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Abstract

In this thesis we study persistence of multi-covers of Euclidean balls and the geometric

structures underlying their computation, in particular Delaunay mosaics and Voronoi

tessellations.

The k-fold cover for some discrete input point set consists of the space where at least k

balls of radius r around the input points overlap. Persistence is a notion that captures, in

some sense, the topology of the shape underlying the input. While persistence is usually

computed for the union of balls, the k-fold cover is of interest as it captures local density,

and thus might approximate the shape of the input better if the input data is noisy. To

compute persistence of these k-fold covers, we need a discretization that is provided by

higher-order Delaunay mosaics.

We present and implement a simple and efficient algorithm for the computation of higher-

order Delaunay mosaics, and use it to give experimental results for their combinatorial

properties. The algorithm makes use of a new geometric structure, the rhomboid tiling.

It contains the higher-order Delaunay mosaics as slices, and by introducing a filtration

function on the tiling, we also obtain higher-order α-shapes as slices. These allow us to

compute persistence of the multi-covers for varying radius r; the computation for varying

k is less straight-foward and involves the rhomboid tiling directly.

We apply our algorithms to experimental sphere packings to shed light on their

structural properties. Finally, inspired by periodic structures in packings and materials,

we propose and implement an algorithm for periodic Delaunay triangulations to be

integrated into the Computational Geometry Algorithms Library (CGAL), and discuss

the implications on persistence for periodic data sets.
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1 Introduction

Persistent homology [35; 74; 33], or persistence for short, is a notion used to characterize and

quantify topological features in data. It captures changes in topology (or more specifically,

homology) in a space that changes in accordance with some scale parameter. One specific

setting is when the input data set is a discrete set of points. Given an input point set P ⊂ Rd,

the space in question is the union of balls of radius r around the points of P . Its topology

changes as the parameter r increases from 0 to infinity, and these changes are captured by

a persistence diagram. The persistence diagram is a 2-dimensional visual descriptor of the

data set quantifying the life-span, called persistence, of its topological features, including the

information when they emerge and disappear. For example, if the input P is thought of as

a random sample of some underlying shape, then persistence captures topological features

of the shape, see Figure 1.1. However persistence of the union of balls also has applications

to other kinds of discrete point data sets, such as atom configurations of materials [50;

59] or sphere packings [76].

One crucial property of persistence diagrams is stability [22]: Small perturbations in

the input imply small changes in the persistence diagram. However, persistence of the

union of balls is not robust to noise, see Figure 1.3. The introduction of a single new data

point can cause the persistence diagram to change significantly.

In this thesis we will extend the notion of persistence of the union of balls to take

into account local density fluctuations. These fluctuations can be large — and the task

may be the identification of regions with a prescribed density profile — or they can

be small — and the goal may be to pick up subtle variations. For example, we may

want to quantify local defects in lattice configurations or describe long-range differences

between similar configurations, such as the face-centered cubic (FCC) lattice and the
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(a) r = 4. Many small components. (b) r = 9. A moon-shaped loop emerges.

(c) r = 20. The loop is about to close up. (d) r = 25. Star-shaped components merge.

(e) r = 46. A short-lived loop appears.

moon

stars

noise

(f) Persistence diagram.

Figure 1.1: The union of balls filtration and the corresponding persistence diagram. For
example, the moon-shaped topological loop appears shortly before (b) at radius r = 8 and
disappears shortly after (c) at r = 22, giving a point at (8, 22) in the persistence diagram.
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hexagonal close-packed (HCP) configuration in R3. While both give densest sphere

packings in R3, physical particle systems prefer to settle in the FCC configuration [85;

41; 72]. The reason for this preference is not well understood. Our quantification of the

long-range effects of density differences discriminates between the two configurations and

in this way sheds light on this phenomenon.

To achieve this, we use a generalization of the union of balls which is the k-fold cover.

It consist of those points in the underlying space Rd that are contained in at least k balls

of radius r around the points of P , see Figure 1.2.

Figure 1.2: Balls (pale pink) around six points in the plane; the 2-fold cover (dark pink) is
where at least two balls overlap.

As we can see in Figure 1.3, the k-fold cover for appropriately chosen k can capture

the underlying shape of a given point sample better than the union of balls if the input

point set is noisy. Analogous to persistence of the union of balls, persistence of the k-fold

cover, or multi-cover persistence, captures the changes in topology of the k-fold cover. The

most natural change to the k-fold cover is incurred when varying the radius r of the balls,

which we call persistence in scale. However, perhaps slightly less intuitively, one can also

track the changes of the k-fold cover as the radius r stays fixed and instead the parameter

k is changed, which we call persistence in depth. We will solve the computation of both

persistence in scale and in depth, and furthermore discuss persistence in both parameters

simultaneously.

Computation The well known Voronoi tessellations [88] decompose the union of balls

into convex pieces. This gives rise to subcomplexes of their dual Delaunay triangulations,
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Figure 1.3: The union of balls (top) and 5-fold cover (bottom) of radius r = 10 for a
noisy point set (left). On the right, the corresponding persistence diagrams. While the
features from the persistence diagram in Figure 1.1f do not clearly stand out from the
noise anymore in the top diagram, they are retained in the bottom diagram.

called α-shapes [34]. They provide a discretization of the union of balls while maintaining

its topology. Similarly, in order to compute the topology of the k-fold cover, we need

a discrete representation of it. Order-k Voronoi tessellations are a generalization of the

classic Voronoi tessellations and were introduced by [77] as a data structure for fast k

closest point queries. Similarly they decompose the k-fold covers and give rise to order-k

α-shapes [55], which are subcomplexes of their dual order-k Delaunay mosaics [7] and

capture the topology of the k-fold covers.

While algorithms for computing order-k Voronoi tesselations and their dual Delaunay

mosaics have been proposed a long time ago, to our knowledge no efficient implementations

have existed until now. We develop and implement a simple but efficient algorithm for

computing order-k Delaunay mosaics, and have made it open-source [69; 70]. The algorithm
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is very combinatorial in flavor. The only geometric operations are computing weighted

Delaunay triangulations and means of points, which is made robust through the use of

the Computational Geometry Algorithms Library, CGAL [81], and its exact arithmetics.

Apart from performing k closest point searches and computing order-k α-shapes and

multi-cover persistence (see below), another potential application of our algorithm is the

computation of the distance-to-measure introduced in [20], which can be approximated

using order-k Voronoi tessellations [44].

We use this opportunity to experimentally explore the complexity of order-k Delaunay

mosaics. While tight worst-case bounds are known for the size of the first k Delaunay

mosaics taken together [21], the size of individual order-k Delaunay mosaics is less

understood. We observe that, like for Delaunay triangulation, for many practical point

sets these worst-case bounds are not achieved, and relate the size of the order-k Delaunay

mosaics to known input-specific bounds for order-1 Delaunay triangulations. We also

investigate other combinatorial properties and non-asymptotic behavior of the complexity

of the mosaics when k is relatively large compared to the input size.

Our algorithm uses a new geometric structure, which we call the rhomboid tiling, to

obtain the order-k Delaunay mosaics. To compute persistence in scale, we introduce a radius

function on the order-k Delaunay mosaics to give us the aforementioned subcomplexes as

sublevel sets of this function. We give a recipe for computing this function, and with this

persistence can be computed using standard techniques.

To compute persistence in depth, several innovative adaptations of the standard

approach to persistence are needed. The main challenge is the combinatorial difference of

the Delaunay mosaics from one value of k to the next. Here we introduce a radius function

on the rhomboid tiling, and use the rhomboid tiling to get a zig-zag filtration that links

consecutive order-k Delaunay mosaics and whose persistence diagram is the same as that

of the filtration of multi-covers in depth.

Recent results [24] use a nerve construction to get a filtration in two parameters, k

and the radius r, representing the multi-covers to get their persistent homology in both

parameters simultaneously. In light of these results, we establish a link between the nerve

construction and the rhomboid tiling, suggesting that the rhomboid tiling does in fact

admit a similar 2-parameter filtration, without the need for a zig-zag filtration to compute

persistence in depth. Our work is also related to the study of multi-covers based on Čech
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complexes in [78]. While the relation between the different Čech complexes is simpler than

that between the Delaunay mosaics, their explosive growth for increasing radius leads to

algorithms with prohibitively long running time.

Finally, we investigate the radius function on the rhomboid tiling and the order-k

Delaunay mosaics from a perspective of discrete Morse theory. We show that the level sets

of the rhomboid tiling are intervals, and we use this insight to optimize the computation

of the radius function on the rhomboid tiling, and by proxy also the order-k Delaunay

mosaics. While the structure of the level sets on the order-k Delaunay mosaics is more

complicated, we show that we can classify them into critical and non-critical steps with

predictable impact on the topology.

Applications and extensions We apply these new tools and implementations to

analyze sphere packings. Our main aim is to get a better understanding of why the

FCC structure seems to occur preferredly over HCP in experimental sphere packings. We

find that the FCC and the HCP configurations have the same persistence diagram for

k = 1, 2, 3 but different persistence diagrams already for k = 4. With this insight we look

at the persistence diagrams of the 4-fold cover in scale for sphere packings from physical

experiments and molecular simulations. We define a measure to quantify the occurrence of

FCC and HCP patterns, and apply it to packings of different densities. Unlike commonly

used measures in the field, it has the aforementioned stability property inherited from

persistence diagrams, i.e. small perturbations in the input can only cause small changes

in the measure. Investigating time series data of FCC and HCP packings under external

forces, we also observe from the persistence diagrams that FCC seems to be more robust

to such forces.

Motivated by the applications of persistent homology to periodic structures, such as

the regular sphere packings we just discussed or cystallographic materials like zeolites,

we develop and implement an algorithm for Delaunay triangulations of periodic point

sets to be integrated into the CGAL library. This extends the functionality of the library

that is currently limited to periodic point sets with periodicity of the translational group

generated by the standard basis vectors, whose fundamental domain is a cube. This

algorithm combines ideas from both the existing implementation and classic results on

periodic Delaunay triangulations. We discuss potential further extensions to order-k
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Delaunay mosaics and how such periodic triangulations and mosaics lend themselves to

the computation of persistent homology.

Outline We will first cover some background on order-k Delaunay mosaics and Voronoi

tessellations (Chapter 2). In Chapter 3 we will then introduce the rhomboid tiling, and use

it to shed some light on the combinatorics of order-k Delaunay mosaics. With this insight

we present our algorithm to compute order-k Delaunay mosaics and the experimental

investigation of their properties. Chapter 4 first covers background on the topological

notions of homotopy and homology as well as persistence. We then present algorithms on

how to compute the radius functions on the rhomboid tiling and the order-k Delaunay

mosaics, followed by algorithms for persistence of multi-covers in scale and in depth.

We then investigate these radius functions for their properties related to discrete Morse

theory (Chapter 5). We apply our algorithm for persistence of multi-covers to analyze

experimental sphere packings (Chapter 6), and close with Chapter 7 covering lattices,

periodic point sets and our algorithm for computing periodic Delaunay triangulations.
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2 Background

Order-k Voronoi tessellations are a generalization of the well known Voronoi tessella-

tions [88]. Similar to the ordinary (order-1) Voronoi tessellation, the order-k Voronoi

tessellation has a natural dual [7], the order-k Delaunay mosaic. Both will play a central

role in this thesis, and we formally introduce them in this chapter, alongside related

geometric structures and results. For a more in-depth exposition we refer to [31]. Because

different flavors of cell complexes exist in the literature, we will also formally define the

notions of cell complexes as we use them. Topological concepts will be introduced in later

chapters when the need arises.

2.1 Cell complexes

A hyperplane h is a (d− 1)-dimensional affine subspace of Rd. It divides Rd into two closed

halves, which we refer to as half-spaces. A polyhedron is an intersection of a finite number

of hyperplanes and half-spaces, and is thus by definition convex.

A polyhedral complex is a collection K of a finite number of distinct polyhedra, which

we refer to as cells, that fulfills the following properties:

• the intersection of any two cells of K is another cell of K,

• each point in ⋃σ∈K σ is in the (relative) interior of a unique cell of K.

For a cell σ we denote its dimension as dim σ. We call its e-dimensional cells e-cells, and

we call 0-cells vertices. For a cell σ ∈ K, we call the cells τ ⊆ σ its faces and the cells

τ ⊇ σ its cofaces. We call them proper faces and cofaces if σ 6= τ , and we call them facets
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and cofacets if |dim σ − dim τ | = 1. A cell is a maximal cell if it does not have any proper

cofaces.

A polytope σ is a convex hull of some finite set of points P that is in convex position.

A polytope is thus convex, and we call P its vertices. We also say that σ is spanned by P .

Any polytope is a polyhedron, and we call a polyhedral complex whose cells are polytopes

a regular complex . We call a polytope σ whose number of vertices is dim σ+1 a simplex . A

geometric simplicial complex K is a regular complex whose cells are simplices and further

for each σ = convQ ∈ K also convQ′ for Q′ ⊆ Q is in K.

Two polyhedral complexes K and K∗ in Rd are dual if there is a bijection between

their cells such that for two dual cells σ and σ∗, dim σ + dim σ∗ = d, and τ is a facet (or

cofacet) of σ if and only if its dual cell τ ∗ is a cofacet (or facet) of σ∗, respectively.

2.2 Voronoi tessellations

Given a finite set of points P ⊆ Rd, the Voronoi domain of Q ⊆ P is dom(Q) := {x ∈

Rd : ‖x− q‖ ≤ ‖x− p‖, ∀q ∈ Q, ∀p ∈ P \Q}. Its order is k = #Q, where #Q denotes the

cardinality of Q. It is the subset of Rd for which Q are the k closest points of P . For each

positive integer k, the collection of Voronoi domains of order k, together with their non-

empty intersections
{
σQ := ⋂

Q∈Q dom(Q), σQ 6= ∅ where Q ⊆ {Q ⊆ P : #Q = k}
}

form

a polyhedral complex which we refer to as the order-k Voronoi tessellation, denoted as

Vork(P ), see Figure 2.1. The more commonly known Voronoi tessellations from [88] are

the special case for k = 1.

The perpendicular bisector bp,q between two points p and q is the hyperplane that

separates Rd into the half-space b−p,q of points closer to p, i.e. b−p,q := {x ∈ Rd : ‖x− p‖ ≤

‖x− q‖}, and the half-space b+
p,q of points closer to q. This gives us a different point

of view on dom(Q) as the intersection of all half-spaces b−q,p with q ∈ Q and p ∈ P \ Q.

Similarly, the lower-dimensional cells of Vork(P ) are intersections of such half-spaces and

bisectors, showing that Vork(P ) is indeed a polyhedral complex.

For completeness, we also introduce degree-k Voronoi tessellations [37]. For a point

p ∈ P , the k-th Brillouin zone is the set of points x ∈ Rd for which p is a k-th closest point.

To make this precise, a point p is a k-th closest point from x if there are at most k − 1

points q ∈ P with ‖x− q‖ < ‖x− p‖, but at least k points q ∈ P with ‖x− q‖ ≤ ‖x− p‖.
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Figure 2.1: The order-2 (solid lines) and order-1 (dotted lines) Voronoi tessellations of the
point set P . The degree-2 Voronoi tessellation, Vor1.5(P ), is the superposition of Vor1(P )
and Vor2(P ). In pink, the second Brillouin zone of the red point.

For k = 1 this coincides with the Voronoi domain of p, however for k ≥ 2 the k-th

Brillouin zones are not (convex) polyhedra themselves. Rather, they are composed of

smaller polyhedra each of which corresponds to a unique set of k − 1 points of P that are

strictly closer to the interior of the polyhedron than p. The collection of these polyhedra,

for all points p, form the maximal cells of the degree-k Voronoi tessellation, which we

denote as Vork− 1
2
(P ) for reasons to be seen later. Figure 2.1 illustrates these concepts. It

refines the order-k Voronoi tessellation by decomposing its domains into these maximal

cells. Similarly, the degree-k tessellation refines the order-(k − 1) tessellation, and indeed

Vork− 1
2
(P ) is the superposition of Vork(P ) and Vork−1(P ); see Figure 4.5b.

2.3 Hyperplane arrangements

Let P : Rd → R be the function defined as P(x) = 1
2‖x‖

2. Its graph is a paraboloid

which we also denote as P in a slight abuse of notation. Given a finite set of points

P ⊆ Rd, for each point p ∈ P we write hp : Rd → R for the affine map defined by

hp(x) = 〈x, p〉 − 1
2‖p‖

2 = 1
2(‖x‖2 − ‖x− p‖2). The graph of hp is the hyperplane in Rd+1

that is tangent to P at the point (p,P(p)) ∈ Rd+1, and we similarly denote it as hp. We

use h+
p to denote the half-space of points on or above hp, and h−p for the half-space of

points on or below hp.

The collection of these hyperplanes hp for p ∈ P decomposes Rd+1 into convex cells,
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ha

hb hc

hd
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a c d eb

Figure 2.2: The arrangement Arr(P ) for P = {a, b, c, d, e} ⊂ R1. The topmost chamber
contains the paraboloid P . The chamber below hb and hc (pink) projects to the domain
dom({b, c}) (red).

which we call the hyperplane arrangement of P , denoted Arr(P ); see Figure 2.2. The

cells in the arrangement are intersections of these hyperplanes and half-spaces, and

their interiors partition Rd+1, justifying that we call it a polyhedral complex. More

formally, a cell γ in the arrangement is uniquely described by an ordered three-partition

(Pabove(γ), Pcontains(γ), Pbelow(γ)) with P = Pabove(γ) t Pcontains(γ) t Pbelow(γ), and γ is the

common intersection of the hyperplanes h−p for p ∈ Pabove(γ), the hyperplanes hp for p ∈

Pcontains(γ) and the hyperplanes h+
p for p ∈ Pbelow(γ). If for each point y = (x, z) ∈ Rd×R

we define

Pabove(y) := {p ∈ P : z < hp(x)}, (2.1)

Pcontains(y) := {p ∈ P : z = hp(x)}, (2.2)

Pbelow(y) := {p ∈ P : z > hp(x)}, (2.3)

i.e. the set of points p ∈ P whose hyperplanes hp are above, contain or are below the point y

respectively, then the interior of γ consists of the points y that satisfy Pabove(y) = Pabove(γ),

Pcontains(y) = Pcontains(γ) and Pbelow(y) = Pbelow(γ). Note that not all three-paritions of P

correspond to arrangement cells.

We say a point set P ⊂ Rd is in general position if for 1 ≤ e ≤ d− 1, no e+ 2 points
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of P lie on the same (e − 1)-sphere. If P is in general position, the dimension of any

cell γ is e = d+ 1−#Pcontains(γ). We call (d+ 1)-dimensional cells of Arr(P ) chambers;

they satisfy Pcontains(γ) = ∅. The depth of a chamber γ is #Pabove(γ) or, equivalently, the

number of hyperplanes that are above this chamber.

Let proj : Rd+1 → Rd be the map that projects a point (x, z) ∈ Rd ×R to x. Then the

following relationship between Arr(P ) and Vork(P ) holds [37].

Theorem 2.1 (Projections of chambers [37]). In the arrangement Arr(P ) of a finite

point set P ⊆ Rd, the chamber γ defined by the three-partition (Q, ∅, P \ Q) projects to

proj(γ) = dom(Q), the Voronoi domain of Q.

In particular, the domains of Vork(P ) are the projections of the chambers of Arr(P ) at

depth k.

Figure 2.2 shows an example. To provide some intuition for this result, recall that

the Voronoi domain of some Q ⊆ P is the intersection of half-spaces b−q,p with q ∈ Q and

p ∈ P \Q. Now the projection of the intersection of hq and hp is the bisector bq,p, and the

intersection of h−q and h+
p projects to b−q,p. As the chamber defined by the three-partition

(Q, ∅, P \ Q) is the intersection of h−q for q ∈ Q and h+
p for p ∈ P \ Q, we see that its

projection is dom(Q).

A similar result holds for degree-k Voronoi tessellations: Each domain of the degree-

k Voronoi tessellation is the projection of the intersection of a depth-k and a depth-

(k − 1) chamber. More precisely, the k-th level of Arr(P ) consists of those cells γ whose

ordered three-partition (Pabove(γ), Pcontains(γ), Pbelow(γ)) satisfies #Pabove(γ) ≤ k − 1 and

#Pabove(γ) + #Pcontains(γ) ≥ k. Then the cells of Vork− 1
2
(P ) are the vertical projections

of the cells of the k-th level of Arr(P ).

2.4 Delaunay mosaics

A (d− 1)-sphere is called an empty sphere if it contains no points from P in the interior of

the ball bounded by the sphere (which to simplify language we also refer to as “interior

of the sphere”). Assuming a point set P in general position, the (first-order) Delaunay

triangulation of P is the geometric simplicial complex with vertex set P whose d-simplices

are spanned by those sets of d+ 1 vertices whose circumspheres are empty spheres. It was
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shown in [37] that it is the projection of the boundary of special convex polytope in Rd+1.

This idea was generalized in [8] to yield a generalization of Delaunay triangulations, and

we now outline this generalization.

Let P ⊆ Rd be a finite point set not necessarily in general position. We define the

lift of x ∈ Rd onto the paraboloid P as the point lift(x) = (x,P(x)) ∈ Rd+1. For each

k-tuple Q ⊆ P , we take the sum of their lifts, ∑q∈Q lift(q), and define the order-k Delaunay

mosaic, denoted Delk(P ), as the vertical projection of the lower faces of the convex hull

conv {∑q∈Q lift(q) : Q ⊆ P,#Q = k} of these sums. Instead of sums, it is common to use

the barycenters 1
k

∑
q∈Q lift(q), which yields the same complex scaled by a factor of 1

k
, and

we will use this version in most of our figures. Figure 2.3 shows an example for k = 2.

Independent of the choice of geometric embedding, for each cell σ ∈ Delk(P ) we define the

b

d

f

e

c

df cf

ce

be

da

db

ab

a

af fe

ae

Figure 2.3: Superposition of the order-2 Voronoi tessellation (in black) and the order-2
Delaunay mosaic (in blue) of a set of six points in the plane. Each domain of the tessellation
corresponds to two of these six points, and the corresponding vertex of the mosaic is the
average of these two points.

combinatorial vertex set V (σ) as the collection of those sets Q whose sums (or barycenters)

are geometric vertices of σ. We let V (Delk(P )) denote the combinatorial vertex set of the

whole complex, i.e. the union of V (σ) for all cells σ ∈ Delk(P ). The order-k Delaunay

mosaic is a regular complex.

If P is in general position, the order-1 Delaunay mosaic coincides with the Delaunay

triangulation. To see this, consider a facet σ of the lower convex hull of the lifts of P . Its

vertex set is {lift(q) : q ∈ Q} for some Q ⊆ P,#Q = d+ 1. Its supporting hyperplane h,

i.e. the affine hull of its vertices, intersects the paraboloid P in an ellipsoid. The projection

of this ellipsoid is the circumsphere S of Q. Points on P above h project to points outside
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S while points on P below h project to points inside S. However, as σ is a lower convex

hull facet, none of the lifts of P are below h, and thus S is an empty sphere.

As we will see in Section 3.1, in dimension d ≥ 3, the order-k Delaunay mosaic

for k ≥ 2 is not necessarily simplicial even if the points are in general position. The

following relationship holds between the order-k Delaunay mosaic and the order-k Voronoi

tessellation [8], also see Figure 2.3:

Theorem 2.2 (Duality [8]). Delk(P ) is dual to Vork(P ).

2.5 Weighted notions

The notions of order-k Voronoi tessellation, hyperplane arrangement, order-k Delaunay

mosaics and the results relating them to each other can be generalized to weighted point

sets. Let P be a finite set of points Rd, and wt: P → R a function assigning real weights

to the points.

The power distance of a point x ∈ Rd from a weighted point p ∈ P with weight wt(p)

is distp(x) = ‖x− p‖2 − wt(p). Then for Q ⊆ P , the corresponding weighted Voronoi

domain is the set of points x that satisfy distq(x) ≤ distp(x) for all q ∈ Q and p ∈ P \Q.

For each non-negative integer k, the weighted order-k Voronoi tessellation, is the collection

of Voronoi domains for sets Q that satisfy #Q = k. Setting wt(p) = 0 for all points p ∈ P ,

we get the unweighted situation as a special case. Note that while the perpendicular

bisector between two weighted points might contain both points on the same side, it is still

a hyperplane orthogonal to the straight line connecting the two points. This implies that

the weighted order-k Voronoi tessellation is still a polyhedral complex, but also means

that unlike in the unweighted case, some domains of the order-1 Voronoi tessellation may

be empty.

To define the analog of the hyperplane arrangement for weighted points, let hwt
p : Rd → R

be defined by mapping x ∈ Rd to hwt
p (x) = hp(x) + 1

2wt(p). The graph of hwt
p is parallel to

hp, the hyperplane tangent to P, but it is shifted up by 1
2wt(p). The collection of these

hyperplanes defines a hyperplane arrangement as before, and for these weighted definitions

Theorem 2.1 holds as before. One difference that will be of importance later is that while

all hyperplanes are incident to the top-most chamber in the unweighted arrangement, this

is not necessarily the case in the arrangement for weighted points.
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Order-k Delaunay mosaics similarly generalize to weighted point sets by merely adjust-

ing the definition of the lift to liftwt(p) = (p,P(p)− 1
2wt(p)), which is lift(p) moved down

by wt(p). With this definition, the weighted order-k Delaunay mosaic is the projection of

the lower convex hull of the barycenters of the lifts of P , and the duality from Theorem 2.2

still holds.

Also note that the unweighted order-k Delaunay mosaic for a point set P can be

realized as a weighted first-order Delaunay mosaic for an appropriately chosen weighted

point set P ′. Choosing for each Q ⊆ P with #Q = k the barycenter of Q as a new point

p′ ∈ P ′, and setting its weight to wt(p′) = ‖ 1
k

∑
q∈Q q‖

2 − 1
k

∑
q∈Q ‖q‖

2, then liftwt(p′) is

the same as 1
k

∑
q∈Q lift(q), the barycenter of the lifts of Q. Thus the weighted first-order

Delaunay mosaic of P ′ is the same as Delk(P ).

We remark that while in the unweighted first-order Delaunay mosaic each point of P is

a vertex of the mosaic, this is not the case anymore in the weighted setting. Intuitively, if

a point p ∈ P is surrounded by other points of P with much higher weight, then dom({p})

can be empty, and dually p will not appear in Del1(P ).

In order to generalize the notion of circumspheres and empty spheres that define cells

in the Delaunay triangulations, we need to define what it means for a weighted point to be

inside, on or outside a sphere. Let now S = Sr2(x) be the (d− 1)-dimensional sphere with

center x ∈ Rd and squared radius r2 ∈ R. For r2 > 0 this is an ordinary sphere, for r2 = 0

it is a point, and for r2 < 0 it is what we call an imaginary sphere. A weighted point p

then is considered to be inside the sphere if distp(x) < r2, on the sphere if distp(x) = r2,

and outside the sphere if distp(x) > r2. The condition for a point to be on the sphere can

be rewritten as ‖x− p‖2 = r2 + wt(p), which we geometrically interpret as having two

spheres, Sr2(x) and Swt(p)(p), that intersect at a right angle. Then an empty sphere is a

sphere that does not contain any weighted points of P inside it, and a circumsphere of

d+ 1 weighted points is the sphere that has these points on it. Weighted circumspheres

and their circumcenters are also called orthospheres and orthocenters, respectively. As for

unweighted point sets, a weighted point set P is in general position if for 1 ≤ e ≤ d− 1,

no e+ 2 points of P lie on the same (e− 1)-sphere.

In Chapters 3, 4 and 5 we will formulate all our statements in terms of unweighted

points. However most of our definitions and results generalize to weighted point sets by

substituing the above definitions for weighted points, and we will explicitly mention if a
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result from these chapters does not.

2.6 Algorithms and complexity

In the plane, the number of domains in the order-k Voronoi tessellation or, equivalently,

the number of vertices in the order-k Delaunay mosaic is Θ(k(n − k)) where n is the

number of input points; see [58; 77]. For dimensions d ≥ 3, this number can vary

significantly depending on the way the input points are distributed. The upper bound of

O(nb
d+1

2 ckd
d+1

2 e) on the total size of the first k higher-order Delaunay mosaics is tight [21],

while the lower bound of Ω(kdn) is only conjectured [66]. For individual order-k Delaunay

mosaics, the complexity is poorly understood. The problem is closely related to the

(d+ 1)-dimensional k-set problem. Specifically, the points in P ⊆ Rd can be mapped to

equally many points in Rd+1 such that the order-k domains in Rd correspond to k-sets in

Rd+1, see e.g. [21].

