfiguration of hippocampal interneuron circuits during spatial learning. Neuron. 2013;78(1):166-180. doi:10.1016/j.neuron.2013.01.033 apa: Dupret, D., O’Neill, J., & Csicsvari, J. L. (2013). Dynamic reconfiguration of hippocampal interneuron circuits during spatial learning. Neuron. Elsevier. https://doi.org/10.1016/j.neuron.2013.01.033 chicago: Dupret, David, Joseph O’Neill, and Jozsef L Csicsvari. “Dynamic Reconfiguration of Hippocampal Interneuron Circuits during Spatial Learning.” Neuron. Elsevier, 2013. https://doi.org/10.1016/j.neuron.2013.01.033. ieee: D. Dupret, J. O’Neill, and J. L. Csicsvari, “Dynamic reconfiguration of hippocampal interneuron circuits during spatial learning,” Neuron, vol. 78, no. 1. Elsevier, pp. 166–180, 2013. ista: Dupret D, O’Neill J, Csicsvari JL. 2013. Dynamic reconfiguration of hippocampal interneuron circuits during spatial learning. Neuron. 78(1), 166–180. mla: Dupret, David, et al. “Dynamic Reconfiguration of Hippocampal Interneuron Circuits during Spatial Learning.” Neuron, vol. 78, no. 1, Elsevier, 2013, pp. 166–80, doi:10.1016/j.neuron.2013.01.033. short: D. Dupret, J. O’Neill, J.L. Csicsvari, Neuron 78 (2013) 166–180. date_created: 2018-12-11T11:59:59Z date_published: 2013-03-21T00:00:00Z date_updated: 2021-01-12T07:00:19Z day: '21' ddc: - '570' department: - _id: JoCs doi: 10.1016/j.neuron.2013.01.033 ec_funded: 1 file: - access_level: open_access checksum: 0e18cb8561153ddb50bb5af16e7c9e97 content_type: application/pdf creator: dernst date_created: 2019-01-23T08:08:07Z date_updated: 2020-07-14T12:45:52Z file_id: '5877' file_name: 2013_Neuron_Dupret.pdf file_size: 2637837 relation: main_file file_date_updated: 2020-07-14T12:45:52Z has_accepted_license: '1' intvolume: ' 78' issue: '1' language: - iso: eng month: '03' oa: 1 oa_version: Published Version page: 166 - 180 project: - _id: 257A4776-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '281511' name: Memory-related information processing in neuronal circuits of the hippocampus and entorhinal cortex publication: Neuron publication_status: published publisher: Elsevier publist_id: '3929' quality_controlled: '1' scopus_import: 1 status: public title: Dynamic reconfiguration of hippocampal interneuron circuits during spatial learning tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 78 year: '2013' ... --- _id: '476' abstract: - lang: eng text: 'Maternal exposure to infection occurring mid-gestation produces a three-fold increase in the risk of schizophrenia in the offspring. The critical initiating factor appears to be the maternal immune activation (MIA) that follows infection. This process can be induced in rodents by exposure of pregnant dams to the viral mimic Poly I:C, which triggers an immune response that results in structural, functional, behavioral, and electrophysiological phenotypes in the adult offspring that model those seen in schizophrenia. We used this model to explore the role of synchronization in brain neural networks, a process thought to be dysfunctional in schizophrenia and previously associated with positive, negative, and cognitive symptoms of schizophrenia. Exposure of pregnant dams to Poly I:C on GD15 produced an impairment in long-range neural synchrony in adult offspring between two regions implicated in schizophrenia pathology; the hippocampus and the medial prefrontal cortex (mPFC). This reduction in synchrony was ameliorated by acute doses of the antipsychotic clozapine. MIA animals have previously been shown to have impaired pre-pulse inhibition (PPI), a gold-standard measure of schizophrenia-like deficits in animal models. Our data showed that deficits in synchrony were positively correlated with the impairments in PPI. Subsequent analysis of LFP activity during the PPI response also showed that reduced coupling between the mPFC and the hippocampus following processing of the pre-pulse was associated with reduced PPI. The ability of the MIA intervention to model neurodevelopmental aspects of schizophrenia pathology provides a useful platform from which to investigate the ontogeny of aberrant synchronous processes. Further, the way in which the model expresses translatable deficits such as aberrant synchrony and reduced PPI will allow researchers to explore novel intervention strategies targeted to these changes. ' author: - first_name: Desiree full_name: Dickerson, Desiree id: 444EB89E-F248-11E8-B48F-1D18A9856A87 last_name: Dickerson - first_name: David full_name: Bilkey, David last_name: Bilkey citation: ama: 'Dickerson D, Bilkey D. Aberrant neural synchrony in the maternal immune activation model: Using translatable measures to explore targeted interventions. Frontiers in Behavioral Neuroscience. 