--- _id: '10148' abstract: - lang: eng text: Tactile feedback of an object’s surface enables us to discern its material properties and affordances. This understanding is used in digital fabrication processes by creating objects with high-resolution surface variations to influence a user’s tactile perception. As the design of such surface haptics commonly relies on knowledge from real-life experiences, it is unclear how to adapt this information for digital design methods. In this work, we investigate replicating the haptics of real materials. Using an existing process for capturing an object’s microgeometry, we digitize and reproduce the stable surface information of a set of 15 fabric samples. In a psychophysical experiment, we evaluate the tactile qualities of our set of original samples and their replicas. From our results, we see that direct reproduction of surface variations is able to influence different psychophysical dimensions of the tactile perception of surface textures. While the fabrication process did not preserve all properties, our approach underlines that replication of surface microgeometries benefits fabrication methods in terms of haptic perception by covering a large range of tactile variations. Moreover, by changing the surface structure of a single fabricated material, its material perception can be influenced. We conclude by proposing strategies for capturing and reproducing digitized textures to better resemble the perceived haptics of the originals. acknowledgement: Our gratitude goes out to Kamila Mushkina, Akhmajon Makhsadov, Jordan Espenshade, Bruno Fruchard, Roland Bennewitz, and Robert Drumm. This project has received funding from the EU’s Horizon 2020 research and innovation programme, under the Marie Skłodowska-Curie grant agreement No 642841 (DISTRO). article_processing_charge: No author: - first_name: Donald full_name: Degraen, Donald last_name: Degraen - first_name: Michael full_name: Piovarci, Michael id: 62E473F4-5C99-11EA-A40E-AF823DDC885E last_name: Piovarci - first_name: Bernd full_name: Bickel, Bernd id: 49876194-F248-11E8-B48F-1D18A9856A87 last_name: Bickel orcid: 0000-0001-6511-9385 - first_name: Antonio full_name: Kruger, Antonio last_name: Kruger citation: ama: 'Degraen D, Piovarci M, Bickel B, Kruger A. Capturing tactile properties of real surfaces for haptic reproduction. In: 34th Annual ACM Symposium. Association for Computing Machinery; 2021:954-971. doi:10.1145/3472749.3474798' apa: 'Degraen, D., Piovarci, M., Bickel, B., & Kruger, A. (2021). Capturing tactile properties of real surfaces for haptic reproduction. In 34th Annual ACM Symposium (pp. 954–971). Virtual: Association for Computing Machinery. https://doi.org/10.1145/3472749.3474798' chicago: Degraen, Donald, Michael Piovarci, Bernd Bickel, and Antonio Kruger. “Capturing Tactile Properties of Real Surfaces for Haptic Reproduction.” In 34th Annual ACM Symposium, 954–71. Association for Computing Machinery, 2021. https://doi.org/10.1145/3472749.3474798. ieee: D. Degraen, M. Piovarci, B. Bickel, and A. Kruger, “Capturing tactile properties of real surfaces for haptic reproduction,” in 34th Annual ACM Symposium, Virtual, 2021, pp. 954–971. ista: 'Degraen D, Piovarci M, Bickel B, Kruger A. 2021. Capturing tactile properties of real surfaces for haptic reproduction. 34th Annual ACM Symposium. UIST: User Interface Software and Technology, 954–971.' mla: Degraen, Donald, et al. “Capturing Tactile Properties of Real Surfaces for Haptic Reproduction.” 34th Annual ACM Symposium, Association for Computing Machinery, 2021, pp. 954–71, doi:10.1145/3472749.3474798. short: D. Degraen, M. Piovarci, B. Bickel, A. Kruger, in:, 34th Annual ACM Symposium, Association for Computing Machinery, 2021, pp. 954–971. conference: end_date: 2021-10-14 location: Virtual name: 'UIST: User Interface Software and Technology' start_date: 2021-10-10 date_created: 2021-10-18T07:36:11Z date_published: 2021-10-10T00:00:00Z date_updated: 2021-10-19T19:29:06Z day: '10' ddc: - '000' department: - _id: BeBi doi: 10.1145/3472749.3474798 ec_funded: 1 file: - access_level: open_access checksum: b0b26464df79b3a59e8ed82e4e19ab15 content_type: application/pdf creator: bbickel date_created: 2021-10-18T07:36:03Z date_updated: 2021-10-18T07:36:03Z file_id: '10149' file_name: degraen-UIST2021_Texture_Appropriation_CR_preprint.pdf file_size: 29796364 relation: main_file file_date_updated: 2021-10-18T07:36:03Z has_accepted_license: '1' language: - iso: eng month: '10' oa: 1 oa_version: Preprint page: 954-971 project: - _id: 2508E324-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '642841' name: Distributed 3D Object Design publication: 34th Annual ACM Symposium publication_identifier: isbn: - 978-1-4503-8635-7 publication_status: published publisher: Association for Computing Machinery quality_controlled: '1' status: public title: Capturing tactile properties of real surfaces for haptic reproduction type: conference user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2021' ... --- _id: '9241' abstract: - lang: eng text: 'Volumetric light transport is a pervasive physical phenomenon, and therefore its accurate simulation is important for a broad array of disciplines. While suitable mathematical models for computing the transport are now available, obtaining the necessary material parameters needed to drive such simulations is a challenging task: direct measurements of these parameters from material samples are seldom possible. Building on the inverse scattering paradigm, we present a novel measurement approach which indirectly infers the transport parameters from extrinsic observations of multiple-scattered radiance. The novelty of the proposed approach lies in replacing structured illumination with a structured reflector bonded to the sample, and a robust fitting procedure that largely compensates for potential systematic errors in the calibration of the setup. We show the feasibility of our approach by validating simulations of complex 3D compositions of the measured materials against physical prints, using photo-polymer resins. As presented in this paper, our technique yields colorspace data suitable for accurate appearance reproduction in the area of 3D printing. Beyond that, and without fundamental changes to the basic measurement methodology, it could equally well be used to obtain spectral measurements that are useful for other application areas.' acknowledgement: "H2020 Marie Skłodowska-Curie Actions (642841); European Research Council (715767); Grantová Agentura České Republiky (16-08111S, 16-18964S); Univerzita Karlova v Praze (SVV-2017-260452); Engineering and Physical Sciences Research Council (EP/K023578/1).\r\nWe are grateful to Stratasys Ltd. for access to the voxel-level print interface of the J750\r\nmachine." article_processing_charge: No article_type: original author: - first_name: Oskar full_name: Elek, Oskar last_name: Elek - first_name: Ran full_name: Zhang, Ran id: 4DDBCEB0-F248-11E8-B48F-1D18A9856A87 last_name: Zhang orcid: 0000-0002-3808-281X - first_name: Denis full_name: Sumin, Denis last_name: Sumin - first_name: Karol full_name: Myszkowski, Karol last_name: Myszkowski - first_name: Bernd full_name: Bickel, Bernd id: 49876194-F248-11E8-B48F-1D18A9856A87 last_name: Bickel orcid: 0000-0001-6511-9385 - first_name: Alexander full_name: Wilkie, Alexander last_name: Wilkie - first_name: Jaroslav full_name: Křivánek, Jaroslav last_name: Křivánek - first_name: Tim full_name: Weyrich, Tim last_name: Weyrich citation: ama: Elek O, Zhang R, Sumin D, et al. Robust and practical measurement of volume transport parameters in solid photo-polymer materials for 3D printing. Optics Express. 2021;29(5):7568-7588. doi:10.1364/OE.406095 apa: Elek, O., Zhang, R., Sumin, D., Myszkowski, K., Bickel, B., Wilkie, A., … Weyrich, T. (2021). Robust and practical measurement of volume transport parameters in solid photo-polymer materials for 3D printing. Optics Express. The Optical Society. https://doi.org/10.1364/OE.406095 chicago: Elek, Oskar, Ran Zhang, Denis Sumin, Karol Myszkowski, Bernd Bickel, Alexander Wilkie, Jaroslav Křivánek, and Tim Weyrich. “Robust and Practical Measurement of Volume Transport Parameters in Solid Photo-Polymer Materials for 3D Printing.” Optics Express. The Optical Society, 2021. https://doi.org/10.1364/OE.406095. ieee: O. Elek et al., “Robust and practical measurement of volume transport parameters in solid photo-polymer materials for 3D printing,” Optics Express, vol. 29, no. 5. The Optical Society, pp. 7568–7588, 2021. ista: Elek O, Zhang R, Sumin D, Myszkowski K, Bickel B, Wilkie A, Křivánek J, Weyrich T. 2021. Robust and practical measurement of volume transport parameters in solid photo-polymer materials for 3D printing. Optics Express. 29(5), 7568–7588. mla: Elek, Oskar, et al. “Robust and Practical Measurement of Volume Transport Parameters in Solid Photo-Polymer Materials for 3D Printing.” Optics Express, vol. 29, no. 5, The Optical Society, 2021, pp. 7568–88, doi:10.1364/OE.406095. short: O. Elek, R. Zhang, D. Sumin, K. Myszkowski, B. Bickel, A. Wilkie, J. Křivánek, T. Weyrich, Optics Express 29 (2021) 7568–7588. date_created: 2021-03-14T23:01:33Z date_published: 2021-03-01T00:00:00Z date_updated: 2023-08-07T14:11:57Z day: '01' ddc: - '000' department: - _id: BeBi doi: 10.1364/OE.406095 ec_funded: 1 external_id: isi: - '000624968100103' file: - access_level: open_access checksum: a9697ad83136c19ad87e46aa2db63cfd content_type: application/pdf creator: dernst date_created: 2021-03-22T08:15:28Z date_updated: 2021-03-22T08:15:28Z file_id: '9269' file_name: 2021_OpticsExpress_Elek.pdf file_size: 10873700 relation: main_file success: 1 file_date_updated: 2021-03-22T08:15:28Z has_accepted_license: '1' intvolume: ' 29' isi: 1 issue: '5' language: - iso: eng license: https://creativecommons.org/licenses/by/4.0/ month: '03' oa: 1 oa_version: Published Version page: 7568-7588 project: - _id: 2508E324-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '642841' name: Distributed 3D Object Design - _id: 24F9549A-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '715767' name: 'MATERIALIZABLE: Intelligent fabrication-oriented Computational Design and Modeling' publication: Optics Express publication_identifier: eissn: - 1094-4087 publication_status: published publisher: The Optical Society quality_controlled: '1' scopus_import: '1' status: public title: Robust and practical measurement of volume transport parameters in solid photo-polymer materials for 3D printing tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 29 year: '2021' ... --- _id: '9376' abstract: - lang: eng text: This paper presents a method for designing planar multistable compliant structures. Given a sequence of desired stable states and the corresponding poses of the structure, we identify the topology and geometric realization of a mechanism—consisting of bars and joints—that is able to physically reproduce the desired multistable behavior. In order to solve this problem efficiently, we build on insights from minimally rigid graph theory to identify simple but effective topologies for the mechanism. We then optimize its geometric parameters, such as joint positions and bar lengths, to obtain correct transitions between the given poses. Simultaneously, we ensure adequate stability of each pose based on an effective approximate error metric related to the elastic energy Hessian of the bars in the mechanism. As demonstrated by our results, we obtain functional multistable mechanisms of manageable complexity that can be fabricated using 3D printing. Further, we evaluated the effectiveness of our method on a large number of examples in the simulation and fabricated several physical prototypes. acknowledged_ssus: - _id: M-Shop acknowledgement: 'We would like to thank everyone who contributed to this paper, the authors of artworks for all the examples, including @macrovec-tor_official and Wikimedia for the FLAG semaphore, and @pikisuper-star for the FIGURINE. The photos of iconic poses in the teaser were supplied by (from left to right): Mike Hewitt/Olympics Day 8 - Athletics/Gettty Images, Oneinchpunch/Basketball player training on acourt in New york city/Shutterstock, and Andrew Redington/TigerWoods/Getty Images. We also want to express our gratitude to Christian Hafner for insightful discussions, the IST Austria machine shop SSU, all proof-readers, and anonymous reviewers. This project has received funding from the European Union’s Horizon 2020 research and innovation programme, under the Marie Skłodowska-Curie grant agreement No 642841 (DISTRO), and under the European Research Council grant agreement No 715767 (MATERIALIZABLE).' article_number: '186' article_processing_charge: No article_type: original author: - first_name: Ran full_name: Zhang, Ran id: 4DDBCEB0-F248-11E8-B48F-1D18A9856A87 last_name: Zhang orcid: 0000-0002-3808-281X - first_name: Thomas full_name: Auzinger, Thomas id: 4718F954-F248-11E8-B48F-1D18A9856A87 last_name: Auzinger orcid: 0000-0002-1546-3265 - first_name: Bernd full_name: Bickel, Bernd id: 49876194-F248-11E8-B48F-1D18A9856A87 last_name: Bickel orcid: 0000-0001-6511-9385 citation: ama: Zhang R, Auzinger T, Bickel B. Computational design of planar multistable compliant structures. ACM Transactions on Graphics. 