--- _id: '9817' abstract: - lang: eng text: Elastic bending of initially flat slender elements allows the realization and economic fabrication of intriguing curved shapes. In this work, we derive an intuitive but rigorous geometric characterization of the design space of plane elastic rods with variable stiffness. It enables designers to determine which shapes are physically viable with active bending by visual inspection alone. Building on these insights, we propose a method for efficiently designing the geometry of a flat elastic rod that realizes a target equilibrium curve, which only requires solving a linear program. We implement this method in an interactive computational design tool that gives feedback about the feasibility of a design, and computes the geometry of the structural elements necessary to realize it within an instant. The tool also offers an iterative optimization routine that improves the fabricability of a model while modifying it as little as possible. In addition, we use our geometric characterization to derive an algorithm for analyzing and recovering the stability of elastic curves that would otherwise snap out of their unstable equilibrium shapes by buckling. We show the efficacy of our approach by designing and manufacturing several physical models that are assembled from flat elements. acknowledgement: "We thank the anonymous reviewers for their generous feedback, and Michal Piovarči for his help in producing the supplemental video. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 715767).\r\n" article_number: '126' article_processing_charge: No article_type: original author: - first_name: Christian full_name: Hafner, Christian id: 400429CC-F248-11E8-B48F-1D18A9856A87 last_name: Hafner - first_name: Bernd full_name: Bickel, Bernd id: 49876194-F248-11E8-B48F-1D18A9856A87 last_name: Bickel orcid: 0000-0001-6511-9385 citation: ama: Hafner C, Bickel B. The design space of plane elastic curves. ACM Transactions on Graphics. 2021;40(4). doi:10.1145/3450626.3459800 apa: 'Hafner, C., & Bickel, B. (2021). The design space of plane elastic curves. ACM Transactions on Graphics. Virtual: Association for Computing Machinery. https://doi.org/10.1145/3450626.3459800' chicago: Hafner, Christian, and Bernd Bickel. “The Design Space of Plane Elastic Curves.” ACM Transactions on Graphics. Association for Computing Machinery, 2021. https://doi.org/10.1145/3450626.3459800. ieee: C. Hafner and B. Bickel, “The design space of plane elastic curves,” ACM Transactions on Graphics, vol. 40, no. 4. Association for Computing Machinery, 2021. ista: Hafner C, Bickel B. 2021. The design space of plane elastic curves. ACM Transactions on Graphics. 40(4), 126. mla: Hafner, Christian, and Bernd Bickel. “The Design Space of Plane Elastic Curves.” ACM Transactions on Graphics, vol. 40, no. 4, 126, Association for Computing Machinery, 2021, doi:10.1145/3450626.3459800. short: C. Hafner, B. Bickel, ACM Transactions on Graphics 40 (2021). conference: end_date: 2021-08-13 location: Virtual name: 'SIGGRAF: Special Interest Group on Computer Graphics and Interactive Techniques' start_date: 2021-08-09 date_created: 2021-08-08T22:01:26Z date_published: 2021-07-19T00:00:00Z date_updated: 2024-03-27T23:30:45Z day: '19' ddc: - '516' department: - _id: BeBi doi: 10.1145/3450626.3459800 ec_funded: 1 external_id: isi: - '000674930900091' file: - access_level: open_access checksum: 7e5d08ce46b0451b3102eacd3d00f85f content_type: application/pdf creator: chafner date_created: 2021-10-18T10:42:15Z date_updated: 2021-10-18T10:42:15Z file_id: '10150' file_name: elastic-curves-paper.pdf file_size: 17064290 relation: main_file success: 1 - access_level: open_access checksum: 0088643478be7c01a703b5b10767348f content_type: application/pdf creator: chafner date_created: 2021-10-18T10:42:22Z date_updated: 2021-10-18T10:42:22Z file_id: '10151' file_name: elastic-curves-supp.pdf file_size: 547156 relation: supplementary_material file_date_updated: 2021-10-18T10:42:22Z has_accepted_license: '1' intvolume: ' 40' isi: 1 issue: '4' keyword: - Computing methodologies - shape modeling - modeling and simulation - theory of computation - computational geometry - mathematics of computing - mathematical optimization language: - iso: eng license: https://creativecommons.org/licenses/by/4.0/ month: '07' oa: 1 oa_version: Published Version project: - _id: 24F9549A-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '715767' name: 'MATERIALIZABLE: Intelligent fabrication-oriented Computational Design and Modeling' publication: ACM Transactions on Graphics publication_identifier: eissn: - 1557-7368 issn: - 0730-0301 publication_status: published publisher: Association for Computing Machinery quality_controlled: '1' related_material: link: - description: News on IST Website relation: press_release url: https://ist.ac.at/en/news/designing-with-elastic-structures/ record: - id: '12897' relation: dissertation_contains status: public scopus_import: '1' status: public title: The design space of plane elastic curves tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 40 year: '2021' ... --- _id: '9208' abstract: - lang: eng text: 'Bending-active structures are able to efficiently produce complex curved shapes from flat panels. The desired deformation of the panels derives from the proper selection of their elastic properties. Optimized panels, called FlexMaps, are designed such that, once they are bent and assembled, the resulting static equilibrium configuration matches a desired input 3D shape. The FlexMaps elastic properties are controlled by locally varying spiraling geometric mesostructures, which are optimized in size and shape to match specific bending requests, namely the global curvature of the target shape. The design pipeline starts from a quad mesh representing the input 3D shape, which defines the edge size and the total amount of spirals: every quad will embed one spiral. Then, an optimization algorithm tunes the geometry of the spirals by using a simplified pre-computed rod model. This rod model is derived from a non-linear regression algorithm which approximates the non-linear behavior of solid FEM spiral models subject to hundreds of load combinations. This innovative pipeline has been applied to the project of a lightweight plywood pavilion named FlexMaps Pavilion, which is a single-layer piecewise twisted arch that fits a bounding box of 3.90x3.96x3.25 meters. This case study serves to test the applicability of this methodology at the architectural scale. The structure is validated via FE analyses and the fabrication of the full scale prototype.' acknowledgement: 'The FlexMaps Pavilion has been awarded First Prize at the “Competition and Exhibition of innovative lightweight structures” organized by the IASS Working Group 21 within the FORM and FORCE, joint international conference of IASS Symposium 2019 and Structural Membranes 2019 (Barcelona, 7-11 October 2019) with the following motivation: “for its structural innovation of bending-twisting system, connection constructability and exquisite craftmanship”[20]. The authors would like to acknowledge the Visual Computing Lab Staff of ISTI - CNR, in particular Thomas Alderighi, Marco Callieri, Paolo Pingi; Antonio Rizzo of IPCF - CNR; and the Administrative Staff of ISTI - CNR. This research was partially funded by the EU H2020 Programme EVOCATION: Advanced Visual and Geometric Computing for 3D Capture, Display, and Fabrication (grant no. 813170).' article_number: '1505' article_processing_charge: No article_type: original author: - first_name: Francesco full_name: Laccone, Francesco last_name: Laccone - first_name: Luigi full_name: Malomo, Luigi last_name: Malomo - first_name: Jesus full_name: Perez Rodriguez, Jesus id: 2DC83906-F248-11E8-B48F-1D18A9856A87 last_name: Perez Rodriguez - first_name: Nico full_name: Pietroni, Nico last_name: Pietroni - first_name: Federico full_name: Ponchio, Federico last_name: Ponchio - first_name: Bernd full_name: Bickel, Bernd id: 49876194-F248-11E8-B48F-1D18A9856A87 last_name: Bickel orcid: 0000-0001-6511-9385 - first_name: Paolo full_name: Cignoni, Paolo last_name: Cignoni citation: ama: 'Laccone F, Malomo L, Perez Rodriguez J, et al. A bending-active twisted-arch plywood structure: Computational design and fabrication of the FlexMaps Pavilion. SN Applied Sciences. 2020;2(9). doi:10.1007/s42452-020-03305-w' apa: 'Laccone, F., Malomo, L., Perez Rodriguez, J., Pietroni, N., Ponchio, F., Bickel, B., & Cignoni, P. (2020). A bending-active twisted-arch plywood structure: Computational design and fabrication of the FlexMaps Pavilion. SN Applied Sciences. Springer Nature. https://doi.org/10.1007/s42452-020-03305-w' chicago: 'Laccone, Francesco, Luigi Malomo, Jesus Perez Rodriguez, Nico Pietroni, Federico Ponchio, Bernd Bickel, and Paolo Cignoni. “A Bending-Active Twisted-Arch Plywood Structure: Computational Design and Fabrication of the FlexMaps Pavilion.” SN Applied Sciences. Springer Nature, 2020. https://doi.org/10.1007/s42452-020-03305-w.' ieee: 'F. Laccone et al., “A bending-active twisted-arch plywood structure: Computational design and fabrication of the FlexMaps Pavilion,” SN Applied Sciences, vol. 2, no. 9. Springer Nature, 2020.' ista: 'Laccone F, Malomo L, Perez Rodriguez J, Pietroni N, Ponchio F, Bickel B, Cignoni P. 2020. A bending-active twisted-arch plywood structure: Computational design and fabrication of the FlexMaps Pavilion. SN Applied Sciences. 2(9), 1505.' mla: 'Laccone, Francesco, et al. “A Bending-Active Twisted-Arch Plywood Structure: Computational Design and Fabrication of the FlexMaps Pavilion.” SN Applied Sciences, vol. 2, no. 9, 1505, Springer Nature, 2020, doi:10.1007/s42452-020-03305-w.' short: F. Laccone, L. Malomo, J. Perez Rodriguez, N. Pietroni, F. Ponchio, B. Bickel, P. Cignoni, SN Applied Sciences 2 (2020). date_created: 2021-02-28T23:01:25Z date_published: 2020-09-01T00:00:00Z date_updated: 2021-03-03T09:43:14Z day: '01' department: - _id: BeBi doi: 10.1007/s42452-020-03305-w intvolume: ' 2' issue: '9' language: - iso: eng month: '09' oa_version: None publication: SN Applied Sciences publication_identifier: eissn: - '25233971' publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: 'A bending-active twisted-arch plywood structure: Computational design and fabrication of the FlexMaps Pavilion' type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 2 year: '2020' ... --- _id: '7220' abstract: - lang: eng text: BACKGROUND:The introduction of image-guided methods to bypass surgery has resulted in optimized preoperative identification of the recipients and excellent patency rates. However, the recently presented methods have also been resource-consuming. In the present study, we have reported a cost-efficient planning workflow for extracranial-intracranial (EC-IC) revascularization combined with transdural indocyanine green videoangiography (tICG-VA). METHODS:We performed a retrospective review at a single tertiary referral center from 2011 to 2018. A novel software-derived workflow was applied for 25 of 92 bypass procedures during the study period. The precision and accuracy were assessed using tICG-VA identification of the cortical recipients and a comparison of the virtual and actual data. The data from a control group of 25 traditionally planned procedures were also matched. RESULTS:The intraoperative transfer time of the calculated coordinates averaged 0.8 minute (range, 0.4-1.9 minutes). The definitive recipients matched the targeted branches in 80%, and a neighboring branch was used in 16%. Our workflow led to a significant craniotomy size reduction in the study group compared with that in the control group (P = 0.005). tICG-VA was successfully applied in 19 cases. An average of 2 potential recipient arteries were identified transdurally, resulting in tailored durotomy and 3 craniotomy adjustments. Follow-up patency results were available for 49 bypass surgeries, comprising 54 grafts. The overall patency rate was 91% at a median follow-up period of 26 months. No significant difference was found in the patency rate between the study and control groups (P = 0.317). CONCLUSIONS:Our clinical results have validated the presented planning and surgical workflow and support the routine implementation of tICG-VA for recipient identification before durotomy. article_processing_charge: No article_type: original author: - first_name: Philippe full_name: Dodier, Philippe last_name: Dodier - first_name: Thomas full_name: Auzinger, Thomas id: 4718F954-F248-11E8-B48F-1D18A9856A87 last_name: Auzinger orcid: 0000-0002-1546-3265 - first_name: Gabriel full_name: Mistelbauer, Gabriel last_name: Mistelbauer - first_name: Wei Te full_name: Wang, Wei Te last_name: Wang - first_name: Heber full_name: Ferraz-Leite, Heber last_name: Ferraz-Leite - first_name: Andreas full_name: Gruber, Andreas last_name: Gruber - first_name: Wolfgang full_name: Marik, Wolfgang last_name: Marik - first_name: Fabian full_name: Winter, Fabian last_name: Winter - first_name: Gerrit full_name: Fischer, Gerrit last_name: Fischer - first_name: Josa M. full_name: Frischer, Josa M. last_name: Frischer - first_name: Gerhard full_name: Bavinzski, Gerhard last_name: Bavinzski citation: ama: Dodier P, Auzinger T, Mistelbauer G, et al. Novel software-derived workflow in extracranial–intracranial bypass surgery validated by transdural indocyanine green videoangiography. World Neurosurgery. 