TY - JOUR
AB - This paper presents a method for simulating water surface waves as a displacement field on a 2D domain. Our method relies on Lagrangian particles that carry packets of water wave energy; each packet carries information about an entire group of wave trains, as opposed to only a single wave crest. Our approach is unconditionally stable and can simulate high resolution geometric details. This approach also presents a straightforward interface for artistic control, because it is essentially a particle system with intuitive parameters like wavelength and amplitude. Our implementation parallelizes well and runs in real time for moderately challenging scenarios.
AU - Jeschke, Stefan
AU - Wojtan, Christopher J
ID - 470
IS - 4
JF - ACM Transactions on Graphics
SN - 07300301
TI - Water wave packets
VL - 36
ER -
TY - DATA
AB - Includes source codes, test cases, and example data used in the thesis Brittle Fracture Simulation with Boundary Elements for Computer Graphics. Also includes pre-built binaries of the HyENA library, but not sources - please contact the HyENA authors to obtain these sources if required (https://mech.tugraz.at/hyena)
AU - Hahn, David
ID - 5568
KW - Boundary elements
KW - brittle fracture
KW - computer graphics
KW - fracture simulation
TI - Source codes: Brittle fracture simulation with boundary elements for computer graphics
ER -
TY - JOUR
AB - We propose an efficient method to model paper tearing in the context of interactive modeling. The method uses geometrical information to automatically detect potential starting points of tears. We further introduce a new hybrid geometrical and physical-based method to compute the trajectory of tears while procedurally synthesizing high resolution details of the tearing path using a texture based approach. The results obtained are compared with real paper and with previous studies on the expected geometric paths of paper that tears.
AU - Schreck, Camille
AU - Rohmer, Damien
AU - Hahmann, Stefanie
ID - 670
IS - 2
JF - Computer Graphics Forum
SN - 01677055
TI - Interactive paper tearing
VL - 36
ER -
TY - THES
AB - This thesis describes a brittle fracture simulation method for visual effects applications. Building upon a symmetric Galerkin boundary element method, we first compute stress intensity factors following the theory of linear elastic fracture mechanics. We then use these stress intensities to simulate the motion of a propagating crack front at a significantly higher resolution than the overall deformation of the breaking object. Allowing for spatial variations of the material's toughness during crack propagation produces visually realistic, highly-detailed fracture surfaces. Furthermore, we introduce approximations for stress intensities and crack opening displacements, resulting in both practical speed-up and theoretically superior runtime complexity compared to previous methods. While we choose a quasi-static approach to fracture mechanics, ignoring dynamic deformations, we also couple our fracture simulation framework to a standard rigid-body dynamics solver, enabling visual effects artists to simulate both large scale motion, as well as fracturing due to collision forces in a combined system. As fractures inside of an object grow, their geometry must be represented both in the coarse boundary element mesh, as well as at the desired fine output resolution. Using a boundary element method, we avoid complicated volumetric meshing operations. Instead we describe a simple set of surface meshing operations that allow us to progressively add cracks to the mesh of an object and still re-use all previously computed entries of the linear boundary element system matrix. On the high resolution level, we opt for an implicit surface representation. We then describe how to capture fracture surfaces during crack propagation, as well as separate the individual fragments resulting from the fracture process, based on this implicit representation. We show results obtained with our method, either solving the full boundary element system in every time step, or alternatively using our fast approximations. These results demonstrate that both of these methods perform well in basic test cases and produce realistic fracture surfaces. Furthermore we show that our fast approximations substantially out-perform the standard approach in more demanding scenarios. Finally, these two methods naturally combine, using the full solution while the problem size is manageably small and switching to the fast approximations later on. The resulting hybrid method gives the user a direct way to choose between speed and accuracy of the simulation.
AU - Hahn, David
ID - 839
TI - Brittle fracture simulation with boundary elements for computer graphics
ER -
TY - CONF
AB - A major open problem on the road to artificial intelligence is the development of incrementally learning systems that learn about more and more concepts over time from a stream of data. In this work, we introduce a new training strategy, iCaRL, that allows learning in such a class-incremental way: only the training data for a small number of classes has to be present at the same time and new classes can be added progressively. iCaRL learns strong classifiers and a data representation simultaneously. This distinguishes it from earlier works that were fundamentally limited to fixed data representations and therefore incompatible with deep learning architectures. We show by experiments on CIFAR-100 and ImageNet ILSVRC 2012 data that iCaRL can learn many classes incrementally over a long period of time where other strategies quickly fail.