The first algorithm to compute order-k Voronoi tessellations and Delaunay mosaics in

the plane was described by Lee in [58]. The algorithm computes the Voronoi tessellations

one by one, in increasing order and in time O(k2n log n). Mulmuley [66] extended this

algorithm beyond two dimensions, computing the first k levels in the (d+ 1)-dimensional

hyperplane arrangement, which implicitly yields the order-k Voronoi tessellations and

Delaunay mosaics in time O(s log n+ kdn2), in which s denotes the output size. Mulmu-

ley [67] later described another algorithm, which instead adds hyperplanes one by one,

and runs in time O(nb
d+1

2 ckd
d+1

2 e) for d ≥ 3, which equals the worst-case output size. For

d = 2, the expected runtime is O(k2n log n
k
). Another incremental algorithm with similar

complexity for d ≥ 3 has been described by Agarwal et al. [1].

To our knowledge, none of these algorithms have been implemented.
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3 Computing higher-order

Delaunay mosaics

In this chapter, we describe a new algorithm for computing order-k Delaunay mosaics in

Euclidean space of dimension d that stands out in its simplicity. It selects the vertices of the

order-k mosaic from incrementally constructed lower-order mosaics, using a new geometric

construction in Rd+1, the rhomboid tiling, that the order-k Delaunay mosaics are horizontal

slices of. To construct the order-k mosaic from its vertices, it uses an algorithm for weighted

first-order Delaunay mosaics as a black-box. Beyond this black-box, all operations of the

algorithm are purely combinatorial, which facilitates easy implementation. It thus benefits

from highly optimized existing implementations for weighted Delaunay triangulations

and, if desired, can build upon their use of exact arithmetic. Its complexity depends

on the complexity of the algorithm used for weighted Delaunay mosaics. Assuming it

is linear in its output size, then the complexity of our algorithm is also linear in its

output size. We implement this algorithm and run it on various point sets, shedding

light on the size and other properties of order-k Delaunay mosaics. In particular, we

compare the total size of the first k Delaunay mosaics of random point sets with the

(tight) worst-case upper bound, and we study the size of individual order-k Delaunay

mosaics, for which no tight bounds are known in general. As far as we are aware, no such

experimental investigations have been performed in the past, possibly due to absence of a

practical algorithm. We make open-source implementations of our algorithm available [69;

70].

We will introduce the rhomboid tiling in Section 3.1. We will explore the combinatorial

properties of this tiling and, by proxy, the properties of order-k Delaunay mosaics in

Section 3.2. Using these results, we explain our algorithm in Section 3.3. We present
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experimental results obtained with the two implementations of this algorithm in Section 3.4.

We close this chapter with a discussion of possible extensions and optimizations in

Section 3.5.

3.1 Rhomboid Tiling

Given a finite set of points in Rd, we are interested in the collection of Delaunay mosaics

of all orders. Assuming the set is in general position, there exists a rhomboid tiling in Rd+1

such that the Delaunay mosaics are horizontal slices of the tiling. This section introduces

the tiling and proves the relation to Delaunay mosaics.

Rhomboid tiling. Let P ⊆ Rd be finite and in general position. Every (d−1)-dimensional

sphere, S, in Rd partitions P into the points inside, on, and outside S. We call this the

ordered three-partition of P defined by S, and denote it as P = In(S) tOn(S) tOut(S).

By assumption of general position, we have 0 ≤ #On(S) ≤ d+ 1, but there are no a priori

upper bounds on the sizes of the other two sets.

We map each ordered three-partition defined by a (d− 1)-sphere, S, to a parallelepiped

in Rd+1, which we call the rhomboid of S, denoted rho(S). To define it, we write

yp = (p,−1) ∈ Rd+1, for every p ∈ P , and yQ = ∑
q∈Q yq for every Q ⊆ P . The (d+ 1)-st

coordinate of yQ is therefore −#Q, and we call #Q the depth of the point. With this

notation, rho(S) = conv {yQ : In(S) ⊆ Q ⊆ In(S) ∪On(S)}. Equivalently, rho(S) is the

rhomboid spanned by the vectors yp, with p ∈ On(S), and translated along yIn(S). Its

dimension is the number of spanning vectors, #On(S).

While in general many spheres S yield the same rhomboid rho(S), by definition a

rhomboid is uniquely determined by the three-partition In(S)tOn(S)tOut(S), and for a

rhomboid ρ = rho(S) we define Pin(ρ) := In(S), Pon(ρ) := On(S) and Pout(ρ) := Out(S).

Combinatorially, each geometric vertex yQ of ρ corresponds to a subset Q of P , and we

define the combinatorial vertex set of ρ as

V (ρ) = {Pin(ρ) ⊆ Q ⊆ Pin(ρ) ∪ Pon(ρ)}. (3.1)

We refer to Pin(ρ) ∈ V (ρ) as the (combinatorial) anchor vertex of ρ.
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Observe that every face of rho(S) is again the rhomboid defined by a sphere. To

see this, we note that for every ordered partition of the points on S into three sets,

On(S) = Oin tOon tOout , there is a sphere S ′ with In(S ′) = In(S) ∪Oin, On(S ′) = Oon,

and Out(S ′) = Out(S) ∪ Oout . There are 3#On(S) such ordered partitions, and each

corresponds to a face of rho(S).

By definition, the rhomboid tiling of P , denoted Rho(P ), is the collection of all

rhomboids defined by spheres; see Figure 3.1a. As suggested by the figure, the ordered

three partition (∅, ∅, P ) is mapped to the origin of Rd+1. Let Hk be the hyperplane at

depth k that is orthogonal to the (d + 1)-st axis, i.e. Hk := {(x, z) ∈ Rd × R : z = −k}.

We claim the following properties.

Theorem 3.1 (Rhomboid Tiling). Let P ⊆ Rd be locally finite and in general position.

Then

1. Rho(P ) is dual to the hyperplane arrangement Arr(P );

2. Rho(P ) is the projection of the boundary of a zonotope in Rd+2;

3. the horizontal slice of Rho(P ) at depth k is the order-k Delaunay mosaic of P , i.e.

each cell σ ∈ Delk(P ) is σ = ρ ∩Hk for some ρ ∈ Rho(P ).

Figure 3.1 illustrates the duality of Claim 1 in Theorem 3.1. Note that Claim 2 implies

that the rhomboid tiling is a geometric realization of the dual of the arrangement in Rd+1,

that is: its rhomboids intersect in common faces but not otherwise. This also means that

Rho(P ) is a regular complex. The remainder of this section proves the three claims.

Proof of Claim 1: hyperplane arrangement. Recall from Section 2.3 that Arr(P )

is the decomposition of Rd+1 into cells by hyperplanes hp for p ∈ P , and each cell γ

is uniquely described by the three-partition (Pabove(γ), Pcontains(γ), Pbelow(γ)) of points p

for which hp is above, contains, and is below γ respectively. Importantly, there is a

bijection between the cells of Arr(P ) and the rhomboids in Rho(P ). To see this, map a

point (x, z) in the interior of a cell γ to the sphere S with center x and squared radius

r2 = max{0, ‖x‖2 − 2z}. Using the definition of hp(x) = 1
2(‖x‖2 − ‖x− p‖2), we observe

that In(S) = Pabove(γ), On(S) = Pcontains(γ), and Out(S) = Pbelow(γ). We can reverse the

map, and while this will not reach the points with ‖x‖2− 2z < 0, these points all belong to
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abc bcd cde

abcd bcde
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cd

(a) The rhomboid tiling of the five points. The highlighted 2-rhomboid ρ defined by Pin(ρ) = {c}
and Pon(ρ) = {b, d} is the convex hull of the points yc, y{b,c}, y{c,d}, and y{b,c,d}. We simplify the
labels here and e.g. write bcd instead of y{b,c,d}. The horizontal line at depth k intersects the
tiling in the order-k Delaunay mosaic.

ha

hb hc

hd

he

a c d eb

(b) The dual hyperplane arrangement Arr(P ). Following the dotted lines connecting the points
of P on the horizontal axis to the paraboloid, P , we find the corresponding tangent hyperplanes
hp.

Figure 3.1: Rhomboid tiling, Rho(P ), and hyperplane arrangement, Arr(P ), for a 1-
dimensional point set, P = {a, b, c, d, e}. Notice how for each p, the vector yp = (p,−1)
in Rho(P ) from the origin to the vertex labelled p is orthogonal to the hyperplane hp in
Arr(P ). For each 0 ≤ j ≤ 2, the red j-dimensional rhomboid from Rho(P ) is dual to the
red (2− j)-dimensional cell of Arr(P ).



23

the chamber of the ordered three-partition (∅, ∅, P ). This establishes the bijection between

the cells and the rhomboids. This bijection reverses dimensions and preserves incidences,

which justifies that we call it a duality between the rhomboid tiling and the hyperplane

arrangement. This completes the proof of Claim 1 in Theorem 3.1.

Proof of Claim 2: zonotope. A zonotope [31, Section 1.7] is a special convex polytope,

namely one obtained by taking the Minkowski sum of finitely many line segments. The

zonotope of interest is constructed from the line segments that connect the origin to the

points vp = (p,−1, ‖p‖2/2) ∈ Rd+2, with p ∈ P . Note that these line segments project to

the vectors yp = (p,−1) used to build the rhomboid tiling. By construction, yp is normal to

the graph of hp, which is the zero set of Fp : Rd+1 → R defined by Fp(y) = 〈y, yp〉−‖p‖2/2;

see Figure 3.1. Adding a (d+ 2)-nd coordinate, w, we introduce Gp : Rd+2 → R defined

by Gp(y, w) = 〈y, yp〉+ w‖p‖2/2. Its zero-set is normal to vp, the restriction of G−1
p (0) to

w = −1 is the zero-set of Fp, and Gp(0) = 0. In other words, if we identify Rd+1 with the

hyperplane w = −1 in Rd+2, then the zero-sets of the Gp intersect Rd+1 in Arr(P ) and

they all pass through the origin in Rd+2.

By construction, the thus defined zonotope is dual to the arrangement of hyperplanes

G−1
p (0) for p ∈ P . Therefore, the antipodal face pairs of the zonotope correspond dually

to the cells of Arr(P ), provided we interpret the arrangement projectively, which means

we combine antipodal pairs of unbounded cells; see also [31, Section 1.7]. We get a more

direct dual correspondence by projecting the bottom side of the boundary of the zonotope

to Rd+1. By choice of the line segments, the vertices on this side project vertically to the

vertices of Rho(P ), and since both are dual to Arr(P ), we conclude that Rho(P ) is the

projection of this side of the zonotope. This completes the proof of Claim 2 in Theorem 3.1.

We remark that the relationship between the hyperplane arrangement defined by

G−1
p (0) and the zonotope defined by the vectors vp for p ∈ P is a special instance of a more

general idea by Coxeter introduced in the context of studying zonotopes [25]: For a given

zonotope, Coxeter defines the so-called second projective diagram which is a hyperplane

arrangement and has the property that it is dual to the zonotope.

Proof of Claim 3: Delaunay mosaics. By Theorem 2.1, for each Voronoi domain,

there is a chamber in Arr(P ) that projects vertically to the domain. In particular, chambers

at depth k project to domains of Vork(P ). By Claim 1, these chambers correspond to
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the vertices of the rhomboid tiling at depth k. Since Rho(P ) is dual to Arr(P ), we get

the dual of the Voronoi tessellation by taking the slice that is the intersection of Hk and

Rho(P ). However by Theorem 2.2 the dual of the order-k Voronoi tessellation is precisely

the order-k Delaunay mosaic. This completes the proof of Claim 3 in Theorem 3.1.

We see that the cells of Delk(P ) are special slices of the rhomboids. More formally,

for every σ ∈ Delk(P ) there is a unique lowest-dimensional rhomboid ρ ∈ Rho(P ) such

that σ = ρ ∩ Hk. We denote this rhomboid as ρ(σ), and call it the rhomboid of σ.

Note that the qualification “lowest-dimensional” is required for uniqueness as vertices of

Delk(P ) are slices of both vertices and edges of Rho(P ). Equivalently, ρ(σ) is the unique

rhomboid whose interior intersected with Hk is the interior of σ. For vertices we have

dim σ = dim ρ = 0, and for all higher-dimensional cells we have dim σ = dim ρ− 1 ≥ 1.

Combinatorially, each rhomboid is a cube and, again combinatorially, each cell of

Delk(P ) is a slice orthogonal to the cube diagonal that passes through a non-empty set of

the vertices. For the (d+ 1)-cube, there are d+ 2 such slices, which we index from top to

bottom by the generation 0 ≤ g ≤ d+ 1. The g-th slice passes through
(
d+1
g

)
vertices, so

we have a vertex at generations g = 0, d+ 1, a d-simplex at generations g = 1, d, and some

other d-dimensional polytope at generations 2 ≤ g ≤ d− 1. In d+ 1 = 3 dimensions, we

have a vertex, a triangle, another triangle, and another vertex, see Figures 3.2a and 3.3;

but already in d+ 1 = 4 dimensions, the middle slice is not a simplex; see Figure 3.2b. To

describe these slices in general, let Ud+1 be the d + 1 unit coordinate vectors. The g-th

slice is the convex hull of the points ∑u∈Q u with Q ⊆ Ud+1,#Q = g, in which the empty

sum is (0, 0) ∈ Rd × R, by convention. To get an intuition, it might be easier to divide

the sums by g, in which case the g-th slice is the convex hull of the barycenters of the

(g − 1)-faces of the standard d-simplex.

Similar to the Delaunay mosaic, the half-integer slice, i.e. intersection of Rho(P ) with

the hyperplane H
k− 1

2
at depth k − 1

2 , is a regular complex in Rd. We denote this complex

as Delk− 1
2
(P ). It is dual to the degree-k Voronoi tessellation, which motivates its earlier

notation as Vork− 1
2
(P ).
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(a) A 3-dimensional rhomboid ρ with Pin(ρ) = {p, q} and Pon(ρ) = {a, b, c}. First-generation
slice in red and second-generation slice in blue.
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(b) Slices of a 4-dimensional rhomboid defined by Pin(ρ) = ∅ and Pon(ρ) = {a, b, c, d}. The
non-trivial slices are a tetrahedron at generation g = 1, an octahedron at generation g = 2, and
another tetrahedron at generation g = 3.

Figure 3.2: Combinatorics of 3- and 4-dimensional rhomboid slices. The first generation
slice is always a simplex. The g-th generation slice is the convex hull of the barycenters of
the (g − 1)-faces of the first generation slice.

3.2 Combinatorial Properties

Recall that by our definition, the order-k Delaunay mosaic is the projection of the lower

boundary cells of a convex polytope in Rd+1. Specifically, for each subset Q ⊆ P of k

points, we take the barycenters (or sums) of the lifts of the points in Q, and the polytope in

question is the convex hull of these barycenters. This directly gives us an recipe to compute

order-k Delaunay mosaics, using an existing algorithm for convex hulls or, equivalently,

weighted first-order Delaunay mosaics. However by itself, this approach does not scale well

with k since there are
(

#P
k

)
such barycenters. Most barycenters, however, are irrelevant as

they do not contribute to the lower faces of the convex hull. If we could, somehow, identify

the relevant barycenters without wasting time on the irrelevant ones, this procedure would

efficiently construct the cells of the order-k Delaunay mosaic by computing the weighted

first-order Delaunay mosaic. We will see how this can be done in Section 3.2.2.

In d ≥ 3 dimension, not all cells of Delk(P ) are simplicial, even if the points in P are
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in general position. The cells carry important information, which for some applications is

essential and cannot be easily recovered from a triangulation. This poses an additional

challenge because most algorithms for computing convex hulls or weighted first-order

Delaunay mosaics return a triangulated version of the correct mosaic. As explained in the

following section, we address this issue by predicting the cells from their corresponding

rhomboids.

3.2.1 Predicting Cells

Given a cell σ in the order-k Delaunay mosaic, let Pin(σ) := ⋂
V (σ), P (σ) := ⋃

V (σ),

Pon(σ) := P (σ) \ Pin(σ) and Pout(σ) := P \ P (σ). Then the following lemma identifies the

rhomboid ρ(σ) of σ, i.e. the rhomboid that σ is a slice of; see Figure 3.3 for an illustration.

Clearly, V (σ) ⊆ V (ρ).

Lemma 3.2. Let σ ∈ Delk(P ) be a e-dimensional cell, and ρ = ρ(σ) be the rhomboid of

σ. Then Pin(ρ) = Pin(σ), Pon(ρ) = Pon(σ), Pout(ρ) = Pout(σ), and the generation of σ is

k −#Pin(σ).

Proof. Note that if σ is a vertex, ρ is a vertex and the statement is trivial. So assume σ is

not a vertex. Then the dimension of ρ is e+ 1, and the generation g of σ is between 1 and

e. Recall that V (ρ) = {Pin(ρ) ⊆ Q ⊆ Pin(ρ) ∪ Pon(ρ)}, in which Pin(ρ) and Pon(ρ) are

disjoint. Since the depth of a vertex is determined by its cardinality, and the vertices of a

slice are by definition all at the same depth, the vertices of the generation-g slice all satisfy

#Q−#Pin(ρ) = g. Notice that the intersection of all g-subsets of Pon(ρ) is empty, which

implies that Pin(σ), the intersection of the combinatorial vertices of the slice, is Pin(ρ).

Furthermore, ⋃V (σ) = ⋃
V (ρ) for every slice σ of ρ with generation g ≥ 1, g ≤ e. The

union of all g-subsets of Pon(ρ) is Pon(ρ) itself, and thus Pon(σ) = ⋃
V (ρ)\Pin(ρ) = Pon(ρ).

Finally, the generation of σ is the difference in depth of the anchor vertex, Pin(ρ), and

the slice defining σ. The depth of σ is k and the depth of Pin(ρ) is its cardinality, which

completes the proof.

Note that because all combinatorial vertices of a cell σ ∈ Delk(P ) have the same

cardinality, #Pon(σ) 6= 1. While for 1-dimensional rhomboids ρ, i.e. edges, we can have

#Pon(ρ) = 1, this does not contradict our lemma because 1-dimensional rhomboids are

not rhomboids of any cell σ.
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We briefly discuss the implications for the dual order-k Voronoi tessellation. For a

d-cell σ ∈ Delk(P ), the dual Voronoi vertex is located at the circumcenter of Pon(σ). As

each (d+ 1)-rhomboid ρ has d consecutive slices σ with the same Pon(σ) = Pon(ρ), each

order-k Voronoi vertex appears in d consecutive higher-order Voronoi tessellations (in the

same location). More generally, each e-cell of Vork(P ) for e ≤ d − 1 appears in d − e

consecutive higher-order Voronoi tessellations.

Del1(P )

Del2(P )

Del3(P )

a

b

c

d
e

cd

ce

de

bd

bc

ac

ab

bcd
bde

cdeacd
ace

∅

abc

abd

Figure 3.3: First-, second-, and third-order Delaunay mosaics of the set P = {a, b, c, d, e}
in R2 as slices of the 3-dimensional rhomboid tiling. For clarity, only two of the rhomboids
are shown, with their first-generation slices in red and second-generation slices in dark
blue. The rhomboids on the left and right are defined by Pin = {b}, Pon = {a, c, d} and
Pin = ∅, Pon = {c, d, e}, respectively.

If all of our top-dimensional order-k Delaunay cells are triangulated—e.g. due to

being the output of a weighted first-order Delaunay algorithm—we cannot directly apply

Lemma 3.2. Assume τ is a simplex that is part of the triangulation of a cell σ, and ρ = ρ(σ)

is the rhomboid of σ. In general, we cannot obtain the information about ρ from τ alone,

at least if d ≥ 4. We can, however, still identify whether τ is a first-generation slice of ρ

and thus in fact is equal to σ. Using Lemma 3.2, we can then obtain ρ.

Lemma 3.3. Let P ⊂ Rd be a finite point set. A d-simplex, τ , in a triangulation of Delk(P )
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is a first-generation d-cell of Delk(P ) if and only if the intersection of its combinatorial

vertices is of size k − 1.

Proof. Let σ be the d-cell in Delk(P ) that contains τ in its triangulation, and assume σ is

a generation-g slice of ρ. From Lemma 3.2, we know that Pin(ρ) ⊆ v for all v ∈ V (σ), and

#Pin(σ) = k−g. The remaining g points in every v are from Pon(ρ). We have V (τ) ⊆ V (σ)

with #V (τ) = d+ 1. So for τ to consist of vertices whose common intersection is of size

k − 1, there need to be d + 1 distinct g-subsets of Pon(ρ) that all have g − 1 points in

common. However, as #Pon(ρ) = d+ 1, this is not possible unless g = 1.

3.2.2 Identifying Vertices

Given a triangulation of the order-k Delaunay mosaic, we just saw how to identify its

first-generation cells. From these, we can obtain the corresponding rhomboids and their

higher-generation slices. We shall now prove that if we have triangulations of the order-j

Delaunay mosaics, for all j < k, we can assemble the complete vertex set of the order-k

Delaunay mosaic by taking slices at depth k obtained from first-generation cells at lower

depths. We note that this only holds in the unweighted setting.

The proof of this result employs the hyperplane arrangement which the rhomboid tiling

is dual to by Theorem 3.1. Recall that it was constructed from hyperplanes hp which are

tangent to the paraboloid P for p ∈ P . These hyperplanes decompose Rd+1 into cells, the

(d+ 1)-dimensional ones we call chambers.

We call a chamber γ a bowl if only one of its facets bounds it from above or, equivalently,

if there is only one chamber at the next lower depth that shares a facet with γ. We call

the hyperplane that contains this facet the lid of the bowl.

Lemma 3.4. A hyperplane that is a lid of a bowl at depth 1 is not a lid of any other

chambers.

Proof. Let γ be a bowl at arbitrary depth, and let h be its lid. Every other hyperplane

that contains a facet of γ bounds γ from below. The top facet of γ is the only part of h

that is above all of these hyperplanes; that is: all other parts of h are below at least one

of the other hyperplanes. This implies that every other bowl with lid h has at least one

other hyperplane above it, and is thus of depth at least 2.
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Now assume γ is at depth 1. If there were another bowl γ′ with lid h, then the above

argument would yield that all other bowls are at depth at least 2, contradicting our

assumption on γ. Thus γ has to be the unique bowl with lid h.

With this lemma, we are ready to state and prove the main combinatorial insight that

motivates our algorithm. In a nutshell, it says that the first-generation cells form clusters

none of whose vertices are exclusive to the cluster, also see Figure 3.12. In R2, this in

particular implies that these clusters have outer-planar 1-skeletons.

Theorem 3.5. Let P ⊆ Rd be a finite, unweighted point set and k ≥ 2. Then every vertex

in Delk(P ) is vertex of some d-cell of generation g ≥ 2.

Proof. In the unweighted setting, each hyperplane is tangent to the paraboloid and contains

a facet of the unique depth-0 chamber. Thus, each hyperplane is the lid to a chamber at

depth 1. As this is true for every hyperplane, all chambers of depth 2 or higher have no

lids by Lemma 3.4. This means that any chamber of depth at least 2 has at least two

upper facets. Because the upper boundary is connected, there are two upper facets that

meet in a (d − 1)-face, the dual rhomboid of this face has dimension 2, and its bottom

vertex is dual to the chamber. Thus we can obtain this vertex, v, knowing the other three

vertices of the 2-rhomboid.

Any 2-rhomboid is a face of some (d+ 1)-dimensional rhomboid, ρ, which thus contains

v at generation at least 2, i.e. v has depth at least #Pin(ρ) + 2. Knowing Pin(ρ) and

Pon(ρ), we obtain this vertex via Equation (3.1).

This result generally does not hold in the weighted setting. If not all hyperplanes of

the arrangement are incident to the top chamber, then there can be bowls at depth greater

than 1, whose dual vertices our algorithm does not find. Figure 3.4 shows an example of

such a weighted configuration.

3.3 Algorithm for higher-order Delaunay mosaics

We outline our algorithm in this section; its correctness follows from the results of the

previous sections. We compute the Delaunay mosaics one by one in sequence of increasing

order. For Del1(P ), the vertex set is the set P of input points. Whenever we have the
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Figure 3.4: The hyperplane arrangement (left) and rhomboid tiling (right) of a weighted
point set P = {a, b, c, d}. Bowls in Arr(P ) are marked in pink, and the dual vertices in
Rho(P ) in red. Notice how we cannot obtain the red vertices as second-generation vertices
of 2-rhomboids. In the order-2 Delaunay mosaic, the vertices ad, ac and ab as well as the
vertices ab and bc both form clusters that have vertices exclusive to the cluster.

vertex set of Delj(P ), we compute its (triangulated) d-cells using an off-the-shelf algorithm

for weighted Delaunay triangulations. We use Lemma 3.3 to identify the first-generation

d-cells, while discarding all other cells. From each first-generation cell, we obtain and

save the higher-generation d-cells and vertices defined by the same rhomboid. These will

appear in Delaunay mosaics of higher orders. By Theorem 3.5, once we have processed

all Delj(P ) for j < k, we will have obtained the complete vertex set of Delk(P ) in the

process, thus allowing our algorithm to continue until we have all Delaunay mosaics up to

the desired order.

Algorithm 1 is a more formal write-up of the above outline, and Figure 3.3 visualizes

the process. A dimension-agnostic python implementation and a 2- and 3-dimensional C++

implementation using CGAL are available at [69; 70]. Note that from the first-generation

d-cells σ of the order-k Delaunay mosaic we can reconstruct the (d+ 1)-rhomboid ρ = ρ(σ)

that σ is a slice of by computing the anchor vertex Pin(ρ) = Pin(σ) and Pon(ρ) = Pon(σ).

The implementation from [69] explicitly stores the vertices and d-cells of each order-k

Delaunay mosaic. The implementation from [70] instead only stores these (d+1)-rhomboids,

which take up less space, and obtains the mosaics Delk(P ) and Delk− 1
2
(P ) via methods

that reconstruct them on demand.

To get a handle on the runtime of the algorithm, we consider the two steps used to

compute the order-k Delaunay mosaic after finishing the construction of the first k − 1
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Algorithm 1 computes the order-k Delaunay mosaic of a finite set of (unweighted)
points, P ⊆ Rd. We represent each d-cell of Delk(P ) by the collection of its combinatorial
vertices, stressing that these collections are sets and thus contain every combinatorial
vertex only once. Duplicity is avoided by checking before adding. The locations of the
combinatorial vertices are the barycenters of their points, and the cell is the convex hull of
these locations.
While the software for computing the weighted Delaunay mosaic may return all cells
triangulated, our algorithm outputs the (non-triangulated) cells of the order-k Delaunay
mosaic. We recall that in d ≥ 3 dimensions such non-simplicial cells appear generically for
k ≥ 2.
V (Del1(P )) := P

for j from 1 to k do
// Compute the location and weight of each combinatorial vertex
for all v ∈ V (Delj(P )) do

loc(v) := 1
j

∑
p∈v p

wt(v) := ‖1
j

∑
p∈v p‖

2 − 1
j

∑
p∈v ‖p‖

2

end for
// Get the (triangulated) cells of the order-j Delaunay mosaic
D := weightedDelaunay(loc, wt)
// Infer vertices and higher-generation cells of later Delaunay mosaics
for all d-simplices σ in D do

// Check whether the generation of σ is 1 via Lemma 3.3
// We already obtained higher-generation cells of Delj(P ) earlier.
if #⋂V (σ) = j − 1 then

Add σ to Delj(P )
// Get Pin(ρ) and Pon(ρ) via Lemma 3.2
Pin(ρ) := ⋂

V (σ)
Pon(ρ) := ⋃

V (σ) \ Pin(ρ)
for g from 2 to d do

// Get the generation-g cell, σ′, of the rhomboid of σ, via Equation (3.1)
V (σ′) := {Pin(ρ) ∪Q : Q ∈ Pon(ρ),#Q = g}
Add all v ∈ V (σ′) to V (Delj+g−1(P ))
Add σ′ to Delj+g−1(P )

end for
end if

end for
end for
return V (Delk(P )), Delk(P )
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mosaics. The first step is geometric and invokes the black-box algorithm to construct

the weighted Delaunay mosaics from which we get vertices and cells of (unweighted)

higher-order Delaunay mosaics. The runtime of this step depends on the runtime of

the black box algorithm, which many cases is output-dependent. The second step is

combinatorial and determines, for each output simplex from the first step, whether it

is first generation, in which case it is a genuine cell of the mosaic. Assuming constant

dimension, d, identifying whether an order-(k − 1) cell is of first generation and, in this

case, obtaining the higher-generation cells takes time O(k). Thus, for a given k, the

combinatorial step takes time O(kCk), in which Ck is the number of d-cells of Delk(P ).

