
(The exact security of) Message
Authentication Codes

by

Michal Rybár

June, 2017

A thesis presented to the
Graduate School

of the
Institute of Science and Technology Austria, Klosterneuburg, Austria

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

c© by Michal Rybár, June, 2017
All Rights Reserved

I hereby declare that this thesis is my own work and that it does not contain other
people’s work without this being so stated; this thesis does not contain my previous

work without this being stated, and the bibliography contains all the literature that I
used in writing the dissertation.

I declare that this is a true copy of my thesis, including any final revisions, as approved
by my thesis committee, and that this thesis has not been submitted for a higher degree

to any other university or institution.
I certify that any republication of materials presented in this thesis has been approved

by the relevant publishers and co-authors.

Signature:

Michal Rybár
June, 2017

5

Abstract

In this thesis we discuss the exact security of message authentications codes HMAC,
NMAC, and PMAC. NMAC is a mode of operation which turns a fixed input-length keyed
hash function f into a variable input-length function. A practical single-key variant of
NMAC called HMAC is a very popular and widely deployed message authentication code
(MAC). PMAC is a block-cipher based mode of operation, which also happens to be the
most famous fully parallel MAC.

NMAC was introduced by Bellare, Canetti and Krawczyk Crypto’96, who proved it to
be a secure pseudorandom function (PRF), and thus also a MAC, under two assumptions.
Unfortunately, for many instantiations of HMAC one of them has been found to be wrong.
To restore the provable guarantees for NMAC, Bellare [Crypto’06] showed its security
without this assumption.

PMAC was introduced by Black and Rogaway at Eurocrypt 2002. If instantiated with
a pseudorandom permutation over n-bit strings, PMAC constitutes a provably secure
variable input-length PRF. For adversaries making q queries, each of length at most ` (in
n-bit blocks), and of total length σ ≤ q`, the original paper proves an upper bound on
the distinguishing advantage of O(σ2/2n), while the currently best bound is O(qσ/2n). In
this work we show that this bound is tight by giving an attack with advantage Ω(q2`/2n).
In the PMAC construction one initially XORs a mask to every message block, where the
mask for the ith block is computed as τi := γi · L, where L is a (secret) random value,
and γi is the i-th codeword of the Gray code. Our attack applies more generally to any
sequence of γi’s which contains a large coset of a subgroup of GF (2n).

As for NMAC, our first contribution is a simpler and uniform proof: If f is an ε-secure
PRF (against q queries) and a δ-non-adaptively secure PRF (against q queries), then
NMACf is an (ε+ `qδ)-secure PRF against q queries of length at most ` blocks each. We
also show that this ε + `qδ bound is basically tight by constructing an f for which an
attack with advantage `qδ exists.

Moreover, we analyze the PRF-security of a modification of NMAC called NI by An and
Bellare that avoids the constant rekeying on multi-block messages in NMAC and allows
for an information-theoretic analysis. We carry out such an analysis, obtaining a tight
`q2/2c bound for this step, improving over the trivial bound of `2q2/2c.

Finally, we investigate, if the security of PMAC can be further improved by using τi’s
that are k-wise independent, for k > 1 (the original has k = 1). We observe that the
security of PMAC will not increase in general if k = 2, and then prove that the security
increases to O(q2/2n), if the k = 4. Due to simple extension attacks, this is the best
bound one can hope for, using any distribution on the masks. Whether k = 3 is already
sufficient to get this level of security is left as an open problem.
Keywords: Message authentication codes, Pseudorandom functions, HMAC, PMAC.

6

About the Author

Michal Rybár decided to spend his university life abroad and therefore spent four years
studying Mathematics and Computer Science at the University of Bristol, United King-
dom. He finished his efforts with First Class Honours and received the degree Master
in Science, MSci. His specialization was in Pure Mathematics and Cryptography. After
the completion of his master studies in July, Michal decided to further pursue his inter-
est in science and therefore joined the Graduate School at the Institute of Science and
Technology Austria, IST, in September 2012.

