TY - JOUR AB - Previous research on animations of soap bubbles, films, and foams largely focuses on the motion and geometric shape of the bubble surface. These works neglect the evolution of the bubble’s thickness, which is normally responsible for visual phenomena like surface vortices, Newton’s interference patterns, capillary waves, and deformation-dependent rupturing of films in a foam. In this paper, we model these natural phenomena by introducing the film thickness as a reduced degree of freedom in the Navier-Stokes equations and deriving their equations of motion. We discretize the equations on a nonmanifold triangle mesh surface and couple it to an existing bubble solver. In doing so, we also introduce an incompressible fluid solver for 2.5D films and a novel advection algorithm for convecting fields across non-manifold surface junctions. Our simulations enhance state-of-the-art bubble solvers with additional effects caused by convection, rippling, draining, and evaporation of the thin film. AU - Ishida, Sadashige AU - Synak, Peter AU - Narita, Fumiya AU - Hachisuka, Toshiya AU - Wojtan, Christopher J ID - 8384 IS - 4 JF - ACM Transactions on Graphics SN - 07300301 TI - A model for soap film dynamics with evolving thickness VL - 39 ER - TY - JOUR AB - We present a method for animating yarn-level cloth effects using a thin-shell solver. We accomplish this through numerical homogenization: we first use a large number of yarn-level simulations to build a model of the potential energy density of the cloth, and then use this energy density function to compute forces in a thin shell simulator. We model several yarn-based materials, including both woven and knitted fabrics. Our model faithfully reproduces expected effects like the stiffness of woven fabrics, and the highly deformable nature and anisotropy of knitted fabrics. Our approach does not require any real-world experiments nor measurements; because the method is based entirely on simulations, it can generate entirely new material models quickly, without the need for testing apparatuses or human intervention. We provide data-driven models of several woven and knitted fabrics, which can be used for efficient simulation with an off-the-shelf cloth solver. AU - Sperl, Georg AU - Narain, Rahul AU - Wojtan, Christopher J ID - 8385 IS - 4 JF - ACM Transactions on Graphics SN - 07300301 TI - Homogenized yarn-level cloth VL - 39 ER - TY - JOUR AB - The “procedural” approach to animating ocean waves is the dominant algorithm for animating larger bodies of water in interactive applications as well as in off-line productions — it provides high visual quality with a low computational demand. In this paper, we widen the applicability of procedural water wave animation with an extension that guarantees the satisfaction of boundary conditions imposed by terrain while still approximating physical wave behavior. In combination with a particle system that models wave breaking, foam, and spray, this allows us to naturally model waves interacting with beaches and rocks. Our system is able to animate waves at large scales at interactive frame rates on a commodity PC. AU - Jeschke, Stefan AU - Hafner, Christian AU - Chentanez, Nuttapong AU - Macklin, Miles AU - Müller-Fischer, Matthias AU - Wojtan, Christopher J ID - 8766 IS - 8 JF - Computer Graphics forum TI - Making procedural water waves boundary-aware VL - 39 ER - TY - JOUR AB - This paper investigates the use of fundamental solutions for animating detailed linear water surface waves. We first propose an analytical solution for efficiently animating circular ripples in closed form. We then show how to adapt the method of fundamental solutions (MFS) to create ambient waves interacting with complex obstacles. Subsequently, we present a novel wavelet-based discretization which outperforms the state of the art MFS approach for simulating time-varying water surface waves with moving obstacles. Our results feature high-resolution spatial details, interactions with complex boundaries, and large open ocean domains. Our method compares favorably with previous work as well as known analytical solutions. We also present comparisons between our method and real world examples. AU - Schreck, Camille AU - Hafner, Christian AU - Wojtan, Christopher J ID - 6442 IS - 4 JF - ACM Transactions on Graphics TI - Fundamental solutions for water wave animation VL - 38 ER - TY - JOUR AB - Multiple Importance Sampling (MIS) is a key technique for achieving robustness of Monte Carlo estimators in computer graphics and other fields. We derive optimal weighting functions for MIS that provably minimize the variance of an MIS estimator, given a set of sampling techniques. We show that the resulting variance reduction over the balance heuristic can be higher than predicted by the variance bounds derived by Veach and Guibas, who