With each vertex being represented as a k-tuple of points, this is linear in the output

size, assuming we store each cell naively as a set of its vertices. If the runtime of each

black-box invocation were linear in the output size, the total runtime for producing the

first k higher-order Delaunay mosaics would thus be linear in the output size as well. In

practice, it is more efficient to store a cell as a set of pointers or indices to its vertices,

only requiring space O(kVk + Ck), with Vk denoting the number of vertices of Delk(P ).

Using this representation, the combinatorial step is not linear in the output size unless the

number of cells of Delk(P ) is linear in the number of vertices.

As the complexity of our algorithm is related to the output size, we recall the upper

bound of O(nb
d+1

2 ckd
d+1

2 e) on the total size of the first k higher-order Delaunay mosaics

[21]. At the same time, there exist point sets where this total size is only Θ(kdn) [66]. We

will also see in Proposition 4.8 from the next chapter that the complexity of the rhomboid

tiling is the same regardless of the input, and is Θ(nd+1). As each (e + 1) dimensional

rhomboid yields e slices which are e-cells of Delk(P ) for e consecutive values of k, this

also means that the sum of the sizes of the order-k Delaunay mosaics is fixed. Thus for

those point sets where the size of the order-k Delaunay mosaics grows faster for small

k, we would expect the size of the mosaics to be smaller for large k closer to n = #P .

The next section will provide some experimental results confirming this expectation, and

giving some insights on the size of individual order-k Delaunay mosaics which are not well

understood.
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3.4 Experimental Results

In 2 dimensions, the number of cells in the (order-1) Delaunay mosaic is always linear in the

number of input points, while in d ≥ 3 dimensions, the size of the mosaic depends on the

input set itself—and not just its cardinality—and ranges from Ω(n) to O(ndd/2e) [61]. The

asymptotic worst case is realized by points located on the moment curve, (t, t2, . . . , td) with

t ∈ R, while e.g. uniformly sampled points within a sphere have expected linear size [30], as

do uniformly sampled points on a convex polytope in R3 [43]. Under appropriate sampling

conditions for points on a smooth surface, the size of the mosaic is O(n log n) [6].

Size in 3 dimensions. To shed light on the size range of order-k Delaunay mosaics,

we compute them for a few 3-dimensional point sets relevant to these bounds. Note that

for order-k Delaunay mosaics the number of vertices varies as well. Figure 3.5 shows

the numbers of vertices and 3-dimensional cells for all higher-order Delaunay mosaics of

four sets of size n = 200 each: points on the moment curve, points sampled on the torus

(with major radius 1 and minor radius 0.5 obtained by uniformly sampling the angles of

its parametrization), points uniformly sampled inside the unit ball, and a point set in

convex position forming a polytope (obtained by uniformly sampling points inside a ball

and randomly choosing 200 vertices of the convex hull).

The plots of vertex numbers and cell numbers generally resemble each other, with

roughly three times as many cells as vertices. Other than in Figure 3.5, we therefore omit

the information about the vertices and show only the plots for the cells. The moment

curve and polytope sets are both in convex position. Nevertheless, the size of the mosaic

for the moment curve grows large faster for small k, and reaches its peak at k ≈ n/3, while

for the polytope the peak is at k ≈ n/2. Notice how a faster rise also goes along with an

earlier decay. This is a consequence of the fact that the total size of all order-k Delaunay

mosaics together—or, equivalently of the rhomboid tiling—only depends on the input size,

n, and not on the relative position of the input points, see Proposition 4.8.

Size increase for small order. Looking more closely at the growth for small k relative

to the input size, we observe that the polytope and unit ball exhibit linear growth while

the size of the mosaic seems to grow quadratically for the moment curve, see Figure 3.6.

This is consistent with the bounds on first-order Delaunay mosaics mentioned earlier. For
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the torus, the size seems to grow slightly superlinearly, which is again consistent with the

O(n log n) bound for smooth surfaces mentioned above.

Variance. To probe whether the graphs from Figure 3.6 are representative, we investigate

the variance in number of cells for the polytope and the unit ball. As shown in Figure 3.7,

the variance is particularly small for the polytope, and it is considerably larger of the

unit ball. Curiously, the variance dips at k = n/2.

Generations. We also investigate the distribution of cells of different generations. All

point sets exhibit a pattern similar to that in Figure 3.8, with the fraction of first-generation

cells decreasing and the fraction of d-th-generation cells increasing as the order grows.

The change is most prominent for small and large k, while the fractions remain almost

constant in the range k ≈ n/2, provided n is significantly larger than the dimension d.

Curse of dimensionality. Like many geometric structures, order-k Delaunay mosaics

are subject to the dimensionality curse. Figure 3.9 shows how the size of order-k Delaunay

mosaics behaves for point sets in different dimensions.

Vertex degrees. Order-k Delaunay mosaics exhibit an interesting distribution of vertex

degrees for random point sets; see Figure 3.10. The distribution looks like the sum of two

distributions—with the second one only covering values 2 modulo 3—and is exhibited

for all k except very small and very large ones. We do not know the reason for vertices

being frequently incident to 5, 8, 11, . . . d-cells, but suspect these numbers correspond to

geometric configurations of cells of different generations, such as three octahedra sharing a

common vertex with two tetrahedra.

Clusters. First-generation cells of any order-k Delaunay mosaic come in clusters con-

nected by shared facets, see Figure 3.12 for an example. We investigate the distribution of

their sizes, leaving the discussion of their potential algorithmic significance for Section 3.5.

Figure 3.11 shows cluster size distributions for different orders. For very small k, the

distribution depends on how the points are sampled, while for all other k, the cluster sizes

seem to follow an exponential distribution. The decay rate increases with k and seems
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Figure 3.5: Number of vertices (left) and 3-dimensional cells (right) in the order-k Delaunay
mosaics for four point sets of size 200, each in R3
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Figure 3.6: Number of cells in the order-k Delaunay mosaics for small k in relation to the
input size, for various 3-dimensional point sets.
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Figure 3.8: Fraction of cells of each generation in the order-k Delaunay mosaic, for 50
random points in the unit 3-ball (left) and 20 random points in the unit 5-ball (right).
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Figure 3.9: Number of d-cells in the order-k Delaunay mosaic for 20 points (left) and 50
points (right) randomly sampled in the unit ball for different dimensions d.
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Figure 3.10: Vertex degree distribution in the order-50 Delaunay mosaic for 100 points
sampled in the unit ball (left) and on the torus (right).
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Figure 3.11: From left to right: distribution of cluster sizes in Delaunay mosaics of order 2,
50, and 90, for 100 random points in the unit ball (top row) and on a polytope (bottom
row).
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Figure 3.12: The order-2 Delaunay mosaic of 10 points (black) in the plane. First generation
cells (red) form clusters (which are not necessarily convex); second generation cells in blue.

to be linked to the fraction of first-generation cells. It culminates in all clusters being

singletons for k = n− 3. For k > n− 3, there are no more first-generation cells.

3.5 Extensions

In this chapter we presented a simple algorithm for computing order-k Delaunay mosaics

of unweighted point sets in Euclidean space. It employs a new geometric structure, the

rhomboid tiling, and we provided open-source implementations for this algorithm. The

remainder of this section discusses possible extensions and optimizations of our algorithm.

Weighted setting. Our algorithm generalizes to points with real weights, but not easily.

The main challenge is the extraction of the vertices of the order-k mosaic from lower-order

mosaics. This extraction relies on Theorem 3.5, which does not hold for weighted points.

Indeed, a crucial assumption in this theorem is that every lifted hyperplane is incident to the

depth-0 chamber of the arrangement, and this property is generally violated for weighted

points. This is the same assumption used in the prior dimension-agnostic algorithms [1;

66; 67]. For sets of weighted points that satisfy this assumption, our algorithm and these

prior algorithms still work. To overcome this limitation, we would need a way to detect
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all bowls in the arrangement, because they correspond to the vertices in the Delaunay

mosaics our algorithm is not able to find. Identifying these vertices is an independent

problem, and any solution to it can be combined with our algorithm. Once we know these

vertices and add them to the appropriate mosaics, our algorithm works as before.

Clusters of cells. As mentioned in Section 3.4, first-generation cells in the order-k

Delaunay mosaic are organized in clusters, also see Figure 3.12. To formally define them,

consider the graph whose nodes are the cells and whose arcs are the shared facets (i.e. the

1-skeleton of the order-k Voronoi tessellation). A cluster is a connected component in the

subgraph induced by the first-generation cells. It is not difficult to see that two such cells

belong to a common cluster if and only if the corresponding rhomboids have the same

anchor vertex. Let ρ be one of these rhomboids and recall that the anchor vertex is Pin(ρ),

which in this case is a collection of k− 1 points of P . Each combinatorial vertex of any cell

in the cluster contains these k − 1 points, plus one additional point, which differentiates

between these vertices. This means that the cluster is combinatorially equivalent to a

subcomplex of the order-1 Delaunay mosaic of these additional points.

With this insight, in our algorithm we could replace the weighted Delaunay mosaic

of the entire vertex set by multiple instances of unweighted Delaunay mosaics, namely

one per cluster. This alternative strategy avoids the need to compute averages of points

at the cost of extra book-keeping to group the vertex set of Delk(P ) into clusters. We

mention that in R2, the structure of each cluster satisfies the requirements that allow for

the construction in time linear in the number of points [2].

Exact arithmetic. The CGAL software library [81], which we employ in our C++

implementation, supports exact arithmetic by distinguishing between exact constructions

and exact predicates. The latter are geometric tests with a true or false answer, such as

whether or not a given point lies on a given sphere. By itself, the CGAL algorithm for

weighted Delaunay triangulations requires exact predicates but no exact constructions. Our

algorithm, on the other hand, computes averages of collections of input points, which are

the locations of the vertices of the mosaic. This is an exact construction and indeed the only

one needed to run our algorithm with exact arithmetic. In practice, exact constructions

are a significant overhead with noticeable impact on the runtime, which would be nice to
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avoid. One such possibility is to switch to computing clusters of first-generation cells as

described above.
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4 Multi-cover persistence

A filtration is a (not necessarily countable) sequence of increasing topological spaces

or regular complexes linked by inclusions. Given a finite P ⊆ Rd and a radius r ≥ 0,

the k-fold covers give rise to two filtrations — one in scale obtained by fixing k and

increasing r, and the other in depth obtained by fixing r and decreasing k — and we

compute the persistence diagrams of both. While standard methods suffice for the

filtration in scale, we need novel geometric and topological concepts for the filtration

in depth due to the combinatorial difference of the Delaunay mosaics from one value

of k to the next. In particular, we make use of the rhomboid tiling in Rd+1 whose

horizontal integer slices are the order-k Delaunay mosaics of P , to connect consecutive

Delaunay mosaics and construct a zigzag module that is isomorphic to the persistence

module of the multi-covers. We get the persistence diagram using the algorithm in [13;

14].

After formally introducing the k-fold covers, in Section 4.1 we recall the notion of

homotopy and introduce a radius function Rk on the order-k Delaunay mosaic whose

sublevel sets generalize the notion of α-shapes from k = 1 to orders k ≥ 1 [34; 55]. We

then proceed to give a recipe to explicitly compute the radius function (Section 4.2). In

Section 4.3 we formally introduce persistence and show how to compute persistence of

the multi-covers in scale. To compute persistence in depth, we first introduce a radius

function on the rhomboid tiling and then construct a zig-zag sequence of complexes that

yields the same persistence as the multi-covers (Section 4.4). We close the chapter with a

discussion of 2-parameter persistence (Section 4.5).

k-fold cover. Let P ⊆ Rd be finite. Given a radius r ≥ 0, the k-fold cover of P and r,
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denoted by Coverk(P, r), consists of all points x ∈ Rd for which there are k or more points

p ∈ P with ‖p− x‖ ≤ r, or, in other words, the points x ∈ Rd that are covered by at least

k of the balls of radius r centered at the points p ∈ P . A different viewpoint is to consider

the k-th distance function fk : Rd → R that maps each point x to the distance to the k-th

closest point p ∈ P . Then the covers are Coverk(P, r) = fk
−1(−∞, r], the sublevel sets of

fk for r ∈ R. We have

Coverk(P, r) ⊆ Coverk(P, s), (4.1)

Coverk(P, r) ⊆ Cover`(P, r), (4.2)

whenever r ≤ s and ` ≤ k, also see Figure 4.1. Thus these covers are a filtration for fixed

k and increasing radius r, which we call the filtration in scale, but also for fixed r and

decreasing k, which we call the filtration in depth. In fact, as the covers Coverk(P, r) are

parametrized by two parameters, r and k, with inclusions with respect to either parameter,

they are what we call a bifiltration.

We are interested in computing the persistent homology of the multi-cover filtrations,

both in the direction of increasing radius and in the direction of decreasing order, which we

refer to as persistence in scale and persistence in depth respectively. To do so, we represent

the covers by complexes, namely by subcomplexes of the Delaunay mosaics. Varying

the radius, we get a filtration of subcomplexes of the order-k Delaunay mosaic, and the

persistent homology can be computed with standard methods; see e.g. [33, Chapter VII]

for background. We will outline the details in the first few sections of this chapter. On the

other hand, varying the order, we get subcomplexes of different Delaunay mosaics which

do not form a filtration, and we need a novel algorithm to compute persistent homology

(Section 4.4). While there is no notion of a persistence diagram for a bifiltration, one

can still talk about 2-parameter persistence (Section 4.5) which, in a sense, subsumes

persistence in scale an depth.

In all settings, we exploit the rhomboid tiling to shed light on the filtration of multi-

covers. In Section 4.4.1 we introduce a filtration on the rhomboid tiling which allows us to

obtain sequences of subcomplexes that aid in the computation of persistent homology of

the multi-covers. First, however, we have to cover some definitions on homotopy, homology

and persistence to give concrete descriptions of our problem statements.
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(a) Cover1(P, r1). (b) Cover1(P, r2).

(c) Cover2(P, r1). (d) Cover2(P, r2).

(e) Cover3(P, r1). (f) Cover3(P, r2).

Figure 4.1: The k-fold covers (pink) with their corresponding order-k Voronoi decom-
positions (black) and homotopy equivalent order-k Delaunay subcomplexes (blue) for
k = 1, 2, 3 and radii r1 < r2.

4.1 Homotopy

Before we can relate the multi-covers and order-k Delaunay complexes, we recall basic

definitions and classic results from homotopy theory, e.g. see [33, Section III] or [48]. Let

X and Y be two topological spaces, and f, g : X→ Y continuous maps between them. A

homotopy between f and g is a continuous map H : X× [0, 1]→ Y such that H(x, 0) = f(x)

and H(x, 1) = g(x) for all x ∈ X. If such a homotopy exists, we call f and g homotopic

and write f ∼ g. If there are two maps f : X → Y and g : Y → X such that g ◦ f ∼ idX

and g ◦ f ∼ idX, we call X and Y homotopy equivalent or say the have the same homotopy
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type. In that case we call the maps f and g homotopy equivalences. A space is contractible

if it is homotopy equivalent to a single point. For two spaces Y ⊆ X and a continuous map

f : X→ Y with f(y) = y for y ∈ Y, we call f a deformation retraction if f ∼ idX, and in

that case we call Y a deformation retract of X.

An abstract simplicial complex K is a collection of sets such that if σ ∈ K and τ ⊆ σ,

then also τ ∈ K. The sets σ ∈ K are its (abstract) simplices. The dimension of a simplex is

dim σ = #σ− 1 and the dimension of K is max{dim σ : σ ∈ K}. We call V (K) := ⋃
σ∈K σ

the vertex set of K.

Given a map φ : V (K)→ Rd, if the collection of conv {φ(v) : v ∈ V (σ)} for all σ ∈ K

is a geometric simplicial complex, we call it a geometric realization of K in Rd. By the

Geometric Realization Theorem [33, Section III.1], any d-dimensional simplicial complex

has a geometric realization in R2d+1. Furthermore all geometric realizations have the same

homotopy type. Thus it makes sense to talk of the homotopy type of an abstract simplicial

complex.

Let S be a finite collection of sets Q ∈ Rd. Then the nerve of S is an abstract simplicial

complex defined as

NerveS := {Q ⊆ S :
⋂
Q∈Q

Q 6= ∅},

i.e. the collection of subsets of S that have non-empty common intersection. If the sets

are furthermore convex and closed, we have the following theorem.

Theorem 4.1 (Nerve theorem [60]). Let S be a finite collection of closed, convex sets

Q ∈ Rd. Then NerveS and ⋃Q∈S Q are homotopy equivalent.

As a first application of the Nerve Theorem, we will decompose the k-fold cover into

convex pieces to obtain a simplicial complex of the same homotopy type. This complex is

closely related to Delk(P ) and will later aid us in computing multi-cover persistence.

The order-k Voronoi tessellation decomposes the k-fold cover into convex sets. To

see this, let #Q = k and define the restricted Voronoi domain dom(Q, r) = dom(Q) ∩

Coverk(Q, r), which is an intersection of convex sets and therefore convex. We write

Vork(P, r) for the collection of domains dom(Q, r) with #Q = k, and since dom(Q, r) =

dom(Q) ∩ Coverk(P, r), we refer to this as the Voronoi decomposition of Coverk(P, r).
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Figure 4.1 provides an example. Since dom(Q, r) ⊆ dom(Q), the dual of this decomposition

is a subcomplex of the order-k Delaunay mosaic, which we call the restricted order-k

Delaunay complex and denote Delk(P, r) ⊆ Delk(P ). The Delk(P, r) give a filtration for

increasing radius r, and we define the radius function on the order-k Delaunay mosaic

as Rk : Delk(P ) → R which assigns each cell σ the smallest r such that σ ∈ Delk(P, r).

Rk(σ) is called the radius value or filtration value of σ. Note that Rk is monotonic:

Rk(τ) ≤ Rk(σ) whenever τ is a face of σ. Monotonic functions on a regular complex K

have the property that their sublevel sets are subcomplexes of K; in this case the sublevel

sets are the restricted Delaunay complexes: Rk
−1(−∞, r] = Delk(P, r).

The Nerve Theorem implies that the nerve of the non-empty dom(Q, r) with #Q = k,

which we will call the Delaunay Nerve and denote as DelNk(P, r), is homotopy equiva-

lent to Coverk(P, r). As for the order-k Delaunay mosaic, we define a radius function

RN k : DelNk(P )→ R which assigns each cell σ the smallest r such that σ ∈ DelNk(P, r).

However, DelNk(P, r) is not the same as Delk(P, r): While the nerve is always a simplicial

complex, Delk(P, r) is not, as observed in Section 3.1. The two complexes are closely

related however. Their vertices correspond to the non-emtpy domains dom(Q, r) with

Q ⊆ P,#Q = k, and like for the order-k Delaunay mosaic we define the combinatorial

vertex set of the nerve, V (DelNk(P, r)), as the collection of those subsets Q. The maximal

cells of both complexes correspond to vertices v ∈ Vork(P, r), and while a maximal cell

σ′ of DelNk(P, r) is a simplex spanned by the subsets Q whose dom(Q, r) are incident

to v, the corresponding maximal cell σ in Delk(P, r) is the convex hull of the geometric

embeddings 1
k

∑
q∈Q q of those Q, and thus V (σ) = V (σ′). Finally, for both complexes, the

intersection of two cells σ and τ is the cell spanned by the vertex set V (σ)∩ V (τ). This is

sufficient to show that both complexes are, in fact, homotopy equivalent, by the following

Lemma.

Lemma 4.2. Assume we have two regular complexes K and K ′ with V (K) = V (K ′),

and a bijection between maximal cells such that corresponding σ ∈ K and σ′ ∈ K ′ fulfill

V (σ) = V (σ′). Furthermore assume that for any set S of maximal cells K and the set S ′

of corresponding maximal cells of K ′, it holds that V (⋂σ∈S) = V (⋂σ′∈S′). Then K and K ′

are homotopy equivalent.

Proof. Let M and M ′ be the collection of maximal cells of K and K ′ respectively. Then

the bijection between M and M ′ is a bijection on the vertices of NerveM and NerveM ′,
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which extends to a bijection on the cells of NerveM and NerveM ′ due to the assumption

about intersections of maximal cells. This means the two nerves only differ in a relabeling

of their vertices, and thus also have to be homotopy equivalent. As the set of maximal

cells of a regular complex is a closed, convex cover of the complex itself, K and K ′ are

homotopy equivalent to this nerve by the Nerve theorem, and by transitivity homotopy

equivalent to each other.

As a direct consequence, we get the homotopy equivalence of the k-fold cover and the

restricted Delaunay mosaic.

Corollary 4.3 (Almost Nerve). Let P ⊆ Rd be locally finite and in general position. For

every integer k ≥ 1 and real r ≥ 0, Delk(P, r) and Coverk(P, r) have the same homotopy

type.

In the next section we will address the problem of computing the radius value of each

cell of Delk(P ) so we know for which r it appears in Delk(P, r).

4.2 Computing the Delaunay filtration

Recall from Section 3.2.1 that for a cell σ in the order-k Delaunay mosaic, we defined

Pin(σ) := ⋂
V (σ), P (σ) := ⋃

V (σ), Pon(σ) := P (σ) \ Pin(σ) and Pout(σ) := P \ P (σ). For

a cell σ of Delk(P ) and a sphere S, we call S σ-constrained if it contains Pin(σ) (in its

interior or on its surface), has Pon(σ) on its surface and no other points from P in its

interior. Let Smin(σ) be the smallest σ-constrained sphere of σ. Then the following lemma

gives us a recipe for computing the radius value of any cell in the order-k Delaunay mosaic.

Lemma 4.4. The radius value of an order-k Delaunay cell σ is the radius of Smin(σ).

Proof. By definition, we need to find the smallest radius r for which the intersection of

dom(Q, r) for Q ∈ V (σ) is non-empty. Writing P (σ) = Pin(σ) ∪ Pon(σ) = ⋃
Q∈V (σ) Q, this

is equivalent to the condition

 ⋂
p∈P (σ)

Br(p)
 ∩

 ⋂
Q∈V (σ)

dom(Q)
 6= ∅.
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So we need to find a ball Br(x) with minimal radius r that contains all points of P (σ)

and whose center, x, is in the intersection of the domains dom(Q) for Q ∈ V (σ). Let

x ∈ Rd be such a point. From having to be in the intersection of the order-k Voronoi

domains, we get the following constraints:

(1) Within P , all points from P (σ) have to be among the k closest points to x. (Note

that there can possibly be more than k of these if some points are tied for k-th closest).

This also implies that all points not in P (σ) are at least as far away as those from P (σ).

(2) For a point p in Pon(σ) there is in particular a Q ∈ V (σ) that does not contain p.

With x ∈ dom(Q), this means that p is at least as far away from x as all the points from

Q, and so it can only be tied for k-th closest. Therefore x must satisfy that all points p

from Pon(σ) have the same distance from x.

Taking these two constraints and adding the criterion that r should be minimal, this

yields that Br(x) is the smallest enclosing ball of P (σ) that has the points Pon(σ) on its

boundary and all other points from P outside of its interior, which is exactly the definition

of Smin(σ).

Algorithmically, Smin(σ) can be computed using a generalization of Welzl’s algo-

rithm [91] for computing smallest enclosing spheres. This algorithm works in any dimension,

and by design it already works with additional constraints for points that are required to

be on the surface of the sphere. Algorithm 2 extends this algorithm to work with exclusion

constraints, facilitating the computation of the radius values from the previous lemma.

The computation of circumspheres, as required by the algorithm, is done by solving a

system of linear equations.

4.2.1 Optimizing the computation of constrained spheres

When computing Smin(σ) for some cell σ, notice how in the definition of Smin(σ) we have

one constraint for each point of P : Each point of P is required to be either inside, on, or

outside the sphere. Therefore the previous algorithm takes O(#P ) to compute Smin(σ),

regardless of the order k for which σ is a cell of Delk(P ). In particular, for small order k,

P (σ) is small, while Pout(σ) consists of most of the points of P . In the following lemma,

we show that only a small subset of the constraints of Pout(σ) need to be checked, allowing
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Algorithm 2 computes the smallest enclosing sphere of Pin having Pon on its surface and
not containing Pout in its interior.

function SmallestEnclosingSphere(Pin, Pon, Pout)
if #Pon = d+ 1 then

CS := CircumSphere(Pon)
if not all p ∈ Pin inside CS or not all p ∈ Pout outside CS then

return “No valid sphere exists.”
end if

else if Pout 6= ∅ then
Pick p ∈ Pout

CS := SmallestEnclosingSphere(Pin, Pon, Pout \ {p})
if p inside CS then

CS := SmallestEnclosingSphere(Pin, Pon ∪ {p}, Pout)
end if

else if Pin 6= ∅ then
Pick p ∈ Pin

CS := SmallestEnclosingSphere(Pin \ {p}, Pon, Pout)
if p outside CS then

CS := SmallestEnclosingSphere(Pin, Pon ∪ {p}, Pout)
end if

else
CS := CircumSphere(Pon)

end if
return CS

end function



49

to compute Smin(σ) in O(k). We remark that in Section 5.1.1 we will optimize this further

using insights about the rhomboid tiling to yield a O(1) algorithm.

Lemma 4.5. Smin(σ) is the smallest enclosing sphere of Pin(σ) that has Pon(σ) on its

surface and does not contain any points of P (τ) \ P (σ) in its interior where τ is any

co-facet of σ.

Proof. Let x be the center of Smin(σ). We claim that x must be in the Voronoi cell

σ∗ := ⋂
Q∈V (σ) dom(Q) which is dual to σ. From this claim the result follows, as by

definition any point y in σ∗ is the center of a σ-constrained sphere: all points p ∈ Pon(σ)

have the same distance from y, while points p ∈ Pin(σ) are closer and points p ∈ Pout(σ)

are further away.

To prove this claim, note that the constraints from Pon(σ) define an affine subspace

Ron ⊆ Rd that must contain x. It is of dimension don := d+1−#Pon(σ), unless Pon(σ) = ∅

in which case don = d. Note that #Pon(σ) 6= 1 and thus don = d if and only if Pon(σ) = ∅.

The Voronoi cell σ∗ is contained in Ron and is also of dimension don. Thus if don = 0, our

claim trivially holds. So assume don 6= 0, and x 6∈ σ∗. Then there is a facet τ ∗ of σ∗ that

separates the interior of σ∗ from x, in the sense that the (don − 1)-dimensional subspace

Rτ containing τ ∗ divides Ron into two halves, one containing the interior of σ∗ and the

other containing x.

If don = d, then σ is a vertex v and σ∗ = dom(v). Then Pon(τ) = {p, q} for some point

p ∈ v and some point q ∈ v′ for some Voronoi domain dom(v′) adjacent to σ∗. Furthermore

Rτ is the perpendicular bisector between p and q. Now being on the opposite side of Rτ

than σ∗, q ∈ Pout(σ) is closer to x than p ∈ Pin(σ), a contradiction.

If don 6= d, then due to τ ∗ being in Ron and its dimension being don − 1, we know

that Pon(τ) = Pon(σ) ∪ {p} for some point p ∈ P \ Pon(σ). Rτ is the set of points

equidistant from the points of Pon(τ), thus for points y ∈ Ron on one side of Rτ we have

‖y − p‖ < ‖y − q‖ while on the other side we have ‖y − p‖ > ‖y − q‖ for all q ∈ Pon(σ).

Case 1: p ∈ Pin(σ). Then for points y ∈ σ∗ we have ‖y − p‖ < ‖y − q‖ for all

q ∈ Pon(σ), and thus ‖x− p‖ > ‖x− q‖ for all y ∈ Pon(σ), a contradiction.

