--- _id: '14316' abstract: - lang: eng text: Clathrin-mediated vesicle trafficking plays central roles in post-Golgi transport. In yeast (Saccharomyces cerevisiae), the AP-1 complex and GGA adaptors are predicted to generate distinct transport vesicles at the trans-Golgi network (TGN), and the epsin-related proteins Ent3p and Ent5p (collectively Ent3p/5p) act as accessories for these adaptors. Recently, we showed that vesicle transport from the TGN is crucial for yeast Rab5 (Vps21p)-mediated endosome formation, and that Ent3p/5p are crucial for this process, whereas AP-1 and GGA adaptors are dispensable. However, these observations were incompatible with previous studies showing that these adaptors are required for Ent3p/5p recruitment to the TGN, and thus the overall mechanism responsible for regulation of Vps21p activity remains ambiguous. Here, we investigated the functional relationships between clathrin adaptors in post-Golgi-mediated Vps21p activation. We show that AP-1 disruption in the ent3Δ5Δ mutant impaired transport of the Vps21p guanine nucleotide exchange factor Vps9p transport to the Vps21p compartment and severely reduced Vps21p activity. Additionally, GGA adaptors, the phosphatidylinositol-4-kinase Pik1p and Rab11 GTPases Ypt31p and Ypt32p were found to have partially overlapping functions for recruitment of AP-1 and Ent3p/5p to the TGN. These findings suggest a distinct role of clathrin adaptors for Vps21p activation in the TGN–endosome trafficking pathway. article_number: jcs261448 article_processing_charge: No article_type: original author: - first_name: Makoto full_name: Nagano, Makoto last_name: Nagano - first_name: Kaito full_name: Aoshima, Kaito last_name: Aoshima - first_name: Hiroki full_name: Shimamura, Hiroki last_name: Shimamura - first_name: Daria E full_name: Siekhaus, Daria E id: 3D224B9E-F248-11E8-B48F-1D18A9856A87 last_name: Siekhaus orcid: 0000-0001-8323-8353 - first_name: Junko Y. full_name: Toshima, Junko Y. last_name: Toshima - first_name: Jiro full_name: Toshima, Jiro last_name: Toshima citation: ama: Nagano M, Aoshima K, Shimamura H, Siekhaus DE, Toshima JY, Toshima J. Distinct role of TGN-resident clathrin adaptors for Vps21p activation in the TGN-endosome trafficking pathway. Journal of Cell Science. 2023;136(17). doi:10.1242/jcs.261448 apa: Nagano, M., Aoshima, K., Shimamura, H., Siekhaus, D. E., Toshima, J. Y., & Toshima, J. (2023). Distinct role of TGN-resident clathrin adaptors for Vps21p activation in the TGN-endosome trafficking pathway. Journal of Cell Science. The Company of Biologists. https://doi.org/10.1242/jcs.261448 chicago: Nagano, Makoto, Kaito Aoshima, Hiroki Shimamura, Daria E Siekhaus, Junko Y. Toshima, and Jiro Toshima. “Distinct Role of TGN-Resident Clathrin Adaptors for Vps21p Activation in the TGN-Endosome Trafficking Pathway.” Journal of Cell Science. The Company of Biologists, 2023. https://doi.org/10.1242/jcs.261448. ieee: M. Nagano, K. Aoshima, H. Shimamura, D. E. Siekhaus, J. Y. Toshima, and J. Toshima, “Distinct role of TGN-resident clathrin adaptors for Vps21p activation in the TGN-endosome trafficking pathway,” Journal of Cell Science, vol. 136, no. 17. The Company of Biologists, 2023. ista: Nagano M, Aoshima K, Shimamura H, Siekhaus DE, Toshima JY, Toshima J. 2023. Distinct role of TGN-resident clathrin adaptors for Vps21p activation in the TGN-endosome trafficking pathway. Journal of Cell Science. 