
Underspecification in Deep Learning
by

Mary Phuong

May, 2021

A thesis submitted to the
Graduate School

of the
Institute of Science and Technology Austria

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

Committee in charge:

Jozsef Csicsvari, Chair
Christoph H. Lampert

Dan Alistarh
Novi Quadrianto

Xiaojin Zhu

The thesis of Mary Phuong, titled Underspecification in Deep Learning, is approved by:

Supervisor: Christoph H. Lampert, IST Austria, Klosterneuburg, Austria

Signature:

Committee Member: Dan Alistarh, IST Austria, Klosterneuburg, Austria

Signature:

Committee Member: Novi Quadrianto, University of Sussex, Brighton, UK

Signature:

Committee Member: Xiaojin Zhu, University of Wisconsin-Madison, Madison, USA

Signature:

Defense Chair: Jozsef Csicsvari, IST Austria, Klosterneuburg, Austria

Signature:

Signed page is on file

© by Mary Phuong, May, 2021
All Rights Reserved

IST Austria Thesis, ISSN: 2663-337X

I hereby declare that this thesis is my own work and that it does not contain other people’s
work without this being so stated; this thesis does not contain my previous work without
this being stated, and the bibliography contains all the literature that I used in writing the
dissertation.

I declare that this is a true copy of my thesis, including any final revisions, as approved by
my thesis committee, and that this thesis has not been submitted for a higher degree to any
other university or institution.

I certify that any republication of materials presented in this thesis has been approved by
the relevant publishers and co-authors.

Signature:

Mary Phuong
May, 2021

Signed page is on file

Abstract

Deep learning is best known for its empirical success across a wide range of applications
spanning computer vision, natural language processing and speech. Of equal significance,
though perhaps less known, are its ramifications for learning theory: deep networks have
been observed to perform surprisingly well in the high-capacity regime, aka the overfitting
or underspecified regime. Classically, this regime on the far right of the bias-variance curve
is associated with poor generalisation; however, recent experiments with deep networks
challenge this view.

This thesis is devoted to investigating various aspects of underspecification in deep learning.
First, we argue that deep learning models are underspecified on two levels: a) any given
training dataset can be fit by many different functions, and b) any given function can be
expressed by many different parameter configurations. We refer to the second kind of
underspecification as parameterisation redundancy and we precisely characterise its extent.
Second, we characterise the implicit criteria (the inductive bias) that guide learning in the
underspecified regime. Specifically, we consider a nonlinear but tractable classification
setting, and show that given the choice, neural networks learn classifiers with a large margin.
Third, we consider learning scenarios where the inductive bias is not by itself sufficient to
deal with underspecification. We then study different ways of ‘tightening the specification’: i)
In the setting of representation learning with variational autoencoders, we propose a hand-
crafted regulariser based on mutual information. ii) In the setting of binary classification, we
consider soft-label (real-valued) supervision. We derive a generalisation bound for linear
networks supervised in this way and verify that soft labels facilitate fast learning. Finally, we
explore an application of soft-label supervision to the training of multi-exit models.

vii

Acknowledgements

First and foremost, I want to thank Christoph, for a lot of things: for his patient, empathetic
and kind mentorship, for providing the space and encouragement I needed to explore and
pursue my interests, for his understanding and support in difficult times. I deeply appreciate
his readiness to help whenever I needed help (even when I didn’t know I did). This work
would not have been possible without him.

I am grateful to my committee members Dan, Jerry and Novi for providing valuable feedback
and advice at the qualifying exam, throughout my PhD, as well as on earlier drafts of the
thesis. I additionally thank Dan for organising the deep learning theory seminar, which
helped shape my research interests, and Novi for an opportunity to discuss my work with
his group.

Parts of this thesis are based on work I did as an intern at Microsoft Research Cambridge. I
want to thank Ryota, Nate and in particular Sebastian for hosting and guiding me. I thank
Christoph for making the internship possible.

I specially want to thank (ex-)members of the MLCV group and other friends of third floor
science, for companionship and encouragement on the PhD journey. I have learnt a lot from
their feedback and perspectives. My thanks go to Alex, Alex, Alex, Amélie, Asya, Bernd,
Elias, Jan, Jonny, Mirco, Niko, Paul, Viktor and Wiktor.

I am also grateful to my ‘adoptive group’ on the second floor, namely Christian, Honza, Isma,
Kuba, Pepa and Rai, for companionship during the pandemic and for many stimulating lunch
discussions.

I thank Vlad, Elisabeth, Astrid and Ksenja for admin support, and Janos and Stephan for
accommodating my wildest wishes in the realm of scientific computing.

This work was in parts funded by the European Research Council under the European
Union’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 308036.

∗∗∗
A na záver d’akujem JeFovi, ktorý ma v mojich pseudo-intelektuálnych výpravách vždy
naplno podporuje, či už po l’udskej alebo kulinárskej stránke.

Tento stotridsat’-stranový skvost je venovaný jemu.

viii

About the Author

Mary Phuong completed a BSc in applied mathematics at Comenius University, Bratislava,
and an MSc in quantitative finance at the Vienna University of Economics and Business.
She has worked in bio-statistics and medical image analysis before joining IST Austria in
September 2016. At IST, she was lucky to be supervised by Christoph Lampert. In her
research, she developed new methods for supervised and unsupervised learning, and later
on she strove to understand existing methods theoretically. Her current area of interest is
the theory of deep learning.

ix

List of Publications

1. Mary Phuong, Max Welling, Nate Kushman, Ryota Tomioka, and Sebastian Nowozin.
The mutual autoencoder: Controlling information in latent code representations. 2018.

2. Mary Phuong and Christoph H. Lampert. Towards understanding knowledge distilla-
tion. In International Conference on Machine Learing (ICML), 2019a.

3. Mary Phuong and Christoph H. Lampert. Distillation-based training for multi-exit
architectures. In International Conference on Computer Vision (ICCV), 2019b.

4. Mary Phuong and Christoph H. Lampert. Functional vs. parametric equivalence of
ReLU networks. In International Conference on Learning Representations (ICLR),
2020.

5. Mary Phuong and Christoph H. Lampert. The inductive bias of ReLU networks on
orthogonally separable data. In International Conference on Learning Representations
(ICLR), 2021.

x

Author contributions

This section specifies the contributions of each author to the publications that make up this
thesis (listed above). Authors are referred to by their initials.

For [Phuong et al., 2018]:

• SN proposed the problem, conceived the method and designed the experiments.

• MP implemented the method and performed the experiments. She identified the
method’s shortcomings and developed it.

• Throughout, SN, NK and RT advised MP on potential paths forward.

• MP and SN wrote the paper.

For [Phuong and Lampert, 2019b]:

• MP proposed the problem and conceived the method.

• CHL designed the experiments.

• MP implemented the method and performed the experiments. She identified the
method’s shortcomings and developed it.

• Throughout, CHL advised MP on potential paths forward.

• MP and CHL wrote the paper.

For [Phuong and Lampert, 2019a, 2020, 2021]:

• MP proposed the problem and conceived the analysis. She formulated and proved the
theorems. Where relevant, she designed additional experiments and performed them.

• Throughout, CHL advised MP on potential paths forward. He suggested important
related work.

• MP wrote the paper and CHL edited it.

xi

Table of Contents

Abstract vii

Acknowledgements viii

About the Author ix

List of Publications x

Author contributions xi

Table of Contents xiii

List of Abbreviations xv

1 Introduction 1
1.1 Supervised learning . 2
1.2 Deep learning . 3

2 Functional vs. parametric equivalence of ReLU networks 5
2.1 Related work . 6
2.2 General and transparent networks . 7
2.3 Fold-sets . 8
2.4 Piece-wise linear surfaces . 8
2.5 Main result . 10
2.6 Discussion & future work . 14

3 The inductive bias of ReLU networks on orthogonally separable data 15
3.1 Setting and assumptions . 16
3.2 Main result . 17
3.3 Proof sketch . 18
3.4 Experiments . 22
3.5 Related work . 26
3.6 Conclusion . 27

4 The Mutual Autoencoder:
Controlling information in latent code representations 29
4.1 Background: Variational autoencoders . 30
4.2 VAE objective is insufficient for representation learning 31
4.3 Controlling information in latent code representations 31
4.4 The Mutual Autoencoder (MAE) . 32

xiii

4.5 Discrete data requires flexible encoder distributions 34
4.6 Experiments . 35
4.7 Related Work . 38
4.8 Conclusion . 38

5 Towards understanding knowledge distillation 39
5.1 Related work . 39
5.2 Background: Linear distillation . 40
5.3 Generalisation properties of linear distillation 41
5.4 Discussion . 48
5.5 Conclusion . 51

6 Distillation-based training for multi-exit architectures 53
6.1 Related work . 55
6.2 Distillation-based training for multi-exit architectures 56
6.3 Experiments . 59
6.4 Conclusion . 67

7 Conclusion 69
7.1 Future work . 70

Bibliography 73

A Proofs for Chapter 2 83
A.1 Piece-wise linear surfaces . 83
A.2 ReLU networks and folds . 85
A.3 General and transparent ReLU networks 87
A.4 Main result . 92

B Proofs for Chapter 3 99
B.1 Basic lemmas . 99
B.2 Proofs of main results . 103
B.3 Relationship to nonlinear max-margin . 106

C Proofs and derivations for Chapter 4 109
C.1 The infomax inequality . 109
C.2 Derivation and properties of (4.12) . 109
C.3 Gradient of the MAE objective . 110

D Proofs for Chapter 5 113
D.1 Properties of the cross-entropy loss . 113
D.2 Proof of Theorem 5.1 . 115
D.3 Proof of Theorem 5.2 . 116
D.4 Theorem 5.3 for approximate distillation 119

E Additional experiments for Chapter 6 123
E.1 Choice of teachers . 123
E.2 Semi-supervised distillation with few labels 123
E.3 Example inference times . 125

xiv

List of Abbreviations

DL Deep learning. 1, 3

ERM Empirical risk minimisation. 1–3

MAE Mutual autoencoder. 30

MI Mutual information. 30

MLE Maximum likelihood estimation. 29

MSDNet Multi-scale dense-net. 55

NAS Neural architecture search. 55

VAE Variational autoencoder. 29

xv

CHAPTER 1
Introduction

This is a thesis about (certain aspects of) statistical learning, or learning by observation. A
statistical learner aims to master some general class of problems, but is only given solutions
to a few instances of the problem, the training data. The learner’s key concern is therefore
how to generalise, i.e. how to use the solutions to previously encountered problems to
correctly infer the solution to a new problem. Many real life situations involve statistical
learning, for example estimating how late the bus will be based on our past experience,
designing a new drug based on the properties of existing drugs, or learning to anticipate a
friend’s sentences based on past conversations.

The majority of natural and artificial statistical learners instantiate an approach to learning
called empirical risk minimisation (ERM) [Vapnik, 1998, Shalev-Shwartz and Ben-David,
2014]. An ERM algorithm consists of a set of potential problem-solution mappings (hypothe-
ses), and a criterion (loss function) for evaluating how well a given hypothesis performs
on a given data point. Given a database of problem-solution pairs (training data), an ERM
algorithm returns the hypothesis with the best performance (lowest loss), averaged over the
data. Many classical and contemporary learning methods perform (approximate) ERM, and
the framework is backed by well-established theory.

In this thesis, we are specifically interested in deep learning (DL), a form of ERM where the
hypothesis class is given by large neural networks and the search for low-risk hypotheses
is carried out by local descent. Deep learning is interesting, because its behaviour often
eludes common sense and theoretical understanding: single-hidden-layer networks suffice
to approximate any continuous function [Cybenko, 1989, Hornik et al., 1989], yet in practice
deeper is better; the risk landscape is highly non-convex, yet it can be minimised by local-
descent methods; the capacity of the model class is immense, yet deep networks tend not
to overfit [Zhang et al., 2017].

We focus here on the surprising generalisation performance of deep nets in the high-capacity
regime [Belkin et al., 2019, Neyshabur et al., 2019, Novak et al., 2018]. Classical theory
decomposes the generalisation error into approximation error and statistical error. While
the approximation error becomes vanishingly small for large hypothesis classes (they more
likely contain a hypothesis close to the truth), the statistical error of a large hypothesis
class more than makes up for it, resulting in the famous U-shaped bias-variance curve.
In this view, it is impossible to learn large hypothesis classes, essentially because of too
many ‘spurious fits’ – hypotheses that by chance work well on the training data but poorly

1

1. INTRODUCTION

outside of it. This unfortunate place on the bias-variance curve is called the overfitting or
underspecified regime.

Underspecification is inherent in deep learning. It is common that there are multiple
hypotheses with zero empirical risk, yet differing markedly in their predictions outside the
training data. In such a setting, any choice seems arbitrary, but in practice deep nets can
systematically ‘guess’ a hypothesis that performs well. This is often explained in terms of a
favourable inductive bias, an implicit criterion for choosing among equal-risk hypotheses.

The work presented in this thesis addresses various aspects of underspecification in deep
learning, be it understanding its extent (Chapter 2), or characterising the implicit bias in
a tractable setting (Chapter 3). Although the implicit bias is often favourable, it is not
always so and one may wish to override it. Hence, we also discuss other ways of dealing
with underspecification: hand-crafting a regulariser (Chapter 4), or using more informative
supervision (Chapter 5). We consider an independent application of strong supervision
in Chapter 6. The remaining sections of this chapter are devoted to introducing common
background and notation.

1.1 Supervised learning

This section formalises supervised learning, the most common form of statistical learning.
We assume this setting in the entire thesis with the exception of Chapter 4.

Learning. Denote by X the set of potential inputs and by Y the set of potential outputs.
We assume there is a ‘true’ correspondence between inputs and outputs, represented by a
probability distribution P on X×Y, which is unknown to us but which we wish to approximate.
Usually this is done by searching over input-output mappings, or hypotheses h : X→ Y, for
one that matches the data well.

Formally, a supervised learning problem consists of the distribution P over X× Y, and an
evaluation criterion r that maps a hypothesis h : X→ Y and an example (x, y) ∈ X× Y to
a real value r(h, x, y) measuring how well h performs on the example (x, y). The goal of
learning is to find a hypothesis h that minimises the test risk,

E
(x,y)∼P

[r(h, x, y)], (1.1)

where it is assumed that r is known to the learner but P is not. In order to learn about the
distribution P , the learner has access to a training dataset {(xi, yi)}n

i=1 sampled iid from P .
The learner can then use the dataset to inform its choice of h.

Empirical risk minimisation. If the learner considers only members of some hypothesis
class H ⊆ YX and makes its choice by minimising the average risk over the data,

arg min
h∈H

n∑︂
i=1

r(h, xi, yi), (1.2)

we say it is an empirical risk minimiser (ERM).

In practice, few algorithms perform the minimisation globally or on the empirical risk per se;
it is more common to employ iterative local optimisation techniques on some well-behaved
(continuous, differentiable) proxy of the risk called a loss function. We consider such
algorithms as instantiations of ERM as well.

2

1.2. Deep learning

1.2 Deep learning

Deep learning is a form of ERM where the hypothesis class consists of large neural networks.
In this thesis, we study fully-connected ReLU networks as a more tractable model of deep
nets in general. We denote by ρ the ReLU function, the most commonly used nonlinearity:
ρ(u)i = max {0, ui} for i ∈ [dim(u)], where the subscript index denotes the corresponding
vector element.

ReLU network. Let X ⊆ Rd0 with d0 ≥ 2 be a nonempty open set, and let θ ≜
(W1, b1, . . . , WL, bL) be the network’s parameters, with weights Wl ∈ Rdl×dl−1 , biases
bl ∈ Rdl , and dL = 1. We denote the corresponding ReLU network by hθ : X→ R, where

hθ ≜ hL
θ ◦ ρ ◦ hL−1

θ ◦ · · · ◦ ρ ◦ h1
θ, (1.3)

and hl
θ(x) = Wl x + bl. For 1 ≤ l ≤ k ≤ L, we also introduce notation for truncations of

the network,
hl:k

θ ≜ hk
θ ◦ ρ ◦ hk−1

θ · · · ◦ ρ ◦ hl
θ. (1.4)

We will omit the subscript θ when it is clear from the context.

In some situations, it is more convenient to consider ReLU networks without biases, in
which case we set the biases to zero, bl = 0 for all l ∈ [L], and do not consider them as
parameters, θ ≜ (W1, . . . , WL).

Training. In deep learning, ERM is typically performed by numerical optimisation of some
differentiable loss function ℓ : Θ→ R of the form

ℓ(θ) ≜
n∑︂

i=1
ℓi(hθ(xi)), (1.5)

where ℓi(u) measures how well the prediction u matches the data i and varies based on
the problem. We specify the details of ℓi in the individual chapters.

Popular numerical optimisers in DL are gradient-based methods, notably (stochastic) gra-
dient descent and variants based on adaptive normalisation and/or acceleration. In our
theoretical analyses we assume optimisation by gradient flow, the continuous idealisation of
gradient descent (its limit as the step size goes to zero),

∂θ(t)
∂t

= −∇ℓ(θ(t)), (1.6)

where t ∈ [0,∞) is the time variable indexing the evolution of the parameters θ as training
progresses. The details may differ from chapter to chapter and we point them out where
necessary.

3

CHAPTER 2
Functional vs. parametric equivalence

of ReLU networks

As we alluded to in the introduction, deep learning differs from preceding machine learning
paradigms mainly in the extent of underspecification, i.e. in the number of redundant degrees
of freedom. First, a typical DL hypothesis class is so large that any given dataset can be fit
in many different ways; in other words, it is compatible with many different members of the
hypothesis class. Second, the parameterisation of deep networks is such that, additionally,
any given member of the hypothesis class can be expressed by many different parameter
configurations. We refer to the latter phenomenon as parameterisation redundancy and
study it in depth in this chapter.

Specifically, consider feed-forward ReLU networks with weight matrices W1, . . . , WL, and
biases b1, . . . , bL. For any given parameter vector θ ≜ (W1, b1, . . . , WL, bL), we wish
to identify all the other parameter vectors that represent the same function. We formalise
these as transformations of the parameter space which preserve the output behaviour of
the network h(x) = WLρ(WL−1ρ(. . . W1x + b1 . . .) + bL−1) + bL for all inputs x in some
domain X. Two such transformations are known for feed-forward ReLU architectures:

1. Permutation of units (neurons) within a layer, i.e. for some permutation matrix P,

Wl ← PWl, bl ← Pbl, (2.1)
Wl+1 ←Wl+1P−1. (2.2)

2. Positive rescaling of all incoming weights of a unit coupled with inverse rescaling of its
outgoing weights. Applied to a whole layer, with potentially different scaling factors
arranged into a diagonal matrix M, this can be written as

Wl ←MWl, bl ←Mbl, (2.3)
Wl+1 ←Wl+1M−1. (2.4)

In this chapter, we will show (for architectures with non-increasing widths) that permutation
and rescaling are in fact the only function-preserving weight transformations. For any
eligible architecture, we explicitly construct a neural network such that any other network
that implements the same function can be obtained from the original one by the application
of permutation and rescaling. Stated formally:

5

2. FUNCTIONAL VS. PARAMETRIC EQUIVALENCE OF RELU NETWORKS

Theorem 2.1. Consider a bounded open nonempty domain X ⊆ Rd0 and any archi-
tecture (d0, . . . , dL) with d0 ≥ d1 ≥ · · · ≥ dL−1 ≥ 2, dL = 1. For this architecture,
there exists a ReLU network hθ : X → R, or equivalently a setting of the weights
θ ≜ (W1, b1, . . . , WL, bL), such that for any ‘general’ ReLU network hη : X→ R (with the
same architecture) satisfying hθ(x) = hη(x) for all x ∈ X, there exist permutation matrices
P1, . . . PL−1, and positive diagonal matrices M1, . . . , ML−1, such that

W1 = M1P1W′
1, b1 = M1P1b′

1,

Wl = MlPlW′
lP−1

l−1M−1
l−1, bl = MlPlb′

l, l ∈ {2, . . . , L− 1}, (2.5)
WL = W′

LP−1
L−1M−1

L−1, bL = b′
L,

where η ≜ (W′
1, b′

1, . . . , W′
L, b′

L) are the parameters of hη.

In the above, ‘general’ networks is a class of networks meant to exclude degenerate cases.
We give a more precise definition in Section 2.2; for now it suffices to note that almost all
networks are general.

The result shows there are only two ways in which parameterisation redundancy can
systematically arise.

In the following sections, we delve deeper into the proof, which relies on a geometric
understanding of prediction surfaces of ReLU networks. These surfaces are piece-wise
linear functions, with non-differentiabilities or ‘folds’ between linear regions. It turns out that
folds carry a lot of information about the parameters of a network, so much in fact, that
some networks are uniquely identified (up to permutation and rescaling) by the function they
implement. In the following sections, we introduce in more detail the concept of a fold-set and
describe its geometric structure for a subclass of ReLU networks. The chapter culminates
in a proof sketch of the main result. The full proof, including proofs of intermediate results,
is included in Appendix A.

2.1 Related work

The functional equivalence of neural networks is a well-researched topic in classical connec-
tionist literature. The problem was first posed by Hecht-Nielsen [1990], and soon resolved for
feed-forward networks with the tanh activation function by Chen et al. [1993], who showed
that any smooth transformation of the weight space that preserves the function of all neural
networks is necessarily a composition of permutations and sign flips. For the same class of
networks, Fefferman and Markel [1994] showed a somewhat stronger result: knowledge
of the input-output mapping of a neural network determines both its architecture and its
weights, up to permutations and sign flips. Similar results have been proven for single-layer
networks with a saturating activation function such as sigmoid or RBF [Kůrková and Kainen,
1994], as well as single-layer recurrent networks with a smooth activation function [Albertini
and Sontag, 1993a,b].

To the best of our knowledge, no such theoretical results exist for networks with the ReLU
activation, which is non-saturating, asymmetric and non-smooth. Broadly related is the
recent work by Petersen et al. [2020] and Berner et al. [2019] who study whether two neural
networks (ReLU or otherwise) that are close in the functional space have parameterisations
that are close in the weight space. This is called inverse stability. In contrast, we are

6

2.2. General and transparent networks

interested in ReLU networks that are functionally identical, and ask about all their possible
parameterisations.

In terms of proof technique, our approach is based on the geometry of piece-wise linear
functions, specifically the boundaries between linear regions. The intuition for this kind of
analysis has previously been presented by Raghu et al. [2017] and Serra et al. [2018], and
somewhat similar proof techniques to ours have been used by Hanin and Rolnick [2019] in
the context of counting the number of linear decision regions.

Finally, the sets of equivalent parametrisations can be viewed as symmetries in the weight
space, with implications for optimisation. Multiple authors, including e.g. Neyshabur et al.
[2015], Badrinarayanan et al. [2016], Stock et al. [2019], have observed that the naive loss
gradient is sensitive to reparametrisation by scaling, and proposed alternative, scaling-
invariant optimisation procedures.

2.2 General and transparent networks

This section introduces two important classes of ReLU networks that we refer to throughout
the chapter.

General ReLU network. In this chapter, we restrict our attention to so-called general
ReLU networks. Intuitively, a general network is one that satisfies a number of non-
degeneracy properties, such as all weight matrices having non-zero entries and full rank, no
two network neurons exactly cancelling each other out, etc. It can be shown1 that almost all
ReLU networks are general. In other words, a sufficient condition for a ReLU network to be
general with probability one is that its weights are sampled from a distribution with a density.

More formally, a general ReLU network is one that satisfies the following three conditions.

1. For any neuron (l, i), the local optima of h1:l
i do not have value exactly zero.

2. For all k ≤ l and all diagonal matrices (Ik, . . . , Il) with entries in {0, 1},

rank (IlWlIl−1 · · · IkWk) = min {dk−1, rank(Ik), . . . , rank(Il−1), rank(Il)}. (2.6)

3. For any two neurons (l, i), (k, j), any linear region R1 ⊆ X of h1:l
i , and any linear

region R2 ⊆ X of h1:k
j , the linear functions implemented by h1:l

i on R1 and h1:k
j on R2

are not multiples of each other.

General networks are convenient to study, as they exclude many degenerate special cases.

The second important class of ReLU networks are so-called transparent networks. Their
significance as well as their name will become clear in the next section. For now, we state
the definition.

Transparent ReLU network. A ReLU network h : X → R is called transparent if for all
x ∈ X and l ∈ [L− 1], there exists i ∈ [dl] such that h1:l

i (x) ≥ 0. In words, we require that
for any input, at least one neuron on each layer is active.

1See Appendix, Lemmas A.10, A.11 and A.12.

7

2. FUNCTIONAL VS. PARAMETRIC EQUIVALENCE OF RELU NETWORKS

Figure 2.1: A piece-wise linear surface of order one, two and three.3

2.3 Fold-sets

We now introduce the concept of fold-sets, which is key to our understanding of ReLU
networks and their prediction surfaces. Since ReLU networks are piece-wise linear functions,
a great deal about them is revealed by the boundaries between individual linear regions. A
network’s fold-set is simply the union of all these boundaries.

More formally, if X is an open set, and f : X → R is any continuous, piece-wise linear
function, we define the fold-set of f , denoted by F(f), as the set of all points at which f is
non-differentiable.

It turns out there is a class of networks whose fold-sets are especially easy to understand;
these are the ones we have termed transparent. For transparent networks, we have the
following characterisation of the fold-set (which also motivates the name ‘transparent’).

Lemma 2.1. If h : X→ R is a general and transparent ReLU network, then

F(h) =
⋃︂
l,i

{︂
x |h1:l

i (x) = 0
}︂
. (2.7)

To appreciate the significance of the lemma, suppose we are given some transparent
ReLU network function h and we want to infer its parameters. This lemma shows that
the knowledge of the end-to-end mapping h ≜ h1:L in fact gives us information about the
network’s hidden units h1:l

i (hence ‘transparent’). Moreover, this information is very explicit:
we observe the units’ zero-level sets, which in the case of a linear unit on a full-dimensional
space already determines the unit’s parameters up to rescaling2. Of course, dealing with
piece-wise linearity and disambiguating the union into its constituent zero-level sets remains
a challenge, which we deal with in upcoming sections.

2.4 Piece-wise linear surfaces

In this section, we provide a geometric description of fold-sets of transparent networks.
Intuitively, the fold-sets look like the sets shown in Figure 2.1. The first-layer neurons of a
network are linear functions, so the component

⋃︁
i {x |h1:1

i (x) = 0} of the fold-set (2.7) is a
union of hyperplanes, illustrated by the blue lines in Figure 2.1. These hyperplanes partition
the input space into a number of regions that each correspond to a different activation

2See Appendix, Lemma A.19.
3A similar figure has appeared in the work of Raghu et al. [2017].

8

2.4. Piece-wise linear surfaces

Figure 2.2: A piece-wise linear surface with few intersec-
tions between piece-wise hyperplanes. From the fold-set
alone (right) it is not possible to determine if a hyperplane
emerged from the first layer (left, blue) or from the second
one (left, orange).

Figure 2.3: Greedy layer
assignment to the piece-
wise linear surface in Fig-
ure 2.1.

pattern. For a fixed activation pattern, or equivalently on each region, the second-layer
neurons are linear, so their zero-level sets

⋃︁
i {x |h1:2

i (x) = 0} are composed of piece-wise
hyperplanes on the partition induced by the first-layer neurons. This is shown by the orange
lines in Figure 2.1. More generally, the lth-layer zero-level sets

⋃︁
i

{︂
x |h1:l

i (x) = 0
}︂

consist
of piece-wise hyperplanes on the partition induced by all lower-layer neurons. This yields
a fold-set that looks like the set in the right pane of Figure 2.1, but potentially much more
complicated.

We now define these concepts more precisely.

Piece-wise hyperplane. Let P be a partition of X. We say H ⊆ X is a piece-wise
hyperplane with respect to partition P, if H is nonempty and there exist (w, b) ̸= (0, 0) and
P ∈ P such that H = {x ∈ P |w⊺x + b = 0}.

Piece-wise linear surface. A set S ⊆ X is called a piece-wise linear surface on X of
order κ if it has a representation of the form S = ⋃︁

l∈[κ],i∈[nl] H
l
i, where each Hl

i is a piece-
wise hyperplane with respect to the partition induced by

⋃︁
k∈[l−1],j∈[nk] H

k
j , and no number

smaller than κ admits such a representation.

Using these definitions, the following lemma formalises the intuition behind Figure 2.1.

Lemma 2.2. If h is a general and transparent ReLU network, then its fold-set is a piece-wise
linear surface of order at most L− 1.

The final ingredient we will need to be able to reason about the parameterisation of ReLU
networks is a more precise characterisation of the fold-set, in particular, the dependence
structure between individual piece-wise hyperplanes. For example, consider the piece-wise
linear surface in Figure 2.1 and compare it to the one in Figure 2.2. Suppose as before
that the blue hyperplanes come from first-layer neurons, the orange hyperplanes come
from second-layer neurons, and the black hyperplanes come from third-layer neurons. The
difference between Figure 2.1 and Figure 2.2 is that if we observe only the fold-set, i.e. only
the union of the zero-level sets over all layers (as shown in the right pane of Figure 2.2),
then in the case of Figure 2.2, it is impossible to know which folds come from which layers.
For instance, the blue folds and the orange folds could be assigned to the first and second

9

2. FUNCTIONAL VS. PARAMETRIC EQUIVALENCE OF RELU NETWORKS

layer almost arbitrarily; there is not enough information (i.e. intersection) in the fold-set to tell
which is which. In contrast, the piece-wise linear surface in the rightmost pane of Figure 2.1
could in principle be disambiguated into first-, second- and third- layer folds. Here is a
possible disambiguation procedure:

1. Take the largest possible union of hyperplanes that is a subset of the fold-set, and
assign the hyperplanes to layer one.

2. Take all piece-wise hyperplanes with respect to the partition induced by the first-layer
folds, and assign them to layer two.

3. Take all piece-wise hyperplanes with respect to the partition induced by the first- and
second- layer folds, and assign them to layer three.

This procedure is not guaranteed to assign all folds to their original layers because it ignores
how piece-wise hyperplanes are connected; for example for the piece-wise linear surface in
Figure 2.1, the procedure yields the layer assignment shown in Figure 2.3. However, it is
sufficient for our purposes, and it is easier to work with mathematically.

Formally, for a piece-wise linear surface S, we denote

□kS :=
⋃︂
{S′ ⊆ S | S′ is a piece-wise linear surface of order at most k}. (2.8)

One can show4 that □kS is itself a piece-wise linear surface of order at most k, so one
can think of □kS as the ‘largest possible’ subset of S that is a piece-wise linear surface of
order at most k. For the piece-wise linear surface in Figure 2.3, the set □1S consists of the
blue hyperplanes, □2S consists of the blue and the orange (piece-wise) hyperplanes, and
□3S = S.

This definition allows us to uniquely decompose S into its piece-wise hyperplanes. Let
S = ⋃︁

l∈[κ],i∈[nl] H
l
i be any representation of S in terms of its piece-wise hyperplanes. We say

the representation is canonical if each Hl
i is distinct and

⋃︁
l∈[k],i∈[nl] H

l
i = □kS for all k ∈ [κ].

One can show5 that such a representation exists and is unique up to subscript indexing.
Importantly, it assigns a unique ‘layer’ to each piece-wise hyperplane, its superscript.

The dependency graph (see also Figure 2.4) is a way to formally describe the dependencies
between piece-wise hyperplanes.

Dependency graph. Let S = ⋃︁
l∈[κ],i∈[nl] H

l
i be the canonical representation of S. The

dependency graph of S is the directed graph that has the piece-wise hyperplanes
{︂
Hl

i

}︂
l,i

as vertices, and has an edge Hl
i → Hk

j iff l < k and relint Hl
i ∩ cl Hk

j ̸= ∅. That is, there is
and edge Hl

i → Hk
j if Hk

j ‘depends on’ or ‘bends at’ Hl
i.

2.5 Main result

With all the necessary concepts in place, we now put the pieces together and explain the
proof idea behind the main result. We restate the theorem here for the reader’s convenience.

4See Appendix, Lemma A.1.
5See Appendix, Lemmas A.5 and A.6.

10

2.5. Main result

H1
1 H1

2

H2
1 H2

2 H2
3 H2

4

H3
1 H3

2

Figure 2.4: A piece-wise linear surface in canonical form and its dependency graph.

Theorem 2.1. Consider a bounded open nonempty domain X ⊆ Rd0 and any architecture
(d0, . . . , dL) with d0 ≥ d1 ≥ · · · ≥ dL−1 ≥ 2, dL = 1. For this architecture, there exists a
ReLU network hθ : X→ R such that for any general ReLU network hη : X→ R (with the
same architecture) satisfying hθ(x) = hη(x) for all x ∈ X, there exist permutation matrices
P1, . . . PL−1, and positive diagonal matrices M1, . . . , ML−1, such that

W1 = M1P1W′
1, b1 = M1P1b′

1,

Wl = MlPlW′
lP−1

l−1M−1
l−1, bl = MlPlb′

l, l ∈ {2, . . . , L− 1}, (2.9)
WL = W′

LP−1
L−1M−1

L−1, bL = b′
L,

where (W1, b1, . . . , WL, bL) are the parameters of hθ, and (W′
1, b′

1, . . . , W′
L, b′

L) are the
parameters of hη.

In other words, for architectures with non-increasing widths, there exists a ReLU network h
such that knowledge of the input-output mapping h determines the network’s parameters
uniquely up to permutation and scaling.

The idea behind the proof is as follows. Suppose we are given the function h. Then we
also know its fold-set F(h), and if h is general and transparent, the fold-set is a piece-
wise linear surface (by Lemma 2.2) of the form F(h) = ⋃︁

l,i

{︂
x |h1:l

i (x) = 0
}︂

. As we have
mentioned earlier, this union of zero-level sets contains a lot of information about the
network’s parameters, provided one can disambiguate the union to obtain the zero-level
sets of individual neurons.

This disambiguation of the union is crucial, but is impossible in general. To see why, consider
the first-layer neurons: given F(h), we want to identify

⋃︁
i {x |h1:1

i (x) = 0}. We know that⋃︁
i {x |h1:1

i (x) = 0} is a union of d1 hyperplanes that is a subset of □1F(h), so if □1F(h) is
a union of d1 hyperplanes, we are done. In general however, F(h) may contain more than
d1 hyperplanes, such as for example in Figure 2.2. In such a setting it is impossible to tell
which hyperplanes come from the first layer.

The key insight here is the following: even though, say, a last-layer neuron can create a fold
that looks like a hyperplane, this hyperplane cannot have any dependencies, or descendants
in the dependency graph. This follows from the fact that the layer is the last. More generally,
if a (piece-wise) hyperplane has a chain of descendants of length m, it must come from a
layer that is at least m layers below the last one. Formally, we have the following lemma.

11

2. FUNCTIONAL VS. PARAMETRIC EQUIVALENCE OF RELU NETWORKS

Lemma 2.3. Let h : X→ R be a general ReLU network. Denote S := ⋃︁
l∈[λ],i∈[dl]

{︂
x |h1:l

i (x) = 0
}︂

and let S = ⋃︁
k∈[κ],j∈[nk] H

k
j be the canonical representation of S. Then for all Hk

j there exists
a neuron (l, i) with l ≥ k such that Hk

j ⊆
{︂
x |h1:l

i (x) = 0
}︂

. Moreover, if the dependency
graph of S contains a directed path of length m starting at Hk

j , then l ≤ λ−m.

Main proof idea. This lemma motivates the main idea of the proof. We explicitly construct
a network h such that the dependency graph of its fold-set is well connected. More precisely,
we ensure that each of the hyperplanes corresponding to first-layer neurons has a chain of
descendants of length L− 2. This implies by Lemma 2.3 that the first-layer hyperplanes
can be identified as such, using only the information contained in the fold-set. One can
show that this is sufficient to recover the parameters W1, b1, up to permutation and scaling.
To extend the argument to higher-layers, we then consider the truncated network hl:L. In
hl:L, layer l becomes the first layer, and we apply the same reasoning as above to recover
Wl, bl.

The next lemma shows that a network with a ‘well connected’ dependency graph exists.
In what follows, f |A denotes the restriction of a function f to a domain A, and Xl

θ ≜{︂
ρ(h1:l

θ (x)) |x ∈ X
}︂

is the set of all possible inputs to the truncated network hl:L. For

notational convenience, we define X0
θ ≜ X.

Lemma 2.4. For a bounded open nonempty domain X and architecture (d0, . . . , dL) with
d0 ≥ d1 ≥ · · · ≥ dL−1 ≥ 2, dL = 1, there exists a general transparent ReLU network
h : X→ R such that for l ∈ [L− 1], the fold-set F(hl:L|intXl−1) is a piece-wise linear surface
whose dependency graph contains dl directed paths of length (L − 1 − l) with distinct
starting vertices.

Theorem 2.1 then follows by the inductive argument outlined above.

Proof sketch of Theorem 2.1. Let hθ be the network from Lemma 2.4. One can show
that if hθ is transparent, and hη(x) = hθ(x) for all x ∈ X, then also hη is transparent, and
all the truncated networks hl:L

θ , hl:L
η are transparent.

We proceed by induction. Let l = 1. Then we have

hl:L
θ |intXl−1

θ
≡ hθ ≡ hη ≡ hl:L

η |intXl−1
θ

(2.10)

which implies F(hl:L
θ |intXl−1

θ
) = F(hl:L

η |intXl−1
θ

). (For notational convenience, we will omit
the domain restriction for now.) Because both networks are general and transparent, the
fold-sets are representable as unions of the respective zero-level sets, and we obtain⋃︂

k∈[L−l],j∈[dk]

{︂
x |hl:l−1+k

θ [j](x) = 0
}︂

=
⋃︂

k∈[L−l],j∈[dk]

{︂
x |hl:l−1+k

η [j](x) = 0
}︂

(2.11)

This is a piece-wise linear surface, whose dependency graph by Lemma 2.4 contains dl

directed paths of length (L − 1 − l) with distinct starting vertices. Denote these vertices
H1, . . . ,Hdl

. By Lemma 2.3, Hi ⊆
{︂
x |hl:l−1+λ

θ [ι](x) = 0
}︂

for some (λ, ι) with λ ≤ (L −
l) − (L − 1 − l) = 1. We thus obtain

⋃︁
i∈[dl] Hi ⊆

⋃︁
i∈[dl]

{︂
x |hl

θ[ι](x) = 0
}︂

, where on the
left-hand side we have a union of dl hyperplanes, and on the right-hand side we have a

12

2.5. Main result

union of at most dl hyperplanes. It follows that the two sides are equal, and by applying the
same argument to hη, we get⋃︂

i∈[dl]

{︂
x |hl

θ[i](x) = 0
}︂

=
⋃︂

i∈[dl]

{︂
x |hl

η[i](x) = 0
}︂
. (2.12)

Therefore there must exist a permutation π : [dl]→ [dl] such that{︂
x |hl

θ[i](x) = 0
}︂

=
{︂
x |hl

η[π(i)](x) = 0
}︂

(2.13)

for all i. One can show6 that this implies the existence of scalars m1, . . . mdl
, such that

(Wl[i, :], bl[i]) = mi(W′
l[π(i), :], b′

l[π(i)]). (2.14)

We know that mi ̸= 0 because the folds
{︂
x |hl

θ[i](x) = 0
}︂
,
{︂
x |hl

η[i](x) = 0
}︂
, are nonempty;

otherwise
⋃︁

i∈[dl] Hi could not be a union of dl hyperplanes. We have thus shown that there
exists a permutation matrix Pl ∈ Rdl×dl and a nonzero-entry diagonal matrix Ml ∈ Rdl×dl

such that Wl = MlPlW′
l and bl = MlPlb′

l. One can also show that the scalars mi are
positive.7

For the inductive step, let l ∈ {2, . . . , L− 1}, and assume that there exist permutation
matrices P1, . . . , Pl−1, and positive-entry diagonal matrices M1, . . . , Ml−1, such that (2.9)
holds up to layer l − 1. Then h1:l−1

θ ≡Ml−1Pl−1h
1:l−1
η . Since the end-to-end mappings are

the same, h1:L
θ ≡ h1:L

η , it follows that the truncated mappings satisfy

hl:L
θ |intXl−1

θ
≡
(︂
hl:L

η ◦P−1
l−1M−1

l−1

)︂⃓⃓⃓
intXl−1

θ

≡ hl:L
η̃ |intXl−1

θ
, (2.15)

where η̃ := (W′
lP−1

l−1M−1
l−1, b′

l, W′
l+1, b′

l+1, . . . , W′
L, b′

L). We therefore apply the same
argument to hl:L

θ |intXl−1
θ

and hl:L
η̃ |intXl−1

θ
as we presented above for the case l = 1. We obtain

that there exists a permutation matrix Pl ∈ Rdl×dl and a positive-entry diagonal matrix
Ml ∈ Rdl×dl such that

Wl = MlPlW′
lP−1

l−1M−1
l−1, bl = MlPlb′

l. (2.16)

Finally, consider the last layer. We know that h1:L−1
θ ≡ ML−1PL−1h

1:L−1
η , which implies

hL
θ ≡ hL

η ◦P−1
L−1M−1

L−1, i.e. hL
θ and hL

η ◦P−1
L−1M−1

L−1 are identical linear functions supported
on the full-dimensional domain XL−1

θ . It follows that WL = W′
LP−1

L−1M−1
L−1 and bL = b′

L.