2020;134(2):e892-e902. doi:10.1016/j.wneu.2019.11.038 apa: Dodier, P., Auzinger, T., Mistelbauer, G., Wang, W. T., Ferraz-Leite, H., Gruber, A., … Bavinzski, G. (2020). Novel software-derived workflow in extracranial–intracranial bypass surgery validated by transdural indocyanine green videoangiography. World Neurosurgery. Elsevier. https://doi.org/10.1016/j.wneu.2019.11.038 chicago: Dodier, Philippe, Thomas Auzinger, Gabriel Mistelbauer, Wei Te Wang, Heber Ferraz-Leite, Andreas Gruber, Wolfgang Marik, et al. “Novel Software-Derived Workflow in Extracranial–Intracranial Bypass Surgery Validated by Transdural Indocyanine Green Videoangiography.” World Neurosurgery. Elsevier, 2020. https://doi.org/10.1016/j.wneu.2019.11.038. ieee: P. Dodier et al., “Novel software-derived workflow in extracranial–intracranial bypass surgery validated by transdural indocyanine green videoangiography,” World Neurosurgery, vol. 134, no. 2. Elsevier, pp. e892–e902, 2020. ista: Dodier P, Auzinger T, Mistelbauer G, Wang WT, Ferraz-Leite H, Gruber A, Marik W, Winter F, Fischer G, Frischer JM, Bavinzski G. 2020. Novel software-derived workflow in extracranial–intracranial bypass surgery validated by transdural indocyanine green videoangiography. World Neurosurgery. 134(2), e892–e902. mla: Dodier, Philippe, et al. “Novel Software-Derived Workflow in Extracranial–Intracranial Bypass Surgery Validated by Transdural Indocyanine Green Videoangiography.” World Neurosurgery, vol. 134, no. 2, Elsevier, 2020, pp. e892–902, doi:10.1016/j.wneu.2019.11.038. short: P. Dodier, T. Auzinger, G. Mistelbauer, W.T. Wang, H. Ferraz-Leite, A. Gruber, W. Marik, F. Winter, G. Fischer, J.M. Frischer, G. Bavinzski, World Neurosurgery 134 (2020) e892–e902. date_created: 2019-12-29T23:00:48Z date_published: 2020-02-01T00:00:00Z date_updated: 2023-08-17T14:14:23Z day: '01' department: - _id: BeBi doi: 10.1016/j.wneu.2019.11.038 external_id: isi: - '000512878200104' pmid: - '31733380' intvolume: ' 134' isi: 1 issue: '2' language: - iso: eng month: '02' oa_version: None page: e892-e902 pmid: 1 publication: World Neurosurgery publication_identifier: eissn: - 1878-8769 issn: - 1878-8750 publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: Novel software-derived workflow in extracranial–intracranial bypass surgery validated by transdural indocyanine green videoangiography type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 134 year: '2020' ... --- _id: '7218' abstract: - lang: eng text: The combined resection of skull-infiltrating tumours and immediate cranioplastic reconstruction predominantly relies on freehand-moulded solutions. Techniques that enable this procedure to be performed easily in routine clinical practice would be useful. A cadaveric study was developed in which a new software tool was used to perform single-stage reconstructions with prefabricated implants after the resection of skull-infiltrating pathologies. A novel 3D visualization and interaction framework was developed to create 10 virtual craniotomies in five cadaveric specimens. Polyether ether ketone (PEEK) implants were manufactured according to the bone defects. The image-guided craniotomy was reconstructed with PEEK and compared to polymethyl methacrylate (PMMA). Navigational accuracy and surgical precision were assessed. The PEEK workflow resulted in up to 10-fold shorter reconstruction times than the standard technique. Surgical precision was reflected by the mean 1.1 ± 0.29 mm distance between the virtual and real craniotomy, with submillimetre precision in 50%. Assessment of the global offset between virtual and actual craniotomy revealed an average shift of 4.5 ± 3.6 mm. The results validated the ‘elective single-stage cranioplasty’ technique as a state-of-the-art virtual planning method and surgical workflow. This patient-tailored workflow could significantly reduce surgical times compared to the traditional, intraoperative acrylic moulding method and may be an option for the reconstruction of bone defects in the craniofacial region. article_processing_charge: No article_type: original author: - first_name: Philippe full_name: Dodier, Philippe last_name: Dodier - first_name: Fabian full_name: Winter, Fabian last_name: Winter - first_name: Thomas full_name: Auzinger, Thomas id: 4718F954-F248-11E8-B48F-1D18A9856A87 last_name: Auzinger orcid: 0000-0002-1546-3265 - first_name: Gabriel full_name: Mistelbauer, Gabriel last_name: Mistelbauer - first_name: Josa M. full_name: Frischer, Josa M. last_name: Frischer - first_name: Wei Te full_name: Wang, Wei Te last_name: Wang - first_name: Ammar full_name: Mallouhi, Ammar last_name: Mallouhi - first_name: Wolfgang full_name: Marik, Wolfgang last_name: Marik - first_name: Stefan full_name: Wolfsberger, Stefan last_name: Wolfsberger - first_name: Lukas full_name: Reissig, Lukas last_name: Reissig - first_name: Firas full_name: Hammadi, Firas last_name: Hammadi - first_name: Christian full_name: Matula, Christian last_name: Matula - first_name: Arnulf full_name: Baumann, Arnulf last_name: Baumann - first_name: Gerhard full_name: Bavinzski, Gerhard last_name: Bavinzski citation: ama: 'Dodier P, Winter F, Auzinger T, et al. Single-stage bone resection and cranioplastic reconstruction: Comparison of a novel software-derived PEEK workflow with the standard reconstructive method. International Journal of Oral and Maxillofacial Surgery. 2020;49(8):P1007-1015. doi:10.1016/j.ijom.2019.11.011' apa: 'Dodier, P., Winter, F., Auzinger, T., Mistelbauer, G., Frischer, J. M., Wang, W. T., … Bavinzski, G. (2020). Single-stage bone resection and cranioplastic reconstruction: Comparison of a novel software-derived PEEK workflow with the standard reconstructive method. International Journal of Oral and Maxillofacial Surgery. Elsevier. https://doi.org/10.1016/j.ijom.2019.11.011' chicago: 'Dodier, Philippe, Fabian Winter, Thomas Auzinger, Gabriel Mistelbauer, Josa M. Frischer, Wei Te Wang, Ammar Mallouhi, et al. “Single-Stage Bone Resection and Cranioplastic Reconstruction: Comparison of a Novel Software-Derived PEEK Workflow with the Standard Reconstructive Method.” International Journal of Oral and Maxillofacial Surgery. Elsevier, 2020. https://doi.org/10.1016/j.ijom.2019.11.011.' ieee: 'P. Dodier et al., “Single-stage bone resection and cranioplastic reconstruction: Comparison of a novel software-derived PEEK workflow with the standard reconstructive method,” International Journal of Oral and Maxillofacial Surgery, vol. 49, no. 8. Elsevier, pp. P1007-1015, 2020.' ista: 'Dodier P, Winter F, Auzinger T, Mistelbauer G, Frischer JM, Wang WT, Mallouhi A, Marik W, Wolfsberger S, Reissig L, Hammadi F, Matula C, Baumann A, Bavinzski G. 2020. Single-stage bone resection and cranioplastic reconstruction: Comparison of a novel software-derived PEEK workflow with the standard reconstructive method. International Journal of Oral and Maxillofacial Surgery. 49(8), P1007-1015.' mla: 'Dodier, Philippe, et al. “Single-Stage Bone Resection and Cranioplastic Reconstruction: Comparison of a Novel Software-Derived PEEK Workflow with the Standard Reconstructive Method.” International Journal of Oral and Maxillofacial Surgery, vol. 49, no. 8, Elsevier, 2020, pp. P1007-1015, doi:10.1016/j.ijom.2019.11.011.' short: P. Dodier, F. Winter, T. Auzinger, G. Mistelbauer, J.M. Frischer, W.T. Wang, A. Mallouhi, W. Marik, S. Wolfsberger, L. Reissig, F. Hammadi, C. Matula, A. Baumann, G. Bavinzski, International Journal of Oral and Maxillofacial Surgery 49 (2020) P1007-1015. date_created: 2019-12-29T23:00:47Z date_published: 2020-08-01T00:00:00Z date_updated: 2023-08-17T14:15:22Z day: '01' department: - _id: BeBi doi: 10.1016/j.ijom.2019.11.011 external_id: isi: - '000556819800005' pmid: - '31866145' intvolume: ' 49' isi: 1 issue: '8' language: - iso: eng month: '08' oa_version: None page: P1007-1015 pmid: 1 publication: International Journal of Oral and Maxillofacial Surgery publication_identifier: eissn: - 1399-0020 issn: - 0901-5027 publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: 'Single-stage bone resection and cranioplastic reconstruction: Comparison of a novel software-derived PEEK workflow with the standard reconstructive method' type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 49 year: '2020' ... --- _id: '8386' abstract: - lang: eng text: "Form versus function is a long-standing debate in various design-related fields, such as architecture as well as graphic and industrial design. A good design that balances form and function often requires considerable human effort and collaboration among experts from different professional fields. Computational design tools provide a new paradigm for designing functional objects. In computational design, form and function are represented as mathematical\r\nquantities, with the help of numerical and combinatorial algorithms, they can assist even novice users in designing versatile models that exhibit their desired functionality. This thesis presents three disparate research studies on the computational design of functional objects: The appearance of 3d print—we optimize the volumetric material distribution for faithfully replicating colored surface texture in 3d printing; the dynamic motion of mechanical structures—\r\nour design system helps the novice user to retarget various mechanical templates with different functionality to complex 3d shapes; and a more abstract functionality, multistability—our algorithm automatically generates models that exhibit multiple stable target poses. For each of these cases, our computational design tools not only ensure the functionality of the results but also permit the user aesthetic freedom over the form. Moreover, fabrication constraints\r\nwere taken into account, which allow for the immediate creation of physical realization via 3D printing or laser cutting." acknowledged_ssus: - _id: SSU acknowledgement: The research in this thesis has received funding from the European Union’s Horizon 2020 research and innovation programme, under the Marie Skłodowska-Curie grant agreement No 642841 (DISTRO) and the European Research Council grant agreement No 715767 (MATERIALIZABLE). All the research projects in this thesis were also supported by Scientific Service Units (SSUs) at IST Austria. alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Ran full_name: Zhang, Ran id: 4DDBCEB0-F248-11E8-B48F-1D18A9856A87 last_name: Zhang orcid: 0000-0002-3808-281X citation: ama: Zhang R. Structure-aware computational design and its application to 3D printable volume scattering, mechanism, and multistability. 2020. doi:10.15479/AT:ISTA:8386 apa: Zhang, R. (2020). Structure-aware computational design and its application to 3D printable volume scattering, mechanism, and multistability. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:8386 chicago: Zhang, Ran. “Structure-Aware Computational Design and Its Application to 3D Printable Volume Scattering, Mechanism, and Multistability.” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:8386. ieee: R. Zhang, “Structure-aware computational design and its application to 3D printable volume scattering, mechanism, and multistability,” Institute of Science and Technology Austria, 2020. ista: Zhang R. 2020. Structure-aware computational design and its application to 3D printable volume scattering, mechanism, and multistability. Institute of Science and Technology Austria. mla: Zhang, Ran. Structure-Aware Computational Design and Its Application to 3D Printable Volume Scattering, Mechanism, and Multistability. Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:8386. short: R. Zhang, Structure-Aware Computational Design and Its Application to 3D Printable Volume Scattering, Mechanism, and Multistability, Institute of Science and Technology Austria, 2020. date_created: 2020-09-14T01:04:53Z date_published: 2020-09-14T00:00:00Z date_updated: 2023-09-22T09:49:31Z day: '14' ddc: - '003' degree_awarded: PhD department: - _id: BeBi doi: 10.15479/AT:ISTA:8386 ec_funded: 1 file: - access_level: closed checksum: edcf578b6e1c9b0dd81ff72d319b66ba content_type: application/x-zip-compressed creator: rzhang date_created: 2020-09-14T01:02:59Z date_updated: 2020-09-14T12:18:43Z file_id: '8388' file_name: Thesis_Ran.zip file_size: 1245800191 relation: source_file - access_level: open_access checksum: 817e20c33be9247f906925517c56a40d content_type: application/pdf creator: rzhang date_created: 2020-09-15T12:51:53Z date_updated: 2020-09-15T12:51:53Z file_id: '8396' file_name: PhD_thesis_Ran Zhang_20200915.pdf file_size: 161385316 relation: main_file success: 1 file_date_updated: 2020-09-15T12:51:53Z has_accepted_license: '1' language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: '148' project: - _id: 2508E324-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '642841' name: Distributed 3D Object Design - _id: 24F9549A-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '715767' name: 'MATERIALIZABLE: Intelligent fabrication-oriented Computational Design and Modeling' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '486' relation: part_of_dissertation status: public - id: '1002' relation: part_of_dissertation status: public status: public supervisor: - first_name: Bernd full_name: Bickel, Bernd id: 49876194-F248-11E8-B48F-1D18A9856A87 last_name: Bickel orcid: 0000-0001-6511-9385 title: Structure-aware computational design and its application to 3D printable volume scattering, mechanism, and multistability type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2020' ... --- _id: '8366' abstract: - lang: eng text: "Fabrication of curved shells plays an important role in modern design, industry, and science. Among their remarkable properties are, for example, aesthetics of organic shapes, ability to evenly distribute loads, or efficient flow separation. They find applications across vast length scales ranging from sky-scraper architecture to microscopic devices. But, at\r\nthe same time, the design of curved shells and their manufacturing process pose a variety of challenges. In this thesis, they are addressed from several perspectives. In particular, this thesis presents approaches based on the transformation of initially flat sheets into the target curved surfaces. This involves problems of interactive design of shells with nontrivial mechanical constraints, inverse design of complex structural materials, and data-driven modeling of delicate and time-dependent physical properties. At the same time, two newly-developed self-morphing mechanisms targeting flat-to-curved transformation are presented.\r\nIn architecture, doubly curved surfaces can be realized as cold bent glass panelizations. Originally flat glass panels are bent into frames and remain stressed. This is a cost-efficient fabrication approach compared to hot bending, when glass panels are shaped plastically. However such constructions are prone to breaking during bending, and it is highly\r\nnontrivial to navigate the design space, keeping the panels fabricable and aesthetically pleasing at the same time. We introduce an interactive design system for cold bent glass façades, while previously even offline optimization for such scenarios has not been sufficiently developed. Our method is based on a deep learning approach providing quick\r\nand high precision estimation of glass panel shape and stress while handling the shape\r\nmultimodality.\r\nFabrication of smaller objects of scales below 1 m, can also greatly benefit from shaping originally flat sheets. In this respect, we designed new self-morphing shell mechanisms transforming from an initial flat state to a doubly curved state with high precision and detail. Our so-called CurveUps demonstrate the encodement of the geometric information\r\ninto the shell. Furthermore, we explored the frontiers of programmable materials and showed how temporal information can additionally be encoded into a flat shell. This allows prescribing deformation sequences for doubly curved surfaces and, thus, facilitates self-collision avoidance enabling complex shapes and functionalities otherwise impossible.\r\nBoth of these methods include inverse design tools keeping the user in the design loop." acknowledged_ssus: - _id: M-Shop - _id: ScienComp acknowledgement: "During the work on this thesis, I received substantial support from IST Austria’s scientific service units. A big thank you to Todor Asenov and other Miba Machine Shop team members for their help with fabrication of experimental prototypes. In addition, I would like to thank Scientific Computing team for the support with high performance computing.\r\nFinancial support was provided by the European Research Council (ERC) under grant agreement No 715767 - MATERIALIZABLE: Intelligent fabrication-oriented Computational Design and Modeling, which I gratefully acknowledge." alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Ruslan full_name: Guseinov, Ruslan id: 3AB45EE2-F248-11E8-B48F-1D18A9856A87 last_name: Guseinov orcid: 0000-0001-9819-5077 citation: ama: 'Guseinov R. Computational design of curved thin shells: From glass façades to programmable matter. 2020. doi:10.15479/AT:ISTA:8366' apa: 'Guseinov, R. (2020). Computational design of curved thin shells: From glass façades to programmable matter. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:8366' chicago: 'Guseinov, Ruslan. “Computational Design of Curved Thin Shells: From Glass Façades to Programmable Matter.” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:8366.' ieee: 'R. Guseinov, “Computational design of curved thin shells: From glass façades to programmable matter,” Institute of Science and Technology Austria, 2020.' ista: 'Guseinov R. 2020. Computational design of curved thin shells: From glass façades to programmable matter. Institute of Science and Technology Austria.' mla: 'Guseinov, Ruslan. Computational Design of Curved Thin Shells: From Glass Façades to Programmable Matter. Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:8366.' short: 'R. Guseinov, Computational Design of Curved Thin Shells: From Glass Façades to Programmable Matter, Institute of Science and Technology Austria, 2020.' date_created: 2020-09-10T16:19:55Z date_published: 2020-09-21T00:00:00Z date_updated: 2024-02-21T12:44:29Z day: '21' ddc: - '000' degree_awarded: PhD department: - _id: BeBi doi: 10.15479/AT:ISTA:8366 ec_funded: 1 file: - access_level: open_access checksum: f8da89553da36037296b0a80f14ebf50 content_type: application/pdf creator: rguseino date_created: 2020-09-10T16:11:49Z date_updated: 2020-09-10T16:11:49Z file_id: '8367' file_name: thesis_rguseinov.pdf file_size: 70950442 relation: main_file success: 1 - access_level: closed checksum: e8fd944c960c20e0e27e6548af69121d content_type: application/x-zip-compressed creator: rguseino date_created: 2020-09-11T09:39:48Z date_updated: 2020-09-16T15:11:01Z file_id: '8374' file_name: thesis_source.zip file_size: 76207597 relation: source_file file_date_updated: 2020-09-16T15:11:01Z has_accepted_license: '1' keyword: - computer-aided design - shape modeling - self-morphing - mechanical engineering language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: '118' project: - _id: 24F9549A-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '715767' name: 'MATERIALIZABLE: Intelligent fabrication-oriented Computational Design and Modeling' publication_identifier: isbn: - 978-3-99078-010-7 issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '7151' relation: research_data status: deleted - id: '7262' relation: part_of_dissertation status: public - id: '8562' relation: part_of_dissertation status: public - id: '1001' relation: part_of_dissertation status: public - id: '8375' relation: research_data status: public status: public supervisor: - first_name: Bernd full_name: Bickel, Bernd id: 49876194-F248-11E8-B48F-1D18A9856A87 last_name: Bickel orcid: 0000-0001-6511-9385 title: 'Computational design of curved thin shells: From glass façades to programmable matter' type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2020' ... --- _id: '8562' abstract: - lang: eng text: "Cold bent glass is a promising and cost-efficient method for realizing doubly curved glass facades. They are produced by attaching planar glass sheets to curved frames and require keeping the occurring stress within safe limits.\r\nHowever, it is very challenging to navigate the design space of cold bent glass panels due to the fragility of the material, which impedes the form-finding for practically feasible and aesthetically pleasing cold bent glass facades. We propose an interactive, data-driven approach for designing cold bent glass facades that can be seamlessly integrated into a typical architectural design pipeline. Our method allows non-expert users to interactively edit a parametric surface while providing real-time feedback on the deformed shape and maximum stress of cold bent glass panels. Designs are automatically refined to minimize several fairness criteria while maximal stresses are kept within glass limits. We achieve interactive frame rates by using a differentiable Mixture Density Network trained from more than a million simulations. Given a curved boundary, our regression model is capable of handling multistable\r\nconfigurations and accurately predicting the equilibrium shape of the panel and its corresponding maximal stress. We show predictions are highly accurate and validate our results with a physical realization of a cold bent glass surface." acknowledged_ssus: - _id: ScienComp acknowledgement: "We thank IST Austria’s Scientific Computing team for their support, Corinna Datsiou and Sophie Pennetier for their expert input on the practical applications of cold bent glass, and Zaha Hadid Architects and Waagner Biro for providing the architectural datasets. Photo of Fondation Louis Vuitton by Francisco Anzola / CC BY 2.0 / cropped.\r\nPhoto of Opus by Danica O. Kus. This project has received funding from the European Union’s\r\nHorizon 2020 research and innovation program under grant agreement No 675789 - Algebraic Representations in Computer-Aided Design for complEx Shapes (ARCADES), from the European Research Council (ERC) under grant agreement No 715767 - MATERIALIZABLE: Intelligent fabrication-oriented Computational Design and Modeling, and SFB-Transregio “Discretization in Geometry and Dynamics” through grant I 2978 of the Austrian Science Fund (FWF). F. Rist and K. Gavriil have been partially supported by KAUST baseline funding." article_number: '208' article_processing_charge: No article_type: original author: - first_name: Konstantinos full_name: Gavriil, Konstantinos last_name: Gavriil - first_name: Ruslan full_name: Guseinov, Ruslan id: 3AB45EE2-F248-11E8-B48F-1D18A9856A87 last_name: Guseinov orcid: 0000-0001-9819-5077 - first_name: Jesus full_name: Perez Rodriguez, Jesus id: 2DC83906-F248-11E8-B48F-1D18A9856A87 last_name: Perez Rodriguez - first_name: Davide full_name: Pellis, Davide last_name: Pellis - first_name: Paul M full_name: Henderson, Paul M id: 13C09E74-18D9-11E9-8878-32CFE5697425 last_name: Henderson orcid: 0000-0002-5198-7445 - first_name: Florian full_name: Rist, Florian last_name: Rist - first_name: Helmut full_name: Pottmann, Helmut last_name: Pottmann - first_name: Bernd full_name: Bickel, Bernd id: 49876194-F248-11E8-B48F-1D18A9856A87 last_name: Bickel orcid: 0000-0001-6511-9385 citation: ama: Gavriil K, Guseinov R, Perez Rodriguez J, et al. Computational design of cold bent glass façades. ACM Transactions on Graphics. 2020;39(6). doi:10.1145/3414685.3417843 apa: Gavriil, K., Guseinov, R., Perez Rodriguez, J., Pellis, D., Henderson, P. M., Rist, F., … Bickel, B. (2020). Computational design of cold bent glass façades. ACM Transactions on Graphics. Association for Computing Machinery. https://doi.org/10.1145/3414685.3417843 chicago: Gavriil, Konstantinos, Ruslan Guseinov, Jesus Perez Rodriguez, Davide Pellis, Paul M Henderson, Florian Rist, Helmut Pottmann, and Bernd Bickel. “Computational Design of Cold Bent Glass Façades.” ACM Transactions on Graphics. Association for Computing Machinery, 2020. https://doi.org/10.1145/3414685.3417843. ieee: K. Gavriil et al., “Computational design of cold bent glass façades,” ACM Transactions on Graphics, vol. 39, no. 6. Association for Computing Machinery, 2020. ista: Gavriil K, Guseinov R, Perez Rodriguez J, Pellis D, Henderson PM, Rist F, Pottmann H, Bickel B. 2020. Computational design of cold bent glass façades. ACM Transactions on Graphics. 