Case 2: p ∈ Pout(σ). Then for points y ∈ σ∗ we have ‖y − p‖ > ‖y − q‖ for all

q ∈ Pon(σ), and thus ‖x− p‖ < ‖x− q‖ for all y ∈ Pon(σ). However we also have p ∈ P (τ )

and thus p ∈ P (τ) \ P (σ), a contradiction.
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4.3 Homology and Persistence

We recall essential definitions and results related to homology [48] and persistent homol-

ogy [33]. Let K be a regular complex. An e-chain is a formal sum ∑
aiσi where the σi are

e-cells of K and ai are coefficients from a field or ring; for our purposes we will use ai ∈ Z2.

Two chains ∑ aiσi and ∑ biσi can be added to yield a chain ∑(ai + bi)σi, and the e-chains

together with this addition form a group of e-chains Ce = Ce(K). We define the boundary

map ∂e : Ce → Ce−1 that maps each e-cell σ to ∂e(σ), the formal sum of its facets, and by

extension maps a chain ∑ aiσi to the sum ∑
ai∂e(σi) of the boundaries of its cells. This

map is a group homomorphism. The collection of boundary maps of a complex K, for all

dimensions e, can be encoded by a boundary matrix B, which is a matrix with coefficients

in Z2 whose rows and columns are indexed by the cells of K, and whose entry Bτ,σ = 1 iff

τ is a facet of σ. If we encode a chain as a Z2-vector v with non-zero entries for those cells

that are part of the chain, then Bv is the boundary of v.

An e-cycle is an e-chain whose boundary is 0, i.e. the empty sum. The set of e-cycles

forms a group of e-cycles Ze = Ze(K) := ker ∂e. A e-boundary is a e-chain that is the

boundary of some (e+ 1)-chain. The set of e-boundaries forms a group of e-boundaries

Be = Be(K) := im ∂e+1. The boundary map has the property that for every (e+ 1)-chain

c it holds that ∂e(∂e+1(c)) = 0. In other words, every e-boundary is a e-cycle, and in

fact Be is a subgroup of Ze. The motivates the definition of the e-th homology group as

the quotient He(K) = Ze(K)/Be(K). Intuitively, the e-th homology group consists of

equivalence classes of e-cycles with the cycles in each class differing by e-boundaries, and

e-cycles in the same homology class are called homologous, see Figure 4.2. Note that in

our setting with chain coefficients in Z2, the e-th homology group is in fact a vector space.

We will write H∗(K) for the homology groups of all dimensions e.

Singular homology generalizes this theory from regular complexes to topological spaces.

The cells that a regular complex consists of are replaced by continuous maps from the

standard e-dimensional simplex into the topological space, called singular maps. Chains

are formal sums of such maps. We omit the details here, but remark that it thus also makes

sense to talk about homology (and persistence) for topological spaces. When applying
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σ

Figure 4.2: The blue 1-cycle c is homologous to the red 1-cycle c′ because they differ in a
boundary: c = c′ + ∂2(σ).

homology to regular complexes or topological spaces linked by continuous maps, they are

turned into homology groups that are linked by group homomorphisms. In this sense,

homology can be viewed as a functor , and we will make occasional use of this terminology.

One important property is that if two topological spaces are homotopy equivalent, then

their e-th homology groups are isomorphic, for any dimension e. The reverse is however

not true. Thus homology gives us a coarser view on the topology of spaces than homotopy.

While the question of the homotopy type of a cell complex is generally undecidable [80],

homology is attractive because it is computable in polynomial time for chain coefficients

in Z2. Specifically, it comes down to computing the Smith normal form of the boundary

matrix.

Let K be a regular complex, and f : K → R a monotonic function. Let a1 < a2 <

· · · < am be the distinct function values of f , and let Ki := f−1(−∞, ai] be the sublevel

sets of f . We get a sequence of complexes ∅ =: K0 ⊂ K1 ⊂ · · · ⊂ Km = K linked by

inclusions, which is the filtration of f . The inclusion map from Ki to Kj for i ≤ j induces

a homomorphism φi,je : He(Ki) → He(Ki) for each dimension e, and the filtration thus

corresponds to a sequence of homology groups,

0 = He(K0)→ He(K1)→ · · · → He(Km) = He(K).

We also refer to such a sequence of homology groups with homomorphisms from left to right

as a persistence module. We define the e-th persistent homology group as Hi,j
e := imφi,je for

0 ≤ i ≤ j ≤ m. Intuitively, it consists of those homology classes of Ki that are still alive at

Kj : Hi,j
e = Ze(Ki)/(Be(Kj)∩Ze(Ki)). We say a e-dimensional homology class γ ∈ He(Ki)

is born at Ki if γ 6∈ Hi−1,i
e , and we call ai its birth time. We say it dies entering Kj if, while
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going from Kj−1 to Kj via φj−1,j , it merges with a older class, i.e. φi,j−1
e (γ) 6∈ Hi−1,j−1

e but

φi,je (γ) ∈ Hi−1,j
e . In that case we call aj its death time. Some homology classes may not

have a death time; in that case we set its death time to +∞. We call aj −ai its persistence

and the pair (ai, aj) its persistence pair. The multiplicity of a persistence pair is the

number of independent e-dimensional homology classes born at Ki and dying entering Kj .

Then the e-dimensional persistence diagram, Dgme(f), is the multi-set of all persistence

pairs with their respective multiplicities, and can be visualized in R× (R ∪ {+∞}). For

convenience, we will sometimes visualize all e-dimensional persistence diagrams in one

single diagram Dgm(f), in which every persistence pair is annotated with its dimension e.

Algorithmically, persistence is computed using the boundary matrix reduction algorithm

[33, Chapter VII]. Given the boundary matrix of a complex K, indexed by the cells of K

in order of their filtration value, a reduction of its columns akin to Gaussian elimination

produces a simplified matrix from which the information about persistence pairs can be

extracted. Thus this algorithm runs in time cubic in the number of cells n. This algorithm

has been implemented and optimized [10; 82; 65]. It is widely used and in practice runs in

almost linear time for many practical inputs.

The notion of persistence is not limited to filtrations, i.e. increasing sequences of

regular complexes. We can also work with a zig-zag sequence of complexes that are

connected by inclusions in either direction, e.g. K0 ⊆ K1 ⊇ K2 ⊆ · · · ⊇ Km. Algorithms

for persistence in this setting have been implemented and their runtime is also O(n3) [14].

Algorithms also exist more generally for homology groups linked by zig-zag sequences

of homomorphisms [13]. However in this case the running time is O(n4), and we would

have to explicitly compute the homology groups first. Thus our aim will be to develop

algorithms that only involve inclusion sequences of complexes.

In practice, such as in the case of the k-fold cover filtration, we might want to compute

persistence for a sequence of topological spaces rather than regular complexes. While

singular homology provides a definition, it is usually impractical to compute due to the

infinite number of singular maps into the topological space. Even if we find a sequence of

complexes each with the same homology as the corresponding topological space, as in the

case of Coverk(P, r) and Delk(P, r), we need need to ensure that the resulting persistence

diagrams are the same as well. The Persistence Equivalence Theorem [94] gives us a

sufficient condition.
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Consider two persistence modules He
(i) and H̃e

(i) linked by homomorphisms, and

furthermore homomorphisms φi : He
(i) → H̃e

(i) linking each pair of homology groups, as

follows:

H̃e
(0)

H̃e
(1)

. . . H̃e
(m)

He
(0) He

(1) . . . He
(m)

φ
0

φ
1

φ
m

These could for example be the homology groups of sublevel sets of two different filtered

complexes or spaces. If this diagram commutes and the φi are isomorphisms, then we call

the two modules isomorphic. The Persistence Equivalence Theorem states that if two

persistence modules are isomorphic, then the e-th persistence diagrams of the modules

are the same. Note that this result also holds more generally for sequences of homology

groups that are linked by zig-zag sequences of homomorphisms.

4.3.1 Persistence in scale

Recall that Coverk(P, r) ⊆ Coverk(P, s), whenever r ≤ s, and similarly Delk(P, r) ⊆

Delk(P, s), giving us the k-fold cover filtration and the order-k Delaunay filtrations in

scale. Furthermore Coverk(P, r) is homotopy equivalent to Delk(P, r) by Lemma 4.3.

This implies that their homology groups are isomorphic, however a-priori we do not

have map that would provide the isomorphism between their homology groups, nor a

map from Coverk(P, r) to Delk(P, r) or vice versa. Neither Coverk(P, r) ⊆ Delk(P, r) nor

Coverk(P, r) ⊇ Delk(P, r), regardless of the scaling of we use in the definition of the order-k

Delaunay mosaic. However we can find a map embedding Delk(P, r) into Coverk(P, r), as

follows. We first construct the barycentric subdivision, Sd Delk(P, r), which is a simplicial

complex. Each vertex u ∈ Sd Delk(P, r) represents a j-cell in Delk(P, r), which is dual to

a (d − j)-dimensional Voronoi polyhedron, and we map u to the center of mass of the

intersection of this polyhedron with the k-fold cover. By construction, this intersection is

non-empty and convex, so it contains the center of mass in its interior. After mapping all

vertices, we map the other simplices of Sd Delk(P, r) by piecewise linear interpolation; see

Figure 4.3.

The resulting map is injective and provides a homeomorphism from Delk(P, r) to
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Figure 4.3: Subdivision of Del2(P, r) with its embedding in Cover2(P, r).

Sd Delk(P, r), which is embedded in Coverk(P, r). In fact, Sd Delk(P, r) is a deformation

retract of Coverk(P, r): an explicit deformation retraction can be constructed in a similar

vein to the deformation retraction from Cover1(P, r) to Del1(P, r) that was given in [32].

This implies that the map from Delk(P, r) to Coverk(P, r) we just constructed is a homotopy

equivalence.

With these maps to link Delk(P, r) and Coverk(P, r), the following diagram commutes,

with he indicating the homotopy equivalences:

Coverk(P, r) Coverk(P, s)

Delk(P, r) Delk(P, s).

⊆

⊆

he he

Therefore this diagram commutes after applying the homology functor, and the resulting

vertical maps are isomorphisms between the corresponding homology groups. The Per-

sistence Equivalence Theorem implies that the persistence diagrams of the k-fold cover

filtration and the order-k Delaunay filtration for fixed k and varying r are the same.

With this, we have the necessary tools to provide an algorithm to compute persistence

of k-fold covers for varying radii. Algorithm 1 computes Delk(P ). Lemma 4.5 provides

the recipe for computing the radii of the cells of Delk(P ), which is implemented by

Algorithm 2. Thus we obtain the sublevel set filtration of Delk(P ), whose persistence

module is isomorphic to the persistence of Coverk(P, r) for varying radius r. Finally, the

persistence diagram is obtained from the filtration via the boundary matrix reduction

algorithm.
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We implementated this algorithm in 2 and 3 dimensions in python [69] and C++ [70],

using the PHAT library [10] for boundary matrix reduction.

4.4 Persistence in depth

Recall that there is not only an inclusion relation between k-fold covers for varying radii,

but also for varying orders k. In this section we will present results allowing us to compute

persistence of k-fold covers for varying k, which we refer to as persistence in depth. While

according to Lemma 4.3 we can use Delk(P, r) as a proxy for Coverk(P, r), there are no

straightforward inclusions or maps between the order-k Delaunay complexes Delk(P, r) for

different k. Thus a novel approach is needed in order to compute persistence in depth.

We will make use of the rhomboid tiling, and begin by introducing a radius function on it.

4.4.1 Rhomboid filtration

To shed additional light on the subcomplexes of the Delaunay mosaics, we introduce

a discrete function on the collection of rhomboids discussed in Section 3.1. Calling it

the squared radius function, R2 : Rho(P ) → R, we define it by remembering that each

j-dimensional rhomboid, ρ ∈ Rho(P ), corresponds to a (d + 1 − j)-dimensional cell,

ρ∗ ∈ Arr(P ). Decomposing a point of the cell into its first d coordinates and its (d+ 1)-st

coordinate, we write y = (x, z) ∈ Rd × R, and we define r(y) = ‖x‖2 − 2z. With this

notation, we define the squared radius function by mapping ρ to the minimum value of

any point in its dual cell:

R2(ρ) = miny∈ρ∗ r(y). (4.3)

By convention, the value of the vertex that corresponds to the ordered three-partition

P = (∅, ∅, P ) is R2(0) = −∞. To obtain a geometric interpretation of this construction,

recall the paraboloid P in Rd+1 which is defined by the equation z = 1
2‖x‖

2. We introduce

Pt(x) : Rd → R defined by Pt(x) = 1
2(‖x‖2 − t), and also use Pt to refer to the graph of

this function. This graph Pt is the original paraboloid P dropped down vertically by a

distance t
2 . With this notation, R2(ρ) is the minimum t such that Pt has a non-empty

intersection with ρ∗, see Figure 4.4. This implicitly defines the radius function R, and



56

while strictly speaking R can take imaginary values, in the unweighted setting this is

only of concern for the rhomboid that is the origin. In the weighted setting however this

can apply to arbitrary rhomboids, and thus it is better to talk about the squared radius

function R2. Similarly, as in the weighted setting it makes sense to talk about spheres

with negative square radius, it may be preferable to also talk about k-fold covers of balls

of a given square radius and the square radius function Rk
2 for Delaunay mosaics, in order

to maintain generality.

∅

a b c d e

ab bc de

abc bcd cde

abcd bcde

abcde

cd

(a) A sublevel set of R2, corresponding to those
rhomboids whose duals have already been en-
countered by Pt.

ha

hb hc

hd

he

(b) The dual hyperplane arrangement Arr(P )
with the paraboloid Pt sweeping its cells. P0
drawn as dotted line.

Figure 4.4: The rhomboid radius function R2 in terms of the paraboloid Pt sweeping the
arrangement.

Clearly, R2 is monotonic, that is: R2(ρ) ≤ R2(%) if ρ is a face of %. Indeed, if ρ is a

face of %, then %∗ is a face of ρ∗, which implies that the paraboloid touches ρ∗ at the same

time or before it touches %∗ when dropped. It follows that the sublevel sets of the radius

function are subcomplexes of the rhomboid tiling.

Relation to Delaunay radius function. Recall that the order-k Delaunay mosaic of

P is the horizontal slice of the rhomboid tiling at depth k . In other words, every cell of

Delk(P ) is the horizontal slice of a rhomboid, and we used ρ := ρ(σ) to denote the unique

lowest-dimensional rhomboid that σ is a slice of.

It turns out that the previously defined radius function on the order-k Delaunay mosaic,

Rk : Delk(P )→ R, coincides with the restriction of R to the horizontal slice, as we will
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now show.

Lemma 4.6 (Delaunay Radius Function). Let P ⊆ Rd be finite and in general position.

For every integer k ≥ 1 and every cell σ ∈ Delk(P ), we have Rk
2(σ) = R2(ρ(σ)).

Proof. The paraboloid Pt intersects Rd in the sphere with squared radius t. More generally,

the paraboloid intersects every d-plane tangent to P = P0 in an ellipsoid whose vertical

projection to Rd is a sphere with squared radius t. Dropping the paraboloid vertically

thus translates into growing balls simultaneously and uniformly centered at the points

in P . By definition, R2(ρ) is the value t0 of t for which the paraboloid touches the dual

cell, ρ∗ ∈ Arr(P ), for the first time. More formally, the set of points q ∈ ρ∗ that lie on or

above the graph of Pt is empty for all t < t0 and non-empty for all t ≥ t0.

Let ρ := ρ(σ); let σ∗ be the vertical projection of ρ∗ to Rd, and assume it is a polyhedron

in some Voronoi tessellation of P . It belongs to Vork(P ) iff its dual cell, σ, belongs to

Delk(P ). In that case σ∗ ∩ Coverk(P, r) is empty for all r < r0 and non-empty for all

r ≥ r0, in which r2
0 = t0 = R2(ρ). By definition, σ belongs to Delk(P, r) iff this intersection

is non-empty, which implies Rk
2(σ) = R2(ρ), as required.

The equivalence of the previously defined order-k Delaunay radius function and the

rhomboid radius function restricted to slices allows us to give an alternative characterization

of the rhomboid radius function, akin to the one from Lemma 4.4 for order-k Delaunay

mosaics.

In the same vein as for order-k Delaunay cells, we say a sphere is ρ-constrained if

rho(S) = ρ, and denote the smallest such sphere as Smin(ρ). In other words, Smin(ρ) is

the smallest enclosing sphere of Pin(ρ) that has Pon(ρ) on its surface and no other points

from P in its interior.

Now if σ is an order-k Delaunay cell and ρ := ρ(σ) the rhomboid of σ, then by

Lemma 4.6 ρ and σ have the same radius value. Then it follows from Lemma 4.4 that the

radius value of ρ is the radius of Smin(σ), which is the same as the radius of Smin(ρ) because

Pin(ρ) = Pin(σ), Pon(ρ) = Pon(σ) and Pout(ρ) = Pout(σ). While not all rhomboids ρ have

such a slice σ, in particular any 1-dimensional rhomboids, the observation nevertheless

generalizes:

Lemma 4.7. R2(ρ) equals the squared radius of Smin(ρ).
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Proof. Recall the correspondence between points in the hyperplane arrangement and

spheres that was used in the proof of Claim 1 from Theorem 3.1. A point y = (x, z)

below the paraboloid P was mapped to the sphere S with center x and squared radius

‖x‖2− 2z. Crucially, we observed that if γ is the unique arrangement cell in whose interior

y is contained in, then In(S) = Pabove(γ), On(S) = Pcontains(γ), and Out(S) = Pbelow(γ).

Now let t = R2(ρ), and let r2 be the squared radius of Smin(ρ). Then by definition t is

the smallest value for which Pt contains a point y ∈ ρ∗. The aforementioned map maps y

to a ρ-constrained sphere, thus r2 ≤ t. Conversely, when reversing this map, Smin(ρ) is

mapped to a point y ∈ ρ∗. As t was the smallest value for which Pt touches ρ∗, we have

t ≤ r2. Thus the squared radius of Smin(ρ) equals R2(ρ).

Complexity of the rhomboid tiling. Recall that, intuitively, the radius value of a

rhomboid ρ is the first point in time when the paraboloid, as we drop it down through the

hyperplane arrangement, encounters the dual cell ρ∗. This idea gives us convenient means

to count the number of rhomboids in the rhomboid tiling, giving the result below. While

this result has been long known, we still prove it here for completeness (also see e.g. [31,

Section 1.2]).

Proposition 4.8. Let P be a set of n points in general position in Rd, and let Γd+1
i (n)

be the number of i-faces in Arr(P ). Then the number of j-dimensional rhomboids is

Γd+1
d+1−j(n) ≤ (n+1)d+1

j! (d+1−j)! and does not depend on P . The total number of rhomboids is at

most 2d+1

(d+1)!(n+ 1)d+1.

Proof. The number of rhomboids or, equivalently, the cells in the dual hyperplane arrange-

ment, is maximized when the n hyperplanes are in general position, and then they depend

only on n and d. Observe first that for every 0 ≤ i ≤ d + 1, there are
(

n
d+1−i

)
i-planes,

each the common intersection of d + 1 − i hyperplanes. The paraboloid Pt used in the

definition of R2 sweeps out the arrangement and encounters a new chamber whenever

it first intersects one of the i-planes, for 0 ≤ i ≤ d + 1. This means that there is one

chamber for each plane, which implies that the number of chambers in the arrangement,

and equivalently the number of vertices in the rhomboid tiling, is

Γd+1
d+1(n) =

(
n

d+ 1

)
+
(
n

d

)
+ . . .+

(
n

0

)
≤ (n+ 1)d+1

(d+ 1)! . (4.4)



59

The inequality on the right-hand side in (4.4) is easy to prove, by induction or otherwise.

To count the i-cells in the arrangement, we observe that each i-plane carries an arrangement

of n− (d+ 1− i) (i− 1)-planes. We get the number of (i-dimensional) chambers in this

arrangement from (4.4), and multiplying with the number of i-planes, we get the number

of i-cells:

Γd+1
i (n) =

(
n

d+ 1− i

)
Γii(n− d− 1 + i)

≤ nd+1−i

(d+ 1− i)!
(n+ 1)i

i! ≤ (n+ 1)d+1

(d+ 1− i)! i! . (4.5)

Writing j = d− i, we get a (j + 1)-rhomboid in Rho(P ) for every i-cell in the arrangement.

In other words, (4.5) counts the (j + 1)-rhomboids in the rhomboid tiling.

#cells =
d+1∑
i=0

Γd+1
i (n) ≤

d+1∑
i=0

(n+ 1)d+1

(d+1−i)! i! = 2d+1

(d+ 1)!(n+ 1)d+1. (4.6)

4.4.2 Computation

In this section, we develop an algorithm that computes the persistence of the nested

sequence of multi-covers in depth (4.2). We follow the usual strategy of substituting

a complex for each cover, but there are complications; for example, the vertex sets of

consecutive Delaunay mosaics are different, see Figures 4.5a and 4.5c. We represent

Coverk(P, r) by Delk(P, r) and we introduce additional complexes between contiguous

Delaunay mosaics to realize the inclusion between the covers.

Half-integer slices. There are generally no convenient maps connecting Delk(P ) with

Delk−1(P ). To finesse this difficulty, we use the horizontal half-integer slices Del`(P ) of

the rhomboid tiling at depth ` = k − 1
2 for k ≥ 1. Recall that Del`(P ) is dual to degree-k

Voronoi tessellation Vor`(P ), which is a refinement of the order-k Voronoi tessellation and

thus also decomposes Coverk(P, r) into convex pieces. We refer to the decomposition of

Coverk(P, r) by Vor`(P ) as Vor`(P, r), see Figure 4.5b.
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(a) The black order-2 Voronoi tessellation decomposes the 2-fold cover (stronger pink) into convex
pieces. The corresponding subcomplex of the dual order-2 Delaunay mosaic is superimposed in
blue.

(b) The 2-fold cover (stronger pink) with the 3-fold cover highlighted in pale red. In black, the
degree-3 Voronoi tessellation, which is the superposition of the order-2 and order-3 Voronoi
tessellations. It decomposes the 3-fold cover into convex pieces. In blue, the dual of this
decomposition, D2.5 := Del2.5(P, r). The additional green cells are part of E2.5 ⊇ D2.5.

(c) Like Figure 4.5a, but with 3-fold cover, order-3 Voronoi tessellation and dual Del3(P, r).

Figure 4.5: Delaunay mosaics and Voronoi decompositions of the k-fold cover for different
k, for six points P in the plane with a pink ball of radius r centered at each.
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There are natural piecewise linear maps from Del`(P ) to Delk(P ) and to Delk−1(P ):

· · · → Delk−1(P )← Del`(P )→ Delk(P )← . . .

Specifically, we get Del`(P ) → Delk(P ) by mapping the vertices dual to the regions

decomposing dom(Q) ∈ Vork(P ) to the vertex dual to dom(Q). Symmetrically, we

get Del`(P ) → Delk−1(P ). However, because such maps lead to complications in the

persistence algorithm, we will construct a sequence of complexes linked by inclusions

instead.

We use the horizontal slabs of the rhomboid tiling to connect the mosaics via inclusions.

To formally define them, write Hk
` for the points in Rd+1 that lie on or between H` and Hk.

We define slab mosaics as intersections of such slabs with the rhomboid tiling. Analogous

to Delk(P, r), we also define radius-dependent subcomplexes of these slab mosaics, as well

as of half-integer mosaics:

Delk` (P, r) = {ρ ∩Hk
` : R2(ρ) ≤ r2}, (4.7)

Del`(P, r) = {ρ ∩H` : R2(ρ) ≤ r2}, (4.8)

Del`k−1(P, r) = {ρ ∩H`
k−1 : R2(ρ) ≤ r2}. (4.9)

To simplify the notation, we fix r and write Dk = Delk(P, r), Ck = Coverk(P, r), etc. The

half-integer Delaunay mosaic includes in both slab mosaics, Dk includes in the first, and

Dk−1 includes in the second, giving the following zig-zag sequence of inclusions:

· · · ⊇ Dk−1 ⊆ D`
k−1 ⊇ D` ⊆ Dk

` ⊇ Dk ⊆ . . .

Figure 4.6 provides an example. We note an important difference between the two slabs:

Vor`(P, r) and Vork(P, r) are different convex subdivisions of the same space, Ck, which

implies that D` and Dk have the same homotopy type. Indeed, this is also the homotopy

type of Dk
` , and there are natural deformation retractions to D` and Dk. In contrast, Dk−1

and D` have generally different homotopy types, and there is a deformation retraction from

D`
k−1 to Dk−1 but not necessarily to D`; see again Figure 4.6. To remedy this deficiency,

we introduce mosaics that contain D` and D`
k−1 as subcomplexes. To construct them,

we recall that Vor`(P ) is a refinement of Vork−1(P ), which implies that the polyhedra of
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P2

P2.5

P3

Figure 4.6: A sublevel set of the 3-dimensional rhomboid tiling whose slices are the mosaics
of Figure 4.5. From top to bottom: D2 in dark blue, D2.5 in purple, and D3 in dark red,
with slabs connecting adjacent slices.

Vor`(P ) intersect Ck−1 in convex sets. We let E` be the dual of this convex decomposition

of the (k − 1)-fold cover. Since Ck ⊆ Ck−1, we indeed have D` ⊆ E`; see Figure 4.5b.

Furthermore, we let E`
k−1 be the maximal subcomplex of Rho(P ) ∩H`

k−1 whose boundary

complexes at depths k − 1 and ` are Dk−1 and E`. Clearly, D`
k−1 is a subcomplex of

E`
k−1, and because Dk−1 and E` are deformation retracts of E`

k−1, these three mosaics have

the same homotopy type. We will use these relations shortly in the computation of the

persistence diagram of the filtration of multi-covers in depth (4.2).

Connecting the spaces. To prepare the construction of the persistence and zigzag

modules, we connect the multi-covers and the corresponding Delaunay mosaics with maps.

Fixing r ≥ 0 and setting ` = k − 1
2 , as before, we consider the following diagram in which

identities and homotopy equivalences are marked as such:

Ck Ck Ck Ck Ck Ck−1

E`+1 E`+1
k Dk Dk

` D` E`

id id id id id

he

he

he

he

he

he

he

he he

he

he

The top row stretches out the filtration by writing each multi-cover five times and connecting

the copies with the identity. The remaining maps in this row are inclusions. The bottom
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row contains the slice mosaics at integer and half-integer depths, and connects them with

inclusions, using slab mosaics as intermediaries. As argued above, the first five mosaics

all have the same homotopy type, and the inclusion maps between them are homotopy

equivalences.

As the vertical map from Dk to Ck, we use the homotopy equivalence we constructed in

Section 4.3.1, which intuitively embeds the barycentric subdivision SdDk into Ck. Recall

that D` is dual to Vor`(P, r), which is another convex decomposition of the k-fold cover.

We therefore get the vertical map from D` to Ck the same way, first constructing SdD`

and second mapping the vertices to centers of mass. This is again a homotopy equivalence.

Similarly, E` is dual to the convex decomposition of Ck−1 with Vor`(P ). As before, we

get the vertical map by sending the vertices of E` to centers of mass, but we distinguish

between two cases. If a polyhedron of Vor`(P ) has a non-empty intersection with Ck,

we send the corresponding vertex of SdE` to the center of mass of this intersection. If,

however, the intersection with Ck is empty but the intersection with Ck−1 is non-empty,

then we send the vertex to the center of mass of the latter. This ensures that the geometric

embedding of SdD` is contained in the geometric embedding of SdE`.

To finally map the slab mosaics, we first deformation retract them to slice mosaics

and then map them reusing the barycentric subdivisions. Here we make arbitrary choices,

mapping E`+1
k to E`+1 to Ck and mapping Dk

` to Dk to Ck. Note that all vertical maps

are homotopy equivalences, as marked in the above diagram.

Modules. Applying the homology functor for a fixed coefficient field, we map all multi-

covers and mosaics to vector spaces and all maps to homomorphisms (linear maps) between

them. We denote the persistence module consisting of the top row of vector spaces with

homomorphisms from left to right as MC(r). The bottom row of vector spaces are connected

by homomorphisms going from left to right or from right to left. This kind of structure

is referred to as a zigzag module, and we denote it ZZ(r). The advantage of the zigzag

over the persistence module is that its maps are induced by inclusions between complexes,

which lend themselves to computations. Our goal, however, is to compute the persistence

diagram of MC(r), and we do this by using ZZ(r) as a proxy. The following result is

therefore essential.

