--- _id: '12846' abstract: - lang: eng text: We present a formula for the signed area of a spherical polygon via prequantization. In contrast to the traditional formula based on the Gauss-Bonnet theorem that requires measuring angles, the new formula mimics Green's theorem and is applicable to a wider range of degenerate spherical curves and polygons. acknowledgement: The authors acknowledge Chris Wojtan for his continuous support to the present work through discussions and advice. The second author thanks Anna Sisak for a fruitful discussion on prequantum bundles. This project was funded in part by the European Research Council (ERC Consolidator Grant 101045083 CoDiNA). article_number: '2303.14555' article_processing_charge: No author: - first_name: Albert full_name: Chern, Albert last_name: Chern - first_name: Sadashige full_name: Ishida, Sadashige id: 6F7C4B96-A8E9-11E9-A7CA-09ECE5697425 last_name: Ishida citation: ama: Chern A, Ishida S. Area formula for spherical polygons via prequantization. arXiv. doi:10.48550/arXiv.2303.14555 apa: Chern, A., & Ishida, S. (n.d.). Area formula for spherical polygons via prequantization. arXiv. https://doi.org/10.48550/arXiv.2303.14555 chicago: Chern, Albert, and Sadashige Ishida. “Area Formula for Spherical Polygons via Prequantization.” ArXiv, n.d. https://doi.org/10.48550/arXiv.2303.14555. ieee: A. Chern and S. Ishida, “Area formula for spherical polygons via prequantization,” arXiv. . ista: Chern A, Ishida S. Area formula for spherical polygons via prequantization. arXiv, 2303.14555. mla: Chern, Albert, and Sadashige Ishida. “Area Formula for Spherical Polygons via Prequantization.” ArXiv, 2303.14555, doi:10.48550/arXiv.2303.14555. short: A. Chern, S. Ishida, ArXiv (n.d.). date_created: 2023-04-18T19:16:06Z date_published: 2023-03-25T00:00:00Z date_updated: 2023-04-25T06:51:21Z day: '25' department: - _id: GradSch - _id: ChWo doi: 10.48550/arXiv.2303.14555 external_id: arxiv: - '2303.14555' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2303.14555 month: '03' oa: 1 oa_version: Preprint project: - _id: 34bc2376-11ca-11ed-8bc3-9a3b3961a088 grant_number: '101045083' name: Computational Discovery of Numerical Algorithms for Animation and Simulation of Natural Phenomena publication: arXiv publication_status: submitted status: public title: Area formula for spherical polygons via prequantization type: preprint user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2023' ... --- _id: '14628' abstract: - lang: eng text: We introduce a compact, intuitive procedural graph representation for cellular metamaterials, which are small-scale, tileable structures that can be architected to exhibit many useful material properties. Because the structures’ “architectures” vary widely—with elements such as beams, thin shells, and solid bulks—it is difficult to explore them using existing representations. Generic approaches like voxel grids are versatile, but it is cumbersome to represent and edit individual structures; architecture-specific approaches address these issues, but are incompatible with one another. By contrast, our procedural graph succinctly represents the construction process for any structure using a simple skeleton annotated with spatially varying thickness. To express the highly constrained triply periodic minimal surfaces (TPMS) in this manner, we present the first fully automated version of the conjugate surface construction method, which allows novices to create complex TPMS from intuitive input. We demonstrate our representation’s expressiveness, accuracy, and compactness by constructing a wide range of established structures and hundreds of novel structures with diverse architectures and material properties. We also conduct a user study to verify our representation’s ease-of-use and ability to expand engineers’ capacity for exploration. acknowledgement: "The authors thank Mina Konaković Luković and Michael Foshey for their early contributions to this project, David Palmer and Paul Zhang for their insightful discussions about minimal surfaces and the CSCM, Julian Panetta for providing the Elastic Textures code, and Hannes Hergeth for his feedback and support. We also thank our user study participants and anonymous reviewers.\r\nThis material is based upon work supported by the National Science Foundation\r\n(NSF) Graduate Research Fellowship under Grant No. 2141064; the MIT Morningside\r\nAcademy for Design Fellowship; the Defense Advanced Research Projects Agency\r\n(DARPA) Grant No. FA8750-20-C-0075; the ERC Consolidator Grant No. 101045083,\r\n“CoDiNA: Computational Discovery of Numerical Algorithms for Animation and Simulation of Natural Phenomena”; and the NewSat project, which is co-funded by the Operational Program for Competitiveness and Internationalisation (COMPETE2020), Portugal 2020, the European Regional Development Fund (ERDF), and the Portuguese Foundation for Science and Technology (FTC) under the MIT Portugal program." article_number: '168' article_processing_charge: Yes (in subscription journal) article_type: original author: - first_name: Liane full_name: Makatura, Liane last_name: Makatura - first_name: Bohan full_name: Wang, Bohan last_name: Wang - first_name: Yi-Lu full_name: Chen, Yi-Lu id: 0b467602-dbcd-11ea-9d1d-ed480aa46b70 last_name: Chen - first_name: Bolei full_name: Deng, Bolei last_name: Deng - first_name: Christopher J full_name: Wojtan, Christopher J id: 3C61F1D2-F248-11E8-B48F-1D18A9856A87 last_name: Wojtan orcid: 0000-0001-6646-5546 - first_name: Bernd full_name: Bickel, Bernd id: 49876194-F248-11E8-B48F-1D18A9856A87 last_name: Bickel orcid: 0000-0001-6511-9385 - first_name: Wojciech full_name: Matusik, Wojciech last_name: Matusik citation: ama: 'Makatura L, Wang B, Chen Y-L, et al. Procedural metamaterials: A unified procedural graph for metamaterial design. ACM Transactions on Graphics. 