136(17), jcs261448. mla: Nagano, Makoto, et al. “Distinct Role of TGN-Resident Clathrin Adaptors for Vps21p Activation in the TGN-Endosome Trafficking Pathway.” Journal of Cell Science, vol. 136, no. 17, jcs261448, The Company of Biologists, 2023, doi:10.1242/jcs.261448. short: M. Nagano, K. Aoshima, H. Shimamura, D.E. Siekhaus, J.Y. Toshima, J. Toshima, Journal of Cell Science 136 (2023). date_created: 2023-09-10T22:01:12Z date_published: 2023-09-01T00:00:00Z date_updated: 2023-09-20T09:14:15Z day: '01' department: - _id: DaSi doi: 10.1242/jcs.261448 external_id: pmid: - '37539494' intvolume: ' 136' issue: '17' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1101/2023.03.27.534325 month: '09' oa: 1 oa_version: Preprint pmid: 1 publication: Journal of Cell Science publication_identifier: eissn: - 1477-9137 issn: - 0021-9533 publication_status: published publisher: The Company of Biologists quality_controlled: '1' scopus_import: '1' status: public title: Distinct role of TGN-resident clathrin adaptors for Vps21p activation in the TGN-endosome trafficking pathway type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 136 year: '2023' ... --- _id: '13316' abstract: - lang: eng text: Although budding yeast has been extensively used as a model organism for studying organelle functions and intracellular vesicle trafficking, whether it possesses an independent endocytic early/sorting compartment that sorts endocytic cargos to the endo-lysosomal pathway or the recycling pathway has long been unclear. The structure and properties of the endocytic early/sorting compartment differ significantly between organisms; in plant cells, the trans-Golgi network (TGN) serves this role, whereas in mammalian cells a separate intracellular structure performs this function. The yeast syntaxin homolog Tlg2p, widely localizing to the TGN and endosomal compartments, is presumed to act as a Q-SNARE for endocytic vesicles, but which compartment is the direct target for endocytic vesicles remained unanswered. Here we demonstrate by high-speed and high-resolution 4D imaging of fluorescently labeled endocytic cargos that the Tlg2p-residing compartment within the TGN functions as the early/sorting compartment. After arriving here, endocytic cargos are recycled to the plasma membrane or transported to the yeast Rab5-residing endosomal compartment through the pathway requiring the clathrin adaptors GGAs. Interestingly, Gga2p predominantly localizes at the Tlg2p-residing compartment, and the deletion of GGAs has little effect on another TGN region where Sec7p is present but suppresses dynamics of the Tlg2-residing early/sorting compartment, indicating that the Tlg2p- and Sec7p-residing regions are discrete entities in the mutant. Thus, the Tlg2p-residing region seems to serve as an early/sorting compartment and function independently of the Sec7p-residing region within the TGN. acknowledgement: 'This work was supported by JSPS KAKENHI grant #18K062291, and the Takeda Science Foundation to JYT., as well as JSPS KAKENHI grant #19K065710, the Takeda Science Foundation, and Life Science Foundation of Japan to JT.' article_number: e84850 article_processing_charge: Yes article_type: original author: - first_name: Junko Y. full_name: Toshima, Junko Y. last_name: Toshima - first_name: Ayana full_name: Tsukahara, Ayana last_name: Tsukahara - first_name: Makoto full_name: Nagano, Makoto last_name: Nagano - first_name: Takuro full_name: Tojima, Takuro last_name: Tojima - first_name: Daria E full_name: Siekhaus, Daria E id: 3D224B9E-F248-11E8-B48F-1D18A9856A87 last_name: Siekhaus orcid: 0000-0001-8323-8353 - first_name: Akihiko full_name: Nakano, Akihiko last_name: Nakano - first_name: Jiro full_name: Toshima, Jiro last_name: Toshima citation: ama: Toshima JY, Tsukahara A, Nagano M, et al. The yeast endocytic early/sorting compartment exists as an independent sub-compartment within the trans-Golgi network. eLife. 