2021;40(5). doi:10.1145/3453477 apa: Zhang, R., Auzinger, T., & Bickel, B. (2021). Computational design of planar multistable compliant structures. ACM Transactions on Graphics. Association for Computing Machinery. https://doi.org/10.1145/3453477 chicago: Zhang, Ran, Thomas Auzinger, and Bernd Bickel. “Computational Design of Planar Multistable Compliant Structures.” ACM Transactions on Graphics. Association for Computing Machinery, 2021. https://doi.org/10.1145/3453477. ieee: R. Zhang, T. Auzinger, and B. Bickel, “Computational design of planar multistable compliant structures,” ACM Transactions on Graphics, vol. 40, no. 5. Association for Computing Machinery, 2021. ista: Zhang R, Auzinger T, Bickel B. 2021. Computational design of planar multistable compliant structures. ACM Transactions on Graphics. 40(5), 186. mla: Zhang, Ran, et al. “Computational Design of Planar Multistable Compliant Structures.” ACM Transactions on Graphics, vol. 40, no. 5, 186, Association for Computing Machinery, 2021, doi:10.1145/3453477. short: R. Zhang, T. Auzinger, B. Bickel, ACM Transactions on Graphics 40 (2021). date_created: 2021-05-08T17:37:08Z date_published: 2021-10-08T00:00:00Z date_updated: 2023-08-08T13:31:38Z day: '08' ddc: - '000' department: - _id: BeBi doi: 10.1145/3453477 ec_funded: 1 external_id: isi: - '000752079300003' file: - access_level: open_access checksum: 8564b3118457d4c8939a8ef2b1a2f16c content_type: application/pdf creator: bbickel date_created: 2021-05-08T17:36:59Z date_updated: 2021-05-08T17:36:59Z file_id: '9377' file_name: Multistable-authorversion.pdf file_size: 18926557 relation: main_file - access_level: open_access checksum: 3b6e874e30bfa1bfc3ad3498710145a1 content_type: video/mp4 creator: bbickel date_created: 2021-05-08T17:38:22Z date_updated: 2021-05-08T17:38:22Z file_id: '9378' file_name: multistable-video.mp4 file_size: 76542901 relation: main_file success: 1 - access_level: open_access checksum: 20dc3bc42e1a912a5b0247c116772098 content_type: application/pdf creator: bbickel date_created: 2021-12-17T08:13:51Z date_updated: 2021-12-17T08:13:51Z description: This document provides additional results and analyzes the robustness and limitations of our approach. file_id: '10562' file_name: multistable-supplementary material.pdf file_size: 3367072 relation: supplementary_material title: Supplementary Material for “Computational Design of Planar Multistable Compliant Structures” file_date_updated: 2021-12-17T08:13:51Z has_accepted_license: '1' intvolume: ' 40' isi: 1 issue: '5' keyword: - multistability - mechanism - computational design - rigidity language: - iso: eng month: '10' oa: 1 oa_version: Published Version project: - _id: 2508E324-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '642841' name: Distributed 3D Object Design - _id: 24F9549A-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '715767' name: 'MATERIALIZABLE: Intelligent fabrication-oriented Computational Design and Modeling' publication: ACM Transactions on Graphics publication_identifier: eissn: - 1557-7368 issn: - 0730-0301 publication_status: published publisher: Association for Computing Machinery quality_controlled: '1' status: public title: Computational design of planar multistable compliant structures tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 40 year: '2021' ... --- _id: '9408' abstract: - lang: eng text: We present a computational design system that assists users to model, optimize, and fabricate quad-robots with soft skins. Our system addresses the challenging task of predicting their physical behavior by fully integrating the multibody dynamics of the mechanical skeleton and the elastic behavior of the soft skin. The developed motion control strategy uses an alternating optimization scheme to avoid expensive full space time-optimization, interleaving space-time optimization for the skeleton, and frame-by-frame optimization for the full dynamics. The output are motor torques to drive the robot to achieve a user prescribed motion trajectory. We also provide a collection of convenient engineering tools and empirical manufacturing guidance to support the fabrication of the designed quad-robot. We validate the feasibility of designs generated with our system through physics simulations and with a physically-fabricated prototype. acknowledgement: The authors would like to thank anonymous reviewers for their constructive comments. Weiwei Xu is partially supported by Zhejiang Lab. Yin Yang is partially spported by NSF under Grant Nos. CHS 1845024 and 1717972. Weiwei Xu and Hujun Bao are supported by Fundamental Research Funds for the Central Universities. This project has received funding from the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation programme (Grant agreement No 715767). article_number: 2881-2895 article_processing_charge: No author: - first_name: Xudong full_name: Feng, Xudong last_name: Feng - first_name: Jiafeng full_name: Liu, Jiafeng last_name: Liu - first_name: Huamin full_name: Wang, Huamin last_name: Wang - first_name: Yin full_name: Yang, Yin last_name: Yang - first_name: Hujun full_name: Bao, Hujun last_name: Bao - first_name: Bernd full_name: Bickel, Bernd id: 49876194-F248-11E8-B48F-1D18A9856A87 last_name: Bickel orcid: 0000-0001-6511-9385 - first_name: Weiwei full_name: Xu, Weiwei last_name: Xu citation: ama: Feng X, Liu J, Wang H, et al. Computational design of skinned Quad-Robots. IEEE Transactions on Visualization and Computer Graphics. 2021;27(6). doi:10.1109/TVCG.2019.2957218 apa: Feng, X., Liu, J., Wang, H., Yang, Y., Bao, H., Bickel, B., & Xu, W. (2021). Computational design of skinned Quad-Robots. IEEE Transactions on Visualization and Computer Graphics. IEEE. https://doi.org/10.1109/TVCG.2019.2957218 chicago: Feng, Xudong, Jiafeng Liu, Huamin Wang, Yin Yang, Hujun Bao, Bernd Bickel, and Weiwei Xu. “Computational Design of Skinned Quad-Robots.” IEEE Transactions on Visualization and Computer Graphics. IEEE, 2021. https://doi.org/10.1109/TVCG.2019.2957218. ieee: X. Feng et al., “Computational design of skinned Quad-Robots,” IEEE Transactions on Visualization and Computer Graphics, vol. 27, no. 6. IEEE, 2021. ista: Feng X, Liu J, Wang H, Yang Y, Bao H, Bickel B, Xu W. 2021. Computational design of skinned Quad-Robots. IEEE Transactions on Visualization and Computer Graphics. 27(6), 2881–2895. mla: Feng, Xudong, et al. “Computational Design of Skinned Quad-Robots.” IEEE Transactions on Visualization and Computer Graphics, vol. 27, no. 6, 2881–2895, IEEE, 2021, doi:10.1109/TVCG.2019.2957218. short: X. Feng, J. Liu, H. Wang, Y. Yang, H. Bao, B. Bickel, W. Xu, IEEE Transactions on Visualization and Computer Graphics 27 (2021). date_created: 2021-05-23T22:01:42Z date_published: 2021-06-01T00:00:00Z date_updated: 2023-08-08T13:45:46Z day: '01' ddc: - '000' department: - _id: BeBi doi: 10.1109/TVCG.2019.2957218 ec_funded: 1 external_id: isi: - '000649620700009' pmid: - '31804937' file: - access_level: open_access checksum: a78e6ac94e33ade4ffaea66943d5f7dc content_type: application/pdf creator: kschuh date_created: 2021-05-25T15:08:49Z date_updated: 2021-05-25T15:08:49Z file_id: '9427' file_name: 2021_TVCG_Feng.pdf file_size: 6183002 relation: main_file success: 1 file_date_updated: 2021-05-25T15:08:49Z has_accepted_license: '1' intvolume: ' 27' isi: 1 issue: '6' language: - iso: eng month: '06' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 24F9549A-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '715767' name: 'MATERIALIZABLE: Intelligent fabrication-oriented Computational Design and Modeling' publication: IEEE Transactions on Visualization and Computer Graphics publication_identifier: eissn: - '10772626' issn: - '19410506' publication_status: published publisher: IEEE quality_controlled: '1' scopus_import: '1' status: public title: Computational design of skinned Quad-Robots tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 27 year: '2021' ... --- _id: '9819' abstract: - lang: eng text: Photorealistic editing of head portraits is a challenging task as humans are very sensitive to inconsistencies in faces. We present an approach for high-quality intuitive editing of the camera viewpoint and scene illumination (parameterised with an environment map) in a portrait image. This requires our method to capture and control the full reflectance field of the person in the image. Most editing approaches rely on supervised learning using training data captured with setups such as light and camera stages. Such datasets are expensive to acquire, not readily available and do not capture all the rich variations of in-the-wild portrait images. In addition, most supervised approaches only focus on relighting, and do not allow camera viewpoint editing. Thus, they only capture and control a subset of the reflectance field. Recently, portrait editing has been demonstrated by operating in the generative model space of StyleGAN. While such approaches do not require direct supervision, there is a significant loss of quality when compared to the supervised approaches. In this paper, we present a method which learns from limited supervised training data. The training images only include people in a fixed neutral expression with eyes closed, without much hair or background variations. Each person is captured under 150 one-light-at-a-time conditions and under 8 camera poses. Instead of training directly in the image space, we design a supervised problem which learns transformations in the latent space of StyleGAN. This combines the best of supervised learning and generative adversarial modeling. We show that the StyleGAN prior allows for generalisation to different expressions, hairstyles and backgrounds. This produces high-quality photorealistic results for in-the-wild images and significantly outperforms existing methods. Our approach can edit the illumination and pose simultaneously, and runs at interactive rates. acknowledgement: This work was supported by the ERC Consolidator Grant 4DReply (770784). We also acknowledge support from Technicolor and InterDigital. We thank Tiancheng Sun for kindly helping us with the comparisons with Sun et al. [2019]. article_number: '44' article_processing_charge: Yes (in subscription journal) article_type: original author: - first_name: B. R. full_name: Mallikarjun, B. R. last_name: Mallikarjun - first_name: Ayush full_name: Tewari, Ayush last_name: Tewari - first_name: Abdallah full_name: Dib, Abdallah last_name: Dib - first_name: Tim full_name: Weyrich, Tim last_name: Weyrich - first_name: Bernd full_name: Bickel, Bernd id: 49876194-F248-11E8-B48F-1D18A9856A87 last_name: Bickel orcid: 0000-0001-6511-9385 - first_name: Hans Peter full_name: Seidel, Hans Peter last_name: Seidel - first_name: Hanspeter full_name: Pfister, Hanspeter last_name: Pfister - first_name: Wojciech full_name: Matusik, Wojciech last_name: Matusik - first_name: Louis full_name: Chevallier, Louis last_name: Chevallier - first_name: Mohamed A. full_name: Elgharib, Mohamed A. last_name: Elgharib - first_name: Christian full_name: Theobalt, Christian last_name: Theobalt citation: ama: 'Mallikarjun BR, Tewari A, Dib A, et al. PhotoApp: Photorealistic appearance editing of head portraits. ACM Transactions on Graphics. 2021;40(4). doi:10.1145/3450626.3459765' apa: 'Mallikarjun, B. R., Tewari, A., Dib, A., Weyrich, T., Bickel, B., Seidel, H. P., … Theobalt, C. (2021). PhotoApp: Photorealistic appearance editing of head portraits. ACM Transactions on Graphics. Association for Computing Machinery. https://doi.org/10.1145/3450626.3459765' chicago: 'Mallikarjun, B. R., Ayush Tewari, Abdallah Dib, Tim Weyrich, Bernd Bickel, Hans Peter Seidel, Hanspeter Pfister, et al. “PhotoApp: Photorealistic Appearance Editing of Head Portraits.” ACM Transactions on Graphics. Association for Computing Machinery, 2021. https://doi.org/10.1145/3450626.3459765.' ieee: 'B. R. Mallikarjun et al., “PhotoApp: Photorealistic appearance editing of head portraits,” ACM Transactions on Graphics, vol. 40, no. 4. Association for Computing Machinery, 2021.' ista: 'Mallikarjun BR, Tewari A, Dib A, Weyrich T, Bickel B, Seidel HP, Pfister H, Matusik W, Chevallier L, Elgharib MA, Theobalt C. 2021. PhotoApp: Photorealistic appearance editing of head portraits. ACM Transactions on Graphics. 