2023;42(5). doi:10.1145/3605389' apa: 'Makatura, L., Wang, B., Chen, Y.-L., Deng, B., Wojtan, C., Bickel, B., & Matusik, W. (2023). Procedural metamaterials: A unified procedural graph for metamaterial design. ACM Transactions on Graphics. Association for Computing Machinery. https://doi.org/10.1145/3605389' chicago: 'Makatura, Liane, Bohan Wang, Yi-Lu Chen, Bolei Deng, Chris Wojtan, Bernd Bickel, and Wojciech Matusik. “Procedural Metamaterials: A Unified Procedural Graph for Metamaterial Design.” ACM Transactions on Graphics. Association for Computing Machinery, 2023. https://doi.org/10.1145/3605389.' ieee: 'L. Makatura et al., “Procedural metamaterials: A unified procedural graph for metamaterial design,” ACM Transactions on Graphics, vol. 42, no. 5. Association for Computing Machinery, 2023.' ista: 'Makatura L, Wang B, Chen Y-L, Deng B, Wojtan C, Bickel B, Matusik W. 2023. Procedural metamaterials: A unified procedural graph for metamaterial design. ACM Transactions on Graphics. 42(5), 168.' mla: 'Makatura, Liane, et al. “Procedural Metamaterials: A Unified Procedural Graph for Metamaterial Design.” ACM Transactions on Graphics, vol. 42, no. 5, 168, Association for Computing Machinery, 2023, doi:10.1145/3605389.' short: L. Makatura, B. Wang, Y.-L. Chen, B. Deng, C. Wojtan, B. Bickel, W. Matusik, ACM Transactions on Graphics 42 (2023). date_created: 2023-11-29T15:02:03Z date_published: 2023-10-01T00:00:00Z date_updated: 2023-12-04T08:09:05Z day: '01' ddc: - '531' - '006' department: - _id: GradSch - _id: ChWo - _id: BeBi doi: 10.1145/3605389 file: - access_level: open_access checksum: 0192f597d7a2ceaf89baddfd6190d4c8 content_type: application/zip creator: yichen date_created: 2023-11-29T15:16:01Z date_updated: 2023-11-29T15:16:01Z file_id: '14630' file_name: tog-22-0089-File004.zip file_size: 95467870 relation: main_file success: 1 - access_level: open_access checksum: 7fb024963be81933494f38de191e4710 content_type: application/zip creator: yichen date_created: 2023-11-29T15:16:01Z date_updated: 2023-11-29T15:16:01Z file_id: '14631' file_name: tog-22-0089-File005.zip file_size: 103731880 relation: main_file success: 1 - access_level: open_access checksum: b7d6829ce396e21cac9fae0ec7130a6b content_type: application/pdf creator: dernst date_created: 2023-12-04T08:04:14Z date_updated: 2023-12-04T08:04:14Z file_id: '14638' file_name: 2023_ACMToG_Makatura.pdf file_size: 57067476 relation: main_file success: 1 file_date_updated: 2023-12-04T08:04:14Z has_accepted_license: '1' intvolume: ' 42' issue: '5' keyword: - Computer Graphics and Computer-Aided Design language: - iso: eng month: '10' oa: 1 oa_version: Published Version project: - _id: 34bc2376-11ca-11ed-8bc3-9a3b3961a088 grant_number: '101045083' name: Computational Discovery of Numerical Algorithms for Animation and Simulation of Natural Phenomena publication: ACM Transactions on Graphics publication_identifier: issn: - 0730-0301 - 1557-7368 publication_status: published publisher: Association for Computing Machinery quality_controlled: '1' status: public title: 'Procedural metamaterials: A unified procedural graph for metamaterial design' type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 42 year: '2023' ... --- _id: '14703' abstract: - lang: eng text: We present a discretization of the dynamic optimal transport problem for which we can obtain the convergence rate for the value of the transport cost to its continuous value when the temporal and spatial stepsize vanish. This convergence result does not require any regularity assumption on the measures, though experiments suggest that the rate is not sharp. Via an analysis of the duality gap we also obtain the convergence rates for the gradient of the optimal potentials and the velocity field under mild regularity assumptions. To obtain such rates we discretize the dual formulation of the dynamic optimal transport problem and use the mature literature related to the error due to discretizing the Hamilton-Jacobi equation. acknowledgement: "The authors would like to thank Chris Wojtan for his continuous support and several interesting discussions. Part of this research was performed during two visits: one of SI to the BIDSA research center at Bocconi University, and one of HL to the Institute of Science and Technology Austria. Both host institutions are warmly acknowledged for the hospital-\r\nity. HL is partially supported by the MUR-Prin 2022-202244A7YL “Gradient Flows and Non-Smooth Geometric Structures with Applications to Optimization and Machine Learning”, funded by the European Union - Next Generation EU. SI is supported in part by ERC Consolidator Grant 101045083 “CoDiNA” funded by the European Research Council." article_number: '2312.12213' article_processing_charge: No author: - first_name: Sadashige full_name: Ishida, Sadashige id: 6F7C4B96-A8E9-11E9-A7CA-09ECE5697425 last_name: Ishida - first_name: Hugo full_name: Lavenant, Hugo last_name: Lavenant citation: ama: Ishida S, Lavenant H. Quantitative convergence of a discretization of dynamic optimal transport using the dual formulation. arXiv. doi:10.48550/arXiv.2312.12213 apa: Ishida, S., & Lavenant, H. (n.d.). Quantitative convergence of a discretization of dynamic optimal transport using the dual formulation. arXiv. https://doi.org/10.48550/arXiv.2312.12213 chicago: Ishida, Sadashige, and Hugo Lavenant. “Quantitative Convergence of a Discretization of Dynamic Optimal Transport Using the Dual Formulation.” ArXiv, n.d. https://doi.org/10.48550/arXiv.2312.12213. ieee: S. Ishida and H. Lavenant, “Quantitative convergence of