AU - Rebuffi, Sylvestre Alvise
AU - Kolesnikov, Alexander
AU - Sperl, Georg
AU - Lampert, Christoph
ID - 998
SN - 978-153860457-1
TI - iCaRL: Incremental classifier and representation learning
VL - 2017
ER -
TY - JOUR
AB - One of the major challenges in physically based modelling is making simulations efficient. Adaptive models provide an essential solution to these efficiency goals. These models are able to self-adapt in space and time, attempting to provide the best possible compromise between accuracy and speed. This survey reviews the adaptive solutions proposed so far in computer graphics. Models are classified according to the strategy they use for adaptation, from time-stepping and freezing techniques to geometric adaptivity in the form of structured grids, meshes and particles. Applications range from fluids, through deformable bodies, to articulated solids.
AU - Manteaux, Pierre
AU - Wojtan, Christopher J
AU - Narain, Rahul
AU - Redon, Stéphane
AU - Faure, François
AU - Cani, Marie
ID - 1367
IS - 6
JF - Computer Graphics Forum
SN - 01677055
TI - Adaptive physically based models in computer graphics
VL - 36
ER -
TY - JOUR
AB - We propose a new memetic strategy that can solve the multi-physics, complex inverse problems, formulated as the multi-objective optimization ones, in which objectives are misfits between the measured and simulated states of various governing processes. The multi-deme structure of the strategy allows for both, intensive, relatively cheap exploration with a moderate accuracy and more accurate search many regions of Pareto set in parallel. The special type of selection operator prefers the coherent alternative solutions, eliminating artifacts appearing in the particular processes. The additional accuracy increment is obtained by the parallel convex searches applied to the local scalarizations of the misfit vector. The strategy is dedicated for solving ill-conditioned problems, for which inverting the single physical process can lead to the ambiguous results. The skill of the selection in artifact elimination is shown on the benchmark problem, while the whole strategy was applied for identification of oil deposits, where the misfits are related to various frequencies of the magnetic and electric waves of the magnetotelluric measurements. 2016 Elsevier B.V.
AU - Gajda-Zagorska, Ewa P
AU - Schaefer, Robert
AU - Smołka, Maciej
AU - Pardo, David
AU - Alvarez Aramberri, Julen
ID - 1152
JF - Journal of Computational Science
SN - 18777503
TI - A multi objective memetic inverse solver reinforced by local optimization methods
VL - 18
ER -
TY - DATA
AB - PhD thesis LaTeX source code
AU - Bojsen-Hansen, Morten
ID - 5558
TI - Tracking, Correcting and Absorbing Water Surface Waves
ER -
TY - CONF
AB - We propose a novel surface-only technique for simulating incompressible, inviscid and uniform-density liquids with surface tension in three dimensions. The liquid surface is captured by a triangle mesh on which a Lagrangian velocity field is stored. Because advection of the velocity field may violate the incompressibility condition, we devise an orthogonal projection technique to remove the divergence while requiring the evaluation of only two boundary integrals. The forces of surface tension, gravity, and solid contact are all treated by a boundary element solve, allowing us to perform detailed simulations of a wide range of liquid phenomena, including waterbells, droplet and jet collisions, fluid chains, and crown splashes.
AU - Da, Fang
AU - Hahn, David
AU - Batty, Christopher
AU - Wojtan, Christopher J
AU - Grinspun, Eitan
ID - 1361
IS - 4
TI - Surface only liquids
VL - 35
ER -
TY - CONF
AB - We present a boundary element based method for fast simulation of brittle fracture. By introducing simplifying assumptions that allow us to quickly estimate stress intensities and opening displacements during crack propagation, we build a fracture algorithm where the cost of each time step scales linearly with the length of the crackfront. The transition from a full boundary element method to our faster variant is possible at the beginning of any time step. This allows us to build a hybrid method, which uses the expensive but more accurate BEM while the number of degrees of freedom is low, and uses the fast method once that number exceeds a given threshold as the crack geometry becomes more complicated. Furthermore, we integrate this fracture simulation with a standard rigid-body solver. Our rigid-body coupling solves a Neumann boundary value problem by carefully separating translational, rotational and deformational components of the collision forces and then applying a Tikhonov regularizer to the resulting linear system. We show that our method produces physically reasonable results in standard test cases and is capable of dealing with complex scenes faster than previous finite- or boundary element approaches.