40(4), 44.' mla: 'Mallikarjun, B. R., et al. “PhotoApp: Photorealistic Appearance Editing of Head Portraits.” ACM Transactions on Graphics, vol. 40, no. 4, 44, Association for Computing Machinery, 2021, doi:10.1145/3450626.3459765.' short: B.R. Mallikarjun, A. Tewari, A. Dib, T. Weyrich, B. Bickel, H.P. Seidel, H. Pfister, W. Matusik, L. Chevallier, M.A. Elgharib, C. Theobalt, ACM Transactions on Graphics 40 (2021). date_created: 2021-08-08T22:01:27Z date_published: 2021-08-01T00:00:00Z date_updated: 2023-08-10T14:25:08Z day: '01' ddc: - '000' department: - _id: BeBi doi: 10.1145/3450626.3459765 external_id: arxiv: - '2103.07658' isi: - '000674930900011' file: - access_level: open_access checksum: 51b61b7e5c175e2d7ed8fa3b35f7525a content_type: application/pdf creator: asandaue date_created: 2021-08-09T11:41:50Z date_updated: 2021-08-09T11:41:50Z file_id: '9834' file_name: 2021_ACMTransactionsOnGraphics_Mallikarjun.pdf file_size: 49840741 relation: main_file success: 1 file_date_updated: 2021-08-09T11:41:50Z has_accepted_license: '1' intvolume: ' 40' isi: 1 issue: '4' language: - iso: eng month: '08' oa: 1 oa_version: Published Version publication: ACM Transactions on Graphics publication_identifier: eissn: - '15577368' issn: - '07300301' publication_status: published publisher: Association for Computing Machinery quality_controlled: '1' scopus_import: '1' status: public title: 'PhotoApp: Photorealistic appearance editing of head portraits' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 40 year: '2021' ... --- _id: '9820' abstract: - lang: eng text: Material appearance hinges on material reflectance properties but also surface geometry and illumination. The unlimited number of potential combinations between these factors makes understanding and predicting material appearance a very challenging task. In this work, we collect a large-scale dataset of perceptual ratings of appearance attributes with more than 215,680 responses for 42,120 distinct combinations of material, shape, and illumination. The goal of this dataset is twofold. First, we analyze for the first time the effects of illumination and geometry in material perception across such a large collection of varied appearances. We connect our findings to those of the literature, discussing how previous knowledge generalizes across very diverse materials, shapes, and illuminations. Second, we use the collected dataset to train a deep learning architecture for predicting perceptual attributes that correlate with human judgments. We demonstrate the consistent and robust behavior of our predictor in various challenging scenarios, which, for the first time, enables estimating perceived material attributes from general 2D images. Since our predictor relies on the final appearance in an image, it can compare appearance properties across different geometries and illumination conditions. Finally, we demonstrate several applications that use our predictor, including appearance reproduction using 3D printing, BRDF editing by integrating our predictor in a differentiable renderer, illumination design, or material recommendations for scene design. acknowledgement: This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie, grant agreement Nº 765911 (RealVision) and from the European Research Council (ERC), grant agreement Nº 804226 (PERDY). article_number: '125' article_processing_charge: No article_type: original author: - first_name: Ana full_name: Serrano, Ana last_name: Serrano - first_name: Bin full_name: Chen, Bin last_name: Chen - first_name: Chao full_name: Wang, Chao last_name: Wang - first_name: Michael full_name: Piovarci, Michael id: 62E473F4-5C99-11EA-A40E-AF823DDC885E last_name: Piovarci orcid: 0000-0002-5062-4474 - first_name: Hans Peter full_name: Seidel, Hans Peter last_name: Seidel - first_name: Piotr full_name: Didyk, Piotr last_name: Didyk - first_name: Karol full_name: Myszkowski, Karol last_name: Myszkowski citation: ama: 'Serrano A, Chen B, Wang C, et al. The effect of shape and illumination on material perception: Model and applications. ACM Transactions on Graphics. 2021;40(4). doi:10.1145/3450626.3459813' apa: 'Serrano, A., Chen, B., Wang, C., Piovarci, M., Seidel, H. P., Didyk, P., & Myszkowski, K. (2021). The effect of shape and illumination on material perception: Model and applications. ACM Transactions on Graphics. Association for Computing Machinery. https://doi.org/10.1145/3450626.3459813' chicago: 'Serrano, Ana, Bin Chen, Chao Wang, Michael Piovarci, Hans Peter Seidel, Piotr Didyk, and Karol Myszkowski. “The Effect of Shape and Illumination on Material Perception: Model and Applications.” ACM Transactions on Graphics. Association for Computing Machinery, 2021. https://doi.org/10.1145/3450626.3459813.' ieee: 'A. Serrano et al., “The effect of shape and illumination on material perception: Model and applications,” ACM Transactions on Graphics, vol. 40, no. 4. Association for Computing Machinery, 2021.' ista: 'Serrano A, Chen B, Wang C, Piovarci M, Seidel HP, Didyk P, Myszkowski K. 2021. The effect of shape and illumination on material perception: Model and applications. ACM Transactions on Graphics. 40(4), 125.' mla: 'Serrano, Ana, et al. “The Effect of Shape and Illumination on Material Perception: Model and Applications.” ACM Transactions on Graphics, vol. 40, no. 4, 125, Association for Computing Machinery, 2021, doi:10.1145/3450626.3459813.' short: A. Serrano, B. Chen, C. Wang, M. Piovarci, H.P. Seidel, P. Didyk, K. Myszkowski, ACM Transactions on Graphics 40 (2021). date_created: 2021-08-08T22:01:28Z date_published: 2021-08-01T00:00:00Z date_updated: 2023-08-10T14:20:10Z day: '01' department: - _id: BeBi doi: 10.1145/3450626.3459813 external_id: isi: - '000674930900090' intvolume: ' 40' isi: 1 issue: '4' language: - iso: eng main_file_link: - open_access: '1' url: https://zaguan.unizar.es/record/110704/files/texto_completo.pdf month: '08' oa: 1 oa_version: Submitted Version publication: ACM Transactions on Graphics publication_identifier: eissn: - '15577368' issn: - '07300301' publication_status: published publisher: Association for Computing Machinery quality_controlled: '1' scopus_import: '1' status: public title: 'The effect of shape and illumination on material perception: Model and applications' type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 40 year: '2021' ... --- _id: '9957' abstract: - lang: eng text: The reflectance field of a face describes the reflectance properties responsible for complex lighting effects including diffuse, specular, inter-reflection and self shadowing. Most existing methods for estimating the face reflectance from a monocular image assume faces to be diffuse with very few approaches adding a specular component. This still leaves out important perceptual aspects of reflectance as higher-order global illumination effects and self-shadowing are not modeled. We present a new neural representation for face reflectance where we can estimate all components of the reflectance responsible for the final appearance from a single monocular image. Instead of modeling each component of the reflectance separately using parametric models, our neural representation allows us to generate a basis set of faces in a geometric deformation-invariant space, parameterized by the input light direction, viewpoint and face geometry. We learn to reconstruct this reflectance field of a face just from a monocular image, which can be used to render the face from any viewpoint in any light condition. Our method is trained on a light-stage training dataset, which captures 300 people illuminated with 150 light conditions from 8 viewpoints. We show that our method outperforms existing monocular reflectance reconstruction methods, in terms of photorealism due to better capturing of physical premitives, such as sub-surface scattering, specularities, self-shadows and other higher-order effects. acknowledgement: "We thank Tarun Yenamandra and Duarte David for helping us with the comparisons. This work was supported by the\r\nERC Consolidator Grant 4DReply (770784). We also acknowledge support from InterDigital." article_processing_charge: No author: - first_name: Mallikarjun full_name: B R, Mallikarjun last_name: B R - first_name: Ayush full_name: Tewari, Ayush last_name: Tewari - first_name: Tae-Hyun full_name: Oh, Tae-Hyun last_name: Oh - first_name: Tim full_name: Weyrich, Tim last_name: Weyrich - first_name: Bernd full_name: Bickel, Bernd id: 49876194-F248-11E8-B48F-1D18A9856A87 last_name: Bickel orcid: 0000-0001-6511-9385 - first_name: Hans-Peter full_name: Seidel, Hans-Peter last_name: Seidel - first_name: Hanspeter full_name: Pfister, Hanspeter last_name: Pfister - first_name: Wojciech full_name: Matusik, Wojciech last_name: Matusik - first_name: Mohamed full_name: Elgharib, Mohamed last_name: Elgharib - first_name: Christian full_name: Theobalt, Christian last_name: Theobalt citation: ama: 'B R M, Tewari A, Oh T-H, et al. Monocular reconstruction of neural face reflectance fields. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IEEE; 2021:4791-4800. doi:10.1109/CVPR46437.2021.00476' apa: 'B R, M., Tewari, A., Oh, T.-H., Weyrich, T., Bickel, B., Seidel, H.-P., … Theobalt, C. (2021). Monocular reconstruction of neural face reflectance fields. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (pp. 4791–4800). Nashville, TN, United States; Virtual: IEEE. https://doi.org/10.1109/CVPR46437.2021.00476' chicago: B R, Mallikarjun, Ayush Tewari, Tae-Hyun Oh, Tim Weyrich, Bernd Bickel, Hans-Peter Seidel, Hanspeter Pfister, Wojciech Matusik, Mohamed Elgharib, and Christian Theobalt. “Monocular Reconstruction of Neural Face Reflectance Fields.” In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 4791–4800. IEEE, 2021. https://doi.org/10.1109/CVPR46437.2021.00476. ieee: M. B R et al., “Monocular reconstruction of neural face reflectance fields,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Nashville, TN, United States; Virtual, 2021, pp. 4791–4800. ista: 'B R M, Tewari A, Oh T-H, Weyrich T, Bickel B, Seidel H-P, Pfister H, Matusik W, Elgharib M, Theobalt C. 2021. Monocular reconstruction of neural face reflectance fields. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR: Conference on Computer Vision and Pattern Recognition, 4791–4800.' mla: B R, Mallikarjun, et al. “Monocular Reconstruction of Neural Face Reflectance Fields.” Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, IEEE, 2021, pp. 4791–800, doi:10.1109/CVPR46437.2021.00476. short: M. B R, A. Tewari, T.-H. Oh, T. Weyrich, B. Bickel, H.-P. Seidel, H. Pfister, W. Matusik, M. Elgharib, C. Theobalt, in:, Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, IEEE, 2021, pp. 4791–4800. conference: end_date: 2021-06-25 location: Nashville, TN, United States; Virtual name: 'CVPR: Conference on Computer Vision and Pattern Recognition' start_date: 2021-06-20 date_created: 2021-08-24T06:03:00Z date_published: 2021-09-01T00:00:00Z date_updated: 2023-08-11T11:08:35Z day: '01' ddc: - '000' department: - _id: BeBi doi: 10.1109/CVPR46437.2021.00476 external_id: arxiv: - '2008.10247' isi: - '000739917304096' file: - access_level: open_access checksum: 961db0bde76dd87cf833930080bb9f38 content_type: application/pdf creator: bbickel date_created: 2021-08-24T06:02:15Z date_updated: 2021-08-24T06:02:15Z file_id: '9958' file_name: R_Monocular_Reconstruction_of_Neural_Face_Reflectance_Fields_CVPR_2021_paper[1].pdf file_size: 4746649 relation: main_file file_date_updated: 2021-08-24T06:02:15Z has_accepted_license: '1' isi: 1 language: - iso: eng month: '09' oa: 1 oa_version: Preprint page: 4791-4800 publication: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition publication_identifier: isbn: - 978-166544509-2 issn: - 1063-6919 publication_status: published publisher: IEEE quality_controlled: '1' scopus_import: '1' status: public title: Monocular reconstruction of neural face reflectance fields type: conference user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 year: '2021' ... --- _id: '9547' abstract: - lang: eng text: With the wider availability of full-color 3D printers, color-accurate 3D-print preparation has received increased attention. A key challenge lies in the inherent translucency of commonly used print materials that blurs out details of the color texture. Previous work tries to compensate for these scattering effects through strategic assignment of colored primary materials to printer voxels. To date, the highest-quality approach uses iterative optimization that relies on computationally expensive Monte Carlo light transport simulation to predict the surface appearance from subsurface scattering within a given print material distribution; that optimization, however, takes in the order of days on a single machine. In our work, we dramatically speed up the process by replacing the light transport simulation with a data-driven approach. Leveraging a deep neural network to predict the scattering within a highly heterogeneous medium, our method performs around two orders of magnitude faster than Monte Carlo rendering while yielding optimization results of similar quality level. The network is based on an established method from atmospheric cloud rendering, adapted to our domain and extended by a physically motivated weight sharing scheme that substantially reduces the network size. We analyze its performance in an end-to-end print preparation pipeline and compare quality and runtime to alternative approaches, and demonstrate its generalization to unseen geometry and material values. This for the first time enables full heterogenous material optimization for 3D-print preparation within time frames in the order of the actual printing time. acknowledgement: We thank Sebastian Cucerca for processing and capturing the phys-cal printouts. This work was supported by the Charles University grant SVV-260588 and Czech Science Foundation grant 19-07626S. This project has received funding from the European Union’s Horizon 2020 research and innovation programme, under the Marie Skłodowska Curie grant agreements No 642841 (DISTRO) and No765911 (RealVision), and under the European Research Council grant agreement No 715767 (MATERIALIZABLE). article_processing_charge: No article_type: original author: - first_name: Tobias full_name: Rittig, Tobias last_name: Rittig - first_name: Denis full_name: Sumin, Denis last_name: Sumin - first_name: Vahid full_name: Babaei, Vahid last_name: Babaei - first_name: Piotr full_name: Didyk, Piotr last_name: Didyk - first_name: Alexey full_name: Voloboy, Alexey last_name: Voloboy - first_name: Alexander full_name: Wilkie, Alexander last_name: Wilkie - first_name: Bernd full_name: Bickel, Bernd id: 49876194-F248-11E8-B48F-1D18A9856A87 last_name: Bickel orcid: 0000-0001-6511-9385 - first_name: Karol full_name: Myszkowski, Karol last_name: Myszkowski - first_name: Tim full_name: Weyrich, Tim last_name: Weyrich - first_name: Jaroslav full_name: Křivánek, Jaroslav last_name: Křivánek citation: ama: Rittig T, Sumin D, Babaei V, et al. Neural acceleration of scattering-aware color 3D printing. Computer Graphics Forum. 