--- _id: '11432' abstract: - lang: eng text: "This paper proposes a method for simulating liquids in large bodies of water by coupling together a water surface wave simulator with a 3D Navier-Stokes simulator. The surface wave simulation uses the equivalent sources method (ESM) to efficiently animate large bodies of water with precisely controllable wave propagation behavior. The 3D liquid simulator animates complex non-linear fluid behaviors like splashes and breaking waves using off-the-shelf simulators using FLIP or the level set method with semi-Lagrangian advection.\r\nWe combine the two approaches by using the 3D solver to animate localized non-linear behaviors, and the 2D wave solver to animate larger regions with linear surface physics. We use the surface motion from the 3D solver as boundary conditions for 2D surface wave simulator, and we use the velocity and surface heights from the 2D surface wave simulator as boundary conditions for the 3D fluid simulation. We also introduce a novel technique for removing visual artifacts caused by numerical errors in 3D fluid solvers: we use experimental data to estimate the artificial dispersion caused by the 3D solver and we then carefully tune the wave speeds of the 2D solver to match it, effectively eliminating any differences in wave behavior across the boundary. To the best of our knowledge, this is the first time such a empirically driven error compensation approach has been used to remove coupling errors from a physics simulator.\r\nOur coupled simulation approach leverages the strengths of each simulation technique, animating large environments with seamless transitions between 2D and 3D physics." acknowledged_ssus: - _id: ScienComp acknowledgement: We wish to thank the anonymous reviewers and the members of the Visual Computing Group at IST Austria and MFX Team at INRIA for their valuable feedback. This research was supported by the Scientific Service Units (SSU) of IST Austria through resources provided by Scientific Computing. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 638176. article_processing_charge: No article_type: original author: - first_name: Camille full_name: Schreck, Camille id: 2B14B676-F248-11E8-B48F-1D18A9856A87 last_name: Schreck - first_name: Christopher J full_name: Wojtan, Christopher J id: 3C61F1D2-F248-11E8-B48F-1D18A9856A87 last_name: Wojtan orcid: 0000-0001-6646-5546 citation: ama: Schreck C, Wojtan C. Coupling 3D liquid simulation with 2D wave propagation for large scale water surface animation using the equivalent sources method. Computer Graphics Forum. 2022;41(2):343-353. doi:10.1111/cgf.14478 apa: Schreck, C., & Wojtan, C. (2022). Coupling 3D liquid simulation with 2D wave propagation for large scale water surface animation using the equivalent sources method. Computer Graphics Forum. Wiley. https://doi.org/10.1111/cgf.14478 chicago: Schreck, Camille, and Chris Wojtan. “Coupling 3D Liquid Simulation with 2D Wave Propagation for Large Scale Water Surface Animation Using the Equivalent Sources Method.” Computer Graphics Forum. Wiley, 2022. https://doi.org/10.1111/cgf.14478. ieee: C. Schreck and C. Wojtan, “Coupling 3D liquid simulation with 2D wave propagation for large scale water surface animation using the equivalent sources method,” Computer Graphics Forum, vol. 41, no. 2. Wiley, pp. 343–353, 2022. ista: Schreck C, Wojtan C. 2022. Coupling 3D liquid simulation with 2D wave propagation for large scale water surface animation using the equivalent sources method. Computer Graphics Forum. 41(2), 343–353. mla: Schreck, Camille, and Chris Wojtan. “Coupling 3D Liquid Simulation with 2D Wave Propagation for Large Scale Water Surface Animation Using the Equivalent Sources Method.” Computer Graphics Forum, vol. 41, no. 2, Wiley, 2022, pp. 343–53, doi:10.1111/cgf.14478. short: C. Schreck, C. Wojtan, Computer Graphics Forum 41 (2022) 343–353. date_created: 2022-06-05T22:01:49Z date_published: 2022-05-01T00:00:00Z date_updated: 2023-08-02T06:44:05Z day: '01' department: - _id: ChWo doi: 10.1111/cgf.14478 ec_funded: 1 external_id: isi: - '000802723900027' intvolume: ' 41' isi: 1 issue: '2' language: - iso: eng main_file_link: - open_access: '1' url: https://hal.archives-ouvertes.fr/hal-03641349/ month: '05' oa: 1 oa_version: Submitted Version page: 343-353 project: - _id: 2533E772-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '638176' name: Efficient Simulation of Natural Phenomena at Extremely Large Scales publication: Computer Graphics Forum publication_identifier: eissn: - 1467-8659 issn: - 0167-7055 publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: Coupling 3D liquid simulation with 2D wave propagation for large scale water surface animation using the equivalent sources method type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 41 year: '2022' ... --- _id: '11556' abstract: - lang: eng text: "We revisit two basic Direct Simulation Monte Carlo Methods to model aggregation kinetics and extend them for aggregation processes with collisional fragmentation (shattering). We test the performance and accuracy of the extended methods and compare their performance with efficient deterministic finite-difference method applied to the same model. We validate the stochastic methods on the test problems and apply them to verify the existence of oscillating regimes in the aggregation-fragmentation kinetics recently detected in deterministic simulations. We confirm the emergence of steady oscillations of densities in such systems and prove the stability of the\r\noscillations with respect to fluctuations and noise." acknowledgement: Zhores supercomputer of Skolkovo Institute of Science