Discussion of assumptions. Most of the theorem’s assumptions have their origin in
Lemma 2.4. The reason we restrict the domain of hl:L to the interior of Xl−1 is that we
want hl:L to be defined on an open set (otherwise fold-sets become unwieldy). For similar
reasons, we study only architectures with non-increasing widths; otherwise intXl−1 may be
empty. We conjecture that the theorem does not hold for more general architectures. If it
does, the proof will likely go beyond fold-sets.

To guarantee transparency, our construction is such that for each input x ∈ X and layer
l ∈ [L− 1], either h1:l

1 (x) > 0 or h1:l
2 (x) > 0. Transparency could in principle be achieved

6See Appendix, Lemma A.19.
7See Appendix, Theorem A.1.

13

2. FUNCTIONAL VS. PARAMETRIC EQUIVALENCE OF RELU NETWORKS

with just a single neuron, but it would have to be positive everywhere. This is why we impose
dl ≥ 2. Guaranteeing transparency for the first layer (whose inputs are not constrained to
the positive quadrant) also necessitates boundedness of X. Boundedness can be lifted if
we consider a slightly modified definition of transparency; proofs become more complicated
though and we do not consider this crucial.

Almost all of the proof carries over to the case of leaky ReLU activations (where ρ is defined
as ρ(u)i = max {αui, ui} for some small α > 0). The part that does not carry over is our
proof that Ml has only positive entries on the diagonal: In this part, we compare the slope
of hl:L

θ for inputs on the positive and negative side of a given ReLU neuron, and notice
that the negative-side slope is ‘singular’ in the sense that some basis directions have zero
magnitude. This particular argument does not work for the leaky ReLU, though we cannot
rule out that a simple workaround exists.

2.6 Discussion & future work

In this chapter, we have shown that for architectures with non-increasing widths, certain
ReLU networks are almost uniquely identified by the function they implement. The result
suggests that the function-equivalence classes of ReLU networks are surprisingly small, i.e.
there may be only little redundancy in the way ReLU networks are parameterised, contrary
to what is commonly believed.

This apparent contradiction could be explained in a number of ways:

• It could be the case that even though exact equivalence classes are small, approximate
equivalence is much easier to achieve. That is, it could be that ∥hθ − hη∥ ≤ ϵ is
satisfied by a disproportionately larger class of parameters η than ∥hθ − hη∥ = 0.
This issue is related to the so-called inverse stability of the realisation map of neural
nets, which is not yet well understood.

• Another possibility is that the kind of networks we consider in this paper is not
representative of networks typically encountered in practice, i.e. it could be that
‘typical networks’ do not have well connected dependency graphs, and are therefore
not easily identifiable.

• Finally, we have considered only architectures with non-increasing widths, whereas
some previous theoretical work has assumed much wider intermediate layers com-
pared to the input dimension. It is possible that parameterisation redundancy is much
larger in such a regime compared to ours. However, gains from over-parameterisation
have also been observed in practical settings with architectures not unlike those
considered here.

We consider these questions important directions for further research. We also hypothesise
that our analysis could be extended to convolutional and recurrent networks, and to other
piece-wise linear activation functions such as leaky ReLU.

14

CHAPTER 3
The inductive bias of ReLU networks on

orthogonally separable data

We now turn to the problem of understanding the inductive bias of ReLU networks: from the
many zero-risk hypotheses, how does the learning algorithm decide which one to return?

This problem is actively investigated in the community, and the implicit bias has already
been worked out for many linear models.1 Notably, Soudry et al. [2018] consider a logistic
regression classifier trained on linearly separable data, and show that the normalised weight
vector converges to the max-margin direction. Building on their work, Ji and Telgarsky
[2019a] consider deep linear networks, also trained on linearly separable data, and show
that the normalised end-to-end weight vector converges to the max-margin direction. They
in fact show that all first-layer neurons converge to the same ‘canonical neuron’ (which
points in the max-margin direction). Although such impressive progress on linear models
has spurred attempts at nonlinear extensions, the problem is much harder and analogous
nonlinear results have been elusive.

In this chapter, we provide the first such inductive-bias result for ReLU networks trained on
‘easy’ datasets. Specifically, we

• propose orthogonal separability of datasets as a stronger form of linear separability
that facilitates the study of ReLU network training,

• prove that a two-layer ReLU network trained on an orthogonally separable dataset
learns a function with two distinct groups of neurons, where all neurons in each group
converge to the same ‘canonical neuron’,

• characterise the directions of the canonical neurons, which turn out to be the max-
margin directions for the positive and the negative data subset.

The proof is based on the recently introduced concept of extremal sectors [Maennel et al.,
2018] which govern the early phase of training. We prove a precise characterisation of
extremal sectors for orthogonally separable datasets, and an invariance property which
ensures that the network’s activation pattern becomes fixed at some point during training.
The latter allows us to treat ReLU networks late in training as ensembles of linear networks,
which are much more tractable.

1A more thorough overview of related work can be found in Section 3.5.

15

3. THE INDUCTIVE BIAS OF RELU NETWORKS ON ORTHOGONALLY SEPARABLE DATA

3.1 Setting and assumptions

In this section, we introduce the learning scenario including the assumptions we make
about the dataset, the model, and the training procedure. We consider binary classification.
Denote the training data {(xi, yi)}n

i=1 with xi ∈ Rd and yi ∈ {±1} for all i ∈ [n]. We denote
by X ∈ Rd×n the matrix with {xi} as columns and by y ∈ Rn the vector with {yi} as entries.

Orthogonally separable data. A binary classification dataset (X, y) is called orthogo-
nally separable if for all i, j ∈ [n],

x⊺
i xj > 0, if yi = yj,

x⊺
i xj ≤ 0, if yi ̸= yj.

(3.1)

In other words, a dataset is orthogonally separable iff it is linearly separable, and any training
example xi can serve as a linear separator. Geometrically, this means that examples with
yi = 1 (‘positive examples’) and examples with yi = −1 (‘negative examples’) lie in opposite
orthants.

Two-layer ReLU network. We consider a two-layer width-p fully-connected ReLU network
without biases, parameterised by θ ≜ (W1, W2) ≜ (W, a⊺),

hθ : Rd → R,

hθ(x) ≜ a⊺ρ(Wx),
(3.2)

where W ≜ [w1, . . . wp]⊺ ∈ Rp×d and a ≜ [a1, . . . , ap]⊺ ∈ Rp are the first- and second-layer
weights of the network, and ρ is the element-wise ReLU function, ρ(u)i = max {0, ui}. We
will often view the network as a collection of neurons, {(aj, wj)}p

j=1.

Cross-entropy loss. We assume a training loss of the form

ℓ(θ) ≜
n∑︂

i=1
ℓi(hθ(xi)), ℓi(u) ≜ log(1 + exp (−yiu)); (3.3)

this is the standard empirical cross-entropy loss. More generally, our results hold when the
loss is differentiable, ℓ′

i is bounded and Lipschitz continuous, and satisfies −yiℓ
′
i(u) > 0 for

all u ∈ R.

Gradient flow training. We assume the loss is optimised by gradient descent with in-
finitesimally small step size, also known as gradient flow. Under the gradient flow dynamics,
the parameter trajectory is an absolutely continuous curve {θ(t) | t ≥ 0} satisfying the
differential inclusion

∂θ(t)
∂t
∈ −∂ℓ(θ(t)), for almost all t ∈ [0,∞), (3.4)

where ∂ℓ denotes the Clarke subdifferential [Clarke, 1975, Clarke et al., 2008] of ℓ, an
extension of the gradient to not-everywhere differentiable functions,

∂ℓ(θ) ≜ conv
{︃

lim
k→∞
∇ℓ(θk)

⃓⃓⃓⃓
θk → θ

}︃
. (3.5)

θ(t) is the value of the parameters at time t, and we will use the suffix (t) more generally to
denote the value of some function of θ at time t.

16

3.2. Main result

Near-zero balanced initialisation. We assume that the neurons {wj} are initialised iid
from the Gaussian distribution and then rescaled such that ∥wj∥ ≤ λ, where λ > 0 is
a small constant. That is, wj = λjvj/∥vj∥ for vj

iid∼ N(0, I) and arbitrary λj satisfying
λj ∈ (0, λ]. We also assume that aj ∈ {±λj}. These technical conditions ensure that the
neurons are balanced and small in size, ∥wj∥ = |aj| ≈ 0, which simplifies the calculations
involved in the analysis of gradient flow.

Support examples span the full space. We assume that the support examples of the
positive data subset {xi | yi = 1} span the entire Rd, and similarly that the support examples
of the negative data subset {xi | yi = −1} span Rd. (We formally define support examples
after introducing some more notation below.)

3.2 Main result

Under the assumptions of Section 3.1, the network converges to a linear combination of
two max-margin neurons. Specifically, given a dataset (X, y), define the positive and the
negative max-margin vectors w+, w− ∈ Rd as

w+ = arg min
w

∥w∥2 subject to w⊺xi ≥ 1 for i : yi = 1, (3.6)

w− = arg min
w

∥w∥2 subject to w⊺xi ≥ 1 for i : yi = −1. (3.7)

We call examples which attain equality in eqs. (3.6) and (3.7) positive support examples
and negative support examples respectively. We now state the main result.

Theorem 3.1. Let hθ be a two-layer width-p ReLU network trained by gradient flow with the
cross-entropy loss, initialised near-zero and balanced. Consider an orthogonally separable
dataset (X, y) such that its positive support examples span Rd, and its negative support
examples also span Rd. For almost all such datasets2 and with probability 1− 1/2p over the
random initialisation,⃦⃦⃦⃦

⃦ W(t)
∥W(t)∥F

− (uw⊺
+ + zw⊺

−)
⃦⃦⃦⃦
⃦

F

→ 0, as t→∞, (3.8)

for some u, z ∈ Rp
+ such that either ui = 0 or zi = 0 for all i ∈ [p]. Also,⃦⃦⃦⃦
⃦ a(t)
∥a(t)∥ − (u∥w+∥ − z∥w−∥)

⃦⃦⃦⃦
⃦ → 0, as t→∞. (3.9)

The theorem says that each neuron (row of W), properly normalised, converges either to
a scalar multiple of the positive max-margin direction, uiw+, or to a scalar multiple of the
negative max-margin direction, ziw−. In other words, there are asymptotically only two
distinct types of neurons, and the network could in principle be pruned down to a width of
just two. These two ‘canonical neurons’ moreover have an explicit characterisation, given by
eqs. (3.6) and (3.7).

As for the second-layer weights, the magnitude of each aj equals the norm of the respective
wj , and the sign of aj is +1 if wj approaches w+ and −1 if wj approaches w−.

2Formally, this means that if {xi} are sampled from any distribution with a density wrt. the Lebesgue
measure, then the theorem (treated as an implication) holds with probability one wrt. the data.

17

3. THE INDUCTIVE BIAS OF RELU NETWORKS ON ORTHOGONALLY SEPARABLE DATA

The following corollary summarises the above in terms of the function learnt by the network.

Corollary 3.1. Under the conditions of Theorem 3.1, there exist constants u, z ≥ 0 such
that

hθ(t)(x)
∥θ(t)∥2 → uρ(w⊺

+x)− zρ(w⊺
−x), as t→∞. (3.10)

3.2.1 Discussion of assumptions

Many of our assumptions are technical, serving to simplify the analysis while detracting
little from the result’s relevance3. These include infinitesimal step size (gradient flow),
balancedness at initialisation and the condition on support span. The first two could
potentially be relaxed to their approximate counterparts, i.e. gradient descent with a small
constant step size and approximate balancedness [Arora et al., 2019]. The assumption
that support vectors span Rd comes from Ji and Telgarsky [2019a], Soudry et al. [2018]. It
seems to us that it could be lifted, though we have not investigated this possibility in depth.

Two assumptions that deserve more attention are near-zero initialisation and orthogonal
separability; both are crucial for the result to hold. Near-zero initialisation grants neurons
high directional mobility early in training, allowing them to cluster close to the canonical
directions. Orthogonal separability ensures that the canonical directions are ‘easy to find’ by
local descent. In prior work, which considered linear networks, this role is fulfilled by linear
separability. The reason we need a stronger condition is that ReLU updates are more local
compared to linear updates: a linear neuron takes into account all examples in the training
set, whereas a ReLU neuron updates only on examples in its positive half-plane (its active
examples). ReLU neurons therefore easily get stuck in a variety of directions, unless the
data is highly structured.

3.3 Proof sketch

In the analysis, we distinguish between two phases of training. The first phase takes place
close to the origin, ∥θ∥ ≈ 0. In this phase, while neurons move little in the absolute sense,
they converge in direction to certain regions of the weight space called extremal sectors.

3.3.1 Convergence to extremal sectors

(All definitions and results in this subsection come from the prior work of Maennel et al.
[2018]. We will need them later on.)

Sectors are regions in weight space corresponding to different activation patterns. They
are important for understanding neuron dynamics: roughly speaking, neurons in the same
sector move in the same direction.

Definition 3.1 (Sector). The sector associated to a sequence of signs σ ∈ {−1, 0, 1}n is
the region in input space defined as

Sσ ≜ {w ∈ Rd | sign w⊺xi = σi, i ∈ [n]}. (3.11)

We may also refer to the sign sequence σ itself as a sector.
3We verify experimentally in Section 3.4.1 that these assumptions are indeed not crucial.

18

3.3. Proof sketch

Some sectors are attractors early in training, i.e. neurons tend to converge to them. Such
attracting sectors are called extremal sectors. To give a formal definition, we first introduce
the function G : Sd−1 → R,

G(w) ≜ −
n∑︂

i=1
ℓ′

i(0) · ρ(w⊺xi). (3.12)

Intuitively, (normalised) neurons early in training behave as if they were locally optimising
G, they therefore tend to cluster around the local optima of G. We formally define extremal
sectors as sectors containing these local optima.

Definition 3.2 (Extremal directions and sectors). We say that w ∈ Sd−1 is a positive
extremal direction, if it is a strict local maximum of G. We say that w is a negative extremal
direction if it is a strict local minimum of G. A sector is called (positive/negative) extremal, if
it contains a (positive/negative) extremal direction.

The following lemma [Maennel et al., 2018, Lemma 5] shows that all neurons either turn off,
i.e. become deactivated for all training examples and stop updating, or converge to extremal
sectors.

Lemma 3.1. Let a two-layer ReLU network hθ be balanced at initialisation and trained by
gradient flow. Assume that the loss derivative ℓ′

i is Lipschitz continuous. Then, for almost all
datasets and almost all initialisations with λ small enough, there exists a time T such that
each neuron satisfies one of these three conditions:

• wj(T) ∈ Sσ where σ ≤ 0 and so wj remains constant for t ≥ T , or

• aj(T) > 0 and wj(T) ∈ Sσ where σ is a positive extremal sector, or

• aj(T) < 0 and wj(T) ∈ Sσ where σ is a negative extremal sector.

3.3.2 Orthogonal separability: Two absorbing extremal sectors

Lemma 3.1 shows that by the end of the early phase of training, neurons have converged to
extremal sectors. Although eq. (3.12) shows that the number of extremal sectors depends
only on the data (i.e. is independent of model expressivity), it is a priori unclear how
many extremal sectors there are for a given dataset, or what happens once neurons have
converged to extremal sectors. We now answer both of these questions for orthogonally
separable datasets.

First, we claim that for orthogonally separable datasets, there are only two extremal sectors,
one corresponding to the positive data subset and one corresponding to the negative data
subset. That is, by converging to an extremal sector, neurons ‘choose’ whether to activate
for positive examples or for negative examples. They thus naturally form two groups of
similar neurons.

Lemma 3.2. In the setting of Theorem 3.1, there is exactly one positive extremal direction
and exactly one negative extremal direction. The positive extremal sector σ+ is given by

σ+
j =

⎧⎪⎨⎪⎩
1, if yj = 1,
−1, if yj = −1 and x⊺

j xi < 0 for some i with yi = 1,
0, if yj = −1 and x⊺

j xi = 0 for all i with yi = 1,
(3.13)

19

3. THE INDUCTIVE BIAS OF RELU NETWORKS ON ORTHOGONALLY SEPARABLE DATA

and the negative extremal sector σ− is given by

σ−
j =

⎧⎪⎨⎪⎩
1, if yj = −1,
−1, if yj = 1 and x⊺

j xi < 0 for some i with yi = −1,
0, if yj = 1 and x⊺

j xi = 0 for all i with yi = −1.
(3.14)

Second, we show that once a neuron reaches an extremal sector, it remains in the sector
forever, i.e. its activation pattern remains fixed for the rest of training.

Lemma 3.3. Assume the setting of Theorem 3.1. If at time T the neuron (aj, wj) satisfies
aj(T) > 0 and wj(T) ∈ Sσ, where σ is the positive extremal sector (eq. (3.13)), then for
t ≥ T , wj(t) ∈ Sσ. The same holds if aj(T) < 0 and σ is the negative extremal sector
(eq. (3.14)).

3.3.3 Proof of Theorem 3.1

Once neurons enter their respective absorbing sectors, the second phase of training begins.
In this phase, the network’s activation patterns are fixed: some neurons are active and
update on the positive examples, while the others are active and update on the negative
examples. The network thus behaves like an ensemble of independent linear subnetworks
trained on subsets of the data. Once this happens, it becomes possible to apply existing
results for linear networks; in particular, each subnetwork converges to its respective
max-margin classifier.

We give more details in the proof below.

Proof of Theorem 3.1. By Lemmas 3.1 and 3.2, there exists a time T such that each neuron
satisfies either

• wj(T) ∈ Sσ where σ ≤ 0 and wj remains constant for t ≥ T , or

• aj(T) > 0 and wj(T) ∈ Sσ+ , or

• aj(T) < 0 and wj(T) ∈ Sσ− ,

where σ+, σ− are the unique positive and negative extremal sectors given by eqs. (3.13)
and (3.14). Denote by J0, J+, J−, the sets of neurons satisfying the first, the second, and
the third condition respectively. By Lemma 3.3, if j ∈ J+ then wj(t) ∈ Sσ+ for all t ≥ T , and
if j ∈ J− then wj(t) ∈ Sσ− for t ≥ T . Hence, for t ≥ T , if xi is such that yi = 1 then

hθ(xi) ≜
∑︂
j∈[p]

ajρ(w⊺
j xi) =

∑︂
j∈J+

ajw⊺
j xi. (3.15)

Combined with Lemma B.3, this implies that for k ∈ J+,

∂ak

∂t
= −

∑︂
i:yi=1

ℓ′
i

(︄ ∑︂
j∈J+

ajw⊺
j xi

)︄
·w⊺

kxi,

∂wk

∂t
= −

∑︂
i:yi=1

ℓ′
i

(︄ ∑︂
j∈J+

ajw⊺
j xi

)︄
· akxi,

(3.16)

20

3.3. Proof sketch

(where we have used that Pwxi = xi for i with yi = 1 due to positive extremality). From
eq. (A.26) it follows that the evolution of neurons in J+ depends only on positive examples
and other neurons in J+. The neurons behave linearly on the positive data subset, while
ignoring the negative subset. The same argument shows that the evolution of neurons in J−
depends only on other neurons in J− and the negative data subset, on which the neurons
act linearly. In other words, from time T onwards the ReLU network decomposes into a
constant part and two independent linear networks, one trained on the positive data subset
and the other trained on the negative data subset.

We can therefore apply existing max-margin convergence results for linear networks to each
of the linear subnetworks. Denote by W⊺ = [W⊺

0, W⊺
+, W⊺

−] the three parts of the weight
matrix. Then by [Ji and Telgarsky, 2019a, Theorems 2.2 and 2.8] and [Ji and Telgarsky,
2020, Theorem 3.1], there exist vectors ū, z̄, such that⃦⃦⃦⃦

⃦ W+(t)
∥W+(t)∥F

− ūw⊺
+

⃦⃦⃦⃦
⃦

F

→ 0, as t→∞, (3.17)

⃦⃦⃦⃦
⃦ W−(t)
∥W−(t)∥F

− z̄w⊺
−

⃦⃦⃦⃦
⃦

F

→ 0, as t→∞. (3.18)

(We allow ū, z̄ ∈ R0 to account for the fact that J+, J− may be empty). We now need to relate
∥W+∥F and ∥W−∥F to ∥W∥F . In particular, it will be useful to show that ∥W+(t)∥2

F / log t
has a limit as t→∞; the same is true for ∥W−(t)∥2

F / log t (by the same argument). If J+
or J− is empty, this is trivially true and the limit is 0. Otherwise, consider the learning of the
positive linear subnetwork, whose objective is effectively ℓ+(θ) := ∑︁

i:yi=1 ℓi(hθ(xi)). By [Ji
and Telgarsky, 2019a, Theorem 2.2], we know that ℓ+(θ(t))→ 0 as t→∞. Following [Lyu
and Li, 2020, Definition A.3], define

γ̃(θ) ≜ g(log 1/ℓ+(θ))
2∥W+∥2

F

, (3.19)

where g(q) := − log (exp(exp(−q))− 1) for the cross-entropy loss. Then

∥W+(t)∥2
F

log t
= g(log 1/ℓ+(θ(t)))

2γ̃(t) log t
= − log (exp(ℓ+(θ(t)))− 1)

2γ̃(t) log t
. (3.20)

Using the Taylor expansion exp(u) = 1 + Θ(u) for u→ 0 and [Lyu and Li, 2020, Corollary
A.11], we obtain

∥W+(t)∥2
F

log t
= − log Θ(ℓ+(θ(t)))

2γ̃(t) log t
= log Θ(t log t)

2γ̃(t) log t
= 1

2γ̃(t)

(︄
Θ(1) + log log t

log t
+ 1

)︄
. (3.21)

By [Lyu and Li, 2020, Theorem A.7:1], γ̃ is increasing in t and hence converges; it follows that
∥W+(t)∥2

F / log t has a limit. By [Lyu and Li, 2020, Corollary A.11], ∥W+(t)∥2
F = Θ(log t),

implying that the limit is finite and strictly positive. We will denote it by ν+ and the analogous
quantity for W− by ν−.

We now return to the main thread of the proof. We analyse the convergence of W(t)/ ∥W(t)∥F

by analysing W0/ ∥W(t)∥F , W+(t)/ ∥W(t)∥F and W−(t)/ ∥W(t)∥F in turn. Since ∥W(t)∥2
F =

∥W0∥2
F + ∥W+(t)∥2

F + ∥W−(t)∥2
F ,

lim
t→∞

∥W(t)∥2
F

log t
= ν+ + ν−. (3.22)

21

3. THE INDUCTIVE BIAS OF RELU NETWORKS ON ORTHOGONALLY SEPARABLE DATA

Now observe that with probability at least 1−1/2p over the random initialisation, ν+ +ν− > 0
(or equivalently, J+ ∪ J− ̸= ∅). To prove this, let xi+ be any training example with yi+ = 1
and let xi− be any training example with yi− = −1. Then by Lemma B.5, if a neuron (aj, wj)
is initialised such that aj(0) > 0 and wj(0)⊺xi+ > 0 then for t ≥ 0, wj(t)⊺xi+ > 0. This
holds in particular at time T . The neuron j thus cannot be in J0 nor J−, implying j ∈ J+.
Similarly, if the neuron is initialised such that aj(0) < 0 and wj(0)⊺xi− > 0, then j ∈ J−.
The probability that one of the two initialisations occurs for a single neuron j is 1/2, as
Pwj

[wj(0)⊺x > 0] = 1/2 for any fixed x. Hence, the probability that j ∈ J0 is at most
1− 1/2 = 1/2, and the probability that [p] ⊆ J0 is at most 1/2p.

It follows that with probability at least 1− 1/2p,

W0

∥W(t)∥F

→ 0, as t→∞. (3.23)

Also, by eqs. (3.17) and (3.22),

W+(t)
∥W(t)∥F

= W+(t)
∥W+(t)∥F

· ∥W+(t)∥F /
√

log t

∥W(t)∥F /
√

log t
→

√
ν+√

ν+ + ν−
ūw⊺

+, (3.24)

and similarly
W−(t)
∥W(t)∥F

→
√

ν−√
ν+ + ν−

z̄w⊺
−. (3.25)

For j ∈ J+ and t ≥ T we moreover know that if yi = 1 then wj(t)⊺xi > 0 because
wj(t) ∈ Sσ+ . As the same property holds for w+, it follows that ūj ≥ 0. By a similar
argument, z̄j ≥ 0. Combining the last three equations then proves eq. (3.8).

As for eq. (3.9), we know by Lemma B.4 that aj(t) = sj∥wj(t)∥ for some sj ∈ {±1},
implying ∥a(t)∥ = ∥W(t)∥F . Hence, for j ∈ J+,

aj(t)
∥a(t)∥ = sj∥wj(t)∥

∥W(t)∥F

→ sj∥ujw⊺
+∥ (3.26)

by eq. (3.24), where uj ≥ 0. For j ∈ J+ we also know that aj(t) ≥ 0, so sj = 1 and

aj(t)
∥a(t)∥ → uj∥w+∥. (3.27)

By a similar argument, we obtain that for j ∈ J−,

aj(t)
∥a(t)∥ → −zj∥w−∥. (3.28)

Finally, for j ∈ J0, aj(t) is constant and so

aj(t)
∥a(t)∥ → 0. (3.29)

3.4 Experiments

In this section, we first verify that the theoretical result (Theorem 3.1) is predictive of
experimental outcomes, even when some technical assumptions are violated. Second, we
present evidence that a similar result may hold for deeper networks as well, although this
goes beyond Theorem 3.1. Third, we explore the regime beyond orthogonal separability.

22

3.4. Experiments

3.4.1 Two-layer networks

To see how well the theory holds up, we train a two-layer ReLU network with 100 neurons on
a synthetic orthogonally separable dataset consisting of 500 examples in R20. The dataset
is constructed from an iid Gaussian dataset by filtering, to ensure orthogonal separability
and w+ ̸≈ −w− (for visualisation purposes). Specifically, let z := [1,−1, . . . , 1,−1]. A
Gaussian-sampled point x is included with label +1 if it lies in the first orthant and x⊺z ≥ 0,
included with label −1 if it lies in the orthant opposite to the first and x⊺z ≥ 0, and discarded
otherwise.

We train by stochastic gradient descent with batch size 50 and a learning rate of 0.1 for 500
epochs. At initialisation, we multiply all weights by 0.05. This reflects a setting where both
key assumptions of Theorem 3.1 – orthogonal separability and small initialisation – hold,
while the other assumptions are relaxed to approach real-life practice.

Figure 3.1 shows the results. Figure 3.1a shows the top 10 singular values of the first-layer
weight matrix W ∈ R100×20 after training. We see that despite its size, the matrix has
rank only two: all singular values except the first two are effectively zero. This is exactly
as predicted by the theorem. Furthermore, when we project the neurons on the positive-
variance dimensions (Figure 3.1b), we see that they align along two main directions. To
see how well these directions align with the predicted max-margin directions, we compute
the correlation (normalised inner product) of each neuron with its respective max-margin
direction. Figure 3.1c shows the histogram of these correlations. We see that the correlation
is generally high, above 0.9 for most neurons. Overall we find very good agreement with
theory.

0

1

2

a) Top 10 sing.values of W b) Projected neurons

0.00 0.25 0.50 0.75 1.00
0

20

40

c) Correlation with max-margin

Figure 3.1: a) The 10 largest singular values of the first-layer weight matrix W after training.
Each dot represents one singular value. b) Neurons (rows of W) projected on the top two
singular dimensions. Orange (or blue) dots represent neurons with aj > 0 (or aj < 0). c)
Histogram of correlations between each neuron and its respective max-margin direction.
(There are 100 neurons in total).

3.4.2 Deeper networks

We now explore the behaviour of deeper networks on orthogonally separable data. We
train a residual network rather than a fully-connected one. The reason for this is that fully-
connected networks with small initialisation are hard to train: early in training, the gradients
are vanishingly small but then grow very quickly. We therefore found setting a numerically
stable learning rate rather delicate.

We consider a residual network hθ : Rd → R parameterised by θ ≜ {W1, . . . , WL}, of the

23

3. THE INDUCTIVE BIAS OF RELU NETWORKS ON ORTHOGONALLY SEPARABLE DATA

form

h1:1
θ (x) = W1x,

h1:l
θ (x) = h1:l−1

θ (x) + Wlρ(h1:l−1
θ (x)), for l ∈ [2, L− 1],

hθ(x) = WLρ(h1:L−1
θ (x)),

(3.30)

where p is the network’s width, and W1 ∈ Rp×d, Wl ∈ Rp×p and WL ∈ R1×p are its weights.

We train such a four-layer residual net with width 100 on the same dataset and using the
same optimiser and hyper-parameters as in Section 3.4.1. Figure 3.2 shows the results.
The results are very similar to what we observe for two-layer nets: the weight matrices
are all rank two (Figure 3.2a-c), and the weight matrices’ rows align in two main directions
(Figure 3.2d-f). It is unclear what these directions are for the intermediate layers of the
network, but for the first layer, we conjecture it is again the max-margin directions, as
suggested by Figure 3.2g.

0

1

a) Top 10 sing.values of W1 b) Top 10 sing.values of W2 c) Top 10 sing.values of W3

d) Projected rows of W1 e) Projected rows of W2 f) Projected rows of W3

0.00 0.25 0.50 0.75 1.00
0

10

20

30

40

g) Correlation with max-margin

Figure 3.2: a-c) The 10 largest singular values of the first-, second- and third-layer weight
matrix Wl after training. Each dot represents one singular value. d-f) Neurons (rows of
Wl) projected on the respective top two singular dimensions. g) Histogram of correlations
between each first-layer neuron and the closest max-margin direction. (There are 100
neurons in total).

3.4.3 Beyond orthogonal separability

In this section we explore the applicability of our result to real-world datasets and architec-
tures (which lie outside the scope formally covered by our assumptions). We experiment on
the MNIST dataset subsetted to two classes, the digit 0 and the digit 1.

We train a network consisting of six convolutional layers followed by two fully-connected
layers. We view the six convolutional layers as a ‘feature extractor’ and the two fully-
connected layers as a two-layer fully-connected network of the kind we analyse in this paper.
The details of the architecture are given in Table 3.1. We train the network by Adam with the
binary cross-entropy loss and a batch size of 128. We train for 50 epochs. Prior to training,
we multiply the weights of the fully-connected layers by 0.05, to approximate the small-norm
initialisation assumed by theory.

We conduct two sub-studies. First, we demonstrate that the network learns orthogonally
separable representations all by itself, in the course of training. This is shown in Figure 3.3.
The first subplot shows three distributions: The blue distribution is the distribution of x⊺

i xj

where xi is sampled from class 0 and xj is sampled from class 1. The orange (or green)

24

3.4. Experiments

Layer Type
1 conv(32, 3, 1, 1)
2 conv(32, 3, 1, 1)
3 conv(32, 5, 2, 2)
4 conv(64, 3, 1, 1)
5 conv(64, 3, 1, 1)
6 conv(64, 5, 2, 2)
7 fc(3136, 128)
8 fc(128, 1)

Table 3.1: Architecture of the studied network. By conv(n, k, s, p) we denote a
convolutional layer with n kernels of size k × k with stride s, where the input to the layer is
padded by p rows or columns on each margin. By fc(n, o) we denote a fully-connected
layer whose input dimension is n and whose output dimension is o.

distribution is the distribution of x⊺
i xj where both xi, xj are sampled from class 0 (or class

1). The other subplots show analogous inner-product distributions for the intermediate
representations or learned features of the data, i.e. h1:l

θ (xi)⊺h1:l
θ (xj) instead of x⊺

i xj .

400 600 800

Original data

0-1

0-0

1-1

4000 6000

1st layer features

0-1

0-0

1-1

2000 4000

2nd layer features

0-1

0-0

1-1

0 5000 10000

3rd layer features

0-1

0-0

1-1

0 10000 20000 30000

4th layer features

0-1

0-0

1-1

0 50000 100000

5th layer features

0-1

0-0

1-1

0 200000 400000

6th layer features

0-1

0-0

1-1

0 1000000

7th layer features

0-1

0-0

1-1

Figure 3.3: Distributions of feature similarity, where examples are sampled from the specified
classes. Specifically, The l-th subplot shows the distribution of h1:l

θ (xi)⊺h1:l
θ (xj) for xi, xj

sampled from different classes (blue) or both from class 0 (orange) or both from class 1
(green).

What we see is that the network learns representations such that examples of the same class
are more similar to each other than examples of different classes – the orange and green
distributions are generally more to the right compared to the blue distribution. Moreover,
higher-layer representations are generally more strongly separated – as we move up the
layer hierarchy, the orange and green distributions keep shifting rightward, whereas the
blue distribution shifts leftward. Remarkably, the 7th layer representations are orthogonally
separable.

In the second sub-study, we explore properties of the weight matrix learnt by the first linear

25

3. THE INDUCTIVE BIAS OF RELU NETWORKS ON ORTHOGONALLY SEPARABLE DATA

layer of the network, in analogy to the first-layer weight matrix in a two-layer net. Figure 3.4a
shows the top ten singular values of the weight matrix W7 ∈ R128×3136. We see that despite
its size, it has very few (perhaps five or ten) significantly non-zero singular values. This
is similar to what we observed for synthetic data in Sections 3.4.1 and 3.4.2, though the
separation between small and large singular values is less sharp and there are more than
two non-zero values. Figure 3.4b shows the rows (neurons) of W7 projected onto the top
two singular dimensions (note that unlike in Sections 3.4.1 and 3.4.2, the projection is lossy).
The neurons roughly form three clusters: a mixed cluster close to the origin and two clusters
corresponding to positive and negative outer-layer weights. Compared to our observations
from Sections 3.4.1 and 3.4.2, there is less variation in the neurons’ norms, leading to them
forming clusters rather than rays. This deviation from the theoretical prediction could be due
to a number reasons, e.g. the use of biases, convolutional layers, or the large dimensionality
of the layer. We leave a detailed investigation of this question to future work.

0.0

2.5

5.0

7.5

a) Top 10 sing.values of W7

-1 0 1 2

0.0

0.5
b) Projected neurons

Figure 3.4: a) The 10 largest singular values of the first linear layer’s weight matrix W7 after
training. Each dot represents one singular value. b) Neurons (rows of W7) projected on the
top two singular dimensions. Orange (or blue) dots represent neurons with W8[j] > 0 (or
W8[j] < 0).

3.5 Related work

There is a lot of prior work on the implicit bias of gradient descent for various linear models.
For logistic regression, Soudry et al. [2018] show that assuming an exponentially-tailed loss
and linearly separable data, the normalised weight vector converges to the max-margin
direction. Ji and Telgarsky [2019b] extend this result to non-separable data, Nacson et al.
[2019] extend it to super-polynomially-tailed losses, and Gunasekar et al. [2018a] considers
different optimisation algorithms. For deep linear networks, Ji and Telgarsky [2019a] show
that the end-to-end weight matrix converges to the max-margin solution and consecutive
weight matrices align. Gunasekar et al. [2018b] consider linear convolutional nets and prove
convergence to a predictor related to the ℓ2/L bridge penalty.

A few papers have started addressing the implicit bias problem for nonlinear (homogeneous
or ReLU) networks. The problem is much harder and hence requires stronger assumptions.
Lyu and Li [2020] and Ji and Telgarsky [2020] assume that at some point during training,
the network attains perfect classification accuracy. Training from this point onward, Ji and
Telgarsky [2020] show that the network parameters converge in direction. Lyu and Li [2020]
show that this direction is a critical KKT point of the (nonlinear) max-margin problem. A
complementary approach is taken by Maennel et al. [2018] who analyse the very early
phase of training, when the weights are close to the origin. For two-layer networks, they
show convergence of neurons to extremal sectors. Our work can be seen as a first step
towards bridging the very early and the very late phase of training.

26

3.6. Conclusion

Zooming out a bit, there is also work motivated by similar questions, but taking a different
approach. For example, Li and Liang [2018] show that two-layer ReLU nets trained on
structured data converge to a solution that generalises well. Like ours, their analysis requires
that the network’s activation patterns change little, but they achieve it by containing training
in the neighbourhood of the (relatively large) initialisation (this is the standard lazy training
argument Chizat et al. [2019]). In contrast, we initialise much closer to zero, allowing the
neurons to move more. Another related paper is Chizat and Bach [2020]. Using a mean-field
analysis, the authors show that infinite-width two-layer ReLU nets converge to max-margin
classifiers in a certain non-Hilbertian function space.

3.6 Conclusion

In this chapter, we have characterised the inductive bias of training ReLU networks in a
simple setting: we proved that two-layer ReLU nets trained by gradient flow on orthogonally
separable data converge to a combination of the positive and the negative max-margin
classifier. Moreover, our experiments suggest that the same is true of deeper networks.

Such an implicit bias seems favourable – indeed, large margin has a long history in machine
learning as an indicator of good generalisation. That deep networks implicitly prefer large
margin classifiers, at least for orthogonally separable datasets, is reassuring. It remains
a topic for future work to investigate whether similar results extend to more complicated
datasets as well.

27

CHAPTER 4
The Mutual Autoencoder:

Controlling information in latent code
representations

In the previous chapter, we have seen an example of favourable inductive bias: in the face
of underspecification, the DL algorithm chooses a hypothesis with a large margin, which
can reasonably be expected to favour generalisation. In this chapter, we consider a setting
where the default inductive bias is not enough.

Specifically, we explore representation learning with variational autoencoders (VAE) [Kingma
and Welling, 2014, Rezende et al., 2014]. Variational autoencoders learn a latent variable
model of the observable x ∈ X,

pθ(x) =
∫︂
Z

pθ(x|z) p(z) dz, (4.1)

by performing approximate maximum likelihood estimation (MLE),

max
θ∈Θ

n∑︂
i=1

log pθ(xi), (4.2)

specifically, VAEs maximise a tractable lower bound of eq. (4.2). Beyond providing a good
density model, a VAE model assigns to each data instance x a latent code z. In many
applications, this latent code provides a useful high-level summary of the observation.
Because (4.1) can be learned from unlabelled data, we can use VAEs for unsupervised
representation learning, an important building block in artificial intelligence systems.

However, it has been observed that the VAE may fail to learn a useful representation when
the model class is very expressive. We argue that this is due to underspecification: the
maximum likelihood criterion does not explicitly encourage useful representations and the
latent variable is used only if it helps model the marginal distribution.1 In particular, the
amount of information stored in z depends on the expressiveness of the model pθ(x|z) with
respect to the true data distribution [Chen et al., 2017]. In practice this has made the VAE
approach difficult to work with in important applications such as natural language processing
and for modelling discrete data.

1See also the article [Huszár, 2017].

29

4. THE MUTUAL AUTOENCODER:
CONTROLLING INFORMATION IN LATENT CODE REPRESENTATIONS

To address this issue, we propose a method for explicitly controlling the amount of infor-
mation stored in the latent code. The idea is illustrated in Figure 4.1: optimising the MLE
criterion (eq. (4.2)) as in VAEs will lead to a model p̂ which achieves a certain mutual
information (MI) between x and z but this amount of information is difficult to predict and in
fact may be zero [Chen et al., 2017, Zhao et al., 2019]. The proposed mutual autoencoder
(MAE) approach forces information flow by ensuring that the estimated model p̂m achieves
a user-specified mutual information M = Ip̂m . Therefore, we precisely control the amount
of bits stored in the representation but leave the organisation and use of this information to
be learned.

P p̂

p̂m Ip̂
Ip̂m

Figure 4.1: The mutual autoencoder maximises the likelihood log pθ(x) while constraining
model family P by ensuring that the latent variable z and the observable x share a desired
mutual information M = Ip̂m . The purple lines denote level sets of the log-likelihood∑︁n

i=1 log pθ(xi).

The method can learn codes ranging from independent to nearly deterministic, while
benefiting from model capacity. Thus, we decouple the choice of model capacity and the
latent code dimensionality from concerns about underspecification.

To control information in the described way requires novel algorithms and the rest of this
chapter discusses the procedure in more detail.

4.1 Background: Variational autoencoders

Consider a latent variable model with a data variable x ∈ X and a latent variable z ∈ Z,
pθ(z, x) = p(z) pθ(x|z). Given the data {x1, . . . , xn}, we would like to train the model by
maximising the marginal log-likelihood,

ℓ(θ) ≜ E
x∼q

[log pθ(x)] ≜ E
x∼q

[︃
log

∫︂
Z

pθ(x|z) p(z) dz
]︃
, (4.3)

where q(x) denotes the empirical distribution of x, q(x) = 1
n

∑︁n
i=1 δxi

(x). However, the
integral in (4.3) is intractable in many applications of interest. The idea behind variational
methods is to instead maximise a lower bound L(pθ, q) to the log-likelihood, where

L(p, q) ≜ E
x∼q

[︄
E

z∼q(z|x)
[log p(x|z)]−DKL(q(z|x)∥p(z))

]︄
, (ELBO)

where DKL denotes the KL divergence. Any choice of q(z|x) gives a valid lower bound
L(pθ, q) ≤ ℓ(θ), with a gap of Ex∼q [DKL(q(z|x)∥p(z|x))].