39(6), 208. mla: Gavriil, Konstantinos, et al. “Computational Design of Cold Bent Glass Façades.” ACM Transactions on Graphics, vol. 39, no. 6, 208, Association for Computing Machinery, 2020, doi:10.1145/3414685.3417843. short: K. Gavriil, R. Guseinov, J. Perez Rodriguez, D. Pellis, P.M. Henderson, F. Rist, H. Pottmann, B. Bickel, ACM Transactions on Graphics 39 (2020). date_created: 2020-09-23T11:30:02Z date_published: 2020-11-26T00:00:00Z date_updated: 2024-02-21T12:43:21Z day: '26' ddc: - '000' department: - _id: BeBi doi: 10.1145/3414685.3417843 ec_funded: 1 external_id: arxiv: - '2009.03667' isi: - '000595589100048' file: - access_level: open_access checksum: c7f67717ad74e670b7daeae732abe151 content_type: application/pdf creator: bbickel date_created: 2023-05-23T20:54:43Z date_updated: 2023-05-23T20:54:43Z file_id: '13084' file_name: coldglass.pdf file_size: 28964641 relation: main_file success: 1 file_date_updated: 2023-05-23T20:54:43Z has_accepted_license: '1' intvolume: ' 39' isi: 1 issue: '6' language: - iso: eng month: '11' oa: 1 oa_version: Submitted Version project: - _id: 24F9549A-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '715767' name: 'MATERIALIZABLE: Intelligent fabrication-oriented Computational Design and Modeling' publication: ACM Transactions on Graphics publication_identifier: eissn: - 1557-7368 issn: - 0730-0301 publication_status: published publisher: Association for Computing Machinery quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/bend-dont-break/ record: - id: '8366' relation: dissertation_contains status: public - id: '8761' relation: research_data status: public scopus_import: '1' status: public title: Computational design of cold bent glass façades type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 39 year: '2020' ... --- _id: '8375' abstract: - lang: eng text: 'Supplementary movies showing the following sequences for spatio-temporarily programmed shells: input geometry and actuation time landscape; comparison of morphing processes from a camera recording and a simulation; final actuated shape.' article_processing_charge: No author: - first_name: Ruslan full_name: Guseinov, Ruslan id: 3AB45EE2-F248-11E8-B48F-1D18A9856A87 last_name: Guseinov orcid: 0000-0001-9819-5077 citation: ama: 'Guseinov R. Supplementary data for “Computational design of curved thin shells: from glass façades to programmable matter.” 2020. doi:10.15479/AT:ISTA:8375' apa: 'Guseinov, R. (2020). Supplementary data for “Computational design of curved thin shells: from glass façades to programmable matter.” Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:8375' chicago: 'Guseinov, Ruslan. “Supplementary Data for ‘Computational Design of Curved Thin Shells: From Glass Façades to Programmable Matter.’” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:8375.' ieee: 'R. Guseinov, “Supplementary data for ‘Computational design of curved thin shells: from glass façades to programmable matter.’” Institute of Science and Technology Austria, 2020.' ista: 'Guseinov R. 2020. Supplementary data for ‘Computational design of curved thin shells: from glass façades to programmable matter’, Institute of Science and Technology Austria, 10.15479/AT:ISTA:8375.' mla: 'Guseinov, Ruslan. Supplementary Data for “Computational Design of Curved Thin Shells: From Glass Façades to Programmable Matter.” Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:8375.' short: R. Guseinov, (2020). contributor: - contributor_type: researcher first_name: Ruslan id: 3AB45EE2-F248-11E8-B48F-1D18A9856A87 last_name: Guseinov orcid: 0000-0001-9819-5077 - contributor_type: researcher first_name: Connor last_name: McMahan - contributor_type: researcher first_name: Jesus id: 2DC83906-F248-11E8-B48F-1D18A9856A87 last_name: Perez Rodriguez - contributor_type: researcher first_name: Chiara last_name: Daraio - contributor_type: researcher first_name: Bernd id: 49876194-F248-11E8-B48F-1D18A9856A87 last_name: Bickel orcid: 0000-0001-6511-9385 date_created: 2020-09-11T09:52:54Z date_published: 2020-09-21T00:00:00Z date_updated: 2024-02-21T12:44:29Z day: '21' ddc: - '000' department: - _id: BeBi doi: 10.15479/AT:ISTA:8375 ec_funded: 1 file: - access_level: open_access checksum: 4029ffd65fb82ef2366b2fc2a4908e16 content_type: video/mp4 creator: rguseino date_created: 2020-09-11T09:45:21Z date_updated: 2020-09-11T09:45:21Z file_id: '8376' file_name: supplementary_movie_1.mp4 file_size: 29214988 relation: main_file success: 1 - access_level: open_access checksum: 8ed03b04d80f1a4e622cb22e6100afd8 content_type: video/mp4 creator: rguseino date_created: 2020-09-11T09:45:25Z date_updated: 2020-09-11T09:45:25Z file_id: '8377' file_name: supplementary_movie_2.mp4 file_size: 28449475 relation: main_file success: 1 - access_level: open_access checksum: ad6864afb5e694e5c52a88fba4e02eea content_type: video/mp4 creator: rguseino date_created: 2020-09-11T09:45:28Z date_updated: 2020-09-11T09:45:28Z file_id: '8378' file_name: supplementary_movie_3.mp4 file_size: 26315853 relation: main_file success: 1 - access_level: open_access checksum: b079cef7871fe1afb69af0e2b099f3b1 content_type: video/mp4 creator: rguseino date_created: 2020-09-11T09:45:33Z date_updated: 2020-09-11T09:45:33Z file_id: '8379' file_name: supplementary_movie_4.mp4 file_size: 25198755 relation: main_file success: 1 - access_level: open_access checksum: 9d1d48a8ed5c109a999c51b044ee523d content_type: video/mp4 creator: rguseino date_created: 2020-09-11T09:45:36Z date_updated: 2020-09-11T09:45:36Z file_id: '8380' file_name: supplementary_movie_5.mp4 file_size: 29011354 relation: main_file success: 1 - access_level: open_access checksum: d414d0059e982d752d218756b3c3ce05 content_type: text/plain creator: rguseino date_created: 2020-09-11T09:52:36Z date_updated: 2020-09-11T09:52:36Z file_id: '8381' file_name: readme.txt file_size: 586 relation: main_file success: 1 file_date_updated: 2020-09-11T09:52:36Z has_accepted_license: '1' month: '09' oa: 1 oa_version: Published Version project: - _id: 24F9549A-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '715767' name: 'MATERIALIZABLE: Intelligent fabrication-oriented Computational Design and Modeling' publisher: Institute of Science and Technology Austria related_material: record: - id: '8366' relation: used_in_publication status: public status: public title: 'Supplementary data for "Computational design of curved thin shells: from glass façades to programmable matter"' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: research_data user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ... --- _id: '8761' acknowledged_ssus: - _id: ScienComp article_processing_charge: No author: - first_name: Ruslan full_name: Guseinov, Ruslan id: 3AB45EE2-F248-11E8-B48F-1D18A9856A87 last_name: Guseinov orcid: 0000-0001-9819-5077 citation: ama: Guseinov R. Supplementary data for “Computational design of cold bent glass façades.” 2020. doi:10.15479/AT:ISTA:8761 apa: Guseinov, R. (2020). Supplementary data for “Computational design of cold bent glass façades.” Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:8761 chicago: Guseinov, Ruslan. “Supplementary Data for ‘Computational Design of Cold Bent Glass Façades.’” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:8761. ieee: R. Guseinov, “Supplementary data for ‘Computational design of cold bent glass façades.’” Institute of Science and Technology Austria, 2020. ista: Guseinov R. 2020. Supplementary data for ‘Computational design of cold bent glass façades’, Institute of Science and Technology Austria, 10.15479/AT:ISTA:8761. mla: Guseinov, Ruslan. Supplementary Data for “Computational Design of Cold Bent Glass Façades.” Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:8761. short: R. Guseinov, (2020). contributor: - contributor_type: researcher first_name: Konstantinos last_name: Gavriil - contributor_type: researcher first_name: Ruslan id: 3AB45EE2-F248-11E8-B48F-1D18A9856A87 last_name: Guseinov orcid: 0000-0001-9819-5077 - contributor_type: researcher first_name: Jesus id: 2DC83906-F248-11E8-B48F-1D18A9856A87 last_name: Perez Rodriguez - contributor_type: researcher first_name: Davide last_name: Pellis - contributor_type: researcher first_name: Paul M id: 13C09E74-18D9-11E9-8878-32CFE5697425 last_name: Henderson orcid: 0000-0002-5198-7445 - contributor_type: researcher first_name: Florian last_name: Rist - contributor_type: researcher first_name: Helmut last_name: Pottmann - contributor_type: researcher first_name: Bernd id: 49876194-F248-11E8-B48F-1D18A9856A87 last_name: Bickel orcid: 0000-0001-6511-9385 date_created: 2020-11-16T10:47:18Z date_published: 2020-11-23T00:00:00Z date_updated: 2024-02-21T12:43:22Z day: '23' ddc: - '000' department: - _id: BeBi doi: 10.15479/AT:ISTA:8761 ec_funded: 1 file: - access_level: open_access checksum: f5ae57b97017b9f61081032703361233 content_type: application/x-gzip creator: rguseino date_created: 2020-11-16T10:31:29Z date_updated: 2020-11-16T10:31:29Z file_id: '8762' file_name: mdn_model.tar.gz file_size: 15378270 relation: main_file success: 1 - access_level: open_access checksum: b0d25e04060ee78c585ee2f23542c744 content_type: application/x-gzip creator: rguseino date_created: 2020-11-16T10:43:23Z date_updated: 2020-11-16T10:43:23Z file_id: '8763' file_name: optimal_panels_data.tar.gz file_size: 615387734 relation: main_file success: 1 - access_level: open_access checksum: 69c1dde3434ada86d125e0c2588caf1e content_type: text/plain creator: rguseino date_created: 2020-11-18T10:04:59Z date_updated: 2020-11-18T10:04:59Z file_id: '8770' file_name: readme.txt file_size: 1228 relation: main_file success: 1 file_date_updated: 2020-11-18T10:04:59Z has_accepted_license: '1' month: '11' oa: 1 oa_version: Published Version project: - _id: 24F9549A-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '715767' name: 'MATERIALIZABLE: Intelligent fabrication-oriented Computational Design and Modeling' publisher: Institute of Science and Technology Austria related_material: link: - relation: software url: https://github.com/russelmann/cold-glass-acm record: - id: '8562' relation: used_in_publication status: public status: public title: Supplementary data for "Computational design of cold bent glass façades" tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: research_data user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ... --- _id: '7262' abstract: - lang: eng text: Advances in shape-morphing materials, such as hydrogels, shape-memory polymers and light-responsive polymers have enabled prescribing self-directed deformations of initially flat geometries. However, most proposed solutions evolve towards a target geometry without considering time-dependent actuation paths. To achieve more complex geometries and avoid self-collisions, it is critical to encode a spatial and temporal shape evolution within the initially flat shell. Recent realizations of time-dependent morphing are limited to the actuation of few, discrete hinges and cannot form doubly curved surfaces. Here, we demonstrate a method for encoding temporal shape evolution in architected shells that assume complex shapes and doubly curved geometries. The shells are non-periodic tessellations of pre-stressed contractile unit cells that soften in water at rates prescribed locally by mesostructure geometry. The ensuing midplane contraction is coupled to the formation of encoded curvatures. We propose an inverse design tool based on a data-driven model for unit cells’ temporal responses. article_number: '237' article_processing_charge: No article_type: original author: - first_name: Ruslan full_name: Guseinov, Ruslan id: 3AB45EE2-F248-11E8-B48F-1D18A9856A87 last_name: Guseinov orcid: 0000-0001-9819-5077 - first_name: Connor full_name: McMahan, Connor last_name: McMahan - first_name: Jesus full_name: Perez Rodriguez, Jesus id: 2DC83906-F248-11E8-B48F-1D18A9856A87 last_name: Perez Rodriguez - first_name: Chiara full_name: Daraio, Chiara last_name: Daraio - first_name: Bernd full_name: Bickel, Bernd id: 49876194-F248-11E8-B48F-1D18A9856A87 last_name: Bickel orcid: 0000-0001-6511-9385 citation: ama: Guseinov R, McMahan C, Perez Rodriguez J, Daraio C, Bickel B. Programming temporal morphing of self-actuated shells. Nature Communications. 2020;11. doi:10.1038/s41467-019-14015-2 apa: Guseinov, R., McMahan, C., Perez Rodriguez, J., Daraio, C., & Bickel, B. (2020). Programming temporal morphing of self-actuated shells. Nature Communications. Springer Nature. https://doi.org/10.1038/s41467-019-14015-2 chicago: Guseinov, Ruslan, Connor McMahan, Jesus Perez Rodriguez, Chiara Daraio, and Bernd Bickel. “Programming Temporal Morphing of Self-Actuated Shells.” Nature Communications. Springer Nature, 2020. https://doi.org/10.1038/s41467-019-14015-2. ieee: R. Guseinov, C. McMahan, J. Perez Rodriguez, C. Daraio, and B. Bickel, “Programming temporal morphing of self-actuated shells,” Nature Communications, vol. 11. Springer Nature, 2020. ista: Guseinov R, McMahan C, Perez Rodriguez J, Daraio C, Bickel B. 2020. Programming temporal morphing of self-actuated shells. Nature Communications. 