After spending one year in the multidisciplinary envirionmnent, he affiliated with the
group of Krzysztof Pietrzak, a cryptographer. Michal’s thesis proposal was on Provably
Secure Authentication and he passed his qualifying exam in July 2013. During his PhD
studies he focused mainly on Message Authentication Codes, publishing his joint work at
Crypto 2014 and FSE 2017 conferences. The latter publication was chosen a runner-up
for the best paper award. In addition, he published his joint work on differential privacy,
and memory hard functions.

Last, but not least, Michal took a leave of 6 months during his studies to serve as
a caretaker of a beautiful water mill in Kvačianska dolina, Slovakia, which is listed as
national cultural heritage of Slovakia. Moreover, he served as a teaching assistant for the
Computational Complexity course in 2014. He also took part in the comunity life of IST
by helping to organize both the institute retreat, as well as the PhD retreat in 2013.

7

List of Publications

1. ∗ Gaži, Peter, Krzysztof Pietrzak, and Michal Rybár. “The exact PRF-security of
NMAC and HMAC.” In International Cryptology Conference, pp. 113-130. Springer
Berlin Heidelberg, 2014. [24]

2. Yu, Fei, Michal Rybár, Caroline Uhler, and Stephen E. Fienberg. “Differentially-
private logistic regression for detecting multiple-SNP association in GWAS databases.”
In International Conference on Privacy in Statistical Databases, pp. 170-184. Springer
International Publishing, 2014. [67]

3. Alwen, Joël, Peter Gaži, Chethan Kamath, Karen Klein, Georg Osang, Krzysztof
Pietrzak, Leonid Reyzin, Michal Rolinek, and Michal Rybár. “On the Memory-
Hardness of Data-Independent Password-Hashing Functions.” In Cryptology ePrint
Archive, Report 2016/783, 2016. [3]

4. † Peter Gaži, Krzysztof Pietrzak, and Michal Rybár. “The Exact Security of
PMAC.” IACR Transactions on Symmetric Cryptology 2016.2 (2017): 145-161. [26]

∗Appears in the thesis.
†Appears in the thesis.