30

4.2. VAE objective is insufficient for representation learning

VAEs [Kingma and Welling, 2014, Rezende et al., 2014] replace the per-instance poste-
riors q(z|x) by an inference network qθ(z|x) that is trained together with pθ(x|z) to jointly
maximise L(pθ, qθ). For the inference network qθ(z|x), this is equivalent to minimising
DKL(qθ(z|x)∥pθ(z|x)), so one can think of qθ(z|x) as an approximation of pθ(z|x).
Being a stochastic mapping of data x to a latent code z, the inference network qθ(z|x) is
sometimes called an encoder and, by the same analogy, the generator network pθ(x|z) is
called a decoder.

4.2 VAE objective is insufficient for representation
learning

A major appeal of the VAE framework is the ability to learn meaningful latent codes z from
unlabelled or only weakly labelled data. Despite numerous promising results on image
and video datasets (e.g. Higgins et al. [2017], Bouchacourt et al. [2018], or Goyal et al.
[2017]), the application of VAEs to text has proven challenging. Specifically, Bowman et al.
[2016] found that a VAE with an LSTM-based decoder fails to learn a useful latent code
when trained naively – the approximate posterior collapses to the prior, qθ(z|x) = p(z) for
all inputs x, leading to a near independent relationship between x and z.

A number of works have addressed this problem, mostly treating it as an optimisation issue
[Sønderby et al., 2016, Kingma et al., 2016, Yeung et al., 2017]. However, as Chen et al.
[2017] point out, even if one could optimise exactly, the model would still learn trivial latent
codes when using a high-capacity decoder such as an LSTM.

The reason for this is underspecification. Note that the log-likelihood (4.3) is only a function
of the marginal distribution pθ(x), whereas representation is an aspect of the joint distribution
pθ(z, x). That is, we approximately optimise a marginal quantity in the hope of producing
the desired effect on the joint distribution. This approach is unreliable, although it works
when the marginal imposes strong constraints on the joint distribution, such as when the
decoder has limited capacity and the model is forced to use the latent structure to reach
a high likelihood. However, in the high-capacity regime, e.g. when pθ(x|z) = q(x) is close
to achievable, the task of density estimation does not constrain the model enough toward
representation learning [Huszár, 2017].

We propose an alternative optimisation problem that better specifies the representation
objective. The idea is to explicitly control the amount of information stored in the latent code,
as measured by the mutual information. In the following sections, we derive the procedure
in detail and show that it enables representation learning with powerful decoders.

4.3 Controlling information in latent code
representations

Our goal is to learn a deep latent variable model pθ(z, x) = p(z) pθ(x|z), while precisely
controlling the coupling between the latent code z and the output x. We formalise our goal
in the following constrained optimisation problem,

maxθ E
x∼q(x)

[︃
log

∫︂
pθ(x|z) p(z) dz

]︃
, (4.4)

s.t. Ipθ
(z, x) = M, (4.5)

31

4. THE MUTUAL AUTOENCODER:
CONTROLLING INFORMATION IN LATENT CODE REPRESENTATIONS

where M ≥ 0 is a scalar constant denoting the desired mutual information,

Ipθ
(z, x) = E

(z,x)∼pθ

[︄
log pθ(z, x)

p(z) pθ(x)

]︄
, (4.6)

between x and z as encoded in the model pθ(z, x). When M is close to zero, the code z is
uninformative about x, whereas a large value of M approaching the entropy Hpθ

(x), the
maximum possible value, should lead to a deterministic relation between x and z. Interme-
diate values of M will lead to lossy codes z which recover a compressed representation of
structure in q(x) that can be most efficiently captured by pθ(x|z).

4.4 The Mutual Autoencoder (MAE)

We now describe our idea for approximately solving the problem (4.4–4.5). We call our
approach the mutual autoencoder.

The method relies on two results from the literature: 1) exact penalty functions [Zangwill,
1967] to accommodate the equality constraint (4.5) into the estimation problem; 2) the
variational infomax bound, [Barber and Agakov, 2003], to approximate the intractable mutual
information Ipθ

(z, x).

We now briefly describe each of them and their role in the mutual autoencoder.

4.4.1 Exact penalty functions

To approximately solve (4.4–4.5), we resort to a classic method for constrained nonlinear
optimisation, the penalty function method. First proposed by Zangwill [1967], this method
uses a positive penalty constant C > 0 to relax (4.4–4.5) to the unconstrained problem

max
θ

E
x∼q(x)

[︃
log

∫︂
pθ(x|z) p(z) dz

]︃
− C |Ipθ

(z, x)−M |. (4.7)

In (4.7), any deviation of Ipθ
(z, x) from M is penalised linearly. For values of C large

enough, an unconstrained maximum of (4.7) recovers a feasible local maximum of (4.4–4.5).
In particular, we do not need to take C all the way to infinity: a finite value is sufficient [Han
and Mangasarian, 1979] and the magnitude of this value is determined by the unknown
optimal Lagrange multiplier for (4.5) (see Bertsekas [1999, Proposition 4.3.1]). In practice,
we observe that values of C in the range [0.1, 10] work best.

We will show experimentally that the above penalty approach is highly effective. However,
to leverage the approach, we also need to approximate the intractable mutual information
Ipθ

(z, x).

4.4.2 Variational information maximisation – infomax inequality

To approximate the mutual information, we leverage the variational infomax inequality of
Barber and Agakov [2003]:

Theorem 4.1. For any two random variables z and x distributed according to the joint
distribution with a density p(z, x) and for any conditional density function r(z|x) we have

Ip(z, x) ≥ Hp(z) + E
(z,x)∼p

[log r(z|x)]. (4.8)

32

4.4. The Mutual Autoencoder (MAE)

A proof is provided in Appendix C.1.

Equality in (4.8) is attained for r(z|x) = p(z|x), so we can write

Ip(z, x) = Hp(z) + max
r

E
(z,x)∼p

[log r(z|x)]. (4.9)

In our method, we constrain the inner search over r to a parametric class, yielding the
following lower bound approximation Îp(z, x) ≤ Ip(z, x), to the mutual information:

Îp(z, x) = Hp(z) + max
ω

E
(z,x)∼p

[log rω(z|x)]. (4.10)

4.4.3 The Mutual Autoencoder

We are now in the position to combine the variational infomax approximation (4.10) with
the penalty function formulation (4.7) to define the following mutual autoencoder objective
Lm(p, q) to be maximised over the distributions p and q.

Lm(p, q) ≜ L(p, q)− C
⃓⃓⃓
Îp(z, x)−M

⃓⃓⃓
= L(p, q)− C

⃓⃓⃓⃓
⃓Hp(z) + max

ω
E

(z,x)∼p
[log rω(z|x)]−M

⃓⃓⃓⃓
⃓ . (4.11)

We now discuss how to estimate the gradient of the MAE objective, to facilitate standard
gradient-based training. The first term in eq. (4.11) corresponds to the VAE objective and its
gradient can be estimated by methods from the literature. For example, the reparametrisation
trick [Kingma and Welling, 2014, Rezende et al., 2014] provides unbiased and low-variance
gradient estimates when the latent variable z is continuous.

In the second term in eq. (4.11), the quantity Hp(z) is typically a constant because we fix
the prior p(z) to a simple distribution such as a multivariate normal distribution. The difficulty
instead lies in differentiating maxω E(z,x)∼p[log rω(z|x)] with respect to p. Denoting by r∗

p

the optimal rω corresponding to p, one can derive by REINFORCE-style reasoning (see
Appendix C.2) that

∇p max
ω

E
(z,x)∼p

[log rω(z|x)] = ∇p E
(z,x)∼p

[log r∗
p(z|x)]

= E
(z,x)∼p

[︂
(∇p log p(z, x)) · log r∗

p(z|x) +∇p log r∗
p(z|x)

]︂
.

(4.12)

There are two difficulties here: 1) The last term in (4.12), which arises from the dependence
of r∗

p on p, is difficult to compute. 2) Evaluating r∗
p requires solving a separate optimisation

program in ω, which is too expensive to do for each gradient evaluation.

To address the first issue, we note that in the non-parametric limit, as r∗
p(z|x) ≈ p(z|x), the

problematic term vanishes (see Appendix C.2). We therefore ignore it, which is equivalent
to treating r∗

p as independent of p during back-propagation. For the second issue, we keep
a running estimate of the optimal r∗

p and perform a single gradient update to it whenever p
is updated. This gives rise to the practical procedure described in Algorithm 4.1.

Note that unlike (4.12), the term ∇θ E(z,x)∼pθ
[log rω(z|x)] in Algorithm 4.1, line 14, can be

efficiently approximated via the reparametrisation trick if x is continuous or REINFORCE
[Williams, 1992] if x is discrete. We provide a derivation of the necessary gradients in
Appendix C.3.

33

4. THE MUTUAL AUTOENCODER:
CONTROLLING INFORMATION IN LATENT CODE REPRESENTATIONS

Algorithm 4.1 Mutual Autoencoder training
1: procedure TRAINMAE(θ, ω, B, C, M, N) // Batch size, penalty factor, MI target, opt. steps.
2: for i = 1, . . . , N do
3: UPDATEMODEL(θ, ω, B, C, M) // We simultaneously optimise the model...
4: UPDATEMIESTIMATE(ω, θ, B) // ...and the mutual information estimate.
5: end for
6: end procedure

7: procedure UPDATEMIESTIMATE(ω, θ, B)
8: Sample (zi, xi) ∼ pθ for i = 1, . . . , B
9: g ← 1

B

∑︁B
i=1∇ω log rω(zi|xi) // Gradient estimate of the infomax bound.

10: ω ← Update(ω, g)
11: end procedure

12: procedure UPDATEMODEL(θ, ω, B, C, M)
13: gELBO ← EstimateElboGradient(θ)
14: gMI ← Estimate of ∇θ E(z,x)∼pθ

[log rω(z|x)] // Using reparametrisation trick or REINFORCE.
15: Sample (zi, xi) ∼ pθ for i = 1, . . . , B
16: m← Hp(z) + 1

B

∑︁B
i=1 log rω(zi|xi) // Mutual information estimate.

17: θ ← Update(θ, gELBO − C · sign(m−M) · gMI)
18: end procedure

4.5 Discrete data requires flexible encoder distributions

Before presenting experimental results, we discuss the choice of encoder distribution, which
we find to be critical for training a good MAE model. More generally, it turns out that flexible
encoder distributions are essential for VAE representation learning of discrete data. Below
we give the formal statement and discuss its practical implications.

Theorem 4.2. Consider a VAE model (p, q) applied to discrete data. Assume that both the
prior p(z) and the encoder distribution q(z|x) are Gaussian and that the decoder p(x|z) is
powerful enough to model the true marginal q(x). Then the independent configuration given
by q(z|x) = p(z) and p(x|z) = q(x) is the only global optimum of the VAE objective.

Proof. Maximising the VAE objective L(p, q) is equivalent to minimising the Kullback-Leibler
divergence between the joint distributions q and p, DKL(q(x) q(z|x)∥ p(z) p(x|z)). The VAE
optimum is attained when the KL divergence is zero i.e. when q(z, x) = p(z, x) almost
everywhere. The independent solution clearly satisfies this.

To show that all other configurations are suboptimal, let p, q be such that q(z|x) ̸= p(z) for
some value of x with q(x) > 0. Then the implied marginal q(z) = ∑︁

x∈X q(z|x) q(x) is a
finite Gaussian mixture with at least one nonstandard component, so it cannot equal p(z)
and the KL divergence is positive.

The theorem shows that not only is the VAE agnostic to representation learning, it in fact
encourages the independent solution. The Gaussianity assumption introduces a gap due to
q(z) ≜ ∑︁

x∈X q(z|x)q(x) not being able to fit p(z).

We now illustrate the effect on a toy task of modelling x ∼ Unif[10] with a one-dimensional
normal latent space. We train a MAE, setting the mutual information target M to the
theoretical maximum, i.e. we aim to learn a deterministic code.

Figure 4.2 shows the difference between using the standard Gaussian encoder (left column)
and a more complex resampling-based encoding distribution of Cremer et al. [2017] with

34

4.6. Experiments

(a) MAE trained with a Gaussian encoder. Top:
true model posterior pθ(z|x). Bottom: posterior
approximation qθ(z|x). Each curve corresponds
to one possible value of x.

(b) MAE trained with a resampling-based en-
coder. Top: true model posterior pθ(z|x). Bot-
tom: posterior approximation qθ(z|x). Each
curve corresponds to one possible value of x.

Figure 4.2: The effect of encoder flexibility.

k = 5 samples (right column). The top plot in each column shows the exact model posterior
pθ(z|x) and the bottom plot in each column shows the approximate posterior qθ(z|x). It can
be seen that not only does the resampling-based MAE learn better posterior approximations
(the bottom plot is closer to the top plot), it also enables the decoder to train more effectively,
as reflected in sharper, closer-to-deterministic model posteriors pθ(z|x).

We have observed this problem in larger-scale experiments as well; in fact, we find that the
problem tends to get worse with the dimension of the latent space as well as the amount
of encoded information M . In the experiments in Section 4.6.3 we mitigate the issue by
employing the resampling-based encoder.

4.6 Experiments

We show that the mutual autoencoder can learn latent codes ranging from independent to
nearly deterministic. First, we consider two toy examples (a continuous and a discrete one),
where we can visualise important quantities. Then we show promising results on text data.

4.6.1 Splitting the normal

We compare our method to the variational autoencoder on the task of modeling the one-
dimensional standard normal distribution, q(x) = N(x|µ = 0, σ = 1). Our goal here is to
a) show in a minimal setting the issue of representation collapse in VAEs, and b) show
that the MAE overcomes this problem and in fact can encode any pre-specified amount of
information.

We now describe the experimental setup. The prior p(z) is assumed to be a one-dimensional
standard normal. Both the decoder pθ(x|z) and encoder qθ(z|x) are modeled as normal,
with means and log-variances parametrised by a three-layer fully connected network. We
train a VAE and several instances of the MAE with different values of the mutual information
target M .

One can think of the task as splitting the normal q(x) into an infinite mixture of normals∫︁
p(x|z) p(z)dz. There exists a trivial optimum of the VAE objective pθ(x|z) = q(x) =

35

4. THE MUTUAL AUTOENCODER:
CONTROLLING INFORMATION IN LATENT CODE REPRESENTATIONS

N(x|µ = 0, σ = 1), qθ(z|x) = p(z) = N(x|µ = 0, σ = 1) that ignores the latent code.
Indeed, this is the solution recovered by the VAE and the MAE with M = 0, corresponding
to the top row of Figure 4.3a.

However, when we set M > 0, the MAE learns a non-trivial representation, as can be seen
in Figure 4.3a. As we increase M , the conditionals pθ(x|z) become more peaked and carry
more information about z.

M= 0.0

M= 0.6

M= 1.2

M= 1.8

(a) MAE splits the normal. Each row cor-
responds to a MAE model with the spec-
ified mutual information target M . Each
curve corresponds to the rescaled condi-
tional pθ(x|z) p(z) for z in the fixed set
{−2.1,−1.3,−0.4, +0.4, +1.3, +2.1}.

(b) Categorical example, modeling the uniform dis-
tribution over 10 labels. Each row corresponds to
a MAE model with the specified mutual informa-
tion target M . Each colored patch corresponds to
one possible outcome of x. A vertical slice at posi-
tion z consists of 10 line segments whose lengths
(sometimes 0) indicate the probabilities pθ(x|z).

Figure 4.3: The mutual autoencoder learns codes ranging from independent to deterministic.

4.6.2 Categorical example

VAEs are particularly prone to ignoring the latent code when modeling discrete data. Here
we show that the MAE is an effective solution even in this setting, and is able to learn a wide
range of codes.

We consider synthetic data drawn from q(x) = Unif[10]. We let the latent variable again be
a one-dimensional standard normal. The decoder is a three-layer fully connected network
with a 10-way softmax output; the encoder is given by 10 separate normal distributions, one
for each possible value of x.

As in the continuous case, the decoder pθ(x|z) can easily reach an optimum of the VAE
objective by outputting the marginal, Unif[10], irrespective of z. What makes the discrete
case more difficult is that any distribution over X can be represented independently of the
latent z. Such a scenario is shown in the top row of Figure 4.3b; this is the model learned
by the VAE and the MAE with M = 0.

For higher values of M , the MAE avoids this problem. In Figure 4.3b, we see that as
M increases, the conditionals pθ(x|z) learned by MAE move from independence towards
determinism.

36

4.6. Experiments

4.6.3 Movie reviews

We now demonstrate the effectiveness of the mutual autoencoder on real text data.

We consider a sentence modelling task using a subset of the IMDB movie review dataset
[Diao et al., 2014]. We split each review into sentences and extract those of length 8 words
or shorter. We train several instances of the MAE with different M , using a variant of the
bidirectional LSTM [Schuster and Paliwal, 1997, Hochreiter and Schmidhuber, 1997] as the
encoder and a standard LSTM as the decoder. The conditioned value of the latent variable
z is fed to the decoder LSTM at each step.

To evaluate the information content of a given model’s latent code, we perform a simple
reconstruction experiment: we use the model to encode a random subset of the training
data and decode the obtained representations back into sentence space. A model with a
highly informative latent code should be able to approximately reconstruct the input. We
consider two metrics: 1) the number of exactly reconstructed sentences, and 2) the number
of matching words between the input sentence and the reconstruction.

Figure 4.4 shows the results for MAE models trained with different M . The graph shows a
simple monotonic relation: as M increases, so does the amount of encoded information,
which in turn is reflected by the model’s ability to autoencode. The MAE provides a powerful
way of controlling this behavior by setting M .

In Table 4.1 we show sample sentence reconstructions of a VAE and two MAE models. As
expected, the VAE fails to learn a useful latent code, qVAE

θ (z|x) ≈ p(z), so its ‘reconstructions’
are random samples from the decoder model. At the other extreme, the MAE with a high
value of the target mutual information (last row) learns a close-to-deterministic code and
reconstructs the input sentence with high fidelity, at the expense of sample diversity. MAEs
trained with intermediate values of M learn to ‘paraphrase’ input sentences.

To further inspect the learned representations, we interpolate between sentences in the
latent space. An example is shown in Table 4.2. We see that the model picks up on syntactic
elements such as specific word choice or sentence length and that the generated sentences
are mostly grammatical (subject to limitations of the training data).

Input there are many great scenes of course .

VAE
and he knows it too .

terri�c performances from all three stars .

this movie could have been a classic .

MAE (M = 5)
there are things that i liked .

as a whole it works pretty well .

there were a few good performances too .

MAE (M = 10)
there were many scenes like that .

there are many great scenes of course .

there were many scenes like that .

Table 4.1: Sentence reconstructions. The input sentence is encoded and decoded by a
given model, and the output is displayed. We show three reconstructions per model.

37

4. THE MUTUAL AUTOENCODER:
CONTROLLING INFORMATION IN LATENT CODE REPRESENTATIONS

5 6 7 8 9 10
0

10
20
30
40
50
60

R
ec

on
st

ru
ct

ed

se
nt

en
ce

s
[%

]
MAE
VAE

5 6 7 8 9 10
Mutual information target, M

0
10
20
30
40
50
60
70

R
ec

on
st

ru
ct

ed

w
or

ds
 [%

] MAE
VAE

Figure 4.4: Reconstruction grows with M .

there are many great scenes of course .

there are other good people as well .

they so look real its incredible .

they like di�erent , not good .

they like di�erent , not good .

these people talk way too much .

die hard gets a few character .

i love these kind of movies .

i left out a character .

i love those �lms) .

Table 4.2: Sentence interpolation, M = 10.

4.7 Related Work

To our knowledge, the first work to notice the failures of VAE-type models when combined
with high-capacity decoders was [Bowman et al., 2016]. Since then, a number of authors
have reported similar difficulties and many fixes have been proposed.

Probably the most popular of these is ‘KL cost annealing’ [Bowman et al., 2016] or ‘warm-up’
[Sønderby et al., 2016], whereby the KL term in the VAE objective gets a multiplicative weight
that gradually increases from zero to one during training. Another class of approaches is
based on carefully limiting the capacity of the generative model class, as in [Chen et al.,
2017], [Yang et al., 2017], or [Yeung et al., 2017]. Finally, some works make use of auxiliary
objectives: Kingma et al. [2016] introduce a ‘free bits’ constraint on the minimum value of
the KL term, whereas [Semeniuta et al., 2017] add a reconstruction term of an intermediate
network layer. Zhao et al. [2019] propose a more drastic change to the objective, either
replacing the KL term by one derived from a different divergence or removing it completely.

Our approach has close connections to the work of Chen et al. [2016], who also use the
variational infomax bound to learn meaningful representations. Their work is based on
the GAN framework of Goodfellow et al. [2014] and hence may be difficult to apply to text.
The work of Hu et al. [2017] can also be seen as employing (an approximation of) mutual
information to enforce coupling between the latent and output variable, although they do not
state it explicitly.

4.8 Conclusion

In this chapter, we considered the problem of representation collapse in VAEs with high-
capacity decoders. We argue that at the core of the issue is underspecification: the VAE
objective is not sufficient to encourage learning of useful representations. To deal with this,
we propose to augment the objective by a hand-crafted regulariser to better constrain the
problem; in this case a term controlling the amount of information stored in the latent code.
We have seen that the proposed approach works well in practice, being able to learn a
continuum of representations with varying properties.

38

CHAPTER 5
Towards understanding knowledge

distillation

In this chapter, we will explore another way of dealing with underspecification: strong
supervision, or simply more informative data. We study the specific setting of binary
classification with soft labels, i.e. labels taking values in some continuous interval, say
[0, 1], instead of the usual binary set {0, 1}. Such labels carry more information about the
ground-truth hypothesis, lessening the curse of underspecification.

In deep learning, soft-label supervision is most common in the context of knowledge
distillation [Hinton et al., 2014], a setting where one classifier (called the student) is trained
on the real-valued outputs of another classifier (called the teacher). It has been observed
that classifiers learn much faster and more reliably when trained with this kind of supervision
rather than with ground-truth data, even when the teacher had originally been trained on
exactly the same data. Distillation also makes optimisation easier: it reduces the need for
regularisation and various optimisation tricks. Consequently, in several fields, distillation
has become the standard technique for transferring information between classifiers with
different architectures, such as from deep to shallow neural networks or from ensembles of
classifiers to individual ones.

While the practical benefits of distillation are beyond doubt, its theoretical justification
remains almost completely unclear. In this chapter, we study distillation in a simplified,
analytically tractable setting: binary classification with linear teacher and linear student
(either shallow or deep linear networks). For this setting, we prove a generalisation bound
establishing fast convergence of the expected risk of a distillation-trained linear classifier.
The result makes use of the interaction between strong supervision and the inductive bias
to guarantee faster rates than classically achievable.

5.1 Related work

Ideas underpinning distillation have a long history dating back to the work of Ba and Caruana
[2014], Buciluǎ et al. [2006], Craven and Shavlik [1996], Li et al. [2014], Liang et al. [2008].
In its current and most widely known form, it was introduced by Hinton et al. [2014] in the
context of neural network compression.

39

5. TOWARDS UNDERSTANDING KNOWLEDGE DISTILLATION

Since then, distillation has quickly gained popularity among practitioners and established
its place in deep learning folklore. It has been found to work well across a wide range of
applications, including e.g. transferring from one architecture to another [Geras et al., 2016],
compression [Howard et al., 2017, Polino et al., 2018], integration with first-order logic [Hu
et al., 2016] or other prior knowledge [Yu et al., 2017], learning from noisy labels [Li et al.,
2018], defending against adversarial attacks [Papernot et al., 2016], training stabilisation
[Romero et al., 2015, Tang et al., 2016], few-shot learning [Kimura et al., 2018], distributed
learning Polino et al. [2018], reinforcement learning Rusu et al. [2016] and data privacy Celik
et al. [2017].

In contrast to the empirical success, the mathematical principles underlying distillation’s
effectiveness have largely remained a mystery. To our knowledge, Lopez-Paz et al. [2016] is
the only work that examines distillation from a theoretical perspective. It casts distillation as
a form of learning using privileged information (LUPI, Vapnik and Izmailov 2015), a learning
setting in which additional per-instance information is available at training time but not at test
time. However, even the LUPI view conceptually falls short of explaining the effectiveness of
distillation. In particular, it concentrates on the aspect that the teacher’s supervision to the
student is noise-free. However, this argument does not suffice to explain the success of
distillation even when the original problem is noise-free to start with.

A more distantly related topic is machine teaching Zhu [2015]. In machine teaching, a
machine learning system is trained by a human teacher, whose goal is to hand-pick as
small a training set as possible, while ensuring that the machine learns a desired hypothesis.
Transferring knowledge via machine teaching techniques is extremely effective: perfect
transfer is often possible from a small finite teaching set Zhu [2013], Liu and Zhu [2016].
However, the price for this radical reduction in sample complexity is the expensive training
set construction. Our work shows that, at least in the linear setting, distillation achieves a
similar effectiveness with a more practical form of supervision.

5.2 Background: Linear distillation

We formally introduce distillation in the context of binary classification. Let X ⊆ Rd be the
input space, Y = {0, 1} the label space, and Px the probability distribution of inputs. We
assume Px has a density.

The teacher h∗ : X → Y is a fixed linear classifier, i.e. h∗(x) = 1{w⊺
∗x ≥ 0} for some

w∗ ∈ Rd \ {0}, where 1{.} returns 1 if the argument is true and 0 otherwise. The student
also is a linear classifier, h(x) = 1{w⊺x ≥ 0}.

We allow the setting where the weight vector is parameterised as a product of matrices,
w⊺ ≜ WLWL−1 · · ·W1 for some L ≥ 1. When L ≥ 2, this parameterisation is known as a
deep linear network. Although deep linear networks have no additional capacity compared
to directly parameterised linear classifiers (L = 1; w⊺ = W1), they induce different gradient-
descent dynamics, and are often studied as a first step towards understanding deep
nonlinear networks Saxe et al. [2014], Kawaguchi [2016], Hardt and Ma [2017].

Distillation proceeds as follows. First, we collect a transfer set {(xi, yi)}n
i=1 consisting of

inputs xi sampled i.i.d. from Px, and soft labels yi = σ(w⊺
∗xi) provided by the teacher,

where σ is the sigmoid function, σ(u) = 1/(1 + exp(−u)). The soft (real-valued) labels can
be thought of as a more informative version of the hard (0/1-valued) labels of the standard
classification setting. We write X = [x1, . . . , xn] ∈ Rd×n for the data matrix. Second, the

40

5.3. Generalisation properties of linear distillation

student is trained by minimizing the (normalised) empirical cross-entropy loss,

ℓ1(w) ≜ − 1
n

n∑︂
i=1

[︃
yi log σ(w⊺xi) + (1− yi) log(1− σ(w⊺xi))

]︃
− ℓ∗, (5.1)

where ℓ∗ is a normalisation constant, such that the minimum of ℓ1 is 0. It only serves the
purpose of simplifying notation and has no effect on the optimisation.

The student observes the loss as a function of its parameters, i.e. the individual weight
matrices,

ℓ(W1, . . . , WL) ≜ ℓ1((WLWL−1 · · ·W1)⊺), (5.2)

and optimises it via gradient descent. For the theoretical analysis, we avoid the complications
of discrete step sizes and assume infinitesimal step size, i.e. we formally assume gradient
flow in place of gradient descent. We write Wl(τ) for the value of the matrix Wl at time
τ ∈ [0,∞), with Wl(0) denoting the initial value, and w(τ)⊺ ≜ WL(τ) · · ·W1(τ). Then,
each Wl(τ) for l ∈ [L] evolves according to the following differential equation,

∂Wl(τ)
∂τ

= − ∂ℓ

∂Wl

(W1(τ), . . . , WL(τ)). (5.3)

The student is trained until convergence, i.e. τ →∞. We measure the transfer risk of the
trained student, defined as the probability that its prediction differs from that of the teacher,

R(h) ≜ P
x∼Px

[h(x) ̸= h∗(x)]. (5.4)

In the following sections, we derive a bound for the transfer risk and establish how rapidly it
decreases as a function of dataset size n.

5.3 Generalisation properties of linear distillation

We now present our main technical results. First, in Section 5.3.1, we provide an explicit
characterisation of the inductive bias of distillation-based training in the linear setting. In
other words, we identify what the student learns. In particular, we prove that the student is
able to perfectly identify the teacher’s weight vector, if the number of training examples (n)
is equal to the dimensionality of the data (d) or higher. If less data is available, under minor
assumptions, the student finds the best approximation of the teacher’s weight vector that is
possible within the subspace spanned by the training data.

In Section 5.3.2 we use these results to study the generalisation properties of the stu-
dent classifier, i.e. we characerise how fast the student learns. Specifically, we prove a
generalisation bound with much more appealing properties than what is possible in the
classic situation of learning from hard labels. As soon as enough training data is available
(n ≥ d), the student’s risk is simply 0. Otherwise, the risk can be bounded explicitly in a
distribution-dependent way that allows us to understand when distillation-based transfer is
most effective.

5.3.1 What does the student learn?

In this section, we derive in closed form the asymptotic solution to the gradient flow (5.3)
undergone by the student when trained by distillation. We state the results separately for

41

5. TOWARDS UNDERSTANDING KNOWLEDGE DISTILLATION

directly parameterised linear classifiers (L = 1) and deep linear networks (L ≥ 2), as the
settings require slightly different ways of initialising parameters. Namely, in the former case
initialising w(0) = 0 is valid, while in the latter case this would lead to vanishing gradients
and we instead initialise with small random values.

Theorem 5.1. Assume the student is a directly parameterised linear classifier (L = 1)
initialised such that w(0) = 0. Then, the student’s weight vector fulfills almost surely

w(t)→ ŵ, (5.5)

for t→∞, where

ŵ =
{︄

w∗, n ≥ d,
X(X⊺X)−1X⊺w∗, n < d.

(5.6)

Theorem 5.1 shows a remarkable property of distillation-based training for linear classifiers:
if sufficiently many (at least d) data points are available, the student exactly recovers the
teacher’s weight vector w∗. This is a strong justification for distillation as a method of
knowledge transfer between linear classifiers and the theorem establishes that the effect
occurs not just in the infinite data limit (n → ∞), as is common, but already in the finite
sample regime (n ≥ d).

When few data points are available (n < d), the weight vector learned by the student
is simply the projection of the teacher’s weight vector onto the data span (the subspace
spanned by the columns of X). This is the best the student can do in the following sense: the
gradient descent update direction ∂w(τ)

∂τ
always lies in the data span, so there is no way for

the student to learn anything outside of it. The projection is the best subspace-constrained
approximation of w∗ with respect to the Euclidean norm. The extent to which Euclidean
closeness actually implies closeness in predictions is the subject of Section 5.3.2.

Proof sketch of Theorem 5.1. First, notice that ŵ is a global minimiser of ℓ1. Moreover,
when n ≥ d, it is (almost surely wrt. X ∼ P n

x) unique, and when n < d, it is almost surely
the only one lying in the span of X and thus potentially reachable by gradient descent.

The proof consists of two parts. We prove that a) the gradient flow (5.3) drives the objective
value towards the optimum, ℓ1(w(t))→ 0 as t→∞, and b) the distance between w(t) and
the claimed asymptote ŵ is upper-bounded by the objective gap,

∥w(t)− ŵ∥2 ≤ c ℓ1(w(t)) (5.7)

for some constant c > 0 and all t ∈ [0,∞).

For part a), observe that ℓ1 is convex. For any τ ∈ [0,∞), the time-derivative of ℓ1(w(τ)) is
negative unless we are at a global minimum,

d
dτ

ℓ1(w(τ)) = ∇ℓ1(w(τ))⊺
(︄

∂w(τ)
∂τ

)︄

= −
⃦⃦⃦
∇ℓ1(w(τ))

⃦⃦⃦2
,

(5.8)

implying that the objective value ℓ1(w(τ)) decreases monotonically in τ . Hence, if we
denote by W = {w : ℓ1(w) ≤ ℓ1(0)} the ℓ1(0)-sublevel set of the objective, we know that

42

5.3. Generalisation properties of linear distillation

w(τ) ∈W for all τ ∈ [0,∞). One can show that on this set, ℓ1 satisfies strong convexity, but
only along certain directions: for some µ > 0 and all w, v ∈W such that v−w ∈ span(X),

ℓ1(v) ≥ ℓ1(w) +∇ℓ1(w)⊺(v−w) + µ

2∥v−w∥2. (5.9)

This allows us (via a technical derivation that we omit here) to relate the objective gap to the
gradient norm: it can be shown that there exists c′ > 0, such that

c′ℓ1(w) ≤ 1
2
⃦⃦⃦
∇ℓ1(w)

⃦⃦⃦2
. (5.10)

Applying the above to w(τ) in (5.8), we are able to bound the amount of reduction in the
objective in terms of the objective itself, ultimately proving linear convergence.

For part b), invoke (5.9) with v = w(τ) and w = ŵ; this gives ℓ1(w(τ)) ≥ µ
2∥w(τ)− ŵ∥2.

The full proof is given in Appendix D.2.

The following result is the analog of Theorem 5.1 for deep linear networks. Here, some
technical conditions are needed because the parameters cannot all be initialised at 0.

Theorem 5.2. Let ŵ be defined as in eq. (5.6). Assume the student is a deep linear network,
initialised such that for some ϵ > 0,

∥w(0)∥ < min
{︃
∥ŵ∥, ϵL

(︂
ϵ2∥ŵ∥− 2

L + ∥ŵ∥2− 2
L

)︂− L
2
}︃

, (5.11)

ℓ1(w(0)) < ℓ1(0), (5.12)
Wl+1(0)⊺Wl+1(0) = Wl(0)Wl(0)⊺ (5.13)

for l ∈ [L− 1]. Then, for n ≥ d, the student’s weight vector fulfills almost surely

w(t)→ ŵ, (5.14)

and for n < d,
∥w(t)− ŵ∥ ≤ ϵ, (5.15)

for all t large enough.

The interpretation of the theorem is analogous to Theorem 5.1. Given enough data (n ≥ d),
the student learns to perfectly mimic the teacher. Otherwise, it learns an approximation at
least ϵ-close to the projection of the teacher’s weight vector onto the data span.

The conditions (5.11)–(5.13) appear for technical reasons and a closer look at them shows
that they do not pose problems in practice. Condition (5.11) states that the network’s weights
should be initialised with sufficiently small values. Consequently, this assumption is easy to
satisfy in practice. Condition (5.12) requires that the initial loss is smaller than the loss at
w = 0. This condition guarantees that the gradient flow does not hit the point w = 0, where
the gradient vanishes and the optimisation would stop prematurely. In practice, when the
step size is finite, the condition is not needed. Nevertheless, it is also not hard to satisfy:
for any near-zero initialisation, w(0) = w0, either w0 or −w0 will satisfy (5.12), so at most
one has to flip the sign of one of the Wl(0) matrices. Finally, condition (5.13) is called
balancedness Arora et al. [2018] and discussed in-depth in Arora et al. [2019]). It simplifies

43

5. TOWARDS UNDERSTANDING KNOWLEDGE DISTILLATION

the analysis of matrix products and makes it possible to explicitly analyze the evolution
of w induced by gradient flow wrt. {Wl}. Assuming near-zero initialisation, the condition
is automatically satisfied approximately and there is some evidence Arora et al. [2019]
suggesting that approximate balancedness may suffice for convergence results of the kind
we are interested in. Otherwise, the condition can also simply be enforced numerically.

Proof sketch of Theorem 5.2. First, we establish convergence in the objective, ℓ1(w(t))→
0 as t → ∞, similarly to the case L = 1. Unlike that case, however, the evolution of the
end-to-end weight vector w(τ) is governed by complex mechanics induced by gradient flow
wrt. {Wl}. A key tool for analysing this induced flow was recently established in Arora
et al. [2018]: the authors show that the induced flow behaves similarly to gradient flow with
momentum applied directly to w. Making use of this result, one can proceed analogously
as in the case of L = 1 to show convergence in the objective.

Second, to show convergence in parameter space, we decompose w(t) into its projection
onto the span of X, and an orthogonal component. The X-component converges to ŵ, by
strong convexity arguments as in the case L = 1. It remains to show that the orthogonal
component is small. Now, recall that in the case L = 1, we initialise at w(0) = 0 and move
within the span, so the orthogonal component is always zero. When L ≥ 2, the situation
is different: a) we initialise with a potentially non-zero orthogonal component (because we
need to avoid the spurious stationary point w = 0), and b) the momentum term causes
the orthogonal component to grow during optimisation. Luckily, the rate of growth can be
precisely characterised and controlled by the initialisation norm ∥w(0)∥, so depending on
how close to zero we initialise, we can upper-bound the size of the orthogonal component.
This yields a bound on the distance ∥w(t)− ŵ∥.

For the complete proof, we refer the reader to Appendix D.3.

5.3.2 How fast does the student learn?

In this section, we present the main quantitative result of this chapter, a bound for the
expected transfer risk in linear distillation.

We first introduce some geometric concepts. For any u, v ∈ Rd \ {0}, denote by ᾱ(u, v) ∈
[0, π/2] the unsigned angle between the vectors u and v

ᾱ(u, v) = cos−1
(︄
|u⊺v|
∥u∥ · ∥v∥

)︄
. (5.16)

A key quantity for us is the angle between w∗ and a randomly sampled x for x ∼ Px. For a
given transfer task (Px, w∗), we denote by p the reverse cdf of ᾱ(w∗, x),

p(θ) = P
x∼Px

[ᾱ(w∗, x) ≥ θ] for θ ∈ [0, π/2]. (5.17)

By construction, p(θ) is monotonically decreasing, starting at p(0) = 1 and approaching 0 as
θ → π/2. Figure 5.1 illustrates this behaviour for three illustrative data distributions denoted
Task A, Task B and Task C. In Task A, the probability mass is well aligned with the direction
of the teacher’s weight vector. The probability that a randomly chosen data point x ∼ Px has
a large angle with w∗ is small. Therefore, the value of p(θ) quickly drops with growing angle
θ. In Task B, the data also aligns well with w∗, but in addition, the data support remains

44

5.3. Generalisation properties of linear distillation

w∗w∗ w∗

Px Px
Px

Task A Task B Task C

0 ¼=2

1

p
(µ
)

0 ¼=2

1

p
(µ
)

0 ¼=2

1

p
(µ
)

Figure 5.1: Schematic illustration of p(θ) for three different transfer tasks. In Task A,
the angular alignment between the data and the teacher’s weight vector is high, so p(θ)
decreases quickly. In Task B, it is also high, and in addition the classes are separated by a
margin, so p(θ) reaches 0 before reaching θ = π/2. In Task C, the angular alignment is low,
so p(θ) decreases rather slowly.

bounded away from the decision boundary. Therefore, certain large angles can never occur,
i.e. there exists a value θ0 < π/2, such that p(θ) = 0 for θ ≥ θ0. In Task C, the situation is
different: the data distribution is concentrated along the decision boundary and the angle
between w∗ and a randomly chosen data point x ∼ Px is large. As a consequence, p(θ)
drops more slowly with the angle θ compared to the previous two settings.

We are now ready to state the main result. For improved readability, we phrase it for a
student with infinitesimally small initialization, i.e. ϵ→ 0. The general formulation can be
found in Appendix D.4.

Theorem 5.3 (Transfer risk bound for linear distillation). For any training set X ∈ Rd×n,
let ĥX(x) = 1{ŵ⊺x ≥ 0} be the linear classifier learned by distillation from a teacher with
weight vector w∗. Then, when n ≥ d, it holds that

E
X∼P ⊗n

x

[︂
R
(︂
ĥX
)︂]︂

= 0. (5.18)

For n < d, it holds for any β ∈ [0, π/2] that

E
X∼P ⊗n

x

[︂
R
(︂
ĥX
)︂]︂
≤ p(β) + p(π/2− β)n (5.19)

Equation (5.18) is unsurprising, since in Section 5.3.1 we already established that for n ≥ d
the student is able to perfectly mimic the teacher. However, the inequality (5.19) is, to
our knowledge, the first quantitative characterisation of how well a student can learn via
distillation.

Before we provide its proof sketch, we present two instantiations of the bound for specific
classes of tasks. Hopefully this will provide some insight into how fast the right hand side of
(5.19) actually decreases.

45

5. TOWARDS UNDERSTANDING KNOWLEDGE DISTILLATION

w ¤
Margin, ¯= 5¼=12

w ¤
Polynomial, ∙= 1:0

w ¤
Polynomial, ∙= 2:0

Figure 5.2: Examples of 2D distributions that fulfill the large-margin condition (left) and the
polynomial condition with different parameters (center, right).

The large-margin case. The first class of tasks we consider are tasks in which the
classes are separated by an angular margin, illustrated in Figure 5.2 (left). These tasks are
characterized by a ‘wedge’ of zero probability mass near the boundary1. For these tasks, we
obtain from Theorem 5.3 that the expected risk decays exponentially in n, up to n = d− 1.

Corollary 5.1 (Transfer risk of large-margin distributions). If there exists β ∈ [0, π/2] such
that p(β) = 0 and γ := p(π/2− β) < 1, then

E
X∼P ⊗n

x

[︂
R
(︂
ĥX
)︂]︂
≤ γn. (5.20)

The polynomial case. The second class are tasks for which we can upper-bound p by a
κ-order polynomial; see Corollary 5.2 below. We can do so trivially for any task by setting
κ = 0.0, but that choice would yield a vacuous bound. Higher values of κ correspond
to stronger assumptions on the distribution but enable better rates. Figure 5.2 (center,
right) shows examples of polynomial distributions for κ ∈ {1.0, 2.0}. The special case
κ = 1.0 corresponds to a uniform angle distribution, while a distribution with κ = 2.0 has
low probability mass near the decision boundary, while not necessarily exhibiting a margin.