Lemma 4.9 (Isomorphism of Modules). Let P ⊆ Rd be locally finite and in general
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position. Then the persistence diagrams of MC(r) and of ZZ(r) are the same for every

r ≥ 0.

Proof. Write Ck,Dk,Ek for the vector spaces obtained by applying the homology functor to

Ck, Dk, Ek, etc. The goal is to show that the diagram of multi-covers and mosaics maps to

a diagram of vector spaces in which all squares commute and most maps are isomorphisms:

Ck Ck Ck Ck Ck Ck−1

E`+1 E`+1
k Dk Dk

` D` E`

iso iso iso iso iso

iso

is
o

iso

is
o

iso

is
o

iso

is
o

is
o

iso

is
o

To prove commutativity, we consider the five squares shown in the above diagram. The

first square commutes already before applying the homology functor, and so does the third

square. Similarly, the fifth square commutes because the image of SdD` in Ck includes in

the image of SdE` in Ck−1.

The second and fourth squares do not commute before applying the homology functor,

but we argue they do after applying the functor. The two cases are similar, so we focus on

the fourth square. Recall that Vork(P, r) and Vor`(P, r) are two convex decompositions of

the same space, which is Ck, and that Vor`(P, r) is a refinement of Vork(P, r). Dk and D`

are dual to these decompositions, with one or more vertices of D` corresponding to every

one vertex of Dk. When we map D` to Dk
` to Ck, the full subcomplex with these vertices

is first contracted to the single vertex by the deformation retraction from Dk
` to Dk, and

second it is mapped to the center of mass of the corresponding domain in Vork(P, r). In

contrast, when we map D` to Ck directly, all these vertices map to different points in

Ck, but all these points lie in the interior of the same domain in Vork(P, r). Indeed, the

full subcomplex with these vertices is dual to a convex decomposition of this domain and

therefore contractible. It follows that the fourth square of homomorphisms commutes.

Similarly, the second square commutes, and therefore all squares commute.

Isomorphisms are reversible, so we can draw them from left to right in the bottom

row of the diagram. The result are two parallel persistence modules whose vector spaces

are connected by isomorphisms. The Persistence Equivalence Theorem of [33, page 159]

implies that the two modules have the same persistence diagram.
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Algorithm and running time. We compute the persistence diagram of the filtration

of multi-covers in depth (4.2) using the zigzag algorithm generically described in [13] and

explained in detail for inclusion maps in [14]. Its worst-case running time is cubic in the

input size, which is the total number of cells in the mosaics.

To count the cells, we assume a finite number of points in Rd, n = #P . Recall

Proposition 4.8, which states that the number of j-rhomboids in Rho(P ) is Γd+1
d−j(n) ≤

(n+1)d+1

(d+1−j)! j! . All cells of our zig-zag filtration are horizontal slices or horizontal slabs of

rhomboids in Rd+1.

In particular, we have Γd+1
d+1(n) vertices in the tiling. For 0 ≤ j ≤ d, the interior of every

(j + 1)-rhomboid has a non-empty intersection with 2j + 1 hyperplanes H`, in which 2` is

an integer. The (j + 1)-rhomboid thus contributes 2j + 1 j-cells to the Delaunay mosaics

and 2j + 2 (j + 1)-prisms to the slab mosaics. Taking the sum over all dimensions, we get

the total number of cells in the mosaics used in the construction of the zigzag module:

#cells = Γd+1
d+1(n) +

d∑
j=0

(4j + 3)Γd+1
d−j(n)

≤ (n+ 1)d+1

(d+ 1)! +
d∑
i=0

4(d+1−i) (n+ 1)d+1

(d+1−i)! i!

≤ (n+ 1)d+1

(d+ 1)! + 4(n+ 1)d+1
d∑
i=0

1
(d− i)! i! ≤ 9(n+ 1)d+1. (4.10)

Taking the third power, we get an upper bound for the worst-case running time of the

algorithm and thus the main result of this section.

Theorem 4.10 (Multi-cover Persistence). Let P be a set of n points in general position

in Rd. For every radius r ≥ 0, the persistence diagram of the filtration of multi-covers with

radius r can be computed in worst-case time O(n3d+3).

4.5 2-parameter persistence

Two-parameter persistence was introduced in [15], providing a 2-dimensional analog

of persistence modules, called bipersistence modules. While the notion of persistence

diagram does not generalize to bipersistence modules, one can explore the persistence

diagrams of any of its 1-dimensional slices, a process aided by e.g. the software library
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RIVET [83]. Furthermore other invariants of bipersistence modules have been proposed,

such as multiparameter persistence landscapes [87].

For the multi-covers, we have inclusions Coverk(P, r) ⊆ Cover`(P, s) whenever r ≤ s

and ` ≤ k. Thus they form a bifiltration in two parameters, r ∈ R and k ∈ Z with

1 ≤ k ≤ #P , as illustrated below for r1 < r2 < r3 and k = 1, 2, 3:

... ... ...

. . . Cover3(P, r1) Cover3(P, r2) Cover3(P, r3) . . .

. . . Cover2(P, r1) Cover2(P, r2) Cover2(P, r3) . . .

. . . Cover1(P, r1) Cover1(P, r2) Cover1(P, r3) . . .

By applying the homology functor H∗ to this diagram, we get a bipersistence module

with two parameters r and k. Note that it contains the persistence modules in scale in

horizontal direction and in depth in vertical direction, but allows us to look at both aspects

at once.

As in the 1-dimensional case, we call two bipersistence modules with parameters r

and k isomorphic if there are point-wise isomorphisms between their homology groups for

each r and k, and these maps commute with the maps of the bipersistence modules. If

two bipersistence modules are isomorphic, then their aforementioned invariants are the

same, in particular the persistence diagrams of any of their corresponding 1-dimensional

submodules.

In a recent result, it was shown [24] that there is a simplicial complex admitting a

bifiltration whose bipersistence module is isomorphic to the multi-cover bipersistence

module. Let n := #P , 1 ≤ k ≤ n and r ∈ R. Extending the Delaunay Nerve, which we

recall as DelNk(P, r) := Nerve {dom(Q, r) : Q ⊆ P,#Q = k} the authors define

DelNk+1
k (P, r) := Nerve {dom(Q, r) : Q ⊆ P,#Q = k or #Q = k + 1}
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and construct a new complex by stacking these together, as follows:

DelN`
k(P, r) :=

`−1⋃
j=k

DelNj+1
j (P, r)

Then the main result is the following:

Theorem 4.11 ([24]). The bipersistence modules H∗(DelNn
k(P, r)) and H∗(Coverk(P, r))

in parameters r ∈ R and k ∈ Z with 1 ≤ k ≤ n are isomorphic.

One of the key insights of the proof is that DelNn
k(P, r) has the same homology as

DelNk(P, r). An explicit algorithm with implementation for computing these complexes

DelNn
k(P, r) in 2 dimensions is provided by the authors. By relating these complexes

to the rhomboid tiling, we will now show that our algorithms and implementations for

the rhomboid tiling and its radius function can be used to compute these complexes in

arbitrary dimensions.

Slab complexes. Recall that we defined Hk := {(x1, . . . , xd+1) ∈ Rd+1 : xd+1 = k} as the

horizontal hyperplane at depth k, and H`
k as the points in Rd+1 that lie on or between

Hk and H`. We observed in Theorem 3.1 that Delk(P, r) is the (cell-wise) intersection of

Rho(P, r) with Hk. In a similar vein, we define Delk+1
k (P, r) as the (cell-wise) intersection

of Rho(P, r) with Hk+1
k . Inspired by [24] and in full analogy to DelN`

k(P, r), for integers

1 ≤ k < ` ≤ n we stack these complexes to define

Del`k(P, r) :=
`−1⋃
j=k

Delj+1
j (P, r).

Figure 4.7 shows an example. Note that this is not the same as the intersection of H`
k with

Rho(P ), because in Del`k(P, r) the rhomboids are cut along all planes at integer depth. As

before, we write DelN`
k(P ) and Del`k(P ) for the corresponding complexes for infinite radius

r, and call the smallest r such that a cell appears in DelN`
k(P, r) or Del`k(P, r) respectively

its radius value.

Note that for a simplex S ∈ DelNk+1
k (P ) all combinatorial vertices correspond to

subsets of P , and we can define Pin(S) = ⋂
v∈S v, Pon(S) = ⋃

v∈S v \ Pin(S), Pout(S),

S-constrained sphere and Smin(S) like we do for rhomoboids or Delaunay cells. Then we

have the following relationship between DelNk+1
k (P, r) and Delk+1

k (P, r) which naturally

translates to the same relationship between DelN`
k(P, r) and Del`k(P, r) for integers k ≤ `:
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k = 1

k = 2

k = 3

k = 4

k = 5

∅

a b c d e

ab bc de

abc bcd cde

abcd bcde

abcde

cd

a b c d e

Del52(P, r)

Del21(P, r)

Figure 4.7: At the top, the point set P = {a, b, c, d, e} ⊂ R1 with balls of radius r around
them. Below in solid blue, the sublevel set Rho(P, r) of the rhomboid tiling with the
rhomboids sliced apart to give the stacking of the slab mosaics. Note how here Delnk(P, r)
with n = 5 is homotopy equivalent to Coverk(P, r) above.

Lemma 4.12. 1. For every cell σ from Delk+1
k (P ), there is a simplex S in DelNk+1

k (P )

with S := V (σ). S and σ have the same radius value.

2. Conversely, for every simplex S from DelNk+1
k (P ) there is a unique lowest-dimensional

cell σ in Delk+1
k (P ) whose vertex set is a superset of the vertex set of S. This cell σ

is the intersection of the slab Hk+1
k with the rhomboid ρ defined by Pin(ρ) = Pin(S),

Pon(ρ) = Pon(S) and Pout(ρ) = Pout(S). S and σ have the same radius value.

3. In particular, there is a bijection between the maximal cells of Delk+1
k (P, r) and

DelNk+1
k (P, r).

Proof. (1) Let S := V (σ) be the set of combinatorial vertices of σ. Because V (σ) ⊆ V (ρ)

for some rhomboid ρ, Smin(σ) exists, and let x be its center. To show that S is a simplex

in DelNk+1
k (P ), it is sufficient to show the domains dom(Q) intersect for all Q ∈ S; in

particular we will show that x ∈ dom(Q) for all Q ∈ S. As any Q ∈ S has #Q = k or

#Q = k+ 1 and is the union of Pin(σ) with some subset of Pon(σ), Q is a set of k or k+ 1

closest points for x. Thus x ∈ dom(Q) for all Q ∈ S. The fact that S and σ have the
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same radius value follows from (2).

(2) S is a set of subsets Q ⊆ P such that all all dom(Q) for Q ∈ S have a non-empty

intersection. As furthermore #Q = k or #Q = k + 1 for each Q, it follows that the

chambers in the hyperplane arrangement Arr(P ) corresponding to the sets Q also intersect.

Recall that the chamber corresponding to Q is the intersection of h−q for q ∈ Q and h+
p

for p ∈ P \ Q. Then the intersection of these chambers for all Q ∈ S yields a cell that

is the intersection of h−p for p ∈ Pin(S), hp for p ∈ Pon(S), and h+
p for p ∈ Pout(S). This

cell ρ∗ is dual to the rhomboid ρ ∈ Rho(P ) with Pin(S) = Pin(ρ), Pon(S) = Pon(ρ) and

Pout(S) = Pout(ρ). In particular S is a subset of the vertices of ρ due to duality. Due

to #Q = k or #Q = k + 1 for Q ∈ S we further have that S is a subset of V (σ) for

σ := ρ ∩Hk+1
k .

If S (and thus σ) consist of a single vertex, it is easy to see that they have the same

radius value. If not, we know that Pon(S) 6= ∅. Now the projection δ∗ of ρ∗ is exactly

the set of points x ∈ Rd for which ‖p− x‖ =: r(x) is the same for all p ∈ Pon(S), and

‖p− x‖ ≤ r(x) for p ∈ Pin(S) and ‖p− x‖ ≥ r(x) for p ∈ Pout(S). Thus any S-constrained

sphere must have its center in δ∗. Let x be a point in δ∗ that minimizes r := r(x). Then

r is the radius value of ρ and thus σ. However, r is also the smallest radius such that

dom(Q, r), Q ∈ S intersect: All balls Br(p) for p ∈ Pin(S) ∪ Pon(S), and thus p ∈ Q

for all Q ∈ S, contain x. For any smaller radius r′ < r, the balls Br′(p) for p ∈ Pon(S)

(and p ∈ Pout(S)) will not intersect δ∗, leaving at most |Pin(S)| < max{#Q : Q ∈ S}

balls that intersect δ∗. In particular, dom(Q, r′) does not intersect δ∗ for those Q of size

max{#Q : Q ∈ S}.

(3) is a direct consequence of (1) and (2).

This allows us to compute DelNn
k(P, r) straight-forwardly from Delnk(P, r). Therefore

our dimension-agnostic implementation [70] can be employed to compute the simplicial

bifiltration of DelNn
k(P, r) whose bipersistence module is isomorphic to the bipersistence

module of the k-fold covers.

In fact, our lemma implies that there is a bijection of the maximal cells of DelN`
k(P, r)

and Del`k(P, r), and the conditions of Lemma 4.2 apply. This means that the two complexes
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are homotopy equivalent, and in particular that Delnk(P, r) and Coverk(P, r) have the same

homology, see Figure 4.7.

This insight sparked a collaboration with Corbet, Kerber and Lesnick, the original

authors of [24], to extend their manuscript by relating the bipersistence modules of their

nerve construction DelNn
k(P, r) and the sliced rhomboid tiling Delnk(P, r). Using a persistent

version of the nerve theorem, the main new result is that the bipersistence modules of these

two are in fact isomorphic. This in particular implies that the bipersistence modules of

the k-fold covers and Delnk(P, r) are isomorphic as well, and therefore the sliced rhomboid

tiling can be used directly to compute 2-parameter persistence of k-fold covers. This is

attractive as Delnk(P ) has a smaller number of cells than DelNn
k(P ), in particular in higher

dimensions.

Going one step further, it turns out that there is no need to slice the rhomboid tiling

at all. Let the depth of a rhomboid be the minimal depth of its vertices. By thus defining

a depth function on all cells of Rho(P ) rather than only the vertices, together with the

radius function we obtain a bifiltration on the rhomboid tiling directly. Let Rho(P, r)≥k
be the sublevel set with respect to r and the superlevel set with respect to k. Then the

corresponding bipersistence module is isomorphic to the bipersistence module of Delnk(P, r):

The main insight for this result is that Rho(P, r)≥k is a deformation retraction of the

corresponding Delnk(P, r) for any k and r. But this means that Rho(P, r)≥k is homotopy

equivalent to Coverk(P, r), and the bipersistence modules of Rho(P ) and Coverk(P, r) are

isomorphic as well. Thus we obtain the means of computing 2-parameter persistence of

the multicovers on the rhomboid tiling directly, which is even smaller than Delnk(P ) and

simplifies the algorithm further.
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5 Discrete Morse theory

In this chapter we look at the radius function on the rhomboid tiling and the order-k

Delaunay mosaic from a viewpoint of discrete Morse theory [40]. We show that the

squared radius function R2 on Rho(P ) is a generalized discrete Morse function [42] which

furthermore has the special property that all its intervals have a vertex as a lower bound

(Section 5.1). Based on this result, in Section 5.1.1 we improve on the algorithm from the

previous chapter that computes these radius functions.

On the other hand, Rk
2 : Delk(P )→ R neither satisfies the requirements of a discrete

Morse function [40] nor the slightly weaker requirements of a generalized discrete Morse

function [42]. Nevertheless we prove that it behaves similar to a discrete Morse function,

so that its increments can be meaningfully classified into critical and non-critical steps

with predictable impact on the homotopy type (Section 5.2). A step, intuitively, is a

connected component of the level set of the radius function. Noting that for all cells σ in

a given step, S := Smin(σ) and in particular Pon := Pon(σ) are the same, our main result

of Section 5.2 is the following classification of the topology types of the steps:

• We call the configuration of cells that defines a step self-centered if the center of S

is contained in the simplex spanned by Pon. Adding the cells in the step changes

the Euler characteristic of the sublevel set, which implies that it also changes the

homotopy type, so we refer to it as a critical step of Rk
2.

• We call the configuration altruistic if the center of S is not contained in the simplex

spanned by Pon. Adding the cells in the step preserves the homotopy type, so we

refer to it as a non-critical step of Rk
2.
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Discrete Morse Theory. To state our results more formally, we need to give a few

definitions from discrete Morse theory, also see e.g. [33] for reference. Let K be a regular

complex. Its Hasse diagram is a directed graph whose nodes are the cells in K and whose

arcs are the pairs of cells σ ⊆ τ with dim τ = dim σ + 1. Let f : K → R be a monotonic

function, i.e. f(σ) ≤ f(τ) whenever σ ⊆ τ . The level set for a value r ∈ R is the set of

cells f−1(r) ⊆ K. It is a set of nodes in the Hasse diagram. A step of f is a maximal

subset of a level set whose induced subgraph in the Hasse diagram is connected. We note

that the steps of f partition K. An interval of K is given by cells σ ⊆ υ and consists of

all faces of υ that share σ as a face, denoted [σ, υ] = {τ ∈ K | σ ⊆ τ ⊆ υ}. We call σ

the lower bound and υ the upper bound of [σ, υ]. The interval is singular if σ = υ; if σ

is a proper face of υ then the interval is non-singular . A monotonic function f : K → R

is generalized discrete Morse if every step is an interval; see [42]. For comparison, f is

discrete Morse if every step is an interval of size 1 or 2; see [40] but note that the original

definition is in-essentially more general by allowing f(σ) > f(τ) for pairs σ ⊆ τ in a step.

Indeed, consider two contiguous sublevel sets that differ by a level set: f−1[−∞, r] \

f−1[−∞, r) = f−1(r). If this difference is a non-singular interval, then the two sublevel sets

have the same homotopy type, while if the difference is a singular interval, then they have

different homotopy types. In Section 5.1 we will prove that the squared radius function

R2 on the rhomboid tiling is a generalized discrete Morse function with the additional

property that every sublevel set is contractible.

5.1 Topology of rhomboid steps

Recall how we defined the squared radius function on the rhomboid tiling, R2 : Rho(P )→ R.

By continuously dropping down the paraboloid P , eventually it intersects every cell in the

dual hyperplane Arr(P ). With Pt being P shifted downwards by t
2 , the squared radius

value of a rhomboid ρ is thus the smallest t such that Pt intersects its dual cell in the

arrangement, ρ∗.

Assuming general position, the sequence in which the paraboloid encounters the cells in

Arr(P ) follows a few simple rules. For example, when the paraboloid encounters a vertex

in Arr(P ), then it has already encountered 2d+1− 1 of the chambers incident to the vertex,

and it touches the unique last incident chamber for the first time, as well as all faces of
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this chamber that share the vertex. Thus all of these faces, or more precisely their dual

rhomboids, have the same radius value. The following lemma generalizes and formalizes

this observation.

Proposition 5.1 (Generalized Discrete Morse). Let P ⊆ Rd be locally finite and in general

position. Then R2 : Rho(P )→ R is a generalized discrete Morse function. Furthermore,

all intervals in the implied partition have a vertex as a lower bound, and there is only one

singular interval, which contains the vertex at the origin.

Proof. The vertex at the origin corresponds to the three-partition (∅, ∅, P ), has radius

R2(0) = −∞, and forms a singular interval. Every other interval is defined by a point

y ∈ Rd+1 at which the dropping paraboloid first touches a cell of the arrangement. There

is one such point on every plane that is the common intersection of hyperplanes forming

the arrangement. By general position, all these points are different. Let y belong to an

i-plane, which is common to j = d + 1− i hyperplanes. It belongs to the interior of an

i-cell, which is common to 2j chambers. Exactly one of these chambers has not already

been touched before the i-cell. The paraboloid touches this chamber at the same point y

and similarly every cell that is a face of this chamber and contains the i-cell as a face. The

corresponding rhomboids form an interval of the radius function, with an upper bound of

dimension j and a lower bound of dimension 0. We have 1 ≤ j ≤ d + 1, which implies

that the interval is not singular.

To show that R2 is a generalized discrete Morse function, we still need to make sure

that intervals in the same level set are separated, by which we mean that no simplex of

one interval is face of a simplex in the other interval. By assumption of general position,

there is only one level set that contains more than one interval, namely (R2)−1(0). All

its intervals are of the form [yp, 0yp], in which p is a point in P , the origin 0 ∈ Rd+1

corresponds to the three-partition (∅, ∅, P ), and 0yp is the edge that connects 0 with yp.

While these edges all share 0, no two also share the other endpoint. It follows that these

intervals are components of the Hasse diagram of the level set, as required.

Note that R2 is rather special because it has a limited collection of interval types. This

is best seen by constructing Rho(P ) one step at a time. After starting with the vertex

at the origin, each step glues a new rhomboid of dimension at least 1 together with all
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missing faces to the complex. Such a step preserves the homotopy type, which implies

that every non-empty sublevel set of R2 is contractible.

Interval vertices. Proposition 5.1 says that the paraboloid always enters a chamber

together with a subset of its faces while sweeping. This chamber corresponds to the vertex

of a rhomboid and the faces of the chamber correspond to the faces of the rhomboid that

share this vertex. As we will see now, the vertex is not necessarily the lowest vertex of the

rhomboid, also see Figure 5.1.

abc

bc

b c

∅

acab

0

rab

rbc

rabc

a

rac

(a) Rho(P ), with colors indi-
cating filtration values of De-
launay cells σ which simul-
taneously indicate filtration
value of the rhomboids ρ(σ).
Here rQ denotes the circum-
radius of the set of points Q.

(b) Arr(P ) in red, with the shifted
paraboloid Pt in blue. Dashed lines are
pairwise intersections of hyperplanes.

c

a

b

(c) Top view of (b). The
blue disks around a, b, c
are the parts of the hyper-
planes ha, hb, hc that are
above the paraboloid. Dot-
ted circles: paraboloid–
hyperplane intersections.

Figure 5.1: Rhomboid tiling and the dual arrangement for a planar point set P = {a, b, c} as
laid out in (c). The paraboloid is intersecting the bottom-most chamber (below ha, hb, hc),
but it is still above the intersection point of the three hyperplanes. Thus the bottom
vertex in (a) has smaller radius value than the 3-dimensional rhomboid and does not form
an interval with the rhomboid.

Letting ρ ∈ Rho(P ), we write top(ρ) and btm(ρ) for the vertices with minimum

and maximum depth, and we write last(ρ) for the vertex with maximum value of R2.

Proposition 5.1 implies that λ = last(ρ) for every interval [λ, ρ] of R2 : Rho(P )→ R. For

some rhomboids, we have last(ρ) = btm(ρ), but not necessarily for all. Depending on the

shape of the rhomboid, λ can indeed be any vertex of ρ other than top(ρ). We formally

state this as a lemma:

Lemma 5.2 (Last not Top Vertex). Let P be a locally finite set of points with real weights

in general position in Rd. Then λ 6= top(ρ) for every non-singular interval [λ, ρ] of R2.
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Indeed, the chamber in Arr(P ) that is dual to top(ρ) lies above ρ∗. Since ρ is an upper

bound, the point at which the paraboloid first touches ρ∗ during the sweep is an interior

point. Hence, top(ρ)∗ has a lower value of R2 and therefore does not belong to the interval.

In the following we will look at this result from a different angle to obtain a means for

computing the vertex that a rhomboid forms an interval with.

5.1.1 Computing intervals

The alternative characterization of the rhomboid radius function from Lemma 4.7 provides

another viewpoint for Lemma 5.2. To identify the vertex v that a rhomboid ρ forms an

interval with, we need to identify its vertex with the same radius value. By Lemma 4.7

this means the radii of Smin(ρ) and Smin(v) have to be the same, and it is not hard to see

that the spheres Smin(ρ) and Smin(v) are in fact the same. As Pon(v) = ∅ for any vertex

v, the sphere achieving the radius value of v is defined solely by inclusions and exclusion

constraints. Therefore all constraints of ρ that require points of Pon(ρ) to be on the sphere

need to be converted to inclusion and exclusion constraints without affecting the resulting

sphere. We know that such constraints exist because the lower bound of the interval is a

vertex. This observation gives rise to the following lemma.

Lemma 5.3. Let ρ be a rhomboid that is an upper bound of an interval. Let PI ⊆ Pon(ρ)

such that the smallest enclosing sphere S of PI that excludes Pon(ρ) \ PI is the same as

the circumsphere of Pon(ρ). Then ρ forms an interval with the vertex v = Pin(ρ) ∪ PI .

Proof. As ρ is an upper bound of an interval, its sphere Smin(ρ) is only supported by

Pon(ρ). If there were another point p ∈ Pin(ρ) (or p ∈ Pout(ρ)) on the surface of this

sphere, then the rhomboid % with Pon(%) = Pon(ρ) ∪ {p} and Pin(%) = Pin(ρ) \ {p} (or

Pout(%) = Pout(ρ) \ {p}) would be a higher dimensional rhomboid with the same sphere

Smin(%) = Smin(ρ), contradicting that ρ is an upper bound of an interval.

As Smin(ρ) is only supported by Pon(ρ), this means that Smin(ρ) is the same as the

circumsphere of Pon(ρ), which by our assumption is the same as S. Now the inclusion and

exclusion constraints of S are part of the constraint set for Smin(v), but because S = Smin(ρ)

it does in fact fulfill all the constraints of Smin(v). Thus Smin(v) = S = Smin(ρ), proving

that they are in the same interval.
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Note that for unweighted point sets, this yields a stronger version of Lemma 5.2: If

#PI ≤ 1, the resulting sphere has squared radius 0, or −∞ in the case of the origin.

However the only rhomboids with radius value 0 are the vertices adjacent and edges

incident to the origin. Thus for all other rhomboids ρ that are upper bounds, last(ρ)

cannot be a vertex at depth ≤ 1 within ρ, i.e. last(ρ) is neither top(ρ) nor a vertex adjacent

to top(ρ). This furthermore implies that apart from the edges incident to the origin, no

other edges are upper bounds of any interval. These conclusions do not hold for weighted

point sets.

Algorithm. Assume ρ is an e-rhomboid that is an upper bound of an interval. Let S

be the circumsphere of Pon(ρ). For each point in p ∈ Pon(ρ) we need to decide whether

to impose an inclusion or exclusion constraint on it. Let Sp be the circumsphere of

Pon(ρ) \ {p}. If p is outside of Sp, then imposing an exclusion constraint for p would yield

Sp rather than S, thus we add p to PI in order to impose an inclusion constraint for it.

Similarly, if p is inside of Sp, we have to impose an exclusion constraint for p and thus do

not add it to PI , see Figure 5.2.

c

p1

p2

p3

Figure 5.2: Checking which constraint to impose on p3 for a rhomboid ρ with Pon(ρ) =
{p1, p2, p3}. The circumsphere of {p1, p2} (dashed) contains p3 in its interior, therefore we
need to impose an exclusion constraint on p3 to get back the circumsphere of Pon(ρ).

It remains to identify whether a rhomboid is an upper bound of an interval. While

a-priori this is hard to tell for an individual rhomboid, it becomes straightforward if we

want to compute all intervals in the rhomboid tiling. We know that all (e+ 1)-rhomboids

are upper bounds of intervals. After marking all rhomboids that are contained in such

intervals, we know that all remaining unmarked e-rhomboids are upper bounds of intervals.

Thus by processing the rhomboids in decreasing dimension, all unmarked rhomboids we

encounter are upper bounds. Algorithm 3 describes the resulting algorithm for computing

the radius function on Rho(P ).
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Algorithm 3 computes the squared radius functionR2 for a given rhomboid tiling Rho(P ).
Rhomboids come in intervals with the same radius value. Instead of computing the radius
value for each rhomboid individually as the radius of a constrained sphere, this algorithm
computes the radius value for each interval as the radius of a circumsphere.

function ComputeRadii(Rho(P ))
for e from d+ 1 down to 0 do

for all e-rhomboids ρ in Rho(P ) do
if R2(ρ) is not defined then

CS := CircumSphere(Pon(ρ))
R2(ρ) := squared radius of CS
PI = ∅
for all p in Pon(ρ) do

CS := CircumSphere(Pon(ρ) \ p)
if p outside CS then

Add p to PI
end if

end for
PO := Pon(ρ) \ PI
// ρ forms an interval with lower bound v := Pin(ρ) ∪ PI
// Now iterate over all rhomboids in the interval
for all subsets PS of Pon(ρ) do

Let % be the rhomboid with
Pin(%) = Pin(ρ) ∪ (PS ∩ PI),
Pon(%) = Pon(ρ) \ PS, and
Pout(%) = Pout(ρ) ∪ (PS ∩ PO)

R2(%) := R2(ρ)
end for

end if
end for

end for
return R2

end function
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5.2 Topology of Delaunay steps

We are interested in the partition of Delk(P ) into the steps of Rk
2. To this end, let σ and

τ be two cells in Delk(P ) and note that σ ⊆ τ iff ρ(σ) ⊆ ρ(τ ). It follows that each step of

Rk
2 is the horizontal slice of a step of R2.