and Technology [68] has been used in the present research. S.A.M. was supported by Moscow Center for Fundamental and Applied Mathematics (the agreement with the Ministry of Education and Science of the Russian Federation No. 075-15-2019-1624). A.I.O. acknowledges RFBR project No. 20-31-90022. N.V.B. acknowledges the support of the Analytical Center (subsidy agreement 000000D730321P5Q0002, Grant No. 70-2021-00145 02.11.2021). article_number: '111439' article_processing_charge: No article_type: original author: - first_name: Aleksei full_name: Kalinov, Aleksei id: 44b7120e-eb97-11eb-a6c2-e1557aa81d02 last_name: Kalinov orcid: 0000-0003-2189-3904 - first_name: A.I. full_name: Osinskiy, A.I. last_name: Osinskiy - first_name: S.A. full_name: Matveev, S.A. last_name: Matveev - first_name: W. full_name: Otieno, W. last_name: Otieno - first_name: N.V. full_name: Brilliantov, N.V. last_name: Brilliantov citation: ama: Kalinov A, Osinskiy AI, Matveev SA, Otieno W, Brilliantov NV. Direct simulation Monte Carlo for new regimes in aggregation-fragmentation kinetics. Journal of Computational Physics. 2022;467. doi:10.1016/j.jcp.2022.111439 apa: Kalinov, A., Osinskiy, A. I., Matveev, S. A., Otieno, W., & Brilliantov, N. V. (2022). Direct simulation Monte Carlo for new regimes in aggregation-fragmentation kinetics. Journal of Computational Physics. Elsevier. https://doi.org/10.1016/j.jcp.2022.111439 chicago: Kalinov, Aleksei, A.I. Osinskiy, S.A. Matveev, W. Otieno, and N.V. Brilliantov. “Direct Simulation Monte Carlo for New Regimes in Aggregation-Fragmentation Kinetics.” Journal of Computational Physics. Elsevier, 2022. https://doi.org/10.1016/j.jcp.2022.111439. ieee: A. Kalinov, A. I. Osinskiy, S. A. Matveev, W. Otieno, and N. V. Brilliantov, “Direct simulation Monte Carlo for new regimes in aggregation-fragmentation kinetics,” Journal of Computational Physics, vol. 467. Elsevier, 2022. ista: Kalinov A, Osinskiy AI, Matveev SA, Otieno W, Brilliantov NV. 2022. Direct simulation Monte Carlo for new regimes in aggregation-fragmentation kinetics. Journal of Computational Physics. 467, 111439. mla: Kalinov, Aleksei, et al. “Direct Simulation Monte Carlo for New Regimes in Aggregation-Fragmentation Kinetics.” Journal of Computational Physics, vol. 467, 111439, Elsevier, 2022, doi:10.1016/j.jcp.2022.111439. short: A. Kalinov, A.I. Osinskiy, S.A. Matveev, W. Otieno, N.V. Brilliantov, Journal of Computational Physics 467 (2022). date_created: 2022-07-11T12:19:59Z date_published: 2022-10-15T00:00:00Z date_updated: 2023-08-03T11:55:06Z day: '15' ddc: - '518' department: - _id: GradSch - _id: ChWo doi: 10.1016/j.jcp.2022.111439 external_id: arxiv: - '2103.09481' isi: - '000917225500013' intvolume: ' 467' isi: 1 keyword: - Computer Science Applications - Physics and Astronomy (miscellaneous) - Applied Mathematics - Computational Mathematics - Modeling and Simulation - Numerical Analysis language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2103.09481 month: '10' oa: 1 oa_version: Preprint publication: Journal of Computational Physics publication_identifier: issn: - 0021-9991 publication_status: published publisher: Elsevier quality_controlled: '1' status: public title: Direct simulation Monte Carlo for new regimes in aggregation-fragmentation kinetics type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 467 year: '2022' ... --- _id: '11736' abstract: - lang: eng text: "This paper introduces a methodology for inverse-modeling of yarn-level mechanics of cloth, based on the mechanical response of fabrics in the real world. We compiled a database from physical tests of several different knitted fabrics used in the textile industry. These data span different types of complex knit patterns, yarn compositions, and fabric finishes, and the results demonstrate diverse physical properties like stiffness, nonlinearity, and anisotropy.\r\n\r\nWe then develop a system for approximating these mechanical responses with yarn-level cloth simulation. To do so, we introduce an efficient pipeline for converting between fabric-level data and yarn-level simulation, including a novel swatch-level approximation for speeding up computation, and some small-but-necessary extensions to yarn-level models used in computer graphics. The dataset used for this paper can be found at http://mslab.es/projects/YarnLevelFabrics." acknowledged_ssus: - _id: ScienComp acknowledgement: We wish to thank the anonymous reviewers for their helpful comments. To develop this project, we were helped by many people both at Under Armour (Clay Dean, Randall Harward, Kyle Blakely, Craig Simile, Michael Seiz, Brooke Malone, Brittainy McFarland, Emilie Phan, Lindsey Kern, Courtney Oswald, Haley Barkley, Bob Chin, Adam Bayer, Connie Kwok, Marielle Newman, Nick Pence, Allison Hicks, Allison White, Candace Rubenstein, Jeremy Stangland, Fred Fagergren, Michael Mazzoleni, Nathaniel Berry, Manuel Frank) and SEDDI (Gabriel Cirio, Alejandro Rodríguez, Sofía Dominguez, Alicia Nicas, Elena Garcés, Daniel Rodríguez, David Pascual, Manuel Godoy, Sergio Suja, Sergio Ruiz, Roberto Condori, Alberto Martín, Graham Sullivan). We also thank the members of the Visual Computing Group at IST Austria and the Multimodal Simulation Lab at URJC for their feedback. This research was supported by the Scientific Service Units (SSU) of IST Austria through resources provided by Scientific Computing, and it was funded in part by the European Research Council (ERC Consolidator Grant 772738 TouchDesign). article_number: '65' article_processing_charge: No article_type: original author: - first_name: Georg full_name: Sperl, Georg id: 4DD40360-F248-11E8-B48F-1D18A9856A87 last_name: Sperl - first_name: Rosa M. full_name: Sánchez-Banderas, Rosa M. last_name: Sánchez-Banderas - first_name: Manwen full_name: Li, Manwen last_name: Li - first_name: Christopher J full_name: Wojtan, Christopher J id: 3C61F1D2-F248-11E8-B48F-1D18A9856A87 last_name: Wojtan orcid: 0000-0001-6646-5546 - first_name: Miguel A. full_name: Otaduy, Miguel A. last_name: Otaduy citation: ama: Sperl G, Sánchez-Banderas RM, Li M, Wojtan C, Otaduy MA. Estimation of yarn-level simulation models for production fabrics. ACM Transactions on Graphics. 