8

Table of Contents

Abstract 5

About the Author 6

List of Publications 7

List of Abbreviations 11

1 Introduction 1

1.1 Cryptography of today . 1

1.2 Future of Cryptography . 3

1.3 Authentication . 4

1.4 Exact Bounds . 5

1.5 Outline and contributions of this thesis . 6

2 Preliminaries 8

3 Message Authentication Codes 13

3.1 HMAC . 15

3.2 CBC-MAC . 16

3.3 PMAC . 17

3.4 Others Macs . 17

3.5 Authenticated Encryption . 18

4 Exact Security of HMAC 19

4.1 New proof of security . 22

4.2 Tight security bound via a new attack . 23

4.3 HMAC extension and its security . 24

4.4 Further research . 28

5 Exact Security of PMAC 29

5.1 sPMAC . 30

5.2 New attack on PMAC . 32

5.3 PMAC with k-wise independent masks . 34

5.4 Further research . 36

TABLE OF CONTENTS 9

6 Paper 1 37

6.1 Introduction . 38

6.2 Preliminaries . 41

6.3 PRF-Security of NMAC . 45

6.4 PRF-Security of the NI Construction . 48

6.5 Appendix . 55

7 Paper 2 62

7.1 Introduction . 63

7.2 Preliminaries . 66

7.3 PMAC and Simplified PMAC . 68

7.4 Independent Random Masks . 71

7.5 4-wise Independent Masks . 72

7.6 2-wise Independent Masks . 74

7.7 1-wise Independent Masks: PMAC with a Gray Code 74

Bibliography 81

10

List of Figures

1.1 Distinguishing advantage. 6

3.1 The tagging and verification algorithms. 13

3.2 The construction HMACK . 16

3.3 The construction CBC-MACK . 16

3.4 The construction PMACK . 17

4.1 HMAC versus NMAC. 20

4.2 HMAC results overview. 20

4.3 The construction NIhK1,K2
. 24

4.4 Illustration of the three cases from Lemma 2. 26

4.5 A sample graph from the set H1 in the proof of Lemma 4, with p = 2 and
j∗ = 16. 27

4.6 A sample graph from the set H2 in the proof of Lemma 4, with i∗ = 2 and
j∗ = 8. 28

5.1 PMAC results overview. 29

5.2 From PMAC to sPMAC. 30

5.3 sPMACπ,τ (M). 31

6.1 The construction NMACf
K1,K2

. 44

6.2 The construction NIhK1,K2
. 45

6.3 Illustration of the three cases from Lemma 7. 51

6.4 A sample graph from the set H1 in the proof of Lemma 9, with p = 2 and
j∗ = 16. 53

6.5 A sample graph from the set H2 in the proof of Lemma 9, with i∗ = 2 and
j∗ = 8. 54

6.6 A sample graph Gi,d for the proof of Proposition 5. 60

6.7 A sample graph G(i) for the proof of Proposition 5. 61

7.1 The evaluation of sPMAC(π, τ,m1‖ . . . ‖m`), where τi = τ(i). 68

11

List of Abbreviations

AES Advanced Encryption Standard

CBC Cipher Block Chaining

CBC-MAC Cipher Block Chaining Message Authentication Code

CDH Computational Diffie-Hellman

CIA Confidentiality, Integrity, Authenticity

DDH Decisional Diffie-Hellman

ECBC Encrypted Cipher Block Chaining

GHMAC Generalised Hash-based Message Authentication Code

GNMAC Generalised Nested Message Authentication Code

HMAC Hash-based Message Authentication Code

IKE Internet Key Exchange

IP Internet Protocol

LPN Learning Parity with Noise

MAC Message Authentication Code

MD Merkle-Damgard

MIM Man-in-the-middle

NA Non-adaptive

NI Nested Iterated transform

NMAC Nested Message Authentication Code

OCB Offset-codebook

OMAC One-key Message Authentication Code

PF Prefix-free

PMAC Parallelizable Message Authentication Code

12 LIST OF ABBREVIATIONS

PRF Pseudo-random Function

PRP Pseudo-random Permutation

RFID Radio-frequency identification

SHA Secure Hash Algorithm

SPMAC Simplified Parallelizable Message Authentication Code

SSH Secure Shell

SSL Secure Socket Layer

TLS Transport Layer Security

URF Uniformly Random Function

WCR Weakly Collision Resistant

1

1 Introduction

In this thesis, we explore the world of Cryptography. According to the Oxford Dictionary,
Cryptography is “The art of writing or solving codes” [19]. Historically, it was mainly
concerned with encryption, the art of making messages unreadable to everyone, but the
intended receiver. This early stage of the field is very well documented in an extensive
book by David Kahn, called The Codebreakers [34]. The modern history of cryptogra-
phy started in the 1970s, most notably with the famous paper by Diffie and Hellman
with an accurate title “New Directions in Cryptography” [20]. Nowadays, cryptographers
define their field as “the study of mathematical techniques for securing digital informa-
tion, systems, and distributed computations against adversarial attacks” [35]. Alternative
definition could also say that “cryptography is concerned with the conceptualization, defi-
nition, and construction of computing systems that address security concerns” [27]. It is a
rapidly growing field that attracts more and more researchers every year, while constantly
finding new challenges and improving older constructions. In this thesis we focus on the
latter - we go back and look at two cases of older constructions, and provide them with
better security analysis. One of them, HMAC, is still widely deployed in many applica-
tions (especially in TLS, the most popular protocol for secure communication over the
internet), and this fact provides the main source of motivation for this thesis.