Assuming P ⊆ Rd is locally finite and in general position, the radius function of the

order-1 Delaunay mosaic is known to be a generalized discrete Morse function [9]. This

property does not generalize to higher order. Nevertheless, we will show that we can

still classify the steps of Rk
2 into critical and non-critical types such that each critical

step changes the homotopy type of the sublevel set in a predictable manner, and every

non-critical step maintains the homotopy type of the sublevel set. The main result of

this section is that critical and non-critical steps of Rk
2 can be distinguished by whether

last(ρ) is equal to or different from btm(ρ), with ρ the smallest rhomboid in Rho(P ) that

contains the corresponding step of R2. We begin with an enumeration of the types.

Step types. By Proposition 5.1, every step of R2 is an interval [λ, ρ] in which ρ is the

maximum rhomboid that satisfies λ = last(ρ). The interval consists of all faces of ρ that

share λ. Assuming dim ρ = e + 1 ≥ 0, the rhomboid has vertices at e + 2 depth values,

and letting k be the depth value of btm(ρ), these values are k − g for 0 ≤ g ≤ e+ 1. By

Lemma 5.2, λ can assume only e + 1 of these depth values. If λ 6= btm(ρ), then Hk−g

has a non-empty intersection with the interior of at least one rhomboid in the interval for

1 ≤ g ≤ e, and if λ = btm(ρ), then there is one more, namely for 0 ≤ g ≤ e. In total, we

count e2 + e+ 1 possible types of slices; see Figure 5.3 for an illustration of the types for

e = 2. Some of these types are symmetric. We refer to the e+ 1 slices in case λ = btm(ρ)

as self-centered and the e2 other slices as altruistic. The terminology is motivated by the

fact that last(ρ) = btm(ρ) iff the convex hull of the points Pon(ρ) contain the center of

Smin(ρ). There is an ambivalent case, when the center lies on the boundary of the convex

hull, but this can be prevented by slightly strengthening the general position assumption.

Topology type. Letting A ⊆ Rho(P ) be a step of R2, we write Hk ∩ A ⊆ Delk(P ) for

the corresponding step of Rk
2. The Euler characteristic of A is χ(A) = ∑

ρ∈A(−1)dim ρ.

Since A is necessarily an interval, its Euler characteristic vanishes, unless A = {0}, in

which case it is 1. The Euler characteristic of the slice is χ(Hk ∩ A) = ∑
σ∈H

k
∩A(−1)dimσ,

which may or may not be zero. We write |A| for the union of interiors of the rhomboids in
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λ

λ

top(ρ) top(ρ)

btm(ρ) btm(ρ)λ = btm(ρ)

Figure 5.3: A 3-rhomboid ρ with dashed silhouette separating the (gray) faces that share
λ from the (transparent) other faces. Each slice is blue and shown together with the
corresponding subgraph of the Hasse diagram. Left: the self-centered configurations whose
corresponding critical steps consist of a triangle without its boundary, a triangle with its
edges but without vertices, and a vertex. Middle and right: the altruistic configurations
whose correspond non-critical steps consist in both cases of a triangle with one edge, and
a triangle with two edges and the shared vertex.

A, and Hk∩|A| for its slice at depth k. Let He ⊆ Re be the set of points with non-negative

first coordinate, and note that χ(He) = 0 for all e ≥ 1. Two topological spaces have the

same topology type if there is a homeomorphism between them, and in this case they have

the same Euler characteristic. For example, the half-open interval, [0, 1), has the same

topology type as H1, which we denote as [0, 1) ≈ H1. We represent [0, 1) by an edge

together with one of its endpoints, so the Euler characteristic, which is the alternating

sum of cells vanishes. We will see that every altruistic configuration has the topology

type of He, for some value of e, while every self-centered configuration has non-zero Euler

characteristic.

Theorem 5.4 (Topology of a Step). Let P be a finite set of points in general position in

Rd, let A = [λ, ρ] be a step of R2, set e+ 1 = dim ρ, write k for the depth of btm(ρ), and

recall that Hk−g ∩ A is a step of Rk−g
2.

1. If last(ρ) = btm(ρ), then χ(Hk−g ∩ A) 6= 0 for 0 ≤ g ≤ e.

2. If last(ρ) 6= btm(ρ), then Hk−g ∩ |A| ≈ Hp and therefore χ(Hk−g ∩ A) = 0 for

1 ≤ g ≤ e.

All other horizontal integer slices of A are empty.

Proof. We first consider the self-centered configurations, when λ = last(ρ) = btm(ρ). For

g = 0, the hyperplane Hk−g contains λ and avoids the interiors of all other rhomboids

in A = [λ, ρ]. The Euler characteristic of this slice is one and therefore non-zero, as
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claimed. For 1 ≤ g ≤ e, Hk−g has non-empty intersections with the interiors of the

rhomboids of dimension larger than g and empty intersections with the interiors of all

other rhomboids in the interval; see the left panel of Figure 5.3 for the three cases that

occur for e = 2, and see Figure 5.4 for three of the four cases that occur for e = 3.

Therefore, χ(Hk−g ∩ A) = ∑e+1
q=g+1(−1)q

(
e+1
q

)
, in which the binomial coefficient is the

number of q-dimensional faces of a (e+ 1)-dimensional rhomboid that share a common

vertex, namely λ. This sum evaluates to (−1)g+1
(
e
g

)
, which is non-zero, as claimed.

Figure 5.4: Three self-centered configurations in R3. From left to right: a tetrahedron
without boundary faces, an octahedron with four of its triangles but no other faces, and a
tetrahedron with all of its faces except for the vertices.

We second consider the altruistic configurations, when λ 6= btm(ρ). Let λ′ be the

vertex of ρ opposite to λ, and project ρ orthogonally to the hyperplane normal to λ′ − λ.

The projection is a e-dimensional convex polytope. Call the preimage of its (relative)

boundary the silhouette of ρ, and note that it is a (e− 1)-dimensional topological sphere

that contains all vertices of ρ other than λ and λ′; see Figure 5.3. None of the rhomboids

in the silhouette belong to A = [λ, ρ]. In fact, the silhouette separates the boundary

rhomboids of ρ that are in this interval from the boundary rhomboids that are not in the

interval. Since btm(ρ) and top(ρ) belong to the silhouette, Hk and Hk−(e+1) both have

empty intersection with the interiors of all rhomboids in [λ, ρ], as claimed. We thus assume

1 ≤ g ≤ e for the remainder of this proof. At depth k − g, the horizontal hyperplane

intersects ρ in a convex polytope of dimension e, and it intersects the boundary of ρ on

both sides of the silhouette. To go from one side to the other along the boundary of ρ

intersected with Hk−g, we have to cross the intersection of Hk−g with the silhouette, which

we will prove is a topological (e − 2)-sphere. We conclude that an open (e − 1)-ball of

the boundary belongs to Hk−g ∩ |A|, and the complementary closed (e− 1)-ball does not

belong to Hk−g ∩ |A|. It follows that the slice of the interval has the topology type of

He, as claimed. The middle and right panels of Figure 5.3 illustrate the two altruistic
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configurations for e = 2, and Figure 5.5 illustrates the nine altruistic configurations for

e = 3. Reading the eight outer cases in a circle around the center case, we note that each

is symmetric to the diagonally opposite type. In other words, there are really only five

altruistic types for e = 3.

Figure 5.5: The 9 altruistic configurations in R3. Compared to btm(ρ) at depth k, the
vertex λ = last(ρ) has depth k − 3, k − 2, and k − 1 in the top, middle, and bottom row.
Similarly, the slice is at depth k− 3, k− 2, and k− 1 in the left, middle, and right column.

We return to the intersection of Hk−g with the silhouette and the claim that this

intersection is a topological sphere of dimension e− 2. For e = 1, ρ is a convex quadrangle,

its silhouette consists of two vertices, top(ρ) and btm(ρ), and Hk−1 passes through the

other two vertices thus intersecting the silhouette in the empty set — the (−1)-sphere — as

claimed. Assuming e ≥ 2, we denote the silhouette by S, we recall that it is a (e−1)-sphere,

and we write w : S→ R for the depth function on the silhouette. Its extreme values are

w(top(ρ)) = k − (e+ 1) and w(btm(ρ)) = k, and Hk−g ∩ S = w−1(k − g). To prove that

this level set is a (e − 2)-sphere, it suffices to show that w has only two critical points,

namely the minimum at top(ρ) and the maximum at btm(ρ). The case e = 2 is easy. Here

we have a 3-rhomboid whose silhouette is a hexagon. The difference between the depths

of the endpoints of any edge is 1. We thus need three edges to go from btm(ρ) at depth k
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to top(ρ) at depth k − 3 and another three edges to go back. It follows that Hk−g meets

the silhouette in two points — a 0-sphere — as claimed.

The argument for e > 2 is different. Recall that w is a continuous function on a

(e− 1)-sphere, this sphere is decomposed into (e− 1)-rhomboids, and w is affine on each of

these rhomboids. If w has a critical point in addition to the minimum at top(ρ) and the

maximum at btm(ρ), then it also has a saddle, and this saddle must be a vertex of some

of the rhomboids. To contradict the existence of a saddle, note that the (e− 1)-rhomboids

meet in groups of e at a common vertex. Let ν be such a shared vertex and cut each

incident (e − 1)-rhomboid with the (e − 2)-dimensional plane that passes through the

vertices adjacent to ν. We thus get e (e− 1)-simplices, which can be seen are the facets of

a e-simplex. It follows that ν can be a minimum, a maximum, or a regular point, but it

cannot be a saddle of w. Hence, every horizontal slice at depth strictly between k− (e+ 1)

and k is a (e− 2)-sphere, as required.

Consequences. We now turn Theorem 5.4 into a statement about the filtration of

order-k Delaunay mosaics. Let r2
0 < r2

1 < . . . be the sorted values of Rk
2 and write

K` = (Rk
2)−1[−∞, r2

` ] ⊆ Delk(P ) for every ` ≥ 0. Assuming P is in general position, the

difference between any two contiguous mosaics is a collection of steps, and by slightly

strengthening the notion of general position, we may assume that each difference is a

single step: A` = K` \ K`−1. For example, all vertices of the order-1 Delaunay mosaic

of unweighted points share the function value, 0, so to achieve this, we can move to the

weighted setting and perturb the point set by assigning small weights. While it is not

necessary, we simplify the following statement by using this stronger notion of general

position.

Corollary 5.5 (Filtration of Order-k Delaunay Mosaics). Let P be a locally finite set of

points with real weights in general position in Rd, and let 0 ≤ k and 0 ≤ u ≤ v be integers.

1. If exactly one of the steps Au, Au+1, . . . , Av of Rk
2 is critical, then Ku and Kv have

different Euler characteristics and therefore different homotopy types.

2. If Au, Au+1, . . . , Av are all non-critical steps of Rk
2, then Ku and Kv have the same

homotopy type.
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This corollary of Theorem 5.4 is a direct extension of a theorem about discrete Morse

functions in [40]. Other results in this theory can be similarly extended.

5.3 Discussion

The main result of this chapter is a topological characterization of the incremental steps of

the radius function on both the rhomboid tiling and the order-k Delaunay mosaic of a finite

set of points in Euclidean space. For the rhomboid tiling, we show that except for the step

consisting of the origin, all steps are intervals and thus the sublevel sets of the rhomboid

tiling are contractable; we also give a recipe for computing these intervals. For the order-k

Delaunay mosaic we provide a characterization of critical and non-critical steps. With this

insight, we gain a topological interpretation of the probabilistic analysis of the order-k

Delaunay radius function for a stationary Poisson point process [36]. While the critical

steps do not determine the topology of the sublevel sets, they provide bounds on the

ranks of their homology groups. In contrast to the order-1 case studied in [9], the radius

function in the order-k case is neither discrete Morse nor generalized discrete Morse [40;

42]. Since the function nevertheless behaves similar to a Morse function, it may be

considered a geometrically motivated further extension of the framework; see also [54,

Chapter 11] for algebraically motivated extensions of discrete Morse theory.

In conclusion, we mention that our result requires the given points be in general

position. While this assumption does not imply that the Delaunay mosaics are simplicial,

it simplifies the analysis by guaranteeing that the dual of the corresponding hyperplane

arrangement is a complex of rhomboids. It would be interesting to generalize the theory

to finite point sets that are not necessarily in general position.
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6 Analysis of sphere packings

For a given d-dimensional metric space X, a sphere packing is a collection of (d − 1)-

dimensional spheres (or equivalently d-dimensional balls) that are internally disjoint. Its

packing density is the fraction of the containing space that is covered by those spheres.

We will only consider packings of spheres with equal radius, also called mono-disperse

packings. In 2-dimensional Euclidean space it is a long known result, see e.g. [84], that the

optimal packing density is π/
√

12 ≈ 91%, and it is uniquely achieved by the hexagonal

packing, see Figure 6.1. In practice the 3-dimensional case is of more interest due to its

Figure 6.1: The hexagonal sphere packing in the plane.

applications in crystallography and material sciences. In his seminal work, Hales proved that

π/
√

18 ≈ 74% is the maximum packing density that can be achieved in 3 dimensions [45].

This density is achieved by stacking layers of 2-dimensional hexagonal packings on top

of each other. Such packings are called Barlow stackings. In the simplest of these

structures, the layers are arranged as ABAB..., which corresponds to the hexagonally close-

packed (HCP) structure, and ABCABC... for the face-centered cubic (FCC) structure [49;

72], also see the first and last rows of Figure 6.6. More complex examples can be found in
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structures of metal compounds where the anions are arranged in a Barlow stacking, with

the cations occupying the holes of a HCP packing. [90; 64]. Such highly regular packings

are also called crystalline packings.

In the physical world, when identical hard spheres are randomly packed together, they

naturally form a disordered structure that fills 64% of the space. Although the packing

structure is disordered, the limiting packing density of 64% is highly reproducible. This

phenomenon was extensively studied by J. D. Bernal in the 1950s and 1960s and the

limiting density of 64% is known as the Bernal density or ϕBernal. Numerous experimental

and numerical studies have extended Bernal’s seminal findings and reported that a stable

configuration of frictional mono-disperse spheres can exist at densities ranging from

ϕ = 0.55 to ϕ = 0.64 [11; 5; 52]. It is possible to break through ϕBernal by intensely

vibrating [76] or cyclically shearing [73] of the packing structure. This forces the density

of the packing to increase, up to the maximum of ϕmax ≈ 74%. Beyond Bernal’s density,

crystalline clusters inevitably appear in mono-disperse sphere packings, see Figure 6.2. A

natural question to ask is: How are the spheres packed together locally in the disordered

regime and what happens to these local structures during the transition through ϕBernal

all the way to ϕmax?

Figure 6.2: 3D rendering of the experimental packing. A cut-out section shows the bulk
crystallisation and partially crystallised regions
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Due to the abundance and importance of such local motifs in physical systems, many

techniques have been invented for their quantification, each with strengths and shortcom-

ings. Bond orientational order parameters [64; 53] are widely used in condensed matter

physics to characterise local crystalline structures. They quantify local structure within a

short range of a given sphere, and depend on the choice of neighbourhood of that sphere,

of which various notions exist [46]. Crucially, regardless of the neighbourhood notion,

small perturbations in the sphere packing can cause the set of neighbours of a sphere to

change, causing a discontinuity in the bond orientational order parameters [63].

Addressing this lack of continuity, sphere packings have been analyzed with persistent

homology [76]. In this setting persistence is computed for the union of balls of radius

r around the sphere centers of a packing. As the radius r increases from 0 to infinity,

persistent homology tracks the emergence (births) and disappearance (deaths) of topological

features of this union of balls. In the 3-dimensional setting, these topological features are

connected components (or the gaps between them), closed loops (or the tunnels they form),

and closed surfaces (or the hollow voids they surround). The resulting persistence diagram

has the desirable properties that it is invariant under isometries (rotations, translations,

reflections) of the input, and that small perturbations in the input cannot lead to large

changes in the persistence diagram, which is called stability [22].

One shortcoming of persistent homology of the union of balls is that FCC and HCP

packings yield the same persistence diagrams, and thus cannot be distinguished. Numerous

studies have shown that in experimental sphere packings, FCC is the preferred structure [85;

41; 72] despite the fact that both FCC and HCP structures have an identical packing

density of ≈ 74%. To shed light on this phenomenon without forfeiting the stability

property of persistence diagrams, we use persistence of the k-fold cover in scale, or k-cover

persistence for short, as introduced in Section 4.3.1, to analyse the sphere packings.

For a finite point set P ⊆ Rd, recall that the k-fold cover, Coverk(P, r), is the subset

of Rd that is covered by at least k (closed) balls of radius r around the points P . The

1-fold cover as a special case is simply the union of the balls. For an input point set P ,

using persistence we obtain a persistence diagram Dgm(fk) as output. The notation is

motivated by the fact that the k-fold covers are sublevel sets of the k-th distance function

fk for the points P . Just like the union of balls, the k-fold cover grows as we increase the

radius of the balls, and its topology changes; see Figure 6.3 for a 2-dimensional example
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with k = 3. The computed persistence diagram, Dgm(f3), of the point set P is shown in

Figure 6.4, showing the birth and death times of various topological features in the 3-fold

cover.

In the rest of this chapter, we analyze the geometric structure of FCC and HCP

packings (Section 6.1) to show that with k-cover persistence already for k = 4, FCC and

HCP have distinct persistence diagrams, as seen in Figure 6.5. We then use these insights

to evaluate the 4-cover persistence diagrams of two experimental sphere packing data sets

(Section 6.2), both courtesy of Mohammad Saadatfar. The first is a digital reconstruction

of a real-world packing of 170000 spherical acrylic beads in a cylindrical container, see

Figure 6.2, with local regions of different packing densities. The second is a time series

obtained through a molecular dynamics simulation to assess the structural changes of FCC

and HCP packings under external forces, see Figure 6.9.

6.1 Persistent features in FCC and HCP

In order to understand the persistence diagrams of our experimental datasets, we first

have to analyze how geometric structures in FCC and HCP packings yield persistence

pairs in Dgm(f4). The first and last rows of Figure 6.6 show schematic sketches of the

FCC and HCP packings respectively. In particular we need to understand tetrahedral and

octahedral cavities and their adjacency relations. Such cavities are formed by touching

spheres whose center points span regular tetrahedra or octahedra. In our analysis, we

will focus on Dgm0(f4), the persistence diagram restricted to 0-dimensional topological

features (i.e. connected components), as they are easier to interpret geometrically than

the higher-dimensional features.

Assuming spheres of diameter 1, a component of the 4-fold cover emerges at the

center of a tetrahedral cavity at radius
√

6/4. Within an octahedron, the 4-fold cover

emerges at radius
√

2/2 at its center. (Both of these radii correspond to the circumradii

of the tetrahedra and octahedra.) The radius for when these components merge with

other components depends on a slightly larger neighbourhood. If two tetrahedra are

face-adjacent, a configuration only present in HCP, the components merge earlier than

if they are only edge-adjacent (as present in both FCC and HCP, but with different

multiplicities).
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(a) Nowhere do three or more balls overlap yet,
thus the 3-fold cover is empty.

H GF

(b) Three connected components (F, G and H)
of the 3-fold cover have emerged at the centers
of the equilateral triangles.

H GI F

(c) Another component I has emerged in the
center of the square.

HI F

J

J ′

(d) The component G has merged into com-
ponent F, while two new components have
appeared.

H F

J

J ′

K

(e) Component I has merged into component
H, in the process creating a small hollow space,
the topological loop K, between them.

F

(f) All components have merged back into com-
ponent F, making the topology of the 3-fold
cover trivial.

Figure 6.3: Development of the 3-fold cover for increasing radii, with the birth and death
of topological features (components, loops). For each point, the ball of radius r is drawn
in semi-transparent pink. The 3-fold cover is where at least three of these balls overlap,
and is drawn in solid red.
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0.58 0.71 0.87 0.97

0.87

0.97
1

G

I

H J K
2

Figure 6.4: 3-cover persistence diagram of the example point set from Figure 6.3, repre-
senting the topological changes over time. Each point is annotated with the label of the
topological feature present in Figure 6.3. Features J and J’ have the same times of birth
and death, and are represented by point J which thus has multiplicity 2. Feature F is not
present as its time of death is at infinity.

Table 6.1 summarizes the features we see in Dgm0(f4) of the FCC and HCP packings.

While zero-persistence features are usually not considered as features, we include the

one stemming from octahedra for completeness as they will become non-zero persistence

features once these octahedra get deformed, e.g. in Figures 6.6, 6.7 and 6.10.

Table 6.1: Summary of features in Dgm0(f4) for FCC and HCP packings. Note that
face-adjacent tetrahedra are only present in HCP packings, but not in FCC packings

Pair in Dgm0(f4) Decimal Feature
(
√

6/4,
√

6/3) (0.61, 0.82) A two face-adjacent tetrahedra
(
√

6/4,
√

3/2) (0.61, 0.87) B two edge-adjacent tetrahedra
(
√

2/2,
√

3/2) (0.71, 0.87) C octahedron-tetrahedron adjacency
(
√

2/2,
√

2/2) (0.71, 0.71) D octahedron (zero-persistence)

We will now give more detailed geometric explanations for the features in Table 6.1.

Figure 6.3 can provide some intuition if equilateral triangles are used as an intuitive proxy

for tetrahedra, and the square as proxy for an octahedron.

With each tetrahedral cavity, a component of the 4-fold cover emerges at radius
√

6/4,

which is the circumradius of such a tetrahedron. The radius for which this component

merges with other components depends on the neighbourhood of this tetrahedron. If it

is face-adjacent, as present in the HCP packing, then it merges with that tetrahedron’s

component at radius
√

6/3, which is the height of a tetrahedron or equivalently the radius

when a ball centered around one of the tetrahedral vertices touches the opposite face. This

explains the pair (
√

6/4,
√

6/3) in the persistence diagram of the HCP packing. If instead
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(a) FCC

A

CB

0.6 0.8 1.0

0.6

0.8

1.0

1

1

1

1
6

2

12

(b) HCP

Figure 6.5: 4-cover persistence diagrams of FCC and HCP packings. 0-dimensional
topological features (components) are shown in blue, 1-dimensional features (loops) in
yellow, 2-dimensional ones (voids) in red. Each persistence pair is annotated above with a
relative multiplicity, indicating how many topological features with the given birth and
death coordinate exist per sphere. Furthermore each 0-dimensional persistence pair is
annotated (in brackets) with the feature from Table 6.1 it corresponds to.

another tetrahedron is adjacent via an edge at the angle like in FCC and HCP, their

components only merge at radius
√

3/2, which is the distance from a tetrahedral vertex to

any of its opposite edges, equaling the height of a triangular face. This explains the pair

(
√

6/4,
√

3/2) in the persistence diagram. In FCC packings this configuration is twice as

frequent as in HCP packings, and thus appears with multiplicity 2 there. Finally, both

configurations contain octahedra that share faces with tetrahedra. The circumradius of an

octahedron is
√

2/2. Thus within octahedra, the 4-fold cover only emerges at radius
√

2/2

at the circumcenter of the octahedron. It merges with the component of a face-adjacent

tetrahedron at radius
√

3/2, which is half the distance between the vertex unique to the

tetrahedron (i.e. not shared with the octahedron) to any of the vertices unique to the

octahedron (i.e. not shared with the tetrahedron). This distance equals the height of a

regular triangle,
√

3/2, as each of the non-shared tetrahedral faces is co-planar with the

incident octahedral face. This explains the persistence pair at (
√

2/2,
√

3/2). As there are

6 rather than merely 4 points at the same distance from the circumcenter of an octahedron,

when the octahedron is slightly deformed it is possible that multiple components arise at a

radius close to
√

2/2 which merge together very quickly. So while in a perfect packing these

components have 0-persistence, in experimental packings we will often also see persistence

pairs close to the diagonal at (
√

2/2,
√

2/2), stemming from this phenomenon. These are
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Figure 6.6: Deformation of an FCC packing (first row) into an HCP packing (last row)
with 3 intermediate configurations. For each row, the first column shows a schematic
sketch of the configuration with the corresponding shifting angle; the second column
shows a projection from above; the third column shows the corresponding Dgm0(f4) (blue)
with red curves indicating the continuous change in Dgm0(f4) when the configuration is
continuously deformed into the next row’s configuration.
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present whenever octahedra are present, and thus appear in both slightly deformed FCC

and HCP packings.

Deformations. We investigate the changes in Dgm0(f4) as an FCC packing is deformed

into an HCP packing by moving a layer of spheres over a saddle point. Figure 6.6 provides

an illustration of the process and the resulting changes in Dgm0(f4). Note that when a

packing is continuously deformed, the persistence diagram changes continuously as well

due to its stability property, and thus we see continuous curves in Dgm0(f4).

6.2 Analysis of experimental sphere packings

Using 4-cover persistence and the insights about the persistence diagrams of FCC and

HCP packings, we analyse the two aforementioned data sets. We first compare persistence

diagrams for different packing densities, and then define a measure of frequency of FCC

and HCP using 4-cover persistence to quantify these differences with specific focus on

FCC- and HCP-like structures. Using simulation data, we then investigate how FCC and

HCP packings are affected when shearing forces are applied.

Note that due to the high total number of spheres and thus persistence pairs, the

diagrams in this section are visualized as heatmaps, each pixel representing the number of

persistence pairs in its value range.

6.2.1 Different densities.

We investigate the relationship between packing densities and persistence diagrams for

experimental sphere packing data sets. The main data set was obtained by putting

approximately 170000 acrylic beads into a cylindrical container, subjecting the container

to vibrations, and reconstructing the locations of the sphere centers via X-ray tomography

and 3D image analysis. Figure 6.2 visualizes the complete data set. In order to get data

sets for different packing densities, we analyze smaller regions of 4100–4600 spheres each.

Figure 6.7 shows Dgm0(f4) for a few of these regions with different packing densities.

In these experimental packings, we see persistence pairs in the locations from Table 6.1

characteristic of FCC and HCP structures, indicating the presence of these geometric
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configurations in our packings. We furthermore see persistence pairs along the deformation

curves from Figure 6.6, suggesting that these deformed configurations are present at various

stages.

As the packing density increases, we see persistence pairs typical for FCC and HCP

appearing in higher frequencies, indicating that crystalline domains appear in the packing.

Interestingly, the persistence pair that is unique to HCP seems to be much less frequent

than the two pairs shared with FCC. Exploiting these characteristic signatures in the

persistence diagram, we will estimate the ratio of FCC and HCP present in a given packing

in the following section.

6.2.2 Frequency measures.

Recall from Figure 6.5 that the persistence pairs (0.61, 0.82), (0.61, 0.87) and (0.71, 0.87)

appear in ratio 1:1:1 per sphere in HCP packings, while they appear in ratio 0:2:1 in FCC

packings. We can “count” the number of persistence pairs close to these characteristic

persistence pairs, to be explained in more detail later. Introducing two variables fHCP and

fFCC to denote a frequency measure of HCP and FCC respectively, we find the least-squares

solution to an over-defined linear system of 3 equations to estimate these frequencies of

HCP and FCC and thus the ratio between HCP and FCC. The equation system is as

follows:
fHCP = mface-tetra

fHCP + 2fFCC = medge-tetra

fHCP + fFCC = mocta-tetra

where mface-tetra, medge-tetra and mocta-tetra denotes the number of persistence pairs “close”

to (0.61, 0.82), (0.61, 0.87) and (0.71, 0.87) respectively. Instead of directly counting how

many persistence pairs are within a certain radius of each of these features, we rather weigh

the contributions such that closer pairs contribute more to the count. Specifically, for each

pair we compute the distance between the pair and the feature, and weigh it according

to a Gaussian probability density function gσ(x) that is normalized such that gσ(0) = 1,

so that pairs that coincide exactly with the feature contribute 1. As standard deviation

for the Gaussian we choose σ = 0.005, so that pairs within distance 0.005 still contribute

approximately 0.6 to the count, while pairs at distance greater than 0.015 contribute less

than 0.01. In particular, with this choice we ensure not to capture pairs belonging to
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other features, as the two closest features have a distance of approximately 0.05. For the

distance, we use L∞-distance which is the standard distance used in persistence diagrams.