11, 237. mla: Guseinov, Ruslan, et al. “Programming Temporal Morphing of Self-Actuated Shells.” Nature Communications, vol. 11, 237, Springer Nature, 2020, doi:10.1038/s41467-019-14015-2. short: R. Guseinov, C. McMahan, J. Perez Rodriguez, C. Daraio, B. Bickel, Nature Communications 11 (2020). date_created: 2020-01-13T16:54:26Z date_published: 2020-01-13T00:00:00Z date_updated: 2024-02-21T12:45:02Z day: '13' ddc: - '000' department: - _id: BeBi doi: 10.1038/s41467-019-14015-2 ec_funded: 1 external_id: isi: - '000511916800015' file: - access_level: open_access checksum: 7db23fef2f4cda712f17f1004116ddff content_type: application/pdf creator: rguseino date_created: 2020-01-15T14:35:34Z date_updated: 2020-07-14T12:47:55Z file_id: '7336' file_name: 2020_NatureComm_Guseinov.pdf file_size: 1315270 relation: main_file file_date_updated: 2020-07-14T12:47:55Z has_accepted_license: '1' intvolume: ' 11' isi: 1 keyword: - Design - Synthesis and processing - Mechanical engineering - Polymers language: - iso: eng month: '01' oa: 1 oa_version: Published Version project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships - _id: 24F9549A-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '715767' name: 'MATERIALIZABLE: Intelligent fabrication-oriented Computational Design and Modeling' publication: Nature Communications publication_identifier: issn: - 2041-1723 publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/geometry-meets-time/ record: - id: '8366' relation: dissertation_contains status: public - id: '7154' relation: research_data status: public scopus_import: '1' status: public title: Programming temporal morphing of self-actuated shells tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 11 year: '2020' ... --- _id: '8766' abstract: - lang: eng text: "The “procedural” approach to animating ocean waves is the dominant algorithm for animating larger bodies of water in\r\ninteractive applications as well as in off-line productions — it provides high visual quality with a low computational demand. In this paper, we widen the applicability of procedural water wave animation with an extension that guarantees the satisfaction of boundary conditions imposed by terrain while still approximating physical wave behavior. In combination with a particle system that models wave breaking, foam, and spray, this allows us to naturally model waves interacting with beaches and rocks. Our system is able to animate waves at large scales at interactive frame rates on a commodity PC." article_processing_charge: No article_type: original author: - first_name: Stefan full_name: Jeschke, Stefan id: 44D6411A-F248-11E8-B48F-1D18A9856A87 last_name: Jeschke - first_name: Christian full_name: Hafner, Christian id: 400429CC-F248-11E8-B48F-1D18A9856A87 last_name: Hafner - first_name: Nuttapong full_name: Chentanez, Nuttapong last_name: Chentanez - first_name: Miles full_name: Macklin, Miles last_name: Macklin - first_name: Matthias full_name: Müller-Fischer, Matthias last_name: Müller-Fischer - first_name: Christopher J full_name: Wojtan, Christopher J id: 3C61F1D2-F248-11E8-B48F-1D18A9856A87 last_name: Wojtan orcid: 0000-0001-6646-5546 citation: ama: Jeschke S, Hafner C, Chentanez N, Macklin M, Müller-Fischer M, Wojtan C. Making procedural water waves boundary-aware. Computer Graphics forum. 2020;39(8):47-54. doi:10.1111/cgf.14100 apa: 'Jeschke, S., Hafner, C., Chentanez, N., Macklin, M., Müller-Fischer, M., & Wojtan, C. (2020). Making procedural water waves boundary-aware. Computer Graphics Forum. Online Symposium: Wiley. https://doi.org/10.1111/cgf.14100' chicago: Jeschke, Stefan, Christian Hafner, Nuttapong Chentanez, Miles Macklin, Matthias Müller-Fischer, and Chris Wojtan. “Making Procedural Water Waves Boundary-Aware.” Computer Graphics Forum. Wiley, 2020. https://doi.org/10.1111/cgf.14100. ieee: S. Jeschke, C. Hafner, N. Chentanez, M. Macklin, M. Müller-Fischer, and C. Wojtan, “Making procedural water waves boundary-aware,” Computer Graphics forum, vol. 39, no. 8. Wiley, pp. 47–54, 2020. ista: Jeschke S, Hafner C, Chentanez N, Macklin M, Müller-Fischer M, Wojtan C. 2020. Making procedural water waves boundary-aware. Computer Graphics forum. 39(8), 47–54. mla: Jeschke, Stefan, et al. “Making Procedural Water Waves Boundary-Aware.” Computer Graphics Forum, vol. 39, no. 8, Wiley, 2020, pp. 47–54, doi:10.1111/cgf.14100. short: S. Jeschke, C. Hafner, N. Chentanez, M. Macklin, M. Müller-Fischer, C. Wojtan, Computer Graphics Forum 39 (2020) 47–54. conference: end_date: 2020-10-09 location: Online Symposium name: 'SCA: Symposium on Computer Animation' start_date: 2020-10-06 date_created: 2020-11-17T10:47:48Z date_published: 2020-12-01T00:00:00Z date_updated: 2024-02-28T13:58:11Z day: '01' department: - _id: ChWo - _id: BeBi doi: 10.1111/cgf.14100 ec_funded: 1 external_id: isi: - '000591780400005' intvolume: ' 39' isi: 1 issue: '8' language: - iso: eng month: '12' oa_version: None page: 47-54 project: - _id: 2533E772-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '638176' name: Efficient Simulation of Natural Phenomena at Extremely Large Scales - _id: 24F9549A-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '715767' name: 'MATERIALIZABLE: Intelligent fabrication-oriented Computational Design and Modeling' publication: Computer Graphics forum publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: Making procedural water waves boundary-aware type: journal_article user_id: 2EBD1598-F248-11E8-B48F-1D18A9856A87 volume: 39 year: '2020' ... --- _id: '6660' abstract: - lang: eng text: "Commercially available full-color 3D printing allows for detailed control of material deposition in a volume, but an exact reproduction of a target surface appearance is hampered by the strong subsurface scattering that causes nontrivial volumetric cross-talk at the print surface. Previous work showed how an iterative optimization scheme based on accumulating absorptive materials at the surface can be used to find a volumetric distribution of print materials that closely approximates a given target appearance.\r\n\r\nIn this work, we first revisit the assumption that pushing the absorptive materials to the surface results in minimal volumetric cross-talk. We design a full-fledged optimization on a small domain for this task and confirm this previously reported heuristic. Then, we extend the above approach that is critically limited to color reproduction on planar surfaces, to arbitrary 3D shapes. Our method enables high-fidelity color texture reproduction on 3D prints by effectively compensating for internal light scattering within arbitrarily shaped objects. In addition, we propose a content-aware gamut mapping that significantly improves color reproduction for the pathological case of thin geometric features. Using a wide range of sample objects with complex textures and geometries, we demonstrate color reproduction whose fidelity is superior to state-of-the-art drivers for color 3D printers." article_number: '111' article_processing_charge: No author: - first_name: Denis full_name: Sumin, Denis last_name: Sumin - first_name: Tim full_name: Weyrich, Tim last_name: Weyrich - first_name: Tobias full_name: Rittig, Tobias last_name: Rittig - first_name: Vahid full_name: Babaei, Vahid last_name: Babaei - first_name: Thomas full_name: Nindel, Thomas last_name: Nindel - first_name: Alexander full_name: Wilkie, Alexander last_name: Wilkie - first_name: Piotr full_name: Didyk, Piotr last_name: Didyk - first_name: Bernd full_name: Bickel, Bernd id: 49876194-F248-11E8-B48F-1D18A9856A87 last_name: Bickel orcid: 0000-0001-6511-9385 - first_name: Jaroslav full_name: Křivánek, Jaroslav last_name: Křivánek - first_name: Karol full_name: Myszkowski, Karol last_name: Myszkowski citation: ama: Sumin D, Weyrich T, Rittig T, et al. Geometry-aware scattering compensation for 3D printing. ACM Transactions on Graphics. 2019;38(4). doi:10.1145/3306346.3322992 apa: Sumin, D., Weyrich, T., Rittig, T., Babaei, V., Nindel, T., Wilkie, A., … Myszkowski, K. (2019). Geometry-aware scattering compensation for 3D printing. ACM Transactions on Graphics. ACM. https://doi.org/10.1145/3306346.3322992 chicago: Sumin, Denis, Tim Weyrich, Tobias Rittig, Vahid Babaei, Thomas Nindel, Alexander Wilkie, Piotr Didyk, Bernd Bickel, Jaroslav Křivánek, and Karol Myszkowski. “Geometry-Aware Scattering Compensation for 3D Printing.” ACM Transactions on Graphics. ACM, 2019. https://doi.org/10.1145/3306346.3322992. ieee: D. Sumin et al., “Geometry-aware scattering compensation for 3D printing,” ACM Transactions on Graphics, vol. 38, no. 4. ACM, 2019. ista: Sumin D, Weyrich T, Rittig T, Babaei V, Nindel T, Wilkie A, Didyk P, Bickel B, Křivánek J, Myszkowski K. 2019. Geometry-aware scattering compensation for 3D printing. ACM Transactions on Graphics. 38(4), 111. mla: Sumin, Denis, et al. “Geometry-Aware Scattering Compensation for 3D Printing.” ACM Transactions on Graphics, vol. 38, no. 4, 111, ACM, 2019, doi:10.1145/3306346.3322992. short: D. Sumin, T. Weyrich, T. Rittig, V. Babaei, T. Nindel, A. Wilkie, P. Didyk, B. Bickel, J. Křivánek, K. Myszkowski, ACM Transactions on Graphics 38 (2019). date_created: 2019-07-22T07:22:28Z date_published: 2019-07-04T00:00:00Z date_updated: 2023-08-29T06:40:49Z day: '04' ddc: - '000' department: - _id: BeBi doi: 10.1145/3306346.3322992 ec_funded: 1 external_id: isi: - '000475740600085' file: - access_level: open_access checksum: 43c2019d6b48ed9c56e31686c4c2d1f5 content_type: application/pdf creator: dernst date_created: 2019-07-24T07:36:08Z date_updated: 2020-07-14T12:47:36Z file_id: '6669' file_name: 2019_ACM_Sumin_AuthorVersion.pdf file_size: 10109800 relation: main_file - access_level: open_access checksum: f80f365a04e35855fa467ea7ab26b16c content_type: application/zip creator: dernst date_created: 2019-10-11T06:51:07Z date_updated: 2020-07-14T12:47:36Z file_id: '6938' file_name: sumin19geometry-aware-suppl.zip file_size: 11051245 relation: supplementary_material file_date_updated: 2020-07-14T12:47:36Z has_accepted_license: '1' intvolume: ' 38' isi: 1 issue: '4' language: - iso: eng month: '07' oa: 1 oa_version: Submitted Version project: - _id: 2508E324-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '642841' name: Distributed 3D Object Design - _id: 24F9549A-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '715767' name: 'MATERIALIZABLE: Intelligent fabrication-oriented Computational Design and Modeling' publication: ACM Transactions on Graphics publication_identifier: issn: - 0730-0301 publication_status: published publisher: ACM quality_controlled: '1' scopus_import: '1' status: public title: Geometry-aware scattering compensation for 3D printing type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 38 year: '2019' ... --- _id: '6650' abstract: - lang: eng text: We propose a novel technique for the automatic design of molds to cast highly complex shapes. The technique generates composite, two-piece molds. Each mold piece is made up of a hard plastic shell and a flexible silicone part. Thanks to the thin, soft, and smartly shaped silicone part, which is kept in place by a hard plastic shell, we can cast objects of unprecedented complexity. An innovative algorithm based on a volumetric analysis defines the layout of the internal cuts in the silicone mold part. Our approach can robustly handle thin protruding features and intertwined topologies that have caused previous methods to fail. We compare our results with state of the art techniques, and we demonstrate the casting of shapes with extremely complex geometry. article_number: '110' article_processing_charge: No author: - first_name: Thomas full_name: Alderighi, Thomas last_name: Alderighi - first_name: Luigi full_name: Malomo, Luigi last_name: Malomo - first_name: Daniela full_name: Giorgi, Daniela last_name: Giorgi - first_name: Bernd full_name: Bickel, Bernd id: 49876194-F248-11E8-B48F-1D18A9856A87 last_name: Bickel orcid: 0000-0001-6511-9385 - first_name: Paolo full_name: Cignoni, Paolo last_name: Cignoni - first_name: Nico full_name: Pietroni, Nico last_name: Pietroni citation: ama: Alderighi T, Malomo L, Giorgi D, Bickel B, Cignoni P, Pietroni N. Volume-aware design of composite molds. ACM Transactions on Graphics. 2019;38(4). doi:10.1145/3306346.3322981 apa: Alderighi, T., Malomo, L., Giorgi, D., Bickel, B., Cignoni, P., & Pietroni, N. (2019). Volume-aware design of composite molds. ACM Transactions on Graphics. ACM. https://doi.org/10.1145/3306346.3322981 chicago: Alderighi, Thomas, Luigi Malomo, Daniela Giorgi, Bernd Bickel, Paolo Cignoni, and Nico Pietroni. “Volume-Aware Design of Composite Molds.” ACM Transactions on Graphics. ACM, 2019. https://doi.org/10.1145/3306346.3322981. ieee: T. Alderighi, L. Malomo, D. Giorgi, B. Bickel, P. Cignoni, and N. Pietroni, “Volume-aware design of composite molds,” ACM Transactions on Graphics, vol. 38, no. 4. ACM, 2019. ista: Alderighi T, Malomo L, Giorgi D, Bickel B, Cignoni P, Pietroni N. 2019. Volume-aware design of composite molds. ACM Transactions on Graphics. 