2023;12. doi:10.7554/eLife.84850 apa: Toshima, J. Y., Tsukahara, A., Nagano, M., Tojima, T., Siekhaus, D. E., Nakano, A., & Toshima, J. (2023). The yeast endocytic early/sorting compartment exists as an independent sub-compartment within the trans-Golgi network. ELife. eLife Sciences Publications. https://doi.org/10.7554/eLife.84850 chicago: Toshima, Junko Y., Ayana Tsukahara, Makoto Nagano, Takuro Tojima, Daria E Siekhaus, Akihiko Nakano, and Jiro Toshima. “The Yeast Endocytic Early/Sorting Compartment Exists as an Independent Sub-Compartment within the Trans-Golgi Network.” ELife. eLife Sciences Publications, 2023. https://doi.org/10.7554/eLife.84850. ieee: J. Y. Toshima et al., “The yeast endocytic early/sorting compartment exists as an independent sub-compartment within the trans-Golgi network,” eLife, vol. 12. eLife Sciences Publications, 2023. ista: Toshima JY, Tsukahara A, Nagano M, Tojima T, Siekhaus DE, Nakano A, Toshima J. 2023. The yeast endocytic early/sorting compartment exists as an independent sub-compartment within the trans-Golgi network. eLife. 12, e84850. mla: Toshima, Junko Y., et al. “The Yeast Endocytic Early/Sorting Compartment Exists as an Independent Sub-Compartment within the Trans-Golgi Network.” ELife, vol. 12, e84850, eLife Sciences Publications, 2023, doi:10.7554/eLife.84850. short: J.Y. Toshima, A. Tsukahara, M. Nagano, T. Tojima, D.E. Siekhaus, A. Nakano, J. Toshima, ELife 12 (2023). date_created: 2023-07-30T22:01:02Z date_published: 2023-07-21T00:00:00Z date_updated: 2023-12-13T11:37:36Z day: '21' ddc: - '570' department: - _id: DaSi doi: 10.7554/eLife.84850 external_id: isi: - '001035372800001' pmid: - '37477116' file: - access_level: open_access checksum: 2af111a00cf5e3a956f7f0fd13199b15 content_type: application/pdf creator: dernst date_created: 2023-07-31T07:43:00Z date_updated: 2023-07-31T07:43:00Z file_id: '13324' file_name: 2023_eLife_Toshima.pdf file_size: 11980913 relation: main_file success: 1 file_date_updated: 2023-07-31T07:43:00Z has_accepted_license: '1' intvolume: ' 12' isi: 1 language: - iso: eng license: https://creativecommons.org/licenses/by/4.0/ month: '07' oa: 1 oa_version: Published Version pmid: 1 publication: eLife publication_identifier: eissn: - 2050-084X publication_status: published publisher: eLife Sciences Publications quality_controlled: '1' scopus_import: '1' status: public title: The yeast endocytic early/sorting compartment exists as an independent sub-compartment within the trans-Golgi network tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 12 year: '2023' ... --- _id: '10712' abstract: - lang: eng text: Solute carriers are increasingly recognized as participating in a plethora of pathologies, including cancer. We describe here the involvement of the orphan solute carrier MFSD1 in the regulation of tumor cell migration. Loss of MFSD1 enabled higher levels of metastasis in a mouse model. We identified an increased migratory potential in MFSD1-/- tumor cells which was mediated by increased focal adhesion turn-over, reduced stability of mature inactive β1 integrin, and the resulting increased integrin activation index. We show that MFSD1 promoted recycling to the cell surface of endocytosed inactive β1 integrin and thereby protected β1 integrin from proteolytic degradation; this led to dampening of the integrin activation index. Furthermore, down-regulation of MFSD1 expression was observed during early steps of tumorigenesis and higher MFSD1 expression levels correlate with a better cancer patient prognosis. In sum, we describe a requirement for endolysosomal MFSD1 in efficient β1 integrin recycling to suppress tumor spread. acknowledged_ssus: - _id: Bio acknowledgement: We thank M. Sixt, A. Leithner, and J. Alanko for helpful advice and the BioImaging Facility at IST Austria for technical support and assistance. We thank the Siekhaus Lab for the careful review of the manuscript and their