2022;41(4). doi:10.1145/3528223.3530167 apa: Sperl, G., Sánchez-Banderas, R. M., Li, M., Wojtan, C., & Otaduy, M. A. (2022). Estimation of yarn-level simulation models for production fabrics. ACM Transactions on Graphics. Association for Computing Machinery. https://doi.org/10.1145/3528223.3530167 chicago: Sperl, Georg, Rosa M. Sánchez-Banderas, Manwen Li, Chris Wojtan, and Miguel A. Otaduy. “Estimation of Yarn-Level Simulation Models for Production Fabrics.” ACM Transactions on Graphics. Association for Computing Machinery, 2022. https://doi.org/10.1145/3528223.3530167. ieee: G. Sperl, R. M. Sánchez-Banderas, M. Li, C. Wojtan, and M. A. Otaduy, “Estimation of yarn-level simulation models for production fabrics,” ACM Transactions on Graphics, vol. 41, no. 4. Association for Computing Machinery, 2022. ista: Sperl G, Sánchez-Banderas RM, Li M, Wojtan C, Otaduy MA. 2022. Estimation of yarn-level simulation models for production fabrics. ACM Transactions on Graphics. 41(4), 65. mla: Sperl, Georg, et al. “Estimation of Yarn-Level Simulation Models for Production Fabrics.” ACM Transactions on Graphics, vol. 41, no. 4, 65, Association for Computing Machinery, 2022, doi:10.1145/3528223.3530167. short: G. Sperl, R.M. Sánchez-Banderas, M. Li, C. Wojtan, M.A. Otaduy, ACM Transactions on Graphics 41 (2022). date_created: 2022-08-07T22:01:58Z date_published: 2022-07-22T00:00:00Z date_updated: 2023-08-03T12:38:30Z day: '22' department: - _id: ChWo doi: 10.1145/3528223.3530167 external_id: isi: - '000830989200114' intvolume: ' 41' isi: 1 issue: '4' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1145/3528223.3530167 month: '07' oa: 1 oa_version: Published Version publication: ACM Transactions on Graphics publication_identifier: eissn: - 1557-7368 issn: - 0730-0301 publication_status: published publisher: Association for Computing Machinery quality_controlled: '1' related_material: link: - description: News on the ISTA website relation: press_release url: https://ista.ac.at/en/news/digital-yarn-real-socks/ record: - id: '12358' relation: dissertation_contains status: public scopus_import: '1' status: public title: Estimation of yarn-level simulation models for production fabrics type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 41 year: '2022' ... --- _id: '12431' abstract: - lang: eng text: This paper presents a new representation of curve dynamics, with applications to vortex filaments in fluid dynamics. Instead of representing these filaments with explicit curve geometry and Lagrangian equations of motion, we represent curves implicitly with a new co-dimensional 2 level set description. Our implicit representation admits several redundant mathematical degrees of freedom in both the configuration and the dynamics of the curves, which can be tailored specifically to improve numerical robustness, in contrast to naive approaches for implicit curve dynamics that suffer from overwhelming numerical stability problems. Furthermore, we note how these hidden degrees of freedom perfectly map to a Clebsch representation in fluid dynamics. Motivated by these observations, we introduce untwisted level set functions and non-swirling dynamics which successfully regularize sources of numerical instability, particularly in the twisting modes around curve filaments. A consequence is a novel simulation method which produces stable dynamics for large numbers of interacting vortex filaments and effortlessly handles topological changes and re-connection events. acknowledgement: We thank the visual computing group at IST Austria for their valuable discussions and feedback. Houdini Education licenses were provided by SideFX software. This project was funded in part by the European Research Council (ERC Consolidator Grant 101045083 CoDiNA). article_number: '241' article_processing_charge: No article_type: original author: - first_name: Sadashige full_name: Ishida, Sadashige id: 6F7C4B96-A8E9-11E9-A7CA-09ECE5697425 last_name: Ishida - first_name: Christopher J full_name: Wojtan, Christopher J id: 3C61F1D2-F248-11E8-B48F-1D18A9856A87 last_name: Wojtan orcid: 0000-0001-6646-5546 - first_name: Albert full_name: Chern, Albert last_name: Chern citation: ama: Ishida S, Wojtan C, Chern A. Hidden degrees of freedom in implicit vortex filaments. ACM Transactions on Graphics. 2022;41(6). doi:10.1145/3550454.3555459 apa: Ishida, S., Wojtan, C., & Chern, A. (2022). Hidden degrees of freedom in implicit vortex filaments. ACM Transactions on Graphics. Association for Computing Machinery. https://doi.org/10.1145/3550454.3555459 chicago: Ishida, Sadashige, Chris Wojtan, and Albert Chern. “Hidden Degrees of Freedom in Implicit Vortex Filaments.” ACM Transactions on Graphics. Association for Computing Machinery, 2022. https://doi.org/10.1145/3550454.3555459. ieee: S. Ishida, C. Wojtan, and A. Chern, “Hidden degrees of freedom in implicit vortex filaments,” ACM Transactions on Graphics, vol. 41, no. 6. Association for Computing Machinery, 2022. ista: Ishida S, Wojtan C, Chern A. 2022. Hidden degrees of freedom in implicit vortex filaments. ACM Transactions on Graphics. 