38(4), 110. mla: Alderighi, Thomas, et al. “Volume-Aware Design of Composite Molds.” ACM Transactions on Graphics, vol. 38, no. 4, 110, ACM, 2019, doi:10.1145/3306346.3322981. short: T. Alderighi, L. Malomo, D. Giorgi, B. Bickel, P. Cignoni, N. Pietroni, ACM Transactions on Graphics 38 (2019). date_created: 2019-07-19T06:18:15Z date_published: 2019-07-01T00:00:00Z date_updated: 2023-08-29T06:35:52Z day: '01' ddc: - '000' department: - _id: BeBi doi: 10.1145/3306346.3322981 ec_funded: 1 external_id: isi: - '000475740600084' file: - access_level: open_access checksum: b4562af94672b44d2a501046427412af content_type: application/pdf creator: dernst date_created: 2019-07-19T06:18:53Z date_updated: 2020-07-14T12:47:35Z file_id: '6651' file_name: 2019_ACM_Alderighi_AuthorVersion.pdf file_size: 74316182 relation: main_file file_date_updated: 2020-07-14T12:47:35Z has_accepted_license: '1' intvolume: ' 38' isi: 1 issue: '4' language: - iso: eng month: '07' oa: 1 oa_version: Submitted Version project: - _id: 24F9549A-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '715767' name: 'MATERIALIZABLE: Intelligent fabrication-oriented Computational Design and Modeling' publication: ACM Transactions on Graphics publication_identifier: issn: - 0730-0301 publication_status: published publisher: ACM quality_controlled: '1' related_material: link: - description: YouTube Video relation: supplementary_material url: https://youtu.be/SO349S8-x_w scopus_import: '1' status: public title: Volume-aware design of composite molds type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 38 year: '2019' ... --- _id: '9261' abstract: - lang: eng text: 'Bending-active structures are able to efficiently produce complex curved shapes starting from flat panels. The desired deformation of the panels derives from the proper selection of their elastic properties. Optimized panels, called FlexMaps, are designed such that, once they are bent and assembled, the resulting static equilibrium configuration matches a desired input 3D shape. The FlexMaps elastic properties are controlled by locally varying spiraling geometric mesostructures, which are optimized in size and shape to match the global curvature (i.e., bending requests) of the target shape. The design pipeline starts from a quad mesh representing the input 3D shape, which defines the edge size and the total amount of spirals: every quad will embed one spiral. Then, an optimization algorithm tunes the geometry of the spirals by using a simplified pre-computed rod model. This rod model is derived from a non-linear regression algorithm which approximates the non-linear behavior of solid FEM spiral models subject to hundreds of load combinations. This innovative pipeline has been applied to the project of a lightweight plywood pavilion named FlexMaps Pavilion, which is a single-layer piecewise twisted arc that fits a bounding box of 3.90x3.96x3.25 meters.' article_processing_charge: No author: - first_name: Francesco full_name: Laccone, Francesco last_name: Laccone - first_name: Luigi full_name: Malomo, Luigi last_name: Malomo - first_name: Jesus full_name: Perez Rodriguez, Jesus id: 2DC83906-F248-11E8-B48F-1D18A9856A87 last_name: Perez Rodriguez - first_name: Nico full_name: Pietroni, Nico last_name: Pietroni - first_name: Federico full_name: Ponchio, Federico last_name: Ponchio - first_name: Bernd full_name: Bickel, Bernd id: 49876194-F248-11E8-B48F-1D18A9856A87 last_name: Bickel orcid: 0000-0001-6511-9385 - first_name: Paolo full_name: Cignoni, Paolo last_name: Cignoni citation: ama: 'Laccone F, Malomo L, Perez Rodriguez J, et al. FlexMaps Pavilion: A twisted arc made of mesostructured flat flexible panels. In: IASS Symposium 2019 - 60th Anniversary Symposium of the International Association for Shell and Spatial Structures; Structural Membranes 2019 - 9th International Conference on Textile Composites and Inflatable Structures, FORM and FORCE. International Center for Numerical Methods in Engineering; 2019:509-515.' apa: 'Laccone, F., Malomo, L., Perez Rodriguez, J., Pietroni, N., Ponchio, F., Bickel, B., & Cignoni, P. (2019). FlexMaps Pavilion: A twisted arc made of mesostructured flat flexible panels. In IASS Symposium 2019 - 60th Anniversary Symposium of the International Association for Shell and Spatial Structures; Structural Membranes 2019 - 9th International Conference on Textile Composites and Inflatable Structures, FORM and FORCE (pp. 509–515). Barcelona, Spain: International Center for Numerical Methods in Engineering.' chicago: 'Laccone, Francesco, Luigi Malomo, Jesus Perez Rodriguez, Nico Pietroni, Federico Ponchio, Bernd Bickel, and Paolo Cignoni. “FlexMaps Pavilion: A Twisted Arc Made of Mesostructured Flat Flexible Panels.” In IASS Symposium 2019 - 60th Anniversary Symposium of the International Association for Shell and Spatial Structures; Structural Membranes 2019 - 9th International Conference on Textile Composites and Inflatable Structures, FORM and FORCE, 509–15. International Center for Numerical Methods in Engineering, 2019.' ieee: 'F. Laccone et al., “FlexMaps Pavilion: A twisted arc made of mesostructured flat flexible panels,” in IASS Symposium 2019 - 60th Anniversary Symposium of the International Association for Shell and Spatial Structures; Structural Membranes 2019 - 9th International Conference on Textile Composites and Inflatable Structures, FORM and FORCE, Barcelona, Spain, 2019, pp. 509–515.' ista: 'Laccone F, Malomo L, Perez Rodriguez J, Pietroni N, Ponchio F, Bickel B, Cignoni P. 2019. FlexMaps Pavilion: A twisted arc made of mesostructured flat flexible panels. IASS Symposium 2019 - 60th Anniversary Symposium of the International Association for Shell and Spatial Structures; Structural Membranes 2019 - 9th International Conference on Textile Composites and Inflatable Structures, FORM and FORCE. IASS: International Association for Shell and Spatial Structures, 509–515.' mla: 'Laccone, Francesco, et al. “FlexMaps Pavilion: A Twisted Arc Made of Mesostructured Flat Flexible Panels.” IASS Symposium 2019 - 60th Anniversary Symposium of the International Association for Shell and Spatial Structures; Structural Membranes 2019 - 9th International Conference on Textile Composites and Inflatable Structures, FORM and FORCE, International Center for Numerical Methods in Engineering, 2019, pp. 509–15.' short: F. Laccone, L. Malomo, J. Perez Rodriguez, N. Pietroni, F. Ponchio, B. Bickel, P. Cignoni, in:, IASS Symposium 2019 - 60th Anniversary Symposium of the International Association for Shell and Spatial Structures; Structural Membranes 2019 - 9th International Conference on Textile Composites and Inflatable Structures, FORM and FORCE, International Center for Numerical Methods in Engineering, 2019, pp. 509–515. conference: end_date: 2019-10-10 location: Barcelona, Spain name: 'IASS: International Association for Shell and Spatial Structures' start_date: 2019-10-07 date_created: 2021-03-21T23:01:21Z date_published: 2019-10-10T00:00:00Z date_updated: 2023-09-08T11:21:54Z day: '10' department: - _id: BeBi external_id: isi: - '000563497600059' isi: 1 language: - iso: eng month: '10' oa_version: None page: 509-515 publication: IASS Symposium 2019 - 60th Anniversary Symposium of the International Association for Shell and Spatial Structures; Structural Membranes 2019 - 9th International Conference on Textile Composites and Inflatable Structures, FORM and FORCE publication_identifier: isbn: - '9788412110104' issn: - 2518-6582 publication_status: published publisher: International Center for Numerical Methods in Engineering quality_controlled: '1' scopus_import: '1' status: public title: 'FlexMaps Pavilion: A twisted arc made of mesostructured flat flexible panels' type: conference user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2019' ... --- _id: '7154' article_processing_charge: No author: - first_name: Ruslan full_name: Guseinov, Ruslan id: 3AB45EE2-F248-11E8-B48F-1D18A9856A87 last_name: Guseinov orcid: 0000-0001-9819-5077 citation: ama: Guseinov R. Supplementary data for “Programming temporal morphing of self-actuated shells.” 2019. doi:10.15479/AT:ISTA:7154 apa: Guseinov, R. (2019). Supplementary data for “Programming temporal morphing of self-actuated shells.” Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:7154 chicago: Guseinov, Ruslan. “Supplementary Data for ‘Programming Temporal Morphing of Self-Actuated Shells.’” Institute of Science and Technology Austria, 2019. https://doi.org/10.15479/AT:ISTA:7154. ieee: R. Guseinov, “Supplementary data for ‘Programming temporal morphing of self-actuated shells.’” Institute of Science and Technology Austria, 2019. ista: Guseinov R. 2019. Supplementary data for ‘Programming temporal morphing of self-actuated shells’, Institute of Science and Technology Austria, 10.15479/AT:ISTA:7154. mla: Guseinov, Ruslan. Supplementary Data for “Programming Temporal Morphing of Self-Actuated Shells.” Institute of Science and Technology Austria, 2019, doi:10.15479/AT:ISTA:7154. short: R. Guseinov, (2019). contributor: - first_name: Ruslan id: 3AB45EE2-F248-11E8-B48F-1D18A9856A87 last_name: Guseinov orcid: 0000-0001-9819-5077 - first_name: Connor last_name: McMahan - first_name: Jesus id: 2DC83906-F248-11E8-B48F-1D18A9856A87 last_name: Perez Rodriguez - first_name: Chiara last_name: Daraio - first_name: Bernd id: 49876194-F248-11E8-B48F-1D18A9856A87 last_name: Bickel orcid: 0000-0001-6511-9385 date_created: 2019-12-09T07:52:46Z date_published: 2019-12-06T00:00:00Z date_updated: 2024-02-21T12:45:03Z day: '06' ddc: - '000' department: - _id: BeBi doi: 10.15479/AT:ISTA:7154 ec_funded: 1 file: - access_level: open_access checksum: 155133e6e188e85b3c0676a5e70b9341 content_type: application/x-zip-compressed creator: dernst date_created: 2019-12-09T07:52:17Z date_updated: 2020-07-14T12:47:50Z file_id: '7155' file_name: temporal_morphing_supp_data.zip file_size: 65307107 relation: main_file file_date_updated: 2020-07-14T12:47:50Z has_accepted_license: '1' license: https://creativecommons.org/publicdomain/zero/1.0/ month: '12' oa: 1 oa_version: Published Version project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publisher: Institute of Science and Technology Austria related_material: record: - id: '8433' relation: used_in_publication status: deleted - id: '7262' relation: used_in_publication status: public status: public title: Supplementary data for "Programming temporal morphing of self-actuated shells" tmp: image: /images/cc_0.png legal_code_url: https://creativecommons.org/publicdomain/zero/1.0/legalcode name: Creative Commons Public Domain Dedication (CC0 1.0) short: CC0 (1.0) type: research_data user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2019' ... --- _id: '7117' abstract: - lang: eng text: We propose a novel generic shape optimization method for CAD models based on the eXtended Finite Element Method (XFEM). Our method works directly on the intersection between the model and a regular simulation grid, without the need to mesh or remesh, thus removing a bottleneck of classical shape optimization strategies. This is made possible by a novel hierarchical integration scheme that accurately integrates finite element quantities with sub-element precision. For optimization, we efficiently compute analytical shape derivatives of the entire framework, from model intersection to integration rule generation and XFEM simulation. Moreover, we describe a differentiable projection of shape parameters onto a constraint manifold spanned by user-specified shape preservation, consistency, and manufacturability constraints. We demonstrate the utility of our approach by optimizing mass distribution, strength-to-weight ratio, and inverse elastic shape design objectives directly on parameterized 3D CAD models. article_number: '157' article_processing_charge: No article_type: original author: - first_name: Christian full_name: Hafner, Christian id: 400429CC-F248-11E8-B48F-1D18A9856A87 last_name: Hafner - first_name: Christian full_name: Schumacher, Christian last_name: Schumacher - first_name: Espen full_name: Knoop, Espen last_name: Knoop - first_name: Thomas full_name: Auzinger, Thomas id: 4718F954-F248-11E8-B48F-1D18A9856A87 last_name: Auzinger orcid: 0000-0002-1546-3265 - first_name: Bernd full_name: Bickel, Bernd id: 49876194-F248-11E8-B48F-1D18A9856A87 last_name: Bickel orcid: 0000-0001-6511-9385 - first_name: Moritz full_name: Bächer, Moritz last_name: Bächer citation: ama: 'Hafner C, Schumacher C, Knoop E, Auzinger T, Bickel B, Bächer M. X-CAD: Optimizing CAD Models with Extended Finite Elements. ACM Transactions on Graphics. 2019;38(6). doi:10.1145/3355089.3356576' apa: 'Hafner, C., Schumacher, C., Knoop, E., Auzinger, T., Bickel, B., & Bächer, M. (2019). X-CAD: Optimizing CAD Models with Extended Finite Elements. ACM Transactions on Graphics. ACM. https://doi.org/10.1145/3355089.3356576' chicago: 'Hafner, Christian, Christian Schumacher, Espen Knoop, Thomas Auzinger, Bernd Bickel, and Moritz Bächer. “X-CAD: Optimizing CAD Models with Extended Finite Elements.” ACM Transactions on Graphics. ACM, 2019. https://doi.org/10.1145/3355089.3356576.' ieee: 'C. Hafner, C. Schumacher, E. Knoop, T. Auzinger, B. Bickel, and M. Bächer, “X-CAD: Optimizing CAD Models with Extended Finite Elements,” ACM Transactions on Graphics, vol. 38, no. 6. ACM, 2019.' ista: 'Hafner C, Schumacher C, Knoop E, Auzinger T, Bickel B, Bächer M. 2019. X-CAD: Optimizing CAD Models with Extended Finite Elements. ACM Transactions on Graphics. 