input. MR and DS were funded by the NO Forschungs- und Bildungsges.m.b.H. (LS16-021) and IST core funding. MD was funded by Deutsche Forschungsgemeinschaft (DA 1785-1). article_number: '777634' article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Marko full_name: Roblek, Marko id: 3047D808-F248-11E8-B48F-1D18A9856A87 last_name: Roblek orcid: 0000-0001-9588-1389 - first_name: Julia full_name: Bicher, Julia id: 3CCBB46E-F248-11E8-B48F-1D18A9856A87 last_name: Bicher - first_name: Merel full_name: van Gogh, Merel last_name: van Gogh - first_name: Attila full_name: György, Attila id: 3BCEDBE0-F248-11E8-B48F-1D18A9856A87 last_name: György orcid: 0000-0002-1819-198X - first_name: Rita full_name: Seeböck, Rita last_name: Seeböck - first_name: Bozena full_name: Szulc, Bozena last_name: Szulc - first_name: Markus full_name: Damme, Markus last_name: Damme - first_name: Mariusz full_name: Olczak, Mariusz last_name: Olczak - first_name: Lubor full_name: Borsig, Lubor last_name: Borsig - first_name: Daria E full_name: Siekhaus, Daria E id: 3D224B9E-F248-11E8-B48F-1D18A9856A87 last_name: Siekhaus orcid: 0000-0001-8323-8353 citation: ama: Roblek M, Bicher J, van Gogh M, et al. The solute carrier MFSD1 decreases β1 integrin’s activation status and thus tumor metastasis. Frontiers in Oncology. 2022;12. doi:10.3389/fonc.2022.777634 apa: Roblek, M., Bicher, J., van Gogh, M., György, A., Seeböck, R., Szulc, B., … Siekhaus, D. E. (2022). The solute carrier MFSD1 decreases β1 integrin’s activation status and thus tumor metastasis. Frontiers in Oncology. Frontiers. https://doi.org/10.3389/fonc.2022.777634 chicago: Roblek, Marko, Julia Bicher, Merel van Gogh, Attila György, Rita Seeböck, Bozena Szulc, Markus Damme, Mariusz Olczak, Lubor Borsig, and Daria E Siekhaus. “The Solute Carrier MFSD1 Decreases Β1 Integrin’s Activation Status and Thus Tumor Metastasis.” Frontiers in Oncology. Frontiers, 2022. https://doi.org/10.3389/fonc.2022.777634. ieee: M. Roblek et al., “The solute carrier MFSD1 decreases β1 integrin’s activation status and thus tumor metastasis,” Frontiers in Oncology, vol. 12. Frontiers, 2022. ista: Roblek M, Bicher J, van Gogh M, György A, Seeböck R, Szulc B, Damme M, Olczak M, Borsig L, Siekhaus DE. 2022. The solute carrier MFSD1 decreases β1 integrin’s activation status and thus tumor metastasis. Frontiers in Oncology. 12, 777634. mla: Roblek, Marko, et al. “The Solute Carrier MFSD1 Decreases Β1 Integrin’s Activation Status and Thus Tumor Metastasis.” Frontiers in Oncology, vol. 12, 777634, Frontiers, 2022, doi:10.3389/fonc.2022.777634. short: M. Roblek, J. Bicher, M. van Gogh, A. György, R. Seeböck, B. Szulc, M. Damme, M. Olczak, L. Borsig, D.E. Siekhaus, Frontiers in Oncology 12 (2022). date_created: 2022-02-01T10:33:50Z date_published: 2022-02-08T00:00:00Z date_updated: 2023-08-02T14:05:44Z day: '08' ddc: - '570' department: - _id: DaSi doi: 10.3389/fonc.2022.777634 external_id: isi: - '000760618800001' file: - access_level: open_access checksum: 63dfecf30c5bbf9408b3512bd603f78c content_type: application/pdf creator: cchlebak date_created: 2022-02-08T13:26:40Z date_updated: 2022-02-08T13:26:40Z file_id: '10751' file_name: 2022_FrontiersOncol_Roblek.pdf file_size: 6303227 relation: main_file success: 1 file_date_updated: 2022-02-08T13:26:40Z has_accepted_license: '1' intvolume: ' 12' isi: 1 language: - iso: eng month: '02' oa: 1 oa_version: Published Version project: - _id: 2637E9C0-B435-11E9-9278-68D0E5697425 grant_number: 'LSC16-021 ' name: Investigating the role of the novel major superfamily facilitator transporter family member MFSD1 in metastasis publication: Frontiers in Oncology publication_identifier: issn: - 2234-943X publication_status: published publisher: Frontiers quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: confirmation url: https://ist.ac.at/en/news/suppressing-the-spread-of-tumors/ scopus_import: '1' status: public title: The solute carrier MFSD1 decreases β1 integrin’s activation status and thus tumor metastasis tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 12 year: '2022' ... --- _id: '10714' abstract: - lang: eng text: Ribosomal defects perturb stem cell differentiation, causing diseases called ribosomopathies. How ribosome levels control stem cell differentiation is not fully known. Here, we discovered three RNA helicases are required for ribosome biogenesis and for Drosophila oogenesis. Loss of these helicases, which we named Aramis, Athos and Porthos, lead to aberrant stabilization of p53, cell cycle arrest and stalled GSC differentiation. Unexpectedly, Aramis is required for efficient translation of a cohort of mRNAs containing a 5’-Terminal-Oligo-Pyrimidine (TOP)-motif, including mRNAs that encode ribosomal proteins and a conserved p53 inhibitor, Novel Nucleolar protein 1 (Non1). The TOP-motif co-regulates the translation of growth-related mRNAs in mammals. As in mammals, the La-related protein co-regulates the translation of TOP-motif containing RNAs during Drosophila oogenesis. Thus, a previously unappreciated TOP-motif in Drosophila responds to reduced ribosome biogenesis to co-regulate the translation of ribosomal proteins and a p53 repressor, thus coupling ribosome biogenesis to GSC differentiation. acknowledgement: We are grateful to all members of the Rangan and Fuchs labs for their discussion and comments on the manuscript. We also thanks Dr. Sammons, Dr. Marlow, Life Science Editors, for their thoughts and comments the manuscript Additionally, we thank the Bloomington Stock Center, the Vienna Drosophila Resource Center, the BDGP Gene Disruption Project, and Flybase for fly stocks, reagents, and other resources. P.R. is funded by the NIH/NIGMS (R01GM111779-06 and RO1GM135628-01), G.F. is funded by NSF MCB-2047629 and NIH RO3 AI144839, D.E.S. was funded by Marie Curie CIG 334077/IRTIM and the Austrian Science Fund (FWF) grant ASI_FWF01_P29638S, and A.B is funded by NIH R01GM116889 and American Cancer Society RSG-17-197-01-RMC. article_processing_charge: No article_type: original author: - first_name: Elliot T. full_name: Martin, Elliot T. last_name: Martin - first_name: Patrick full_name: Blatt, Patrick last_name: Blatt - first_name: Elaine full_name: Ngyuen, Elaine last_name: Ngyuen - first_name: Roni full_name: Lahr, Roni last_name: Lahr - first_name: Sangeetha full_name: Selvam, Sangeetha last_name: Selvam - first_name: Hyun Ah M. full_name: Yoon, Hyun Ah M. last_name: Yoon - first_name: Tyler full_name: Pocchiari, Tyler last_name: Pocchiari - first_name: Shamsi full_name: Emtenani, Shamsi id: 49D32318-F248-11E8-B48F-1D18A9856A87 last_name: Emtenani orcid: 0000-0001-6981-6938 - first_name: Daria E full_name: Siekhaus, Daria E id: 3D224B9E-F248-11E8-B48F-1D18A9856A87 last_name: Siekhaus orcid: 0000-0001-8323-8353 - first_name: Andrea full_name: Berman, Andrea last_name: Berman - first_name: Gabriele full_name: Fuchs, Gabriele last_name: Fuchs - first_name: Prashanth full_name: Rangan, Prashanth last_name: Rangan citation: ama: Martin ET, Blatt P, Ngyuen E, et al. A translation control module coordinates germline stem cell differentiation with ribosome biogenesis during Drosophila oogenesis. Developmental Cell. 2022;57(7):883-900.e10. doi:10.1016/j.devcel.2022.03.005 apa: Martin, E. T., Blatt, P., Ngyuen, E., Lahr, R., Selvam, S., Yoon, H. A. M., … Rangan, P. (2022). A translation control module coordinates germline stem cell differentiation with ribosome biogenesis during Drosophila oogenesis. Developmental Cell. Elsevier. https://doi.org/10.1016/j.devcel.2022.03.005 