41(6), 241. mla: Ishida, Sadashige, et al. “Hidden Degrees of Freedom in Implicit Vortex Filaments.” ACM Transactions on Graphics, vol. 41, no. 6, 241, Association for Computing Machinery, 2022, doi:10.1145/3550454.3555459. short: S. Ishida, C. Wojtan, A. Chern, ACM Transactions on Graphics 41 (2022). date_created: 2023-01-29T23:00:59Z date_published: 2022-12-01T00:00:00Z date_updated: 2023-08-04T09:37:23Z day: '01' ddc: - '000' department: - _id: ChWo doi: 10.1145/3550454.3555459 external_id: isi: - '000891651900061' file: - access_level: open_access checksum: a2fba257fdefe0e747182be6c0f7c70c content_type: application/pdf creator: dernst date_created: 2023-01-30T07:15:48Z date_updated: 2023-01-30T07:15:48Z file_id: '12433' file_name: 2022_ACM_Ishida.pdf file_size: 15551202 relation: main_file success: 1 file_date_updated: 2023-01-30T07:15:48Z has_accepted_license: '1' intvolume: ' 41' isi: 1 issue: '6' language: - iso: eng month: '12' oa: 1 oa_version: Published Version project: - _id: 34bc2376-11ca-11ed-8bc3-9a3b3961a088 grant_number: '101045083' name: Computational Discovery of Numerical Algorithms for Animation and Simulation of Natural Phenomena publication: ACM Transactions on Graphics publication_identifier: eissn: - 1557-7368 issn: - 0730-0301 publication_status: published publisher: Association for Computing Machinery quality_controlled: '1' scopus_import: '1' status: public title: Hidden degrees of freedom in implicit vortex filaments tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 41 year: '2022' ... --- _id: '12358' abstract: - lang: eng text: "The complex yarn structure of knitted and woven fabrics gives rise to both a mechanical and\r\nvisual complexity. The small-scale interactions of yarns colliding with and pulling on each\r\nother result in drastically different large-scale stretching and bending behavior, introducing\r\nanisotropy, curling, and more. While simulating cloth as individual yarns can reproduce this\r\ncomplexity and match the quality of real fabric, it may be too computationally expensive for\r\nlarge fabrics. On the other hand, continuum-based approaches do not need to discretize the\r\ncloth at a stitch-level, but it is non-trivial to find a material model that would replicate the\r\nlarge-scale behavior of yarn fabrics, and they discard the intricate visual detail. In this thesis,\r\nwe discuss three methods to try and bridge the gap between small-scale and large-scale yarn\r\nmechanics using numerical homogenization: fitting a continuum model to periodic yarn simulations, adding mechanics-aware yarn detail onto thin-shell simulations, and quantitatively\r\nfitting yarn parameters to physical measurements of real fabric.\r\nTo start, we present a method for animating yarn-level cloth effects using a thin-shell solver.\r\nWe first use a large number of periodic yarn-level simulations to build a model of the potential\r\nenergy density of the cloth, and then use it to compute forces in a thin-shell simulator. The\r\nresulting simulations faithfully reproduce expected effects like the stiffening of woven fabrics\r\nand the highly deformable nature and anisotropy of knitted fabrics at a fraction of the cost of\r\nfull yarn-level simulation.\r\nWhile our thin-shell simulations are able to capture large-scale yarn mechanics, they lack\r\nthe rich visual detail of yarn-level simulations. Therefore, we propose a method to animate\r\nyarn-level cloth geometry on top of an underlying deforming mesh in a mechanics-aware\r\nfashion in real time. Using triangle strains to interpolate precomputed yarn geometry, we are\r\nable to reproduce effects such as knit loops tightening under stretching at negligible cost.\r\nFinally, we introduce a methodology for inverse-modeling of yarn-level mechanics of cloth,\r\nbased on the mechanical response of fabrics in the real world. We compile a database from\r\nphysical tests of several knitted fabrics used in the textile industry spanning diverse physical\r\nproperties like stiffness, nonlinearity, and anisotropy. We then develop a system for approximating these mechanical responses with yarn-level cloth simulation, using homogenized\r\nshell models to speed up computation and adding some small-but-necessary extensions to\r\nyarn-level models used in computer graphics.\r\n" acknowledged_ssus: - _id: SSU alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Georg full_name: Sperl, Georg id: 4DD40360-F248-11E8-B48F-1D18A9856A87 last_name: Sperl citation: ama: 'Sperl G. Homogenizing yarn simulations: Large-scale mechanics, small-scale detail, and quantitative fitting. 2022. doi:10.15479/at:ista:12103' apa: 'Sperl, G. (2022). Homogenizing yarn simulations: Large-scale mechanics, small-scale detail, and quantitative fitting. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:12103' chicago: 'Sperl, Georg. “Homogenizing Yarn Simulations: Large-Scale Mechanics, Small-Scale Detail, and Quantitative Fitting.” Institute of Science and Technology Austria, 2022. https://doi.org/10.15479/at:ista:12103.' ieee: 'G. Sperl, “Homogenizing yarn simulations: Large-scale mechanics, small-scale detail, and quantitative fitting,” Institute of Science and Technology Austria, 2022.' ista: 'Sperl G. 2022. Homogenizing yarn simulations: Large-scale mechanics, small-scale detail, and quantitative fitting. Institute of Science and Technology Austria.' mla: 'Sperl, Georg. Homogenizing Yarn Simulations: Large-Scale Mechanics, Small-Scale Detail, and Quantitative Fitting. Institute of Science and Technology Austria, 2022, doi:10.15479/at:ista:12103.' short: 'G. Sperl, Homogenizing Yarn Simulations: Large-Scale Mechanics, Small-Scale Detail, and Quantitative