This choice of counting pairs ensures that the stability property of persistence diagrams

translates to stability of our measure, meaning that small changes in the sphere packings

imply small changes in estimated HCP and FCC frequency.

Figure 6.8 shows the values of our measure for HCP and FCC frequency as well as

their ratio for different packing densities. Each data point is for an experimental packing

of approximately 4000 spheres. We see similar results as observed using previous measures

[47], in particular that FCC occurs more frequently in more crystalline packings than HCP.

Notice that our method will also distinguish more complex Barlow stackings, as long

as the ratios between FCC-type layer groups (i.e. 3 consecutive distinct layers, ABC) and

HCP-type layer groups (i.e. 3 consecutive layers with the first and third coinciding, ABA)

in the stackings are different. For example, Sm or Mo2S3 with ABABCBCAC stacking [71;

90], Ti4S5 with ABABCBABAC stacking and Fe3S4 with ABCBCABABCAC stacking [90; 64] have

ratios between FCC-type and HCP-type layer groups of 2:1, 3:2 and 1:1 respectively,

and thus they exhibit different Dgm0(f4) and our measure would indicate these different

FCC/HCP ratios. For Barlow stackings with the same ratios, we expect Dgm0(fk) for

sufficiently large k to differ.

6.2.3 Stability of FCC and HCP

As seen in Figure 6.8, HCP structures appear less commonly in experimental packings

than FCC structures. We investigate this phenomenon using a molecular dynamics

simulation which allows us to dynamically track the “melting” of a crystalline structure

from FCC/HCP to disorder. Figure 6.9 shows the beginning and end state of the simulation.

A shearing force is applied to the packing of 6000 spheres by shifting the top layer of

spheres horizontally. In each time step, forces between the spheres and the resulting

displacements are computed using the Hertz–Mindlin contact model [47].

Using the 4-cover persistence diagrams, we analyse the stability of HCP and FCC

patterns from a topological perspective as these motifs progress from order towards disorder.

Figure 6.10 shows the temporal evolution of Dgm0(f4) of the FCC and HCP packings at

corresponding time steps. While both structures exhibit deformation patterns similar to
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the ones shown in Figure 6.6, they are much more pronounced in the HCP melting. While

the FCC packing stays stable in its (slightly perturbed) crystalline pattern, the HCP

packing deteriorates into a disordered packing looking similar to Figure 6.7a. The birth

and death coordinates of the FCC/HCP typical features are lower than they theoretically

should be as shown in Figure 6.5, and they slightly decrease over time in the simulation.

However this phenomenon is a side effect of the simulation allowing slight overlap of

spheres under strong forces.

6.3 Conclusions

We applied persistence of k-fold covers in scale to investigate the occurrence of FCC- and

HCP-like structures in sphere packings. This extends previous work [76] that used the

special case for k = 1 which is unable to distinguish these two structures, but also maintains

the stability under perturbations of the input, unlike other conventional parameters.

We defined a persistence based measure to estimate the relative occurrences of local

FCC and HCP structures, and confirmed previous observations that FCC appears at higher

frequencies in experimental packings than HCP, especially for higher packing densities.

By applying 4-cover persistence to time series data sets of FCC and HCP packings under

external forces, we observed that FCC has a more stable structure than HCP.

We would like to remark that the potential value of our framework is not limited to

distinguishing FCC and HCP patterns in sphere packings. Persistence diagrams can be

used in a much broader context, e.g. to compare different structures, to look for local

structures with known signatures in their persistence diagram, or as a preprocessing step in

conjunction with machine learning [56; 59]. Previous applications of persistence to discrete

point sets include predicting physical properties of zeolites [59], or describing amorphous

materials such as glass and distinguishing them from their liquid phase [68]. Like for the

special case of k = 1 (union of balls), k-cover persistence is applicable wherever data is

represented as a discrete point set, but it captures a wider range of features.
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(a) 59.7 %. (b) 65.4 %

(c) 66.1 % (d) 68.1 %

(e) 70.1 % (f) 72.1 %

Figure 6.7: The 4-cover persistence diagram of dimension 0, Dgm0(f4), for experimental
sphere packings of various packing densities, each consisting of between 4100 and 4600
spheres.
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(a) Frequency of FCC and HCP. (b) Relative ratio of FCC and HCP.

Figure 6.8: Frequency measure of HCP- and FCC-like structures as well as ratio of the
two in experimental packings of different densities, according to our measure.

Figure 6.9: Molecular dynamics simulations of the melting process from a regular HCP
packing (left) to a disordered system (right) by inducing shear via moving the top layer.



99

Figure 6.10: Dgm0(f4) for simulated shearing of FCC (left) and HCP (right) packings at
time steps 3, 11, 21, 33 and 49 of the simulation.
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7 Periodic Delaunay triangulations

While nowadays many applications use Delaunay triangulations of finite point sets in

Euclidean space, Delaunay originally introduced the notion in the context of infinite point

sets with translational periodicity [26]. Such periodic point sets are abundant in fields

such as crystallography and material sciences, and their communities would benefit from

software that computes Delaunay triangulations of infinite periodic point sets in Euclidean

space. Specifically, given a d-dimensional lattice and its associated translation group, the

orbits of a given finite point set in Rd with respect to this translation group define a

periodic point set. Our aim is to compute a finite representation of the periodic Delaunay

triangulation of such a periodic point set, specifically a projection of the triangulation onto

the flat d-torus that is the quotient space of Rd under the action of the translation group.

The first algorithm for this problem was already outlined in 1997 [29], yet to our

knowledge no robust and efficient implementations for this problem exist to date. The

Voro++ library [75] is focused on crystallographic applications in 3 dimensions, however

is limited to orthogonal lattices. Zeo++ [92] extends its functionality to arbitrary 3-

dimensional lattices. Both libraries compute the Voronoi cell of a given input point as

an intersection of half-spaces, by searching for other points around it that have influence

on its Voronoi cell. No easy access to the combinatorics of the Delaunay triangulation is

provided, and the computations are done using floating point arithmetics. The CGAL

library [81] provides packages for periodic Euclidean Delaunay triangulations in 2D and

3D, which currently are limited to the integer lattice, referred to as the square and cubic

setting in 2 and 3 dimensions, respectively [57; 18; 17]. We propose an addition to CGAL

to extend this functionality to arbitrary lattices.

The algorithm by Dolbilin and Huson [29] creates 3d copies of each input point
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and computes their finite Delaunay triangulation, from which a representation of the

periodic Delaunay triangulation is extracted. The CGAL algorithm [16; 19] computes the

triangulation in a finitely-sheeted covering space of the d-torus. It is based on the classical

incremental algorithm by Bowyer and Watson [12; 89], and requires that the triangulation

be a simplicial complex at any given time. Let us quickly recall that a triangulation is a

simplicial complex, or is simplicial for short, if each of its simplices consists of a set of

distinct vertices, and the intersection of any two simplices is either empty or a simplex.

Operating directly on the d-torus does not guarantee this, see Figure 7.1a. Thus, in the

cubic setting, a 3d-sheeted cover is used (Figure 7.1b) until sufficiently many points have

been inserted to guarantee that the triangulation in the 1-sheeted cover will be a simplicial

complex. Unfortunately, a 3d-sheeted cover is not sufficient for more general periodic point

sets: As the 3d copies of each point have to be inserted iteratively into the 3d-sheeted cover,

simpliciality can be violated in the intermediate stages of point insertion, see Figure 7.1c.

While there always exists a finitely-sheeted covering space [19] that ensures simpliciality,

the number of sheets might be prohibitively large. Thus we propose a different approach.

(a) The intersection of the
two red edges is not a sim-
plex but a set of two ver-
tices. Thus the triangula-
tion is not simplicial.

(b) The 9-sheeted cover
guarantees a simplicial
triangulation in the
square setting.

(c) In the non-square setting, incremental
point insertion of the 9 copies into the
9-sheeted cover can violate simpliciality.
Here the first of 9 copies is being inserted.

Figure 7.1: Representation of the projections of the periodic Delaunay triangulation into
the 1-sheeted (left) and 9-sheeted cover (middle, right) of the 2-torus.

Overview After formally defining the problem in Section 7.1, we propose an algorithm

(Section 7.2) for periodic Delaunay triangulations that combines two different approaches

and consists of two phases, both of which use Bowyer-Watson’s algorithm. While for

2-dimensional periodic spaces algorithms based on flips circumvent the simpliciality require-

ment [27], and the idea of flips generalizes to higher dimensions in Euclidean space [38],

we stick to Bowyer-Watson’s algorithm as its generalization to 3 (and higher) dimensions
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is straightforward for both Euclidean and periodic point sets. Furthermore it allows

for an efficient, clean, and easily maintainable implementation. The first phase of our

algorithm (Section 7.2.1) refines the algorithm by Dolbilin and Huson [29], and its imple-

mentation details are based on some new results. It uses 3d copies of each input point,

regardless of the lattice, and computes a finite Euclidean Delaunay triangulation on this

point set, from which a representation of the Delaunay triangulation on the d-torus is

obtained. Once a simpliciality criterion is met, our algorithm switches to the second

phase (Section 7.2.3), which conceptually follows the CGAL implementation of the cubic

case [16]. It operates directly on the d-torus, maintaining only one copy of each input

point, and thus provides better insertion running times than phase 1. A first version of

our open-source implementation in 2D and 3D is available on github.1 We are working

on integration into CGAL. Experiments (Section 7.3) show similar performances as the

CGAL implementation restricted to cubic lattices [17]. We close with a discussion of future

extensions in Section 7.4.

7.1 Preliminaries

Let us recall various notions [39; 23] that are employed throughout the algorithm. Let

B = {b1, b2, . . . , bd} be a basis of Rd. The point set Λ := {∑d
i=0 zibi : z ∈ Zd} is called a

lattice, and B is its lattice basis. The lattice Λ is associated with the translation group

Γ consisting of the translations φλ : Rd → Rd mapping the origin to λ, for each λ ∈ Λ.

The group Γ acts on Rd and each of its translations maps Λ onto itself. We denote the

length of the shortest non-zero lattice vector as sv(Λ). For a given lattice basis B, we

call B ∪ {b0} with b0 = −∑d
i=1 bi its superbase. A superbase is obtuse if for every pair bi

and bj, 〈bi, bj〉 ≤ 0. A basis is reduced if its superbase is obtuse [39, Definition 4.4]. This

notion is defined in such a way that we can easily compute sv(Λ) and Dirichlet domains.

The Dirichlet domain of a lattice point λ ∈ Λ is the region of λ in the Voronoi tesselation

of Λ, or more formally dom(λ,Λ) := {x ∈ Rd : ‖x− λ‖ ≤ ‖x− ν‖ ∀ν ∈ Λ}. It is a convex

polytope, and we call the lattice Λ generic if each vertex of dom(0,Λ) is incident to the

Dirichlet domains of exactly d other lattice points. For 2-dimensional generic lattices the

Dirichlet domains are hexagons, for 3-dimensional generic lattices they are combinatorially

1 https://github.com/MaelRL/cgal/blob/Generic Periodic Triangulations/README.md

https://github.com/MaelRL/cgal/blob/Generic_Periodic_Triangulations/README.md
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equivalent to truncated octahedra.

For a lattice vector λ, str(λ) = {x ∈ Rd : − 0.5 ≤ 〈x,λ〉
〈λ,λ〉 < 0.5} is an infinite half-open

strip that contains the subspace orthogonal to λ through the origin. Then dom(0,Λ) is

the closure of the intersection of these strips for all non-zero lattice vectors. However,

as dom(0,Λ) only has a finite number of facets, there must be a finite subset of strips

whose closed intersection yields dom(0,Λ). Let V be the minimal set of lattice vectors

(together with their negates) such that the closure of ⋂v∈V str(v) is dom(0,Λ). The vectors

in V are commonly called Voronoi-relevant vectors. Each of them is a normal vector of

a facet of the Dirichlet domain of 0, and thus their number is bounded by 2(2d − 1) [39,

Theorem 3.6]. Let V+ t V− be a partition of V such that if v ∈ V+, then −v ∈ V−, and

vice versa. For a fixed choice of V+ (and implicitly V−), we define the canonical domain

domI(0,Λ) := ⋂
v∈V+ str(v) (Figure 7.2). Its closure is dom(0,Λ). We denote the images of

domI(0,Λ) under Γ as domI(λ,Λ) := φλ(domI(0,Λ)) for λ ∈ Λ, and note that similarly

the closure of domI(λ,Λ) is dom(λ,Λ). With kΛ for k ∈ Z referring to the lattice with

basis {kb1, . . . , kbd}, we note that domI(0, kΛ) is domI(0,Λ) scaled by a factor of k.

b1

b2 b1 + b2

str(b2)

str(b1)

str(b1 + b2)

0

(a) domI(0,Λ) (red) is the intersection of the
half-open strips (blue) of V+ = {b1, b2, b1 + b2}.

(b) domI(0,Λ) of a 3-dimensional lattice
(blue). Lattice basis B in black, V+ ⊃ B
in orange.

Figure 7.2: Canonical domains and Voronoi relevant vectors for lattices in 2D and 3D.

For d ≤ 3, if we have a reduced lattice basis B with its superbase Bsup, then V is a

subset of {∑b∈S b : S ⊂ Bsup, S 6= ∅, S 6= Bsup} [23, Theorems 3 and 8], with equality if

the lattice is generic. We choose V+ := {∑b∈S b : S ⊆ B, S 6= ∅} ∩ V . This choice of V+

ensures the property that the translated domains domI(λ,Λ) for λ ∈ Λ form a partition

of Rd. Note that sv(Λ) can be obtained as the length of the shortest vector in V .
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Delaunay triangulations Recall that the Delaunay triangulation Del(P ) of an input

point set P ⊂ Rd is a collection of simplices up to dimension d whose vertex set is P and

each d-simplex (which in this chapter we simply refer to as cells) corresponds to a set of

d + 1 points whose circumsphere does not contain any other points of P in its interior.

While we previously assumed the input point set to be finite and in general position, the

definition generalizes to infinite point sets as long as they are discrete, i.e. every ball of

finite radius only contains a finite number of points of P . We can overcome the assumption

of general position by using symbolic perturbation, see below.

Given a lattice Λ and a finite set of points P , we get the periodic point set ΓP :=

{φλ(p) : p ∈ P and λ ∈ Λ} consisting of the elements of the orbits of P under Γ. ΓP is

globally invariant under Γ, i.e. each translation of Γ maps ΓP onto itself. Then Del(ΓP )

is the periodic Delaunay triangulation of the infinite point set ΓP . Note that we can

ignore degeneracies in ΓP by using the symbolic perturbation provided by CGAL [28]:

it is translation-invariant, so, degeneracies are triangulated in a consistent way, which

ensures that the computed Del(ΓP ) is actually invariant under Γ. The orbit space Rd/Γ is

a flat torus, and we denote its projection map as π : Rd → Rd/Γ. The torus triangulation

Del(ΓP )/Γ is the projection of Del(ΓP ) into Rd/Γ. Using domI(0,Λ) as a geometric

representation of the torus, we can use P0 := ΓP ∩domI(0,Λ) as canonical representatives

of the vertex set of Del(ΓP )/Γ. While Del(ΓP )/Γ gives us a finite representation of

Del(ΓP ), unlike Del(ΓP ) it is not necessarily simplicial (see Figure 7.1a).

7.2 Algorithm

The input to our algorithm is a lattice basis B′ for Λ and a set of points P defining the

periodic point set. The output is an object representing Del(ΓP )/Γ. This object provides

a uniform interface that, regardless of the internal state of our algorithm, allows the user to

access the properties of Λ as well as the torus triangulation Del(ΓP )/Γ. For Λ this includes

the reduced basis B = {b1, . . . , bd}. For Del(ΓP )/Γ this includes the set P0 of canonical

representatives for its vertex set, and its cells. Cells are not solely defined by their vertex

set, but have additional geometric information attached. Specifically, each vertex of a cell

is represented as a point p from P0 with an associated offset o = (o1, . . . , od), which is an

integer vector. The geometric location of the vertex then is p+∑d
i=1 oibi. In alignment
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with other CGAL triangulations, we also provide access to simplices of lower dimensions,

represented with associated vertex offsets akin to cells, as well as neighborhood relations.

These include querying a cell for its adjacent cells, or querying a vertex for its incident

cells or lower dimensional simplices. While many steps generalize, we restrict our focus to

2- and 3-dimensional triangulations which are the most widely used.

Internally, our algorithm operates in two phases, which use two different data structures:

The first phase maintains a finite Euclidean Delaunay triangulation while the second phase

maintains a triangulation of Del(ΓP )/Γ.

Let us now recall the result that is crucial to the first phase of our algorithm. For a

point set P , let P3 := domI(0, 3Λ) ∩ ΓP , i.e. all periodic copies of P that lie within the

Dirichlet domain of 0 scaled by a factor of 3. We call a cell of Del(P3) a periodic cell if it

is also a cell of the periodic triangulation Del(ΓP ) (see Figure 7.3a).

Proposition 7.1 ([29, Lemma 3.4]). Given a point set P , each cell of Del(P3) that has at

least one vertex in domI(0,Λ) is a periodic cell. Furthermore the set of these cells contains

at least one periodic copy of each cell of Del(ΓP )/Γ.

After some preprocessing that essentially consists in computing the canonical domain,

the first phase internally maintains Del(P3) using the CGAL packages for Euclidean

Delaunay triangulations [51; 93]. In Section 7.2.1 we develop a systematic way of computing

P3 and obtaining the interface for Del(ΓP )/Γ from the internal data structure Del(P3).

Once we can guarantee that Del(ΓP )/Γ is simplicial and will remain so for any

future point insertions, we switch to the second phase. Simpliciality guarantees that

the Bowyer-Watson algorithm can be used directly on Del(ΓP )/Γ. For this purpose

we leverage the CGAL machinery for periodic triangulations from the cubic setting [57;

17] and enhance its underlying data structures to work for the generic setting. As we keep

only one representative for each vertex, inserting points in this phase is more efficient than

in the first phase.

The remainder of this section describes the two phases and the transition between

them.
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(a) Cells in blue are guaranteed to be periodic
cells by Proposition 7.1. Green: non-periodic
cells. Black vertices: Λ.
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(b) The set of canonical cells in blue. Each
copy of dom(0,Λ) is labeled with its offset.

Figure 7.3: In blue, the points P3 with their Delaunay triangulation Del(P3). The large
hexagon is dom(0, 3Λ), while the smaller ones are dom(0,Λ) and on the right also its
periodic copies. The reduced lattice basis is drawn in red.

7.2.1 Phase 1

In a preprocessing step, we first compute the reduced lattice basis B, which allows

us to compute V, the face normals of the canonical domain. We use V to represent

domI(0,Λ) and check for containment of a point within domI(0,Λ), which helps obtaining

the canonical copy of each input point. The main part of phase 1 maintains the Euclidean

Delaunay triangulation of P3. For each new point to be inserted, we first find its canonical

copy, then we compute its periodic copies that are contained with domI(0, 3Λ) using

Lemmas 7.2 and 7.3, which are then inserted into Del(P3). To provide user access to the

cells of Del(ΓP )/Γ, we define a notion of canonical cell in Del(P3) to get a representative

for each cell of Del(ΓP )/Γ.

Lattice reduction

Many lattice related problems, such as the shortest non-zero vector problem (SVP),

are believed to be hard in general [86; 4]. However in low dimensions, we can use two

classical iterative algorithms to solve lattice reduction. Let B′ be a lattice basis and

B′sup = {b′0, . . . , b′d} its superbase, as defined in Section 7.1. Define cij := 〈b′i, b′j〉.
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2-dimensional reduction A 2-dimensional lattice basis is Lagrange-reduced [39, Section

4.2] if 0 ≤ 2|c12| ≤ c11 ≤ c22. We can negate b′2 if necessary so that c12 ≤ 0. Then

{b′1, b′2, b′0 := −b′1 − b′2} form an obtuse superbase, because c01 = 〈b′1,−b′1 − b′2〉 = −c11 −

c12 ≤ 0 due to 2|c12| ≤ c11, and similarly c02 ≤ 0. If a basis is not Lagrange-reduced

with 2|c12| > c11, we exchange b′2 for a shorter vector that forms a basis with b′1: Let

b′′2 := b′2 − sb′1, with s = 1 if c12 > 0 and s = −1 otherwise. Vector b′′2 is shorter than b′2

since c′22 = c22 + c11 − 2sc12. Since there are only finitely many pairs of lattice vectors

within a ball of any given radius, a finite number of applications of this procedure will

yield a Lagrange-reduced basis.

3-dimensional reduction We outline Selling’s algorithm [39, Section 4.4], an iterative

algorithm that obtains an obtuse superbase in 3 dimensions. In each step of the algorithm,

if there is a cij > 0, the algorithm returns a new superbase B′′sup defined via b′′i := −b′i,

b′′j := b′j, b′′h := b′h + b′i and b′′k := b′k + b′i where h and k are the remaining two indices

different from i and j. For any basis B, let σ(B) := ∑
b∈Bsup ||b||2. Notice that in each

step, σ(B′′) = σ(B′) − 2cij. In particular, σ(B′′) < σ(B′). This fact, together with the

fact that there are only finitely many lattice points in a ball of radius
√
σ(B′) (and thus

only finitely many quadruplets of vectors whose square magnitudes sum up to at most

σ(B′)) guarantees termination of the algorithm.

Canonical points

For each point of P , finding its periodic copy that lies in domI(0,Λ) is equivalent to

solving the closest vector problem (CVP), i.e. given p ∈ P , determining the lattice point

which is closest to p. For arbitrary dimensions this problem is known to be NP-hard [86].

For the exact version of CVP, various iterative algorithms have been described [3; 79;

62]. As we are only operating in 2 and 3 dimensions, any of them would suffice for us in

practice in terms of running time, and we will describe the algorithm by Sommer et al [79]

due to its simplicity.

For a real number r, define round(r) to be the closest integer to r. If this integer is

not unique, then it is the one with the smallest absolute value. This definition ensures

convergence in cases where p is on the boundary of a Dirichlet domain of the lattice. Recall

that V+ is a set of normals of the facets of the canonical domain, and can be obtained from
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a reduced basis B (see Section 7.1). We first sort the vectors of V+ by their magnitude. As

domI(0,Λ) is the intersection of the strips str(v) for v ∈ V+, we need to find the periodic

copy of p that is in all these str(v). We loop through the vectors v of V+ and for each

of them perform the following operations: Compute c := 〈p,v〉
〈v,v〉 . If −0.5 ≤ c < 0.5, then

already p ∈ str(v). If not, then we subtract round(c) · v from p. Note that after such a

step, it is guaranteed that p ∈ str(v). However after modifying p for a longer vector v, it

might happen that p is moved outside of str(v′) for some shorter vector v′ again. Therefore

we need to repeatedly loop through V+ and perform this operation until p ∈ str(v) for all

v ∈ V+.

Notice that in each step where p is modified, the magnitude of p strictly decreases.

Therefore this algorithm terminates in finite time, as the number of lattice vectors within

a ball of given radius ||p|| is finite.

Computing P3

For a given point p ∈ P0, each of its periodic copies q ∈ Γp can be obtained as φλ(p) for some

translation φλ ∈ Γ. The corresponding lattice point λ can be uniquely written as ∑d
i=1 oibi

for some o ∈ Zd and we write and λ(o) := λ. We then call o =: o(q) the offset of q and φλ(o)

the translation associated with o. For each point p ∈ P0 we need to determine the 3d offsets

for which φλ(o)(p) is within domI(0, 3Λ). Fortunately, these offsets have to come from a

fixed set of offsets that only depends on the lattice basis. Notice that if φλ(o)(domI(0,Λ))

does not intersect domI(0, 3Λ), then φλ(o)(p) cannot be in domI(0, 3Λ) for p ∈ P0. Thus

we only need to check those offsets for which φλ(o)(domI(0,Λ)) ∩ domI(0, 3Λ) 6= ∅.

Lemma 7.2. There are at most 4d− 2d + 1 translates of domI(0,Λ) that have non-empty

intersection with domI(0, 3Λ).

Proof. If domI(λ,Λ) intersects domI(0, 3Λ) for some λ ∈ Λ, then λ must be inside

domI(0, 4Λ). There are 4d lattice points within domI(0, 4Λ). For each v ∈ V+, the

lattice vectors −2v and 2v are on the boundary of domI(0, 4Λ), however only −2v is

one of those 4d points within domI(0, 4Λ). For these lattice points −2v on the boundary

however the intersection between domI(−2v,Λ) and domI(0, 3Λ) is empty. Thus only

4d −#V+ = 4d − (2d − 1) translates of domI(0,Λ) intersect domI(0, 3Λ).
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In general, we can find this set of offsets via a breadth-first search: We define a graph

on Λ with each lattice point λ connected to λ+ v for v ∈ V . We start the search at lattice

point 0 and terminate once we have found 4d − 2d + 1 offsets, or in the case of non-generic

lattices once all 4d lattice points inside domI(0, 4Λ) have been reached (with the ones on

the boundary being discarded).

In 2 dimensions, there is in fact a fixed set S of 13 offsets such that for any lattice,

domI(λ(o),Λ) only intersects domI(0, 3Λ) when o ∈ S (Figure 7.3b).

Lemma 7.3. Given a 2-dimensional lattice and an offset o, if o 6∈{(0, 0), (-1, -1),

(0, 1), (1, 0), (-1, 0), (0, -1), (1, 1), (-1, -2), (1, 2), (-2, -1), (2, 1),

(-1, 1), (1, -1)}, then domI(λ(o),Λ) ∩ domI(0, 3Λ) = ∅.

Proof. Each domI(λ,Λ) adjacent to domI(0,Λ) has all but one of its facets in the interior

of domI(0, 3Λ). Except for those adjacent via one of those facets, all domI(λ,Λ) at graph

distance 2 from 0 intersect domI(0, 3Λ). The ones that don’t are exactly the 6 domains

domI(2v,Λ) for v ∈ V . As there are 19 domains at distance at most 2, we have found

13 domains that intersect domI(0, 3Λ). As this is the maximum possible number by

Lemma 7.2, we have found all of them.

In 3 dimensions, the same argument yields a set of 51 fixed offsets. As the total number

of domains that intersect domI(0, 3Λ) is 57 by Lemma 7.2 however, we need to find the

remaining 6 domains. They do not always have the same offsets, however their offsets

come from a fixed set of 24 offsets.

Lemma 7.4. Let O3 :={(3, 2, 1), (2, 1, -1), (3, 1, 2), (2, -1, 1), (1, -1, -2),

(1, -2, -1), (2, 3, 1), (1, 2, -1), (1, 3, 2), (-1, 2, 1), (-1, 1, -2),

(-2, 1, -1), (2, 1, 3), (1, -1, 2), (1, 2, 3), (-1, 1, 2), (-1, -2, 1),

(-2, -1, 1), (-1, -2, -3), (-1, -3, -2), (-2, -1, -3), (-3, -1, -2),

(-2, -3, -1), (-3, -2, -1)}

and O≤2 :={(0, 0, 0), (-1, -1, -1), (0, 0, 1), (0, 1, 0), (1, 0, 0),

(1, 1, 0), (1, 0, 1), (0, -1, -1), (0, 1, 1), (-1, 0, -1), (-1, -1, 0),

(1, 1, 1), (0, 0, -1), (0, -1, 0), (-1, 0, 0), (1, 2, 0), (1, 0, 2),

(-1, -2, -2), (2, 1, 0), (2, 0, 1), (1, -1, -1), (0, 1, 2), (-2, -1, -2),

(0, 2, 1), (-1, 1, -1), (-2, -2, -1), (-1, -1, 1), (1, 1, 2), (-1, -1, -2),



111

(1, 2, 1), (0, 1, -1), (-1, -2, -1), (0, -1, 1), (2, 1, 1), (1, 0, -1),

(1, -1, 0), (-2, -1, -1), (-1, 0, 1), (-1, 1, 0), (1, 2, 2), (-1, 0, -2),

(-1, -2, 0), (2, 1, 2), (0, -1, -2), (2, 2, 1), (1, 1, -1), (0, -2, -1),

(1, -1, 1), (-2, -1, 0), (-2, 0, -1), (-1, 1, 1)}.