assumed only non-negative weights in their proof. We theoretically analyze the variance of the optimal MIS weights and show the relation to the variance of the balance heuristic. Furthermore, we establish a connection between the new weighting functions and control variates as previously applied to mixture sampling. We apply the new optimal weights to integration problems in light transport and show that they allow for new design considerations when choosing the appropriate sampling techniques for a given integration problem. AU - Kondapaneni, Ivo AU - Vevoda, Petr AU - Grittmann, Pascal AU - Skrivan, Tomas AU - Slusallek, Philipp AU - Křivánek, Jaroslav ID - 7002 IS - 4 JF - ACM Transactions on Graphics SN - 0730-0301 TI - Optimal multiple importance sampling VL - 38 ER - TY - JOUR AB - Multiple importance sampling (MIS) has become an indispensable tool in Monte Carlo rendering, widely accepted as a near-optimal solution for combining different sampling techniques. But an MIS combination, using the common balance or power heuristics, often results in an overly defensive estimator, leading to high variance. We show that by generalizing the MIS framework, variance can be substantially reduced. Specifically, we optimize one of the combined sampling techniques so as to decrease the overall variance of the resulting MIS estimator. We apply the approach to the computation of direct illumination due to an HDR environment map and to the computation of global illumination using a path guiding algorithm. The implementation can be as simple as subtracting a constant value from the tabulated sampling density done entirely in a preprocessing step. This produces a consistent noise reduction in all our tests with no negative influence on run time, no artifacts or bias, and no failure cases. AU - Karlík, Ondřej AU - Šik, Martin AU - Vévoda, Petr AU - Skrivan, Tomas AU - Křivánek, Jaroslav ID - 7418 IS - 6 JF - ACM Transactions on Graphics SN - 0730-0301 TI - MIS compensation: Optimizing sampling techniques in multiple importance sampling VL - 38 ER - TY - CONF AB - We present a thermodynamically based approach to the design of models for viscoelastic fluids with stress diffusion effect. In particular, we show how to add a stress diffusion term to some standard viscoelastic rate-type models (Giesekus, FENE-P, Johnson–Segalman, Phan-Thien–Tanner and Bautista–Manero–Puig) so that the resulting models with the added stress diffusion term are thermodynamically consistent in the sense that they obey the first and the second law of thermodynamics. We point out the potential applications of the provided thermodynamical background in the study of flows of fluids described by the proposed models. AU - Dostalík, Mark AU - Pruša, Vít AU - Skrivan, Tomas ID - 6642 T2 - AIP Conference Proceedings TI - On diffusive variants of some classical viscoelastic rate-type models VL - 2107 ER - TY - JOUR AB - The Fluid Implicit Particle method (FLIP) reduces numerical dissipation by combining particles with grids. To improve performance, the subsequent narrow band FLIP method (NB‐FLIP) uses a FLIP‐based fluid simulation only near the liquid surface and a traditional grid‐based fluid simulation away from the surface. This spatially‐limited FLIP simulation significantly reduces the number of particles and alleviates a computational bottleneck. In this paper, we extend the NB‐FLIP idea even further, by allowing a simulation to transition between a FLIP‐like fluid simulation and a grid‐based simulation in arbitrary locations, not just near the surface. This approach leads to even more savings in memory and computation, because we can concentrate the particles only in areas where they are needed. More importantly, this new method allows us to seamlessly transition to smooth implicit surface geometry wherever the particle‐based simulation is unnecessary. Consequently, our method leads to a practical algorithm for avoiding the noisy surface artifacts associated with particle‐based liquid simulations, while simultaneously maintaining the benefits of a FLIP simulation in regions of dynamic motion. AU - Sato, Takahiro AU - Wojtan, Christopher J AU - Thuerey, Nils AU - Igarashi, Takeo AU - Ando, Ryoichi ID - 135 IS - 2 JF - Computer Graphics Forum SN - 0167-7055 TI - Extended narrow band FLIP for liquid simulations VL - 37 ER - TY - JOUR AB - The current state of the art in real-time two-dimensional water wave simulation requires developers to choose between efficient Fourier-based methods, which lack interactions with moving obstacles, and finite-difference or finite element methods, which handle environmental interactions but are significantly more expensive. This paper attempts to bridge this long-standing gap between complexity and performance, by proposing a new wave simulation method that can faithfully simulate wave interactions with