38(6), 157.' mla: 'Hafner, Christian, et al. “X-CAD: Optimizing CAD Models with Extended Finite Elements.” ACM Transactions on Graphics, vol. 38, no. 6, 157, ACM, 2019, doi:10.1145/3355089.3356576.' short: C. Hafner, C. Schumacher, E. Knoop, T. Auzinger, B. Bickel, M. Bächer, ACM Transactions on Graphics 38 (2019). date_created: 2019-11-26T14:22:09Z date_published: 2019-11-06T00:00:00Z date_updated: 2024-03-27T23:30:46Z day: '06' ddc: - '000' department: - _id: BeBi doi: 10.1145/3355089.3356576 ec_funded: 1 external_id: isi: - '000498397300007' file: - access_level: open_access checksum: 56a2fb019adcb556d2b022f5e5acb68c content_type: application/pdf creator: bbickel date_created: 2019-11-26T14:24:26Z date_updated: 2020-07-14T12:47:49Z file_id: '7119' file_name: xcad_sup_mat_siga19.pdf file_size: 1673176 relation: supplementary_material title: X-CAD Supplemental Material - access_level: open_access checksum: 5f29d76aceb5102e766cbab9b17d776e content_type: application/pdf creator: bbickel date_created: 2019-11-26T14:24:27Z date_updated: 2020-07-14T12:47:49Z description: This is the author's version of the work. file_id: '7120' file_name: XCAD_authors_version.pdf file_size: 14563618 relation: main_file title: 'X-CAD: Optimizing CAD Models with Extended Finite Elements' - access_level: open_access checksum: 0d31e123286cbec9e28b2001c2bb0d55 content_type: video/mp4 creator: bbickel date_created: 2019-11-26T14:27:37Z date_updated: 2020-07-14T12:47:49Z file_id: '7121' file_name: XCAD_video.mp4 file_size: 259979129 relation: main_file file_date_updated: 2020-07-14T12:47:49Z has_accepted_license: '1' intvolume: ' 38' isi: 1 issue: '6' language: - iso: eng month: '11' oa: 1 oa_version: Submitted Version project: - _id: 24F9549A-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '715767' name: 'MATERIALIZABLE: Intelligent fabrication-oriented Computational Design and Modeling' publication: ACM Transactions on Graphics publication_identifier: issn: - 0730-0301 publication_status: published publisher: ACM quality_controlled: '1' related_material: record: - id: '12897' relation: dissertation_contains status: public scopus_import: '1' status: public title: 'X-CAD: Optimizing CAD Models with Extended Finite Elements' type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 38 year: '2019' ... --- _id: '304' abstract: - lang: eng text: "Additive manufacturing has recently seen drastic improvements in resolution, making it now possible to fabricate features at scales of hundreds or even dozens of nanometers, which previously required very expensive lithographic methods.\r\nAs a result, additive manufacturing now seems poised for optical applications, including those relevant to computer graphics, such as material design, as well as display and imaging applications.\r\n \r\nIn this work, we explore the use of additive manufacturing for generating structural colors, where the structures are designed using a fabrication-aware optimization process.\r\nThis requires a combination of full-wave simulation, a feasible parameterization of the design space, and a tailored optimization procedure.\r\nMany of these components should be re-usable for the design of other optical structures at this scale.\r\n \r\nWe show initial results of material samples fabricated based on our designs.\r\nWhile these suffer from the prototype character of state-of-the-art fabrication hardware, we believe they clearly demonstrate the potential of additive nanofabrication for structural colors and other graphics applications." acknowledgement: This work was in part supported by King Abdullah University of Science and Technology Baseline Funding. alternative_title: - ACM Transactions on Graphics article_number: '159' article_processing_charge: No author: - first_name: Thomas full_name: Auzinger, Thomas id: 4718F954-F248-11E8-B48F-1D18A9856A87 last_name: Auzinger orcid: 0000-0002-1546-3265 - first_name: Wolfgang full_name: Heidrich, Wolfgang last_name: Heidrich - first_name: Bernd full_name: Bickel, Bernd id: 49876194-F248-11E8-B48F-1D18A9856A87 last_name: Bickel orcid: 0000-0001-6511-9385 citation: ama: Auzinger T, Heidrich W, Bickel B. Computational design of nanostructural color for additive manufacturing. ACM Transactions on Graphics. 2018;37(4). doi:10.1145/3197517.3201376 apa: Auzinger, T., Heidrich, W., & Bickel, B. (2018). Computational design of nanostructural color for additive manufacturing. ACM Transactions on Graphics. ACM. https://doi.org/10.1145/3197517.3201376 chicago: Auzinger, Thomas, Wolfgang Heidrich, and Bernd Bickel. “Computational Design of Nanostructural Color for Additive Manufacturing.” ACM Transactions on Graphics. ACM, 2018. https://doi.org/10.1145/3197517.3201376. ieee: T. Auzinger, W. Heidrich, and B. Bickel, “Computational design of nanostructural color for additive manufacturing,” ACM Transactions on Graphics, vol. 37, no. 4. ACM, 2018. ista: Auzinger T, Heidrich W, Bickel B. 2018. Computational design of nanostructural color for additive manufacturing. ACM Transactions on Graphics. 37(4), 159. mla: Auzinger, Thomas, et al. “Computational Design of Nanostructural Color for Additive Manufacturing.” ACM Transactions on Graphics, vol. 37, no. 4, 159, ACM, 2018, doi:10.1145/3197517.3201376. short: T. Auzinger, W. Heidrich, B. Bickel, ACM Transactions on Graphics 37 (2018). date_created: 2018-12-11T11:45:43Z date_published: 2018-08-01T00:00:00Z date_updated: 2023-09-11T12:46:13Z day: '01' ddc: - '000' - '535' - '680' department: - _id: BeBi doi: 10.1145/3197517.3201376 ec_funded: 1 external_id: isi: - '000448185000120' file: - access_level: open_access checksum: dcdcc955a4c1c6d2599aeebb97d2e7b9 content_type: application/pdf creator: system date_created: 2018-12-12T10:18:14Z date_updated: 2020-07-14T12:45:59Z file_id: '5334' file_name: IST-2018-1024-v1+1_NanoStructColor-Auzinger-paper.pdf file_size: 10751684 relation: main_file - access_level: open_access checksum: cae52b3a8d5e97be84771cd61ea2f75e content_type: application/pdf creator: system date_created: 2018-12-12T10:18:15Z date_updated: 2020-07-14T12:45:59Z file_id: '5335' file_name: IST-2018-1024-v1+2_NanoStructColor-Auzinger-supplemental.pdf file_size: 20755095 relation: main_file - access_level: open_access checksum: 76dd90648f75779d3f64e324b6daaffe content_type: image/jpeg creator: system date_created: 2018-12-12T10:18:16Z date_updated: 2020-07-14T12:45:59Z file_id: '5336' file_name: IST-2018-1024-v1+3_NanoStructColor-Auzinger-image.jpg file_size: 2186944 relation: main_file - access_level: open_access checksum: c3a5b775a0ecdb20ccefb8d9646ec140 content_type: application/x-7z-compressed creator: system date_created: 2018-12-12T10:18:17Z date_updated: 2020-07-14T12:45:59Z file_id: '5337' file_name: IST-2018-1024-v1+4_NanoStructColor-Auzinger-blueprint.7z file_size: 2734352 relation: main_file - access_level: open_access checksum: dcdcc955a4c1c6d2599aeebb97d2e7b9 content_type: application/pdf creator: system date_created: 2018-12-12T10:18:18Z date_updated: 2020-07-14T12:45:59Z file_id: '5338' file_name: IST-2018-1024-v2+1_NanoStructColor-Auzinger-paper.pdf file_size: 10751684 relation: main_file - access_level: open_access checksum: 76dd90648f75779d3f64e324b6daaffe content_type: image/jpeg creator: system date_created: 2018-12-12T10:18:19Z date_updated: 2020-07-14T12:45:59Z file_id: '5339' file_name: IST-2018-1024-v2+3_NanoStructColor-Auzinger-image.jpg file_size: 2186944 relation: main_file - access_level: open_access checksum: c3a5b775a0ecdb20ccefb8d9646ec140 content_type: application/x-7z-compressed creator: system date_created: 2018-12-12T10:18:20Z date_updated: 2020-07-14T12:45:59Z file_id: '5340' file_name: IST-2018-1024-v2+4_NanoStructColor-Auzinger-blueprint.7z file_size: 2734352 relation: main_file - access_level: open_access checksum: 667e91b686db41e44d855a4fb2137402 content_type: application/pdf creator: system date_created: 2018-12-12T10:18:21Z date_updated: 2020-07-14T12:45:59Z file_id: '5341' file_name: IST-2018-1024-v2+5_NanoStructColor-Auzinger-supplemental.pdf file_size: 20755762 relation: main_file - access_level: open_access checksum: dcdcc955a4c1c6d2599aeebb97d2e7b9 content_type: application/pdf creator: system date_created: 2018-12-12T10:18:22Z date_updated: 2020-07-14T12:45:59Z file_id: '5342' file_name: IST-2018-1024-v3+1_NanoStructColor-Auzinger-paper.pdf file_size: 10751684 relation: main_file - access_level: open_access checksum: 76dd90648f75779d3f64e324b6daaffe content_type: image/jpeg creator: system date_created: 2018-12-12T10:18:22Z date_updated: 2020-07-14T12:45:59Z file_id: '5343' file_name: IST-2018-1024-v3+3_NanoStructColor-Auzinger-image.jpg file_size: 2186944 relation: main_file - access_level: open_access checksum: c3a5b775a0ecdb20ccefb8d9646ec140 content_type: application/x-7z-compressed creator: system date_created: 2018-12-12T10:18:23Z date_updated: 2020-07-14T12:45:59Z file_id: '5344' file_name: IST-2018-1024-v3+4_NanoStructColor-Auzinger-blueprint.7z file_size: 2734352 relation: main_file - access_level: open_access checksum: 667e91b686db41e44d855a4fb2137402 content_type: application/pdf creator: system date_created: 2018-12-12T10:18:24Z date_updated: 2020-07-14T12:45:59Z file_id: '5345' file_name: IST-2018-1024-v3+5_NanoStructColor-Auzinger-supplemental.pdf file_size: 20755762 relation: main_file - access_level: open_access checksum: 72dce35388fb1aa7953df4d9ae3d02f1 content_type: application/vnd.openxmlformats-officedocument.presentationml.presentation creator: system date_created: 2018-12-12T10:18:25Z date_updated: 2020-07-14T12:45:59Z file_id: '5346' file_name: IST-2018-1024-v3+6_NanoStructColor-Auzinger-presentation.pptx file_size: 69698068 relation: main_file file_date_updated: 2020-07-14T12:45:59Z has_accepted_license: '1' intvolume: ' 37' isi: 1 issue: '4' language: - iso: eng month: '08' oa: 1 oa_version: Submitted Version project: - _id: 24F9549A-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '715767' name: 'MATERIALIZABLE: Intelligent fabrication-oriented Computational Design and Modeling' publication: ACM Transactions on Graphics publication_status: published publisher: ACM pubrep_id: '1028' quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/color-effects-from-transparent-3d-printed-nanostructures/ scopus_import: '1' status: public title: Computational design of nanostructural color for additive manufacturing type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 37 year: '2018' ... --- _id: '12' abstract: - lang: eng text: Molding is a popular mass production method, in which the initial expenses for the mold are offset by the low per-unit production cost. However, the physical fabrication constraints of the molding technique commonly restrict the shape of moldable objects. For a complex shape, a decomposition of the object into moldable parts is a common strategy to address these constraints, with plastic model kits being a popular and illustrative example. However, conducting such a decomposition requires considerable expertise, and it depends on the technical aspects of the fabrication technique, as well as aesthetic considerations. We present an interactive technique to create such decompositions for two-piece molding, in which each part of the object is cast between two rigid mold pieces. Given the surface description of an object, we decompose its thin-shell equivalent into moldable parts by first performing a coarse decomposition and then utilizing an active contour model for the boundaries between individual parts. Formulated as an optimization problem, the movement of the contours is guided by an energy reflecting fabrication constraints to ensure the moldability of each part. Simultaneously, the user is provided with editing capabilities to enforce aesthetic guidelines. Our interactive interface provides control of the contour positions by allowing, for example, the alignment of part boundaries with object features. Our technique enables a novel workflow, as it empowers novice users to explore the design space, and it generates fabrication-ready two-piece molds that can be used either for casting or industrial injection molding of free-form objects. article_number: '135' article_processing_charge: No author: - first_name: Kazutaka full_name: Nakashima, Kazutaka last_name: Nakashima - first_name: Thomas full_name: Auzinger, Thomas id: 4718F954-F248-11E8-B48F-1D18A9856A87 last_name: Auzinger orcid: 0000-0002-1546-3265 - first_name: Emmanuel full_name: Iarussi, Emmanuel id: 33F19F16-F248-11E8-B48F-1D18A9856A87 last_name: Iarussi - first_name: Ran full_name: Zhang, Ran id: 4DDBCEB0-F248-11E8-B48F-1D18A9856A87 last_name: Zhang orcid: 0000-0002-3808-281X - first_name: Takeo full_name: Igarashi, Takeo last_name: Igarashi - first_name: Bernd full_name: Bickel, Bernd id: 49876194-F248-11E8-B48F-1D18A9856A87 last_name: Bickel orcid: 0000-0001-6511-9385 citation: ama: 'Nakashima K, Auzinger T, Iarussi E, Zhang R, Igarashi T, Bickel B. CoreCavity: Interactive shell decomposition for fabrication with two-piece rigid molds. ACM Transaction on Graphics. 