a discretization of dynamic optimal transport using the dual formulation,” arXiv. . ista: Ishida S, Lavenant H. Quantitative convergence of a discretization of dynamic optimal transport using the dual formulation. arXiv, 2312.12213. mla: Ishida, Sadashige, and Hugo Lavenant. “Quantitative Convergence of a Discretization of Dynamic Optimal Transport Using the Dual Formulation.” ArXiv, 2312.12213, doi:10.48550/arXiv.2312.12213. short: S. Ishida, H. Lavenant, ArXiv (n.d.). date_created: 2023-12-21T10:14:37Z date_published: 2023-12-19T00:00:00Z date_updated: 2023-12-27T13:44:33Z day: '19' department: - _id: GradSch - _id: ChWo doi: 10.48550/arXiv.2312.12213 external_id: arxiv: - '2312.12213' keyword: - Optimal transport - Hamilton-Jacobi equation - convex optimization language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2312.12213 month: '12' oa: 1 oa_version: Preprint project: - _id: 34bc2376-11ca-11ed-8bc3-9a3b3961a088 grant_number: '101045083' name: Computational Discovery of Numerical Algorithms for Animation and Simulation of Natural Phenomena publication: arXiv publication_status: submitted status: public title: Quantitative convergence of a discretization of dynamic optimal transport using the dual formulation type: preprint user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 year: '2023' ... --- _id: '14240' abstract: - lang: eng text: This paper introduces a novel method for simulating large bodies of water as a height field. At the start of each time step, we partition the waves into a bulk flow (which approximately satisfies the assumptions of the shallow water equations) and surface waves (which approximately satisfy the assumptions of Airy wave theory). We then solve the two wave regimes separately using appropriate state-of-the-art techniques, and re-combine the resulting wave velocities at the end of each step. This strategy leads to the first heightfield wave model capable of simulating complex interactions between both deep and shallow water effects, like the waves from a boat wake sloshing up onto a beach, or a dam break producing wave interference patterns and eddies. We also analyze the numerical dispersion created by our method and derive an exact correction factor for waves at a constant water depth, giving us a numerically perfect re-creation of theoretical water wave dispersion patterns. acknowledged_ssus: - _id: ScienComp acknowledgement: "We thank Georg Sperl for helping with early research for this paper, Mickael Ly and Yi-Lu Chen for proofreading, and members of the ISTA Visual Computing Group for general feedback. This project was funded in part by the European Research Council (ERC Consolidator Grant 101045083 CoDiNA).\r\nThe motorboat and sailboat were modeled by Sergei and the palmtrees by YadroGames. The environment map was created by Emil Persson." article_number: '83' article_processing_charge: Yes (in subscription journal) article_type: original author: - first_name: Stefan full_name: Jeschke, Stefan id: 44D6411A-F248-11E8-B48F-1D18A9856A87 last_name: Jeschke - first_name: Christopher J full_name: Wojtan, Christopher J id: 3C61F1D2-F248-11E8-B48F-1D18A9856A87 last_name: Wojtan orcid: 0000-0001-6646-5546 citation: ama: Jeschke S, Wojtan C. Generalizing shallow water simulations with dispersive surface waves. ACM Transactions on Graphics. 2023;42(4). doi:10.1145/3592098 apa: Jeschke, S., & Wojtan, C. (2023). Generalizing shallow water simulations with dispersive surface waves. ACM Transactions on Graphics. Association for Computing Machinery. https://doi.org/10.1145/3592098 chicago: Jeschke, Stefan, and Chris Wojtan. “Generalizing Shallow Water Simulations with Dispersive Surface Waves.” ACM Transactions on Graphics. Association for Computing Machinery, 2023. https://doi.org/10.1145/3592098. ieee: S. Jeschke and C. Wojtan, “Generalizing shallow water simulations with dispersive surface waves,” ACM Transactions on Graphics, vol. 42, no. 4. Association for Computing Machinery, 2023. ista: Jeschke S, Wojtan C. 2023. Generalizing shallow water simulations with dispersive surface waves. ACM Transactions on Graphics. 42(4), 83. mla: Jeschke, Stefan, and Chris Wojtan. “Generalizing Shallow Water Simulations with Dispersive Surface Waves.” ACM Transactions on Graphics, vol. 42, no. 4, 83, Association for Computing Machinery, 2023, doi:10.1145/3592098. short: S. Jeschke, C. Wojtan, ACM Transactions on Graphics 42 (2023). date_created: 2023-08-27T22:01:17Z date_published: 2023-08-01T00:00:00Z date_updated: 2024-01-02T09:35:55Z day: '01' ddc: - '000' department: - _id: ChWo doi: 10.1145/3592098 external_id: isi: - '001044671300049' file: - access_level: open_access checksum: 1d178bb2f8011d9f5aedda6427e18c7a content_type: video/mp4 creator: sjeschke date_created: 2023-12-21T12:26:40Z date_updated: 2023-12-21T12:26:40Z file_id: '14704' file_name: PaperVideo_final.mp4 file_size: 511572575 relation: main_file success: 1 - access_level: open_access checksum: a49b2e744d5cd1276bb8b2e0ce6dc638 content_type: application/pdf creator: dernst date_created: 2024-01-02T09:34:27Z date_updated: 2024-01-02T09:34:27Z file_id: '14725' file_name: 2023_ACMToG_Jeschke.pdf file_size: 7469177 relation: main_file success: 1 file_date_updated: 2024-01-02T09:34:27Z has_accepted_license: '1' intvolume: ' 42' isi: 1 issue: '4' language: - iso: eng month: '08' oa: 1 oa_version: Published Version project: - _id: 34bc2376-11ca-11ed-8bc3-9a3b3961a088 grant_number: '101045083' name: Computational Discovery of Numerical Algorithms for Animation and Simulation of Natural Phenomena publication: ACM Transactions on Graphics publication_identifier: eissn: - 1557-7368 issn: - 0730-0301 publication_status: published publisher: Association