moving obstacles in real time while simultaneously preserving minute details and accommodating very large simulation domains. Previous methods for simulating 2D water waves directly compute the change in height of the water surface, a strategy which imposes limitations based on the CFL condition (fast moving waves require small time steps) and Nyquist's limit (small wave details require closely-spaced simulation variables). This paper proposes a novel wavelet transformation that discretizes the liquid motion in terms of amplitude-like functions that vary over space, frequency, and direction, effectively generalizing Fourier-based methods to handle local interactions. Because these new variables change much more slowly over space than the original water height function, our change of variables drastically reduces the limitations of the CFL condition and Nyquist limit, allowing us to simulate highly detailed water waves at very large visual resolutions. Our discretization is amenable to fast summation and easy to parallelize. We also present basic extensions like pre-computed wave paths and two-way solid fluid coupling. Finally, we argue that our discretization provides a convenient set of variables for artistic manipulation, which we illustrate with a novel wave-painting interface. AU - Jeschke, Stefan AU - Skrivan, Tomas AU - Mueller Fischer, Matthias AU - Chentanez, Nuttapong AU - Macklin, Miles AU - Wojtan, Christopher J ID - 134 IS - 4 JF - ACM Transactions on Graphics TI - Water surface wavelets VL - 37 ER - TY - JOUR AB - This paper presents a method for simulating water surface waves as a displacement field on a 2D domain. Our method relies on Lagrangian particles that carry packets of water wave energy; each packet carries information about an entire group of wave trains, as opposed to only a single wave crest. Our approach is unconditionally stable and can simulate high resolution geometric details. This approach also presents a straightforward interface for artistic control, because it is essentially a particle system with intuitive parameters like wavelength and amplitude. Our implementation parallelizes well and runs in real time for moderately challenging scenarios. AU - Jeschke, Stefan AU - Wojtan, Christopher J ID - 470 IS - 4 JF - ACM Transactions on Graphics SN - 07300301 TI - Water wave packets VL - 36 ER - TY - JOUR AB - We propose an efficient method to model paper tearing in the context of interactive modeling. The method uses geometrical information to automatically detect potential starting points of tears. We further introduce a new hybrid geometrical and physical-based method to compute the trajectory of tears while procedurally synthesizing high resolution details of the tearing path using a texture based approach. The results obtained are compared with real paper and with previous studies on the expected geometric paths of paper that tears. AU - Schreck, Camille AU - Rohmer, Damien AU - Hahmann, Stefanie ID - 670 IS - 2 JF - Computer Graphics Forum SN - 01677055 TI - Interactive paper tearing VL - 36 ER - TY - JOUR AB - One of the major challenges in physically based modelling is making simulations efficient. Adaptive models provide an essential solution to these efficiency goals. These models are able to self-adapt in space and time, attempting to provide the best possible compromise between accuracy and speed. This survey reviews the adaptive solutions proposed so far in computer graphics. Models are classified according to the strategy they use for adaptation, from time-stepping and freezing techniques to geometric adaptivity in the form of structured grids, meshes and particles. Applications range from fluids, through deformable bodies, to articulated solids. AU - Manteaux, Pierre AU - Wojtan, Christopher J AU - Narain, Rahul AU - Redon, Stéphane AU - Faure, François AU - Cani, Marie ID - 1367 IS - 6 JF - Computer Graphics Forum SN - 01677055 TI - Adaptive physically based models in computer graphics VL - 36 ER - TY - JOUR AB - We propose a new memetic strategy that can solve the multi-physics, complex inverse problems, formulated as the multi-objective optimization ones, in which objectives are misfits between the measured and simulated states of various governing processes. The multi-deme structure of the strategy allows for both, intensive, relatively cheap exploration with a moderate accuracy and more accurate search many regions of Pareto set in parallel. The special type of selection operator prefers the coherent alternative solutions, eliminating artifacts appearing in the particular processes. The additional accuracy increment is obtained by the parallel convex searches applied to the local scalarizations of the misfit vector. The strategy is dedicated for solving ill-conditioned problems, for which inverting the single physical process can lead to the ambiguous results. The skill of the selection in artifact elimination is shown on the benchmark problem, while the whole strategy was applied for identification of oil deposits, where the misfits are related to various frequencies of the magnetic and electric waves of the magnetotelluric measurements. 