Corollary 5.2 below establishes that for tasks with κ-polynomial behavior of p(θ), the
expected risk decays essentially at a rate of (log n/n)κ or faster.

Corollary 5.2 (Transfer risk of polynomial distributions). If there exists a κ ≥ 0 such that
p(θ) ≤ (1− (2/π)θ)κ for all θ ∈ [0, π/2], then

E
X∼P ⊗n

x

[︂
R
(︂
ĥX)

]︂
≤ 1 + (log n)κ

nκ
(5.21)

Proof. We apply Theorem 5.3 and insert the polynomial upper bound for p. For the case
n < d, we obtain that for any β ∈ [0, π/2],

E
X∼P ⊗n

x

[︂
R
(︂
ĥX
)︂]︂
≤ (1− (2/π)β)κ + (1− (2/π)(π/2− β))nκ. (5.22)

Setting β = (π/2) · n−1/n and simplifying the resulting expressions yields

≤
(︂
1− e− log n

n

)︂κ
+ n−κ. (5.23)

Finally, we use the inequality eu ≥ 1 + u and the claim follows.
1In bounded domains, this condition is for example fulfilled in the classical margin situation [Schölkopf and

Smola, 2002], when the classes are separated by a positive distance from each other.

46

5.3. Generalisation properties of linear distillation

Note the contrast to classical learning-theoretic bounds: standard bounds are usually
vacuous when n < d and only start to be useful when n≫ d. In contrast, linear distillation
provably achieves perfect transfer as soon as n ≥ d and non-trivial performance even in
the low-data regime n < d. The latter can best be seen in Corollary 5.1, where γ < 1 and
hence we obtain a meaningful risk guarantee of γn.

5.3.3 Proof of Theorem 5.3

The case n ≥ d follows directly from Theorems 5.1 and 5.2. For the remaining case, n < d,
the following property turns out to be important for obtaining a transfer risk rate of the form
that we do.

Lemma 5.1 (Strong monotonicity). Let ŵ(X) denote the distillation solution ŵ as a function
of the training data X. Then, for any full-rank datasets X− ∈ Rd×n− and X+ ∈ Rd×n+ such
that X− is contained in X+,

ᾱ(w∗, ŵ(X+)) ≤ ᾱ(w∗, ŵ(X−)). (5.24)

Proof. If n+ ≥ d, then the left-hand side of (5.24) is zero and the claim follows. Otherwise,
assume wlog that the first n− columns of X− and X+ coincide. Let Q+R+ = X+ be the
QR factorisation of X+ with Q+ ∈ Rd×n+ and R+ ∈ Rn+×n+ , and similarly for X−. Then
ŵ(X+) = Q+Q⊺

+w∗ and

cos(ᾱ(w∗, ŵ(X+))) = w⊺
∗Q+Q⊺

+w∗

∥w∗∥ · ∥Q+Q⊺
+w∗∥

(5.25)

= ∥Q
⊺
+w∗∥
∥w∗∥

, (5.26)

and an analogous statement holds for X−. Now, because the first n− columns of Q+
coincide with Q−, we have ∥Q⊺

+w∗∥ ≥ ∥Q⊺
−w∗∥ and

cos(ᾱ(w∗, ŵ(X+))) ≥ cos(ᾱ(w∗, ŵ(X−))). (5.27)

Taking cos−1 on both sides (and remembering that cos−1 is decreasing) yields the claim.

To interpret the theorem, think of ᾱ(w∗, ŵ) as a proxy for the transfer risk, i.e. the closer
the trained student ŵ is to the teacher w∗ in terms of angles, the lower the transfer risk. A
direct consequence of Lemma 5.1, and the reason it is called ‘strong mononoticity’, is that
including additional data in the transfer set can never harm the transfer risk, only improve it.
This property is specific to distillation; it does not hold in hard-target learning.

Proof of Theorem 5.3 (n < d). For nonzero vectors u, v ∈ Rd, we define α(u, v) ∈ [0, π]
as a variant of ᾱ (Equation 5.16) that takes the sign of u⊺v into account,

α(u, v) = cos−1
(︄

u⊺v
∥u∥ · ∥v∥

)︄
. (5.28)

47

5. TOWARDS UNDERSTANDING KNOWLEDGE DISTILLATION

We decompose the expected risk as follows:

E
X∼P n

x

[︂
R
(︂
ĥX
)︂]︂

= P
X∼P n

x
x∼Px

[w⊺
∗x · ŵ⊺x < 0]

=
∫︂

x:ᾱ(w∗,x)≥β
P

X∼P n
x
[w⊺

∗x · ŵ⊺x < 0|x] dPx

+
∫︂

x:ᾱ(w∗,x)<β, w⊺
∗x>0

P
X∼P n

x
[ŵ⊺x < 0|x] dPx

+
∫︂

x:ᾱ(w∗,x)<β, w⊺
∗x<0

P
X∼P n

x
[ŵ⊺x > 0|x] dPx.

(5.29)

Let us fix some x for which ᾱ(w∗, x) < β and w⊺
∗x > 0 (i.e. an ‘easy’ positive test example);

for this x we have α(w∗, x) = ᾱ(w∗, x). Consider the situation where ᾱ(w∗, xi) < π/2− β
for some i, i.e. there is at least one good teaching point. Then, Lemma 5.1 with X+ = X
and X− = xi yields ᾱ(w∗, ŵ) ≤ ᾱ(w∗, xi) < π/2−β. Combined with the triangle inequality,
we obtain

α(ŵ, x) ≤ α(w∗, ŵ) + α(w∗, x) (5.30)
≤ ᾱ(w∗, xi) + ᾱ(w∗, x) < π/2, (5.31)

which implies ŵ⊺x > 0, i.e. a correct prediction (same as the teacher’s). Conversely, an
error can occur only if ᾱ(w∗, xi) ≥ π/2− β for all i. Because xi are independent, we have

P
X∼P n

x
[ŵ⊺x < 0|x : ᾱ(w∗, x) < β, w⊺

∗x > 0] ≤ P
X∼P n

x
[∀i : ᾱ(w∗, xi) ≥ π/2− β]

= p(π/2− β)n.
(5.32)

An analogous statement can be shown for negative examples:

P
X∼P n

x
[ŵ⊺x > 0|x : ᾱ(w∗, x) < β, w⊺

∗x < 0] ≤ p(π/2− β)n. (5.33)

Combining (5.29), (5.32) and (5.33) yields the result:

P
X∼P n

x
x∼Px

[w⊺
∗x · ŵ⊺x < 0] ≤ P

x
[ᾱ(w∗, x) ≥ β] + P

x
[ᾱ(w∗, x) < β] · p(π/2− β)n

= p(β) + (1− p(β)) · p(π/2− β)n.

5.4 Discussion

In this section, we discuss some concepts that emerged in the formal analysis in previous
sections: data geometry, optimisation bias, and strong monotonicity. We then provide
empirical confirmation of their effect on the transfer risk.

5.4.1 Data geometry

From Theorem 5.3 we know that the data geometry, in particular the angular alignment
between the data distribution and the teacher, impact how fast the student can learn.
Formally, this is reflected in p(θ): the faster it decreases, the easier it should be for the
student to learn the task.

48

5.4. Discussion

2-5 2-3 2-1

∙ (angular alignment)

0.0

0.2

0.4

T
ra

n
sf

er
 r

is
k

Figure 5.3: Transfer risk of linear distillation on tasks with varying angular alignment.

To experimentally test the effect of data geometry on the effectiveness of distillation, we
adopt the setting of Corollary 5.2. We consider a series of tasks with varying angular
alignment, as measured by the degree κ of the polynomial by which p(θ) is upper bounded.

Specifically, for any κ, the task (P κ
x , wκ

∗) is defined by the following sampling procedure.
First, an angle a is sampled from the κ-polynomial distribution, i.e. P [a ≥ θ] = (1−(2/π)θ)κ

for θ ∈ [0, π/2]. Then, a direction x is uniformly sampled from all unit-length vectors that
are at angle a with the teacher’s weight vector, ᾱ(w∗, x) = a. Finally, x = νx is returned for
a random ν, distributed as a one-dimensional standard Gaussian.

We use an input space dimension of d = 1000 and a transfer set size n = 20. Then, we
train a linear student by distillation on each of the tasks and evaluate its transfer risk on
held-out data. Figure 5.3 shows the results. The plot shows a clearly decreasing trend: on
tasks with more favorable data geometry (higher κ), transfer via distillation is more effective
and the student achieves lower risk.

5.4.2 Optimisation bias

Another important factor for the success of distillation is a specific inductive bias. For n < d,
the distillation training objective (5.1) has many minima with identical function value but
potentially different generalisation properties. Therefore, the optimisation method used
could have a large impact on the transfer risk. As Theorems 5.1 and 5.2 show, gradient
descent has a particularly favourable inductive bias for distillation.

To verify this observation experimentally, we consider learners that are guided by an
optimisation bias to different degrees: at one end of the spectrum is the gradient-descent
learner we have studied in previous sections, while at the other end is a learner that treats
all minimizers of the distillation training loss equally, i.e. that has no bias toward any of
the solutions. Specifically, consider learners with weights of the form wδ = ŵ + δ ∥ŵ∥

∥q∥ q,
where ŵ is the gradient-descent distillation solution and q is a Gaussian random vector in
the subspace orthogonal to the data span, i.e. if X is the data matrix, then X⊺q = 0. All
learners of this form globally minimize the distillation training loss, and depending on δ, they
are more or less guided by the gradient-descent bias: δ = 0 and |δ| → ∞ represent the two
extremes mentioned above.

We train the learners wδ for δ ∈ {0, 10, . . . , 90} on the digits 0 and 1 of the MNIST dataset,
where inputs are treated as vectors in R784 and the teacher w∗ is a logistic regression

49

5. TOWARDS UNDERSTANDING KNOWLEDGE DISTILLATION

0 20 40 60 80
² (larger = less optimisation bias)

0.0

0.2

T
ra

n
sf

er
 r

is
k

Figure 5.4: Transfer risk of linear distillation variants with different degrees of optimisation
bias, on the digits 0 and 1 of MNIST.

0.5 0.6 0.7 0.8 0.9 1.0
Monotonicity index

0.00

0.01

0.02

0.03

0.04

0.05

0.06

T
ra

n
sf

er
 r

is
k

Distillation ŵ

Hard-target

Dist. reduced bias w±

Figure 5.5: Expected transfer risk vs. monotonicity of different learners: gradient-descent
based distillation (blue), hard-target learner (orange), and a series of distillation learners
with reduced optimisation bias (green): wδ for δ ∈ {1/16, 1/8, 1/4, 1/2, 1}, listed in order
from left to right.

trained to classify 0s and 1s on an independent training set. We set the transfer set size to
n = 100 and evaluate the risk on the test set.

Figure 5.4 shows the result. There is a clear trend in favour of learners that are more
strongly guided by the gradient-descent bias (small δ); these learners generally achieve
lower transfer risk. This result supports the idea of optimisation bias as a key component of
distillation’s success.

5.4.3 Strong monotonicity

We now investigate strong monotonicity, which was identified in Lemma 5.1: training the
student on more data always leads to a better approximation of the teacher’s weight vector.

Compared to data geometry and optimisation bias, strong monotonicity is less amenable to
experimental study because it is a downstream property that cannot directly be manipulated.
We therefore take an indirect approach. We consider a set of learners including the gradient-
descent distillation learner, the hard-target learner, and several learners with reduced
optimisation bias (like in Section 5.4.2), and train them on the same task. For each learner,
we note its expected risk calculated on a held-out set, and its monotonicity index, defined as

50

5.5. Conclusion

the probability that an additional training example reduces the angle between the student’s
and the teacher’s weight vectors rather than increasing it, i.e.

m(w) = P
X∼P n

x
x∼Px

[ᾱ(w∗, w([X, x])) < ᾱ(w∗, w(X))], (5.34)

where the student’s weight vector w is now treated as a function of the training set. Thus,
we can relate a learner’s risk and its monotonicity.

We train the learners on the polynomial-angle task (P κ
x , wκ

∗) from Section 5.4.1, with
κ = 1, d = 100 and n = 5. The expected risk as well as the monotonicity index are
estimated as averages over 1000 transfer sets.

The results are shown in Figure 5.5. There is a negative correlation between monotonicity
and transfer risk, which supports the intuition of monotonicity as a desirable property.

However, a few reservations are in order. First, as mentioned above, monotonicity cannot
easily be manipulated, so its effect on transfer risk remains unknown. We can only measure
correlation. Second, monotonicity is of binary nature; it only captures whether an extra data
point helps or not. Yet for a quantitative characterisation of risk, one would have to capture
by how much an extra data point helps. We leave more refined definitions of monotonicity
for future work.

5.5 Conclusion

In this chapter, we have formulated and studied a linear model of knowledge distillation.
Within this model, we have derived a characterisation of the solution learned by the student,
and a bound on the transfer risk, meaningful even in the low-data regime. In doing so, we
hope to have enriched the current intuitive and theoretical understanding of distillation and
of soft-label supervision.

Our work paints a picture of distillation as an extremely effective method for knowledge
transfer that derives its power from an optimisation bias of gradient-based methods initialised
near the origin, which in particular has the effect that any additionally included training point
can only improve the student’s approximation of the teacher. Distillation further benefits
strongly from a favorable data geometry, in particular a margin between classes.

While we have supported this picture by theory and empirical work only in the linear case, we
hypothesise that similar properties also govern the behaviour of distillation in the nonlinear
setting. We consider the extension to nonlinear models the main direction for future work.

51

CHAPTER 6
Distillation-based training for multi-exit

architectures

In this chapter, we explore an application of knowledge distillation to training multi-exit
architectures, a class of neural network architectures suitable for time-efficient inference.

Efficient inference is important in many practical problems. For example, on mobile devices,
execution speed directly influences battery life and heat release. For robotics applications,
such as self-driving cars, low latency is crucial for operating under real-time constraints.
Some of these settings in addition require adaptivity at test time: the required inference
speed may be uncertain at the time of training or may vary over time, e.g. due to concurrently
running jobs or a dynamic change in processor speed. Using a fixed model architecture in
such a setting would be suboptimal: a model that is fast enough to run under all conditions
yields suboptimal accuracy in situations where the available computational budget is higher
than worst-case; on the other hand, a more accurate but slower model might fail to provide
decisions at prediction time when the available budget falls below what the network needs
to finish its computation.

Multi-exit models are anytime predictors: they can trade off accuracy and computation
at test time with a single model and on a per-example basis. A typical multi-exit model
quickly produces a crude initial prediction and then gradually improves it. At any time, a
valid prediction for the given input is available to be used in case the time budget for the
classification process runs out. Hence, multi-exit models are more robust and flexible under
uncertain or changing conditions and thereby overall more resource-efficient.

They typically consist of a stack of processing (e.g. convolutional) layers interleaved with
early output layers (exits) at different depths. These are standard classification layers acting
on the feature representation that the network had computed up to this stage. The exits
form a sequence of increasingly complex classifiers (see Figure 6.1, “Prediction” box), in
which later layers reuse the representations, and thereby computations, of the earlier layers.
To make a prediction, an input image is propagated through the stack of layers (left to right
in Figure 6.1). When the process is interrupted, the model outputs either one of the already
evaluated outputs, or an average of all of them.

Multi-exit architectures are typically trained with a ‘multi-task’ objective: one attaches a loss
function to each exit, for example cross-entropy, and minimizes the sum of exit-wise losses,
as if each exit formed a separate classification task. On the one hand, this is a canonical

53

6. DISTILLATION-BASED TRAINING FOR MULTI-EXIT ARCHITECTURES

Output

Input Conv Block

Early exit

Output

Conv Block

Early exit

Output

. Conv Block

Final exit

Inference

Cross-entropy
Target

Training

Distillation

Output

Input Conv block

Early exit

Output

Conv block

Early exit

. Conv block

Final exit

Prediction

Target
label

Training

.

.

OutputOutput

Distillation
loss

Classification
loss

Distillation
loss

Classification
loss

Classification
loss

.

Output

Input Conv block

Early exit

Output

Conv block

Early exit

. Conv block

Final exit

Prediction

Target
label

Training

OutputOutput

Distillation
loss

Cross-
entropy

Distillation
loss

Cross-
entropy

Cross-
entropy

.

Figure 6.1: Illustration of the proposed method: distillation-based training (bottom) for a
multi-exit architecture (top).

choice: not knowing which exits will be used at prediction time, we want all of them to
perform well, so we should train all of them for best classification quality. On the other hand,
this choice ignores a lot of the prior knowledge we have about anytime learning problems
in general, and about the structure of the multi-exit architecture in particular. For example,
multi-task learning is known to work best if all classifiers are of comparable complexity and
quality, such that none of the loss term dominates the others. In contrast, in the multi-exit
case we know a priori that the classifiers from later exits have more capacity and should be
more accurate than the ones from early exits.

In this chapter, we propose a new objective for training multi-exit architectures based on
knowledge distillation. The resulting distillation-based training method

• leads to substantially improved classification accuracy, especially for early exits,

• requires no change to the underlying architecture,

• opens up a natural way to make use also of unlabeled data when training multi-exit
architectures in a semi-supervised scenario.

The main idea behind the method is sharing of information between exits. Specifically,
we transfer information from late to early exits by encouraging early exits to mimic the
probabilistic outputs of late exits. In practice, this is achieved by minimising the cross-

54

6.1. Related work

entropy between the outputs, with an additional temperature-scaling step that we detail in
Section 6.2.

Our experiments on CIFAR100 and ImageNet show that distillation-based training signifi-
cantly improves the accuracy of early exits while maintaining state-of-the-art accuracy for
late ones. The method is particularly beneficial when training data is limited and it allows a
straightforward extension to semi-supervised learning. Moreover, it takes only a few lines to
implement and incurs almost no computational overhead at training time, and none at all at
test time.

The rest of this chapter is devoted to describing the method in detail and to its experimental
validation.

6.1 Related work

Anytime prediction. The roots of anytime computation go back to the work of Dean and
Boddy [1988], Horvitz [1987]. In [Dean and Boddy, 1988], anytime algorithms are defined
for the first time, and they become widely popular in planning and control [Drummond and
Bresina, 1990, Likhachev et al., 2004, Zilberstein, 1996].

In the context of statistical learning, anytime classifiers were preceded by cascades [Šochman
and Matas, 2005, Viola and Jones, 2001, 2004]. These are models with variable, instance-
dependent runtime; however, they cannot be stopped exogenously. Early examples of
truly anytime classifiers were based on streaming nearest neighbors [Ueno et al., 2006]
or on classifier ensembles such as decision trees [Esmeir and Markovitch, 2010], random
forests [Fröhlich et al., 2012], or boosting [Grubb and Bagnell, 2012]. A parallel line of work
aimed at developing techniques for adapting an arbitrary ensemble to the anytime setting
in a learner-agnostic way [Benbouzid et al., 2012, Gao and Koller, 2011, Trapeznikov and
Saligrama, 2013]. These methods usually execute individual classifiers in a dynamically
determined, input-dependent order.

More recently, in the context of convolutional networks, two broad approaches to anytime
prediction have gained prominence: a) networks whose parts are selectively executed or
skipped at test time [Larsson et al., 2017, Lin et al., 2017, Wang et al., 2018, Wu et al., 2018],
or b) networks with additional exits [Huang et al., 2018, Kim et al., 2018, Teerapittayanon
et al., 2016], from which an appropriate one is chosen at test time. We only discuss multi-exit
architectures in detail, as this is the class of models to which our proposed training technique
applies.

Multi-exit architectures. The first work to propose attaching early exits to a deep network
was [Teerapittayanon et al., 2016], where standard image classification architectures such
as LeNet, AlexNet and ResNet, were augmented by early exits. Huang et al. [2018] were
the first to propose a custom multi-exit architecture, the Multi-Scale DenseNet (MSDNet),
motivated by the observation that early exits interfere with the role of early layers as feature
extractors for later use. The MSDNet was the state-of-the-art multi-exit architecture until
very recently and it is the one we use in our experiments. Kim et al. [2018] propose a doubly
nested architecture suitable for memory-constrained settings. Finally, there is recent work
on discovering multi-exit architectures by neural architecture search (NAS) [Zhang et al.,
2019].

55

6. DISTILLATION-BASED TRAINING FOR MULTI-EXIT ARCHITECTURES

While the main contributions of these works are architectural, our focus is on training. In all
of these works except [Zhang et al., 2019] (which employs NAS-specific training), multi-exit
networks are trained by minimising the sum of exit-wise losses. We propose a novel training
procedure that is applicable to any of these multi-exit architectures.

Orthogonally to the subject of this work, networks with early exits have also been proposed
for other purposes, such as providing stronger gradient signals for training Lee et al. [2015],
or multi-resolution image processing Xie and Tu [2015].

Distillation. We review the foundational literature as well as applications of distillation in
Section 5.1. In the vast majority of applications, including the work cited above, the teacher
network is fixed.

Notable exceptions are [Anil et al., 2018], where distillation is used in a distributed optimisa-
tion setting to ensure consistency between different copies of a model, [Radosavovic et al.,
2018], where a model is self-trained by distillation from its previous version’s predictions,
and [Li and Hoiem, 2016, Rebuffi et al., 2017], where distillation between stored predictions
from the past and current predictions is used as a regulariser during incremental training. In
contrast, we propose distillation from one part of a model to another part. To our knowledge,
no previous work has addressed this setting.

6.2 Distillation-based training for multi-exit architectures

In this section, we introduce the mathematical notation and the necessary background for
the discussion of the proposed method. Throughout this chapter, we consider the setting of
multi-class classification with an input set X, e.g. images, and an output set Y = {1, . . . , K},
where K is the number of classes.

6.2.1 Multi-exit architectures

Multi-exit architectures are layered classification architectures with exits at different depths,
see Figure 6.1 for an illustration. For a system with M exits, this results in a sequence
(p1, . . . , pM) of probabilistic classifiers pm : X → ∆K , each of which maps the input to
the probability simplex ∆K , i.e. the set of probability distributions over the K classes. We
think of p1, . . . , pM as being ordered from the least to the most expressive as well as
computationally expensive. In principle, the classifiers may or may not share weights and
computation, but in the most interesting and practically useful case, they do share both.

6.2.2 Prediction

At prediction time, the multi-exit system can operate in two different modes, depending on
whether the computational budget to classify an example is known or not.

Budget-mode. If the computational budget for a given example is known, the system can
directly identify a suitable exit, pM ′(x), to evaluate. This way, it only has to evaluate the
shared parts of the architecture while skipping over the earlier exits (m < M ′). How exactly
the specific exit is chosen is model-dependent. In this paper, we first determine the runtime
and quality of any single exit on a validation set. Then, for any target runtime, we output the
decision of the exit with highest validation accuracy that runs within the available budget.

56

6.2. Distillation-based training for multi-exit architectures

Anytime-mode. If the computational budget is unknown, i.e. for anytime prediction, after
receiving a test input x, the system starts evaluating the classifiers p1, p2, . . . in turn, reusing
computation where possible. It continues doing this until it receives a signal to stop – say
this happens after the M ′-th exit – at which point it returns the predictions of the ensemble
created from the evaluated exits, 1

M ′
∑︁M ′

m=1 pm(x).

6.2.3 Distillation training objective

Our main contribution is a new training objective for multi-exit architectures. Given a training
set, {(xn, yn)}N

n=1, we propose to train the multi-exit architecture by a combination of a
classification loss, ℓcls and a distillation loss, ℓdist,

1
N

N∑︂
n=1

[︃
ℓcls(xn, yn) + ℓdist(xn)

]︃
. (6.1)

Distillation loss. To introduce the distillation loss ℓdist, we first recall the multi-class knowl-
edge distillation framework as introduced by Hinton et al. [2014]: assume we want a
probabilistic multi-class classifier s (the student) to learn from another such classifier t
(the teacher). This can be achieved by making the student output class distributions sim-
ilar to those of the teacher. Specifically, for a given training example x, we minimise the
cross-entropy between the (temperature-adjusted) output distributions,

ℓτ (t(x), s(x)) = −τ 2
K∑︂

k=1
[t1/τ (x)]k log[s1/τ (x)]k, (6.2)

with respect to the parameters of s, where τ > 0 is a scalar hyper-parameter called the
temperature, and

[s1/τ (x)]k = sk(x)1/τ∑︁K
l=1 sl(x)1/τ

(6.3)

is the distribution obtained from the distribution s(x) by temperature scaling (similarly for
[t1/τ (x)]k). Note that for typical network architectures, for which the outputs are the result
of a softmax operation over logits, temperature scaling can be done efficiently by simply
dividing all logits by τ .

The temperature parameter controls the ‘softness’ of the teacher’s predictions: the higher
the temperature, the more suppressed is the difference between the largest and the smallest
value of the probability vector. This allows compensating for the fact that network outputs
are often overconfident, i.e. they put too much probability mass on the top predicted class,
and too little on the others. The factor τ 2 in eq. (6.2) ensures that the temperature scaling
does not negatively affect the gradient magnitude.

Returning to multi-exit architectures, we follow the general strategy of classical distillation
but use different exits of the multi-exit classifier both as the student and the teacher. For
any exit m, let T(m) ⊂ {1, . . . , M} (which could be empty) be the set of teacher exits it is
meant to learn from. Then we define the distillation loss for the n-th example as

ℓdist(xn) ≜ 1
M

M∑︂
m=1

1
|T(m)|

∑︂
t∈T(m)

ℓτ (pt(xn), pm(xn)), (6.4)

57

6. DISTILLATION-BASED TRAINING FOR MULTI-EXIT ARCHITECTURES

In practice, there are different ways how to choose the set of teachers. The simplest choice,
where all exists learn only from the last one, i.e. T(m) = {M} for m < M and T(M) = ∅,
has worked well for us, so we propose it as the default option. However, we also study other
setups, for example each exit distilling from all later exits; see Section 6.3.

Classification loss. The first term in eq. (6.1) is a standard multi-class classification loss
that acts separately on each exit,

ℓcls(xn, yn) = 1
M

M∑︂
m=1

ℓce(yn, pm(xn)) (6.5)

where ℓce(y, p) = − log py(x) is the cross-entropy loss.

Algorithm 6.1 Distillation-based training
1: procedure TRAINMULTIEXIT(θ,T, µ, τ∗) // Inputs: model parameters, teacher sets, . . .
2: T(:)← T(1) ∪ · · · ∪ T(M) // . . . confidence threshold, temperature multiplier.
3: τ ← 1
4: for n = 1, . . . , N do
5: zn ← ExtractRepresentation(xn; θ) // Using the shared part of the model.
6: for m = 1, . . . , M do
7: pm ← softmax(exitm(zn; θ))
8: p̄m ← detach(softmax(exitm(zn; θ)/τ))
9: end for

10: ℓ← 1
M

∑︁M
m=1 ℓce(yn, pm) + 1

M

∑︁M
m=1

1
|T(m)|

∑︁
t∈T(m) ℓτ (p̄t, pm)

11: θ ← Update(θ,∇ℓ)
12: if max

(︂
1

|T(:)|
∑︁

t∈T(:) p̄t

)︂
> µ then τ ← ττ∗

13: end if
14: end for
15: end procedure

6.2.4 Optimisation

We minimise the training objective (6.1) using standard gradient-based methods with mini-
batches. In particular, all exits are trained at the same time and on the same data. We
provide the pseudo-code (for single sample batches) in Algorithm 6.1. It consists largely of
standard gradient-based optimisation. However, two aspects are specific to distillation-based
training: partial detaching (detach; line 8), and temperature annealing (line 12).

Partial detaching. When minimising the loss, we have to make sure that indeed only the
student learns from the teacher and not vice versa. We achieve this by treating the teachers’
predictions (pt(xn) in eq. (6.4), or p̄t in Algorithm 6.1) as constant for gradient calculation of
the distillation term.

Temperature annealing. Over the course of training, networks tend to grow more confident.
In the multi-exit setting, this also applies to exits that serve as teachers (see Figure 6.6).
Therefore, increasingly higher temperatures are needed to ‘soften’ their outputs, and we
achieve this by increasing the temperature during training. To this end, we introduce an
adaptive annealing scheme that aims at keeping the teachers’ confidence roughly constant.
Specifically, we define the confidence of a classifier to be the maximum of the output vector
of class probabilities, averaged over a set of examples. Let µ be an upper bound for the

58

6.3. Experiments

desired teacher confidence. We initialise the temperature at τ0 = 1 and multiply it by a
constant τ∗ > 1 whenever the teachers’ average temperature-adjusted confidence for a
training batch exceeds µ.

6.2.5 Semi-supervised training

One characteristic property of the distilliaton loss (6.4) is that it does not depend on the
labels of the training data. This means it can also be computed from unlabelled training
data, opening up the possibility of training multi-exit architectures in a semi-supervised way.

Assume that, in addition to the labelled training set {(xn, yn)}N
n=1, we have an additional set

of unlabelled training examples, {xn}N ′

n=N+1, potentially with N ′ ≫ N . We then define the
semi-supervised training objective as

1
N

N∑︂
n=1

ℓcls(xn, yn) + 1
N ′

N ′∑︂
n=1

ℓdist(xn). (6.6)

We can minimise this objective using the same techniques as in the fully-supervised case
and with only minor modifications to the source code.

6.3 Experiments

In this section, we present our experimental results which show that distillation-based
training consistently outperforms the standard training procedure for multi-exit architectures
on image classification benchmarks: ImageNet (subsets) and CIFAR100 (subsets, as
well as the full dataset). We further present experiments showing the tentative benefit of
semi-supervised distillation when unlabelled training data is available.

We also present in-depth experiments providing insight into the working mechanism of
the proposed distillation-based training procedure, in particular the temperature annealing
scheme, and we discuss the choice of teachers.

6.3.1 Experimental setup

Datasets. We present experiments on two standard datasets. For CIFAR100 [Krizhevsky
and Hinton, 2009], we follow the default split, using 50,000 images (500 for each of 100
classes) for training and model selection, and we report the accuracy on the remaining
10,000 test examples. For ImageNet (ILSVRC 2012) [Deng et al., 2009], we use the
1.2 million train images of 1000 classes for training and model selection. We report the
accuracy on the 50,000 images of the ILSVRC val set. During training, we apply data
augmentation as in [He et al., 2016, Huang et al., 2018]. For testing, we resize the images
to 256× 256 pixels and center-crop them to 224× 224. For both datasets, we pre-process
all images by subtracting the channel mean and dividing by the channel standard deviation.

Because we are particularly interested in the low-data regime, we perform experiments
using only subsets of the available data: by ImageNet(X) we denote a dataset with X
randomly selected examples from each ImageNet class (which are then split 90%/10%
into a training and a model selection part). By CIFAR(X) we denote subsets of CIFAR100
that are constructed analogously to the above, but always with 50 images used for model
selection (using 10% would be too few for this dataset), and the remaining X − 50 for

59

6. DISTILLATION-BASED TRAINING FOR MULTI-EXIT ARCHITECTURES

training. As additional unlabelled data for the experiments on semi-supervised learning we
use 500−X (in the case of CIFAR100) or 700−X (in the case of ImageNet) images per
class, sampled randomly from all remaining images, i.e. the ones that were not selected as
training or validation data (nor as test data, of course).

Model architecture. We use the Multi-Scale DenseNet [Huang et al., 2018], a state-of-
the-art multi-exit architecture with convolutional blocks arranged in a grid of multiple scales
(rows) and multiple layers (columns). We train the MSDNets ourselves, following the original
architectures and hyper-parameters.1 The CIFAR MSDNet has 3× 24 blocks and 11 exits,
one attached to every second layer, starting from layer 4. The ImageNet MSDNet has 4× 38
blocks and 5 exits, one on every seventh layer, starting from layer 10.

Baseline. We compare distillation training to the traditional way of training multi-exit
architectures, namely by minimising the exit-wise loss (used e.g. by Huang et al. [2018],
Kim et al. [2018], Teerapittayanon et al. [2016]),

1
NM

N∑︂
n=1

M∑︂
m=1

ℓce(yn, pm(xn)). (6.7)

This coincides with using just the classification loss (6.5) of our training objective. Because
labels for all training examples are needed to compute the loss, (6.7) does not have an
obvious extension to semi-supervised learning.

Optimisation and hyper-parameters. We train all models from a random initialisation by
SGD with Nesterov momentum, an initial learning rate of 0.5, a momentum weight of 0.9,
and a weight decay of 10−4. For CIFAR100, we set the batch size to 64 and train for 300
epochs. The learning rate is divided by 10 after epochs 150 and 225. For ImageNet, we set
the batch size to 256 and train for 90 epochs. The learning rate is divided by 10 after epochs
30 and 60.

For the temperature annealing we use a confidence limit of µ = 0.5 for CIFAR100 and
µ = 0.1 for ImageNet, and τ∗ = 1.05 as the temperature multiplier.

Repeated runs. We repeat each experiment 5 or 10 times, each time with a different
random subset of the training data and different weight initialisation. We report the average
performance across the repeated runs as well as its 95% confidence interval (i.e. 1.96 times
the standard error).

6.3.2 Main results: budget-mode accuracy

We first present results from experiments when operating the model in budget-mode, i.e.
with a known time budget at test time. As described in Section 6.2.2, for any value of the
budget, we identify the best exit (according to the validation set) that can be computed
within the budget, and evaluate its decision. This is often the latest exit among the available
ones, but not always: for example, in the low-data regime, the additional capacity of a late
exit may make it more likely to overfit, and an intermediate exit might perform better.

Figures 6.2 and 6.3 show the results for ImageNet and CIFAR100, respectively. Numeric
results can be found in Tables 6.1 and 6.2. For each training procedure, we report the

1Our implementation achieves very similar performance to the original MSDNet, e.g. ≈ 75% accuracy on
CIFAR100.

60

6.3. Experiments

Exit1 Exit2 Exit3 Exit4 Exit5
0.64

0.66

0.68

0.70

T
op

-5
 a

cc
u
ra

cy

ImageNet(100)

Exit-wise loss

Distillation

Distl. semi-sup.

Exit1 Exit2 Exit3 Exit4 Exit5

0.80

0.82

0.84

ImageNet(300)

Exit1 Exit2 Exit3 Exit4 Exit5

0.84

0.86

0.88

ImageNet(500)

Exit1 Exit2 Exit3 Exit4 Exit5

0.88

0.90

0.92

ImageNet(full)

Exit1 Exit2 Exit3 Exit4 Exit5
0.64

0.66

0.68

0.70

T
o
p
-5

 a
cc

u
ra

cy

ImageNet(100)

Exit-wise loss

Distillation

Distl. semi-sup.

Exit1 Exit2 Exit3 Exit4 Exit5

0.80

0.82

0.84

ImageNet(300)

Exit1 Exit2 Exit3 Exit4 Exit5

0.84

0.86

0.88

ImageNet(500)

Exit1 Exit2 Exit3 Exit4 Exit5

0.88

0.90

0.92

ImageNet(full)

Exit1 Exit2 Exit3 Exit4 Exit5
0.64

0.66

0.68

0.70

T
o
p
-5

 a
cc

u
ra

cy

ImageNet(100)

Exit-wise loss

Distillation

Distl. semi-sup.

Exit1 Exit2 Exit3 Exit4 Exit5

0.80

0.82

0.84

ImageNet(300)

Exit1 Exit2 Exit3 Exit4 Exit5

0.84

0.86

0.88

ImageNet(500)

Exit1 Exit2 Exit3 Exit4 Exit5

0.88

0.90

0.92

ImageNet(full)

Figure 6.2: Top-5 accuracy as a function of computational budget (denominated in available
exits). MSDNet trained by the exit-wise loss (blue) vs. trained by distillation (green) vs.
trained by semi-supervised distillation (red) on ImageNet ILSVRC2012 with 100, 300, 500,
and all available (≥ 700) images per class.

ImageNet(100) ImageNet(300)

Exit-wise loss Distillation Distl. semi-sup. Exit-wise loss Distillation Distl. semi-sup.

Exit 1 64.4 ± 0.4 68.1 ± 0.5 68.1 ± 0.4 79.5 ± 0.2 82.3 ± 0.2 82.3 ± 0.3
Exit 2 67.1 ± 0.3 69.2 ± 0.6 69.5 ± 0.1 82.1 ± 0.2 83.9 ± 0.3 84.0 ± 0.5
Exit 3 68.1 ± 0.5 69.3 ± 0.6 69.7 ± 0.4 83.0 ± 0.3 84.2 ± 0.3 84.3 ± 0.6
Exit 4 68.2 ± 0.6 69.3 ± 0.6 69.7 ± 0.4 83.1 ± 0.3 84.2 ± 0.3 84.3 ± 0.6
Exit 5 68.1 ± 0.6 69.3 ± 0.6 69.7 ± 0.4 83.3 ± 0.3 84.2 ± 0.3 84.3 ± 0.6

ImageNet(500) ImageNet(full)

Exit-wise loss Distillation Distl. semi-sup. Exit-wise loss Distillation

Exit 1 83.4 ± 0.2 85.6 ± 0.1 85.4 ± 0.1 87.8 ± 0.2 88.8 ± 0.1
Exit 2 86.3 ± 0.2 87.3 ± 0.2 87.1 ± 0.3 90.4 ± 0.1 90.7 ± 0.1
Exit 3 87.3 ± 0.3 87.7 ± 0.3 87.8 ± 0.4 91.5 ± 0.1 91.3 ± 0.2
Exit 4 87.5 ± 0.3 87.7 ± 0.3 87.8 ± 0.4 91.8 ± 0.1 91.5 ± 0.1
Exit 5 87.8 ± 0.3 87.7 ± 0.3 87.8 ± 0.4 92.3 ± 0.1 91.7 ± 0.2

Table 6.1: Top-5 accuracy in % (mean ± 1.96 stderr) for different computational budgets
(denominated in available exits). MSDNet trained by the exit-wise loss vs. trained by
distillation vs. trained by semi-supervised distillation on ImageNet with 100, 300, 500 and
all available (≥ 700) training images per class. Bold values indicate statistically significant
improvements.

resulting model’s accuracy for different values of the budget: when only Exit1 is available,
when Exit1 and Exit2 are available, and so on.

ImageNet results. Figure 6.2 and Table 6.1 compare distillation-based training and exit-
wise training. Distillation-based training consistently outperforms exit-wise training, in many
settings substantially. For most computational budgets, the distillation-trained model has a
higher or comparable accuracy, with accuracy gains of up to 3.8%. Conversely, to achieve

61

6. DISTILLATION-BASED TRAINING FOR MULTI-EXIT ARCHITECTURES

1 2 3 4 5 6 7 8 9 10 11

Exit

0.75

0.80

T
o
p
-5

 a
cc

u
ra

cy

CIFAR(150)

Exit-wise loss

Distillation

Distl. semi-sup.

1 2 3 4 5 6 7 8 9 10 11

Exit

0.800

0.825

0.850

0.875

CIFAR(250)

1 2 3 4 5 6 7 8 9 10 11

Exit

0.850

0.875

0.900

CIFAR(350)

1 2 3 4 5 6 7 8 9 10 11

Exit

0.88

0.90

0.92

CIFAR(500/full)

1 2 3 4 5 6 7 8 9 10 11

Exit

0.75

0.80

T
o
p
-5

 a
cc

u
ra

cy

CIFAR(150)

Exit-wise loss

Distillation

Distl. semi-sup.

1 2 3 4 5 6 7 8 9 10 11

Exit

0.800

0.825

0.850

0.875

CIFAR(250)

1 2 3 4 5 6 7 8 9 10 11

Exit

0.850

0.875

0.900

CIFAR(350)

1 2 3 4 5 6 7 8 9 10 11

Exit

0.88

0.90

0.92

CIFAR(500/full)

1 2 3 4 5 6 7 8 9 10 11

Exit

0.75

0.80

T
o
p
-5

 a
cc

u
ra

cy

CIFAR(150)

Exit-wise loss

Distillation

Distl. semi-sup.

1 2 3 4 5 6 7 8 9 10 11

Exit

0.800

0.825

0.850

0.875

CIFAR(250)

1 2 3 4 5 6 7 8 9 10 11

Exit

0.850

0.875

0.900

CIFAR(350)

1 2 3 4 5 6 7 8 9 10 11

Exit

0.88

0.90

0.92

CIFAR(500/full)

Figure 6.3: Top-5 accuracy as a function of computational budget (denominated in available
exits). MSDNet trained by the exit-wise loss (blue) vs. trained by distillation (green) vs.
trained by semi-supervised distillation (red) on CIFAR100 with 150, 250, 350, and 500
images per class.

CIFAR(150) CIFAR(250)

Exit-wise loss Distillation Distl. semi-sup. Exit-wise loss Distillation Distl. semi-sup.