for Computing Machinery quality_controlled: '1' scopus_import: '1' status: public title: Generalizing shallow water simulations with dispersive surface waves tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 42 year: '2023' ... --- _id: '14748' acknowledged_ssus: - _id: ScienComp acknowledgement: We thank the anonymous reviewers and the members of the Visual Computing Group at ISTA for their helpful comments. This research was supported by the Scientific Service Units (SSU) of ISTA through resources provided by Scientific Computing, and was funded in part by the European Union (ERC-2021-COG 101045083 CoDiNA). article_number: '5' article_processing_charge: No author: - first_name: Yi-Lu full_name: Chen, Yi-Lu id: 0b467602-dbcd-11ea-9d1d-ed480aa46b70 last_name: Chen - first_name: Mickaël full_name: Ly, Mickaël id: 6340d7f0-b48d-11eb-b10d-b7487e71d9f1 last_name: Ly - first_name: Christopher J full_name: Wojtan, Christopher J id: 3C61F1D2-F248-11E8-B48F-1D18A9856A87 last_name: Wojtan orcid: 0000-0001-6646-5546 citation: ama: 'Chen Y-L, Ly M, Wojtan C. Unified treatment of contact, friction and shock-propagation in rigid body animation. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Association for Computing Machinery; 2023. doi:10.1145/3606037.3606836' apa: 'Chen, Y.-L., Ly, M., & Wojtan, C. (2023). Unified treatment of contact, friction and shock-propagation in rigid body animation. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Los Angeles, CA, United States: Association for Computing Machinery. https://doi.org/10.1145/3606037.3606836' chicago: Chen, Yi-Lu, Mickaël Ly, and Chris Wojtan. “Unified Treatment of Contact, Friction and Shock-Propagation in Rigid Body Animation.” In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Association for Computing Machinery, 2023. https://doi.org/10.1145/3606037.3606836. ieee: Y.-L. Chen, M. Ly, and C. Wojtan, “Unified treatment of contact, friction and shock-propagation in rigid body animation,” in Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Los Angeles, CA, United States, 2023. ista: 'Chen Y-L, Ly M, Wojtan C. 2023. Unified treatment of contact, friction and shock-propagation in rigid body animation. Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. SCA: Symposium on Computer Animation, 5.' mla: Chen, Yi-Lu, et al. “Unified Treatment of Contact, Friction and Shock-Propagation in Rigid Body Animation.” Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 5, Association for Computing Machinery, 2023, doi:10.1145/3606037.3606836. short: Y.-L. Chen, M. Ly, C. Wojtan, in:, Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Association for Computing Machinery, 2023. conference: end_date: 2023-08-06 location: Los Angeles, CA, United States name: 'SCA: Symposium on Computer Animation' start_date: 2023-08-04 date_created: 2024-01-08T13:00:24Z date_published: 2023-08-01T00:00:00Z date_updated: 2024-02-28T12:51:40Z day: '01' department: - _id: ChWo doi: 10.1145/3606037.3606836 language: - iso: eng month: '08' oa_version: None project: - _id: 34bc2376-11ca-11ed-8bc3-9a3b3961a088 grant_number: '101045083' name: Computational Discovery of Numerical Algorithms for Animation and Simulation of Natural Phenomena publication: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation publication_identifier: isbn: - '9798400702686' publication_status: published publisher: Association for Computing Machinery quality_controlled: '1' status: public title: Unified treatment of contact, friction and shock-propagation in rigid body animation type: conference_abstract user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2023' ... --- _id: '11432' abstract: - lang: eng text: "This paper proposes a method for simulating liquids in large bodies of water by coupling together a water surface wave simulator with a 3D Navier-Stokes simulator. The surface wave simulation uses the equivalent sources method (ESM) to efficiently animate large bodies of water with precisely controllable wave propagation behavior. The 3D liquid simulator animates complex non-linear fluid behaviors like splashes and breaking waves using off-the-shelf simulators using FLIP or the level set method with semi-Lagrangian advection.\r\nWe combine the two approaches by using the 3D solver to animate localized non-linear behaviors, and the 2D wave solver to animate larger regions with linear surface physics. We use the surface motion from the 3D solver as boundary conditions for 2D surface wave simulator, and we use the velocity and surface heights from the 2D surface wave simulator as boundary conditions for the 3D fluid simulation. We also introduce a novel technique for removing visual artifacts caused by numerical errors in 3D fluid solvers: we use experimental data to estimate the artificial dispersion caused by the 3D solver and we then carefully tune the wave speeds of the 2D solver to match it, effectively eliminating any differences in wave behavior across the boundary. To the best of our knowledge, this is the first time such a empirically driven error compensation approach has been used to remove coupling errors from a physics simulator.\r\nOur coupled simulation approach leverages the strengths of each simulation technique, animating large environments with seamless transitions between 2D and 3D physics." acknowledged_ssus: - _id: ScienComp acknowledgement: We wish to thank the anonymous reviewers and the members of the Visual Computing Group at IST Austria and MFX Team at INRIA for their valuable feedback. This research was supported by the Scientific Service Units (SSU) of IST Austria through resources provided by Scientific Computing. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 638176. article_processing_charge: No article_type: original author: - first_name: Camille full_name: Schreck, Camille id: 2B14B676-F248-11E8-B48F-1D18A9856A87 last_name: Schreck - first_name: Christopher J full_name: Wojtan, Christopher J id: 3C61F1D2-F248-11E8-B48F-1D18A9856A87 last_name: Wojtan orcid: 0000-0001-6646-5546 citation: ama: Schreck C, Wojtan C. Coupling 3D liquid simulation with 2D wave propagation for large scale water surface animation using the equivalent sources method. Computer Graphics Forum. 2022;41(2):343-353. doi:10.1111/cgf.14478 apa: Schreck, C., & Wojtan, C. (2022). Coupling 3D liquid simulation with 2D wave propagation for large scale water surface animation using the equivalent sources method. Computer Graphics Forum. Wiley. https://doi.org/10.1111/cgf.14478 chicago: Schreck, Camille, and Chris Wojtan. “Coupling 3D Liquid Simulation with 2D Wave Propagation for Large Scale Water Surface Animation Using the Equivalent Sources Method.” Computer Graphics Forum. Wiley, 2022. https://doi.org/10.1111/cgf.14478. ieee: C. Schreck and C. Wojtan, “Coupling 3D liquid simulation with 2D wave propagation for large scale water surface animation using the equivalent sources method,” Computer Graphics Forum, vol. 41, no. 2. Wiley, pp. 343–353, 2022. ista: Schreck C, Wojtan C. 2022. Coupling 3D liquid simulation with 2D wave propagation for large scale water surface animation using the equivalent sources method. Computer Graphics Forum. 41(2), 343–353. mla: Schreck, Camille, and Chris Wojtan. “Coupling 3D Liquid Simulation with 2D Wave Propagation for Large Scale Water Surface Animation Using the Equivalent Sources Method.” Computer Graphics Forum, vol. 41, no. 2, Wiley, 2022, pp. 343–53, doi:10.1111/cgf.14478. short: C. Schreck, C. Wojtan, Computer Graphics Forum 41 (2022) 343–353. date_created: 2022-06-05T22:01:49Z date_published: 2022-05-01T00:00:00Z date_updated: 2023-08-02T06:44:05Z day: '01' department: - _id: ChWo doi: 10.1111/cgf.14478 ec_funded: 1 external_id: isi: - '000802723900027' intvolume: ' 41' isi: 1 issue: '2' language: - iso: eng main_file_link: - open_access: '1' url: https://hal.archives-ouvertes.fr/hal-03641349/ month: '05' oa: 1 oa_version: Submitted Version page: 343-353 project: - _id: 2533E772-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '638176' name: Efficient Simulation of Natural Phenomena at Extremely Large Scales publication: Computer Graphics Forum publication_identifier: eissn: - 1467-8659 issn: - 0167-7055 publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: Coupling 3D liquid simulation with 2D wave propagation for large scale water surface animation using the equivalent sources method type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 41 year: '2022' ... --- _id: '11556' abstract: - lang: eng text: "We revisit two basic Direct Simulation Monte Carlo Methods to model aggregation kinetics and extend them for aggregation processes with collisional fragmentation (shattering). We test the performance and accuracy of the extended methods and compare their performance with efficient deterministic finite-difference method applied to the same model. We validate the stochastic methods on the test problems and apply them to verify the existence of oscillating regimes in the aggregation-fragmentation kinetics recently detected in deterministic simulations. We confirm the emergence of steady oscillations of densities in such systems and prove the stability of the\r\noscillations with respect to fluctuations and noise." acknowledgement: Zhores supercomputer of Skolkovo Institute of Science and Technology [68] has been used in the present research. S.A.M. was supported by Moscow Center for Fundamental and Applied Mathematics (the agreement with the Ministry of Education and Science of the Russian Federation No. 075-15-2019-1624). A.I.O. acknowledges RFBR project No. 20-31-90022. N.V.B. acknowledges the support of the Analytical Center (subsidy agreement 000000D730321P5Q0002, Grant No. 70-2021-00145 02.11.2021). article_number: '111439' article_processing_charge: No article_type: original author: - first_name: Aleksei full_name: Kalinov, Aleksei id: 44b7120e-eb97-11eb-a6c2-e1557aa81d02 last_name: Kalinov orcid: 0000-0003-2189-3904 - first_name: A.I. full_name: Osinskiy, A.I. last_name: Osinskiy - first_name: S.A. full_name: Matveev, S.A. last_name: Matveev - first_name: W. full_name: Otieno, W. last_name: Otieno - first_name: N.V. full_name: Brilliantov, N.V. last_name: Brilliantov citation: ama: Kalinov A, Osinskiy AI, Matveev SA, Otieno W, Brilliantov NV. Direct simulation Monte Carlo for new regimes in aggregation-fragmentation kinetics. Journal of Computational Physics. 2022;467. doi:10.1016/j.jcp.2022.111439 apa: Kalinov, A., Osinskiy, A. I., Matveev, S. A., Otieno, W., & Brilliantov, N. V. (2022). Direct simulation Monte Carlo for new regimes in aggregation-fragmentation kinetics. Journal of Computational Physics. Elsevier. https://doi.org/10.1016/j.jcp.2022.111439 chicago: Kalinov, Aleksei, A.I. Osinskiy, S.A. Matveev, W. Otieno, and N.V. Brilliantov. “Direct Simulation Monte Carlo for New Regimes in Aggregation-Fragmentation Kinetics.” Journal of Computational Physics. Elsevier, 2022. https://doi.org/10.1016/j.jcp.2022.111439. ieee: A. Kalinov, A. I. Osinskiy, S. A. Matveev, W. Otieno, and N. V. Brilliantov, “Direct simulation Monte Carlo for new regimes in aggregation-fragmentation kinetics,” Journal of Computational Physics, vol. 467. Elsevier, 2022. ista: Kalinov A, Osinskiy AI, Matveev SA, Otieno W, Brilliantov NV. 2022. Direct simulation Monte Carlo for new regimes in aggregation-fragmentation kinetics. Journal of Computational Physics. 