Historically, cryptography was more of an art than science. Any (encryption) scheme
usually had a very short lifespan. It was secure only until somebody discovered its “trick”-
so called security by obscurity (a scheme is secure, because nobody really knows how it
works). However, once this happened, it was not possible to use such a scheme anymore -
only to change its design, or come up with a new one. Alternatively, these schemes could
have been also broken by basic cryptanalysis (for example analyzing the secret text).
Even more advanced schemes, like the Enigma machine, were believed to be secure, but
without any formal guarantee. As you will see in Section 1.1, nowadays the situation is
quite different.

1.1 Cryptography of today

In today’s world, cryptographic constructions are divided into two main classes - sym-
metric and asymmetric. In a symmetric construction, the two communicating parties,
Alice and Bob, share the same key. In an asymmetric construction, each of them has a
different key, but these two keys (called private and public) are related in some special
way. Symmetric constructions are often simpler and computationally faster, but they
have an obvious problem - key management. If Alice wants to communicate with a thou-
sand parties, she needs to exchange and store exactly one thousand different keys in the
symmetric setting. In the asymmetric setting, she needs to securely store just one, her
private key, and look up public keys of others on a credentials server, for example. There-
fore, asymmetric cryptography in theory solves the problem of key management, but at

2 CHAPTER 1. INTRODUCTION

the expense of more expensive computation. However, the most effective solution is when
these two classes work together to get the best out of both worlds. In this thesis, we work
only in the symmetric setting.

Modern Cryptography goes around three main goals, CIA - confidentiality, integrity,
and authenticity. Confidentiality, or privacy, is concerned with the secrecy of information.
In other words, no adversary should be able to read information that we want to keep
secret. The main tool of confidentiality is encryption, for example AES block cipher,
or RSA public-key cryptosystem. The second goal, integrity, is about keeping data in
their original form, unchanged. In this case, the adversary should not be able to modify
protected data without detection. One of the main tools of integrity are Message Authen-
tication Codes - MACs, discussed in Chapter 3, or cryptographic hash functions. The last
goal in our list is authenticity, the task of knowing exactly who you are communicating
with. In this case the adversary should not be able to assume the identity of a different
entity. We can achieve authenticity through authentication protocols, for example.

The three goals can be achieved individually, but most often they work closely together,
as in most cases we want to achieve them all at the same time. For example, let us consider
an encryption scheme called One-time pad, which works by adding a fresh bit of the secret
key to every bit of the message. It provably achieves perfect secrecy (confidentiality), but
its integrity and authenticity can be easily breached, as any adversary can flip some bits
of the secret message (and hence breach integrity), and also any adversary can send a
random string as an encrypted message (this is considered a breach of authenticity). On
the other hand, a MAC is a primitive that achieves both integrity and authenticity at the
same time (but not confidentiality).

These following tools are used to achieve the three goals we have described:

Definitions Formal definitions are an essential cornerstone of modern cryptography.
They are used to precisely define the goals we want to achieve and under exactly what
assumptions. Cryptographic definitions need to be very clear, so everybody knows what
they want to achieve, and more importantly, they need to know when they have actually
achieved it. A bad or obscure definition can omit some important aspect of security and
lead to faulty security proof, or allow for a simple attack that was completely missed by
the definition.

Assumptions Assumptions are another essential building block of modern cryptogra-
phy. They are well defined mathematical problems that are believed to be very difficult
to solve (hard), yet this belief is without any formal proof. Any modern assumption must
be clearly stated and accompanied by a rigorous definition. Often, with simpler and more
“standard” assumptions come simpler schemes and they are adopted into practise more
easily. As an example, we mention assumptions based on factoring - given a large number
N , it should be computationally hard to find its prime number factorisation. The RSA
cryptosystem is based on a variant of the factoring assumption, called the RSA problem.

Proofs Based on precise definitions, a cryptographic proof gives us security guarantees
of a cryptographic scheme, with respect to some underlying assumptions. In simple words,
a good proof says - this scheme is “secure”, as long as the assumption it is build on holds.
Security proofs are the basis of modern cryptography and any new cryptographic primitive

CHAPTER 1. INTRODUCTION 3

must be accompanied by a rigorous proof in order to be taken seriously. Security proofs
are the main step that transformed the field of cryptography from an art to a science
discipline.