chicago: Martin, Elliot T., Patrick Blatt, Elaine Ngyuen, Roni Lahr, Sangeetha Selvam, Hyun Ah M. Yoon, Tyler Pocchiari, et al. “A Translation Control Module Coordinates Germline Stem Cell Differentiation with Ribosome Biogenesis during Drosophila Oogenesis.” Developmental Cell. Elsevier, 2022. https://doi.org/10.1016/j.devcel.2022.03.005. ieee: E. T. Martin et al., “A translation control module coordinates germline stem cell differentiation with ribosome biogenesis during Drosophila oogenesis,” Developmental Cell, vol. 57, no. 7. Elsevier, p. 883–900.e10, 2022. ista: Martin ET, Blatt P, Ngyuen E, Lahr R, Selvam S, Yoon HAM, Pocchiari T, Emtenani S, Siekhaus DE, Berman A, Fuchs G, Rangan P. 2022. A translation control module coordinates germline stem cell differentiation with ribosome biogenesis during Drosophila oogenesis. Developmental Cell. 57(7), 883–900.e10. mla: Martin, Elliot T., et al. “A Translation Control Module Coordinates Germline Stem Cell Differentiation with Ribosome Biogenesis during Drosophila Oogenesis.” Developmental Cell, vol. 57, no. 7, Elsevier, 2022, p. 883–900.e10, doi:10.1016/j.devcel.2022.03.005. short: E.T. Martin, P. Blatt, E. Ngyuen, R. Lahr, S. Selvam, H.A.M. Yoon, T. Pocchiari, S. Emtenani, D.E. Siekhaus, A. Berman, G. Fuchs, P. Rangan, Developmental Cell 57 (2022) 883–900.e10. date_created: 2022-02-01T13:15:05Z date_published: 2022-04-11T00:00:00Z date_updated: 2023-08-02T14:07:13Z day: '11' department: - _id: DaSi doi: 10.1016/j.devcel.2022.03.005 ec_funded: 1 external_id: isi: - '000789021800005' intvolume: ' 57' isi: 1 issue: '7' language: - iso: eng license: https://creativecommons.org/licenses/by-nc-nd/4.0/ main_file_link: - open_access: '1' url: https://doi.org/10.1101/2021.04.04.438367 month: '04' oa: 1 oa_version: Preprint page: 883-900.e10 project: - _id: 2536F660-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '334077' name: Investigating the role of transporters in invasive migration through junctions - _id: 253B6E48-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P29638 name: Drosophila TNFa´s Funktion in Immunzellen publication: Developmental Cell publication_identifier: eissn: - 1878-1551 issn: - 1534-5807 publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: A translation control module coordinates germline stem cell differentiation with ribosome biogenesis during Drosophila oogenesis tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 57 year: '2022' ... --- _id: '10713' abstract: - lang: eng text: Cells migrate through crowded microenvironments within tissues during normal development, immune response, and cancer metastasis. Although migration through pores and tracks in the extracellular matrix (ECM) has been well studied, little is known about cellular traversal into confining cell-dense tissues. We find that embryonic tissue invasion by Drosophila macrophages requires division of an epithelial ectodermal cell at the site of entry. Dividing ectodermal cells disassemble ECM attachment formed by integrin-mediated focal adhesions next to mesodermal cells, allowing macrophages to move their nuclei ahead and invade between two immediately adjacent tissues. Invasion efficiency depends on division frequency, but reduction of adhesion strength allows macrophage entry independently of division. This work demonstrates that tissue dynamics can regulate cellular infiltration. acknowledged_ssus: - _id: Bio acknowledgement: 'We thank J. Friml, C. Guet, T. Hurd, M. Fendrych and members of the laboratory for comments on the manuscript; the Bioimaging Facility of IST Austria for excellent support and T. Lecuit, E. Hafen, R. Levayer and A. Martin for fly strains. This work was supported by a grant from the Austrian Science