467, 111439. mla: Kalinov, Aleksei, et al. “Direct Simulation Monte Carlo for New Regimes in Aggregation-Fragmentation Kinetics.” Journal of Computational Physics, vol. 467, 111439, Elsevier, 2022, doi:10.1016/j.jcp.2022.111439. short: A. Kalinov, A.I. Osinskiy, S.A. Matveev, W. Otieno, N.V. Brilliantov, Journal of Computational Physics 467 (2022). date_created: 2022-07-11T12:19:59Z date_published: 2022-10-15T00:00:00Z date_updated: 2023-08-03T11:55:06Z day: '15' ddc: - '518' department: - _id: GradSch - _id: ChWo doi: 10.1016/j.jcp.2022.111439 external_id: arxiv: - '2103.09481' isi: - '000917225500013' intvolume: ' 467' isi: 1 keyword: - Computer Science Applications - Physics and Astronomy (miscellaneous) - Applied Mathematics - Computational Mathematics - Modeling and Simulation - Numerical Analysis language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2103.09481 month: '10' oa: 1 oa_version: Preprint publication: Journal of Computational Physics publication_identifier: issn: - 0021-9991 publication_status: published publisher: Elsevier quality_controlled: '1' status: public title: Direct simulation Monte Carlo for new regimes in aggregation-fragmentation kinetics type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 467 year: '2022' ... --- _id: '11736' abstract: - lang: eng text: "This paper introduces a methodology for inverse-modeling of yarn-level mechanics of cloth, based on the mechanical response of fabrics in the real world. We compiled a database from physical tests of several different knitted fabrics used in the textile industry. These data span different types of complex knit patterns, yarn compositions, and fabric finishes, and the results demonstrate diverse physical properties like stiffness, nonlinearity, and anisotropy.\r\n\r\nWe then develop a system for approximating these mechanical responses with yarn-level cloth simulation. To do so, we introduce an efficient pipeline for converting between fabric-level data and yarn-level simulation, including a novel swatch-level approximation for speeding up computation, and some small-but-necessary extensions to yarn-level models used in computer graphics. The dataset used for this paper can be found at http://mslab.es/projects/YarnLevelFabrics." acknowledged_ssus: - _id: ScienComp acknowledgement: We wish to thank the anonymous reviewers for their helpful comments. To develop this project, we were helped by many people both at Under Armour (Clay Dean, Randall Harward, Kyle Blakely, Craig Simile, Michael Seiz, Brooke Malone, Brittainy McFarland, Emilie Phan, Lindsey Kern, Courtney Oswald, Haley Barkley, Bob Chin, Adam Bayer, Connie Kwok, Marielle Newman, Nick Pence, Allison Hicks, Allison White, Candace Rubenstein, Jeremy Stangland, Fred Fagergren, Michael Mazzoleni, Nathaniel Berry, Manuel Frank) and SEDDI (Gabriel Cirio, Alejandro Rodríguez, Sofía Dominguez, Alicia Nicas, Elena Garcés, Daniel Rodríguez, David Pascual, Manuel Godoy, Sergio Suja, Sergio Ruiz, Roberto Condori, Alberto Martín, Graham Sullivan). We also thank the members of the Visual Computing Group at IST Austria and the Multimodal Simulation Lab at URJC for their feedback. This research was supported by the Scientific Service Units (SSU) of IST Austria through resources provided by Scientific Computing, and it was funded in part by the European Research Council (ERC Consolidator Grant 772738 TouchDesign). article_number: '65' article_processing_charge: No article_type: original author: - first_name: Georg full_name: Sperl, Georg id: 4DD40360-F248-11E8-B48F-1D18A9856A87 last_name: Sperl - first_name: Rosa M. full_name: Sánchez-Banderas, Rosa M. last_name: Sánchez-Banderas - first_name: Manwen full_name: Li, Manwen last_name: Li - first_name: Christopher J full_name: Wojtan, Christopher J id: 3C61F1D2-F248-11E8-B48F-1D18A9856A87 last_name: Wojtan orcid: 0000-0001-6646-5546 - first_name: Miguel A. full_name: Otaduy, Miguel A. last_name: Otaduy citation: ama: Sperl G, Sánchez-Banderas RM, Li M, Wojtan C, Otaduy MA. Estimation of yarn-level simulation models for production fabrics. ACM Transactions on Graphics. 2022;41(4). doi:10.1145/3528223.3530167 apa: Sperl, G., Sánchez-Banderas, R. M., Li, M., Wojtan, C., & Otaduy, M. A. (2022). Estimation of yarn-level simulation models for production fabrics. ACM Transactions on Graphics. Association for Computing Machinery. https://doi.org/10.1145/3528223.3530167 chicago: Sperl, Georg, Rosa M. Sánchez-Banderas, Manwen Li, Chris Wojtan, and Miguel A. Otaduy. “Estimation of Yarn-Level Simulation Models for Production Fabrics.” ACM Transactions on Graphics. Association for Computing Machinery, 2022. https://doi.org/10.1145/3528223.3530167. ieee: G. Sperl, R. M. Sánchez-Banderas, M. Li, C. Wojtan, and M. A. Otaduy, “Estimation of yarn-level simulation models for production fabrics,” ACM Transactions on Graphics, vol. 41, no. 4. Association for Computing Machinery, 2022. ista: Sperl G, Sánchez-Banderas RM, Li M, Wojtan C, Otaduy MA. 2022. Estimation of yarn-level simulation models for production fabrics. ACM Transactions on Graphics. 