2018;37(4). doi:10.1145/3197517.3201341' apa: 'Nakashima, K., Auzinger, T., Iarussi, E., Zhang, R., Igarashi, T., & Bickel, B. (2018). CoreCavity: Interactive shell decomposition for fabrication with two-piece rigid molds. ACM Transaction on Graphics. ACM. https://doi.org/10.1145/3197517.3201341' chicago: 'Nakashima, Kazutaka, Thomas Auzinger, Emmanuel Iarussi, Ran Zhang, Takeo Igarashi, and Bernd Bickel. “CoreCavity: Interactive Shell Decomposition for Fabrication with Two-Piece Rigid Molds.” ACM Transaction on Graphics. ACM, 2018. https://doi.org/10.1145/3197517.3201341.' ieee: 'K. Nakashima, T. Auzinger, E. Iarussi, R. Zhang, T. Igarashi, and B. Bickel, “CoreCavity: Interactive shell decomposition for fabrication with two-piece rigid molds,” ACM Transaction on Graphics, vol. 37, no. 4. ACM, 2018.' ista: 'Nakashima K, Auzinger T, Iarussi E, Zhang R, Igarashi T, Bickel B. 2018. CoreCavity: Interactive shell decomposition for fabrication with two-piece rigid molds. ACM Transaction on Graphics. 37(4), 135.' mla: 'Nakashima, Kazutaka, et al. “CoreCavity: Interactive Shell Decomposition for Fabrication with Two-Piece Rigid Molds.” ACM Transaction on Graphics, vol. 37, no. 4, 135, ACM, 2018, doi:10.1145/3197517.3201341.' short: K. Nakashima, T. Auzinger, E. Iarussi, R. Zhang, T. Igarashi, B. Bickel, ACM Transaction on Graphics 37 (2018). date_created: 2018-12-11T11:44:09Z date_published: 2018-08-04T00:00:00Z date_updated: 2023-09-11T12:48:09Z day: '04' ddc: - '004' - '516' - '670' department: - _id: BeBi doi: 10.1145/3197517.3201341 ec_funded: 1 external_id: isi: - '000448185000096' file: - access_level: open_access checksum: 6a5368bc86c4e1a9fcfe588fd1f14ee8 content_type: application/pdf creator: system date_created: 2018-12-12T10:18:38Z date_updated: 2020-07-14T12:44:38Z file_id: '5360' file_name: IST-2018-1037-v1+1_CoreCavity-AuthorVersion.pdf file_size: 104225664 relation: main_file - access_level: open_access checksum: 3861e693ba47c51f3ec7b7867d573a61 content_type: application/zip creator: system date_created: 2018-12-12T10:18:39Z date_updated: 2020-07-14T12:44:38Z file_id: '5361' file_name: IST-2018-1037-v1+2_CoreCavity-Supplemental.zip file_size: 377743553 relation: main_file - access_level: open_access checksum: 490040c685ed869536e2a18f5a906b94 content_type: video/vnd.objectvideo creator: system date_created: 2018-12-12T10:18:41Z date_updated: 2020-07-14T12:44:38Z file_id: '5362' file_name: IST-2018-1037-v1+3_CoreCavity-Video.mp4 file_size: 162634396 relation: main_file - access_level: open_access checksum: be7fc8b229adda727419b6504b3b9352 content_type: image/jpeg creator: system date_created: 2018-12-12T10:18:42Z date_updated: 2020-07-14T12:44:38Z file_id: '5363' file_name: IST-2018-1037-v1+4_CoreCavity-RepresentativeImage.jpg file_size: 527972 relation: main_file file_date_updated: 2020-07-14T12:44:38Z has_accepted_license: '1' intvolume: ' 37' isi: 1 issue: '4' language: - iso: eng month: '08' oa: 1 oa_version: Submitted Version project: - _id: 24F9549A-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '715767' name: 'MATERIALIZABLE: Intelligent fabrication-oriented Computational Design and Modeling' - _id: 2508E324-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '642841' name: Distributed 3D Object Design publication: ACM Transaction on Graphics publication_status: published publisher: ACM publist_id: '8044' pubrep_id: '1037' quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/interactive-software-tool-makes-complex-mold-design-simple/ scopus_import: '1' status: public title: 'CoreCavity: Interactive shell decomposition for fabrication with two-piece rigid molds' type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 37 year: '2018' ... --- _id: '398' abstract: - lang: eng text: 'Objective: To report long-term results after Pipeline Embolization Device (PED) implantation, characterize complex and standard aneurysms comprehensively, and introduce a modified flow disruption scale. Methods: We retrospectively reviewed a consecutive series of 40 patients harboring 59 aneurysms treated with 54 PEDs. Aneurysm complexity was assessed using our proposed classification. Immediate angiographic results were analyzed using previously published grading scales and our novel flow disruption scale. Results: According to our new definition, 46 (78%) aneurysms were classified as complex. Most PED interventions were performed in the paraophthalmic and cavernous internal carotid artery segments. Excellent neurologic outcome (modified Rankin Scale 0 and 1) was observed in 94% of patients. Our data showed low permanent procedure-related mortality (0%) and morbidity (3%) rates. Long-term angiographic follow-up showed complete occlusion in 81% and near-total obliteration in a further 14%. Complete obliteration after deployment of a single PED was achieved in all standard aneurysms with 1-year follow-up. Our new scale was an independent predictor of aneurysm occlusion in a multivariable analysis. All aneurysms with a high flow disruption grade showed complete occlusion at follow-up regardless of PED number or aneurysm complexity. Conclusions: Treatment with the PED should be recognized as a primary management strategy for a highly selected cohort with predominantly complex intracranial aneurysms. We further show that a priori assessment of aneurysm complexity and our new postinterventional angiographic flow disruption scale predict occlusion probability and may help to determine the adequate number of per-aneurysm devices.' article_processing_charge: No author: - first_name: Philippe full_name: Dodier, Philippe last_name: Dodier - first_name: Josa full_name: Frischer, Josa last_name: Frischer - first_name: Wei full_name: Wang, Wei last_name: Wang - first_name: Thomas full_name: Auzinger, Thomas id: 4718F954-F248-11E8-B48F-1D18A9856A87 last_name: Auzinger orcid: 0000-0002-1546-3265 - first_name: Ammar full_name: Mallouhi, Ammar last_name: Mallouhi - first_name: Wolfgang full_name: Serles, Wolfgang last_name: Serles - first_name: Andreas full_name: Gruber, Andreas last_name: Gruber - first_name: Engelbert full_name: Knosp, Engelbert last_name: Knosp - first_name: Gerhard full_name: Bavinzski, Gerhard last_name: Bavinzski citation: ama: Dodier P, Frischer J, Wang W, et al. Immediate flow disruption as a prognostic factor after flow diverter treatment long term experience with the pipeline embolization device. World Neurosurgery. 2018;13:e568-e578. doi:10.1016/j.wneu.2018.02.096 apa: Dodier, P., Frischer, J., Wang, W., Auzinger, T., Mallouhi, A., Serles, W., … Bavinzski, G. (2018). Immediate flow disruption as a prognostic factor after flow diverter treatment long term experience with the pipeline embolization device. World Neurosurgery. Elsevier. https://doi.org/10.1016/j.wneu.2018.02.096 chicago: Dodier, Philippe, Josa Frischer, Wei Wang, Thomas Auzinger, Ammar Mallouhi, Wolfgang Serles, Andreas Gruber, Engelbert Knosp, and Gerhard Bavinzski. “Immediate Flow Disruption as a Prognostic Factor after Flow Diverter Treatment Long Term Experience with the Pipeline Embolization Device.” World Neurosurgery. Elsevier, 2018. https://doi.org/10.1016/j.wneu.2018.02.096. ieee: P. Dodier et al., “Immediate flow disruption as a prognostic factor after flow diverter treatment long term experience with the pipeline embolization device,” World Neurosurgery, vol. 13. Elsevier, pp. e568–e578, 2018. ista: Dodier P, Frischer J, Wang W, Auzinger T, Mallouhi A, Serles W, Gruber A, Knosp E, Bavinzski G. 2018. Immediate flow disruption as a prognostic factor after flow diverter treatment long term experience with the pipeline embolization device. World Neurosurgery. 13, e568–e578. mla: Dodier, Philippe, et al. “Immediate Flow Disruption as a Prognostic Factor after Flow Diverter Treatment Long Term Experience with the Pipeline Embolization Device.” World Neurosurgery, vol. 13, Elsevier, 2018, pp. e568–78, doi:10.1016/j.wneu.2018.02.096. short: P. Dodier, J. Frischer, W. Wang, T. Auzinger, A. Mallouhi, W. Serles, A. Gruber, E. Knosp, G. Bavinzski, World Neurosurgery 13 (2018) e568–e578. date_created: 2018-12-11T11:46:15Z date_published: 2018-05-01T00:00:00Z date_updated: 2023-09-11T14:12:33Z day: '01' department: - _id: BeBi doi: 10.1016/j.wneu.2018.02.096 external_id: isi: - '000432942700070' intvolume: ' 13' isi: 1 language: - iso: eng month: '05' oa_version: None page: e568-e578 publication: World Neurosurgery publication_status: published publisher: Elsevier publist_id: '7431' quality_controlled: '1' scopus_import: '1' status: public title: Immediate flow disruption as a prognostic factor after flow diverter treatment long term experience with the pipeline embolization device type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 13 year: '2018' ... --- _id: '4' abstract: - lang: eng text: We present a data-driven technique to instantly predict how fluid flows around various three-dimensional objects. Such simulation is useful for computational fabrication and engineering, but is usually computationally expensive since it requires solving the Navier-Stokes equation for many time steps. To accelerate the process, we propose a machine learning framework which predicts aerodynamic forces and velocity and pressure fields given a threedimensional shape input. Handling detailed free-form three-dimensional shapes in a data-driven framework is challenging because machine learning approaches usually require a consistent parametrization of input and output. We present a novel PolyCube maps-based parametrization that can be computed for three-dimensional shapes at interactive rates. This allows us to efficiently learn the nonlinear response of the flow using a Gaussian process regression. We demonstrate the effectiveness of our approach for the interactive design and optimization of a car body. article_number: '89' article_processing_charge: No author: - first_name: Nobuyuki full_name: Umetani, Nobuyuki last_name: Umetani - first_name: Bernd full_name: Bickel, Bernd id: 49876194-F248-11E8-B48F-1D18A9856A87 last_name: Bickel orcid: 0000-0001-6511-9385 citation: ama: Umetani N, Bickel B. Learning three-dimensional flow for interactive aerodynamic design. ACM Trans Graph. 2018;37(4). doi:10.1145/3197517.3201325 apa: Umetani, N., & Bickel, B. (2018). Learning three-dimensional flow for interactive aerodynamic design. ACM Trans. Graph. ACM. https://doi.org/10.1145/3197517.3201325 chicago: Umetani, Nobuyuki, and Bernd Bickel. “Learning Three-Dimensional Flow for Interactive Aerodynamic Design.” ACM Trans. Graph. ACM, 2018. https://doi.org/10.1145/3197517.3201325. ieee: N. Umetani and B. Bickel, “Learning three-dimensional flow for interactive aerodynamic design,” ACM Trans. Graph., vol. 37, no. 4. ACM, 2018. ista: Umetani N, Bickel B. 2018. Learning three-dimensional flow for interactive aerodynamic design. ACM Trans. Graph. 37(4), 89. mla: Umetani, Nobuyuki, and Bernd Bickel. “Learning Three-Dimensional Flow for Interactive Aerodynamic Design.” ACM Trans. Graph., vol. 37, no. 4, 89, ACM, 2018, doi:10.1145/3197517.3201325. short: N. Umetani, B. Bickel, ACM Trans. Graph. 37 (2018). date_created: 2018-12-11T11:44:06Z date_published: 2018-08-04T00:00:00Z date_updated: 2023-09-13T08:46:15Z day: '04' ddc: - '003' - '004' department: - _id: BeBi doi: 10.1145/3197517.3201325 ec_funded: 1 external_id: isi: - '000448185000050' file: - access_level: open_access checksum: 7a2243668f215821bc6aecad0320079a content_type: application/pdf creator: system date_created: 2018-12-12T10:16:28Z date_updated: 2020-07-14T12:46:22Z file_id: '5216' file_name: IST-2018-1049-v1+1_2018_sigg_Learning3DAerodynamics.pdf file_size: 22803163 relation: main_file file_date_updated: 2020-07-14T12:46:22Z has_accepted_license: '1' intvolume: ' 37' isi: 1 issue: '4' language: - iso: eng month: '08' oa: 1 oa_version: Submitted Version project: - _id: 24F9549A-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '715767' name: 'MATERIALIZABLE: Intelligent fabrication-oriented Computational Design and Modeling' publication: ACM Trans. Graph. publication_status: published publisher: ACM publist_id: '8053' pubrep_id: '1049' quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/new-interactive-machine-learning-tool-makes-car-designs-more-aerodynamic/ scopus_import: '1' status: public title: Learning three-dimensional flow for interactive aerodynamic design type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 37 year: '2018' ...