AU - Hahn, David
AU - Wojtan, Christopher J
ID - 1362
IS - 4
TI - Fast approximations for boundary element based brittle fracture simulation
VL - 35
ER -
TY - CONF
AB - When aiming to seamlessly integrate a fluid simulation into a larger scenario (like an open ocean), careful attention must be paid to boundary conditions. In particular, one must implement special "non-reflecting" boundary conditions, which dissipate out-going waves as they exit the simulation. Unfortunately, the state of the art in non-reflecting boundary conditions (perfectly-matched layers, or PMLs) only permits trivially simple inflow/outflow conditions, so there is no reliable way to integrate a fluid simulation into a more complicated environment like a stormy ocean or a turbulent river. This paper introduces the first method for combining nonreflecting boundary conditions based on PMLs with inflow/outflow boundary conditions that vary arbitrarily throughout space and time. Our algorithm is a generalization of stateof- the-art mean-flow boundary conditions in the computational fluid dynamics literature, and it allows for seamless integration of a fluid simulation into much more complicated environments. Our method also opens the door for previously-unseen postprocess effects like retroactively changing the location of solid obstacles, and locally increasing the visual detail of a pre-existing simulation.
AU - Bojsen-Hansen, Morten
AU - Wojtan, Christopher J
ID - 1363
IS - 4
TI - Generalized non-reflecting boundaries for fluid re-simulation
VL - 35
ER -
TY - JOUR
AB - Combining high-resolution level set surface tracking with lower resolution physics is an inexpensive method for achieving highly detailed liquid animations. Unfortunately, the inherent resolution mismatch introduces several types of disturbing visual artifacts. We identify the primary sources of these artifacts and present simple, efficient, and practical solutions to address them. First, we propose an unconditionally stable filtering method that selectively removes sub-grid surface artifacts not seen by the fluid physics, while preserving fine detail in dynamic splashing regions. It provides comparable results to recent error-correction techniques at lower cost, without substepping, and with better scaling behavior. Second, we show how a modified narrow-band scheme can ensure accurate free surface boundary conditions in the presence of large resolution mismatches. Our scheme preserves the efficiency of the narrow-band methodology, while eliminating objectionable stairstep artifacts observed in prior work. Third, we demonstrate that the use of linear interpolation of velocity during advection of the high-resolution level set surface is responsible for visible grid-aligned kinks; we therefore advocate higher-order velocity interpolation, and show that it dramatically reduces this artifact. While these three contributions are orthogonal, our results demonstrate that taken together they efficiently address the dominant sources of visual artifacts arising with high-resolution embedded liquid surfaces; the proposed approach offers improved visual quality, a straightforward implementation, and substantially greater scalability than competing methods.
AU - Goldade, Ryan
AU - Batty, Christopher
AU - Wojtan, Christopher J
ID - 1412
IS - 2
JF - Computer Graphics Forum
TI - A practical method for high-resolution embedded liquid surfaces
VL - 35
ER -
TY - JOUR
AB - This paper generalizes the well-known Diffusion Curves Images (DCI), which are composed of a set of Bezier curves with colors specified on either side. These colors are diffused as Laplace functions over the image domain, which results in smooth color gradients interrupted by the Bezier curves. Our new formulation allows for more color control away from the boundary, providing a similar expressive power as recent Bilaplace image models without introducing associated issues and computational costs. The new model is based on a special Laplace function blending and a new edge blur formulation. We demonstrate that given some user-defined boundary curves over an input raster image, fitting colors and edge blur from the image to the new model and subsequent editing and animation is equally convenient as with DCIs. Numerous examples and comparisons to DCIs are presented.
AU - Jeschke, Stefan
ID - 1413
IS - 2
JF - Computer Graphics Forum
TI - Generalized diffusion curves: An improved vector representation for smooth-shaded images
VL - 35
ER -
TY - JOUR
AB - The Fluid Implicit Particle method (FLIP) for liquid simulations uses particles to reduce numerical dissipation and provide important visual cues for events like complex splashes and small-scale features near the liquid surface. Unfortunately, FLIP simulations can be computationally expensive, because they require a dense sampling of particles to fill the entire liquid volume. Furthermore, the vast majority of these FLIP particles contribute nothing to the fluid's visual appearance, especially for larger volumes of liquid. We present a method that only uses FLIP particles within a narrow band of the liquid surface, while efficiently representing the remaining inner volume on a regular grid. We show that a naïve realization of this idea introduces unstable and uncontrollable energy fluctuations, and we propose a novel coupling scheme between FLIP particles and regular grid which overcomes this problem. Our method drastically reduces the particle count and simulation times while yielding results that are nearly indistinguishable from regular FLIP simulations. Our approach is easy to integrate into any existing FLIP implementation.