41(4), 65. mla: Sperl, Georg, et al. “Estimation of Yarn-Level Simulation Models for Production Fabrics.” ACM Transactions on Graphics, vol. 41, no. 4, 65, Association for Computing Machinery, 2022, doi:10.1145/3528223.3530167. short: G. Sperl, R.M. Sánchez-Banderas, M. Li, C. Wojtan, M.A. Otaduy, ACM Transactions on Graphics 41 (2022). date_created: 2022-08-07T22:01:58Z date_published: 2022-07-22T00:00:00Z date_updated: 2023-08-03T12:38:30Z day: '22' department: - _id: ChWo doi: 10.1145/3528223.3530167 external_id: isi: - '000830989200114' intvolume: ' 41' isi: 1 issue: '4' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1145/3528223.3530167 month: '07' oa: 1 oa_version: Published Version publication: ACM Transactions on Graphics publication_identifier: eissn: - 1557-7368 issn: - 0730-0301 publication_status: published publisher: Association for Computing Machinery quality_controlled: '1' related_material: link: - description: News on the ISTA website relation: press_release url: https://ista.ac.at/en/news/digital-yarn-real-socks/ record: - id: '12358' relation: dissertation_contains status: public scopus_import: '1' status: public title: Estimation of yarn-level simulation models for production fabrics type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 41 year: '2022' ... --- _id: '12431' abstract: - lang: eng text: This paper presents a new representation of curve dynamics, with applications to vortex filaments in fluid dynamics. Instead of representing these filaments with explicit curve geometry and Lagrangian equations of motion, we represent curves implicitly with a new co-dimensional 2 level set description. Our implicit representation admits several redundant mathematical degrees of freedom in both the configuration and the dynamics of the curves, which can be tailored specifically to improve numerical robustness, in contrast to naive approaches for implicit curve dynamics that suffer from overwhelming numerical stability problems. Furthermore, we note how these hidden degrees of freedom perfectly map to a Clebsch representation in fluid dynamics. Motivated by these observations, we introduce untwisted level set functions and non-swirling dynamics which successfully regularize sources of numerical instability, particularly in the twisting modes around curve filaments. A consequence is a novel simulation method which produces stable dynamics for large numbers of interacting vortex filaments and effortlessly handles topological changes and re-connection events. acknowledgement: We thank the visual computing group at IST Austria for their valuable discussions and feedback. Houdini Education licenses were provided by SideFX software. This project was funded in part by the European Research Council (ERC Consolidator Grant 101045083 CoDiNA). article_number: '241' article_processing_charge: No article_type: original author: - first_name: Sadashige full_name: Ishida, Sadashige id: 6F7C4B96-A8E9-11E9-A7CA-09ECE5697425 last_name: Ishida - first_name: Christopher J full_name: Wojtan, Christopher J id: 3C61F1D2-F248-11E8-B48F-1D18A9856A87 last_name: Wojtan orcid: 0000-0001-6646-5546 - first_name: Albert full_name: Chern, Albert last_name: Chern citation: ama: Ishida S, Wojtan C, Chern A. Hidden degrees of freedom in implicit vortex filaments. ACM Transactions on Graphics. 2022;41(6). doi:10.1145/3550454.3555459 apa: Ishida, S., Wojtan, C., & Chern, A. (2022). Hidden degrees of freedom in implicit vortex filaments. ACM Transactions on Graphics. Association for Computing Machinery. https://doi.org/10.1145/3550454.3555459 chicago: Ishida, Sadashige, Chris Wojtan, and Albert Chern. “Hidden Degrees of Freedom in Implicit Vortex Filaments.” ACM Transactions on Graphics. Association for Computing Machinery, 2022. https://doi.org/10.1145/3550454.3555459. ieee: S. Ishida, C. Wojtan, and A. Chern, “Hidden degrees of freedom in implicit vortex filaments,” ACM Transactions on Graphics, vol. 41, no. 6. Association for Computing Machinery, 2022. ista: Ishida S, Wojtan C, Chern A. 2022. Hidden degrees of freedom in implicit vortex filaments. ACM Transactions on Graphics. 41(6), 241. mla: Ishida, Sadashige, et al. “Hidden Degrees of Freedom in Implicit Vortex Filaments.” ACM Transactions on Graphics, vol. 41, no. 6, 241, Association for Computing Machinery, 2022, doi:10.1145/3550454.3555459. short: S. Ishida, C. Wojtan, A. Chern, ACM Transactions on Graphics 41 (2022). date_created: 2023-01-29T23:00:59Z date_published: 2022-12-01T00:00:00Z date_updated: 2023-08-04T09:37:23Z day: '01' ddc: - '000' department: - _id: ChWo doi: 10.1145/3550454.3555459 external_id: isi: - '000891651900061' file: - access_level: open_access checksum: a2fba257fdefe0e747182be6c0f7c70c content_type: application/pdf creator: dernst date_created: 2023-01-30T07:15:48Z date_updated: 2023-01-30T07:15:48Z file_id: '12433' file_name: 2022_ACM_Ishida.pdf file_size: 15551202 relation: main_file success: 1 file_date_updated: 2023-01-30T07:15:48Z has_accepted_license: '1' intvolume: ' 41' isi: 1 issue: '6' language: - iso: eng month: '12' oa: 1 oa_version: Published Version project: - _id: 34bc2376-11ca-11ed-8bc3-9a3b3961a088 grant_number: '101045083' name: Computational Discovery of Numerical Algorithms for Animation and Simulation of Natural Phenomena publication: ACM Transactions on Graphics publication_identifier: eissn: - 1557-7368 issn: - 0730-0301 publication_status: published publisher: Association for Computing Machinery quality_controlled: '1' scopus_import: '1' status: public title: Hidden degrees of freedom in implicit vortex filaments tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 41 year: '2022' ... --- _id: '12358' abstract: - lang: eng text: "The complex yarn structure of knitted and woven fabrics gives rise to both a mechanical and\r\nvisual complexity. The small-scale interactions of yarns colliding with and pulling on each\r\nother result in drastically different large-scale stretching and bending behavior, introducing\r\nanisotropy, curling, and more. While simulating cloth as individual yarns can reproduce this\r\ncomplexity and match the quality of real fabric, it may be too computationally expensive for\r\nlarge fabrics. On the other hand, continuum-based approaches do not need to discretize the\r\ncloth at a stitch-level, but it is non-trivial to find a material model that would replicate the\r\nlarge-scale behavior of yarn fabrics, and they discard the intricate visual detail. In this thesis,\r\nwe discuss three methods to try and bridge the gap between small-scale and large-scale yarn\r\nmechanics using numerical homogenization: fitting a continuum model to periodic yarn simulations, adding mechanics-aware yarn detail onto thin-shell simulations, and quantitatively\r\nfitting yarn parameters to physical measurements of real fabric.