Exit 1 72.4 ± 1.3 78.7 ± 0.4 79.9 ± 0.4 80.6 ± 0.4 85.6 ± 0.2 86.5 ± 0.3
Exit 2 75.5 ± 0.7 80.5 ± 0.3 81.1 ± 0.4 83.4 ± 0.3 87.5 ± 0.2 88.2 ± 0.3
Exit 3 77.4 ± 0.6 80.9 ± 0.4 81.0 ± 0.5 84.9 ± 0.3 88.4 ± 0.2 88.5 ± 0.2
Exit 4 78.4 ± 0.4 81.2 ± 0.4 81.0 ± 0.5 86.0 ± 0.3 88.6 ± 0.2 88.7 ± 0.2
Exit 5 79.2 ± 0.3 81.2 ± 0.4 81.0 ± 0.5 86.8 ± 0.2 88.8 ± 0.3 88.7 ± 0.2
Exit 6 79.8 ± 0.2 81.2 ± 0.4 81.0 ± 0.5 87.4 ± 0.2 88.8 ± 0.3 88.7 ± 0.2
Exit 7 80.1 ± 0.4 81.1 ± 0.3 81.0 ± 0.5 87.6 ± 0.3 88.8 ± 0.3 88.7 ± 0.2
Exit 8 80.3 ± 0.4 81.1 ± 0.3 81.0 ± 0.5 87.9 ± 0.3 88.8 ± 0.3 88.7 ± 0.2
Exit 9 80.3 ± 0.5 81.1 ± 0.3 81.0 ± 0.5 88.0 ± 0.3 88.8 ± 0.3 88.7 ± 0.2
Exit 10 80.4 ± 0.5 81.1 ± 0.3 81.0 ± 0.5 88.0 ± 0.3 88.8 ± 0.3 88.7 ± 0.2
Exit 11 80.3 ± 0.5 81.1 ± 0.3 81.0 ± 0.5 87.9 ± 0.3 88.8 ± 0.3 88.7 ± 0.2

CIFAR(350) CIFAR(500)

Exit-wise loss Distillation Distl. semi-sup. Exit-wise loss Distillation

Exit 1 84.5 ± 0.3 88.1 ± 0.3 88.5 ± 0.3 87.5 ± 0.3 90.0 ± 0.2
Exit 2 87.2 ± 0.3 90.1 ± 0.2 90.4 ± 0.2 89.8 ± 0.1 92.0 ± 0.2
Exit 3 88.8 ± 0.2 91.1 ± 0.3 91.2 ± 0.2 91.2 ± 0.1 92.9 ± 0.2
Exit 4 89.6 ± 0.2 91.3 ± 0.3 91.5 ± 0.2 91.8 ± 0.2 93.1 ± 0.1
Exit 5 90.1 ± 0.2 91.4 ± 0.3 91.5 ± 0.1 92.3 ± 0.1 93.1 ± 0.2
Exit 6 90.5 ± 0.3 91.5 ± 0.4 91.5 ± 0.2 92.6 ± 0.1 93.1 ± 0.2
Exit 7 90.7 ± 0.2 91.5 ± 0.4 91.5 ± 0.2 92.9 ± 0.1 93.1 ± 0.2
Exit 8 90.8 ± 0.2 91.5 ± 0.4 91.5 ± 0.2 93.0 ± 0.1 93.1 ± 0.2
Exit 9 90.8 ± 0.2 91.5 ± 0.4 91.5 ± 0.2 93.1 ± 0.1 93.1 ± 0.2
Exit 10 90.8 ± 0.3 91.5 ± 0.4 91.5 ± 0.2 93.1 ± 0.2 93.1 ± 0.2
Exit 11 90.8 ± 0.2 91.5 ± 0.4 91.5 ± 0.2 93.1 ± 0.2 93.1 ± 0.2

Table 6.2: Top-5 accuracy in % (mean ± 1.96 stderr) for different computational budgets
(denominated in available exits). MSDNet trained by the exit-wise loss vs. trained by
distillation vs. trained by semi-supervised distillation on CIFAR100 with 150, 250, 350, and
500 images per class. Bold values indicate statistically significant improvements.

62

6.3. Experiments

any given accuracy, the distillation-trained model typically requires far less computation,
especially in the data-constrained regime. For example, in the case of ImageNet(100),
already Exit1 suffices to match the accuracy of the exit-wise trained model at any budget.
Similarly, in the case of ImageNet(300), already at the time Exit2 becomes available, the
distillation-trained model dominates the exit-wise trained model at any budget.

Overall, two main factors seem to affect the performance gap: a) The amount of training
data: comparing the results for ImageNet(100) to those for ImageNet(300), ImageNet(500)
and ImageNet(full), we see that the smaller the training set, the bigger the benefit from
distillation. In the regime of very large data (full ImageNet), distillation seems to trade off the
accuracy of early and late exits, instead of providing a uniform improvement. This agrees
with earlier studies, e.g. [Hinton et al., 2014], that found distillation to have a regularising
effect, i.e. it helps prevent overfitting in the low-data regime. b) The inference budget: within
each subplot, the largest gains are realised for the smallest inference budgets. Intuitively,
this makes sense, as the earliest exits can benefit the most from a teacher during learning.
In combination, the results suggest that distillation training can provide a large accuracy
boost, especially when the amount of training data and/or the computational resources at
test time are limited.

Figure 6.2 and Table 6.1 also show results for the semi-supervised variant of distillation-
based training, as described in Section 6.2.5. We observe an additional small improvement
over the fully-supervised variant, especially when labelled data is limited and unlabelled
data plentiful.

CIFAR100 results. We present analogous results for CIFAR100 in Figure 6.3 and Table 6.2.
We observe similar trends as for ImageNet, though in this case distillation training uniformly
outperforms exit-wise training and yields an up to 6.3% improvement in accuracy for a fixed
budget. Conversely, distillation training enables the resulting model to stop already after
Exit2 or Exit3 with comparable accuracy as the conventionally trained model when executed
in full. As previously for ImageNet, here, too, we observe that the gains from distillation are
largest when training data is limited, and when the inference budget is low.

The semi-supervised variant provides an additional small but consistent improvement. For
example, for Exit1, the additional unlabelled data translates into 1.2%, 0.9%, and 0.4%
increase in accuracy for CIFAR(150), CIFAR(250), and CIFAR(350) respectively.

6.3.3 Main results: anytime-mode accuracy

In a second set of experiments, we operate the multi-exit model in anytime-mode, i.e. the
model evaluates all its exits in turn until the (unknown) computational budget is spent,
at which point it returns the ensembled prediction of all completed exits. As before, we
report multiclass accuracy for different computational budgets, this time denominated in the
number of completed exits, or the size of the ensemble.

The results for ImageNet and CIFAR100 are shown in Figures 6.4 and 6.5 respectively.
The corresponding numeric results are given in Tables 6.3 and 6.4. The results are similar
to those for budget-mode evaluation. Across datasets, dataset sizes (except for the very
large-scale regime), and computation budgets, the models trained with distillation clearly
outperform the model trained without it. The results for semi-supervised learning are less
clear: for early exits, the unlabelled data often helps, but we observe a small drop of

63

6. DISTILLATION-BASED TRAINING FOR MULTI-EXIT ARCHITECTURES

Ens1 Ens2 Ens3 Ens4 Ens5
0.64

0.66

0.68

0.70

T
op

-5
 a

cc
u
ra

cy

ImageNet(100)

Ens1 Ens2 Ens3 Ens4 Ens5

0.80

0.82

0.84

ImageNet(300)

Exit-wise loss

Distillation

Distl. semi-sup.

Ens1 Ens2 Ens3 Ens4 Ens5

0.84

0.86

0.88

T
op

-5
 a

cc
u
ra

cy

ImageNet(500)

Ens1 Ens2 Ens3 Ens4 Ens5

0.88

0.90

0.92

ImageNet(full)

Figure 6.4: Top-5 accuracy of first-m-exits ensembles (m = 1, . . . , 5) trained by the exit-wise
loss (blue) vs. trained by distillation (green) vs. trained by semi-supervised distillation (red)
on ImageNet ILSVRC2012 with 100, 300, 500 or all available (≥ 700) training images per
class.

ImageNet(100) ImageNet(300)

Exit-wise loss Distillation Distl. semi-sup. Exit-wise loss Distillation Distl. semi-sup.

Ensemble 1 64.4 ± 0.4 68.1 ± 0.5 68.1 ± 0.4 79.5 ± 0.2 82.3 ± 0.2 82.3 ± 0.3
Ensemble 2 67.7 ± 0.3 69.7 ± 0.6 69.9 ± 0.2 82.3 ± 0.1 84.0 ± 0.2 84.1 ± 0.5
Ensemble 3 69.2 ± 0.3 70.3 ± 0.6 70.6 ± 0.1 83.6 ± 0.2 84.7 ± 0.3 84.8 ± 0.4
Ensemble 4 69.9 ± 0.3 70.5 ± 0.6 70.8 ± 0.2 84.3 ± 0.2 84.9 ± 0.3 85.0 ± 0.5
Ensemble 5 70.2 ± 0.4 70.5 ± 0.7 70.8 ± 0.2 84.6 ± 0.2 85.0 ± 0.3 85.1 ± 0.5

ImageNet(500) ImageNet(full)

Exit-wise loss Distillation Distl. semi-sup. Exit-wise loss Distillation

Ensemble 1 83.4 ± 0.2 85.6 ± 0.1 85.4 ± 0.1 87.8 ± 0.2 88.8 ± 0.1
Ensemble 2 86.3 ± 0.1 87.3 ± 0.2 87.1 ± 0.3 90.2 ± 0.1 90.5 ± 0.1
Ensemble 3 87.6 ± 0.2 88.0 ± 0.2 87.9 ± 0.3 91.3 ± 0.1 91.3 ± 0.1
Ensemble 4 88.1 ± 0.2 88.3 ± 0.3 88.2 ± 0.4 91.9 ± 0.1 91.6 ± 0.1
Ensemble 5 88.5 ± 0.2 88.4 ± 0.3 88.4 ± 0.4 92.2 ± 0.1 91.8 ± 0.1

Table 6.3: Top-5 accuracy in % (mean ± 1.96 stderr) of first-m-exits ensembles (m =
1, . . . , 5) trained by the exit-wise loss vs. trained by distillation vs. trained by semi-supervised
distillation on ImageNet ILSVRC2012 with 100, 300, 500 or all available (≥ 700) training
images per class.

accuracy of the late exits for CIFAR(150). Still, the proposed method outperforms the
exit-wise trained model.

6.3.4 Additional experiments

Temperature annealing. In this section, provide further insight and justification for the
proposed temperature annealing scheme. Figure 6.6 shows the teacher’s confidence (blue)
during training. One can see that it changes markedly and generally increases. The
proposed temperature-scaling procedure reacts to this by raising the temperature over time

64

6.3. Experiments

1 2 3 4 5 6 7 8 9 10 11

0.75

0.80

T
o
p
-5

 a
cc

u
ra

cy

CIFAR(150)

1 2 3 4 5 6 7 8 9 10 11
0.80

0.85

0.90

CIFAR(250)

Exit-wise loss

Distillation

Distl. semi-sup.

1 2 3 4 5 6 7 8 9 10 11
Ensemble

0.850

0.875

0.900

0.925

T
o
p
-5

 a
cc

u
ra

cy

CIFAR(350)

1 2 3 4 5 6 7 8 9 10 11
Ensemble

0.88

0.90

0.92

0.94

CIFAR(500/full)

Figure 6.5: Top-5 accuracy of first-m-exits ensembles (m = 1, . . . , 11) trained by the exit-
wise loss (blue) vs. trained by distillation (green) vs. trained by semi-supervised distillation
(red) on CIFAR100 with 150, 250, 350 or 500 images per class.

CIFAR(150) CIFAR(250)

Exit-wise loss Distillation Distl. semi-sup. Exit-wise loss Distillation Distl. semi-sup.

Ensemble 1 72.4 ± 1.3 78.7 ± 0.4 79.9 ± 0.4 80.6 ± 0.4 85.6 ± 0.2 86.5 ± 0.3
Ensemble 2 75.8 ± 0.9 80.8 ± 0.3 81.5 ± 0.4 83.7 ± 0.3 87.6 ± 0.2 88.3 ± 0.3
Ensemble 3 77.9 ± 0.8 81.8 ± 0.3 82.1 ± 0.4 85.5 ± 0.2 88.7 ± 0.2 89.1 ± 0.2
Ensemble 4 79.1 ± 0.7 82.3 ± 0.3 82.3 ± 0.4 86.4 ± 0.2 89.2 ± 0.2 89.4 ± 0.2
Ensemble 5 80.0 ± 0.6 82.7 ± 0.3 82.3 ± 0.4 87.2 ± 0.2 89.5 ± 0.2 89.6 ± 0.2
Ensemble 6 80.7 ± 0.5 82.8 ± 0.4 82.3 ± 0.4 87.8 ± 0.2 89.6 ± 0.2 89.7 ± 0.2
Ensemble 7 81.2 ± 0.4 82.9 ± 0.4 82.3 ± 0.4 88.3 ± 0.2 89.8 ± 0.2 89.8 ± 0.2
Ensemble 8 81.6 ± 0.4 82.9 ± 0.4 82.3 ± 0.4 88.7 ± 0.2 89.8 ± 0.2 89.8 ± 0.2
Ensemble 9 81.9 ± 0.3 82.9 ± 0.3 82.2 ± 0.4 88.9 ± 0.2 89.9 ± 0.2 89.8 ± 0.2
Ensemble 10 82.1 ± 0.3 82.9 ± 0.4 82.2 ± 0.5 89.1 ± 0.2 89.9 ± 0.2 89.8 ± 0.2
Ensemble 11 82.2 ± 0.3 82.8 ± 0.3 82.1 ± 0.5 89.1 ± 0.2 89.8 ± 0.2 89.8 ± 0.2

CIFAR(350) CIFAR(500)

Exit-wise loss Distillation Distl. semi-sup. Exit-wise loss Distillation

Ensemble 1 84.5 ± 0.3 88.1 ± 0.3 88.5 ± 0.3 87.5 ± 0.3 90.0 ± 0.2
Ensemble 2 87.5 ± 0.2 90.0 ± 0.2 90.4 ± 0.2 90.0 ± 0.1 91.9 ± 0.2
Ensemble 3 89.1 ± 0.2 91.2 ± 0.2 91.4 ± 0.2 91.4 ± 0.1 92.9 ± 0.1
Ensemble 4 90.0 ± 0.2 91.6 ± 0.2 91.8 ± 0.2 92.2 ± 0.1 93.4 ± 0.1
Ensemble 5 90.5 ± 0.2 91.8 ± 0.3 92.1 ± 0.2 92.7 ± 0.1 93.6 ± 0.1
Ensemble 6 91.0 ± 0.1 92.0 ± 0.3 92.2 ± 0.1 93.1 ± 0.1 93.7 ± 0.1
Ensemble 7 91.3 ± 0.1 92.1 ± 0.2 92.3 ± 0.2 93.4 ± 0.1 93.8 ± 0.1
Ensemble 8 91.5 ± 0.1 92.1 ± 0.3 92.3 ± 0.2 93.6 ± 0.1 93.8 ± 0.1
Ensemble 9 91.7 ± 0.1 92.1 ± 0.3 92.3 ± 0.2 93.7 ± 0.1 93.8 ± 0.1
Ensemble 10 91.8 ± 0.1 92.2 ± 0.3 92.3 ± 0.2 93.8 ± 0.1 93.9 ± 0.1
Ensemble 11 91.9 ± 0.1 92.2 ± 0.2 92.3 ± 0.2 93.9 ± 0.1 93.9 ± 0.1

Table 6.4: Top-5 accuracy in % (mean ± 1.96 stderr) of first-m-exits ensembles trained by
the exit-wise loss vs. trained by distillation vs. trained by semi-supervised distillation on
CIFAR100 with 150, 250, 350 or 500 images per class.

(purple). The result is that the temperature-adjusted confidence (green) remains roughly
constant, and slightly below the confidence limit µ (red).

65

6. DISTILLATION-BASED TRAINING FOR MULTI-EXIT ARCHITECTURES

0 50 100 150 200 250 300
Training epoch

0.00

0.25

0.50

0.75

1.00

Unadjusted confidence

Adjusted confidence

Confidence limit µ

0 50 100 150 200 250 300
Training epoch

1

2

3

Temperature

Figure 6.6: Confidence of MSDNet’s last exit with and without temperature annealing
throughout training on CIFAR(150). At epochs 150 and 225, the learning rate drops.

Figure 6.7 shows the accuracy curves of five MSDNets trained by distillation, each with
a different temperature setting. We compare the proposed annealing scheme (green) to
training with constant temperature, T ∈ {1.0, 2.0, 3.0, 4.0}. The figure shows that while
using no temperature at all (T = 1.0) leads to significant accuracy drops, as long as the
temperature is ‘high enough’, its exact value seems to matter little for the final model’s
accuracy. Still, the proposed annealing scheme performs as well as, or better than any
choice of a constant temperature, and has the advantage of being easier to tune.

1 2 3 4 5 6 7 8 9 10 11
Exit

0.84

0.86

0.88

T
op

-5
 a

cc
u
ra

cy

Budget-mode

1 2 3 4 5 6 7 8 9 10 11
Ensemble

0.84

0.86

0.88

0.90

Anytime-mode

T= 1.0

T= 2.0

T= 3.0

T= 4.0

Annealed T

Figure 6.7: Top-5 accuracy of five models trained by distillation, each with a different
temperature setting, on CIFAR(250). Results for different computational budgets in both the
budget-mode (left) and the anytime-mode (right).

Choice of teachers. For all experiments reported so far, we used the last exit as the teacher
for all other exits. We also performed exploratory studies on how the choice of teacher
affects the overall performance, but found the effect to be minor (see Appendix E.1).

66

6.4. Conclusion

6.4 Conclusion

In this chapter, we explored distillation-based training for multi-exit image classification archi-
tectures. The method is conceptually simple, architecture-agnostic, and as our experiments
show, it provides large and robust improvements over the state-of-the-art training procedure,
especially in data- or computation-constrained settings. It also naturally supports learning
from additional unlabelled training data.

67

CHAPTER 7
Conclusion

In this work, we studied different aspects of underspecification in deep learning, the learning
regime in which the number of degrees of freedom afforded by deep architectures vastly
exceeds the number of constraints posed by the training data. While classical statistics and
machine learning theory assert a clear negative effect of underspecification on generalisa-
tion, the situation is more complex in deep learning: underspecification may refer to one of
two distinct phenomena which differ markedly both in terms of their extent and relationship
to generalisation.

• In Chapter 2, we first formulate how deep learning models are underspecified on
two levels: first, any given training dataset can be fit in many different ways (by
different hypotheses), and second, any given hypothesis can itself be expressed in
many different ways (by different parameter vectors). We refer to the second kind of
underspecification as parameterisation redundancy and we precisely characterise
its extent. Specifically, we show there are only two types of universally applicable
redundancies, neuron permutations and rescalings. The corresponding redundant
subspace is much smaller than we expected a priori.

• In Chapter 3, we tackle the central mystery of deep learning: How come deep networks
generalise when the data is provably insufficient to pin down a good solution? This
pertains to hypothesis class redundancy, the other kind of underspecification identified
above. The most plausible narrative is that deep learning implicitly adheres to a
favourable criterion for choosing between hypotheses with equal empirical risk. This
implicit criterion, called the inductive bias, is still poorly understood. Here we focus on
the analytically tractable setting of orthogonally separable data and show that given
the choice, neural networks learn classifiers with a large margin.

• Although the inductive bias in deep learning does tend to be favourable, this is not
true in all settings. In Chapter 4, we consider representation learning with variational
autoencoders and argue that the default implicit bias is insufficient to guarantee
good performance – in fact, it is harmful. We then propose a method for steering
the underspecified learning problem: a hand-crafted regulariser based on mutual
information.

• In Chapter 5, we consider a different way of tightening the specification: strong
supervision, or more informative data. We consider the specific case of soft-label

69

7. CONCLUSION

supervision in binary classification, where instead of binary labels, the learning
algorithm observes real-valued labels. We then derive a generalisation bound for
linear networks supervised in this way and verify that soft labels facilitate fast learning.

• And finally, in Chapter 6 we explore an application of soft-label supervision, namely to
self-learning of multi-exit models. We demonstrate that soft labels are beneficial not
only when learning from world-observations (as shown above), but also when learning
from a more expressive, but not necessarily fully trained, model.

We think of the work on parameterisation redundancy and the work on hypothesis class
redundancy as related, but warranting distinction. As we have shown, the redundancy in
parameterisation is not as severe, and its connections to generalisation are perhaps less
obvious. The most promising pathway to impact in our view is via a better understanding of
the loss landscape. That said, parameterisation redundancy is a very recent concept, and
may yet inspire unexpected, hard-to-anticipate insights.

The literature on inductive biases is more established and constantly growing – compared
to the state of the art five years ago, we find that the understanding of inductive biases
has progressed substantially. This is especially true of the literature on nonlinear models
[Chizat and Bach, 2020, Ji and Telgarsky, 2020]. On the one hand, we are hopeful that this
great undertaking continues into the future and that it leads to a new class of generalisation
guarantees for deep learning. On the other hand, much of the inductive bias work focuses
on binary classification, and neglects learning scenarios in which the default inductive
bias may not be as favourable and where some additional steering is necessary (such as
in representation learning, as discussed above). These settings are currently a domain
of heuristic approaches. We hope that future work yields more principled approaches
to dealing with underspecification, and a better understanding of when they should be
preferred to the default inductive bias.

In the next section, we highlight a few particularly promising directions for further research.

7.1 Future work

The effect of parameterisation on the loss landscape. How we parameterise our neu-
ral networks, i.e. how the parameters θ ∈ Θ determine the input-output mapping hθ : X→ Y,
affects the shape of the loss landscape, θ ↦→ ℓ(θ). This effect could potentially be profound,
e.g. it could make training more effective or easier to analyse. While it has been observed
that such benefits can be attained by architectural changes [Li et al., 2018] or normalisation
schemes [Santurkar et al., 2018], to our knowledge very little is known about how the loss
landscape is shaped by different parameterisations.

In the context of the current work, one important question is whether introducing additional
parameterisation redundancies (beyond the already present permutation and rescaling)
helps optimisation, and what kinds of reparameterisations are the most helpful.

Inductive bias via descent-reachability. Throughout this work, we used the term induc-
tive bias to mean the preferential selection of certain hypotheses by the learning algorithm
when multiple hypotheses are tied in empirical risk. However, for learning algorithms that
operate in the parameter space, it may make more sense to explicitly consider the prefer-
ential selection of certain parts of the parameter space, and to define the inductive bias in

70

7.1. Future work

terms of properties of the loss landscape. One example of such an approach is the ‘flat
minima’ hypothesis [Keskar et al., 2017], according to which stochastic gradient descent
(with a small batch size) prefers parts of the parameter space where the loss is flat.

We put forward an alternative hypothesis that is less contingent on the presence of gradient
noise: gradient descent and variants are more likely to converge to parameter vectors that
are ‘descent-reachable’ from a large part of the parameter space, i.e. the algorithm is more
likely to return θ ∈ Θ if there is a descent path to it starting from many different η ∈ Θ.
The degree of preference for a hypothesis h would then be determined by the volume of
parameter vectors θ ∈ Θ that implement it, hθ ≡ h, and the descent-reachability of those
parameter vectors.

Inductive biases of general architectures. The quest for understanding the inductive
bias in deep learning is one of the most important endeavours in theoretical ML – unless
there is solid understanding of what it is that deep nets actually learn, there is little hope of
rigorous guarantees on performance or robustness. Though this understanding is slowly
emerging for (shallow) fully-connected networks, it is questionable how applicable the results
are to other, more commonly used architectures such as deep residual architectures or
transformers. We see the understanding of inductive biases of such modern architectures
as the next important frontier.

One could imagine two general strategies for getting there. First, one might hope to solve
the inductive bias problem for each new architecture separately. Second, one might develop
an architecture-agnostic way of characterising the inductive bias. We are much more
optimistic about the second approach, despite its more ambitious scope. That said, we do
expect to hit the limits of current analytical tools (such as classical optimisation tools or the
mean-field approach). We are more optimistic about somewhat more exotic paths forward,
for example a hybrid experimental-analytical approach, or looser, less detailed abstractions
of the learning model and algorithm.

71

Bibliography

Francesca Albertini and Eduardo D. Sontag. For neural networks, function determines form.
Neural networks, 6(7):975–990, 1993a.

Francesca Albertini and Eduardo D. Sontag. Identifiability of discrete-time neural networks.
In European Control Conference, 1993b.

Rohan Anil, Gabriel Pereyra, Alexandre Passos, Robert Ormandi, George E. Dahl, and Ge-
offrey E. Hinton. Large scale distributed neural network training through online distillation.
In International Conference on Learning Representations (ICLR), 2018.

Sanjeev Arora, Nadav Cohen, and Elad Hazan. On the optimization of deep networks:
Implicit acceleration by overparameterization. In International Conference on Machine
Learing (ICML), 2018.

Sanjeev Arora, Nadav Cohen, Noah Golowich, and Wei Hu. A convergence analysis of
gradient descent for deep linear neural networks. In International Conference on Learning
Representations (ICLR), 2019.

Jimmy Ba and Rich Caruana. Do deep nets really need to be deep? In Conference on
Neural Information Processing Systems (NeurIPS), 2014.

Vijay Badrinarayanan, Bamdev Mishra, and Roberto Cipolla. Symmetry-invariant optimiza-
tion in deep networks. In International Conference on Learning Representations (ICLR),
2016.

David Barber and Felix V Agakov. The IM Algorithm: A variational approach to information
maximization. In Conference on Neural Information Processing Systems (NeurIPS), 2003.

Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine-
learning practice and the classical bias–variance trade-off. In Proceedings of the National
Academy of Sciences (PNAS), 2019.

Djalel Benbouzid, Róbert Busa-Fekete, and Balázs Kégl. Fast classification using sparse
decision DAGs. In International Conference on Machine Learing (ICML), 2012.

Julius Berner, Dennis Elbrächter, and Philipp Grohs. How degenerate is the parametrization
of neural networks with the ReLU activation function? In Conference on Neural Information
Processing Systems (NeurIPS), 2019.

D. P. Bertsekas. Nonlinear Optimization. Athena Scientific, Belmont, MA, 2nd edition, 1999.

Diane Bouchacourt, Ryota Tomioka, and Sebastian Nowozin. Multi-level variational au-
toencoder: Learning disentangled representations from grouped observations. In AAAI
Conference on Artificial Intelligence, 2018.

73

Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, Andrew M. Dai, Rafal Jozefowicz, and
Samy Bengio. Generating sentences from a continuous space. In Annual Meeting of the
Association for Computational Linguistics (ACL), 2016.

Cristian Buciluǎ, Rich Caruana, and Alexandru Niculescu-Mizil. Model compression. In
Conference on Knowledge Discovery and Data Mining (KDD), 2006.

Z. Berkay Celik, David Lopez-Paz, and Patrick McDaniel. Patient-driven privacy control
through generalized distillation. In IEEE Symposium on Privacy-Aware Computing (PAC),
2017.

An Mei Chen, Haw-minn Lu, and Robert Hecht-Nielsen. On the geometry of feedforward
neural network error surfaces. Neural computation, 5(6):910–927, 1993.

Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel.
InfoGAN: Interpretable representation learning by information maximizing generative
adversarial nets. In Conference on Neural Information Processing Systems (NeurIPS),
2016.

Xi Chen, Diederik P. Kingma, Tim Salimans, Yan Duan, Prafulla Dhariwal, John Schul-
man, Ilya Sutskever, and Pieter Abbeel. Variational lossy autoencoder. In International
Conference on Learning Representations (ICLR), 2017.

Lénaïc Chizat and Francis Bach. Implicit bias of gradient descent for wide two-layer neural
networks trained with the logistic loss. In Conference on Computational Learning Theory
(COLT), 2020.

Lénaïc Chizat, Edouard Oyallon, and Francis Bach. On lazy training in supervised differen-
tiable programming. In Conference on Neural Information Processing Systems (NeurIPS),
2019.

Frank H Clarke. Generalized gradients and applications. Transactions of the American
Mathematical Society, 205:247–262, 1975.

Frank H Clarke, Yuri S Ledyaev, Ronald J Stern, and Peter R Wolenski. Nonsmooth analysis
and control theory, volume 178. Springer Science & Business Media, 2008.

Mark Craven and Jude W. Shavlik. Extracting tree-structured representations of trained
networks. In Conference on Neural Information Processing Systems (NeurIPS), 1996.

Chris Cremer, Quaid Morris, and David Duvenaud. Reinterpreting importance-weighted au-
toencoders. In International Conference on Learning Representations (ICLR) Workshop,
2017.

George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of
control, signals and systems, 2(4):303–314, 1989.

Damek Davis, Dmitriy Drusvyatskiy, Sham Kakade, and Jason D Lee. Stochastic subgradient
method converges on tame functions. Foundations of computational mathematics, 20(1):
119–154, 2020.

Thomas L. Dean and Mark S. Boddy. An analysis of time-dependent planning. In AAAI
Conference on Artificial Intelligence, 1988.

74

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In Conference on Computer Vision and Pattern
Recognition (CVPR), 2009.

Qiming Diao, Minghui Qiu, Chao-Yuan Wu, Alexander J. Smola, Jing Jiang, and Chong
Wang. Jointly modeling aspects, ratings and sentiments for movie recommendation
(JMARS). In Conference on Knowledge Discovery and Data Mining (KDD), 2014.

Mark Drummond and John Bresina. Anytime synthetic projection: Maximizing the probability
of goal satisfaction. In AAAI Conference on Artificial Intelligence, 1990.

Saher Esmeir and Shaul Markovitch. Anytime learning of anycost classifiers. Machine
Learning, 82:445–473, 2010.

Charles Fefferman and Scott Markel. Recovering a feed-forward net from its output. In
Conference on Neural Information Processing Systems (NeurIPS), 1994.

Björn Fröhlich, Erik Rodner, and Joachim Denzler. As time goes by – anytime semantic
segmentation with iterative context forests. In German Conference on Pattern Recognition
(GCPR), 2012.

Tianshi Gao and Daphne Koller. Active classification based on value of classifier. In
Conference on Neural Information Processing Systems (NeurIPS), 2011.

Krzysztof J. Geras, Abdel-Rahman Mohamed, Rich Caruana, Gregor Urban, Shengjie Wang,
Ozlem Aslan, Matthai Philipose, Matthew Richardson, and Charles Sutton. Blending
LSTMs into CNNs. In International Conference on Learning Representations (ICLR)
Workshop, 2016.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sher-
jil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks. In
Conference on Neural Information Processing Systems (NeurIPS), 2014.

Prasoon Goyal, Zhiting Hu, Xiaodan Liang, Chenyu Wang, and Eric Xing. Nonparamet-
ric variational auto-encoders for hierarchical representation learning. In International
Conference on Computer Vision (ICCV), 2017.

Alex Grubb and Drew Bagnell. Speedboost: Anytime prediction with uniform near-optimality.
In Conference on Uncertainty in Artificial Intelligence (AISTATS), 2012.

Suriya Gunasekar, Jason Lee, Daniel Soudry, and Nathan Srebro. Characterizing implicit
bias in terms of optimization geometry. In International Conference on Machine Learing
(ICML), 2018a.

Suriya Gunasekar, Jason D Lee, Daniel Soudry, and Nati Srebro. Implicit bias of gradient
descent on linear convolutional networks. In Conference on Neural Information Processing
Systems (NeurIPS), 2018b.

S-P Han and Olvi L Mangasarian. Exact penalty functions in nonlinear programming.
Mathematical programming, 17(1):251–269, 1979.

Boris Hanin and David Rolnick. Complexity of linear regions in deep networks. In Interna-
tional Conference on Machine Learing (ICML), 2019.

75

M. Hardt and T. Ma. Identity matters in deep learning. In International Conference on
Learning Representations (ICLR), 2017.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements of statistical learning.
Springer, 2008.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

Robert Hecht-Nielsen. On the algebraic structure of feedforward network weight spaces. In
Advanced Neural Computers, pages 129–135. Elsevier, 1990.

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
Shakir Mohamed, and Alexander Lerchner. β-VAE: Learning basic visual concepts with a
constrained variational framework. In International Conference on Learning Representa-
tions (ICLR), 2017.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network.
In Deep Learning Workshop at NeurIPS, 2014.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation,
9(8), 1997.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are
universal approximators. Neural networks, 2(5):359–366, 1989.

Eric J. Horvitz. Reasoning about beliefs and actions under computational resource con-
straints. In Uncertainty in Artificial Intelligence (UAI), 1987.

Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias
Weyand, Marco Andreetto, and Hartwig Adam. MobileNets: Efficient convolutional neural
networks for mobile vision applications. In arXiv:1704.04861, 2017.

Zhiting Hu, Xuezhe Ma, Zhengzhong Liu, Eduard Hovy, and Eric Xing. Harnessing deep
neural networks with logic rules. In Annual Meeting of the Association for Computational
Linguistics (ACL), 2016.

Zhiting Hu, Zichao Yang, Xiaodan Liang, Ruslan Salakhutdinov, and Eric P. Xing. Toward
controlled generation of text. In International Conference on Machine Learing (ICML),
2017.

Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens van der Maaten, and Kilian Q
Weinberger. Multi-scale dense networks for resource efficient image classification. In
International Conference on Learning Representations (ICLR), 2018.

F. Huszár. Is maximum likelihood useful for representation learning?, 2017. http://

www.inference.vc/maximum-likelihood-for-representation-learning-2/, visited 2017-
10-27.

Ziwei Ji and Matus Telgarsky. Gradient descent aligns the layers of deep linear networks. In
International Conference on Learning Representations (ICLR), 2019a.

Ziwei Ji and Matus Telgarsky. The implicit bias of gradient descent on nonseparable data.
In Conference on Computational Learning Theory (COLT), 2019b.

76

http://www.inference.vc/maximum-likelihood-for-representation-learning-2/
http://www.inference.vc/maximum-likelihood-for-representation-learning-2/

Ziwei Ji and Matus Telgarsky. Directional convergence and alignment in deep learning. In
Conference on Neural Information Processing Systems (NeurIPS), 2020.

K. Kawaguchi. Deep learning without poor local minima. In Conference on Neural Informa-
tion Processing Systems (NeurIPS), 2016.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping
Tak Peter Tang. On large-batch training for deep learning: Generalization gap and sharp
minima. In International Conference on Learning Representations (ICLR), 2017.

Jaehong Kim, Sungeun Hong, Yongseok Choi, and Jiwon Kim. Doubly nested network for
resource-efficient inference. In arXiv:1806.07568, 2018.

Akisato Kimura, Zoubin Ghahramani, Koh Takeuchi, Tomoharu Iwata, and Naonori Ueda.
Few-shot learning of neural networks from scratch by pseudo example optimization. In
British Machine Vision Conference (BMVC), 2018.

D. P. Kingma and M. Welling. Auto-encoding variational Bayes. In International Conference
on Learning Representations (ICLR), 2014.

Diederik P. Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max
Welling. Improving variational inference with inverse autoregressive flow. In Conference
on Neural Information Processing Systems (NeurIPS), 2016.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
Technical report, University of Toronto, 2009.

Věra Kůrková and Paul C. Kainen. Functionally equivalent feedforward neural networks.
Neural Computation, 6(3):543–558, 1994.

Gustav Larsson, Michael Maire, and Gregory Shakhnarovich. FractalNet: Ultra-deep neural
networks without residuals. In International Conference on Learning Representations
(ICLR), 2017.

Chen-Yu Lee, Saining Xie, Patrick Gallagher, Zhengyou Zhang, and Zhuowen Tu. Deeply-
supervised nets. In Conference on Uncertainty in Artificial Intelligence (AISTATS), 2015.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss
landscape of neural nets. In Conference on Neural Information Processing Systems
(NeurIPS), 2018.

Jinyu Li, Rui Zhao, Jui-Ting Huang, and Yifan Gong. Learning small-size DNN with output-
distribution-based criteria. In Conference of the International Speech Communication
Association (Interspeech), 2014.

Yuanzhi Li and Yingyu Liang. Learning overparameterized neural networks via stochastic
gradient descent on structured data. In Conference on Neural Information Processing
Systems (NeurIPS), 2018.

Zhizhong Li and Derek Hoiem. Learning without forgetting. In European Conference on
Computer Vision (ECCV), 2016.

Percy Liang, Hal Daumé III, and Dan Klein. Structure compilation: trading structure for
features. In International Conference on Machine Learing (ICML), 2008.

77

Maxim Likhachev, Geoffrey J. Gordon, and Sebastian Thrun. ARA*: Anytime A* with
provable bounds on sub-optimality. In Conference on Neural Information Processing
Systems (NeurIPS), 2004.

Ji Lin, Yongming Rao, Jiwen Lu, and Jie Zhou. Runtime neural pruning. In Conference on
Neural Information Processing Systems (NeurIPS), 2017.

Ji Liu and Xiaojin Zhu. The teaching dimension of linear learners. Journal of Machine
Learning Research (JMLR), 17(1):5631–5655, 2016.

David Lopez-Paz, Léon Bottou, Bernhard Schölkopf, and Vladimir Vapnik. Unifying distilla-
tion and privileged information. In International Conference on Learning Representations
(ICLR), 2016.

Kaifeng Lyu and Jian Li. Gradient descent maximizes the margin of homogeneous neural
networks. In International Conference on Learning Representations (ICLR), 2020.

Hartmut Maennel, Olivier Bousquet, and Sylvain Gelly. Gradient descent quantizes ReLU
network features. In arXiv:1803.08367, 2018.

Mor Shpigel Nacson, Jason Lee, Suriya Gunasekar, Pedro Henrique Pamplona Savarese,
Nathan Srebro, and Daniel Soudry. Convergence of gradient descent on separable data.
In Conference on Uncertainty in Artificial Intelligence (AISTATS), 2019.

Behnam Neyshabur, Ruslan R. Salakhutdinov, and Nati Srebro. Path-SGD: Path-normalized
optimization in deep neural networks. In Conference on Neural Information Processing
Systems (NeurIPS), 2015.

Behnam Neyshabur, Zhiyuan Li, Srinadh Bhojanapalli, Yann LeCun, and Nathan Srebro. To-
wards understanding the role of over-parametrization in generalization of neural networks.
In International Conference on Learning Representations (ICLR), 2019.

Roman Novak, Yasaman Bahri, Daniel A. Abolafia, Jeffrey Pennington, and Jascha Sohl-
Dickstein. Sensitivity and generalization in neural networks: an empirical study. In
International Conference on Learning Representations (ICLR), 2018.

Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, and Ananthram Swami. Distil-
lation as a defense to adversarial perturbations against deep neural networks. In IEEE
Symposium on Security and Privacy (S&P), 2016.

Philipp Petersen, Mones Raslan, and Felix Voigtlaender. Topological properties of the set of
functions generated by neural networks of fixed size, 2020.

Mary Phuong and Christoph H. Lampert. Towards understanding knowledge distillation. In
International Conference on Machine Learing (ICML), 2019a.

Mary Phuong and Christoph H. Lampert. Distillation-based training for multi-exit architec-
tures. In International Conference on Computer Vision (ICCV), 2019b.

Mary Phuong and Christoph H. Lampert. Functional vs. parametric equivalence of ReLU
networks. In International Conference on Learning Representations (ICLR), 2020.

Mary Phuong and Christoph H. Lampert. The inductive bias of ReLU networks on orthogo-
nally separable data. In International Conference on Learning Representations (ICLR),
2021.

78

Mary Phuong, Max Welling, Nate Kushman, Ryota Tomioka, and Sebastian Nowozin.
The mutual autoencoder: Controlling information in latent code representations. 2018.

Antonio Polino, Razvan Pascanu, and Dan Alistarh. Model compression via distillation and
quantization. In International Conference on Learning Representations (ICLR), 2018.

Ilija Radosavovic, Piotr Dollár, Ross Girshick, Georgia Gkioxari, and Kaiming He. Data
distillation: Towards omni-supervised learning. In Conference on Computer Vision and
Pattern Recognition (CVPR), 2018.

Maithra Raghu, Ben Poole, Jon Kleinberg, Surya Ganguli, and Jascha Sohl Dickstein. On
the expressive power of deep neural networks. In International Conference on Machine
Learing (ICML), 2017.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H. Lampert.
iCaRL: Incremental classifier and representation learning. In Conference on Computer
Vision and Pattern Recognition (CVPR), 2017.

D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and approximate
inference in deep generative models. In International Conference on Machine Learing
(ICML), pages 1278–1286, 2014.

Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta,
and Yoshua Bengio. Fitnets: Hints for thin deep nets. In International Conference on
Learning Representations (ICLR), 2015.

Andrei A. Rusu, Sergio Gomez Colmenarejo, Caglar Gulcehre, Guillaume Desjardins, James
Kirkpatrick, Razvan Pascanu, Volodymyr Mnih, Koray Kavukcuoglu, and Raia Hadsell.
Policy distillation. In International Conference on Learning Representations (ICLR), 2016.

Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry. How does
batch normalization help optimization? In Conference on Neural Information Processing
Systems (NeurIPS), 2018.

A. M. Saxe, J. L. McClelland, and S. Ganguli. Exact solutions to the nonlinear dynamics
of learning in deep linear neural networks. In International Conference on Learning
Representations (ICLR), 2014.

Bernhard Schölkopf and Alexander J. Smola. Learning With Kernels. MIT Press, 2002.

Mike Schuster and Kuldip K. Paliwal. Bidirectional recurrent neural networks. IEEE Trans-
actions on Signal Processing, 45(11), 1997.

Stanislau Semeniuta, Aliaksei Severyn, and Erhardt Barth. A hybrid convolutional variational
autoencoder for text generation. In Annual Meeting of the Association for Computational
Linguistics (ACL), 2017.