AU - Ferstl, Florian
AU - Ando, Ryoichi
AU - Wojtan, Christopher J
AU - Westermann, Rüdiger
AU - Thuerey, Nils
ID - 1415
IS - 2
JF - Computer Graphics Forum
TI - Narrow band FLIP for liquid simulations
VL - 35
ER -
TY - THES
AB - Computer graphics is an extremely exciting field for two reasons. On the one hand,
there is a healthy injection of pragmatism coming from the visual effects industry
that want robust algorithms that work so they can produce results at an increasingly
frantic pace. On the other hand, they must always try to push the envelope and
achieve the impossible to wow their audiences in the next blockbuster, which means
that the industry has not succumb to conservatism, and there is plenty of room to
try out new and crazy ideas if there is a chance that it will pan into something
useful.
Water simulation has been in visual effects for decades, however it still remains
extremely challenging because of its high computational cost and difficult artdirectability.
The work in this thesis tries to address some of these difficulties.
Specifically, we make the following three novel contributions to the state-of-the-art
in water simulation for visual effects.
First, we develop the first algorithm that can convert any sequence of closed
surfaces in time into a moving triangle mesh. State-of-the-art methods at the time
could only handle surfaces with fixed connectivity, but we are the first to be able to
handle surfaces that merge and split apart. This is important for water simulation
practitioners, because it allows them to convert splashy water surfaces extracted
from particles or simulated using grid-based level sets into triangle meshes that can
be either textured and enhanced with extra surface dynamics as a post-process.
We also apply our algorithm to other phenomena that merge and split apart, such
as morphs and noisy reconstructions of human performances.
Second, we formulate a surface-based energy that measures the deviation of a
water surface froma physically valid state. Such discrepancies arise when there is a
mismatch in the degrees of freedom between the water surface and the underlying
physics solver. This commonly happens when practitioners use a moving triangle
mesh with a grid-based physics solver, or when high-resolution grid-based surfaces
are combined with low-resolution physics. Following the direction of steepest
descent on our surface-based energy, we can either smooth these artifacts or turn
them into high-resolution waves by interpreting the energy as a physical potential.
Third, we extend state-of-the-art techniques in non-reflecting boundaries to handle spatially and time-varying background flows. This allows a novel new
workflow where practitioners can re-simulate part of an existing simulation, such
as removing a solid obstacle, adding a new splash or locally changing the resolution.
Such changes can easily lead to new waves in the re-simulated region that would
reflect off of the new simulation boundary, effectively ruining the illusion of a
seamless simulation boundary between the existing and new simulations. Our
non-reflecting boundaries makes sure that such waves are absorbed.
AU - Bojsen-Hansen, Morten
ID - 1122
TI - Tracking, correcting and absorbing water surface waves
ER -
TY - CONF
AB - We propose an interactive sculpting system for seamlessly editing pre-computed animations of liquid, without the need for any resimulation. The input is a sequence of meshes without correspondences representing the liquid surface over time. Our method enables the efficient selection of consistent space-time parts of this animation, such as moving waves or droplets, which we call space-time features. Once selected, a feature can be copied, edited, or duplicated and then pasted back anywhere in space and time in the same or in another liquid animation sequence. Our method circumvents tedious user interactions by automatically computing the spatial and temporal ranges of the selected feature. We also provide space-time shape editing tools for non-uniform scaling, rotation, trajectory changes, and temporal editing to locally speed up or slow down motion. Using our tools, the user can edit and progressively refine any input simulation result, possibly using a library of precomputed space-time features extracted from other animations. In contrast to the trial-and-error loop usually required to edit animation results through the tuning of indirect simulation parameters, our method gives the user full control over the edited space-time behaviors. © 2016 Copyright held by the owner/author(s).