Kerckhoffs principle In 19th century, the linguist and cryptographer Auguste Ker-
ckhoff stated roughly the following: “A good cipher method must not be required to be
secret, and it must be able to fall into the hands of the enemy without inconvenience.”
We state it here, because this statement brings together many of the basic principles de-
scribed above. In order to be considered safe, any cryptographic scheme must be secure,
even though its design is publicly known (unlike security by obscurity, where a scheme
is intentionally kept secret). In other words, security of any scheme must rely solely on
the security of an underlying cryptographic key. In fact, this is precisely what the com-
munity is aiming for - standardised cryptographic primitives that come out of a public
competition after an extensive security analysis by the public. As an example, the AES
block cipher and SHA-3 hash function are the products of such competitions.

Computational security Another very important tool in the cryptographer’s tool-
box is the notion of computational security. Recognizing that perfect (or information-
theoretic) security is an unnecessarily strong notion, we can build much more efficient
schemes with the same level of practical security. We can say the following narrative:
a perfectly secure scheme will leak no information to any adversary; a computationally
secure scheme will leak only small amount of information to any adversary with bounded
power. These bounds are expressed in terms of the number of computational operations
and often can be translated into statements like ”using the currently fastest supercom-
puter on earth, it will take 147 years of nonstop computation to break this scheme”. In
other words, for all practical purposes, a computationally secure scheme can be considered
perfectly secure, and this is the approach almost all modern security proofs use.

Models Last, but not least, cryptographic models are a useful tool for writing proofs
of security. They are in a way closely connected to assumptions. Most often, proofs are
given using the standard model, without any idealised objects. However, it is often much
simpler to assume that some perfect primitive exists, e.g. a random oracle or a random
permutation (hence the random oracle, or the random permutation model, respectively).
Even though these models were criticized for their applicability and real-world value, they
passed the test of time and now are an important part of the cryptographic puzzle.

1.2 Future of Cryptography

The research in cryptography is more and more spread out. There are new primitives being
defined, new applications proposed, and new schemes discovered. Through the many news
reports on Bitcoin cryptocurrency and the cryptolocker virus, the public became much
more aware of the field of cryptography and its goals. For symmetric cryptography,
the current results consist mainly of improved security bounds and/or uniform proofs,
where there have been none before. For asymmetric cryptography, there are still many
applications waiting for new primitives (such as obfuscation). In fact, these new primitives
are currently the most prolific part of the field.

4 CHAPTER 1. INTRODUCTION

The future also lies in more specialized primitives, whose application is narrower, but
are much more efficient. Additionally, with new attacks, researchers will have to try
to make their schemes more robust (such as leakage-resilient schemes try to counteract
sophisticated cryptanalysis). As an example, we could mention self-driving cars that need
ways of securing their systems against intrusion to protect them from malicious attacks.

Last, but definitely not least, with the possible rise of quantum computers, more
research will have to be focused on quantum-secure cryptography. It is known for a long
time that Shor’s quantum factoring algorithm breaks the security of schemes based on
factoring large numbers, most notably the RSA algorithm. However, these schemes are
still widely deployed, because there are no quantum-secure alternatives with comparable
efficiency.

1.3 Authentication

As we said before, authentication is one of the three most basic and profound tasks in the
field of cryptography. According to Oxford Online Dictionary, “to authenticate” means
to “have one’s identity verified”1. A more cryptographic definition could say that to
authenticate means to verify the identity of the party we are trying to communicate with.
Imagine that Alice wishes to talk to Bob over some message channel. In an authentic
communication, Alice is confident that she is talking to Bob, and Bob is confident that he
is talking to Alice. Authenticity is breached, for example, if an adversary Eve manages
to persuade Alice that she is talking to Bob, while impersonating him. Message forgery
is another breach of authenticity, where Eve forges a new message which is accepted by
either Bob, or Alice as genuine. Other failures of authentication could in some cases
(depending on exact definition of authenticity) include message replay, where Eve sends
some intercepted older message sent by Bob and this message is accepted by Alice as
genuine.