2016 Elsevier B.V. AU - Gajda-Zagorska, Ewa P AU - Schaefer, Robert AU - Smołka, Maciej AU - Pardo, David AU - Alvarez Aramberri, Julen ID - 1152 JF - Journal of Computational Science SN - 18777503 TI - A multi objective memetic inverse solver reinforced by local optimization methods VL - 18 ER - TY - CONF AB - A major open problem on the road to artificial intelligence is the development of incrementally learning systems that learn about more and more concepts over time from a stream of data. In this work, we introduce a new training strategy, iCaRL, that allows learning in such a class-incremental way: only the training data for a small number of classes has to be present at the same time and new classes can be added progressively. iCaRL learns strong classifiers and a data representation simultaneously. This distinguishes it from earlier works that were fundamentally limited to fixed data representations and therefore incompatible with deep learning architectures. We show by experiments on CIFAR-100 and ImageNet ILSVRC 2012 data that iCaRL can learn many classes incrementally over a long period of time where other strategies quickly fail. AU - Rebuffi, Sylvestre Alvise AU - Kolesnikov, Alexander AU - Sperl, Georg AU - Lampert, Christoph ID - 998 SN - 978-153860457-1 TI - iCaRL: Incremental classifier and representation learning VL - 2017 ER - TY - THES AB - This thesis describes a brittle fracture simulation method for visual effects applications. Building upon a symmetric Galerkin boundary element method, we first compute stress intensity factors following the theory of linear elastic fracture mechanics. We then use these stress intensities to simulate the motion of a propagating crack front at a significantly higher resolution than the overall deformation of the breaking object. Allowing for spatial variations of the material's toughness during crack propagation produces visually realistic, highly-detailed fracture surfaces. Furthermore, we introduce approximations for stress intensities and crack opening displacements, resulting in both practical speed-up and theoretically superior runtime complexity compared to previous methods. While we choose a quasi-static approach to fracture mechanics, ignoring dynamic deformations, we also couple our fracture simulation framework to a standard rigid-body dynamics solver, enabling visual effects artists to simulate both large scale motion, as well as fracturing due to collision forces in a combined system. As fractures inside of an object grow, their geometry must be represented both in the coarse boundary element mesh, as well as at the desired fine output resolution. Using a boundary element method, we avoid complicated volumetric meshing operations. Instead we describe a simple set of surface meshing operations that allow us to progressively add cracks to the mesh of an object and still re-use all previously computed entries of the linear boundary element system matrix. On the high resolution level, we opt for an implicit surface representation. We then describe how to capture fracture surfaces during crack propagation, as well as separate the individual fragments resulting from the fracture process, based on this implicit representation. We show results obtained with our method, either solving the full boundary element system in every time step, or alternatively using our fast approximations. These results demonstrate that both of these methods perform well in basic test cases and produce realistic fracture surfaces. Furthermore we show that our fast approximations substantially out-perform the standard approach in more demanding scenarios. Finally, these two methods naturally combine, using the full solution while the problem size is manageably small and switching to the fast approximations later on. The resulting hybrid method gives the user a direct way to choose between speed and accuracy of the simulation. AU - Hahn, David ID - 839 SN - 2663-337X TI - Brittle fracture simulation with boundary elements for computer graphics ER - TY - DATA AB - Includes source codes, test cases, and example data used in the thesis Brittle Fracture Simulation with Boundary Elements for Computer Graphics. Also includes pre-built binaries of the HyENA library, but not sources - please contact the HyENA authors to obtain these sources if required (https://mech.tugraz.at/hyena) AU - Hahn, David ID - 5568 KW - Boundary elements KW - brittle fracture KW - computer graphics KW - fracture simulation TI - Source codes: Brittle fracture simulation with boundary elements