AU - Manteaux, Pierre
AU - Vimont, Ulysse
AU - Wojtan, Christopher J
AU - Rohmer, Damien
AU - Cani, Marie
ID - 1136
T2 - Proceedings of the 9th International Conference on Motion in Games
TI - Space time sculpting of liquid animation
ER -
TY - JOUR
AB - In this paper we introduce the Multiobjective Optimization Hierarchic Genetic Strategy with maturing (MO-mHGS), a meta-algorithm that performs evolutionary optimization in a hierarchy of populations. The maturing mechanism improves growth and reduces redundancy. The performance of MO-mHGS with selected state-of-the-art multiobjective evolutionary algorithms as internal algorithms is analysed on benchmark problems and their modifications for which single fitness evaluation time depends on the solution accuracy. We compare the proposed algorithm with the Island Model Genetic Algorithm as well as with single-deme methods, and discuss the impact of internal algorithms on the MO-mHGS meta-algorithm. © 2016 Elsevier B.V.
AU - Łazarz, Radosław
AU - Idzik, Michał
AU - Gądek, Konrad
AU - Gajda-Zagorska, Ewa P
ID - 1141
IS - 1
JF - Journal of Computational Science
TI - Hierarchic genetic strategy with maturing as a generic tool for multiobjective optimization
VL - 17
ER -
TY - CONF
AB - We present a method to learn and propagate shape placements in 2D polygonal scenes from a few examples provided by a user. The placement of a shape is modeled as an oriented bounding box. Simple geometric relationships between this bounding box and nearby scene polygons define a feature set for the placement. The feature sets of all example placements are then used to learn a probabilistic model over all possible placements and scenes. With this model, we can generate a new set of placements with similar geometric relationships in any given scene. We introduce extensions that enable propagation and generation of shapes in 3D scenes, as well as the application of a learned modeling session to large scenes without additional user interaction. These concepts allow us to generate complex scenes with thousands of objects with relatively little user interaction.
AU - Guerrero, Paul
AU - Jeschke, Stefan
AU - Wimmer, Michael
AU - Wonka, Peter
ID - 1630
IS - 4
TI - Learning shape placements by example
VL - 34
ER -
TY - CONF
AB - This paper presents a liquid simulation technique that enforces the incompressibility condition using a stream function solve instead of a pressure projection. Previous methods have used stream function techniques for the simulation of detailed single-phase flows, but a formulation for liquid simulation has proved elusive in part due to the free surface boundary conditions. In this paper, we introduce a stream function approach to liquid simulations with novel boundary conditions for free surfaces, solid obstacles, and solid-fluid coupling.
Although our approach increases the dimension of the linear system necessary to enforce incompressibility, it provides interesting and surprising benefits. First, the resulting flow is guaranteed to be divergence-free regardless of the accuracy of the solve. Second, our free-surface boundary conditions guarantee divergence-free motion even in the un-simulated air phase, which enables two-phase flow simulation by only computing a single phase. We implemented this method using a variant of FLIP simulation which only samples particles within a narrow band of the liquid surface, and we illustrate the effectiveness of our method for detailed two-phase flow simulations with complex boundaries, detailed bubble interactions, and two-way solid-fluid coupling.
AU - Ando, Ryoichi
AU - Thuerey, Nils
AU - Wojtan, Christopher J
ID - 1632
IS - 4
TI - A stream function solver for liquid simulations
VL - 34
ER -
TY - CONF
AB - We present a method for simulating brittle fracture under the assumptions of quasi-static linear elastic fracture mechanics (LEFM). Using the boundary element method (BEM) and Lagrangian crack-fronts, we produce highly detailed fracture surfaces. The computational cost of the BEM is alleviated by using a low-resolution mesh and interpolating the resulting stress intensity factors when propagating the high-resolution crack-front.
Our system produces physics-based fracture surfaces with high spatial and temporal resolution, taking spatial variation of material toughness and/or strength into account. It also allows for crack initiation to be handled separately from crack propagation, which is not only more reasonable from a physics perspective, but can also be used to control the simulation.
Separating the resolution of the crack-front from the resolution of the computational mesh increases the efficiency and therefore the amount of visual detail on the resulting fracture surfaces. The BEM also allows us to re-use previously computed blocks of the system matrix.
AU - Hahn, David
AU - Wojtan, Christopher J
ID - 1633
IS - 4
TI - High-resolution brittle fracture simulation with boundary elements
VL - 34
ER -