Fund FWF: Lise Meitner Fellowship M2379-B28 to M.A and D.S., and internal funding from IST Austria to D.S. and EMBL to S.D.R.' article_processing_charge: No article_type: original author: - first_name: Maria full_name: Akhmanova, Maria id: 3425EC26-F248-11E8-B48F-1D18A9856A87 last_name: Akhmanova orcid: 0000-0003-1522-3162 - first_name: Shamsi full_name: Emtenani, Shamsi id: 49D32318-F248-11E8-B48F-1D18A9856A87 last_name: Emtenani orcid: 0000-0001-6981-6938 - first_name: Daniel full_name: Krueger, Daniel last_name: Krueger - first_name: Attila full_name: György, Attila id: 3BCEDBE0-F248-11E8-B48F-1D18A9856A87 last_name: György orcid: 0000-0002-1819-198X - first_name: Mariana full_name: Pereira Guarda, Mariana id: 6de81d9d-e2f2-11eb-945a-af8bc2a60b26 last_name: Pereira Guarda - first_name: Mikhail full_name: Vlasov, Mikhail last_name: Vlasov - first_name: Fedor full_name: Vlasov, Fedor last_name: Vlasov - first_name: Andrei full_name: Akopian, Andrei last_name: Akopian - first_name: Aparna full_name: Ratheesh, Aparna id: 2F064CFE-F248-11E8-B48F-1D18A9856A87 last_name: Ratheesh - first_name: Stefano full_name: De Renzis, Stefano last_name: De Renzis - first_name: Daria E full_name: Siekhaus, Daria E id: 3D224B9E-F248-11E8-B48F-1D18A9856A87 last_name: Siekhaus orcid: 0000-0001-8323-8353 citation: ama: Akhmanova M, Emtenani S, Krueger D, et al. Cell division in tissues enables macrophage infiltration. Science. 2022;376(6591):394-396. doi:10.1126/science.abj0425 apa: Akhmanova, M., Emtenani, S., Krueger, D., György, A., Pereira Guarda, M., Vlasov, M., … Siekhaus, D. E. (2022). Cell division in tissues enables macrophage infiltration. Science. American Association for the Advancement of Science. https://doi.org/10.1126/science.abj0425 chicago: Akhmanova, Maria, Shamsi Emtenani, Daniel Krueger, Attila György, Mariana Pereira Guarda, Mikhail Vlasov, Fedor Vlasov, et al. “Cell Division in Tissues Enables Macrophage Infiltration.” Science. American Association for the Advancement of Science, 2022. https://doi.org/10.1126/science.abj0425. ieee: M. Akhmanova et al., “Cell division in tissues enables macrophage infiltration,” Science, vol. 376, no. 6591. American Association for the Advancement of Science, pp. 394–396, 2022. ista: Akhmanova M, Emtenani S, Krueger D, György A, Pereira Guarda M, Vlasov M, Vlasov F, Akopian A, Ratheesh A, De Renzis S, Siekhaus DE. 2022. Cell division in tissues enables macrophage infiltration. Science. 376(6591), 394–396. mla: Akhmanova, Maria, et al. “Cell Division in Tissues Enables Macrophage Infiltration.” Science, vol. 376, no. 6591, American Association for the Advancement of Science, 2022, pp. 394–96, doi:10.1126/science.abj0425. short: M. Akhmanova, S. Emtenani, D. Krueger, A. György, M. Pereira Guarda, M. Vlasov, F. Vlasov, A. Akopian, A. Ratheesh, S. De Renzis, D.E. Siekhaus, Science 376 (2022) 394–396. date_created: 2022-02-01T11:23:18Z date_published: 2022-04-22T00:00:00Z date_updated: 2023-08-02T14:06:15Z day: '22' department: - _id: DaSi doi: 10.1126/science.abj0425 external_id: isi: - '000788553700039' pmid: - '35446632' intvolume: ' 376' isi: 1 issue: '6591' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1101/2021.04.19.438995 month: '04' oa: 1 oa_version: Preprint page: 394-396 pmid: 1 project: - _id: 264CBBAC-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: M02379 name: Modeling epithelial tissue mechanics during cell invasion publication: Science publication_identifier: issn: - 0036-8075 publication_status: published publisher: American Association for the Advancement of Science quality_controlled: '1' status: public title: Cell division in tissues enables macrophage infiltration tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 376 year: '2022' ...