Thiago Serra, Christian Tjandraatmadja, and Srikumar Ramalingam. Bounding and counting
linear regions of deep neural networks. In International Conference on Machine Learing
(ICML), 2018.

Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory
to algorithms. Cambridge university press, 2014.

79

Jan Šochman and Jiří Matas. Waldboost – learning for time constrained sequential detection.
In Conference on Computer Vision and Pattern Recognition (CVPR), 2005.

Casper Kaae Sønderby, Tapani Raiko, Lars Maaløe, Søren Kaae Sønderby, and Ole Winther.
Ladder variational autoencoders. In Conference on Neural Information Processing
Systems (NeurIPS), 2016.

Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro.
The implicit bias of gradient descent on separable data. Journal of Machine Learning
Research (JMLR), 19(1):2822–2878, 2018.

Pierre Stock, Benjamin Graham, Rémi Gribonval, and Hervé Jégou. Equi-normalization of
neural networks. In International Conference on Learning Representations (ICLR), 2019.

Zhiyuan Tang, Dong Wang, and Zhiyong Zhang. Recurrent neural network training with
dark knowledge transfer. In IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2016.

Surat Teerapittayanon, Bradley McDanel, and H.T. Kung. BranchyNet: Fast inference
via early exiting from deep neural networks. In International Conference on Pattern
Recognition (ICPR), 2016.

Kirill Trapeznikov and Venkatesh Saligrama. Supervised sequential classification under
budget constraints. In Conference on Uncertainty in Artificial Intelligence (AISTATS),
2013.

Ken Ueno, Xiaopeng Xi, Eamonn Keogh, and Dah-Jye Lee. Anytime classification using
the nearest neighbor algorithm with applications to stream mining. In IEEE International
Conference on Data Mining (ICDM), 2006.

Vladimir Vapnik and Rauf Izmailov. Learning using privileged information: similarity control
and knowledge transfer. Journal of Machine Learning Research (JMLR), 16(2):2023–
2049, 2015.

Vladimir Naumovich Vapnik. Statistical learning theory. John Wiley & Sons, 1998.

Paul Viola and Michael Jones. Rapid object detection using a boosted cascade of simple
features. In Conference on Computer Vision and Pattern Recognition (CVPR), 2001.

Paul Viola and Michael Jones. Robust real-time face detection. International Journal of
Computer Vision (IJCV), 57(2):137–154, 2004.

Xin Wang, Fisher Yu, Zi-Yi Dou, and Joseph E. Gonzalez. SkipNet: Learning dynamic
routing in convolutional networks. In European Conference on Computer Vision (ECCV),
2018.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist rein-
forcement learning. Machine Learning, 8(3-4):229–256, 1992.

Zuxuan Wu, Tushar Nagarajan, Abhishek Kumar, Steven Rennie, Larry S. Davis, Kristen
Grauman, and Rogerio Feris. BlockDrop: Dynamic inference paths in residual networks.
In Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

80

Saining Xie and Zhuowen Tu. Holistically-nested edge detection. In Conference on Computer
Vision and Pattern Recognition (CVPR), 2015.

Zichao Yang, Zhiting Hu, Ruslan Salakhutdinov, and Taylor Berg-Kirkpatrick. Improved
variational autoencoders for text modeling using dilated convolutions. In International
Conference on Machine Learing (ICML), 2017.

Serena Yeung, Anitha Kannan, Yann Dauphin, and Li Fei-Fei. Tackling over-pruning in varia-
tional autoencoders. In International Conference on Machine Learing (ICML) Workshop,
2017.

Ruichi Yu, Ang Li, Vlad I. Morariu, and Larry S. Davis. Visual relationship detection with
internal and external linguistic knowledge distillation. In International Conference on
Computer Vision (ICCV), 2017.

Willard I. Zangwill. Non-linear programming via penalty functions. Management Science,
13(5):344–358, 1967.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Under-
standing deep learning requires rethinking generalization. In International Conference on
Learning Representations (ICLR), 2017.

Chris Zhang, Mengye Ren, and Raquel Urtasun. Graph HyperNetworks for neural ar-
chitecture search. In International Conference on Learning Representations (ICLR),
2019.

Shengjia Zhao, Jiaming Song, and Stefano Ermon. InfoVAE: Information maximizing
variational autoencoders. In AAAI Conference on Artificial Intelligence, 2019.

Jerry Zhu. Machine teaching for Bayesian learners in the exponential family. In Conference
on Neural Information Processing Systems (NeurIPS), 2013.

Xiaojin Zhu. Machine teaching: An inverse problem to machine learning and an approach
toward optimal education. In AAAI Conference on Artificial Intelligence, 2015.

Shlomo Zilberstein. Using anytime algorithms in intelligent systems. AI magazine, 17(3):73,
1996.

81

APPENDIX A
Proofs for Chapter 2

Use the following look-up table to find a particular lemma or theorem and its proof.

Lemma 2.1 → Lemma A.15
Lemma 2.2 → Corollary A.1
Lemma 2.3 → Lemma A.18
Lemma 2.4 → Lemma A.17
Theorem 2.1 → Theorem A.1

A.1 Piece-wise linear surfaces

Definition A.1 (Partition). Let S ⊆ X. We define the partition of X induced by S, denoted
PX(S), as the set of connected components of X \ S.

Definition A.2 (Piece-wise hyperplane). Let P be a partition of X. We say H ⊆ X is a
piece-wise hyperplane with respect to partition P, if H ̸= ∅ and there exist (w, b) ̸= (0, 0)
and P ∈ P such that H = {x ∈ P |w⊺x + b = 0}.

Definition A.3 (Piece-wise linear surface / pwl. surface). A set S ⊆ X is called a piece-wise
linear surface on X of order κ if it can be written as S = ⋃︁

l∈[κ],i∈[nl] H
l
i, where each Hl

i is a
piece-wise hyperplane with respect to PX(⋃︁k∈[l−1],j∈[nk] H

k
j), and no number smaller than κ

admits such a representation.

Lemma A.1. If S1, S2 are piece-wise linear surfaces on X of order k1 and k2, then S1 ∪ S2 is
a piece-wise linear surface on X of order at most max {k1, k2}.

Proof. Let S1 = ⋃︁
l∈[k1],i∈[nl] H

l
i and S2 = ⋃︁

l∈[k2],i∈[ml] G
l
i be the pwl. surface representations

of S1, S2. Given Hl
i, consider the partition

P := PX

(︄ ⋃︂
k∈[l−1],j∈[nk]

Hk
j ∪

⋃︂
k∈[max {l−1,k2}],j∈[mk]

Gk
j

)︄
. (A.1)

We can write Hl
i = ⋃︁

P ∈P H
l
i ∩ P and denote the nonempty intersections Hl

i ∩ P as
{︂
H̄l

i,j

}︂
j
.

Similarly, we decompose Gl
i = ⋃︁

j Ḡ
l
i,j. Then S1 ∪ S2 = ⋃︁

l∈[max {k1,k2}](
⋃︁

i,j H̄
l
i,j ∪

⋃︁
i,j Ḡ

l
i,j),

where each H̄l
i,j and Ḡl

i,j is a piece-wise hyperplane wrt. P = PX(⋃︁k∈[l−1](
⋃︁

i′,j′ H̄k
i′,j′ ∪⋃︁

i′,j′ Ḡk
i′,j′)).

83

Given sets X and S ⊆ X, we introduce the notation

□iS :=
⋃︂
{S′ ⊆ S | S′ is a pwl. surface on X of order at most i}. (A.2)

(The dependence on X is suppressed.) By Lemma A.1, □iS is itself a pwl. surface on X of
order at most i.

Lemma A.2. For i ≤ j and any set S, we have □i□jS = □j□iS = □iS.

Proof. We will need these definitions:

□iS =
⋃︂
{S′′ ⊆ S | S′′ is a pwl. surface of order at most i}, (A.3)

□jS =
⋃︂
{S′′ ⊆ S | S′′ is a pwl. surface of order at most j}, (A.4)

□i□jS =
⋃︂
{S′′ ⊆ □jS | S′′ is a pwl. surface of order at most i}, (A.5)

□j□iS =
⋃︂
{S′′ ⊆ □iS | S′′ is a pwl. surface of order at most j}. (A.6)

Consider first the equality □j□iS = □iS. We know that □j□iS ⊆ □iS because the square
operator always yields a subset. At the same time, □iS ⊆ □j□iS, because □iS satisfies
the condition for membership in (A.6).

To prove the equality □i□jS = □iS, we use the inclusion □jS ⊆ S to deduce □i□jS ⊆ □iS.
Now let S′′ ⊆ S be one of the sets under the union in (A.3), i.e. it is a pwl. surface of order at
most i. Then it is also a pwl. surface of order at most j, implying S′′ ⊆ □jS. This means S′′

is also one of the sets under the union in (A.5), proving that □iS ⊆ □i□jS.

Lemma A.3. Let X and S ⊆ X be sets. Then one can write □k+1S = □kS ∪
⋃︁

i Hi where
Hi are piece-wise hyperplanes wrt. PX(□kS).

Proof. Let □k+1S = ⋃︁
l∈[κ],i∈[nl] H

l
i be the pwl. surface representation of □k+1S. If κ ≤ k,

then □k+1S = □kS and we are done. Otherwise,
⋃︁

l∈[k],i∈[nk] H
l
i ⊆ □kS, implying

□k+1S ⊆ □kS ∪
⋃︂

i∈[nk+1]
Hk+1

i . (A.7)

At the same time, □kS ∪
⋃︁

i∈[nk+1] H
k+1
i is a pwl. surface of order at most k + 1 because

□kS is a pwl. surface of order at most k and Hk+1
i can be decomposed into piece-wise

hyperplanes wrt. PX(□kS). Therefore, □kS ∪
⋃︁

i∈[nk+1] H
k+1
i ⊆ □k+1S, implying in fact

equality.

Definition A.4 (Canonical representation of a pwl. surface). Let S be a pwl. surface on X.
The pwl. surface representation S = ⋃︁

l∈[κ],i∈[nl] H
l
i is called canonical if

⋃︁
l∈[k],i∈[nl] H

l
i = □kS

for all k ∈ [κ], and each Hl
i is distinct.

Lemma A.4. If S = ⋃︁
l∈[κ],i∈[nl] H

l
i is a pwl. surface in canonical form, then κ is the order of

S.

Proof. Denote the order of S by λ. By the definition of order, λ ≤ κ, and S = □λS. Then,
since S = ⋃︁

l∈[κ],i∈[nl] H
l
i is a canonical representation, we have⋃︂

l∈[λ],i∈[nl]
Hl

i = □λS = S =
⋃︂

l∈[κ],i∈[nl]
Hl

i. (A.8)

It follows that κ = λ.

84

Lemma A.5. Every pwl. surface has a canonical representation.

Proof. The inclusion
⋃︁

l∈[k],i∈[nl] H
l
i ⊆ □kS holds for any representation. We will show the

other inclusion by induction in the order of S. If S is order one, □1S ⊆ S = ⋃︁
i∈[n1] H

1
i

holds for any representation and we are done. Now assume the lemma holds up to order
κ − 1, and let S be order κ. Then by Lemma A.3, S = □κS = □κ−1S ∪

⋃︁
i H

κ
i , where Hκ

i

are piece-wise hyperplanes wrt. PX(□κ−1S). By the inductive assumption, □κ−1S has a
canonical representation, say □κ−1S = ⋃︁

l∈[κ−1],i∈[nl] H
l
i. We claim that S = ⋃︁

l∈[κ],i∈[nl] H
l
i

is a canonical representation of S. If k = κ, then clearly □kS ⊆ S = ⋃︁
l∈[κ],i∈[nl] H

l
i. If

k ∈ [κ − 1], then by Lemma A.2, □kS = □k□κ−1S = ⋃︁
l∈[k],i∈[nl] H

l
i, where we have used

the canonical representation of □κ−1S.

Finally, distinctness of Hl
i can be ensured by throwing away duplicates.

Lemma A.6. Let X be an open set. If S is a piece-wise linear surface on X, and if
S = ⋃︁

l∈[κ],i∈[nl] H
l
i and S = ⋃︁

k∈[κ],j∈[mk] G
k
j are two canonical representations of S, then for

all l ∈ [κ], nl = ml and there exists a permutation π : [nl] → [nl] such that Hl
i = Gl

π(i). In
other words, the canonical representation is unique up to within-order indexing.

Proof. Let k ∈ [κ]. Because both representations are canonical, we have

□k−1S ∪
⋃︂

i∈[nk]
Hk

i = □kS = □k−1S ∪
⋃︂

j∈[mk]
Gk

j , (A.9)

where Hk
i and Gk

j are piece-wise hyperplanes wrt. PX(□k−1S). Then for each P ∈
PX(□k−1S),

P ∩
⋃︂

i∈[nk]
Hk

i = P ∩
⋃︂

j∈[mk]
Gk

j , (A.10)

where on both sides above we have a union of hyperplanes on an open set. The claim
follows.

Definition A.5 (Dependency graph of a pwl. surface). Let S be a piece-wise linear surface
on X, and let S = ⋃︁

l∈[κ],i∈[nl] H
l
i be its canonical representation. We define the dependency

graph of S as the directed graph that has the piece-wise hyperplanes
{︂
Hl

i

}︂
l,i

as vertices,

and has an edge Hl
i → Hk

j iff l < k and Hl
i ∩ cl Hk

j ̸= ∅.

A.2 ReLU networks and folds

We denote by ρ the ReLU function: ρ(u)i = max {0, ui} for i ∈ [dim(u)].

Definition A.6 (ReLU network). Let X ⊆ Rd0 with d0 ≥ 2 be a nonempty open set, and let
θ ≜ (W1, b1, . . . , WL, bL) be the network’s parameters, with Wl ∈ Rdl×dl−1 , bl ∈ Rdl , and
dL = 1. A ReLU network parameterised by θ is the function hθ : X→ R, defined by

hθ ≜ hL
θ ◦ ρ ◦ hL−1

θ ◦ · · · ◦ ρ ◦ h1
θ, (A.11)

where hl
θ(x) = Wl · x + bl. For 1 ≤ l ≤ k ≤ L, we also denote

hl:k
θ ≜ hk

θ ◦ ρ ◦ hk−1
θ · · · ◦ ρ ◦ hl

θ, (A.12)

ȟl:k
θ ≜ ρ ◦ hl:k

θ . (A.13)

85

For a ReLU network hθ : X→ R and l ∈ [L− 1], denote Xl
θ ≜

{︂
ȟ1:l

θ (x) |x ∈ X
}︂

. Also, for

convenience, define X0
θ ≜ X. (We will omit the subscript θ when it is clear from the context.)

We write f |A to denote the restriction of the function f to the domain A.

Definition A.7 (Activation indicator). A tuple I ≜ (I1, . . . , IL−1) is called an activation
indicator if Il = diag(il) ∈ Rdl×dl and il ∈ {0, 1}dl for l ∈ [L − 1]. It is called non-trivial if
il ̸= 0 for all l ∈ [L− 1] and non-trivial up to k if il ̸= 0 for all l ∈ [k].

Given a parameter vector θ ≜ (W1, b1, . . . , WL, bL) and an activation indicator I, we
introduce the notation

wl
i(θ, I) ≜ e⊺

i WlIl−1Wl−1 · · · I1W1, (A.14)

bl
i(θ, I) ≜ e⊺

i

l∑︂
k=1

WlIl−1 · · ·Wk+1Ikbk. (A.15)

(We will omit the argument θ when it is clear from the context.) These quantities char-
acterise the different linear pieces implemented by the network’s units. Also define
Iθ(x) ≜ (Iθ

1(x), . . . , Iθ
L−1(x)) as the activation indicator for a specific input: Iθ

l (x)[i, i] ≜
1
{︂
h1:l

i (x) ≥ 0
}︂

for all (l, i).

Lemma A.7. In a ReLU network with parameters θ = (W1, b1, . . . , WL, bL), the pre-
activations satisfy h1:l

i (x) ∈
{︂
wl

i(θ, I) · x + bl
i(θ, I)

}︂
I
, where the indexing runs over all

possible activation indicators I. More precisely, h1:l
i (x) = wl

i(θ, Iθ(x)) · x + bl
i(θ, Iθ(x)).

Proof. Left as exercise.

Definition A.8 (Fold-set). Let X be an open set, and f : X→ R a continuous, piece-wise
linear function. We define the fold-set of f , denoted by F(f), as the set of all points at which
f is non-differentiable.

Definition A.9 (Positive / negative in a neighbourhood). Let X be an open set. The function
f : X→ R is positive (negative) in the neighbourhood of x ∈ X if for any ϵ > 0 there exists
x′ ∈ Bϵ(x) such that f(x′) > 0 (f(x′) < 0).

Definition A.10 (Unit fold-set). Let hθ : X → R be a ReLU network. We define the unit
(l, i) fold-set of hθ, denoted Fl

i(hθ), as the set of all x ∈ X where h1:l
θ [i](x) = 0 and h1:l

θ [i] is
positive in the neighbourhood of x.

Lemma A.8. Let X be an open set, and f : X→ R a continuous piece-wise linear function.
Then F(ρ ◦ f) consists of those x ∈ X that satisfy

• f(x) > 0 and x ∈ F(f), or

• f(x) = 0 and f is positive in the neighbourhood of x.

Proof. We will prove that if x satisfies any of the two conditions, then x ∈ F(ρ ◦ f), and if it
violates both, then x ∈ F(ρ ◦ f)c. We begin with the latter implication.

Let x be such that f(x) > 0 and x /∈ F(f), i.e. f is differentiable at x. Since f is piece-wise
linear, there exists ϵ > 0 such that all of Bϵ(x) lies inside a single linear region of f and

86

f(Bϵ(x)) ⊆ (0,∞]. Then, on Bϵ(x), the ReLU behaves like an identity, implying ρ ◦ f
is differentiable at x, proving that x ∈ F(ρ ◦ f)c. Next, consider x such that f(x) = 0.
For it to violate the second condition, there must exist a ball Bϵ(x) around x such that
f(Bϵ(x)) ⊆ (−∞, 0]. (This is also true if f(x) < 0.) Then, on Bϵ(x), the ReLU behaves like
a constant zero, implying that ρ ◦ f is differentiable at x.

We now prove the other implication. If f(x) > 0 and x ∈ F(f), then there exists ϵ > 0 such
that f(Bϵ(x)) ⊆ (0,∞], which guarantees that the ReLU behaves like an identity on Bϵ(x).
In this ball, we have ρ ◦ f = f , so x ∈ F(ρ ◦ f).

If f(x) = 0 and f is positive in the neighbourhood of x, we distinguish several cases.
If x /∈ F(f), then there exists a ball Bδ(x) on which f behaves linearly, i.e. ρ(f(x)) =
ρ(w⊺x + b), implying x ∈ F(ρ ◦ f). If x ∈ F(f) and, in addition, there exists a ball
Bδ(x) such that f(Bδ(x)) ⊆ [0,∞), then the ReLU behaves like an identity on Bδ(x)
and x ∈ F(ρ ◦ f). The final case is x ∈ F(f) such that f attains both positive and
negative values in its neighbourhood. Since f is piece-wise linear, there exist p, n such
that f(x + ϵn) < 0 < f(x + ϵp), and x + ϵp, x + ϵn /∈ F(f) for all ϵ ∈ (0, 1]. Then
∇(ρ ◦ f)(x + ϵp) ̸= 0 and ∇(ρ ◦ f)(x + ϵn) = 0, yielding x ∈ F(ρ ◦ f).

Lemma A.9. Let X be an open set, and let f1, . . . , fn : X→ R be continuous, piece-wise
linear functions. For any w1, . . . , wn ∈ R, define f = ∑︁n

i=1 wifi. Then F(f) ⊆ ⋃︁n
i=1 F(fi).

Proof. Left as exercise.

A.3 General and transparent ReLU networks

Lemma A.10. For all θ except a closed zero-measure set,

rank (WlIl−1 · · · IkWk) = min {dk−1, rank(Ik), . . . , rank(Il−1), dl}, (A.16)
rank (IlWlIl−1 · · · IkWk) = min {dk−1, rank(Ik), . . . , rank(Il−1), rank(Il)}, (A.17)

for all activation indicators I and all k ≤ l.

Proof. First, notice that (A.16) is just a special case of (A.17) with Il equal to the identity
matrix. It therefore suffices to prove (A.17).

To further simplify, we will prove the statement for a single fixed activation indicator I. Then
if Θ(I) is the set of networks for which (A.17) holds given I, and Θ(I) contains all networks
except a closed zero-measure set, then also

⋂︁
I Θ(I) contains all networks except a closed

zero-measure set, proving the lemma.

Let us hence fix I, and let k ∈ [L]. We proceed by induction. For the initial step, notice that
the matrix IkWk is just Wk with some rows replaced by zeroes. The rank of such a matrix is
the same as the matrix obtained by removing the zero rows, which has size (rank(Ik), dk−1).
For all Wk except a closed zero-measure set, this matrix has rank min {dk−1, rank(Ik)}.

For the inductive step, denote W̄i := IiWi · · · IkWk and

ri := min {dk−1, rank(Ik), . . . , rank(Ii)}. (A.18)

We assume that rank(W̄i−1) = ri−1 and want to prove the same for i. Notice that for all
Wi except a closed zero-measure set, any ri rows of Wi are linearly independent and

87

their span intersects with ker(W̄⊺
i−1) only at 0. To see this, recall that by the inductive

assumption, rank(W̄⊺
i−1) = ri−1, so ker(W̄⊺

i−1) has dimension di−1 − ri−1. We can con-
catenate any ri-subset of rows of Wi to the basis of ker(W̄⊺

i−1) to obtain a matrix of size
(ri + di−1 − ri−1, di−1), which is a wide matrix, because ri ≤ ri−1. Hence, its rows are
linearly independent for all Wi except a closed zero-measure set.

We now prove that rank(IiWiW̄i−1) = min
{︂
rank(W̄i−1), rank(Ii)

}︂
≜ ri. The “≤" direc-

tion is immediate. For the “≥" direction, we distinguish between two cases. If rank(Ii) ≤
rank(W̄i−1), let v1, . . . vri

be the (linearly independent) nonzero rows of IiWi. We want to
show that

{︂
v⊺

j W̄i−1
}︂

j
are linearly independent, i.e. that IiWiW̄i−1 has at least ri linearly

independent rows. If
∑︁ri

j=1 λjv⊺
j W̄i−1 = 0, then

∑︁ri
j=1 λjvj ∈ ker(W̄⊺

i−1), which by assump-
tion implies

∑︁
λjvj = 0. By the independence of {vj}, we obtain λj = 0, i.e.

{︂
v⊺

j W̄i−1
}︂

j

are linearly independent, and rank(IiWiW̄i−1) = ri.

If rank(Ii) > rank(W̄i−1), we can reduce the problem to the case rank(Ii) ≤ rank(W̄i−1)
by observing that rank(IiWiW̄i−1) ≥ rank(JiWiW̄i−1) if Ji equals Ii only with some 1’s
replaced by 0’s. We can thus take any such Ji and apply the argument from the previous
paragraph to obtain rank(IiWiW̄i−1) ≥ rank(JiWiW̄i−1) ≥ ri.

Lemma A.11. For all θ except a closed zero-measure set, the following holds. Let (l, i),
(k, j) be any units, let I be an activation indicator non-trivial up to l − 1, and let J be an
activation indicator non-trivial up to k − 1, such that (l, i, I1:l−1) ̸= (k, j, J1:k−1). Then, for all
scalars c ∈ R, it holds that [wl

i(θ, I), bl
i(θ, I)] ̸= c[wk

j (θ, J), bk
j (θ, J)].

Proof. First, we exclude from consideration all configurations θ = (W1, b1, . . . , WL, bL)
such that e⊺

i WlIl−1Wl−1 · · · IkWkej = 0 for some l, k, i, j, and some I non-trivial up to
l− 1. Since for any fixed (l, k, i, j, I), the set of θ satisfying the above is the set of roots of a
non-trivial polynomial in θ, it is zero-measure and closed. Because there are only finitely
many configurations of (l, k, i, j, I), we have thus excluded a closed zero-measure set of
parameters. We will denote its complement Θ∗.

From now on, we assume θ ∈ Θ∗. Notice that the case c = 0 of the lemma is thus
automatically satisfied, since wl

i(θ, I) ≜ e⊺
i WlIl−1Wl−1 · · · I1W1 ̸= 0 by the definition

of Θ∗. In the following, we can therefore assume c ̸= 0 and treat (l, i, I) and (k, j, J)
symmetrically.

Denote by Θ¬ ⊆ Θ∗ the set of parameters θ for which the lemma does not hold; we need
to show that Θ¬ is closed and zero-measure. We start by showing the latter property by
contradiction.

Suppose Θ¬ is positive-measure. We know that for all θ ∈ Θ¬, there exist triples
(l, i, I), (k, j, J) as stated in the lemma, and a scalar c ∈ R such that [wl

i(θ, I), bl
i(θ, I)] =

c[wk
j (θ, J), bk

j (θ, J)]. Let C denote the set of all triplet-pairs ((l, i, I), (k, j, J)) satisfying the
conditions of the lemma; then the previous statement can be written as

Θ¬ ⊆
⋃︂

((l,i,I),(k,j,J))∈C

{︂
θ ∈ Θ∗ | ∃c ∈ R : [wl

i(θ, I), bl
i(θ, I)] = c[wk

j (θ, J), bk
j (θ, J)]

}︂
. (A.19)

Since C is finite, there exist ((l, i, I), (k, j, J)) ∈ C for which the set under the union (call it
Θ′) is positive-measure.

88

We now consider two cases. If (l, i) ̸= (k, j), then observe that Θ′ must contain some θ, θ′

such that θ = (W1, b1, . . . , WL, bL) and θ′ = (W1, b1, . . . , Wl, bl + δei, . . . , WL, bL),
where δ ̸= 0 and l ≥ k. By membership in Θ′, there exist c, c′ ∈ R such that

[wl
i(θ, I), bl

i(θ, I)] = c[wk
j (θ, J), bk

j (θ, J)], (A.20)

[wl
i(θ′, I), bl

i(θ′, I)] = c′[wk
j (θ′, J), bk

j (θ′, J)]. (A.21)

Notice that wl
i, wk

j do not depend on the bl[i]-component of θ, and neither does bk
j because

k ≤ l and (k, j) ̸= (l, i). It follows that [wk
j (θ, J), bk

j (θ, J)] = [wk
j (θ′, J), bk

j (θ′, J)] =: v.
Notice also that [wl

i(θ′, I), bl
i(θ′, I)] = [wl

i(θ, I), bl
i(θ, I) + δ]. Putting everything together, we

have that

cv = [wl
i(θ, I), bl

i(θ, I)], (A.22)

c′v = [wl
i(θ, I), bl

i(θ, I) + δ], (A.23)

which implies (c′ − c)v = [0, δ], and in particular wk
j (θ, J) = 0. This contradicts the

assumption that θ ∈ Θ∗ and completes the proof for the case (l, i) ̸= (k, j).
If (l, i) = (k, j), then it must be that I1:l−1 ̸= J1:l−1. Wlog, let (λ, ι) ∈ [l−1]×[dλ] be such that
Iλ[ι, ι] = 1 and Jλ[ι, ι] = 0. Then there exist θ, θ′ ∈ Θ′ such that θ = (W1, b1, . . . , WL, bL)
and θ′ = (W1, b1, . . . , Wλ, bλ + δeι, . . . , WL, bL), where δ ̸= 0. Then there exist c, c′ ∈ R
such that

[wl
i(θ, I), bl

i(θ, I)] = c[wl
i(θ, J), bl

i(θ, J)], (A.24)

[wl
i(θ′, I), bl

i(θ′, I)] = c′[wl
i(θ′, J), bl

i(θ′, J)], (A.25)

where as before, wl
i does not depend on the bλ[ι]-component. For bl

i we now have bl
i(θ′, J) =

bl
i(θ, J) and bl

i(θ′, I) = bl
i(θ, I) + d, where d = δe⊺

i WlIl−1 · · ·Wλ+1eι and by membership
in Θ∗, d ̸= 0. From here, we can proceed as in the case (l, i) ̸= (k, j), completing the proof
for Θ¬ being zero-measure.

Finally, we show that Θ¬ is closed. Let θ ∈ Θ∗ \Θ¬, i.e. for all ((l, i, I), (k, j, J)) ∈ C, the
vectors [wl

i(θ, I), bl
i(θ, I)] and [wk

j (θ, J), bk
j (θ, J)] are non-colinear. Since wl

i, bl
i, wk

j , bk
j are

continuous functions in θ, there exists a small enough ϵ > 0 such that [wl
i(θ′, I), bl

i(θ′, I)]
and [wk

j (θ′, J), bk
j (θ′, J)] are non-colinear for all θ′ ∈ Bϵ(θ) and all ((l, i, I), (k, j, J)) ∈ C.

Hence, Θ∗ \Θ¬ is open, and Θ¬ is closed.

Lemma A.12. For all ReLU nets h : X→ R except a closed zero-measure set,

Fl
i(h) =

{︂
x ∈ X |h1:l

i (x) = 0
}︂

(A.26)

=
{︂
x ∈ X |h1:l

i is positive and negative in the neighbourhood of x
}︂

(A.27)

for all units (l, i).

Proof. We provide a proof for a single unit (l, i); the extension to all units follows from the
finite number of units.

Let G,H, denote the sets defined on the right-hand sides of (A.26) and (A.27) respectively.
Clearly, H ⊆ Fl

i(h) ⊆ G. We will show that G ⊆ H. Let Y ⊆ R denote the set of all local
optima of the function x ↦→Wl[i, :]·ȟ1:l−1(x). Due to piece-wise linearity of the function, and
the finite number of pieces, Y is finite. It follows that for all ReLU networks except a closed
zero-measure set, −bl[i] /∈ Y. It is thus guaranteed that h1:l

i never attains a local maximum
or minimum at zero. No x ∈ G can therefore be a local maximum or minimum, implying that
h1:l

i is both positive and negative in the neighbourhood of x. Hence, x ∈ H.

89

Definition A.11 (General ReLU network). A ReLU network is general if it satisfies Lem-
mas A.10, A.11 and A.12.

All ReLU networks except a closed zero-measure set are general.

Lemma A.13. If h is a general ReLU network, then F(h1:l
i) = ⋃︁dl−1

j=1 F(ȟ1:l−1
j) for all (l, i).

Proof. The inclusion F(h1:l
i) ⊆ ⋃︁dl−1

j=1 F(ȟ1:l−1
j) follows from Lemma A.9. For the other

inclusion, let x ∈ F(ȟ1:l−1
k) for some k ∈ [dl−1]. Then there exist sequences of points

x1(ϵ), x2(ϵ) ∈ Bϵ(x) \ ⋃︁dl−1
j=1 F(ȟ1:l−1

j) such that I(x1(ϵ)) =: I and I(x2(ϵ)) =: J are inde-
pendent of ϵ, and ∇ȟ1:l−1

k (x1(ϵ)) ̸= ∇ȟ1:l−1
k (x2(ϵ)). We consider three cases based on the

(non-)triviality of I and J.

First, suppose both I and J are trivial up to l − 1. Then by Lemma A.7,

∇ȟ1:l−1
k (x1(ϵ)) = Il−1[k, k] wl−1

k (I) = 0, (A.28)

and similarly ∇ȟ1:l−1
k (x2(ϵ)) = 0, which contradicts ∇ȟ1:l−1

k (x1(ϵ) ̸= ∇ȟ1:l−1
k (x2(ϵ). Hence,

at least one of I, J, must be non-trivial up to l − 1.

Second, say both I and J are non-trivial up to l − 1. From ∇ȟ1:l−1
k (x1(ϵ)) ̸= ∇ȟ1:l−1

k (x2(ϵ))
it follows that I1:l−1 ̸= J1:l−1, we can therefore apply Lemma A.11 to (l, i, I) and (l, i, J). We
obtain wl

i(I) ̸= wl
i(J), implying ∇h1:l

i (x1(ϵ)) ̸= ∇h1:l
i (x2(ϵ)). Thus, x must be a fold-point

of h1:l
i .

Finally, say I is trivial up to l−1 and J is non-trivial up to l−1. Then∇h1:l
i (x1(ϵ)) = wl

i(I) = 0,
whereas Lemma A.11 applied to (l, i, J) with c = 0 yields∇h1:l

i (x2(ϵ)) = wl
i(J) ̸= 0. Hence,

∇h1:l
i (x1(ϵ)) ̸= ∇h1:l

i (x2(ϵ)) and x must be a fold-point of h1:l
i .

Definition A.12 (Transparent ReLU network). A ReLU network h : X → R is called
transparent up to layer m, if for all x ∈ X and l ∈ [m], there exists i ∈ [dl] such that
h1:l

i (x) ≥ 0, or in other words, rank(Il(x)) ≥ 1. If h is transparent up to layer L− 1, we say
it is transparent.

Lemma A.14. Let h : X → R be a ReLU network, and let λ ∈ [L]. If h is general, then
hλ:L|intXλ−1 is general. If h is transparent, then hλ:L|intXλ−1 is transparent.

Proof. We will abbreviate hλ:L|intXλ−1 as hλ:L. Assume h is general. Then hλ:L clearly
satisfies Lemma A.10, and for all (l, i), Wl[i, :] ̸= 0⊺. Next, we prove that hλ:L satisfies
Lemma A.11. Suppose this was not the case; then there exist units (λ−1+l, i), (λ−1+k, j),
and non-trivial activation indicators I = (Iλ, . . . , Iλ−1+l), J = (Jλ, . . . , Iλ−1+k), with (l, i, I) ̸=
(k, j, J), and a scalar C ∈ R such that

e⊺
i Wλ−1+lIλ−2+l · · · IλWλ = C · e⊺

j Wλ−1+kJλ−2+k · · ·JλWλ, (A.29)

and

e⊺
i

λ−1+l∑︂
l′=λ

Wλ−1+lIλ−2+l · · ·Wl′+1Il′bl′ = (A.30)

C · e⊺
j

λ−1+k∑︂
k′=λ

Wλ−1+kJλ−2+k · · ·Wk′+1Ik′bk′ . (A.31)

90

Then for any non-trivial indicator (I1, . . . , Iλ−1) ≜ (J1, . . . , Jλ−1), we obtain by post-multiplying
(A.29),

e⊺
i Wλ−1+lIλ−2+l · · · I1W1 = C · e⊺

j Wλ−1+kJλ−2+k · · ·J1W1, (A.32)

and for all ι ∈ [λ− 1],

e⊺
i Wλ−1+lIλ−2+l · · ·Wι+1Iιbι = C · e⊺

j Wλ−1+kJλ−2+k · · ·Wι+1Jιbι. (A.33)

The first equality means that wl
i(I) = C ·wk

j (J), and the second equality implies bl
i(I) =

C · bk
j (J). However, that contradicts the fact that h satisfies Lemma A.11.

The last condition of generality is Lemma A.12. Suppose hλ:L does not satisfy the lemma.
Then there exists a unit (l, i) such that{︂

x ∈ intXl−1 |hλ:l
i (x) = 0

}︂
̸⊆{︂

x ∈ intXl−1 |hλ:l
i is positive and negative in the neighbourhood of x

}︂
,

i.e. there exists x ∈ intXl−1 such that hλ:l
i (x) = 0, and for some ϵ > 0 either hλ:l

i (Bϵ(x)) ⊆
(−∞, 0] or hλ:l

i (Bϵ(x)) ⊆ [0,∞). However, then there exists x′ ∈ X such that ȟ1:l−1(x′) = x,
and for x′ we obtain h1:l

i (x′) = 0, and by continuity, there is δ > 0 such that either
h1:l

i (Bδ(x′)) ⊆ (−∞, 0] or h1:l
i (Bδ(x′)) ⊆ [0,∞). This contradicts the fact that h satisfies

Lemma A.12. We have thus shown that if h is general, then hλ:L|intXλ−1 is general.

Finally, assume h is transparent, i.e. for all x ∈ X and l ∈ [L− 1], there exists i ∈ [dl] such
that h1:l

i (x) ≥ 0. Then also for all x ∈ intXλ−1 and l ∈ {λ, . . . , L− 1}, there exists i ∈ [dl]
such that hλ:l

i (x) ≥ 0. Hence, hλ:L is transparent.

Lemma A.15. a) For all ReLU networks h : X → R and all l ∈ [L], i ∈ [dl], we have
F(h1:l

i) ⊆ ⋃︁k∈[l−1],j∈[dk] F
k
j (h). In particular, F(h) ⊆ ⋃︁k∈[L−1],j∈[dl] F

k
j (h).

b) For all general ReLU networks h : X → R transparent up to layer l − 1, we have
F(h1:l

i) = ⋃︁
k∈[l−1],j∈[dk] F

k
j (h). In particular, for all general transparent ReLU networks,

F(h) = ⋃︁
k∈[L−1],j∈[dk] F

k
j (h).

Proof. We give a proof of b) only. A proof of a) can be obtained by replacing some equalities
by inclusions. We will prove by induction that F(h1:l

i) = ⋃︁
k∈[l−1],j∈[dk] F

k
j (h) if h is general

and transparent up to layer l − 1. For l = 1, the function h1:l
i is linear, so F(h) = ∅ and the

claim holds trivially. Now assume that F(h1:l
i) = ⋃︁

k∈[l−1],j∈[dk] F
k
j (h) holds; we will prove the

same statement for l + 1. By Lemma A.8 and Lemma A.13, we have

F(ȟ1:l
i) =

(︂{︂
x ∈ X |h1:l

i (x) > 0
}︂
∩ F(h1:l

i)
)︂
∪ Fl

i(h) (A.34)

=
(︃{︂

x ∈ X |h1:l
i (x) > 0

}︂
∩

⋃︂
k∈[l−1],j∈[dk]

Fk
j (h)

)︃
∪ Fl

i(h), (A.35)

F(h1:l+1
ι) =

dl⋃︂
i=1

(︃{︂
x ∈ X |h1:l

i (x) > 0
}︂
∩

⋃︂
k∈[l−1],j∈[dk]

Fk
j (h)

)︃
∪ Fl

i(h) (A.36)

=
(︃ dl⋃︂

i=1

{︂
x ∈ X |h1:l

i (x) > 0
}︂
∩

⋃︂
k∈[l−1],j∈[dk]

Fk
j (h)

)︃
∪

dl⋃︂
i=1

Fl
i(h). (A.37)

Since
⋃︁dl

i=1

{︂
x ∈ X |h1:l

i (x) > 0
}︂
⊆ X, we obtain

F(h1:l+1
ι) ⊆

⋃︂
k∈[l−1],j∈[dk]

Fk
j (h) ∪

⋃︂
j∈[dl]

Fl
j(h) =

⋃︂
k∈[l],j∈[dk]

Fk
j (h). (A.38)

91

It remains to show the reverse inclusion; we do so by contradiction.

Suppose x̄ ∈ ⋃︁k∈[l],j∈[dk] F
k
j (h) \ F(h1:l+1

ι), or equivalently

x̄ ∈
⋃︂

k∈[l−1],j∈[dk]
Fk

j (h) ∩
(︃
X \

⋃︂
i∈[dl]

{︂
x ∈ X |h1:l

i (x) > 0
}︂)︃

(A.39)

=
⋃︂

k∈[l−1],j∈[dk]
Fk

j (h) ∩
⋂︂

i∈[dl]

{︂
x ∈ X |h1:l

i (x) ≤ 0
}︂
. (A.40)

Because h is transparent, there exists i ∈ [dl] : h1:l
i (x̄) ≥ 0, so for this i we have h1:l

i (x̄) = 0.
However, by Lemma A.12, this implies x̄ ∈ Fl

i(h) ⊆ F(h1:l+1
ι).

Lemma A.16. Let h : X → R be a ReLU network. Then Fl+1
i (h) is a union of piece-wise

hyperplanes wrt. PX(⋃︁k∈[l],j∈[dk] F
k
j (h)).

Proof. Since PX(F(h1:l+1
i)) is the partition of the input space into the linear regions of h1:l+1

i ,
and F(h1:l+1

i) ⊆ ⋃︁k∈[l],j∈[dk] F
k
j (h) by Lemma A.15, the function h1:l+1

i is also linear on the
regions of PX(⋃︁k∈[l],j∈[dk] F

k
j (h)). For any P ∈ PX(⋃︁k∈[l],j∈[dk] F

k
j (h)), denote the slope and

bias of h1:l+1
i on P by w(P), b(P). Then

P ∩ Fl+1
i (h) = {x ∈ P |w(P)⊺x + b(P) = 0 (A.41)

and h1:l+1
i is positive in the neighbourhood of x}. (A.42)

The positivity condition guarantees that (w(P), b(P)) ̸= (0, 0), so P ∩ Fl+1
i is either an

empty set or a piece-wise hyperplane.

Corollary A.1. Let h : X → R be a ReLU network. Then the set
⋃︁

l∈[κ],i∈[dl] F
l
i(h) is

a pwl. surface of order at most κ. In particular, if h is general and transparent, then
F(h) = ⋃︁

l∈[L−1],i∈[dl] F
l
i(h) is a pwl. surface of order at most L− 1.

A.4 Main result

Lemma A.17. For any bounded domain X and any architecture (d1, . . . , dL−1) with d0 ≥
d1 ≥ · · · ≥ dL−1 ≥ 2, there exists a nonempty open set of transparent ReLU networks
h : X→ R such that for l ∈ [L− 1],

• dimXl = dl, and

• the set F(hl:L|intXl−1) is a pwl. surface whose dependency graph contains dl directed
paths of length (L− 1− l) with distinct starting vertices.