2013;7(DEC). doi:10.3389/fnbeh.2013.00217' apa: 'Dickerson, D., & Bilkey, D. (2013). Aberrant neural synchrony in the maternal immune activation model: Using translatable measures to explore targeted interventions. Frontiers in Behavioral Neuroscience. Frontiers Research Foundation. https://doi.org/10.3389/fnbeh.2013.00217' chicago: 'Dickerson, Desiree, and David Bilkey. “Aberrant Neural Synchrony in the Maternal Immune Activation Model: Using Translatable Measures to Explore Targeted Interventions.” Frontiers in Behavioral Neuroscience. Frontiers Research Foundation, 2013. https://doi.org/10.3389/fnbeh.2013.00217.' ieee: 'D. Dickerson and D. Bilkey, “Aberrant neural synchrony in the maternal immune activation model: Using translatable measures to explore targeted interventions,” Frontiers in Behavioral Neuroscience, vol. 7, no. DEC. Frontiers Research Foundation, 2013.' ista: 'Dickerson D, Bilkey D. 2013. Aberrant neural synchrony in the maternal immune activation model: Using translatable measures to explore targeted interventions. Frontiers in Behavioral Neuroscience. 7(DEC).' mla: 'Dickerson, Desiree, and David Bilkey. “Aberrant Neural Synchrony in the Maternal Immune Activation Model: Using Translatable Measures to Explore Targeted Interventions.” Frontiers in Behavioral Neuroscience, vol. 7, no. DEC, Frontiers Research Foundation, 2013, doi:10.3389/fnbeh.2013.00217.' short: D. Dickerson, D. Bilkey, Frontiers in Behavioral Neuroscience 7 (2013). date_created: 2018-12-11T11:46:41Z date_published: 2013-12-27T00:00:00Z date_updated: 2021-01-12T08:00:53Z day: '27' ddc: - '571' department: - _id: JoCs doi: 10.3389/fnbeh.2013.00217 file: - access_level: open_access checksum: cd7183121e56251176100ccac165c95c content_type: application/pdf creator: system date_created: 2018-12-12T10:15:10Z date_updated: 2020-07-14T12:46:35Z file_id: '5128' file_name: IST-2018-953-v1+1_2013_Dickerson_Aberrant_neural.pdf file_size: 530134 relation: main_file file_date_updated: 2020-07-14T12:46:35Z has_accepted_license: '1' intvolume: ' 7' issue: DEC language: - iso: eng month: '12' oa: 1 oa_version: Published Version publication: Frontiers in Behavioral Neuroscience publication_status: published publisher: Frontiers Research Foundation publist_id: '7346' pubrep_id: '953' quality_controlled: '1' status: public title: 'Aberrant neural synchrony in the maternal immune activation model: Using translatable measures to explore targeted interventions' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 7 year: '2013' ... --- _id: '2949' author: - first_name: David full_name: Dupret, David last_name: Dupret - first_name: Jozsef L full_name: Csicsvari, Jozsef L id: 3FA14672-F248-11E8-B48F-1D18A9856A87 last_name: Csicsvari orcid: 0000-0002-5193-4036 citation: ama: Dupret D, Csicsvari JL. The medial entorhinal cortex keeps Up. Nature Neuroscience. 2012;15(11):1471-1472. doi:10.1038/nn.3245 apa: Dupret, D., & Csicsvari, J. L. (2012). The medial entorhinal cortex keeps Up. Nature Neuroscience. Nature Publishing Group. https://doi.org/10.1038/nn.3245 chicago: Dupret, David, and Jozsef L Csicsvari. “The Medial Entorhinal Cortex Keeps Up.” Nature Neuroscience. Nature Publishing Group, 2012. https://doi.org/10.1038/nn.3245. ieee: D. Dupret and J. L. Csicsvari, “The medial entorhinal cortex keeps Up,” Nature Neuroscience, vol. 15, no. 11. Nature Publishing Group, pp. 1471–1472, 2012. ista: Dupret D, Csicsvari JL. 2012. The medial entorhinal cortex keeps Up. Nature Neuroscience. 15(11), 1471–1472. mla: Dupret, David, and Jozsef L. Csicsvari. “The Medial Entorhinal Cortex Keeps Up.” Nature Neuroscience, vol. 15, no. 11, Nature Publishing Group, 2012, pp. 1471–72, doi:10.1038/nn.3245. short: D. Dupret, J.L. Csicsvari, Nature Neuroscience 15 (2012) 1471–1472. date_created: 2018-12-11T12:00:30Z date_published: 2012-11-01T00:00:00Z date_updated: 2021-01-12T07:39:59Z day: '01' department: - _id: JoCs doi: 10.1038/nn.3245 intvolume: ' 15' issue: '11' language: - iso: eng main_file_link: - url: http://www.mrcbndu.ox.ac.uk/publications/medial-entorhinal-cortex-keeps month: '11' oa_version: None page: 1471 - 1472 publication: Nature Neuroscience publication_status: published publisher: Nature Publishing Group publist_id: '3782' quality_controlled: '1' scopus_import: 1 status: public title: The medial entorhinal cortex keeps Up type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 15 year: '2012' ... --- _id: '2958' abstract: - lang: eng text: 'The activity of hippocampal pyramidal cells reflects both the current position of the animal and information related to its current behavior. Here we investigated whether single hippocampal neurons can encode several independent features