\r\nTo start, we present a method for animating yarn-level cloth effects using a thin-shell solver.\r\nWe first use a large number of periodic yarn-level simulations to build a model of the potential\r\nenergy density of the cloth, and then use it to compute forces in a thin-shell simulator. The\r\nresulting simulations faithfully reproduce expected effects like the stiffening of woven fabrics\r\nand the highly deformable nature and anisotropy of knitted fabrics at a fraction of the cost of\r\nfull yarn-level simulation.\r\nWhile our thin-shell simulations are able to capture large-scale yarn mechanics, they lack\r\nthe rich visual detail of yarn-level simulations. Therefore, we propose a method to animate\r\nyarn-level cloth geometry on top of an underlying deforming mesh in a mechanics-aware\r\nfashion in real time. Using triangle strains to interpolate precomputed yarn geometry, we are\r\nable to reproduce effects such as knit loops tightening under stretching at negligible cost.\r\nFinally, we introduce a methodology for inverse-modeling of yarn-level mechanics of cloth,\r\nbased on the mechanical response of fabrics in the real world. We compile a database from\r\nphysical tests of several knitted fabrics used in the textile industry spanning diverse physical\r\nproperties like stiffness, nonlinearity, and anisotropy. We then develop a system for approximating these mechanical responses with yarn-level cloth simulation, using homogenized\r\nshell models to speed up computation and adding some small-but-necessary extensions to\r\nyarn-level models used in computer graphics.\r\n" acknowledged_ssus: - _id: SSU alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Georg full_name: Sperl, Georg id: 4DD40360-F248-11E8-B48F-1D18A9856A87 last_name: Sperl citation: ama: 'Sperl G. Homogenizing yarn simulations: Large-scale mechanics, small-scale detail, and quantitative fitting. 2022. doi:10.15479/at:ista:12103' apa: 'Sperl, G. (2022). Homogenizing yarn simulations: Large-scale mechanics, small-scale detail, and quantitative fitting. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:12103' chicago: 'Sperl, Georg. “Homogenizing Yarn Simulations: Large-Scale Mechanics, Small-Scale Detail, and Quantitative Fitting.” Institute of Science and Technology Austria, 2022. https://doi.org/10.15479/at:ista:12103.' ieee: 'G. Sperl, “Homogenizing yarn simulations: Large-scale mechanics, small-scale detail, and quantitative fitting,” Institute of Science and Technology Austria, 2022.' ista: 'Sperl G. 2022. Homogenizing yarn simulations: Large-scale mechanics, small-scale detail, and quantitative fitting. Institute of Science and Technology Austria.' mla: 'Sperl, Georg. Homogenizing Yarn Simulations: Large-Scale Mechanics, Small-Scale Detail, and Quantitative Fitting. Institute of Science and Technology Austria, 2022, doi:10.15479/at:ista:12103.' short: 'G. Sperl, Homogenizing Yarn Simulations: Large-Scale Mechanics, Small-Scale Detail, and Quantitative Fitting, Institute of Science and Technology Austria, 2022.' date_created: 2023-01-24T10:49:46Z date_published: 2022-09-22T00:00:00Z date_updated: 2024-02-28T12:57:46Z day: '22' ddc: - '000' - '620' degree_awarded: PhD department: - _id: GradSch - _id: ChWo doi: 10.15479/at:ista:12103 ec_funded: 1 file: - access_level: open_access checksum: 083722acbb8115e52e3b0fdec6226769 content_type: application/pdf creator: cchlebak date_created: 2023-01-25T12:04:41Z date_updated: 2023-02-02T09:29:57Z description: 'This is the main PDF file of the thesis. File size: 105 MB' file_id: '12371' file_name: thesis_gsperl.pdf file_size: 104497530 relation: main_file title: Thesis - access_level: open_access checksum: 511f82025e5fcb70bff4731d6896ca07 content_type: application/pdf creator: cchlebak date_created: 2023-02-02T09:33:37Z date_updated: 2023-02-02T09:33:37Z description: This version of the thesis uses stronger image compression for a smaller file size of 23MB. file_id: '12483' file_name: thesis_gsperl_compressed.pdf file_size: 23183710 relation: main_file title: Thesis (compressed 23MB) - access_level: open_access checksum: ed4cb85225eedff761c25bddfc37a2ed content_type: application/x-zip-compressed creator: cchlebak date_created: 2023-02-02T09:39:25Z date_updated: 2023-02-02T09:39:25Z file_id: '12484' file_name: thesis-source.zip file_size: 98382247 relation: source_file file_date_updated: 2023-02-02T09:39:25Z has_accepted_license: '1' language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: '138' project: - _id: 2533E772-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '638176' name: Efficient Simulation of Natural Phenomena at Extremely Large Scales publication_identifier: isbn: - 978-3-99078-020-6 issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '11736' relation: part_of_dissertation status: public - id: '9818' relation: part_of_dissertation status: public - id: '8385' relation: part_of_dissertation status: public status: public supervisor: - first_name: Christopher J full_name: Wojtan, Christopher J id: 3C61F1D2-F248-11E8-B48F-1D18A9856A87 last_name: Wojtan orcid: 0000-0001-6646-5546 title: 'Homogenizing yarn simulations: Large-scale mechanics, small-scale detail, and quantitative fitting' type: dissertation user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2022' ...