Proof. We give an explicit construction; we first state it and then we prove its properties.
For l = 1, we choose the parameters (Wl, bl) as follows. Let P1 be some nonempty open
convex subset of X, and define

Wl
1 :=

{︄
(w, b) ∈ Rdl−1 × R

⃓⃓⃓⃓
inf

x∈Pl

w⊺x + b < 0 < sup
x∈Pl

w⊺x + b

}︄
. (A.43)

92

Since Pl has at least two elements, the strict separation theorem implies that Wl
1 is nonempty.

It is also open. We can therefore choose (Wl[1, :], bl[1]) from Wl
1, and define

Wl
2 := {(w, b) ∈Wl

1 |w⊺x + b > 0 for all x ∈ Xl

such that Wl[1, :]x + bl[1] ≤ 0}.
(A.44)

The set A :=
{︂
x ∈ conv cl Xl |Wl[1, :]x + bl[1] ≤ 0

}︂
is nonempty, convex and compact,

and by construction there exists x ∈ Pl \ A. Again, the strict separation theorem implies
Wl

2 is nonempty. It is also open by the boundedness of A. We then choose (Wl[2, :], bl[2])
from Wl

2, and define

Q̄ι ≜ {x ∈ Pl |Wl[i, :]x + bl[i] ≥ 0 for all i ∈ [ι]}. (A.45)

Note that int Q̄2 is nonempty, open and convex. Also, there exist x1, x2 ∈ Q̄2 such that

Wl[i, :]xi + bl[i] = 0, (A.46)
Wl[j, :]xi + bl[j] > 0 for j ̸= i. (A.47)

For i ∈ {3, . . . , dl}, we then choose (Wl[i, :], bl[i]) as follows. Let A := conv{x1, . . . , xi−1}
and let x ∈ int Q̄i−1 \A. Such x exists because dim Q̄i−1 = dim Pl = dl−1, and dimA ≤
i− 2 ≤ dl − 2 ≤ dl−1 − 2. By strict separation and boundedness, there exists a nonempty
open set of hyperplanes that strictly separate A and x. Let (Wl[i, :], bl[i]) be any of them,
oriented such that Wl[i, :]xj + bl[i] > 0 for j ∈ [i − 1]. Then denote by xi ∈ int Q̄i−1 any
point that satisfies Wl[i, :]xi + bl[i] = 0; it exists by convexity. Then int Q̄i is nonempty and
convex, and the construction for {i + 1, . . . , dl} goes through.

For layers l ∈ {2, . . . , L− 1}, we use a similar construction as for l = 1. Denote

Pl := (Wl−1Pl−1 + bl−1) ∩ {x > 0}, (A.48)

P̄l := (Wl−1Pl−1 + bl−1) ∩ {x ≥ 0}. (A.49)

Pl is nonempty (because int Q̄dl−1 is nonempty), open (because Wl−1 is wide) and convex.
We assume Wl−1 is full-rank; this holds for all choices of Wl−1 except a closed zero-
measure set. By the construction of Q̄dl−1 , there exist x1, . . . , xdl−1 ∈ Q̄dl−1 ⊆ Pl−1 such
that or i ∈ [dl−1],

Wl−1[i, :]xi + bl−1[i] = 0, (A.50)
Wl−1[j, :]xi + bl−1[j] > 0 for j ̸= i. (A.51)

Denote their images x′
i := Wl−1xi + bl−1. Then by openness, there exists a ball around

each x′
i such that

Bϵ(x′
i) ⊆ (Wl−1Pl−1 + bl−1) ∩ {z′[j] > 0 for j ̸= i}, (A.52)

implying that each x′
i has a dl−1-dimensional, relatively open neighbourhood Bϵ(x′

i) ∩
{z′[i] = 0} ⊆ P̄l whose elements satisfy z′[i] = 0 and z′[j] > 0 for j ̸= i. It follows that the
set

Wl
1 :=

{︄
(w, b) ∈ Rdl−1 × R

⃓⃓⃓⃓
inf

x∈Pl

w⊺x + b < 0 < sup
x∈Pl

w⊺x + b, and

∀i ∈ [dl−1] ∃x ∈ P̄l : z[i] = 0, z[j] > 0 for j ̸= i, and w⊺x + b = 0
}︄

(A.53)

93

contains a nonempty open subset. We can therefore choose (Wl[1, :], bl[1]) from Wl
1. For

the choice of (Wl[i, :], bl[i]) for i ∈ {2, . . . , dl}, we use the same procedure as in the first
layer. Finally, choose (WL, bL) arbitrarily.

We will show that this construction satisfies the lemma. The networks are transparent
because of how we define Wl

2: for all x ∈ X and l ∈ [L−1], either h1:l
1 (x) > 0 or h1:l

2 (x) > 0.
Also, dimXl = dl because Xl contains int Q̄dl

, which is nonempty and open.

Now let l ∈ [L]. We can think of the function hl:L|intXl−1 as an (L− l+1)-layer ReLU network
parameterised by (Wl, bl, . . . , WL, bL). Because h is transparent, also hl:L|intXl−1 is trans-
parent. Corollary A.1 then implies that S := F(hl:L|intXl−1) = ⋃︁

k∈[L−l],j∈[dk] F
k
j (hl:L|intXl−1) is

a pwl. surface. Let S = ⋃︁
k∈[L−l],j∈[nλ] H

k
j be its canonical representation, and let G denote

its dependency graph.

To find the required paths in G, we first identify some important vertices. For λ ∈ [L− l],
denote

X+
λ :=

{︂
x ∈ Pl |hl:l+k−1(x) > 0 for k ∈ [λ− 1]

}︂
. (A.54)

This set is nonempty and open because Pl+λ is nonempty and open. Next, for any unit
(λ, ι),

Fλ
ι (hl:L|intXl−1) ∩ X+

λ = {x ∈ Pl |hl:l+λ−1
ι (x) = 0,

hl:l+k−1(x) > 0 for k ∈ [λ− 1]}.
(A.55)

By the definition of Wl+λ−1
1 and because hl:l+λ−1(X+

λ) = Pl+λ, the set A := Fλ
ι (hl:L|intXl−1)∩

X+
λ is nonempty. Also, by the definition of {Pl′}l′ , hl:l+λ−1

ι is in fact linear on X+
λ , so A is

a hyperplane on X+
λ . Therefore there exists a piece-wise hyperplane H

k(λ,ι)
j(λ,ι) from the

canonical representation of S that contains A; by Lemma A.11, all {Hk(λ,ι)
j(λ,ι)}λ,ι are distinct

from each other.

We now show that G contains the edge H
k(λ,i)
j(λ,i) → H

k(λ+1,ι)
j(λ+1,ι) for λ ∈ [L− l − 1] and all (i, ι).

By the definition of Wl+λ, there exists x̄ ∈ P̄l+λ such that z̄[i] = 0, z̄[j] > 0 for j ̸= i, and
Wl+λ[ι, :]x̄ + bl+λ[ι] = 0. There also exists a ball Bϵ(x̄) ⊆ (Wl+λ−1Pl+λ−1 + bl+λ−1) ∩
{z[j] > 0 for j ̸= i}. Then because of how {Pl′}l′ are defined, there exists x̄′ ∈ Pl such that
hl:l+λ−1(x̄′) = x̄, so it satisfies

hl:l+λ−1
i (x̄′) = 0, (A.56)

hl:l+k−1
j (x̄′) > 0, for k ∈ [λ], (k, j) ̸= (λ, i), (A.57)

hl:l+λ
ι (x̄′) = 0. (A.58)

It follows that x̄′ ∈ Fλ
i (hl:L|intXl−1) ∩ X+

λ ⊆ H
k(λ,i)
j(λ,i) . At the same time, the preimage

(hl:l+λ−1)−1(Bϵ(x̄)) is open by continuity, and contains x̄′. So there exists a ball Bϵ(x̄′) ⊆ Pl

such that all x′ ∈ Bϵ(x̄′) satisfy

hl:l+k−1
j (x′) > 0, for k ∈ [λ], (k, j) ̸= (λ, i). (A.59)

On this ball, hl:l+λ−1
i is linear, so the set A := Bϵ(x̄′)∩

{︂
hl:l+λ−1

i (x′) > 0
}︂

is an open half-ball.

On A, hl:l+λ
ι is linear as well, and the set

{︂
x′ |hl:l+λ

ι (x′) = 0
}︂

intersects the center of the
half-ball, x̄′. Therefore there exists a sequence of points {x′

n} ⊆ Pl such that x′
n → x̄′ and

hl:l+k−1(x′) > 0, for k ∈ [λ], (A.60)

hl:l+λ
ι (x′) = 0. (A.61)

94

We obtain that x̄′ ∈ cl(Fλ+1
ι (hl:L|intXl−1) ∩ X+

λ+1) ⊆ cl Hk(λ+1,ι)
j(λ+1,ι) , which implies

cl Hk(λ,i)
j(λ,i) ∩ cl Hk(λ+1,ι)

j(λ+1,ι) ̸= ∅. (A.62)

It remains to show that k(λ, i) < k(λ+1, ι). Consider again the ball Bϵ(x̄′). By Lemma A.11,
hl:l+λ

ι is a different linear function on the region Bϵ(x̄′) ∩
{︂
hl:l+λ−1

i (x′) > 0
}︂

and on the

region Bϵ(x̄′) ∩
{︂
hl:l+λ−1

i (x′) < 0
}︂

. Hence, Hk(λ+1,ι)
j(λ+1,ι) is not a piece-wise hyperplane wrt.

any partition that does not include H
k(λ,i)
j(λ,i) . We obtain that k(λ, i) < k(λ + 1, ι), proving that

G contains the edge H
k(λ,i)
j(λ,i) → H

k(λ+1,ι)
j(λ+1,ι) .

Finally, observe that the dl paths Hk(1,i)
j(1,i) → H

k(2,1)
j(2,1) → · · · → H

k(L−l,1)
j(L−l,1) have length (L−l−1),

and distinct starting vertices. This proves the theorem.

Lemma A.18. For all general ReLU networks h : X → R, the following holds. Denote
S = ⋃︁

l∈[λ],i∈[dl] F
l
i(h) and let S = ⋃︁

k∈[κ],j∈[nk] H
k
j be the canonical representation of S. Then

Hk
j ⊆ Fl

i(h) for some (l, i) with l ≥ k. Moreover, if the dependency graph of S contains a
directed path of length m starting at Hk

j , then l ≤ λ−m.

Proof. Because the representation is canonical, we have

Hk
j ̸⊆ □k−1S ⊇

⋃︂
l∈[k−1],i∈[dl]

Fl
i(h), (A.63)

which implies Hk
j ⊆

⋃︁
l≥k,i F

l
i(h). By piece-wise linearity, we can write⋃︂

l≥k,i

Fl
i(h) =

⋃︂
l≥k,i,P

Fl
i(h) ∩ P =

⋃︂
l≥k,i,P

{︂
x ∈ P |wl

i(P) · x + bl
i(P) = 0

}︂
, (A.64)

where P runs over the linear regions of h1:l
i . Moreover, by the definition of Fl

i(h), all
wl

i(P) ̸= 0. Combined with Lemma A.11, we obtain that each nonempty set on the right-
hand side of (A.64) is a different hyperplane on an open set. Therefore there exists one for
which Hk

j ⊆ Fl
i(h) ∩ P ⊆ Fl

i(h).

Now assume that the dependency graph of S contains a directed path of length m starting
at Hk

j =: Hk0
j0 ; denote the path Hk0

j0 → Hk1
j1 → · · · → Hkm

jm
. By the first part of the lemma,

we know that Hkι
jι
⊆ Flι

iι
(h) for some lι. Let ι ∈ [m]; we will show that lι−1 < lι.

Because of the edge H
kι−1
jι−1 → Hkι

jι
, we know that Hkι−1

jι−1 and cl Hkι
jι

intersect, and that Hkι
jι

is a piece-wise hyperplane wrt. some partition P for which H
kι−1
jι−1 is a boundary. Let x̂ be any

point of intersection. By openness, there exists a ball Bϵ(x̂) such that Hkι−1
jι−1 is a hyperplane

on Bϵ(x̂), and Hkι
jι

is a hyperplane on one half-ball defined by Bϵ(x̂) and H
kι−1
jι−1 . If it was

the case that lι−1 ≥ lι, then Flι
iι
(h) would be a hyperplane on Bϵ(x̂), i.e. there would have

to exist some piece-wise hyperplane on the opposite half-ball as H
kι−1
jι−1 , but included in

the same hyperplane. However, by Lemma A.11, no two piece-wise hyperplanes in S are
included in a single hyperplane, so we get a contradiction.

Hence, we obtain l0 < l1 < · · · < lm ≤ λ, which yields l0 ≤ λ−m.

Lemma A.19. Let (w, b), (c, a) ∈ Rd×R and let F ⊆ Rd with dim F = d−1. If w⊺x+b = 0
and c⊺x + a = 0 for all x ∈ F , then either (w, b) = (0, 0), (c, a) = (0, 0), or there exists
β ∈ R : (c, a) = β(w, b).

95

Proof. Since dim F = d − 1, there exist d affinely independent vectors f0, . . . , fd−1 in F .
Hence there are d − 1 linearly independent vectors v1 := f1 − f0, . . . , vd−1 := fd−1 − f0,
such that w⊺vi = c⊺vi = 0. In other words, both w and c lie in the orthogonal complement
of the span of v1, . . . , vd−1. If w = 0, then necessarily b = 0, and similarly for (c, a). If
w ̸= 0 ̸= c, then because the orthogonal complement is one-dimensional, there exists
β ∈ R such that c = βw. Then c⊺x + a − β(w⊺x + b) = a − βb = 0 and the lemma
follows.

Theorem A.1. Consider a bounded domain X and any architecture (d1, . . . , dL−1) with
d0 ≥ d1 ≥ · · · ≥ dL−1 ≥ 2. Let hθ : X → R be a general ReLU network satisfying
Lemma A.17, and let hη : X→ R be any general ReLU network such that hθ(x) = hη(x)
for all x ∈ X. Denote η ≜ (W′

1, b′
1, . . . , W′

L, b′
L). Then there exist permutation matrices

P1, . . . PL−1, and positive-entry diagonal matrices M1, . . . , ML−1, such that

W1 = M1P1W′
1, b1 = M1P1b′

1,

Wl = MlPlW′
lP−1

l−1M−1
l−1, bl = MlPlb′

l, l ∈ {2, . . . , L− 1}, (A.65)
WL = W′

LP−1
L−1M−1

L−1, bL = b′
L.

Proof. First, notice that hη is transparent. To see this, observe that hθ is transparent, i.e.
rank(Iθ

l (x)) ≥ 1 for all l ∈ [L− 1] and x ∈ X. By Lemma A.10, ∇xhη(x) = ∇xhθ(x) ̸= 0⊺,
implying that hη is transparent.

We proceed by induction. Let l = 1. Then we have

hl:L
θ |intXl−1

θ
≡ hθ ≡ hη ≡ hl:L

η |intXl−1
θ

(A.66)

which implies F(hl:L
θ |intXl−1

θ
) = F(hl:L

η |intXl−1
θ

). (For notational convenience, we will omit
the domain restriction for now.) Because both networks are general and transparent,
Corollary A.1 implies that the set⋃︂

k∈[L−l],j∈[dk]
Fk

j (hl:L
θ) = F(hl:L

θ) = F(hl:L
η) =

⋃︂
k∈[L−l],j∈[dk]

Fk
j (hl:L

η) (A.67)

is a pwl. surface of order at most L − l. By Lemma A.17, its graph contains dl directed
paths of length (L− 1− l) with distinct starting vertices. Denote these vertices H1, . . . ,Hdl

.
By Lemma A.18, Hi ⊆ Fλ

ι (hl:L
θ) for some (λ, ι) with λ ≤ (L − l) − (L − 1 − l) = 1. We

thus obtain
⋃︁

i∈[dl] Hi ⊆
⋃︁

i∈[dl] F
1
i (hl:L

θ), where on the left-hand side we have a union of dl

hyperplanes, and on the right-hand side we have a union of at most dl hyperplanes. It
follows that

⋃︁
i∈[dl] Hi = ⋃︁

i∈[dl] F
1
i (hl:L

θ), and by applying the same argument to hη, we get⋃︁
i∈[dl] F

1
i (hl:L

θ) = ⋃︁
i∈[dl] F

1
i (hl:L

η). Therefore there must exist a permutation π : [dl] → [dl]
such that F1

i (hl:L
θ) = F1

π(i)(hl:L
η) for all i. Then by Lemma A.19, there exist scalars m1, . . . mdl

,
such that

(Wl[i, :], bl[i]) = mi(W′
l[π(i), :], b′

l[π(i)]). (A.68)

We know that mi ̸= 0 because the folds F1
i (hl:L

θ),F1
i (hl:L

η), are nonempty; otherwise⋃︁
i∈[dl] Hi could not be a union of dl hyperplanes. We have thus shown that there ex-

ists a permutation matrix Pl ∈ Rdl×dl and a nonzero-entry diagonal matrix Ml ∈ Rdl×dl

such that Wl = MlPlW′
l and bl = MlPlb′

l.

Next, we show that the diagonal entries of Ml are positive. Let x−, x+ ∈ intXl−1
θ be such

that Iθ(x−) and Iθ(x+) differ only in Iθ
l [i, i]. Wlog, let Iθ

l [i, i](x−) = 0 and Iθ
l [i, i](x+) = 1,

96

and denote the row span of Iθ
l (x−)Wl by W. Then

∇xhl:L
θ (x−) = WLIθ

L−1(x−) · · ·Wl+1Iθ
l (x−)Wl ∈W,

∇xhl:L
θ (x+) = WLIθ

L−1(x+) · · ·Wl+1Iθ
l (x+)Wl ∈ span(W ∪Wl[i, :]).

Since hθ is general and dl ≤ dl−1, the matrix Wl has full row rank. This means that the rows
of Wl form a basis, in which the representation of∇xhl:L

θ (x−) has one more zero coefficient
compared to ∇xhl:L

θ (x+). In other words, for two points x−, x+ ∈ intXl−1
θ whose indicators

differ only in Iθ
l [i, i], the point for which Iθ

l [i, i](x) = 0 is also the one for which ∇xhl:L
θ (x)

has more zero coefficients when expressed in the row basis of Wl. Now, observe that if
Iθ(x−) and Iθ(x+) differ only in Iθ

l [i, i], then Iη(x−) and Iη(x+) differ only in Iη
l [π(i), π(i)].

Because Wl = MlPlW′
l, the number of zero coefficients of ∇xhl:L

η (x−) = ∇xhl:L
θ (x−) in

the row basis of W′
l is the same as the number of zero coefficients of ∇xhl:L

θ (x−) in the row
basis of Wl. It follows that Iη

l [π(i), π(i)](x−) = 0 and Iη
l [π(i), π(i)](x+) = 1. Hence, mi is

positive.

For the inductive step, let l ∈ {2, . . . , L− 1}, and assume that there exist permutation
matrices P1, . . . , Pl−1, and positive-entry diagonal matrices M1, . . . , Ml−1, such that (A.65)
holds up to layer l − 1. Then h1:l−1

θ ≡Ml−1Pl−1h
1:l−1
η . Since h1:L

θ ≡ h1:L
η , it follows that

hl:L
θ |intXl−1

θ
≡
(︂
hl:L

η ◦P−1
l−1M−1

l−1

)︂⃓⃓⃓
intXl−1

θ

≡ hl:L
η̃ |intXl−1

θ
, (A.69)

where η̃ := (W′
lP−1

l−1M−1
l−1, b′

l, W′
l+1, b′

l+1, . . . , W′
L, b′

L). We can therefore apply the same
argument to hl:L

θ |intXl−1
θ

and hl:L
η̃ |intXl−1

θ
as we presented above for the case l = 1. We obtain

that there exists a permutation matrix Pl ∈ Rdl×dl and a positive-entry diagonal matrix
Ml ∈ Rdl×dl such that

Wl = MlPlW′
lP−1

l−1M−1
l−1, bl = MlPlb′

l. (A.70)

Finally, consider the last layer. We know that h1:L−1
θ ≡ ML−1PL−1h

1:L−1
η , which implies

hL
θ ≡ hL

η ◦P−1
L−1M−1

L−1, i.e. hL
θ and hL

η ◦P−1
L−1M−1

L−1 are identical linear functions supported
on the full-dimensional domain XL−1

θ . It follows that WL = W′
LP−1

L−1M−1
L−1 and bL = b′

L.

97

APPENDIX B
Proofs for Chapter 3

B.1 Basic lemmas

This section collects a few lemmas useful for proofs. We assume the same setting and
notation as in Sections 3.1 and 3.3. In addition, we denote by Pw the orthogonal projection
onto span {xi|w⊺xi = 0}⊥, and by g : Rd → Rd,

g(w) ≜ −
n∑︂

i=1
ℓ′

i(0) · 1{w⊺xi > 0}Pwxi. (B.1)

B.1.1 Lemmas about sectors

The following lemma gives a necessary condition for a vector to be an extremal direction.

Lemma B.1. If w ∈ Sd−1 is an extremal direction, then g(w) = Cw for some constant C.

Proof. Let ŵ ∈ Sd−1 be a positive extremal direction (the negative case is analogous), and
let ŵ ∈ Sσ̂. A sector is called open if σi ̸= 0 for all i ∈ [n]. Denote by A(σ̂) the set of all
open sectors adjacent to σ̂,

A(σ̂) :=
{︄

σ ∈ {±1}n

⃓⃓⃓⃓
⃓ max

i∈[n]
|σi − σ̂i| ≤ 1

}︄
. (B.2)

Since ŵ is a local maximum of G and G is sector-wise linear, ŵ maximises G when
constrained to (the closure of) any adjacent sector, i.e. for any σ ∈ A(σ̂),

ŵ = arg max
w

G(w), subject to ∥w∥2 = 1,

σiw⊺xi ≥ 0 for all i ∈ [n].
(B.3)

For w in the feasible region, G can be treated as a linear function with ∇G(w) = g(wσ)
where wσ is any vector such that wσ ∈ Sσ. Hence, the necessary first-order KKT conditions
for the problem (B.3) are

g(wσ) = Cŵ−
n∑︂

i=1
λiσixi, (B.4)

99

where λi ≥ 0 for all i, but λi ̸= 0 requires that the corresponding constraint is tight,
σiŵ⊺xi = 0. It follows that Pŵλiσixi = 0. Multiplying eq. (B.4) from the left by Pŵ therefore
yields

Cŵ = Pŵ g(wσ) = −
n∑︂

i=1
ℓ′

i(0) · 1{σi = 1}Pŵxi. (B.5)

By adjacency, σi = σ̂i whenever σ̂i ∈ {±1}, so they can differ only when σ̂i = 0, i.e. when
Pŵxi = 0. It follows that

Cŵ = −
n∑︂

i=1
ℓ′

i(0) · 1{σ̂i = 1}Pŵxi = g(ŵ). (B.6)

The following lemma describes the local behaviour of the function G (defined in eq. (3.12)).

Lemma B.2. For w ∈ Sd−1 and v ∈ Rd, there exists ϵmax > 0 such that for ϵ ∈ [0, ϵmax],

G

(︄
w + ϵv
∥w + ϵv∥

)︄
= 1
∥w + ϵv∥

(︄
G(w)− ϵ

n∑︂
i=1

ℓ′
i(0)1{(w + ϵv)⊺xi > 0}v⊺xi

)︄
. (B.7)

Proof. Let g be defined as in eq. (B.1); then

G

(︄
w + ϵv
∥w + ϵv∥

)︄
= 1
∥w + ϵv∥

(w + ϵv)⊺g(w + ϵv). (B.8)

We now analyse w⊺g(w+ ϵv) and ϵv⊺g(w+ ϵv) separately, starting with the former. Denote
Iϵ

i := 1{(w + ϵv)⊺xi > 0}. Then g(w + ϵv) can be written as

g(w+ϵv) = −
n∑︂

i=1
ℓ′

i(0)·Iϵ
i I0

i Pwxi−
n∑︂

i=1
ℓ′

i(0)·Iϵ
i (1−I0

i) Pwxi −
n∑︂

i=1
ℓ′

i(0)·Iϵ
i (Pw+ϵv−Pw)xi.

(B.9)
Define

ϵmax := 1
2 max

ϵ>0
ϵ, subject to: sign {(w + ϵv)⊺xi} sign {w⊺xi} ≥ 0 ∀i. (B.10)

For ϵ ∈ [0, ϵmax], I0
i = 1 implies Iϵ

i = 1, so the first term in eq. (B.17) equals g(w). Regarding
the second term, Iϵ

i (1 − I0
i) is nonzero only if Iϵ

i = 1, I0
i = 0. For ϵ ∈ [0, ϵmax], this can

only happen if (w + ϵv)⊺xi > 0 and w⊺xi = 0. In this scenario however, Pwxi = 0, so
the second term in eq. (B.17) is zero. Regarding the third term, as long as ϵ ∈ [0, ϵmax],
(w + ϵv)⊺xi = 0 implies w⊺xi = 0, so

w ∈ span {xj|w⊺xj = 0}⊥ ⊆ span {xj| (w + ϵv)⊺xj = 0}⊥ (B.11)

and w⊺(Pw+ϵv −Pw) = w⊺ −w⊺ = 0⊺. It follows that

w⊺g(w + ϵv) = w⊺g(w) = G(w). (B.12)

Turning to ϵv⊺g(w + ϵv), we have that

ϵv⊺g(w + ϵv) = −ϵv⊺
n∑︂

i=1
ℓ′

i(0) · 1{(w + ϵv)⊺xi > 0}Pw+ϵvxi, (B.13)

where

ϵv⊺Pw+ϵv = (w + ϵv)⊺Pw+ϵv −w⊺Pw+ϵv = (w + ϵv)⊺ −w⊺ = ϵv⊺. (B.14)

Plugging eq. (B.12) and eq. (B.13) into eq. (B.8) yields the result.

100

B.1.2 Training dynamics

In the following lemma, we prove a formula for the evolution of the parameters of a two-layer
network trained by gradient flow (eq. (3.4)). The formula has appeared in Maennel et al.
[2018] before (but without a proof).

Lemma B.3. Assume that the training inputs with the zero vector {xi}i ∪ {0} are in general
position.1 Then a two-layer ReLU network trained by gradient flow on (X, y) satisfies for all
j ∈ [p] and almost all t ≥ 0,

∂aj

∂t
= −

n∑︂
i=1

ℓ′
i(t) · ρ(w⊺

j xi), (B.15)

∂wj

∂t
= −

n∑︂
i=1

ℓ′
i(t)1

{︂
w⊺

j xi > 0
}︂

ajPwj
xi. (B.16)

Proof. Fix θ, and denote by Σθ ∈ {−1, 0, 1}p×n the activation matrix for fθ, Σθ[j, i] ≜
sign w⊺

j xi. Then for any sequence θk → θ such that {∇ℓ(θk)} exists and has a limit,

lim
k→∞

Σθk
∈
{︂
Σ ∈ {±1}p×n

⃓⃓⃓
Σ[j, i] = Σθ[j, i] if Σθ[j, i] ̸= 0

}︂
. (B.17)

Conversely, for any Σ in the set above, there exists a sequence θk → θ such that
limk→∞ Σθk

= Σ. To see this, observe that each wj can be approached separately.
Let A be the matrix whose rows are formed by those xi for which w⊺

j xi = 0. Then by the
general position of inputs, A is a wide full-rank matrix and Awj = 0. It follows that for any ϵ,
Aw = ϵ has a solution, which can be chosen convergent to wj as ϵ→ 0.

We deduce that

∂ℓ(θ(t)) = conv
{︂
g(Σ) |Σ[j, i] ∈ {±1}, Σ[j, i] = Σθ(t)[j, i] if Σθ(t)[j, i] ̸= 0

}︂
, (B.18)

where we define g(Σ) coordinate-wise as

g(Σ)[aj] :=
n∑︂

i=1
ℓ′

i(t)1{Σ[j, i] = 1}w⊺
j xi,

g(Σ)[wj] :=
n∑︂

i=1
ℓ′

i(t)1{Σ[j, i] = 1} ajxi.

(B.19)

Since the value of g(Σ)[aj] is independent of Σ, this proves eq. (B.15).

The proof of eq. (B.16) is slightly more complicated, as we need to pin down a single
member of ∂ℓ(θ(t)). To do that, we recall a result by Davis et al. [2020], who show that for a
large class of deep learning scenarios (which includes ours), the objective ℓ admits a chain
rule, i.e.

ℓ′(t) =
⟨︄

∂ℓ(θ(t)), ∂θ

∂t

⟩︄
for almost all t ≥ 0, (B.20)

where the right-hand side above should be interpreted as the only element of the set
{q⊺∂θ/∂t |q ∈ ∂ℓ(θ(t))}. For t such that both eq. (3.4) and eq. (B.20) hold,

0 =
⟨︄

∂ℓ(θ(t))− ∂ℓ(θ(t)), ∂θ

∂t

⟩︄
, (B.21)

1That is, no k of these points lie on a (k − 2)-dimensional hyperplane, for all k ≥ 2.

101

implying that
∂θ

∂t
∈ span {∂ℓ(θ(t))− ∂ℓ(θ(t)}⊥. (B.22)

Suppose q1, q2 satisfy both eq. (3.4) and eq. (B.22) (taking the role of ∂θ/∂t). Then

q1 − q2 ∈ (∂ℓ(θ(t))− ∂ℓ(θ(t))) ∩ span {∂ℓ(θ(t))− ∂ℓ(θ(t)}⊥ = {0}. (B.23)

It follows that ∂θ/∂t is the unique member of both span {∂ℓ(θ(t))− ∂ℓ(θ(t)}⊥ and−∂ℓ(θ(t)).
By eqs. (B.18) and (B.19),

span {∂ℓ(θ(t))− ∂ℓ(θ(t)} ⊇ span
{︂
ξij |w⊺

j xi = 0
}︂
, (B.24)

where ξij[wj] = xi and all other elements of ξij are zero. Since

∂θ

∂t
∈ span {∂ℓ(θ(t))− ∂ℓ(θ(t)}⊥ ⊆ span

{︂
ξij |w⊺

j xi = 0
}︂⊥

, (B.25)

we obtain that for all (i, j) with w⊺
j xi = 0, ∂wj/∂t ⊥ xi. In other words,

∂wj

∂t
= Pwj

∂wj

∂t
∈ conv

Σ

{︄
−

n∑︂
i=1

ℓ′
i(t)1{Σ[j, i] = 1} ajPwj

xi

}︄
, (B.26)

where the inclusion follows from ∂θ/∂t ∈ −∂ℓ(θ(t)) and eqs. (B.18) and (B.19). Now
observe that by definition, Pwj

xi = 0 for all (i, j) with Σθ[j, i] = 0, hence the set in
eq. (B.26) is a singleton whose only element equals eq. (B.16).

The following lemma shows that a balanced two-layer network remains balanced and
neurons keep their signs.

Lemma B.4. If a two-layer neural network is balanced at initialisation and trained by gradient
flow with a loss whose derivative is bounded, then for t ≥ 0,

aj(t) = sign aj(0) · ∥wj(t)∥. (B.27)

Proof. By Lemma B.3, for almost all t ≥ 0,

∂∥wj∥2

∂t
= −

n∑︂
i=1

ℓ′
i(t)1

{︂
w⊺

j xi > 0
}︂

ajw⊺
j xi =

∂a2
j

∂t
, (B.28)

i.e. aj and wj grow equally fast. Since |aj(0)| = ∥wj(0)∥ at initialisation, |aj(t)| = ∥wj(t)∥
throughout training.

Next denote by B, V > 0 some scalars such that |ℓ′
i(u)| ≤ B for all i ∈ [n] and u ∈ R, and

∥xi∥ ≤ V for all i ∈ [n]. Then
⃓⃓⃓
∂a2

j/∂t
⃓⃓⃓
≤ nBa2

jV , or equivalently
⃓⃓⃓
∂ log a2

j/∂t
⃓⃓⃓
≤ nBV .

It follows that a2
j(t) lies between a2

j(0) exp(−nBV t) and a2
j(0) exp(nBV t), and hence aj

cannot cross zero in finite time, proving eq. (B.27).

102

B.2 Proofs of main results

Lemma 3.2. In the setting of Theorem 3.1, there is exactly one positive extremal direction
and exactly one negative extremal direction. The positive extremal sector σ+ is given by

σ+
j =

⎧⎪⎨⎪⎩
1, if yj = 1,
−1, if yj = −1 and x⊺

j xi < 0 for some i with yi = 1,
0, if yj = −1 and x⊺

j xi = 0 for all i with yi = 1,
(3.13)

and the negative extremal sector σ− is given by

σ−
j =

⎧⎪⎨⎪⎩
1, if yj = −1,
−1, if yj = 1 and x⊺

j xi < 0 for some i with yi = −1,
0, if yj = 1 and x⊺

j xi = 0 for all i with yi = −1.
(3.14)

Proof. We will prove the positive case; the negative case follows by inverting all labels.
Because G is a continuous function on a compact domain, it has a maximum. At least
one maximum must moreover be strict, or otherwise G would have to be constant. This
shows that a positive extremal direction exists; we now show there is no more than one
such direction.

By Lemma B.1, there cannot be more than one extremal direction per sector; it therefore
suffices to show that no sector except one, σ+, admits a positive extremal direction. We will
show that if w ∈ Sd−1 lies in any sector other than σ+, then w is not positive extremal; in
particular we show that G(w) can be locally increased.

Let σ ̸= σ+ and let w ∈ Sσ ∩ Sd−1. By Lemma B.2, for any v ∈ Rd there exists ϵmax > 0
such that for ϵ ∈ (0, ϵmax],

G

(︄
w + ϵv
∥w + ϵv∥

)︄
= G(w) + ϵα

∥w + ϵv∥
, (B.29)

where

α := −
n∑︂

i=1
ℓ′

i(0)1{(w + ϵv)⊺xi > 0}v⊺xi. (B.30)

We now analyse the different possible realisations of σ, and for each we find v ∈ Rd such
that (G(w) + ϵα)/∥w + ϵv∥ > G(w) for small ϵ.

Suppose first that σj = −1 for some example with yj = 1, or that σj = 1 for some example
with yj = −1. Then set v := yjxj/∥xj∥. By orthogonal separability, we have that α ≥ 0.
Also, σj ≜ sign w⊺xj = −yj implies w⊺v < 0, therefore ∥w + ϵv∥ < ∥w∥ = 1 for ϵ small
enough. It follows that (G(w) + ϵα)/∥w + ϵv∥ > G(w).

Next suppose that σj = 0 for some example with yj = 1, and set v := xj/∥xj∥. Then α > 0,
because each term in eq. (B.30) is non-negative by orthogonal separability, and the term
corresponding to i = j is strictly positive:

−ℓ′
j(0)1{(w + ϵv)⊺xj > 0}v⊺xj = −ℓ′

j(0)1{ϵ∥xj∥ > 0}∥xj∥ > 0. (B.31)

From σj ≜ sign w⊺xj = 0 it further follows that ∥w + ϵv∥ =
√

1 + ϵ2. Hence, (G(w) +
ϵα)/∥w + ϵv∥ = (G(w) + ϵα)/(1 + O(ϵ2)), which strictly exceeds G(w) for ϵ small enough.

103

We have thus shown that if σ is positive extremal, then necessarily σi = 1 for all examples
with yi = 1, and σi ∈ {0,−1} for examples with yi = −1. Suppose now that σj = 0 for an
example with yj = −1 that satisfies x⊺

j xk < 0 for some k with yk = 1. Taking v := −xj/∥xj∥
will make α strictly positive, as the term corresponding to i = k in eq. (B.30) will be strictly
positive (this term’s indicator equals 1, as we know from the above that σk = 1). Like in
the previous paragraph, ∥w + ϵv∥ = 1 + O(ϵ2), which suffices to show G(w) is locally
submaximal.

Finally, let xj be such that yj = −1 and x⊺
j xi = 0 for all i with yi = 1, and suppose that

σj = −1. With v := Pwxj/∥Pwxj∥ (we know that Pwxj ̸= 0 because w⊺xj ̸= 0 by
σj = −1), we have

α = − 1
∥Pwxj∥

n∑︂
i=1

ℓ′
i(0)1{(w + ϵv)⊺xi > 0}x⊺

j Pwxi. (B.32)

We claim that each term in eq. (B.32) is zero: For terms with σi = −1, the indicator
1{(w + ϵv)⊺xi > 0} is zero. For terms with σi = 0, Pwxi = 0. (Also notice that such
terms necessarily satisfy yi = −1 and x⊺

i xk = 0 for all k with yk = 1, which we will need
shortly.) Lastly, for terms with σi = 1, we know yi = 1, and hence x⊺

i xl = 0 for all l with
σl = 0. In other words, xi ⊥ span {xl|w⊺xl = 0}, implying Pwxi = xi. In the context of
eq. (B.32), we obtain x⊺

j Pwxi = x⊺
j xi = 0, concluding the proof that α = 0. Since σj = −1,

∥w + ϵv∥ < ∥w∥ = 1 for small enough ϵ, and (G(w) + ϵα)/∥w + ϵv∥ > G(w). We have
thus ruled out all sectors except σ+, proving that for orthogonally separable datasets there
is a unique positive extremal sector.

Lemma 3.3. Assume the setting of Theorem 3.1. If at time T the neuron (aj, wj) satisfies
aj(T) > 0 and wj(T) ∈ Sσ, where σ is the positive extremal sector (eq. (3.13)), then for
t ≥ T , wj(t) ∈ Sσ. The same holds if aj(T) < 0 and σ is the negative extremal sector
(eq. (3.14)).

Proof. We omit the neuron index, and only prove the positive case; the negative case is
analogous. Denote σ(t) := sign (X⊺w(t)). We proceed by contradiction. Suppose there
exists a time T1 > T such that σ(T1) ̸= σ(T). Wlog, take T1 such that σ(t) is constant on
(T, T1) and denote this constant sector σ̄; by continuity σ̄k = σk(T) if σk(T) ̸= 0.

Now consider σk(T) = 0. By the gradient flow differential inclusion, for almost all t ∈ (T, T1),

∂w⊺xk

∂t
∈ conv

σ′

{︄
−

n∑︂
i=1

ℓ′
i(t)1{σ′

i = 1} ax⊺
i xk

}︄
, (B.33)

where each σ′ in the definition of the convex hull satisfies σ′
i = σi(T) if σi(T) ̸= 0, implying

{i |σ′
i = 1} ⊆ {i |σi(T) = 1} ∪ {i |σi(T) = 0}

= {i | yi = 1} ∪ {i | yi = −1 and x⊺
i xj = 0 for all j with yj = 1}.

(B.34)

Denote the two sets in the last expression I+ and I0, and consider the gradient correspond-
ing to some σ′ in eq. (B.33). The gradient terms corresponding to i ∈ I+ are zero (because
k ∈ I0 and so x⊺

i xk = 0) and the terms corresponding to i ∈ I0 (if there are any) are
negative. The total gradient for σ′ is therefore non-positive, which is preserved under taking
convex hulls, and so we obtain ∂

∂t
w⊺xk ≤ 0. It follows that σ̄k ̸= 1.

104

By Lemma B.3, for almost all t ∈ (T, T1) and any k ∈ [n],

∂w⊺xk

∂t
= −

n∑︂
i=1

ℓ′
i(t)1{σ̄i = 1} ax⊺

i Pwxk, (B.35)

where 1{σ̄i = 1} = 1{yi = 1} as we have shown above. Observe that for xi with yi = 1,
we have Pwxi = xi. This is because Pw projects onto

span {xi | σ̄i = 0}⊥ ⊇ span {xi |σi(T) = 0}⊥ (B.36)

and xi lies in the right-hand side by the definition of positive extremal sector (eq. (3.13)).
Therefore

∂w⊺xk

∂t
= −

n∑︂
i=1

ℓ′
i(t)1{yi = 1} ax⊺

i xk. (B.37)

One can easily check that if σk(T) = 1 then ∂
∂t

w⊺xk > 0, if σk(T) = −1 then ∂
∂t

w⊺xk < 0,
and if σk(T) = 0 then ∂

∂t
w⊺xk = 0. It follows that σ(T1) = σ(T), which is a contradiction.

Lemma B.5. Assume the setting of Theorem 3.1. If at time T the neuron (aj, wj) satisfies
aj(T) > 0 and wj(T)⊺xk > 0 for some k ∈ [n] with yk = 1, then for t ≥ T , wj(t)⊺xk > 0.
The same holds if instead aj(T) < 0 and yk = −1.

Proof. We omit the neuron index, and only prove the positive case; the negative case is
analogous. We will show that for almost all t ∈ (T,∞), ∂w⊺xk/∂t ≥ 0. By the gradient flow
differential inclusion, for almost all t ∈ (T,∞),

∂w⊺xk

∂t
∈ conv

σ′

{︄
−

n∑︂
i=1

ℓ′
i(t)1{σ′

i = 1} ax⊺
i xk

}︄
. (B.38)

Fix any σ′ and consider the summand corresponding to example i. If yi = 1, then−ℓ′
i(t) > 0

and x⊺
i xk > 0, so the summand is non-negative. If yi = −1, then −ℓ′

i(t) < 0 and x⊺
i xk ≤ 0,

so the summand is again non-negative. It follows that the sum is non-negative irrespective
of σ′, hence ∂w⊺xk/∂t ≥ 0.