2021;40(2):205-219. doi:10.1111/cgf.142626 apa: Rittig, T., Sumin, D., Babaei, V., Didyk, P., Voloboy, A., Wilkie, A., … Křivánek, J. (2021). Neural acceleration of scattering-aware color 3D printing. Computer Graphics Forum. Wiley. https://doi.org/10.1111/cgf.142626 chicago: Rittig, Tobias, Denis Sumin, Vahid Babaei, Piotr Didyk, Alexey Voloboy, Alexander Wilkie, Bernd Bickel, Karol Myszkowski, Tim Weyrich, and Jaroslav Křivánek. “Neural Acceleration of Scattering-Aware Color 3D Printing.” Computer Graphics Forum. Wiley, 2021. https://doi.org/10.1111/cgf.142626. ieee: T. Rittig et al., “Neural acceleration of scattering-aware color 3D printing,” Computer Graphics Forum, vol. 40, no. 2. Wiley, pp. 205–219, 2021. ista: Rittig T, Sumin D, Babaei V, Didyk P, Voloboy A, Wilkie A, Bickel B, Myszkowski K, Weyrich T, Křivánek J. 2021. Neural acceleration of scattering-aware color 3D printing. Computer Graphics Forum. 40(2), 205–219. mla: Rittig, Tobias, et al. “Neural Acceleration of Scattering-Aware Color 3D Printing.” Computer Graphics Forum, vol. 40, no. 2, Wiley, 2021, pp. 205–19, doi:10.1111/cgf.142626. short: T. Rittig, D. Sumin, V. Babaei, P. Didyk, A. Voloboy, A. Wilkie, B. Bickel, K. Myszkowski, T. Weyrich, J. Křivánek, Computer Graphics Forum 40 (2021) 205–219. date_created: 2021-06-13T22:01:32Z date_published: 2021-05-01T00:00:00Z date_updated: 2023-08-14T08:01:50Z day: '01' ddc: - '004' department: - _id: BeBi doi: 10.1111/cgf.142626 ec_funded: 1 external_id: isi: - '000657959600017' file: - access_level: open_access checksum: 33271724215f54a75c39d2ed40f2c502 content_type: application/pdf creator: bbickel date_created: 2021-10-11T12:06:50Z date_updated: 2021-10-11T12:06:50Z file_id: '10120' file_name: ScatteringAwareColor3DPrinting_authorVersion.pdf file_size: 26026501 relation: main_file success: 1 file_date_updated: 2021-10-11T12:06:50Z has_accepted_license: '1' intvolume: ' 40' isi: 1 issue: '2' language: - iso: eng month: '05' oa: 1 oa_version: Submitted Version page: 205-219 project: - _id: 2508E324-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '642841' name: Distributed 3D Object Design - _id: 24F9549A-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '715767' name: 'MATERIALIZABLE: Intelligent fabrication-oriented Computational Design and Modeling' publication: Computer Graphics Forum publication_identifier: eissn: - 1467-8659 issn: - 0167-7055 publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: Neural acceleration of scattering-aware color 3D printing type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 40 year: '2021' ... --- _id: '10574' abstract: - lang: eng text: 'The understanding of material appearance perception is a complex problem due to interactions between material reflectance, surface geometry, and illumination. Recently, Serrano et al. collected the largest dataset to date with subjective ratings of material appearance attributes, including glossiness, metallicness, sharpness and contrast of reflections. In this work, we make use of their dataset to investigate for the first time the impact of the interactions between illumination, geometry, and eight different material categories in perceived appearance attributes. After an initial analysis, we select for further analysis the four material categories that cover the largest range for all perceptual attributes: fabric, plastic, ceramic, and metal. Using a cumulative link mixed model (CLMM) for robust regression, we discover interactions between these material categories and four representative illuminations and object geometries. We believe that our findings contribute to expanding the knowledge on material appearance perception and can be useful for many applications, such as scene design, where any particular material in a given shape can be aligned with dominant classes of illumination, so that a desired strength of appearance attributes can be achieved.' acknowledgement: This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie, grant agreement N∘ 765911 (RealVision) and from the European Research Council (ERC), grant agreement N∘ 804226 (PERDY). Open Access funding enabled and organized by Projekt DEAL. article_processing_charge: Yes article_type: original author: - first_name: Bin full_name: Chen, Bin last_name: Chen - first_name: Chao full_name: Wang, Chao last_name: Wang - first_name: Michael full_name: Piovarci, Michael id: 62E473F4-5C99-11EA-A40E-AF823DDC885E last_name: Piovarci orcid: 0000-0002-5062-4474 - first_name: Hans Peter full_name: Seidel, Hans Peter last_name: Seidel - first_name: Piotr full_name: Didyk, Piotr last_name: Didyk - first_name: Karol full_name: Myszkowski, Karol last_name: Myszkowski - first_name: Ana full_name: Serrano, Ana last_name: Serrano citation: ama: Chen B, Wang C, Piovarci M, et al. The effect of geometry and illumination on appearance perception of different material categories. Visual Computer. 2021;37(12):2975-2987. doi:10.1007/s00371-021-02227-x apa: Chen, B., Wang, C., Piovarci, M., Seidel, H. P., Didyk, P., Myszkowski, K., & Serrano, A. (2021). The effect of geometry and illumination on appearance perception of different material categories. Visual Computer. Springer Nature. https://doi.org/10.1007/s00371-021-02227-x chicago: Chen, Bin, Chao Wang, Michael Piovarci, Hans Peter Seidel, Piotr Didyk, Karol Myszkowski, and Ana Serrano. “The Effect of Geometry and Illumination on Appearance Perception of Different Material Categories.” Visual Computer. Springer Nature, 2021. https://doi.org/10.1007/s00371-021-02227-x. ieee: B. Chen et al., “The effect of geometry and illumination on appearance perception of different material categories,” Visual Computer, vol. 37, no. 12. Springer Nature, pp. 2975–2987, 2021. ista: Chen B, Wang C, Piovarci M, Seidel HP, Didyk P, Myszkowski K, Serrano A. 2021. The effect of geometry and illumination on appearance perception of different material categories. Visual Computer. 37(12), 2975–2987. mla: Chen, Bin, et al. “The Effect of Geometry and Illumination on Appearance Perception of Different Material Categories.” Visual Computer, vol. 37, no. 12, Springer Nature, 2021, pp. 2975–87, doi:10.1007/s00371-021-02227-x. short: B. Chen, C. Wang, M. Piovarci, H.P. Seidel, P. Didyk, K. Myszkowski, A. Serrano, Visual Computer 37 (2021) 2975–2987. date_created: 2021-12-26T23:01:26Z date_published: 2021-12-01T00:00:00Z date_updated: 2023-08-17T06:29:34Z day: '01' ddc: - '000' department: - _id: BeBi doi: 10.1007/s00371-021-02227-x external_id: isi: - '000673536600003' file: - access_level: open_access checksum: 244cfcac0479ca6e3444c098ab2860a1 content_type: application/pdf creator: cchlebak date_created: 2021-12-27T13:51:08Z date_updated: 2021-12-27T13:51:08Z file_id: '10578' file_name: 2021_VisComput_Chen.pdf file_size: 5741094 relation: main_file success: 1 file_date_updated: 2021-12-27T13:51:08Z has_accepted_license: '1' intvolume: ' 37' isi: 1 issue: '12' language: - iso: eng month: '12' oa: 1 oa_version: Published Version page: 2975-2987 publication: Visual Computer publication_identifier: eissn: - 1432-2315 issn: - 0178-2789 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: The effect of geometry and illumination on appearance perception of different material categories tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 37 year: '2021' ... --- _id: '10184' abstract: - lang: eng text: "We introduce a novel technique to automatically decompose an input object’s volume into a set of parts that can be represented by two opposite height fields. Such decomposition enables the manufacturing of individual parts using two-piece reusable rigid molds. Our decomposition strategy relies on a new energy formulation that utilizes a pre-computed signal on the mesh volume representing the accessibility for a predefined set of extraction directions. Thanks to this novel formulation, our method allows for efficient optimization of a fabrication-aware partitioning of volumes in a completely\r\nautomatic way. We demonstrate the efficacy of our approach by generating valid volume partitionings for a wide range of complex objects and physically reproducing several of them." acknowledgement: 'The authors thank Marco Callieri for all his precious help with the resin casts. The models used in the paper are courtesy of the Stanford 3D Scanning Repository, the AIM@SHAPE Shape Repository, and Thingi10K Repository. The research was partially funded by the European Research Council (ERC) MATERIALIZABLE: Intelligent fabrication-oriented computational design and modeling (grant no. 715767).' article_number: '272' article_processing_charge: No article_type: original author: - first_name: Thomas full_name: Alderighi, Thomas last_name: Alderighi - first_name: Luigi full_name: Malomo, Luigi last_name: Malomo - first_name: Bernd full_name: Bickel, Bernd id: 49876194-F248-11E8-B48F-1D18A9856A87 last_name: Bickel orcid: 0000-0001-6511-9385 - first_name: Paolo full_name: Cignoni, Paolo last_name: Cignoni - first_name: Nico full_name: Pietroni, Nico last_name: Pietroni citation: ama: Alderighi T, Malomo L, Bickel B, Cignoni P, Pietroni N. Volume decomposition for two-piece rigid casting. ACM Transactions on Graphics. 2021;40(6). doi:10.1145/3478513.3480555 apa: Alderighi, T., Malomo, L., Bickel, B., Cignoni, P., & Pietroni, N. (2021). Volume decomposition for two-piece rigid casting. ACM Transactions on Graphics. Association for Computing Machinery. https://doi.org/10.1145/3478513.3480555 chicago: Alderighi, Thomas, Luigi Malomo, Bernd Bickel, Paolo Cignoni, and Nico Pietroni. “Volume Decomposition for Two-Piece Rigid Casting.” ACM Transactions on Graphics. Association for Computing Machinery, 2021. https://doi.org/10.1145/3478513.3480555. ieee: T. Alderighi, L. Malomo, B. Bickel, P. Cignoni, and N. Pietroni, “Volume decomposition for two-piece rigid casting,” ACM Transactions on Graphics, vol. 40, no. 6. Association for Computing Machinery, 2021. ista: Alderighi T, Malomo L, Bickel B, Cignoni P, Pietroni N. 2021. Volume decomposition for two-piece rigid casting. ACM Transactions on Graphics. 40(6), 272. mla: Alderighi, Thomas, et al. “Volume Decomposition for Two-Piece Rigid Casting.” ACM Transactions on Graphics, vol. 40, no. 6, 272, Association for Computing Machinery, 2021, doi:10.1145/3478513.3480555. short: T. Alderighi, L. Malomo, B. Bickel, P. Cignoni, N. Pietroni, ACM Transactions on Graphics 40 (2021). date_created: 2021-10-27T07:08:19Z date_published: 2021-12-01T00:00:00Z date_updated: 2024-02-28T12:52:48Z day: '01' ddc: - '000' department: - _id: BeBi doi: 10.1145/3478513.3480555 ec_funded: 1 external_id: isi: - '000729846700077' file: - access_level: open_access checksum: 384ece7a9ad1026787ba9560b04336d5 content_type: application/pdf creator: bbickel date_created: 2021-10-27T07:08:07Z date_updated: 2021-10-27T07:08:07Z file_id: '10185' file_name: rigidmolds-authorversion.pdf file_size: 107708317 relation: main_file file_date_updated: 2021-10-27T07:08:07Z has_accepted_license: '1' intvolume: ' 40' isi: 1 issue: '6' language: - iso: eng main_file_link: - open_access: '1' url: http://vcg.isti.cnr.it/Publications/2021/AMBCP21 month: '12' oa: 1 oa_version: Submitted Version project: - _id: 24F9549A-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '715767' name: 'MATERIALIZABLE: Intelligent fabrication-oriented Computational Design and Modeling' publication: ACM Transactions on Graphics publication_identifier: eissn: - '1557-7368 ' issn: - 0730-0301 publication_status: published publisher: Association for Computing Machinery quality_controlled: '1' status: public title: Volume decomposition for two-piece rigid casting type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 40 year: '2021' ... --- _id: '9817' abstract: - lang: eng text: Elastic bending of initially flat slender elements allows the realization and economic fabrication of intriguing curved shapes. In this work, we derive an intuitive but rigorous geometric characterization of the design space of plane elastic rods with variable stiffness. It enables designers to determine which shapes are physically viable with active bending by visual inspection alone. Building on these insights, we propose a method for efficiently designing the geometry of a flat elastic rod that realizes a target equilibrium curve, which only requires solving a linear program. We implement this method in an interactive computational design tool that gives feedback about the feasibility of a design, and computes the geometry of the structural elements necessary to realize it within an instant. The tool also offers an iterative optimization routine that improves the fabricability of a model while modifying it as little as possible. In addition, we use our geometric characterization to derive an algorithm for analyzing and recovering the stability of elastic curves that would otherwise snap out of their unstable equilibrium shapes by buckling. We show the efficacy of our approach by designing and manufacturing several physical models that are assembled from flat elements. acknowledgement: "We thank the anonymous reviewers for their generous feedback, and Michal Piovarči for his help in producing the supplemental video. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 715767).\r\n" article_number: '126' article_processing_charge: No article_type: original author: - first_name: Christian full_name: Hafner, Christian id: 400429CC-F248-11E8-B48F-1D18A9856A87 last_name: Hafner - first_name: Bernd full_name: Bickel, Bernd id: 49876194-F248-11E8-B48F-1D18A9856A87 last_name: Bickel orcid: 0000-0001-6511-9385 citation: ama: Hafner C, Bickel B. The design space of plane elastic curves. ACM Transactions on Graphics. 2021;40(4). doi:10.1145/3450626.3459800 apa: 'Hafner, C., & Bickel, B. (2021). The design space of plane elastic curves. ACM Transactions on Graphics. Virtual: Association for Computing Machinery. https://doi.org/10.1145/3450626.3459800' chicago: Hafner, Christian, and Bernd Bickel. “The Design Space of Plane Elastic Curves.” ACM Transactions on Graphics. Association for Computing Machinery, 2021. https://doi.org/10.1145/3450626.3459800. ieee: C. Hafner and B. Bickel, “The design space of plane elastic curves,” ACM Transactions on Graphics, vol. 40, no. 4. Association for Computing Machinery, 2021. ista: Hafner C, Bickel B. 2021. The design space of plane elastic curves. ACM Transactions on Graphics. 40(4), 126. mla: Hafner, Christian, and Bernd Bickel. “The Design Space of Plane Elastic Curves.” ACM Transactions on Graphics, vol. 40, no. 4, 126, Association for Computing Machinery, 2021, doi:10.1145/3450626.3459800. short: C. Hafner, B. Bickel, ACM Transactions on Graphics 40 (2021). conference: end_date: 2021-08-13 location: Virtual name: 'SIGGRAF: Special Interest Group on Computer Graphics and Interactive Techniques' start_date: 2021-08-09 date_created: 2021-08-08T22:01:26Z date_published: 2021-07-19T00:00:00Z date_updated: 2024-03-28T23:30:47Z day: '19' ddc: - '516' department: - _id: BeBi doi: 10.1145/3450626.3459800 ec_funded: 1 external_id: isi: - '000674930900091' file: - access_level: open_access checksum: 7e5d08ce46b0451b3102eacd3d00f85f content_type: application/pdf creator: chafner date_created: 2021-10-18T10:42:15Z date_updated: 2021-10-18T10:42:15Z file_id: '10150' file_name: elastic-curves-paper.pdf file_size: 17064290 relation: main_file success: 1 - access_level: open_access checksum: 0088643478be7c01a703b5b10767348f content_type: application/pdf creator: chafner date_created: 2021-10-18T10:42:22Z date_updated: 2021-10-18T10:42:22Z file_id: '10151' file_name: elastic-curves-supp.pdf file_size: 547156 relation: supplementary_material file_date_updated: 2021-10-18T10:42:22Z has_accepted_license: '1' intvolume: ' 40' isi: 1 issue: '4' keyword: - Computing methodologies - shape modeling - modeling and simulation - theory of computation - computational geometry - mathematics of computing - mathematical optimization language: - iso: eng month: '07' oa: 1 oa_version: Published Version project: - _id: 24F9549A-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '715767' name: 'MATERIALIZABLE: Intelligent fabrication-oriented Computational Design and Modeling' publication: ACM Transactions on Graphics publication_identifier: eissn: - 1557-7368 issn: - 0730-0301 publication_status: published publisher: Association for Computing Machinery quality_controlled: '1' related_material: link: - description: News on IST Website relation: press_release url: https://ist.ac.at/en/news/designing-with-elastic-structures/ record: - id: '12897' relation: dissertation_contains status: public scopus_import: '1' status: public title: The design space of plane elastic curves tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 40 year: '2021' ... --- _id: '9208' abstract: - lang: eng text: 'Bending-active structures are able to efficiently produce complex curved shapes from flat panels. The desired deformation of the panels derives from the proper selection of their elastic properties. Optimized panels, called FlexMaps, are designed such that, once they are bent and assembled, the resulting static equilibrium configuration matches a desired input 3D shape. The FlexMaps elastic properties are controlled by locally varying spiraling geometric mesostructures, which are optimized in size and shape to match specific bending requests, namely the global curvature of the target shape. The design pipeline starts from a quad mesh representing the input 3D shape, which defines the edge size and the total amount of spirals: every quad will embed one spiral. Then, an optimization algorithm tunes the geometry of the spirals by using a simplified pre-computed rod model. This rod model is derived from a non-linear regression algorithm which approximates the non-linear behavior of solid FEM spiral models subject to hundreds of load combinations. This innovative pipeline has been applied to the project of a lightweight plywood pavilion named FlexMaps Pavilion, which is a single-layer piecewise twisted arch that fits a bounding box of 3.90x3.96x3.25 meters. This case study serves to test the applicability of this methodology at the architectural scale. The structure is validated via FE analyses and the fabrication of the full scale prototype.' acknowledgement: 'The FlexMaps Pavilion has been awarded First Prize at the “Competition and Exhibition of innovative lightweight structures” organized by the IASS Working Group 21 within the FORM and FORCE, joint international conference of IASS Symposium 2019 and Structural Membranes 2019 (Barcelona, 7-11 October 2019) with the following motivation: “for its structural innovation of bending-twisting system, connection constructability and exquisite craftmanship”[20]. The authors would like to acknowledge the Visual Computing Lab Staff of ISTI - CNR, in particular Thomas Alderighi, Marco Callieri, Paolo Pingi; Antonio Rizzo of IPCF - CNR; and the Administrative Staff of ISTI - CNR. This research was partially funded by the EU H2020 Programme EVOCATION: Advanced Visual and Geometric Computing for 3D Capture, Display, and Fabrication (grant no. 813170).' article_number: '1505' article_processing_charge: No article_type: original author: - first_name: Francesco full_name: Laccone, Francesco last_name: Laccone - first_name: Luigi full_name: Malomo, Luigi last_name: Malomo - first_name: Jesus full_name: Perez Rodriguez, Jesus id: 2DC83906-F248-11E8-B48F-1D18A9856A87 last_name: Perez Rodriguez - first_name: Nico full_name: Pietroni, Nico last_name: Pietroni - first_name: Federico full_name: Ponchio, Federico last_name: Ponchio - first_name: Bernd full_name: Bickel, Bernd id: 49876194-F248-11E8-B48F-1D18A9856A87 last_name: Bickel orcid: 0000-0001-6511-9385 - first_name: Paolo full_name: Cignoni, Paolo last_name: Cignoni citation: ama: 'Laccone F, Malomo L, Perez Rodriguez J, et al. A bending-active twisted-arch plywood structure: Computational design and fabrication of the FlexMaps Pavilion. SN Applied Sciences. 2020;2(9). doi:10.1007/s42452-020-03305-w' apa: 'Laccone, F., Malomo, L., Perez Rodriguez, J., Pietroni, N., Ponchio, F., Bickel, B., & Cignoni, P. (2020). A bending-active twisted-arch plywood structure: Computational design and fabrication of the FlexMaps Pavilion. SN Applied Sciences. Springer Nature. https://doi.org/10.1007/s42452-020-03305-w' chicago: 'Laccone, Francesco, Luigi Malomo, Jesus Perez Rodriguez, Nico Pietroni, Federico Ponchio, Bernd Bickel, and Paolo Cignoni. “A Bending-Active Twisted-Arch Plywood Structure: Computational Design and Fabrication of the FlexMaps Pavilion.” SN Applied Sciences. Springer Nature, 2020. https://doi.org/10.1007/s42452-020-03305-w.' ieee: 'F. Laccone et al., “A bending-active twisted-arch plywood structure: Computational design and fabrication of the FlexMaps Pavilion,” SN Applied Sciences, vol. 2, no. 9. Springer Nature, 2020.' ista: 'Laccone F, Malomo L, Perez Rodriguez J, Pietroni N, Ponchio F, Bickel B, Cignoni P. 2020. A bending-active twisted-arch plywood structure: Computational design and fabrication of the FlexMaps Pavilion. SN Applied Sciences. 2(9), 1505.' mla: 'Laccone, Francesco, et al. “A Bending-Active Twisted-Arch Plywood Structure: Computational Design and Fabrication of the FlexMaps Pavilion.” SN Applied Sciences, vol. 2, no. 9, 1505, Springer Nature, 2020, doi:10.1007/s42452-020-03305-w.' short: F. Laccone, L. Malomo, J. Perez Rodriguez, N. Pietroni, F. Ponchio, B. Bickel, P. Cignoni, SN Applied Sciences 2 (2020). date_created: 2021-02-28T23:01:25Z date_published: 2020-09-01T00:00:00Z date_updated: 2021-03-03T09:43:14Z day: '01' department: - _id: BeBi doi: 10.1007/s42452-020-03305-w intvolume: ' 2' issue: '9' language: - iso: eng month: '09' oa_version: None publication: SN Applied Sciences publication_identifier: eissn: - '25233971' publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: 'A bending-active twisted-arch plywood structure: Computational design and fabrication of the FlexMaps Pavilion' type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 2 year: '2020' ... --- _id: '7220' abstract: - lang: eng text: BACKGROUND:The introduction of image-guided methods to bypass surgery has resulted in optimized preoperative identification of the recipients and excellent patency rates. However, the recently presented methods have also been resource-consuming. In the present study, we have reported a cost-efficient planning workflow for extracranial-intracranial (EC-IC) revascularization combined with transdural indocyanine green videoangiography (tICG-VA). METHODS:We performed a retrospective review at a single tertiary referral center from 2011 to 2018. A novel software-derived workflow was applied for 25 of 92 bypass procedures during the study period. The precision and accuracy were assessed using tICG-VA identification of the cortical recipients and a comparison of the virtual and actual data. The data from a control group of 25 traditionally planned procedures were also matched. RESULTS:The intraoperative transfer time of the calculated coordinates averaged 0.8 minute (range, 0.4-1.9 minutes). The definitive recipients matched the targeted branches in 80%, and a neighboring branch was used in 16%. Our workflow led to a significant craniotomy size reduction in the study group compared with that in the control group (P = 0.005). tICG-VA was successfully applied in 19 cases. An average of 2 potential recipient arteries were identified transdurally, resulting in tailored durotomy and 3 craniotomy adjustments. Follow-up patency results were available for 49 bypass surgeries, comprising 54 grafts. The overall patency rate was 91% at a median follow-up period of 26 months. No significant difference was found in the patency rate between the study and control groups (P = 0.317). CONCLUSIONS:Our clinical results have validated the presented planning and surgical workflow and support the routine implementation of tICG-VA for recipient identification before durotomy. article_processing_charge: No article_type: original author: - first_name: Philippe full_name: Dodier, Philippe last_name: Dodier - first_name: Thomas full_name: Auzinger, Thomas id: 4718F954-F248-11E8-B48F-1D18A9856A87 last_name: Auzinger orcid: 0000-0002-1546-3265 - first_name: Gabriel full_name: Mistelbauer, Gabriel last_name: Mistelbauer - first_name: Wei Te full_name: Wang, Wei Te last_name: Wang - first_name: Heber full_name: Ferraz-Leite, Heber last_name: Ferraz-Leite - first_name: Andreas full_name: Gruber, Andreas last_name: Gruber - first_name: Wolfgang full_name: Marik, Wolfgang last_name: Marik - first_name: Fabian full_name: Winter, Fabian last_name: Winter - first_name: Gerrit full_name: Fischer, Gerrit last_name: Fischer - first_name: Josa M. full_name: Frischer, Josa M. last_name: Frischer - first_name: Gerhard full_name: Bavinzski, Gerhard last_name: Bavinzski citation: ama: Dodier P, Auzinger T, Mistelbauer G, et al. Novel software-derived workflow in extracranial–intracranial bypass surgery validated by transdural indocyanine green videoangiography. World Neurosurgery. 