Fitting, Institute of Science and Technology Austria, 2022.' date_created: 2023-01-24T10:49:46Z date_published: 2022-09-22T00:00:00Z date_updated: 2024-02-28T12:57:46Z day: '22' ddc: - '000' - '620' degree_awarded: PhD department: - _id: GradSch - _id: ChWo doi: 10.15479/at:ista:12103 ec_funded: 1 file: - access_level: open_access checksum: 083722acbb8115e52e3b0fdec6226769 content_type: application/pdf creator: cchlebak date_created: 2023-01-25T12:04:41Z date_updated: 2023-02-02T09:29:57Z description: 'This is the main PDF file of the thesis. File size: 105 MB' file_id: '12371' file_name: thesis_gsperl.pdf file_size: 104497530 relation: main_file title: Thesis - access_level: open_access checksum: 511f82025e5fcb70bff4731d6896ca07 content_type: application/pdf creator: cchlebak date_created: 2023-02-02T09:33:37Z date_updated: 2023-02-02T09:33:37Z description: This version of the thesis uses stronger image compression for a smaller file size of 23MB. file_id: '12483' file_name: thesis_gsperl_compressed.pdf file_size: 23183710 relation: main_file title: Thesis (compressed 23MB) - access_level: open_access checksum: ed4cb85225eedff761c25bddfc37a2ed content_type: application/x-zip-compressed creator: cchlebak date_created: 2023-02-02T09:39:25Z date_updated: 2023-02-02T09:39:25Z file_id: '12484' file_name: thesis-source.zip file_size: 98382247 relation: source_file file_date_updated: 2023-02-02T09:39:25Z has_accepted_license: '1' language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: '138' project: - _id: 2533E772-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '638176' name: Efficient Simulation of Natural Phenomena at Extremely Large Scales publication_identifier: isbn: - 978-3-99078-020-6 issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '11736' relation: part_of_dissertation status: public - id: '9818' relation: part_of_dissertation status: public - id: '8385' relation: part_of_dissertation status: public status: public supervisor: - first_name: Christopher J full_name: Wojtan, Christopher J id: 3C61F1D2-F248-11E8-B48F-1D18A9856A87 last_name: Wojtan orcid: 0000-0001-6646-5546 title: 'Homogenizing yarn simulations: Large-scale mechanics, small-scale detail, and quantitative fitting' type: dissertation user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2022' ... --- _id: '9818' abstract: - lang: eng text: Triangle mesh-based simulations are able to produce satisfying animations of knitted and woven cloth; however, they lack the rich geometric detail of yarn-level simulations. Naive texturing approaches do not consider yarn-level physics, while full yarn-level simulations may become prohibitively expensive for large garments. We propose a method to animate yarn-level cloth geometry on top of an underlying deforming mesh in a mechanics-aware fashion. Using triangle strains to interpolate precomputed yarn geometry, we are able to reproduce effects such as knit loops tightening under stretching. In combination with precomputed mesh animation or real-time mesh simulation, our method is able to animate yarn-level cloth in real-time at large scales. acknowledged_ssus: - _id: ScienComp acknowledgement: "We wish to thank the anonymous reviewers and the members of the Visual Computing Group at IST Austria for their valuable feedback. We also thank Seddi Labs for providing the garment model with fold-over seams.\r\nThis research was supported by the Scientific Service Units (SSU) of IST Austria through resources provided by Scientific\r\nComputing. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 638176. Rahul Narain is supported by a Pankaj Gupta Young Faculty Fellowship and a gift from Adobe Inc." article_number: '168' article_processing_charge: Yes (in subscription journal) article_type: original author: - first_name: Georg full_name: Sperl, Georg id: 4DD40360-F248-11E8-B48F-1D18A9856A87 last_name: Sperl - first_name: Rahul full_name: Narain, Rahul last_name: Narain - first_name: Christopher J full_name: Wojtan, Christopher J id: 3C61F1D2-F248-11E8-B48F-1D18A9856A87 last_name: Wojtan orcid: 0000-0001-6646-5546 citation: ama: Sperl G, Narain R, Wojtan C. Mechanics-aware deformation of yarn pattern geometry. ACM Transactions on Graphics. 2021;40(4). doi:10.1145/3450626.3459816 apa: Sperl, G., Narain, R., & Wojtan, C. (2021). Mechanics-aware deformation of yarn pattern geometry. ACM Transactions on Graphics. Association for Computing Machinery. https://doi.org/10.1145/3450626.3459816 chicago: Sperl, Georg, Rahul Narain, and Chris Wojtan. “Mechanics-Aware Deformation of Yarn Pattern Geometry.” ACM Transactions on Graphics. Association for Computing Machinery, 2021. https://doi.org/10.1145/3450626.3459816. ieee: G. Sperl, R. Narain, and C. Wojtan, “Mechanics-aware deformation of yarn pattern geometry,” ACM Transactions on Graphics, vol. 40, no. 4. Association for Computing Machinery, 2021. ista: Sperl G, Narain R, Wojtan C. 2021. Mechanics-aware deformation of yarn pattern geometry. ACM Transactions on Graphics. 