Corollary 3.1. Under the conditions of Theorem 3.1, there exist constants u, z ≥ 0 such
that

hθ(t)(x)
∥θ(t)∥2 → uρ(w⊺

+x)− zρ(w⊺
−x), as t→∞. (3.10)

Proof. By Lemma B.4, ∥θ∥2 = ∥a∥2 + ∥W∥2
F = 2∥a∥2 = 2 ∥W∥2

F . Then for any x ∈ Rd,

2hθ(t)(x)
∥θ(t)∥2 = a(t)⊺

∥a(t)∥ ρ

(︄
W(t)x
∥W(t)∥F

)︄
. (B.39)

Denote ã := limt→∞ a(t)/∥a(t)∥. Then by Theorem 3.1, as t→∞,

2hθ(t)(x)
∥θ(t)∥2 → ã⊺ρ(uw⊺

+x + zw⊺
−x) (B.40)

= ã⊺ρ(uw⊺
+x) + ã⊺ρ(zw⊺

−x) (B.41)
= ã⊺u ρ(w⊺

+x) + ã⊺z ρ(w⊺
−x), (B.42)

105

where in eq. (B.41) we used the fact that for all i ∈ [p], either ui = 0 or zi = 0, and in
eq. (B.42) we used u, z ≥ 0. Finally, since ã = u∥w+∥ − z∥w−∥, we have

ã⊺u = ∥w+∥u⊺u ≥ 0, (B.43)
ã⊺z = −∥w−∥z⊺z ≤ 0, (B.44)

which completes the proof.

B.3 Relationship to nonlinear max-margin

Lemma B.6. Let (X, y) be an orthogonally separable dataset, let w+, w− be defined as in
eqs. (3.6) and (3.7) and let

˜︂W := uw⊺
+ + zw⊺

−, (B.45)
ã := ∥w+∥u− ∥w−∥z, (B.46)

for some u, z ∈ Rp
+ such that ui = 0 or zi = 0 for all i ∈ [p]. Also let u, z be normalised

such that ∥u∥ = ∥w+∥−1/2 and ∥z∥ = ∥w−∥−1/2. Then θ̃ ≜ (˜︂W, ã) is a KKT point of the
following constrained optimisation problem:

min 1
2∥θ∥

2, s.t. yihθ(xi) ≥ 1, i ∈ [n]. (B.47)

Proof. By standard linear max-margin considerations (e.g. Hastie et al. [2008, Section
4.5.2]), we know that

w+ =
∑︂

i:yi=1
αixi, w− =

∑︂
i:yi=−1

αixi, (B.48)

for some αi ≥ 0 such that αi = 0 if xi is a non-support vector. It follows by orthogonal
separability that for i with yi = 1,

w⊺
+xi > 0, yiw⊺

−xi ≤ 0, (B.49)

and for i with yi = −1,
w⊺

+xi ≤ 0, yiw⊺
−xi > 0; (B.50)

we will need these properties shortly.

Let us now turn to checking the KKT status of θ̃ wrt. eq. (B.47). We start by showing that θ̃
is feasible. Let xi be such that yi = 1; then

yihθ̃(xi) = ã⊺ρ(˜︂Wxi) (B.51)
= ã⊺ρ(uw⊺

+xi + zw⊺
−xi) (B.52)

= ã⊺u w⊺
+xi (B.53)

= ∥w+∥∥u∥2w⊺
+xi (B.54)

= w⊺
+xi ≥ 1, (B.55)

106

where the last inequality follows from the definition of w+, eq. (3.6). Similarly, if xi is such
that yi = −1, then

yihθ̃(xi) = −ã⊺z w⊺
−xi (B.56)

= ∥w−∥∥z∥2w⊺
−xi (B.57)

= w⊺
−xi ≥ 1. (B.58)

This shows that θ̃ is feasible.

Next, we show that θ̃ is a KKT point, i.e. we show that there exist λ1, . . . , λn ≥ 0 such that

1. for all i ∈ [n], λi(yihθ̃(xi)− 1) = 0, and

2. θ̃ ∈ ∑︁n
i=1 λiyi∂θhθ̃(xi),

where ∂θhθ̃(x) denotes the Clarke subdifferential of hθ(x) wrt. θ, evaluated at θ̃. Specifically,
we show that the choice

λi =

⎧⎨⎩αi/∥w+∥, if yi = 1,

αi/∥w−∥, if yi = −1,
(B.59)

satisfies both conditions above.

As for the first condition, observe that if i is a non-support example, then λi = αi = 0 and
the condition holds. If i is a support example, then by eqs. (B.55) and (B.58), yihθ̃(xi) = 1
and the condition holds as well.

As for the second condition, denote

gi(θ) := [Iθ(xi)ax⊺
i ; ρ(Wxi)], (B.60)

where Iθ(x) = diag [1{Wxi > 0}] ∈ Rp×p is the diagonal matrix whose (i, i)-element is
one if w⊺

i x > 0 and zero otherwise. It holds that gi(θ̃) ∈ ∂θhθ̃(xi) and

n∑︂
i=1

λiyigi

(︂
θ̃
)︂

=
∑︂

i:yi=1

αi

∥w+∥
[diag [1{u > 0}] ãx⊺

i ; ρ(uw⊺
+xi + zw⊺

−xi)]

−
∑︂

i:yi=−1

αi

∥w−∥
[diag [1{z > 0}] ãx⊺

i ; ρ(uw⊺
+xi + zw⊺

−xi)]

=
∑︂

i:yi=1

αi

∥w+∥
[∥w+∥ux⊺

i ; uw⊺
+xi]−

∑︂
i:yi=−1

αi

∥w−∥
[−∥w−∥zx⊺

i ; zw⊺
−xi]

= 1
∥w+∥

[∥w+∥uw⊺
+; uw⊺

+w+]− 1
∥w−∥

[−∥w−∥zw⊺
−; zw⊺

−w−]

= [uw⊺
+ + zw⊺

−; u∥w+∥ − z∥w−∥]

≜ θ̃.

This proves the second condition, and shows that θ̃ is a KKT point of eq. (B.47).

107

APPENDIX C
Proofs and derivations for Chapter 4

C.1 The infomax inequality

Theorem 4.1. For any two random variables z and x distributed according to the joint
distribution with a density p(z, x) and for any conditional density function r(z|x) we have

Ip(z, x) ≥ Hp(z) + E
(z,x)∼p

[log r(z|x)]. (4.8)

(The inequality was originally proved by Barber and Agakov [2003]. Here we provide an
alternative direct proof.)

Proof. Using the positivity of KL divergence, we obtain

DKL(p(z, x) ∥ r(z|x) p(x)) ≥ 0 (C.1)
⇔ E

(z,x)∼p
[log p(z|x) + log p(x)− log r(z|x)− log p(x)] ≥ 0 (C.2)

⇔ E
(z,x)∼p

[log p(z|x)] ≥ E
(z,x)∼p

[log r(z|x)]. (C.3)

Plugging the above into the definition of mutual information proves the claim:

Ip(z, x) = Hp(z)−Hp(z|x) (C.4)
= Hp(z) + E

(z,x)∼p
[log p(z|x)] (C.5)

≥ Hp(z) + E
(z,x)∼p

[log r(z|x)]. (C.6)

C.2 Derivation and properties of (4.12)

We will prove that

∇p E
(z,x)∼p

[log r∗
p(z|x)] = E

(z,x)∼p

[︂
(∇p log p(z, x)) · log r∗

p(z|x) +∇p log r∗
p(z|x)

]︂
. (4.12)

109

Note that we treat p(z) as constant and ∇p denotes the gradient with respect to p(x|z) only.

∇p E
(z,x)∼p

[log r∗
p(z|x)] = ∇p E

z∼p

⎡⎣∑︂
x∈X

p(x|z) log r∗
p(z|x)

⎤⎦ (C.7)

= E
z∼p

⎡⎣∑︂
x∈X

(∇pp(x|z)) log r∗
p(z|x) + p(x|z)

(︂
∇p log r∗

p(z|x)
)︂⎤⎦ (C.8)

Isolating p(x|z) and writing the resulting ratio as the derivative of the log yields

= E
z∼p

⎡⎣∑︂
x∈X

p(x|z)
{︂
(∇p log p(x|z)) · log r∗

p(z|x) +∇p log r∗
p(z|x)

}︂⎤⎦ (C.9)

= E
z∼p

⎡⎣∑︂
x∈X

p(x|z)
{︂
(∇p log p(z, x)) · log r∗

p(z|x) +∇p log r∗
p(z|x)

}︂⎤⎦ (C.10)

= E
(z,x)∼p

[︂
(∇p log p(z, x)) · log r∗

p(z|x) +∇p log r∗
p(z|x)

]︂
. (C.11)

Next, we show that the term E(z,x∼p)
[︂
∇p log r∗

p(z|x)
]︂

vanishes when r∗
p(z|x) = p(z|x).

E
(z,x)∼p

[∇p log p(z|x)] = E
x∼p

E
z∼p(z|x)

[︄
∇pp(z|x)

p(z|x)

]︄
(C.12)

= E
x∼p

[︄∫︂
Z

∇pp(z|x)
p(z|x) · p(z|x)dz

]︄
= E

x∼p

[︃
∇p

∫︂
Z

p(z|x)dz
]︃

= 0. (C.13)

C.3 Gradient of the MAE objective

Recall the MAE objective,

Lm(p, q) ≜ L(p, q)− C
⃓⃓⃓
Îp(z, x)−M

⃓⃓⃓
= L(p, q)− C

⃓⃓⃓⃓
⃓Hp(z) + max

ω
E

(z,x)∼p
[log rω(z|x)]−M

⃓⃓⃓⃓
⃓ , (4.11)

and recall that for tractability reasons we approximate the mutual information by

Î(θ) ≜ Hp(z) + E
(z,x)∼pθ

[log rω(z|x)], (C.14)

where rω is independently trained to approach pθ(z|x).

We will now derive the gradient of C
⃓⃓⃓
Î(θ)−M

⃓⃓⃓
with respect to the model parameters θ,

treating ω as fixed:

∇θ C
⃓⃓⃓
Î(θ)−M

⃓⃓⃓
= C · sign

(︂
Î(θ)−M

)︂
· ∇θÎ(θ) (C.15)

= C · sign
(︂
Î(θ)−M

)︂
· ∇θ E

z∼p

[︄
E

x∼pθ(x|z)
[log rω(z|x)]

]︄
(C.16)

= C · sign
(︂
Î(θ)−M

)︂
· E

z∼p

⎡⎣∑︂
x∈X

(∇θpθ(x|z)) · log rω(z|x)
⎤⎦. (C.17)

110

Making use of the derivative of the log, we get

= C · sign
(︂
Î(θ)−M

)︂
· E

z∼p

⎡⎣∑︂
x∈X

pθ(x|z)(∇θ log pθ(x|z)) · log rω(z|x)
⎤⎦ (C.18)

= C · sign
(︂
Î(θ)−M

)︂
· E

(z,x)∼pθ

[(∇θ log pθ(x|z)) · log rω(z|x)]. (C.19)

The gradient in (C.19) can be estimated using Monte Carlo sampling of both the expectation
and the Î(θ) term inside the sign. The sign estimate will inevitably be wrong sometimes,
making our gradient estimator biased. However, note that only the norm is affected, while
the direction of the gradient estimate is still correct in expectation.

111

APPENDIX D
Proofs for Chapter 5

We first define some notation in addition to that of Section 5.2 in the main text. We denote

ℓ1(w) ≜ 1
n

n∑︂
i=1

ℓi(w⊺xi), (D.1)

ℓi(u) ≜ −yi log σ(u)− (1− yi) log(1− σ(u))− ℓ∗
i , (D.2)

where ℓ∗
i are constants chosen such that the minimum of ℓi is 0, namely ℓ∗

i = −yi log yi −
(1− yi) log(1− yi).

Slightly abusing notation, we write ℓ(τ) ≜ ℓ1(w(τ)) ≜ ℓ(W1(τ), . . . , WN(τ)) for the objec-
tive value at time τ .

Finally, for a full-rank matrix A ∈ Rd×m (m ≥ 1), we denote by PA ∈ Rd×d the matrix of
projection onto the span of A,

PA =
{︄

I, m ≥ d,
A(A⊺A)−1A⊺, m < d.

(D.3)

D.1 Properties of the cross-entropy loss

Theorem D.1 (Gradient). The gradient of the cross-entropy loss (D.1) takes the form

∇ℓ1(w) = 1
n

n∑︂
i=1

(σ(w⊺xi)− yi) · xi. (D.4)

It always lies in the data span, ∇ℓ1(w) ∈ span(X).

Proof. Straightforward calculation.

Theorem D.2 (Global minima). The global minimum of the cross-entropy loss (D.1) is 0 and
the set of global minimisers is {︂

w ∈ Rd |X⊺w = X⊺w∗
}︂
. (D.5)

113

Proof. We know that ℓ1 ≥ 0 and ℓ1(w∗) = 0, so 0 is the optimal objective value, and the set
of global optima consists of all w such that ℓ1(w) = 0. The last condition is equivalent to
∀i : ℓi(w) = 0, which in turn is equivalent to ∀i : σ(w⊺xi) = σ(w⊺

∗xi). By monotonicity of σ,
this is further equivalent to ∀i : w⊺xi = w⊺

∗xi, which is a restatement of (D.5).

Theorem D.3 (Restricted strong convexity). Assume X is full-rank. For any sublevel set
W = {w | ℓ1(w) ≤ l}, there exists µ > 0 such that

ℓ1(v) ≥ ℓ1(w) +∇ℓ1(w)⊺(v−w) + µ

2∥v−w∥2 (D.6)

for all w, v ∈W satisfying v−w ∈ span(X).

Proof. Consider the 2nd-order Taylor expansion of ℓ1 around w,

ℓ1(v) = ℓ1(w) +∇ℓ1(w)⊺(v−w) + 1
2(v−w)⊺[∇2ℓ1(w̄)](v−w), (D.7)

where ∇2ℓ1(w̄) is the Hessian of ℓ1 evaluated at w̄, a point lying between v and w. A
straightforward calculation shows that the Hessian takes the form

∇2ℓ1(w̄) = XDw̄X⊺, (D.8)

where
Dw̄ = diag[σ(w̄⊺x1)(1− σ(w̄⊺x1)), . . . , σ(w̄⊺xn)(1− σ(w̄⊺xn))]. (D.9)

We will now show that there is a constant ω > 0 such that

σ(w̄⊺xi)(1− σ(w̄⊺xi)) ≥ ω (D.10)

for all w̄ ∈ W and i ∈ {1, . . . , n}, so that we can claim Dw̄ ⪰ ωI and consequently
∇2ℓ1(w̄) ⪰ ωXX⊺.

Let w ∈W. The bound on ℓ1(w) implies a bound on ℓi(w⊺xi) for all i,

ℓi(w⊺xi) ≤ nℓ1(w) ≤ nl. (D.11)

Because ℓi is convex and ℓi(u) → ∞ as u → ±∞, we know that ℓ−1
i ((−∞, nl]) is a

bounded interval, and the finite union ∪n
i=1ℓ

−1
i ((−∞, nl]) is also a bounded interval, whose

size depends only on nl and the data. Hence, there exists K > 0 such that w⊺xi ∈ [−K, K]
for all w ∈W and i ∈ {1, . . . , n}. The existence of ω > 0 satisfying (D.10) follows.

Now, let us apply ∇2ℓ1(w) ⪰ ωXX⊺ to lower-bound (D.7):

ℓ1(v) ≥ ℓ1(w) +∇ℓ1(w)⊺(v−w) + ω

2 (v−w)⊺XX⊺(v−w). (D.12)

Consider two cases. If n ≥ d, XX⊺ is full-rank and XX⊺ ⪰ λminI holds, where λmin > 0 is
the smallest eigenvalue of XX⊺. Combined with (D.12), this proves the claim for n ≥ d and
µ = ωλmin.

If n < d, X⊺X is full rank. We can use the assumption v−w ∈ span(X) to deduce

∥v−w∥2 = ∥PX(v−w)∥2

= (v−w)⊺X(X⊺X)−1X⊺(v−w)
≤ λmax(v−w)⊺XX⊺(v−w),

(D.13)

where λmax > 0 is the largest eigenvalue of (X⊺X)−1. Combined with (D.12), this proves
the claim for n < d and µ = ω/λmax.

114

Corollary D.1 (Restricted Polyak-Lojasiewicz). Assume X is full-rank. For any sublevel set
W = {w | ℓ1(w) ≤ l}, there exists c > 0 such that

cℓ1(w) ≤ 1
2
⃦⃦⃦
∇ℓ1(w)

⃦⃦⃦2
(D.14)

for all w ∈W.

Proof. Let w ∈ W. (If W is empty, the claim is trivially true.) Theorem D.3 applied to W

implies that for some µ > 0,

ℓ1(v) ≥ ℓ1(w) +∇ℓ1(w)⊺(v−w) + µ

2∥v−w∥2 (D.15)

for all v ∈W ∩ V where V = {v |v−w ∈ span(X)}. Taking minv∈W∩V on both sides, then
relaxing part of the constraint on the right-hand side yields

min
v∈W∩V

ℓ1(v) ≥ min
v∈W∩V

ℓ1(w) +∇ℓ1(w)⊺(v−w) + µ

2∥v−w∥2

≥ min
v∈V

ℓ1(w) +∇ℓ1(w)⊺(v−w) + µ

2∥v−w∥2.
(D.16)

Now, the minimum on the left-hand side is equal to 0 and is attained at v = w+PX(w∗−w),
as can be seen from Theorem D.2. For the right-hand side, we can substitute v = w + Xa
for a ∈ Rn and find the unconstrained minimum with respect to a. We get

0 ≥ ℓ1(w)− 1
2µ
∇ℓ1(w)⊺X(X⊺X)−1X⊺∇ℓ1(w)

≥ ℓ1(w)− λmax

2µ

⃦⃦⃦
∇ℓ1(w)

⃦⃦⃦2
,

(D.17)

where λmax > 0 is the largest eigenvalue of X(X⊺X)−1X⊺. This yields the result with
c = µ/λmax.

D.2 Proof of Theorem 5.1

We will prove a supporting lemma, and then the theorem.

Lemma D.1. Assume the student is a directly parameterised linear classifier (L = 1)
initialised at zero, w(0) = 0. Then, w(τ) ∈ span(X) for τ ∈ [0,∞).

Proof. Let q ∈ Rd be any vector orthogonal to the span of X. It suffices to show that
q⊺w(τ) = 0. For that, notice that q⊺w(0) = 0 and

d
dτ

(q⊺w(τ)) = −q⊺∇ℓ1(w(τ)) = 0, (D.18)

where the last equality follows from the fact that ∇ℓ1(w(τ)) ∈ span(X) (Theorem D.1). The
claim follows.

115

Theorem 5.1. Assume the student is a directly parameterised linear classifier (L = 1)
initialised such that w(0) = 0. Then, the student’s weight vector fulfills almost surely

w(t)→ ŵ, (5.5)

for t→∞, where

ŵ =
{︄

w∗, n ≥ d,
X(X⊺X)−1X⊺w∗, n < d.

(5.6)

Proof. Recall the time-derivative of ℓ,

ℓ′(τ) = −
⃦⃦⃦
∇ℓ1(w(τ))

⃦⃦⃦2
. (D.19)

The data matrix X is almost surely (wrt. X ∼ P ⊗n
x) full-rank, we can therefore apply

Corollary D.1 to W = {w | ℓ1(w) ≤ ℓ1(0)} and w(τ) to lower-bound the gradient norm on
the right-hand side of (D.19). We obtain ℓ′(τ) ≤ −cℓ(τ) for some c > 0 and all τ ∈ [0,∞),
or equivalently,

(log ℓ(τ))′ ≤ −c. (D.20)

Integrating over [0, t] yields ℓ(t) ≤ ℓ(0) · e−ct, which proves global convergence in the
objective: ℓ(t)→ 0 as t→∞.

Now invoke Theorem D.3 with W as above, v = w(t) and w = ŵ (we know that both
w(τ), ŵ ∈W ∩ span(X), partly by Lemma D.1):

ℓ(t) ≥ µ

2∥w(t)− ŵ∥2. (D.21)

Since ℓ(t)→ 0 as t→∞, the theorem follows.

D.3 Proof of Theorem 5.2

Theorem 5.2. Let ŵ be defined as in eq. (5.6). Assume the student is a deep linear network,
initialised such that for some ϵ > 0,

∥w(0)∥ < min
{︃
∥ŵ∥, ϵL

(︂
ϵ2∥ŵ∥− 2

L + ∥ŵ∥2− 2
L

)︂− L
2
}︃

, (5.11)

ℓ1(w(0)) < ℓ1(0), (5.12)
Wl+1(0)⊺Wl+1(0) = Wl(0)Wl(0)⊺ (5.13)

for l ∈ [L− 1]. Then, for n ≥ d, the student’s weight vector fulfills almost surely

w(t)→ ŵ, (5.14)

and for n < d,
∥w(t)− ŵ∥ ≤ ϵ, (5.15)

for all t large enough.

For the proof, we will need a result by Arora et al. [2018], which characterises the induced
flow on w(τ) when running gradient descent on the component matrices {Wl}.

116

Lemma D.2 ([Arora et al., 2018, Claim 2]). If the balancedness condition (5.13) holds, then

∂w(τ)
∂τ

= −∥w(τ)∥
2(L−1)

L

(︂
∇ℓ1(w(τ)) + (L− 1) ·Pw(τ)∇ℓ1(w(τ))

)︂
. (D.22)

Proof of Theorem 5.2. Similarly to the case L = 1, we start by looking at the time-derivative
of ℓ,

ℓ′(τ) = ∇ℓ1(w(τ))⊺
(︄

∂w(τ)
∂τ

)︄

= − ∥w(τ)∥
2(L−1)

L

(︃⃦⃦⃦
∇ℓ1(w(τ))

⃦⃦⃦2
+ (L− 1) ·

⃦⃦⃦
Pw(τ)∇ℓ1(w(τ))

⃦⃦⃦2
)︃

≤ − ∥w(τ)∥
2(L−1)

L ·
⃦⃦⃦
∇ℓ1(w(τ))

⃦⃦⃦2
.

(D.23)

It is non-positive, so w(τ) stays within the ℓ(0)-sublevel set throughout optimisation,

w(τ) ∈W =
{︂
w | ℓ1(w) ≤ ℓ(0)

}︂
. (D.24)

Also, W is convex and by Assumption (5.12) it does not contain 0. We can therefore take
δ > 0 to be the distance between W and 0, and it follows that ∥w(τ)∥ ≥ δ for τ ∈ [0,∞).
Now, noting that X is almost surely full-rank, apply Corollary D.1 to W and w(τ) to upper-
bound the right-hand side of (D.23),

ℓ′(τ) ≤ −cδ
2(L−1)

L ℓ(τ). (D.25)

Letting c̃ = cδ
2(L−1)

L , we get (log ℓ(τ))′ ≤ −c̃ and consequently ℓ(t) ≤ ℓ(0) ·e−c̃t. This proves
convergence in the objective, ℓ(t)→ 0 as t→∞.

To prove convergence in parameters, we decompose the ‘error’ w(τ)− ŵ into orthogonal
components and bound each of them separately,

∥w(τ)− ŵ∥2 = ∥PX(w(τ)− ŵ)∥2 + ∥PQ(w(τ)− ŵ)∥2, (D.26)

where the columns of Q ∈ Rd×(d−n) orthogonally complement those of X. If n ≥ d, we
simply bound the first term and disregard the second one.

To bound the first term, invoke Theorem D.3 with W, v = PXw(τ) and w = PXŵ. One can
check that ℓ1(PXu) = ℓ1(u) for all u ∈ Rd, so PXw(τ) ∈W and our use of the theorem is
valid. We obtain

ℓ(τ) ≥ µ

2∥PX(w(τ)− ŵ)∥2. (D.27)

Since ℓ(τ)→ 0, it follows that

∥PX(w(τ)− ŵ)∥2 → 0 (D.28)

as τ →∞.

For the second term, notice that ŵ ∈ span(X), so PQŵ vanishes and we are left with
∥PQw(τ)∥2. Denote this quantity q(τ). Its time derivative is

q′(τ) = 2(PQw(τ))⊺
(︄

∂w(τ)
∂τ

)︄

= − 2∥w(τ)∥
2(L−1)

L

(︄
w(τ)⊺PQ∇ℓ1(w(τ)) + (L− 1)

∥w(τ)∥2 ·w(τ)⊺PQw(τ) ·w(τ)⊺∇ℓ1(w(τ))
)︄

= − 2q(τ)(L− 1)∥w(τ)∥−2/Lw(τ)⊺∇ℓ1(w(τ)),
(D.29)

117

where we have used the fact that∇ℓ1(w(τ)) ∈ span(X) (Theorem D.1) and Q is orthogonal
to X. Rearranging, we obtain

d
dτ

(︄
log q(τ)
2(L− 1)

)︄
= −∥w(τ)∥−2/L ·w(τ)⊺∇ℓ1(w(τ)). (D.30)

It turns out that the right-hand side expression is integrable in yet another way, namely

d
dτ

(︃ 1
2L

log ∥w(τ)∥2
)︃

= −∥w(τ)∥−2/L ·w(τ)⊺∇ℓ1(w(τ)). (D.31)

Equating the two and integrating over [0, t] yields

log q(t)
q(0) = L− 1

L
· log ∥w(t)∥2

∥w(0)∥2 , (D.32)

which implies
q(t)
∥w(t)∥2 ≤

(︄
∥w(0)∥
∥w(t)∥

)︄2/L

, (D.33)

because q(0) ≤ ∥w(0)∥2.

We now bound the norm of w(t). Starting from an orthogonal decomposition similar to
(D.26) and applying (D.28) with (D.33), we get

∥w(t)∥2 =∥PXw(t)∥2 + ∥PQw(t)∥2

lim sup
t→∞

∥w(t)∥2 ≤∥ŵ∥2 + ∥w(0)∥
2
L lim sup

t→∞
∥w(t)∥2− 2

L .
(D.34)

Denote ν := lim supt→∞ ∥w(t)∥. By the same orthogonal decomposition, we also know
that ν2 ≥ lim supt→∞ ∥PXw(t)∥2 = ∥ŵ∥2 > 0, so we can divide both sides above by ν2,

1 ≤ ∥ŵ∥
2

ν2 + ∥w(0)∥2/L

ν2/L
=: f(ν). (D.35)

On the right-hand side, we now have a decreasing function of ν that goes to zero as ν →∞.
However, evaluated at our specific ν, it is lower-bounded by 1, implying an implicit upper
bound for ν.

How do we find this bound? Suppose we find some constant K such that f(K) ≤ 1. Then,
because f is decreasing, it must be the case that ν ≤ K. One such candidate for K is

K = ∥ŵ∥ ·
⎛⎝1− ∥w(0)∥2/L

∥ŵ∥2/L

⎞⎠
−L

2(L−1)

. (D.36)

(Here we have used condition (5.11): ∥w(0)∥ < ∥ŵ∥.) To check that indeed f(K) ≤ 1, start
from the inequality

(∥ŵ∥/K)
2(L−1)

L + ∥w(0)∥2/L

∥ŵ∥2/L
= 1 ≤

⎛⎝1− ∥w(0)∥2/L

∥ŵ∥2/L

⎞⎠
−1

L−1

= (∥ŵ∥/K)− 2
L . (D.37)

Taking the leftmost and rightmost expression and multiplying by (∥ŵ∥/K)2/L yields

f(K) = ∥ŵ∥
2

K2 + ∥w(0)∥2/L

K2/L
≤ 1. (D.38)

118

Hence,

lim sup
t→∞

∥w(t)∥ ≤ ∥ŵ∥ ·
⎛⎝1− ∥w(0)∥2/L

∥ŵ∥2/L

⎞⎠
−L

2(L−1)

. (D.39)

Finally, let us turn back to our original goal of bounding ∥w(τ)− ŵ∥2. With (D.26), (D.28),
(D.33) and (D.39), we now know that

lim sup
t→∞

∥w(τ)− ŵ∥2 ≤ ∥w(0)∥
2
L∥ŵ∥

2(L−1)
L

⎛⎝1− ∥w(0)∥
2
L

∥ŵ∥
2
L

⎞⎠−1

(D.40)

= ∥ŵ∥2+2/L

∥ŵ∥2/L − ∥w(0)∥2/L
− ∥ŵ∥2. (D.41)

Hence, if we initialise close enough to zero, as specified by condition (5.11), we can ensure
that

lim sup
t→∞

∥w(τ)− ŵ∥2 < ϵ2. (D.42)

This concludes the proof.

D.4 Theorem 5.3 for approximate distillation

We extend Theorem 5.3 to the setting where the student learns ŵ = X(X⊺X)−1X⊺w∗ only
ϵ-approximately, as is the case for deep linear networks initialised as in Theorem 5.2. When
n ≥ d, the teacher’s weight vector is recovered exactly and the transfer risk is zero, even
when the student is deep. The following theorem therefore only covers the case n < d.

Theorem D.4 (Risk bound for approximate distillation). Let n < d. For any training set
X ∈ Rd×n, let ĥX(x) = 1{ŵ⊺

ϵ x ≥ 0} be a linear classifier whose weight vector is ϵ-close
to the distillation solution ŵ, i.e. ∥ŵϵ − ŵ∥ ≤ ϵ, where ϵ is a positive constant such that
ϵ ≤ 1

2∥ŵ∥. Define δ :=
√︂

2πϵ
∥ŵ∥ . Then, it holds for any β ∈ [0, π/2− δ] that

E
X∼P ⊗n

x

[︂
R
(︂
ĥX

⃓⃓⃓
Px, w∗

)︂]︂
≤ p(β) + p(π/2− δ − β)n. (D.43)

The result is very similar to Theorem 5.3 in the main text, the only difference is the constant
δ which compensates for the imprecision in learning ŵ by pushing the bound up (recall that
p is decreasing). However, as ϵ goes to zero, so does δ and we recover the original bound.

For the proof, we start with a tool for controlling the angle between ŵ and ŵϵ. Recall that
the angle is defined as

α(w, v) = cos−1
(︄

w⊺v
∥w∥ · ∥v∥

)︄
(D.44)

for w, v ∈ Rd \ {0}.

Lemma D.3. Let w, v ∈ Rd be such that ∥w− v∥ ≤ ϵ, where ϵ ≤ 1
2∥w∥. Then α(w, v) ≤√︂

2πϵ
∥w∥ .

119

Proof of Lemma D.3. The first step is to lower-bound the inner product w⊺v. To that end,
we expand and rearrange ∥w− v∥2 ≤ ϵ2 to obtain

2w⊺v ≥ ∥w∥2 + ∥v∥2 − ϵ2. (D.45)

Now use the triangle relation ∥v∥ ≥ ∥w∥ − ϵ squared to lower-bound the right-hand side of
(D.45) and get

2w⊺v ≥ 2∥w∥2 − 2ϵ∥w∥, (D.46)

which implies
w⊺v

∥w∥ · ∥v∥
≥ ∥w∥ − ϵ

∥v∥
≥ ∥w∥ − ϵ

∥w∥+ ϵ
≥ 1− 2ϵ

∥w∥
. (D.47)

Thus,

1− 2ϵ

∥w∥
≤ w⊺v
∥w∥ · ∥v∥

= cos(α(w, v)). (D.48)

The left-hand side is by assumption non-negative, so we have α(w, v) ∈ [−π/2, π/2]. On
this domain,

cos x ≤ 1− x2

π
, (D.49)

which lets us deduce

1− 2ϵ

∥w∥
≤ 1− α(w, v)2

π
. (D.50)

Rearranging yields the result.

Proof of Theorem D.4. We decompose the expected risk as follows:

E
X∼P ⊗n

x

[︂
R
(︂
ĥX

⃓⃓⃓
Px, w∗

)︂]︂
= P

X∼P ⊗n
x

x∼Px

[w⊺
∗x · ŵ⊺

ϵ x < 0]

=
∫︂

x:ᾱ(w∗,x)≥β
P

X∼P ⊗n
x

[w⊺
∗x · ŵ⊺

ϵ x < 0|x] dPx

+
∫︂

x:ᾱ(w∗,x)<β, w⊺
∗x>0

P
X∼P ⊗n

x

[ŵ⊺
ϵ x < 0|x] dPx

+
∫︂

x:ᾱ(w∗,x)<β, w⊺
∗x<0

P
X∼P ⊗n

x

[ŵ⊺
ϵ x > 0|x] dPx.

(D.51)

Let us fix some x for which ᾱ(w∗, x) < β and w⊺
∗x > 0; for this x we have α(w∗, x) =

ᾱ(w∗, x). Consider the situation where ᾱ(w∗, xi) < π/2− β − δ for some i. Then by the
triangle inequality, Lemma D.3 and Lemma 5.1,

α(ŵϵ, x) ≤ α(ŵϵ, ŵ) + α(w∗, ŵ) + α(w∗, x) (D.52)
≤ δ + ᾱ(w∗, xi) + ᾱ(w∗, x) (D.53)
< π/2, (D.54)

which implies ŵ⊺
ϵ x > 0, i.e. a correct prediction (same as the teacher’s). Conversely, an

error can occur only if ᾱ(w∗, xi) ≥ π/2− δ − β for all i. Because xi are independent, we
have

P
X∼P ⊗n

x

[ŵ⊺
ϵ x < 0| ᾱ(w∗, x) < β, w⊺

∗x > 0] ≤ P
X∼P ⊗n

x

[∀i : ᾱ(w∗, xi) ≥ π/2− δ − β]

= p(π/2− δ − β)n.
(D.55)

120

By a symmetric argument, one can show that

P
X∼P ⊗n

x

[ŵ⊺
ϵ x > 0| ᾱ(w∗, x) < β, w⊺

∗x < 0] ≤ p(π/2− δ − β)n. (D.56)

Combining (D.51), (D.55) and (D.56) yields the result.

121

APPENDIX E
Additional experiments for Chapter 6

We provide additional results/observations regarding the choice of teachers (Section E.1),
the semi-supervised setting with very few labels (Section E.2), and inference times for
different modes and exits (Section E.3).

E.1 Choice of teachers

We performed exploratory experiments with a different choice of teacher sets T. In particular,
we let each exit learn from all later exits, T(m) = {m + 1, . . . , M} for m < M and T(M) = ∅.
The intuition behind this choice is that learning from an ensemble of good exits might be
better than learning from a single good exit. However, as the results show, this turns out not
to be the case.

Figure E.1 shows the accuracy curve of a model trained by distillation from all later exits
(yellow), as well as curves for distillation from only the last exit (green) and exit-wise
training (blue) for comparison. We observe that the two teacher-set choices yield models
of very similar accuracy, so there seems to be little benefit in adopting more complicated
teacher-student setups.

E.2 Semi-supervised distillation with few labels

In the main text, we show that using additional unlabelled data with distillation-based training
may improve accuracy. However, the gains are relatively modest, and only significant for the
late exits in the case of ImageNet(100) and the early exits in the case of CIFAR(150) and
CIFAR(250). One could speculate why the gains are not larger, and a potential explanation
would be that in the considered settings, the amount of labelled data is too large. To test
this hypothesis, we ran the experiment from Section 6.3.1 on CIFAR(80), i.e. using only 30
labelled images per class for training and 50 for validation. However, the gains remain rather
small (see Figure E.2), at most 1%, similar to the case of CIFAR(150) and CIFAR(250).

123

1 2 3 4 5 6 7 8 9 10 11
Exit

0.800

0.825

0.850

0.875

T
op

-5
 a

cc
u
ra

cy

Budget-mode

1 2 3 4 5 6 7 8 9 10 11
Ensemble

0.80

0.85

0.90

Anytime-mode

Exit-wise loss

Distl. from last

Distl. from later

Figure E.1: Top-5 accuracy of a model trained by distillation from all later exits (yellow) vs.
trained by distillation from the last exit (green) vs. trained by the exit-wise loss (blue), on
CIFAR(250). Results shown for different computational budgets in both the budget-mode
(left) and the anytime-mode (right).

1 2 3 4 5 6 7 8 9 10 11
Exit

0.52

0.54

0.56

0.58

T
op

-5
 a

cc
u
ra

cy

CIFAR(80)

Exit-wise loss

Distillation

Distl. semi-sup.

Figure E.2: Top-5 accuracy as a function of computational budget (denominated in available
exits). MSDNet trained by the exit-wise loss (blue) vs. trained by distillation (green) vs.
trained by semi-supervised distillation (red) on CIFAR(80).

124

CPU timings [s] GPU timings [s]

Budget-mode Anytime-mode Budget-mode Anytime-mode

Exit / Ensemble 1 0.024± 0.022 0.026± 0.029 0.007± 0.000 0.007± 0.000
Exit / Ensemble 2 0.034± 0.029 0.043± 0.037 0.011± 0.000 0.011± 0.000
Exit / Ensemble 3 0.043± 0.030 0.062± 0.040 0.015± 0.000 0.015± 0.000
Exit / Ensemble 4 0.051± 0.035 0.081± 0.049 0.018± 0.000 0.019± 0.000
Exit / Ensemble 5 0.062± 0.041 0.099± 0.055 0.022± 0.001 0.023± 0.001
Exit / Ensemble 6 0.067± 0.034 0.121± 0.064 0.025± 0.001 0.027± 0.001
Exit / Ensemble 7 0.071± 0.046 0.139± 0.066 0.029± 0.001 0.032± 0.001
Exit / Ensemble 8 0.085± 0.035 0.164± 0.078 0.032± 0.001 0.035± 0.001
Exit / Ensemble 9 0.093± 0.035 0.169± 0.085 0.036± 0.001 0.039± 0.001
Exit / Ensemble 10 0.103± 0.040 0.196± 0.078 0.039± 0.001 0.043± 0.001
Exit / Ensemble 11 0.105± 0.038 0.219± 0.085 0.041± 0.001 0.045± 0.001

Table E.1: Inference times for the CIFAR MSDNet operating either in the budget-mode or
the anytime-mode, evaluated either on CPU or GPU. We report the mean ± stdev over
1000 runs.

CPU timings [s] GPU timings [s]

Budget-mode Anytime-mode Budget-mode Anytime-mode

Exit / Ensemble 1 0.159± 0.048 0.229± 0.079 0.027± 0.001 0.027± 0.002
Exit / Ensemble 2 0.339± 0.099 0.373± 0.094 0.038± 0.001 0.038± 0.001
Exit / Ensemble 3 0.471± 0.131 0.519± 0.118 0.048± 0.001 0.048± 0.002
Exit / Ensemble 4 0.559± 0.138 0.647± 0.117 0.055± 0.001 0.056± 0.001
Exit / Ensemble 5 0.665± 0.125 0.703± 0.145 0.057± 0.001 0.059± 0.001

Table E.2: Inference times for the ImageNet MSDNet operating either in the budget-mode
or the anytime-mode, evaluated either on CPU or GPU. We report the mean ± stdev over
1000 runs.

E.3 Example inference times

To give the reader a sense of the efficiency gains achievable by anytime inference, we
provide some example inference times for CIFAR MSDNet (Table E.1) and ImageNet
MSDNet (Table E.2), for the two inference modes (budget-mode and anytime-mode) and
different exits. We made no effort to optimise these timings. They are obtained by simply
running our code, without any changes, and measuring the time elapsed. We expect the
results to generalise qualitatively to different hardware and implementations, though the
exact numbers are likely to vary.

125

	Abstract
	Acknowledgements
	About the Author
	List of Publications
	Author contributions
	Table of Contents
	List of Abbreviations
	Introduction
	Supervised learning
	Deep learning

	Functional vs. parametric equivalence of ReLU networks
	Related work
	General and transparent networks
	Fold-sets
	Piece-wise linear surfaces
	Main result
	Discussion & future work

	The inductive bias of ReLU networks on orthogonally separable data
	Setting and assumptions
	Main result
	Proof sketch
	Experiments
	Related work
	Conclusion

	The Mutual Autoencoder: Controlling information in latent code representations
	Background: Variational autoencoders
	VAE objective is insufficient for representation learning
	Controlling information in latent code representations
	The Mutual Autoencoder (MAE)
	Discrete data requires flexible encoder distributions
	Experiments
	Related Work
	Conclusion

	Towards understanding knowledge distillation
	Related work
	Background: Linear distillation
	Generalisation properties of linear distillation
	Discussion
	Conclusion

	Distillation-based training for multi-exit architectures
	Related work
	Distillation-based training for multi-exit architectures
	Experiments
	Conclusion

	Conclusion
	Future work

	Bibliography
	Proofs for ch:param-redundancy
	Piece-wise linear surfaces
	ReLU networks and folds
	General and transparent ReLU networks
	Main result

	Proofs for ch:ind-bias
	Basic lemmas
	Proofs of main results
	Relationship to nonlinear max-margin

	Proofs and derivations for ch:mae
	The infomax inequality
	Derivation and properties of (4.12)
	Gradient of the MAE objective

	Proofs for ch:tukd
	Properties of the cross-entropy loss
	Proof of Theorem 5.1
	Proof of Theorem 5.2
	Theorem 5.3 for approximate distillation

	Additional experiments for ch:multiexit
	Choice of teachers
	Semi-supervised distillation with few labels
	Example inference times