2020;134(2):e892-e902. doi:10.1016/j.wneu.2019.11.038 apa: Dodier, P., Auzinger, T., Mistelbauer, G., Wang, W. T., Ferraz-Leite, H., Gruber, A., … Bavinzski, G. (2020). Novel software-derived workflow in extracranial–intracranial bypass surgery validated by transdural indocyanine green videoangiography. World Neurosurgery. Elsevier. https://doi.org/10.1016/j.wneu.2019.11.038 chicago: Dodier, Philippe, Thomas Auzinger, Gabriel Mistelbauer, Wei Te Wang, Heber Ferraz-Leite, Andreas Gruber, Wolfgang Marik, et al. “Novel Software-Derived Workflow in Extracranial–Intracranial Bypass Surgery Validated by Transdural Indocyanine Green Videoangiography.” World Neurosurgery. Elsevier, 2020. https://doi.org/10.1016/j.wneu.2019.11.038. ieee: P. Dodier et al., “Novel software-derived workflow in extracranial–intracranial bypass surgery validated by transdural indocyanine green videoangiography,” World Neurosurgery, vol. 134, no. 2. Elsevier, pp. e892–e902, 2020. ista: Dodier P, Auzinger T, Mistelbauer G, Wang WT, Ferraz-Leite H, Gruber A, Marik W, Winter F, Fischer G, Frischer JM, Bavinzski G. 2020. Novel software-derived workflow in extracranial–intracranial bypass surgery validated by transdural indocyanine green videoangiography. World Neurosurgery. 134(2), e892–e902. mla: Dodier, Philippe, et al. “Novel Software-Derived Workflow in Extracranial–Intracranial Bypass Surgery Validated by Transdural Indocyanine Green Videoangiography.” World Neurosurgery, vol. 134, no. 2, Elsevier, 2020, pp. e892–902, doi:10.1016/j.wneu.2019.11.038. short: P. Dodier, T. Auzinger, G. Mistelbauer, W.T. Wang, H. Ferraz-Leite, A. Gruber, W. Marik, F. Winter, G. Fischer, J.M. Frischer, G. Bavinzski, World Neurosurgery 134 (2020) e892–e902. date_created: 2019-12-29T23:00:48Z date_published: 2020-02-01T00:00:00Z date_updated: 2023-08-17T14:14:23Z day: '01' department: - _id: BeBi doi: 10.1016/j.wneu.2019.11.038 external_id: isi: - '000512878200104' pmid: - '31733380' intvolume: ' 134' isi: 1 issue: '2' language: - iso: eng month: '02' oa_version: None page: e892-e902 pmid: 1 publication: World Neurosurgery publication_identifier: eissn: - 1878-8769 issn: - 1878-8750 publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: Novel software-derived workflow in extracranial–intracranial bypass surgery validated by transdural indocyanine green videoangiography type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 134 year: '2020' ... --- _id: '7218' abstract: - lang: eng text: The combined resection of skull-infiltrating tumours and immediate cranioplastic reconstruction predominantly relies on freehand-moulded solutions. Techniques that enable this procedure to be performed easily in routine clinical practice would be useful. A cadaveric study was developed in which a new software tool was used to perform single-stage reconstructions with prefabricated implants after the resection of skull-infiltrating pathologies. A novel 3D visualization and interaction framework was developed to create 10 virtual craniotomies in five cadaveric specimens. Polyether ether ketone (PEEK) implants were manufactured according to the bone defects. The image-guided craniotomy was reconstructed with PEEK and compared to polymethyl methacrylate (PMMA). Navigational accuracy and surgical precision were assessed. The PEEK workflow resulted in up to 10-fold shorter reconstruction times than the standard technique. Surgical precision was reflected by the mean 1.1 ± 0.29 mm distance between the virtual and real craniotomy, with submillimetre precision in 50%. Assessment of the global offset between virtual and actual craniotomy revealed an average shift of 4.5 ± 3.6 mm. The results validated the ‘elective single-stage cranioplasty’ technique as a state-of-the-art virtual planning method and surgical workflow. This patient-tailored workflow could significantly reduce surgical times compared to the traditional, intraoperative acrylic moulding method and may be an option for the reconstruction of bone defects in the craniofacial region. article_processing_charge: No article_type: original author: - first_name: Philippe full_name: Dodier, Philippe last_name: Dodier - first_name: Fabian full_name: Winter, Fabian last_name: Winter - first_name: Thomas full_name: Auzinger, Thomas id: 4718F954-F248-11E8-B48F-1D18A9856A87 last_name: Auzinger orcid: 0000-0002-1546-3265 - first_name: Gabriel full_name: Mistelbauer, Gabriel last_name: Mistelbauer - first_name: Josa M. full_name: Frischer, Josa M. last_name: Frischer - first_name: Wei Te full_name: Wang, Wei Te last_name: Wang - first_name: Ammar full_name: Mallouhi, Ammar last_name: Mallouhi - first_name: Wolfgang full_name: Marik, Wolfgang last_name: Marik - first_name: Stefan full_name: Wolfsberger, Stefan last_name: Wolfsberger - first_name: Lukas full_name: Reissig, Lukas last_name: Reissig - first_name: Firas full_name: Hammadi, Firas last_name: Hammadi - first_name: Christian full_name: Matula, Christian last_name: Matula - first_name: Arnulf full_name: Baumann, Arnulf last_name: Baumann - first_name: Gerhard full_name: Bavinzski, Gerhard last_name: Bavinzski citation: ama: 'Dodier P, Winter F, Auzinger T, et al. Single-stage bone resection and cranioplastic reconstruction: Comparison of a novel software-derived PEEK workflow with the standard reconstructive method. International Journal of Oral and Maxillofacial Surgery. 2020;49(8):P1007-1015. doi:10.1016/j.ijom.2019.11.011' apa: 'Dodier, P., Winter, F., Auzinger, T., Mistelbauer, G., Frischer, J. M., Wang, W. T., … Bavinzski, G. (2020). Single-stage bone resection and cranioplastic reconstruction: Comparison of a novel software-derived PEEK workflow with the standard reconstructive method. International Journal of Oral and Maxillofacial Surgery. Elsevier. https://doi.org/10.1016/j.ijom.2019.11.011' chicago: 'Dodier, Philippe, Fabian Winter, Thomas Auzinger, Gabriel Mistelbauer, Josa M. Frischer, Wei Te Wang, Ammar Mallouhi, et al. “Single-Stage Bone Resection and Cranioplastic Reconstruction: Comparison of a Novel Software-Derived PEEK Workflow with the Standard Reconstructive Method.” International Journal of Oral and Maxillofacial Surgery. Elsevier, 2020. https://doi.org/10.1016/j.ijom.2019.11.011.' ieee: 'P. Dodier et al., “Single-stage bone resection and cranioplastic reconstruction: Comparison of a novel software-derived PEEK workflow with the standard reconstructive method,” International Journal of Oral and Maxillofacial Surgery, vol. 49, no. 8. Elsevier, pp. P1007-1015, 2020.' ista: 'Dodier P, Winter F, Auzinger T, Mistelbauer G, Frischer JM, Wang WT, Mallouhi A, Marik W, Wolfsberger S, Reissig L, Hammadi F, Matula C, Baumann A, Bavinzski G. 2020. Single-stage bone resection and cranioplastic reconstruction: Comparison of a novel software-derived PEEK workflow with the standard reconstructive method. International Journal of Oral and Maxillofacial Surgery. 49(8), P1007-1015.' mla: 'Dodier, Philippe, et al. “Single-Stage Bone Resection and Cranioplastic Reconstruction: Comparison of a Novel Software-Derived PEEK Workflow with the Standard Reconstructive Method.” International Journal of Oral and Maxillofacial Surgery, vol. 49, no. 8, Elsevier, 2020, pp. P1007-1015, doi:10.1016/j.ijom.2019.11.011.' short: P. Dodier, F. Winter, T. Auzinger, G. Mistelbauer, J.M. Frischer, W.T. Wang, A. Mallouhi, W. Marik, S. Wolfsberger, L. Reissig, F. Hammadi, C. Matula, A. Baumann, G. Bavinzski, International Journal of Oral and Maxillofacial Surgery 49 (2020) P1007-1015. date_created: 2019-12-29T23:00:47Z date_published: 2020-08-01T00:00:00Z date_updated: 2023-08-17T14:15:22Z day: '01' department: - _id: BeBi doi: 10.1016/j.ijom.2019.11.011 external_id: isi: - '000556819800005' pmid: - '31866145' intvolume: ' 49' isi: 1 issue: '8' language: - iso: eng month: '08' oa_version: None page: P1007-1015 pmid: 1 publication: International Journal of Oral and Maxillofacial Surgery publication_identifier: eissn: - 1399-0020 issn: - 0901-5027 publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: 'Single-stage bone resection and cranioplastic reconstruction: Comparison of a novel software-derived PEEK workflow with the standard reconstructive method' type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 49 year: '2020' ... --- _id: '8386' abstract: - lang: eng text: "Form versus function is a long-standing debate in various design-related fields, such as architecture as well as graphic and industrial design. A good design that balances form and function often requires considerable human effort and collaboration among experts from different professional fields. Computational design tools provide a new paradigm for designing functional objects. In computational design, form and function are represented as mathematical\r\nquantities, with the help of numerical and combinatorial algorithms, they can assist even novice users in designing versatile models that exhibit their desired functionality. This thesis presents three disparate research studies on the computational design of functional objects: The appearance of 3d print—we optimize the volumetric material distribution for faithfully replicating colored surface texture in 3d printing; the dynamic motion of mechanical structures—\r\nour design system helps the novice user to retarget various mechanical templates with different functionality to complex 3d shapes; and a more abstract functionality, multistability—our algorithm automatically generates models that exhibit multiple stable target poses. For each of these cases, our computational design tools not only ensure the functionality of the results but also permit the user aesthetic freedom over the form. Moreover, fabrication constraints\r\nwere taken into account, which allow for the immediate creation of physical realization via 3D printing or laser cutting." acknowledged_ssus: - _id: SSU acknowledgement: The research in this thesis has received funding from the European Union’s Horizon 2020 research and innovation programme, under the Marie Skłodowska-Curie grant agreement No 642841 (DISTRO) and the European Research Council grant agreement No 715767 (MATERIALIZABLE). All the research projects in this thesis were also supported by Scientific Service Units (SSUs) at IST Austria. alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Ran full_name: Zhang, Ran id: 4DDBCEB0-F248-11E8-B48F-1D18A9856A87 last_name: Zhang orcid: 0000-0002-3808-281X citation: ama: Zhang R. Structure-aware computational design and its application to 3D printable volume scattering, mechanism, and multistability. 2020. doi:10.15479/AT:ISTA:8386 apa: Zhang, R. (2020). Structure-aware computational design and its application to 3D printable volume scattering, mechanism, and multistability. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:8386 chicago: Zhang, Ran. “Structure-Aware Computational Design and Its Application to 3D Printable Volume Scattering, Mechanism, and Multistability.” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:8386. ieee: R. Zhang, “Structure-aware computational design and its application to 3D printable volume scattering, mechanism, and multistability,” Institute of Science and Technology Austria, 2020. ista: Zhang R. 2020. Structure-aware computational design and its application to 3D printable volume scattering, mechanism, and multistability. Institute of Science and Technology Austria. mla: Zhang, Ran. Structure-Aware Computational Design and Its Application to 3D Printable Volume Scattering, Mechanism, and Multistability. Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:8386. short: R. Zhang, Structure-Aware Computational Design and Its Application to 3D Printable Volume Scattering, Mechanism, and Multistability, Institute of Science and Technology Austria, 2020. date_created: 2020-09-14T01:04:53Z date_published: 2020-09-14T00:00:00Z date_updated: 2023-09-22T09:49:31Z day: '14' ddc: - '003' degree_awarded: PhD department: - _id: BeBi doi: 10.15479/AT:ISTA:8386 ec_funded: 1 file: - access_level: closed checksum: edcf578b6e1c9b0dd81ff72d319b66ba content_type: application/x-zip-compressed creator: rzhang date_created: 2020-09-14T01:02:59Z date_updated: 2020-09-14T12:18:43Z file_id: '8388' file_name: Thesis_Ran.zip file_size: 1245800191 relation: source_file - access_level: open_access checksum: 817e20c33be9247f906925517c56a40d content_type: application/pdf creator: rzhang date_created: 2020-09-15T12:51:53Z date_updated: 2020-09-15T12:51:53Z file_id: '8396' file_name: PhD_thesis_Ran Zhang_20200915.pdf file_size: 161385316 relation: main_file success: 1 file_date_updated: 2020-09-15T12:51:53Z has_accepted_license: '1' language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: '148' project: - _id: 2508E324-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '642841' name: Distributed 3D Object Design - _id: 24F9549A-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '715767' name: 'MATERIALIZABLE: Intelligent fabrication-oriented Computational Design and Modeling' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '486' relation: part_of_dissertation status: public - id: '1002' relation: part_of_dissertation status: public status: public supervisor: - first_name: Bernd full_name: Bickel, Bernd id: 49876194-F248-11E8-B48F-1D18A9856A87 last_name: Bickel orcid: 0000-0001-6511-9385 title: Structure-aware computational design and its application to 3D printable volume scattering, mechanism, and multistability type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2020' ... --- _id: '8366' abstract: - lang: eng text: "Fabrication of curved shells plays an important role in modern design, industry, and science. Among their remarkable properties are, for example, aesthetics of organic shapes, ability to evenly distribute loads, or efficient flow separation. They find applications across vast length scales ranging from sky-scraper architecture to microscopic devices. But, at\r\nthe same time, the design of curved shells and their manufacturing process pose a variety of challenges. In this thesis, they are addressed from several perspectives. In particular, this thesis presents approaches based on the transformation of initially flat sheets into the target curved surfaces. This involves problems of interactive design of shells with nontrivial mechanical constraints, inverse design of complex structural materials, and data-driven modeling of delicate and time-dependent physical properties. At the same time, two newly-developed self-morphing mechanisms targeting flat-to-curved transformation are presented.\r\nIn architecture, doubly curved surfaces can be realized as cold bent glass panelizations. Originally flat glass panels are bent into frames and remain stressed. This is a cost-efficient fabrication approach compared to hot bending, when glass panels are shaped plastically. However such constructions are prone to breaking during bending, and it is highly\r\nnontrivial to navigate the design space, keeping the panels fabricable and aesthetically pleasing at the same time. We introduce an interactive design system for cold bent glass façades, while previously even offline optimization for such scenarios has not been sufficiently developed. Our method is based on a deep learning approach providing quick\r\nand high precision estimation of glass panel shape and stress while handling the shape\r\nmultimodality.\r\nFabrication of smaller objects of scales below 1 m, can also greatly benefit from shaping originally flat sheets. In this respect, we designed new self-morphing shell mechanisms transforming from an initial flat state to a doubly curved state with high precision and detail. Our so-called CurveUps demonstrate the encodement of the geometric information\r\ninto the shell. Furthermore, we explored the frontiers of programmable materials and showed how temporal information can additionally be encoded into a flat shell. This allows prescribing deformation sequences for doubly curved surfaces and, thus, facilitates self-collision avoidance enabling complex shapes and functionalities otherwise impossible.\r\nBoth of these methods include inverse design tools keeping the user in the design loop." acknowledged_ssus: - _id: M-Shop - _id: ScienComp acknowledgement: "During the work on this thesis, I received substantial support from IST Austria’s scientific service units. A big thank you to Todor Asenov and other Miba Machine Shop team members for their help with fabrication of experimental prototypes. In addition, I would like to thank Scientific Computing team for the support with high performance computing.\r\nFinancial support was provided by the European Research Council (ERC) under grant agreement No 715767 - MATERIALIZABLE: Intelligent fabrication-oriented Computational Design and Modeling, which I gratefully acknowledge." alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Ruslan full_name: Guseinov, Ruslan id: 3AB45EE2-F248-11E8-B48F-1D18A9856A87 last_name: Guseinov orcid: 0000-0001-9819-5077 citation: ama: 'Guseinov R. Computational design of curved thin shells: From glass façades to programmable matter. 2020. doi:10.15479/AT:ISTA:8366' apa: 'Guseinov, R. (2020). Computational design of curved thin shells: From glass façades to programmable matter. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:8366' chicago: 'Guseinov, Ruslan. “Computational Design of Curved Thin Shells: From Glass Façades to Programmable Matter.” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:8366.' ieee: 'R. Guseinov, “Computational design of curved thin shells: From glass façades to programmable matter,” Institute of Science and Technology Austria, 2020.' ista: 'Guseinov R. 2020. Computational design of curved thin shells: From glass façades to programmable matter. Institute of Science and Technology Austria.' mla: 'Guseinov, Ruslan. Computational Design of Curved Thin Shells: From Glass Façades to Programmable Matter. Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:8366.' short: 'R. Guseinov, Computational Design of Curved Thin Shells: From Glass Façades to Programmable Matter, Institute of Science and Technology Austria, 2020.' date_created: 2020-09-10T16:19:55Z date_published: 2020-09-21T00:00:00Z date_updated: 2024-02-21T12:44:29Z day: '21' ddc: - '000' degree_awarded: PhD department: - _id: BeBi doi: 10.15479/AT:ISTA:8366 ec_funded: 1 file: - access_level: open_access checksum: f8da89553da36037296b0a80f14ebf50 content_type: application/pdf creator: rguseino date_created: 2020-09-10T16:11:49Z date_updated: 2020-09-10T16:11:49Z file_id: '8367' file_name: thesis_rguseinov.pdf file_size: 70950442 relation: main_file success: 1 - access_level: closed checksum: e8fd944c960c20e0e27e6548af69121d content_type: application/x-zip-compressed creator: rguseino date_created: 2020-09-11T09:39:48Z date_updated: 2020-09-16T15:11:01Z file_id: '8374' file_name: thesis_source.zip file_size: 76207597 relation: source_file file_date_updated: 2020-09-16T15:11:01Z has_accepted_license: '1' keyword: - computer-aided design - shape modeling - self-morphing - mechanical engineering language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: '118' project: - _id: 24F9549A-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '715767' name: 'MATERIALIZABLE: Intelligent fabrication-oriented Computational Design and Modeling' publication_identifier: isbn: - 978-3-99078-010-7 issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '7151' relation: research_data status: deleted - id: '7262' relation: part_of_dissertation status: public - id: '8562' relation: part_of_dissertation status: public - id: '1001' relation: part_of_dissertation status: public - id: '8375' relation: research_data status: public status: public supervisor: - first_name: Bernd full_name: Bickel, Bernd id: 49876194-F248-11E8-B48F-1D18A9856A87 last_name: Bickel orcid: 0000-0001-6511-9385 title: 'Computational design of curved thin shells: From glass façades to programmable matter' type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2020' ... --- _id: '8562' abstract: - lang: eng text: "Cold bent glass is a promising and cost-efficient method for realizing doubly curved glass facades. They are produced by attaching planar glass sheets to curved frames and require keeping the occurring stress within safe limits.\r\nHowever, it is very challenging to navigate the design space of cold bent glass panels due to the fragility of the material, which impedes the form-finding for practically feasible and aesthetically pleasing cold bent glass facades. We propose an interactive, data-driven approach for designing cold bent glass facades that can be seamlessly integrated into a typical architectural design pipeline. Our method allows non-expert users to interactively edit a parametric surface while providing real-time feedback on the deformed shape and maximum stress of cold bent glass panels. Designs are automatically refined to minimize several fairness criteria while maximal stresses are kept within glass limits. We achieve interactive frame rates by using a differentiable Mixture Density Network trained from more than a million simulations. Given a curved boundary, our regression model is capable of handling multistable\r\nconfigurations and accurately predicting the equilibrium shape of the panel and its corresponding maximal stress. We show predictions are highly accurate and validate our results with a physical realization of a cold bent glass surface." acknowledged_ssus: - _id: ScienComp acknowledgement: "We thank IST Austria’s Scientific Computing team for their support, Corinna Datsiou and Sophie Pennetier for their expert input on the practical applications of cold bent glass, and Zaha Hadid Architects and Waagner Biro for providing the architectural datasets. Photo of Fondation Louis Vuitton by Francisco Anzola / CC BY 2.0 / cropped.\r\nPhoto of Opus by Danica O. Kus. This project has received funding from the European Union’s\r\nHorizon 2020 research and innovation program under grant agreement No 675789 - Algebraic Representations in Computer-Aided Design for complEx Shapes (ARCADES), from the European Research Council (ERC) under grant agreement No 715767 - MATERIALIZABLE: Intelligent fabrication-oriented Computational Design and Modeling, and SFB-Transregio “Discretization in Geometry and Dynamics” through grant I 2978 of the Austrian Science Fund (FWF). F. Rist and K. Gavriil have been partially supported by KAUST baseline funding." article_number: '208' article_processing_charge: No article_type: original author: - first_name: Konstantinos full_name: Gavriil, Konstantinos last_name: Gavriil - first_name: Ruslan full_name: Guseinov, Ruslan id: 3AB45EE2-F248-11E8-B48F-1D18A9856A87 last_name: Guseinov orcid: 0000-0001-9819-5077 - first_name: Jesus full_name: Perez Rodriguez, Jesus id: 2DC83906-F248-11E8-B48F-1D18A9856A87 last_name: Perez Rodriguez - first_name: Davide full_name: Pellis, Davide last_name: Pellis - first_name: Paul M full_name: Henderson, Paul M id: 13C09E74-18D9-11E9-8878-32CFE5697425 last_name: Henderson orcid: 0000-0002-5198-7445 - first_name: Florian full_name: Rist, Florian last_name: Rist - first_name: Helmut full_name: Pottmann, Helmut last_name: Pottmann - first_name: Bernd full_name: Bickel, Bernd id: 49876194-F248-11E8-B48F-1D18A9856A87 last_name: Bickel orcid: 0000-0001-6511-9385 citation: ama: Gavriil K, Guseinov R, Perez Rodriguez J, et al. Computational design of cold bent glass façades. ACM Transactions on Graphics. 2020;39(6). doi:10.1145/3414685.3417843 apa: Gavriil, K., Guseinov, R., Perez Rodriguez, J., Pellis, D., Henderson, P. M., Rist, F., … Bickel, B. (2020). Computational design of cold bent glass façades. ACM Transactions on Graphics. Association for Computing Machinery. https://doi.org/10.1145/3414685.3417843 chicago: Gavriil, Konstantinos, Ruslan Guseinov, Jesus Perez Rodriguez, Davide Pellis, Paul M Henderson, Florian Rist, Helmut Pottmann, and Bernd Bickel. “Computational Design of Cold Bent Glass Façades.” ACM Transactions on Graphics. Association for Computing Machinery, 2020. https://doi.org/10.1145/3414685.3417843. ieee: K. Gavriil et al., “Computational design of cold bent glass façades,” ACM Transactions on Graphics, vol. 39, no. 6. Association for Computing Machinery, 2020. ista: Gavriil K, Guseinov R, Perez Rodriguez J, Pellis D, Henderson PM, Rist F, Pottmann H, Bickel B. 2020. Computational design of cold bent glass façades. ACM Transactions on Graphics. 39(6), 208. mla: Gavriil, Konstantinos, et al. “Computational Design of Cold Bent Glass Façades.” ACM Transactions on Graphics, vol. 39, no. 6, 208, Association for Computing Machinery, 2020, doi:10.1145/3414685.3417843. short: K. Gavriil, R. Guseinov, J. Perez Rodriguez, D. Pellis, P.M. Henderson, F. Rist, H. Pottmann, B. Bickel, ACM Transactions on Graphics 39 (2020). date_created: 2020-09-23T11:30:02Z date_published: 2020-11-26T00:00:00Z date_updated: 2024-02-21T12:43:21Z day: '26' ddc: - '000' department: - _id: BeBi doi: 10.1145/3414685.3417843 ec_funded: 1 external_id: arxiv: - '2009.03667' isi: - '000595589100048' file: - access_level: open_access checksum: c7f67717ad74e670b7daeae732abe151 content_type: application/pdf creator: bbickel date_created: 2023-05-23T20:54:43Z date_updated: 2023-05-23T20:54:43Z file_id: '13084' file_name: coldglass.pdf file_size: 28964641 relation: main_file success: 1 file_date_updated: 2023-05-23T20:54:43Z has_accepted_license: '1' intvolume: ' 39' isi: 1 issue: '6' language: - iso: eng month: '11' oa: 1 oa_version: Submitted Version project: - _id: 24F9549A-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '715767' name: 'MATERIALIZABLE: Intelligent fabrication-oriented Computational Design and Modeling' publication: ACM Transactions on Graphics publication_identifier: eissn: - 1557-7368 issn: - 0730-0301 publication_status: published publisher: Association for Computing Machinery quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/bend-dont-break/ record: - id: '8366' relation: dissertation_contains status: public - id: '8761' relation: research_data status: public scopus_import: '1' status: public title: Computational design of cold bent glass façades type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 39 year: '2020' ... --- _id: '8375' abstract: - lang: eng text: 'Supplementary movies showing the following sequences for spatio-temporarily programmed shells: input geometry and actuation time landscape; comparison of morphing processes from a camera recording and a simulation; final actuated shape.' article_processing_charge: No author: - first_name: Ruslan full_name: Guseinov, Ruslan id: 3AB45EE2-F248-11E8-B48F-1D18A9856A87 last_name: Guseinov orcid: 0000-0001-9819-5077 citation: ama: 'Guseinov R. Supplementary data for “Computational design of curved thin shells: from glass façades to programmable matter.” 