40(4), 168. mla: Sperl, Georg, et al. “Mechanics-Aware Deformation of Yarn Pattern Geometry.” ACM Transactions on Graphics, vol. 40, no. 4, 168, Association for Computing Machinery, 2021, doi:10.1145/3450626.3459816. short: G. Sperl, R. Narain, C. Wojtan, ACM Transactions on Graphics 40 (2021). date_created: 2021-08-08T22:01:27Z date_published: 2021-08-01T00:00:00Z date_updated: 2023-08-10T14:24:36Z day: '01' department: - _id: GradSch - _id: ChWo doi: 10.1145/3450626.3459816 ec_funded: 1 external_id: isi: - '000674930900132' intvolume: ' 40' isi: 1 issue: '4' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1145/3450626.3459816 month: '08' oa: 1 oa_version: Published Version project: - _id: 2533E772-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '638176' name: Efficient Simulation of Natural Phenomena at Extremely Large Scales publication: ACM Transactions on Graphics publication_identifier: eissn: - '15577368' issn: - '07300301' publication_status: published publisher: Association for Computing Machinery quality_controlled: '1' related_material: link: - description: News on IST Webpage relation: press_release url: https://ist.ac.at/en/news/knitting-virtual-yarn/ record: - id: '12358' relation: dissertation_contains status: public - id: '9327' relation: software status: public scopus_import: '1' status: public title: Mechanics-aware deformation of yarn pattern geometry type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 40 year: '2021' ... --- _id: '9327' abstract: - lang: eng text: "This archive contains the missing sweater mesh animations and displacement models for the code of \"Mechanics-Aware Deformation of Yarn Pattern Geometry\"\r\n\r\nCode Repository: https://git.ist.ac.at/gsperl/MADYPG" author: - first_name: Georg full_name: Sperl, Georg id: 4DD40360-F248-11E8-B48F-1D18A9856A87 last_name: Sperl - first_name: Rahul full_name: Narain, Rahul last_name: Narain - first_name: Christopher J full_name: Wojtan, Christopher J id: 3C61F1D2-F248-11E8-B48F-1D18A9856A87 last_name: Wojtan orcid: 0000-0001-6646-5546 citation: ama: Sperl G, Narain R, Wojtan C. Mechanics-Aware Deformation of Yarn Pattern Geometry (Additional Animation/Model Data). 2021. doi:10.15479/AT:ISTA:9327 apa: Sperl, G., Narain, R., & Wojtan, C. (2021). Mechanics-Aware Deformation of Yarn Pattern Geometry (Additional Animation/Model Data). IST Austria. https://doi.org/10.15479/AT:ISTA:9327 chicago: Sperl, Georg, Rahul Narain, and Chris Wojtan. “Mechanics-Aware Deformation of Yarn Pattern Geometry (Additional Animation/Model Data).” IST Austria, 2021. https://doi.org/10.15479/AT:ISTA:9327. ieee: G. Sperl, R. Narain, and C. Wojtan, “Mechanics-Aware Deformation of Yarn Pattern Geometry (Additional Animation/Model Data).” IST Austria, 2021. ista: Sperl G, Narain R, Wojtan C. 2021. Mechanics-Aware Deformation of Yarn Pattern Geometry (Additional Animation/Model Data), IST Austria, 10.15479/AT:ISTA:9327. mla: Sperl, Georg, et al. Mechanics-Aware Deformation of Yarn Pattern Geometry (Additional Animation/Model Data). IST Austria, 2021, doi:10.15479/AT:ISTA:9327. short: G. Sperl, R. Narain, C. Wojtan, (2021). date_created: 2021-04-16T14:26:19Z date_published: 2021-05-01T00:00:00Z date_updated: 2023-08-10T14:24:36Z ddc: - '005' department: - _id: GradSch - _id: ChWo doi: 10.15479/AT:ISTA:9327 file: - access_level: open_access checksum: 0324cb519273371708743f3282e7c081 content_type: application/zip creator: gsperl date_created: 2021-04-16T14:15:12Z date_updated: 2021-04-16T14:15:12Z file_id: '9328' file_name: MADYPG_extra_data.zip file_size: 802586232 relation: main_file success: 1 - access_level: open_access checksum: 4c224551adf852b136ec21a4e13f0c1b content_type: application/gzip creator: pub-gitlab-bot date_created: 2021-04-26T09:33:44Z date_updated: 2021-04-26T09:33:44Z file_id: '9353' file_name: MADYPG.zip file_size: 64962865 relation: main_file file_date_updated: 2021-04-26T09:33:44Z gitlab_commit_id: 6a77e7e22769230ae5f5edaa090fb4b828e57573 gitlab_url: https://git.ist.ac.at/gsperl/MADYPG has_accepted_license: '1' license: https://opensource.org/licenses/MIT month: '05' oa: 1 publisher: IST Austria related_material: record: - id: '9818' relation: used_for_analysis_in status: public status: public title: Mechanics-Aware Deformation of Yarn Pattern Geometry (Additional Animation/Model Data) tmp: legal_code_url: https://opensource.org/licenses/MIT name: The MIT License short: MIT type: software user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2021' ... --- _id: '8535' abstract: - lang: eng text: We propose a method to enhance the visual detail of a water surface simulation. Our method works as a post-processing step which takes a simulation as input and increases its apparent resolution by simulating many detailed Lagrangian water waves on top of it. We extend linear water wave theory to work in non-planar domains which deform over time, and we discretize the theory using Lagrangian wave packets attached to spline curves. The method is numerically stable and trivially parallelizable, and it produces high frequency ripples with dispersive wave-like behaviors customized to the underlying fluid simulation. acknowledged_ssus: - _id: ScienComp acknowledgement: We wish to thank the anonymous reviewers and the members of the Visual Computing Group at IST Austria for their valuable feedback. This research was supported by the Scientific Service Units (SSU) of IST Austria through resources provided by Scientific Computing. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 638176 and Marie SkłodowskaCurie Grant Agreement No. 665385. article_number: '65' article_processing_charge: No article_type: original author: - first_name: Tomas full_name: Skrivan, Tomas id: 486A5A46-F248-11E8-B48F-1D18A9856A87 last_name: Skrivan - first_name: Andreas full_name: Soderstrom, Andreas last_name: Soderstrom - first_name: John full_name: Johansson, John last_name: Johansson - first_name: Christoph full_name: Sprenger, Christoph last_name: Sprenger - first_name: Ken full_name: Museth, Ken last_name: Museth - first_name: Christopher J full_name: Wojtan, Christopher J id: 3C61F1D2-F248-11E8-B48F-1D18A9856A87 last_name: Wojtan orcid: 0000-0001-6646-5546 citation: ama: 'Skrivan T, Soderstrom A, Johansson J, Sprenger C, Museth K, Wojtan C. Wave curves: Simulating Lagrangian water waves on dynamically deforming surfaces. ACM Transactions on Graphics. 