Given a 3-dimensional lattice and an offset o, there is a subset S of size 6 of O3 such

that if o 6∈ O≤2 ∪ S, then domI(λ(o),Λ) ∩ domI(0, 3Λ) = ∅.

Proof. As mentioned in the proof of Theorem 3.5 from [39], v
2 is on the boundary of

domI(0,Λ) for every Voronoi-relevant vector v.

Claim 1: The orthogonal projection of v into the 1-dimensional subspace spanned by

another Voronoi relevant vector w ∈ V+ has magnitude less than w.

Proof of Claim 1: All facets of domI(0,Λ) are contained in str(w) for all w ∈ V+,

so because v
2 is on the boundary of domI(0,Λ), it is contained in str(w). By definition of

str(w) this implies |〈12v, w〉/〈w,w〉| ≤
1
2 , from which it follows that |〈v, w〉| ≤ 〈w,w〉.

Claim 2: Domains domI(ν,Λ) of graph-distance (k − 2) from some λ = kv for an

integer k and v ∈ V cannot intersect domI(0, 3Λ).

Proof of Claim 2: We have ν = kv + v1 + · · · + vk−2 for some vi ∈ V . Then

〈w, v〉 = k〈v, v〉+ 〈v, v1〉+ · · ·+ 〈v, vk−2〉 ≥ k〈v, v〉 − (k − 2)〈v, v〉 = 2〈v, v〉 due to Claim

1. This means that ν is not in the interior of str(4v) and thus the interior of the 4-scaled

domain. Therefore domI(ν,Λ) ∩ domI(0, 3Λ) = ∅.

Proof of Lemma: Let Bsup = {b0, b1, b2, b3}. Note that because b0 = −(b1 + b2 + b3),

every lattice point λ can be written as a non-negative integer combination of three of

these extended basis vectors, i.e. λ = c1a + c2b + c3c with ci ∈ Z, c1 ≥ c2 ≥ c3 ≥ 0 and

a, b, c ∈ Bsup. This representation is unique up to permutation of basis vectors with the

same coefficient.

Enumerating all domI(λ,Λ) at graph distance 3 from domI(0,Λ), we get lattice points
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λ with non-negative integer combinations of the following types:

3a

3a + b = 3a + b

3a + b + c = 3a + (b+ c)

3a + 2b = 3(a+ b) − b

3a + 2b + c

3a + 2b + 2c = 3(a+ b+ c) − (b+ c)

3a + 3b

3a + 3b + c = 3(a+ b) + c

3a + 3b + 2c = 3(a+ b+ c) − c

3a + 3b + 3c

All of these, except for type 3a + 2b + c, can be written as 3v or 3v + w for some

Voronoi relevant vectors v, w ∈ V . This means that they are, or are adjacent to, a domain

centered at 3v, and from Claim 2 it follows that they cannot intersect domI(0, 3Λ). A

similar argument shows that none of the domains at graph distance 4 from domI(0,Λ)

can intersect domI(0, 3Λ), and therefore also none at higher graph distance.

Now the 51 offsets from O≤2 are those that the argument from Lemma 7.3 yields,

while O3 contains the offsets corresponding to type 3a+ 2b+ c. As by Lemma 7.2 there

are 57 intersecting domains, only 6 of the offsets from O3 can correspond to intersecting

domains.

Extracting representative cells

Recall that our interface specifies access to the cells (and lower-dimensional simplices) of

Del(ΓP )/Γ. Thus for each of its cells we have to provide one representative from Del(P3).

For a cell σ of either Del(ΓP ) or Del(P3), with V (σ) = {p1, . . . , pd}, we define its offset as

the vector o(σ) = minp∈V (σ){o(p)} where the minimum is taken lexicographically. Note

that this definition differs from [16, Convention 3.3.1] where the coordinate-wise minimum

is taken. If the offset of a cell is the 0-vector, we call it a canonical cell. Note that due to our

definition a canonical cell always has a vertex with offset 0. Therefore by Proposition 7.1 a
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canonical cell of Del(P3) is also periodic , see Figure 7.3b. For σ ∈ Del(ΓP ), the translated

cell σ −∑d
i=1 oibi is called its canonical representative. This means that for each class

of cells in Del(ΓP ) (or equivalently each cell of Del(ΓP )/Γ), there is a unique canonical

representative in Del(P3). Therefore we can get a set of representative cells by iterating

over the cells of Del(P3) and selecting those that are canonical.

Neighborhood relations

Recall that our interface dictates that we provide neighborhood relations for the vertices

and cells of Del(ΓP )/Γ. These vertices and cells are represented by the canonical vertices

and cells of Del(P3), whose neighbors in Del(P3) (which we have access to) may differ

from the neighbors in Del(ΓP )/Γ (which we want to find). We outline how to get the

neighors of a cell of Del(ΓP )/Γ from Del(P3), and note that other neighborhood relations

work in a conceptually similar way. Note that we do not store these relations explicity,

but we compute them upon request and may cache them for future access.

Consider a canonical cell σ of Del(P3) and a neighboring cell σn. If σn is canonical,

it is the neighbor of σ in Del(ΓP ). If σn is not canonical but has a vertex in domI(0,Λ),

then it is periodic and we return the canonical representative of this cell. However, it is

possible that all vertices of σn are outside domI(0,Λ), and thus σn might not be a periodic

cell at all. In that case, we need to consider the facet τ separating σ and its neighbor σn.

As τ is a facet of a canonical cell, it is also a periodic facet (i.e. a facet of Del(ΓP )). We

compute τ ’s offset o := o(τ). Then τ ′ := φλ(−o)(τ ) is the canonical representative of τ and

σ′ := φλ(−o)(σ) as well as its neighbor σ′n across τ ′ are periodic cells as they share τ ′ which

has a vertex in domI(0,Λ). If σ′n is canonical, then is it the canonical representative of the

neighbor of σ in Del(ΓP ); if not, then its canonical representative is. Figure 7.4 illustrates

this process.

In practice, we store the canonical representative of each vertex of P3. To obtain the

canonical representative of a cell (or facet) σ, we need to choose a vertex p whose offset is

minimal (lexicographically) among its vertices. This ensures that the periodic copy p′ of p

in the canonical version of the cell is inside domI(0,Λ). Then one of the cells (or facets)

incident to p′ in Del(P3) is the canonical representative of σ.
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Figure 7.4: Finding the canonical neighbor of σ across the edge τ , which is σ′′n, the canonical
representative of σ′n. In blue, the points P3 with their Delaunay triangulation Del(P3).
The large hexagon is dom(0, 3Λ), while the smaller ones are dom(0,Λ) and its periodic
copies labeled with their respective offsets. Pale blue cells are canonical cells.

7.2.2 Transition

Phase 2 is more efficient than phase 1 as it directly operates on Del(ΓP )/Γ, however we

cannot use it from the start as the Bowyer-Watson algorithm [12; 89] comes with some

constraints. The Bowyer-Watson algorithm is an incremental algorithm inserting points

one by one. For each new point p, it determines the conflict zone, which is the set of cells

whose circumsphere contains p. All these cells are removed, and all boundary facets of

the resulting hole are connected to p to fill in the hole with new cells. The algorithm

requires this hole to be a topological d-ball, which is not always guaranteed for Del(ΓP )/Γ.

However the following criterion is a sufficient condition for the Bowyer-Watson algorithm

to work [19].

Lemma 7.5 ([19, Criterion 3.11]). If for every cell in Del(ΓP )/Γ the circumradius is

smaller than 1
4sv(Λ), then Del(ΓP ′)/Γ is simplicial for every P ′ ⊇ P .

If this criterion is fulfilled, we can safely switch to phase 2. To detect at which point

in phase 1 the criterion is fulfilled, we maintain a set Sbig of big cells, which are canonical

cells whose circumradius is larger than or equal to 1
4sv(Λ). We update Sbig during each

point insertion.
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Assume we wish to insert a new point p into the periodic triangulation of some point

set P . On a high level, we need to remove the big cells in the conflict zone of p from Sbig,

and then add the newly created big cells to Sbig. In practice, we have already computed

the triangulation Del(P3) and have to insert the periodic copies of p that are within

domI(0, 3Λ), i.e. Γx ∩ domI(0, 3Λ), into Del(P3). We first detect the conflict zone of p0,

the canonical copy of p. For each big cell in the conflict zone we check if it has a canonical

copy in Sbig, and remove that copy from Sbig in that case. While the conflict zone may

contain non-periodic cells, Lemma 7.6 guarantees that we capture a representative of each

cell from Del(ΓP ) that is in conflict with p. Next we insert all the copies Γx∩domI(0, 3Λ)

into Del(P3). Finally, for each big cell incident to p0 in the resulting triangulation, we add

its canonical copy to Sbig. Note that all these cells have a canonical copy by Proposition 7.1

as they have a vertex inside domI(0,Λ).

Lemma 7.6. Let C be the conflict zone of some point p ∈ domI(0,Λ) with respect to

Del(ΓP ). Then the conflict zone of p with respect to Del(P3) contains at least one periodic

copy of each cell from C.

Proof. First observe that if a cell of Del(ΓP ) has its circumcenter at the origin, then all

its vertices must be within dom(0,Λ), because if the circumsphere contains a point outside

dom(0,Λ), then it also contains its canonical copy. Via translation it follows that if a cell

has its circumcenter in domI(0, 2Λ), then its vertices are in domI(0, 3Λ) and thus it is

a cell of Del(P3). So assume we have a cell σ in C whose circumcenter c is not within

domI(0, 2Λ). Then there is a facet of domI(0, 2Λ) with respect to which c is outside. Let

f be its face normal. Then p + f is also contained in the circumsphere of σ. Reversely,

σ − f is a cell whose circumsphere contains p, and furthermore its circumcenter is closer

to 0 than c, see Figure 7.5. As there are only finitely many periodic copies of c within a

given distance from 0, after applying this process a finite number of times we eventually

obtain a cell whose circumsphere contains p and whose circumcenter is in domI(0, 2Λ).

This cell is a periodic copy of σ, is contained in Del(P3) and thus also part of the conflict

zone of p with respect to Del(P3).

Once Sbig is empty, the criterion of Lemma 7.5 is fulfilled, and we can internally

convert our triangulation from Del(P3) to Del(ΓP )/Γ, which is maintained in phase 2. We

initialize the periodic triangulation data structure with the set of canonical vertices P0
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Figure 7.5: The red point p is in the conflict zone of the blue cell σ which is not a cell
of Del(P3) and whose circumcenter c is outside domI(0, 2Λ). However the light blue cell
σ − f is a periodic copy of σ that is in Del(P3) and p is in its conflict zone.

and canonical cells obtained from Del(P3), as well as the adjacency and incidence relations

outlined earlier.

7.2.3 Phase 2

Phase 2 operates directly on the torus triangulation Del(ΓP )/Γ. Thus it maintains only

one copy of each cell and vertex and point insertion is faster than in phase 1. The data

structure it uses to represent Del(ΓP )/Γ is akin to the one used in CGAL for the cubic

case, and closely resembles the interface we defined for our algorithm: Only P0 is stored

as vertex set, and each cell is represented by its vertices, with a vertex encoded as a pair

(p, o) of a point p ∈ P0 and an offset so that its geometric location is φλ(o)(p). While in the

cubic case each offset coordinate either takes the value 0 or 1 and offsets can be encoded

in d bits, in our more general setting offsets can take any of the lattice-specific values from

Lemma 7.2. Unlike in phase 1, most neighborhood relations for Del(ΓP )/Γ are already

stored explicitly in the data structure: For each cell its adjacent cells are stored, and for

each vertex one incident cell is stored. The remaining neighborhood relations required

by our interface are obtained implicitly from the explicitly stored ones. With each point

insertion, all stored neighborhood relations have to be updated accordingly.

Point insertion To insert a new point p into Del(ΓP )/Γ using the Bowyer-Watson

algorithm, first we compute the canonical copy p0. Then we locate the cell containing p0,

via a traversal starting from an arbitrary cell. The conflict zone is computed via a search
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starting in the cell containing the point p0. Whenever we are traversing cells, care has to

be taken to maintain the correct offset of the affected cells relative to p0, and similarly

when creating new cells to fill in the hole left by the deleted conflict zone. For the cubic

case the details are described in [16, Section 3.3], and we omit the technical adjustments

needed to make these steps work in the more general case.

7.3 Experimental results

Points until transition We experimentally evaluated the number of points required

until the criterion of Lemma 7.5 is fulfilled and the transition to phase 2 occurs. Lemma 7.5

requires all of Rd/Γ to be covered by the balls of radius 1
4sv(Λ) around P0. As the volume

of the torus equals the volume of the Dirichlet domain of 0, denoted as vol(dom(0,Λ)),

we expect the number of points until switching to phase 2 to be roughly proportional to

vol(dom(0,Λ))/sv(Λ)d, assuming the points are sampled uniformly at random.

To investigate this in 2 dimensions, we parametrize a 2-dimensional space of lattices.

We call the parameters the elongation ` and the skew s. The basis of the lattice with

elongation ` and skew s is b1 = (`, 0) and b2 = (s · `/2, 1). With ` ≥ 1 and s between 0

and 1 we can parametrize all 2-dimensional lattices up to symmetry and scaling. Note

that the skew affects sv(Λ) but not vol(dom(0,Λ)). while the elongation is proportional

to vol(dom(0,Λ)) but does not affect the sv(Λ). Fixing the skew at 0 and varying the

elongation (Figure 7.6a), we see that the number of random points needed until the phase

switch appears to be proportional to the elongation. The same applies to the number of

points until the resulting triangulation is simplicial for the first time. Figure 7.6b shows

the same statistics for lattices of fixed area but varying skew. In addition we plot the

inverse of sv(Λ)2 for comparison, and observe that it behaves similarly albeit not entirely

proportionally.

In 3-dimensions, a parametrization of lattice up to symmetry and scaling needs 5

parameters, and thus an analysis like in 2D is impractical. Instead we investigate the

number of points until the switch to phase 2 relative to vol(dom(0,Λ))/sv(Λ)3 which we

might expect to be proportional. Figure 7.7 shows the result for 182 lattice whose basis

vectors have randomly sampled direction and a random magnitude between 1 and 100.
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Figure 7.6: For different lattices, the number of points inserted into a periodic triangulation
until (blue) Del(ΓP )/Γ is simplicial for the first time, and (orange) Del(ΓP )/Γ fulfills
Lemma 7.5. Each data point is the mean of 200 trials, and the bars represent the standard
deviation.

Running times We evaluate the running times of our algorithm for different 3-dimensional

lattices, and compare them to the existing CGAL implementations. The data points

collected are from Delaunay triangulations of 10k uniformly sampled random points for k

up to 7. Each data point is an average of 300 trials (10 trials for 10k points).The experi-

ments were conducted on a laptop running Fedora 30 64-bits, with two 6-core Intel(R)

i9-8950HK CPU clocked at 2.90GHz, and with 32GB of RAM. The CGAL kernel used

was CGAL::Exact predicates inexact constructions kernel and CPU time was measured

using CGAL’s timer tools. The code was compiled using clang 8.0.0 with compilation flags

-O3 and -DNDEBUG.

Table 7.1 shows a comparison between the CGAL implementation of Euclidean Delaunay

triangulations [51] (with random points uniformly sampled in the unit cube), periodic

Delaunay triangulations in the cubic setting [17] and our algorithm for the cubic lattice.

Table 7.2 shows the running time of our algorithm for various lattices. For each lattice, we

also measured the average number of points until the switch to phase 2. As our algorithm

and the one for the cubic setting are based on the same code base when operating directly

on the torus triangulation, their runtimes are comparable for large point sets. It should

be noted that when similar experiments were run in 2010 to compare the Euclidean and

cubic periodic algorithms [16, Section 3.6.2], both were performing comparably. Since then,
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Figure 7.7: Phase switching in 3D: Each point in the plot represents a lattice, with
vol(dom(0,Λ))/sv(Λ)3 on the x-axis and the number of points inserted until the switch to
phase 2 occurred on the y-axis. Each y-value is obtained as the average over 200 point
sets, each distributed uniformly at random.

Euclidean Delaunay triangulations in CGAL have seen notable optimizations which were

not applied to periodic triangulations. This also explains why our algorithm is faster than

the cubic periodic algorithm for point sets where phase 1 takes up a significant portion of

running time, as internally we use a Euclidean rather than periodic triangulation.

7.4 Discussion

Software distribution We aim to provide a CGAL package for periodic Delaunay

triangulations for arbitrary lattices in 2 and 3 dimensions. The current state of our

implementation is available online (see Footnote 1). Both the 2- and 3-dimensional

implementations have been integrated into the CGAL codebase and only require some

additional refactoring and optimizing to adhere to CGAL’s quality standards. Automated

tests and documentation still have to be produced. An extension to weighted Delaunay

triangulations, referred to as regular triangulations in CGAL, is planned for the future.
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Implementation Euclidean [51] Cubic [17] Lattice
100 0.0000 0.0001 0.0002
101 0.0000 0.0160 0.0033
102 0.0004 0.1848 0.0461
103 0.0049 0.5957 0.0858
104 0.0487 0.9591 0.3832
105 0.5679 4.8119 4.5153
106 6.5974 93.9327 95.1447
107 59.5152 2314.3618 2317.7867

Table 7.1: Running time (in seconds) of various Delaunay triangulation algorithms on
random point sets of different sizes. Our algorithm (“Lattice”) is evaluated for the cubic
lattice.

Lattice Cubic FCC Λ1 Λ2 Λ3 Λ4
vol(dom(0,Λ))

sv(Λ)3 1.0 0.71 0.96 1.80 12.5 346.41
nswitch 141 94 134 286 2519 89950

100 0.0002 0.0001 0.0005 0.0007 0.0003 0.0004
101 0.0033 0.0026 0.0048 0.0067 0.0044 0.0035
102 0.0461 0.0287 0.0602 0.1525 0.0460 0.0380
103 0.0858 0.0446 0.1042 0.3265 0.9812 0.6372
104 0.3832 0.1642 0.4375 0.5767 4.6602 16.5759
105 4.5153 2.7868 5.9151 4.4110 10.8139 362.7956
106 95.1447 51.5945 90.4999 93.0278 58.1568 517.9715
107 2317.7867 1215.2648 2394.9533 2385.1200 1799.4515 2983.0943

Table 7.2: Running times (in seconds) of our algorithm for the cubic lattice, FCC (face-
centered cubic) lattice, and four other lattices. For each lattice we also record the
vol(dom(0,Λ))/sv(Λ)3 ratio and the average number of points until the switch to phase 2
(nswitch).
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Dummy points For best performance, transition from phase 1 to phase 2 should occur

as soon as possible. Intuitively, this happens when the input point distribution does not

have large gaps. We can achieve this by first inserting additional dummy points, which

are removed at the end (if possible) [19]. In practice, we can choose these points from a

sufficiently fine hexagonal lattice (or body-centered cubic in 3 dimensions), such that the

open spheres of radius 1
4sv(Λ) around the points cover the entire torus.

7.4.1 Extension to weighted points

Phase 1 of our algorithm readily generalizes to weighted point sets. In particular, Propo-

sition 7.1 still holds for weighted point sets. We provide a proof below. Phase 2 only

works for weighted points under additional restrictions because Del(ΓP )/Γ can not be

guaranteed to remain simplicial, in particular after inserting points with large weights.

Such point insertions that break simpliciality can be prevented by requiring points to be

inserted in decreasing order of weight, or like in the cubic implementation in CGAL by

severely restricting the range of weights a point can have. Thus an implementation is

subject to a tradeoff between flexibility (phase 1) and performance (phase 2).

Proposition 7.7 (Generalization of Lemma 3.2–3.4 from [29]). Given a set P of represen-

tatives for our point set, let P3 := domI(0, 3Λ)∩ΓP , i.e. all periodic copies of these points

that lie within the Dirichlet domain of 0 scaled by a factor of 3. Let T0 be those d-cells of

Del(P3) that have at least one vertex in domI(0,Λ). Then the cells of T0 are all part of

the triangulation of ΓP . Furthermore, these cells contain at least one representative of

each class of d-cells from Del(ΓP ).

Proof. We will prove the proposition in 3 steps.

Claim 1: Assume one of our points is p0 = 0 (with arbitrary weight). Then the

orthocenter cT of the vertices of any d-cell of Del(ΓP ) which has p0 as a vertex is within

dom(0,Λ).

Proof of Claim 1: Assume not. Then there is a face Fi of dom(0,Λ) such that Fi
separates p0 from cT . Let fi be the corresponding translation lattice vector orthogonal to

Fi. Then p0 + fi is strictly closer to cT than p0 because it has the same weight as p0. This

is a contradiction to the empty-sphere property.
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Claim 2: For a d-cell of Del(ΓP ) containing p0 as a vertex, all vertices are in

dom(0, 2Λ).

Proof of Claim 2: Assume some vertex p is not. Consider the perpendicular bisector

bp−fi,p between p and p− fi where fi is the face normal vector orthogonal to the face Fi of

dom(0,Λ) with respect to which p is outside of dom(0, 2Λ). Note that the perpendicular

bisector between two points of the same weight, as in this case, is the same as the

unweighted perpendicular bisector. The bisector bp−fi,p is separated from p0 and the

orthocenter cT by Fi, the face of dom(0,Λ) that is parallel to bp−fi,p. In particular, it

follows from Claim 1 that cT is in the interior of b−p−fi,p
, i.e. on the p− fi side of bp−fi,p. So

p− fi is closer to cT than p and thus the empty-sphere property is violated. See Figure 7.8

for an illustration.

fi

Fi

x0

x

x− fi

cT

Figure 7.8: A cell (dashed) with a vertex p that is outside of dom(0, 2Λ). The dotted line
is the perpendicular bisector between p and p− fi.

Claim 3: All d-cells σ ∈ Del(ΓP ) having a vertex in domI(0,Λ) are entirely contained

in domI(0, 3Λ).

Proof of Claim 3: Let p be a vertex of σ that is within domI(0,Λ). Shift the

entire point set ΓP and its triangulation by the vector −p so that p now coincides

with 0. From Claim 2 it follows that the other vertices of the shifted cell are within

dom(0, 2Λ). Adding the vector +p to these shifted vertices we get back the vertices of σ,

but because p ∈ domI(0,Λ) we also know now that these vertices are within domI(0, 3Λ),

as domI(0, 3Λ) is the Minkowski sum of domI(0,Λ) and dom(0, 2Λ).

Proof of Proposition: Every d-cell of Del(ΓP ) that has a vertex in domI(0,Λ) has

all its vertices in P3. Furthermore, because it fulfils the empty-sphere property in ΓP ,

then it also fulfils this property in P3 ⊂ ΓP , and thus is present in Del(P3). As every
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point from P has a representative in domI(0,Λ), also each d-cell from Del(ΓP ) has a

representative in T0, proving the statement.

7.4.2 Extension to order-k Delaunay mosaics

In this section we will show that a result similar to Proposition 7.1 also holds for order-k

Delaunay mosaics, giving us a recipe to compute them for periodic point sets.

In the following we will assume barycenters for the geometric embeddings of vertices

of the order-k Delaunay mosaic. For a given periodic point set ΓP and an order k, let

r := rΓP ,k be the radius of the largest sphere containing at most k − 1 points of ΓP in

its interior. Let D be the Minkowski sum of B2r(0) and domI(0,Λ). Then the following

result holds:

Proposition 7.8. The d-cells of Delk(ΓP ∩D) that have at least one vertex in domI(0,Λ)

are cells of Delk(ΓP ). They contain at least one representative of each translational

equivalence class of cells of Delk(ΓP ).

Proof. Claim 1: For a d-cell σ ∈ Delk(ΓP ) that has a (geometric) vertex at the origin,

all points of P (σ) are inside B2r(0).

Proof of Claim 1: Note that Smin(σ) contains all points of P (σ). As every geometric

vertex of σ is a barycenter of subsets of P (σ), Smin(σ) contains all geometric vertices of σ

and thus in particular 0. Furthermore, Smin(σ) may not contain any points of ΓP other

than Pin(σ) in its interior. As #Pin(σ) ≤ k − 1, due to the definition of r the radius of

Smin(σ) is at most r. Thus Smin(σ) is contained inside B2r(0), and therefore also all points

from P (σ) are.

Claim 2: For a d-cell σ ∈ Delk(ΓP ) that has a (geometric) vertex p inside domI(0,Λ),

all points of P (σ) lie inside D.

Proof of Claim 2: This follows directly in the same vein as in Proposition 7.7, by

translating the point set ΓP by the vector −p and applying Claim 1.

Proof of Proposition: Let σ ∈ Delk(ΓP ) be a d-cell that has a (geometric) vertex

inside domI(0,Λ). The sphere Smin(σ) is the circumsphere of Pon(σ) and contains Pin(σ)

in its interior, all of which are points within D. Therefore σ is also a d-cell in Delk(ΓP ∩D).
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As every vertex class of Delk(ΓP ) has a representative in domI(0,Λ), also each class of

d-cells of Delk(ΓP ) has a representative in Delk(ΓP ∩D), proving the statement.

This result leaves us with the need for bounds on rΓP ,k. Asymptotically, for a fixed

point set ΓP , we would expect this radius to be O(
√
k), as for evenly distributed point

sets the number of points in a ball of radius r is proportional to r2. However in practice

we need exact bounds. These could be in terms of the lattice, regardless of the periodic

point set, or e.g. in terms of the largest empty circumsphere of ΓP , which we can extract

from the order-1 Delaunay triangulation that Algorithm 1 will have to compute along the

way anyway. We leave these questions open as directions for further research.

Rather than applying Algorithm 1 directly to a sufficiently large subset of ΓP to

get Delk(ΓP ), a different approach could be to reconstruct Delj(ΓP ) for all intermediate

orders j < k: As each order-k Delaunay mosaic is computed as a weighted first-order

Delaunay triangulation, we know from Proposition 7.7 that it is sufficient to triangulate

dom(0, 3Λ)∩ΓP . Thus by maintaining the combinatorial vertex set of each class of d-cells

of Delj(ΓP ), with offsets associated to each point of a vertex, we can likely reconstruct

the vertex set of Delj+1(ΓP ) in a similar way to Algorithm 1. The details would still have

to be worked out.

7.4.3 Persistence of periodic point sets

For both the first order Delaunay triangulation and higher order Delaunay mosaics, the

radius function can be computed as before. While a-priori there are infinitely many points

imposing exclusion constraints on the sphere Smin(σ) for a cell σ, Lemma 4.5 tells us that

only a small finite subset of these has to be checked. If we obtained Delk(ΓP ) directly

from a sufficiently large finite subset ΓP ∩D, like in Proposition 7.8, we can even use the

optimization from Algorithm 3 to obtain radius values directly from the rhomboid tiling,

as for cells σ that are periodic all points imposing constraints on Smin(σ) are in ΓP ∩D.

Due to the infinite nature, we cannot directly compute persistence in scale on the

infinite order-k Delaunay filtration. We can however compute persistence on the torus using

Del(ΓP )/Γ and its analog Delk(ΓP )/Γ. We would like to remark however that persistence

on the torus has a few unexpected properties. It captures the inherent homology classes of

the torus, giving multiple persistence pairs with infinite death value. Furthermore, when
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computing persistence of ΓP on the torus Rd/mΓ instead of Rd/Γ for some integer m,

the multiplicities of persistence pairs behave in non-straightfoward ways; in particular, a

persistence pair with multiplicity 1 on Rd/Γ does not necessarily have multiplicity md on

Rd/mΓ, and in fact persistence pairs can emerge in the diagram for Rd/mΓ that are not

present in the diagram for Rd/Γ.

The situation for multi-cover persistence in depth on the torus is less clear, and open

questions remain for future research: Does our algorithm for persistence in depth generalize

to points on the torus? In particular, what does the rhomboid tiling for points on the torus

look like, and does the rhomboid tiling of a periodic point set have a finite representation,

like Delk(ΓP ) has a finite representation on the quotient space Rd/Γ? Or alternatively, can

we use the nerve construction from [24] also for point sets on the torus to get a simplicial

bifiltration with the same persistence as the k-fold covers?
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