2020. doi:10.15479/AT:ISTA:8375' apa: 'Guseinov, R. (2020). Supplementary data for “Computational design of curved thin shells: from glass façades to programmable matter.” Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:8375' chicago: 'Guseinov, Ruslan. “Supplementary Data for ‘Computational Design of Curved Thin Shells: From Glass Façades to Programmable Matter.’” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:8375.' ieee: 'R. Guseinov, “Supplementary data for ‘Computational design of curved thin shells: from glass façades to programmable matter.’” Institute of Science and Technology Austria, 2020.' ista: 'Guseinov R. 2020. Supplementary data for ‘Computational design of curved thin shells: from glass façades to programmable matter’, Institute of Science and Technology Austria, 10.15479/AT:ISTA:8375.' mla: 'Guseinov, Ruslan. Supplementary Data for “Computational Design of Curved Thin Shells: From Glass Façades to Programmable Matter.” Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:8375.' short: R. Guseinov, (2020). contributor: - contributor_type: researcher first_name: Ruslan id: 3AB45EE2-F248-11E8-B48F-1D18A9856A87 last_name: Guseinov orcid: 0000-0001-9819-5077 - contributor_type: researcher first_name: Connor last_name: McMahan - contributor_type: researcher first_name: Jesus id: 2DC83906-F248-11E8-B48F-1D18A9856A87 last_name: Perez Rodriguez - contributor_type: researcher first_name: Chiara last_name: Daraio - contributor_type: researcher first_name: Bernd id: 49876194-F248-11E8-B48F-1D18A9856A87 last_name: Bickel orcid: 0000-0001-6511-9385 date_created: 2020-09-11T09:52:54Z date_published: 2020-09-21T00:00:00Z date_updated: 2024-02-21T12:44:29Z day: '21' ddc: - '000' department: - _id: BeBi doi: 10.15479/AT:ISTA:8375 ec_funded: 1 file: - access_level: open_access checksum: 4029ffd65fb82ef2366b2fc2a4908e16 content_type: video/mp4 creator: rguseino date_created: 2020-09-11T09:45:21Z date_updated: 2020-09-11T09:45:21Z file_id: '8376' file_name: supplementary_movie_1.mp4 file_size: 29214988 relation: main_file success: 1 - access_level: open_access checksum: 8ed03b04d80f1a4e622cb22e6100afd8 content_type: video/mp4 creator: rguseino date_created: 2020-09-11T09:45:25Z date_updated: 2020-09-11T09:45:25Z file_id: '8377' file_name: supplementary_movie_2.mp4 file_size: 28449475 relation: main_file success: 1 - access_level: open_access checksum: ad6864afb5e694e5c52a88fba4e02eea content_type: video/mp4 creator: rguseino date_created: 2020-09-11T09:45:28Z date_updated: 2020-09-11T09:45:28Z file_id: '8378' file_name: supplementary_movie_3.mp4 file_size: 26315853 relation: main_file success: 1 - access_level: open_access checksum: b079cef7871fe1afb69af0e2b099f3b1 content_type: video/mp4 creator: rguseino date_created: 2020-09-11T09:45:33Z date_updated: 2020-09-11T09:45:33Z file_id: '8379' file_name: supplementary_movie_4.mp4 file_size: 25198755 relation: main_file success: 1 - access_level: open_access checksum: 9d1d48a8ed5c109a999c51b044ee523d content_type: video/mp4 creator: rguseino date_created: 2020-09-11T09:45:36Z date_updated: 2020-09-11T09:45:36Z file_id: '8380' file_name: supplementary_movie_5.mp4 file_size: 29011354 relation: main_file success: 1 - access_level: open_access checksum: d414d0059e982d752d218756b3c3ce05 content_type: text/plain creator: rguseino date_created: 2020-09-11T09:52:36Z date_updated: 2020-09-11T09:52:36Z file_id: '8381' file_name: readme.txt file_size: 586 relation: main_file success: 1 file_date_updated: 2020-09-11T09:52:36Z has_accepted_license: '1' month: '09' oa: 1 oa_version: Published Version project: - _id: 24F9549A-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '715767' name: 'MATERIALIZABLE: Intelligent fabrication-oriented Computational Design and Modeling' publisher: Institute of Science and Technology Austria related_material: record: - id: '8366' relation: used_in_publication status: public status: public title: 'Supplementary data for "Computational design of curved thin shells: from glass façades to programmable matter"' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: research_data user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ... --- _id: '8761' acknowledged_ssus: - _id: ScienComp article_processing_charge: No author: - first_name: Ruslan full_name: Guseinov, Ruslan id: 3AB45EE2-F248-11E8-B48F-1D18A9856A87 last_name: Guseinov orcid: 0000-0001-9819-5077 citation: ama: Guseinov R. Supplementary data for “Computational design of cold bent glass façades.” 2020. doi:10.15479/AT:ISTA:8761 apa: Guseinov, R. (2020). Supplementary data for “Computational design of cold bent glass façades.” Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:8761 chicago: Guseinov, Ruslan. “Supplementary Data for ‘Computational Design of Cold Bent Glass Façades.’” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:8761. ieee: R. Guseinov, “Supplementary data for ‘Computational design of cold bent glass façades.’” Institute of Science and Technology Austria, 2020. ista: Guseinov R. 2020. Supplementary data for ‘Computational design of cold bent glass façades’, Institute of Science and Technology Austria, 10.15479/AT:ISTA:8761. mla: Guseinov, Ruslan. Supplementary Data for “Computational Design of Cold Bent Glass Façades.” Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:8761. short: R. Guseinov, (2020). contributor: - contributor_type: researcher first_name: Konstantinos last_name: Gavriil - contributor_type: researcher first_name: Ruslan id: 3AB45EE2-F248-11E8-B48F-1D18A9856A87 last_name: Guseinov orcid: 0000-0001-9819-5077 - contributor_type: researcher first_name: Jesus id: 2DC83906-F248-11E8-B48F-1D18A9856A87 last_name: Perez Rodriguez - contributor_type: researcher first_name: Davide last_name: Pellis - contributor_type: researcher first_name: Paul M id: 13C09E74-18D9-11E9-8878-32CFE5697425 last_name: Henderson orcid: 0000-0002-5198-7445 - contributor_type: researcher first_name: Florian last_name: Rist - contributor_type: researcher first_name: Helmut last_name: Pottmann - contributor_type: researcher first_name: Bernd id: 49876194-F248-11E8-B48F-1D18A9856A87 last_name: Bickel orcid: 0000-0001-6511-9385 date_created: 2020-11-16T10:47:18Z date_published: 2020-11-23T00:00:00Z date_updated: 2024-02-21T12:43:22Z day: '23' ddc: - '000' department: - _id: BeBi doi: 10.15479/AT:ISTA:8761 ec_funded: 1 file: - access_level: open_access checksum: f5ae57b97017b9f61081032703361233 content_type: application/x-gzip creator: rguseino date_created: 2020-11-16T10:31:29Z date_updated: 2020-11-16T10:31:29Z file_id: '8762' file_name: mdn_model.tar.gz file_size: 15378270 relation: main_file success: 1 - access_level: open_access checksum: b0d25e04060ee78c585ee2f23542c744 content_type: application/x-gzip creator: rguseino date_created: 2020-11-16T10:43:23Z date_updated: 2020-11-16T10:43:23Z file_id: '8763' file_name: optimal_panels_data.tar.gz file_size: 615387734 relation: main_file success: 1 - access_level: open_access checksum: 69c1dde3434ada86d125e0c2588caf1e content_type: text/plain creator: rguseino date_created: 2020-11-18T10:04:59Z date_updated: 2020-11-18T10:04:59Z file_id: '8770' file_name: readme.txt file_size: 1228 relation: main_file success: 1 file_date_updated: 2020-11-18T10:04:59Z has_accepted_license: '1' month: '11' oa: 1 oa_version: Published Version project: - _id: 24F9549A-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '715767' name: 'MATERIALIZABLE: Intelligent fabrication-oriented Computational Design and Modeling' publisher: Institute of Science and Technology Austria related_material: link: - relation: software url: https://github.com/russelmann/cold-glass-acm record: - id: '8562' relation: used_in_publication status: public status: public title: Supplementary data for "Computational design of cold bent glass façades" tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: research_data user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ... --- _id: '7262' abstract: - lang: eng text: Advances in shape-morphing materials, such as hydrogels, shape-memory polymers and light-responsive polymers have enabled prescribing self-directed deformations of initially flat geometries. However, most proposed solutions evolve towards a target geometry without considering time-dependent actuation paths. To achieve more complex geometries and avoid self-collisions, it is critical to encode a spatial and temporal shape evolution within the initially flat shell. Recent realizations of time-dependent morphing are limited to the actuation of few, discrete hinges and cannot form doubly curved surfaces. Here, we demonstrate a method for encoding temporal shape evolution in architected shells that assume complex shapes and doubly curved geometries. The shells are non-periodic tessellations of pre-stressed contractile unit cells that soften in water at rates prescribed locally by mesostructure geometry. The ensuing midplane contraction is coupled to the formation of encoded curvatures. We propose an inverse design tool based on a data-driven model for unit cells’ temporal responses. article_number: '237' article_processing_charge: No article_type: original author: - first_name: Ruslan full_name: Guseinov, Ruslan id: 3AB45EE2-F248-11E8-B48F-1D18A9856A87 last_name: Guseinov orcid: 0000-0001-9819-5077 - first_name: Connor full_name: McMahan, Connor last_name: McMahan - first_name: Jesus full_name: Perez Rodriguez, Jesus id: 2DC83906-F248-11E8-B48F-1D18A9856A87 last_name: Perez Rodriguez - first_name: Chiara full_name: Daraio, Chiara last_name: Daraio - first_name: Bernd full_name: Bickel, Bernd id: 49876194-F248-11E8-B48F-1D18A9856A87 last_name: Bickel orcid: 0000-0001-6511-9385 citation: ama: Guseinov R, McMahan C, Perez Rodriguez J, Daraio C, Bickel B. Programming temporal morphing of self-actuated shells. Nature Communications. 2020;11. doi:10.1038/s41467-019-14015-2 apa: Guseinov, R., McMahan, C., Perez Rodriguez, J., Daraio, C., & Bickel, B. (2020). Programming temporal morphing of self-actuated shells. Nature Communications. Springer Nature. https://doi.org/10.1038/s41467-019-14015-2 chicago: Guseinov, Ruslan, Connor McMahan, Jesus Perez Rodriguez, Chiara Daraio, and Bernd Bickel. “Programming Temporal Morphing of Self-Actuated Shells.” Nature Communications. Springer Nature, 2020. https://doi.org/10.1038/s41467-019-14015-2. ieee: R. Guseinov, C. McMahan, J. Perez Rodriguez, C. Daraio, and B. Bickel, “Programming temporal morphing of self-actuated shells,” Nature Communications, vol. 11. Springer Nature, 2020. ista: Guseinov R, McMahan C, Perez Rodriguez J, Daraio C, Bickel B. 2020. Programming temporal morphing of self-actuated shells. Nature Communications. 11, 237. mla: Guseinov, Ruslan, et al. “Programming Temporal Morphing of Self-Actuated Shells.” Nature Communications, vol. 11, 237, Springer Nature, 2020, doi:10.1038/s41467-019-14015-2. short: R. Guseinov, C. McMahan, J. Perez Rodriguez, C. Daraio, B. Bickel, Nature Communications 11 (2020). date_created: 2020-01-13T16:54:26Z date_published: 2020-01-13T00:00:00Z date_updated: 2024-02-21T12:45:02Z day: '13' ddc: - '000' department: - _id: BeBi doi: 10.1038/s41467-019-14015-2 ec_funded: 1 external_id: isi: - '000511916800015' file: - access_level: open_access checksum: 7db23fef2f4cda712f17f1004116ddff content_type: application/pdf creator: rguseino date_created: 2020-01-15T14:35:34Z date_updated: 2020-07-14T12:47:55Z file_id: '7336' file_name: 2020_NatureComm_Guseinov.pdf file_size: 1315270 relation: main_file file_date_updated: 2020-07-14T12:47:55Z has_accepted_license: '1' intvolume: ' 11' isi: 1 keyword: - Design - Synthesis and processing - Mechanical engineering - Polymers language: - iso: eng month: '01' oa: 1 oa_version: Published Version project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships - _id: 24F9549A-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '715767' name: 'MATERIALIZABLE: Intelligent fabrication-oriented Computational Design and Modeling' publication: Nature Communications publication_identifier: issn: - 2041-1723 publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/geometry-meets-time/ record: - id: '8366' relation: dissertation_contains status: public - id: '7154' relation: research_data status: public scopus_import: '1' status: public title: Programming temporal morphing of self-actuated shells tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 11 year: '2020' ...