2020;39(4). doi:10.1145/3386569.3392466' apa: 'Skrivan, T., Soderstrom, A., Johansson, J., Sprenger, C., Museth, K., & Wojtan, C. (2020). Wave curves: Simulating Lagrangian water waves on dynamically deforming surfaces. ACM Transactions on Graphics. Association for Computing Machinery. https://doi.org/10.1145/3386569.3392466' chicago: 'Skrivan, Tomas, Andreas Soderstrom, John Johansson, Christoph Sprenger, Ken Museth, and Chris Wojtan. “Wave Curves: Simulating Lagrangian Water Waves on Dynamically Deforming Surfaces.” ACM Transactions on Graphics. Association for Computing Machinery, 2020. https://doi.org/10.1145/3386569.3392466.' ieee: 'T. Skrivan, A. Soderstrom, J. Johansson, C. Sprenger, K. Museth, and C. Wojtan, “Wave curves: Simulating Lagrangian water waves on dynamically deforming surfaces,” ACM Transactions on Graphics, vol. 39, no. 4. Association for Computing Machinery, 2020.' ista: 'Skrivan T, Soderstrom A, Johansson J, Sprenger C, Museth K, Wojtan C. 2020. Wave curves: Simulating Lagrangian water waves on dynamically deforming surfaces. ACM Transactions on Graphics. 39(4), 65.' mla: 'Skrivan, Tomas, et al. “Wave Curves: Simulating Lagrangian Water Waves on Dynamically Deforming Surfaces.” ACM Transactions on Graphics, vol. 39, no. 4, 65, Association for Computing Machinery, 2020, doi:10.1145/3386569.3392466.' short: T. Skrivan, A. Soderstrom, J. Johansson, C. Sprenger, K. Museth, C. Wojtan, ACM Transactions on Graphics 39 (2020). date_created: 2020-09-20T22:01:37Z date_published: 2020-07-08T00:00:00Z date_updated: 2023-08-22T09:28:27Z day: '08' ddc: - '000' department: - _id: ChWo doi: 10.1145/3386569.3392466 ec_funded: 1 external_id: isi: - '000583700300038' file: - access_level: open_access checksum: c3a680893f01cc4a9e961ff0a4cfa12f content_type: application/pdf creator: dernst date_created: 2020-09-21T07:51:44Z date_updated: 2020-09-21T07:51:44Z file_id: '8541' file_name: 2020_ACM_Skrivan.pdf file_size: 20223953 relation: main_file success: 1 file_date_updated: 2020-09-21T07:51:44Z has_accepted_license: '1' intvolume: ' 39' isi: 1 issue: '4' language: - iso: eng month: '07' oa: 1 oa_version: Published Version project: - _id: 2533E772-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '638176' name: Efficient Simulation of Natural Phenomena at Extremely Large Scales - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication: ACM Transactions on Graphics publication_identifier: eissn: - '15577368' issn: - '07300301' publication_status: published publisher: Association for Computing Machinery quality_controlled: '1' scopus_import: '1' status: public title: 'Wave curves: Simulating Lagrangian water waves on dynamically deforming surfaces' type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 39 year: '2020' ... --- _id: '8765' abstract: - lang: eng text: This paper introduces a simple method for simulating highly anisotropic elastoplastic material behaviors like the dissolution of fibrous phenomena (splintering wood, shredding bales of hay) and materials composed of large numbers of irregularly‐shaped bodies (piles of twigs, pencils, or cards). We introduce a simple transformation of the anisotropic problem into an equivalent isotropic one, and we solve this new “fictitious” isotropic problem using an existing simulator based on the material point method. Our approach results in minimal changes to existing simulators, and it allows us to re‐use popular isotropic plasticity models like the Drucker‐Prager yield criterion instead of inventing new anisotropic plasticity models for every phenomenon we wish to simulate. acknowledged_ssus: - _id: ScienComp acknowledgement: "We wish to thank the anonymous reviewers and the members of the Visual Computing Group at IST Austria for their valuable feedback. This research was supported by the Scientific Service Units (SSU) of IST Austria through resources provided by Scientific Computing. We would also like to thank Joseph Teran and Chenfanfu Jiang for the helpful discussions.\r\nThis project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme under grant agreement No. 638176." article_processing_charge: No article_type: original author: - first_name: Camille full_name: Schreck, Camille id: 2B14B676-F248-11E8-B48F-1D18A9856A87 last_name: Schreck - first_name: Christopher J full_name: Wojtan, Christopher J id: 3C61F1D2-F248-11E8-B48F-1D18A9856A87 last_name: Wojtan orcid: 0000-0001-6646-5546 citation: ama: Schreck C, Wojtan C. A practical method for animating anisotropic elastoplastic materials. Computer Graphics Forum. 2020;39(2):89-99. doi:10.1111/cgf.13914 apa: Schreck, C., & Wojtan, C. (2020). A practical method for animating anisotropic elastoplastic materials. Computer Graphics Forum. Wiley. https://doi.org/10.1111/cgf.13914 chicago: Schreck, Camille, and Chris Wojtan. “A Practical Method for Animating Anisotropic Elastoplastic Materials.” Computer Graphics Forum. Wiley, 2020. https://doi.org/10.1111/cgf.13914. ieee: C. Schreck and C. Wojtan, “A practical method for animating anisotropic elastoplastic materials,” Computer Graphics Forum, vol. 39, no. 2. Wiley, pp. 89–99, 2020. ista: Schreck C, Wojtan C. 2020. A practical method for animating anisotropic elastoplastic materials. Computer Graphics Forum. 