for computer graphics ER - TY - CONF AB - We propose an interactive sculpting system for seamlessly editing pre-computed animations of liquid, without the need for any resimulation. The input is a sequence of meshes without correspondences representing the liquid surface over time. Our method enables the efficient selection of consistent space-time parts of this animation, such as moving waves or droplets, which we call space-time features. Once selected, a feature can be copied, edited, or duplicated and then pasted back anywhere in space and time in the same or in another liquid animation sequence. Our method circumvents tedious user interactions by automatically computing the spatial and temporal ranges of the selected feature. We also provide space-time shape editing tools for non-uniform scaling, rotation, trajectory changes, and temporal editing to locally speed up or slow down motion. Using our tools, the user can edit and progressively refine any input simulation result, possibly using a library of precomputed space-time features extracted from other animations. In contrast to the trial-and-error loop usually required to edit animation results through the tuning of indirect simulation parameters, our method gives the user full control over the edited space-time behaviors. © 2016 Copyright held by the owner/author(s). AU - Manteaux, Pierre AU - Vimont, Ulysse AU - Wojtan, Christopher J AU - Rohmer, Damien AU - Cani, Marie ID - 1136 T2 - Proceedings of the 9th International Conference on Motion in Games TI - Space-time sculpting of liquid animation ER - TY - JOUR AB - In this paper we introduce the Multiobjective Optimization Hierarchic Genetic Strategy with maturing (MO-mHGS), a meta-algorithm that performs evolutionary optimization in a hierarchy of populations. The maturing mechanism improves growth and reduces redundancy. The performance of MO-mHGS with selected state-of-the-art multiobjective evolutionary algorithms as internal algorithms is analysed on benchmark problems and their modifications for which single fitness evaluation time depends on the solution accuracy. We compare the proposed algorithm with the Island Model Genetic Algorithm as well as with single-deme methods, and discuss the impact of internal algorithms on the MO-mHGS meta-algorithm. © 2016 Elsevier B.V. AU - Łazarz, Radosław AU - Idzik, Michał AU - Gądek, Konrad AU - Gajda-Zagorska, Ewa P ID - 1141 IS - 1 JF - Journal of Computational Science TI - Hierarchic genetic strategy with maturing as a generic tool for multiobjective optimization VL - 17 ER - TY - CONF AB - When aiming to seamlessly integrate a fluid simulation into a larger scenario (like an open ocean), careful attention must be paid to boundary conditions. In particular, one must implement special "non-reflecting" boundary conditions, which dissipate out-going waves as they exit the simulation. Unfortunately, the state of the art in non-reflecting boundary conditions (perfectly-matched layers, or PMLs) only permits trivially simple inflow/outflow conditions, so there is no reliable way to integrate a fluid simulation into a more complicated environment like a stormy ocean or a turbulent river. This paper introduces the first method for combining nonreflecting boundary conditions based on PMLs with inflow/outflow boundary conditions that vary arbitrarily throughout space and time. Our algorithm is a generalization of stateof- the-art mean-flow boundary conditions in the computational fluid dynamics literature, and it allows for seamless integration of a fluid simulation into much more complicated environments. Our method also opens the door for previously-unseen postprocess effects like retroactively changing the location of solid obstacles, and locally increasing the visual detail of a pre-existing simulation. AU - Bojsen-Hansen, Morten AU - Wojtan, Christopher J ID - 1363 IS - 4 TI - Generalized non-reflecting boundaries for fluid re-simulation VL - 35 ER - TY - CONF AB - We propose a novel surface-only technique for simulating incompressible, inviscid and uniform-density liquids with surface tension in three dimensions. The liquid surface is captured by a triangle mesh on which a Lagrangian velocity field is stored. Because advection of the velocity field may violate the incompressibility condition, we devise an orthogonal projection technique to remove the divergence while requiring the evaluation of only two boundary integrals. The forces of surface tension, gravity, and solid contact are all treated by a boundary element solve, allowing us to perform detailed simulations of a wide range of liquid phenomena, including waterbells, droplet and jet collisions, fluid chains, and crown splashes. AU - Da, Fang AU - Hahn, David AU - Batty, Christopher AU - Wojtan, Christopher J AU - Grinspun, Eitan ID - 1361 IS - 4 TI - Surface only liquids VL - 35 ER -