defining trials during a memory task. We also tested whether task-related information is represented by partial remapping of the place cell population or, instead, via firing rate modulation of spatially stable place cells. To address these two questions, the activity of hippocampal neurons was recorded in rats performing a conditional discrimination task on a modified T-maze in which the identity of a food reward guided behavior. When the rat was on the central arm of the maze, the firing rate of pyramidal cells changed depending on two independent factors: (1) the identity of the food reward given to the animal and (2) the previous location of the animal on the maze. Importantly, some pyramidal cells encoded information relative to both factors. This trial-type specific and retrospective coding did not interfere with the spatial representation of the maze: hippocampal cells had stable place fields and their theta-phase precession profiles were unaltered during the task, indicating that trial-related information was encoded via rate remapping. During error trials, encoding of both trial-related information and spatial location was impaired. Finally, we found that pyramidal cells also encode trial-related information via rate remapping during the continuous version of the rewarded alternation task without delays. These results suggest that hippocampal neurons can encode several task-related cognitive aspects via rate remapping.' acknowledgement: J.C. was supported by a MRC Intramural Programme Grant (U138197111) and a European Research Council Starter Grant (281511). K.A. held a Wellcome Trust PhD studentship and a Humboldt Research Fellowship for Postdoctoral Researchers. D.M.B. was supported by Wellcome Trust Senior Fellowships (074385 and 087736). author: - first_name: Kevin full_name: Allen, Kevin last_name: Allen - first_name: J Nick full_name: Rawlins, J Nick last_name: Rawlins - first_name: David full_name: Bannerman, David last_name: Bannerman - first_name: Jozsef L full_name: Csicsvari, Jozsef L id: 3FA14672-F248-11E8-B48F-1D18A9856A87 last_name: Csicsvari orcid: 0000-0002-5193-4036 citation: ama: Allen K, Rawlins JN, Bannerman D, Csicsvari JL. Hippocampal place cells can encode multiple trial-dependent features through rate remapping. Journal of Neuroscience. 2012;32(42):14752-14766. doi:10.1523/JNEUROSCI.6175-11.2012 apa: Allen, K., Rawlins, J. N., Bannerman, D., & Csicsvari, J. L. (2012). Hippocampal place cells can encode multiple trial-dependent features through rate remapping. Journal of Neuroscience. Society for Neuroscience. https://doi.org/10.1523/JNEUROSCI.6175-11.2012 chicago: Allen, Kevin, J Nick Rawlins, David Bannerman, and Jozsef L Csicsvari. “Hippocampal Place Cells Can Encode Multiple Trial-Dependent Features through Rate Remapping.” Journal of Neuroscience. Society for Neuroscience, 2012. https://doi.org/10.1523/JNEUROSCI.6175-11.2012. ieee: K. Allen, J. N. Rawlins, D. Bannerman, and J. L. Csicsvari, “Hippocampal place cells can encode multiple trial-dependent features through rate remapping,” Journal of Neuroscience, vol. 32, no. 42. Society for Neuroscience, pp. 14752–14766, 2012. ista: Allen K, Rawlins JN, Bannerman D, Csicsvari JL. 2012. Hippocampal place cells can encode multiple trial-dependent features through rate remapping. Journal of Neuroscience. 32(42), 14752–14766. mla: Allen, Kevin, et al. “Hippocampal Place Cells Can Encode Multiple Trial-Dependent Features through Rate Remapping.” Journal of Neuroscience, vol. 32, no. 42, Society for Neuroscience, 2012, pp. 14752–66, doi:10.1523/JNEUROSCI.6175-11.2012. short: K. Allen, J.N. Rawlins, D. Bannerman, J.L. Csicsvari, Journal of Neuroscience 32 (2012) 14752–14766. date_created: 2018-12-11T12:00:33Z date_published: 2012-10-17T00:00:00Z date_updated: 2021-01-12T07:40:03Z day: '17' department: - _id: JoCs doi: 10.1523/JNEUROSCI.6175-11.2012 ec_funded: 1 external_id: pmid: - '23077060' intvolume: ' 32' issue: '42' language: - iso: eng main_file_link: - open_access: '1' url: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3531717/ month: '10' oa: 1 oa_version: Submitted Version page: 14752 - 14766 pmid: 1 project: - _id: 257A4776-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '281511' name: Memory-related information processing in neuronal circuits of the hippocampus and entorhinal cortex publication: Journal of Neuroscience publication_status: published publisher: Society for Neuroscience publist_id: '3768' quality_controlled: '1' scopus_import: 1 status: public title: Hippocampal place cells can encode multiple trial-dependent features through rate remapping type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 32 year: '2012' ...