39(2), 89–99. mla: Schreck, Camille, and Chris Wojtan. “A Practical Method for Animating Anisotropic Elastoplastic Materials.” Computer Graphics Forum, vol. 39, no. 2, Wiley, 2020, pp. 89–99, doi:10.1111/cgf.13914. short: C. Schreck, C. Wojtan, Computer Graphics Forum 39 (2020) 89–99. date_created: 2020-11-17T09:35:10Z date_published: 2020-05-01T00:00:00Z date_updated: 2023-09-05T16:00:13Z day: '01' ddc: - '000' department: - _id: ChWo doi: 10.1111/cgf.13914 ec_funded: 1 external_id: isi: - '000548709600008' file: - access_level: open_access checksum: 7605f605acd84d0942b48bc7a1c2d72e content_type: application/pdf creator: dernst date_created: 2020-11-23T09:05:13Z date_updated: 2020-11-23T09:05:13Z file_id: '8796' file_name: 2020_poff_revisited.pdf file_size: 38969122 relation: main_file success: 1 file_date_updated: 2020-11-23T09:05:13Z has_accepted_license: '1' intvolume: ' 39' isi: 1 issue: '2' keyword: - Computer Networks and Communications language: - iso: eng month: '05' oa: 1 oa_version: Submitted Version page: 89-99 project: - _id: 2533E772-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '638176' name: Efficient Simulation of Natural Phenomena at Extremely Large Scales publication: Computer Graphics Forum publication_identifier: eissn: - 1467-8659 issn: - 0167-7055 publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: A practical method for animating anisotropic elastoplastic materials type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 39 year: '2020' ... --- _id: '5681' abstract: - lang: eng text: 'We introduce dynamically warping grids for adaptive liquid simulation. Our primary contributions are a strategy for dynamically deforming regular grids over the course of a simulation and a method for efficiently utilizing these deforming grids for liquid simulation. Prior work has shown that unstructured grids are very effective for adaptive fluid simulations. However, unstructured grids often lead to complicated implementations and a poor cache hit rate due to inconsistent memory access. Regular grids, on the other hand, provide a fast, fixed memory access pattern and straightforward implementation. Our method combines the advantages of both: we leverage the simplicity of regular grids while still achieving practical and controllable spatial adaptivity. We demonstrate that our method enables adaptive simulations that are fast, flexible, and robust to null-space issues. At the same time, our method is simple to implement and takes advantage of existing highly-tuned algorithms.' acknowledged_ssus: - _id: ScienComp acknowledgement: This work was partially supported by JSPS Grant-in-Aid forYoung Scientists (Start-up) 16H07410, the ERC StartingGrantsrealFlow(StG-2015-637014) andBigSplash(StG-2014-638176). This research was supported by the Scientific Ser-vice Units (SSU) of IST Austria through resources providedby Scientific Computing. We would like to express my grati-tude to Nobuyuki Umetani and Tomas Skrivan for insight-ful discussion. article_processing_charge: No article_type: original author: - first_name: Ibayashi full_name: Hikaru, Ibayashi last_name: Hikaru - first_name: Christopher J full_name: Wojtan, Christopher J id: 3C61F1D2-F248-11E8-B48F-1D18A9856A87 last_name: Wojtan orcid: 0000-0001-6646-5546 - first_name: Nils full_name: Thuerey, Nils last_name: Thuerey - first_name: Takeo full_name: Igarashi, Takeo last_name: Igarashi - first_name: Ryoichi full_name: Ando, Ryoichi last_name: Ando citation: ama: Hikaru I, Wojtan C, Thuerey N, Igarashi T, Ando R. Simulating liquids on dynamically warping grids. IEEE Transactions on Visualization and Computer Graphics. 2020;26(6):2288-2302. doi:10.1109/TVCG.2018.2883628 apa: Hikaru, I., Wojtan, C., Thuerey, N., Igarashi, T., & Ando, R. (2020). Simulating liquids on dynamically warping grids. IEEE Transactions on Visualization and Computer Graphics. IEEE. https://doi.org/10.1109/TVCG.2018.2883628 chicago: Hikaru, Ibayashi, Chris Wojtan, Nils Thuerey, Takeo Igarashi, and Ryoichi Ando. “Simulating Liquids on Dynamically Warping Grids.” IEEE Transactions on Visualization and Computer Graphics. IEEE, 2020. https://doi.org/10.1109/TVCG.2018.2883628. ieee: I. Hikaru, C. Wojtan, N. Thuerey, T. Igarashi, and R. Ando, “Simulating liquids on dynamically warping grids,” IEEE Transactions on Visualization and Computer Graphics, vol. 26, no. 6. IEEE, pp. 2288–2302, 2020. ista: Hikaru I, Wojtan C, Thuerey N, Igarashi T, Ando R. 2020. Simulating liquids on dynamically warping grids. IEEE Transactions on Visualization and Computer Graphics. 26(6), 2288–2302. mla: Hikaru, Ibayashi, et al. “Simulating Liquids on Dynamically Warping Grids.” IEEE Transactions on Visualization and Computer Graphics, vol. 26, no. 6, IEEE, 2020, pp. 2288–302, doi:10.1109/TVCG.2018.2883628. short: I. Hikaru, C. Wojtan, N. Thuerey, T. Igarashi, R. Ando, IEEE Transactions on Visualization and Computer Graphics 26 (2020) 2288–2302. date_created: 2018-12-16T22:59:21Z date_published: 2020-06-01T00:00:00Z date_updated: 2023-09-18T09:30:01Z day: '01' ddc: - '006' department: - _id: ChWo doi: 10.1109/TVCG.2018.2883628 external_id: isi: - '000532295600014' pmid: - '30507534' file: - access_level: open_access checksum: 8d4c55443a0ee335bb5bb652de503042 content_type: application/pdf creator: wojtan date_created: 2020-10-08T08:34:53Z date_updated: 2020-10-08T08:34:53Z file_id: '8626' file_name: preprint.pdf file_size: 21910098 relation: main_file success: 1 file_date_updated: 2020-10-08T08:34:53Z has_accepted_license: '1' intvolume: ' 26' isi: 1 issue: '6' language: - iso: eng month: '06' oa: 1 oa_version: Submitted Version page: 2288-2302 pmid: 1 publication: IEEE Transactions on Visualization and Computer Graphics publication_identifier: eissn: - '19410506' issn: - '10772626' publication_status: published publisher: IEEE quality_controlled: '1' scopus_import: '1' status: public title: Simulating liquids on dynamically warping grids type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 26 year: '2020' ...