Message Authentication Codes A Message Authentication Code, MAC, is a short
piece of information, a tag, that is attached to the message to achieve two of the three
basic cryptographic goals - integrity (the message has not been tampered with), and
authenticity (we are guaranteed the origin of the message). We explore them further in
Chapter 3.

Authentication Protocols A secret-key authentication protocol is a protocol between
two parties, who share a secret key and want to verify their respective identities. Most
often, it is one party wanting to authenticate its identity to a second party and in the
context of the protocol, the parties are called the Prover and the Verifier. The security
of an authentication protocol is traditionally defined against three types of adversaries
- passive, active, and man-in-the-middle. The strongest one is the man-in-the-middle
(MIM) attacker, while a passive attacker is the weakest.

In a secret-key authentication protocol the Prover P exchanges messages with the
Verifier V , trying to make him accept. In other words, P is trying to authenticate itself

1Oxford Dictionaries. Oxford University Press. http://oxforddictionaries.com/definition/english/authenticate
(accessed December 05, 2016)

CHAPTER 1. INTRODUCTION 5

to V . As mentioned earlier, there are three ways to define security of authentication
protocols. The weakest notion, passive attack, proceeds in two phases. In the first phase,
the adversary can observe any number of interactions between P and V . In the second
stage, the adversary tries to make V accept (P is no longer available at this stage). In
an active attack, the adversary has the ability to interact with P in phase one, while
phase two remains the same. In phase one of the strongest man-in-the-middle attack, the
adversary can arbitrarily interact with P and V (polynomially many concurrent executions
are allowed). The second phase is the same as before.

The most classical uses of authentication protocols are “handshakes” between two
parties, who wish to communicate over a network, or access control - every time you use
an access card to enter a building, the card and the reader are most probably running an
authentication protocol.

Lightweight Authentication Computationally weak devices, such as RFID tags and
some contactless smart cards, are playing an important role nowadays. Their widespread
use is increasing the chance of their misuse, putting high demand on secure protocols
and constructions fit for these devices. Very often, block-ciphers are the golden hammer
for building MACs, as the communicating parties have highly optimized implementations
of the main building block (such as AES co-processor on modern processors). However,
weak devices do not have the circuitry capable of performing operations required by
MACs, most often for computing conventional block-ciphers (AES). One of the solutions
could be a dedicated cipher for weak hardware, such as PRESENT [15]. Additionally,
a new way of building lightweight authentication protocols is to construct them directly
from cryptographic assumptions “friendly” to weak hardware. Sampling random bits is
considered computationally expensive on regular computers and could be the bottleneck
of any construction. On the other hand, this is not true on weak devices, making com-
putational problems based in some way on randomness, like Learning Parity with Noise
(LPN), more interesting. In addition, if the computation performed during the protocol
based on such assumptions is within the capabilities of this weak hardware, then such
schemes are clearly the more suitable candidates for cryptography on weak devices.

Authenticated Encryption Intuitively, when we exchange messages, we want them
to be unreadable (encrypted), with guaranteed integrity, and authenticated (with known
origin). Most of the times a message is encrypted first and then a MAC is attached to
it to achieve all three goals. However, instead of encrypt-then-mac, one can merge these
two operations together into one construction, resulting in a more efficient scheme with
the same level of security. Such primitive is called authenticated encryption and we talk
about it more in Section 3.5.

1.4 Exact Bounds

In this section we explain the importance of exact security bounds and why they are
so useful. When we look at the security of a cryptographic scheme, we consider the
advantage of any adversary in a distinguishing experiment. The goal of the adversary in
such experiment is to distinguish a cryptographic scheme from some ideal object whose
behaviour this scheme tries to mimic. We can see a simple depiction of its various levels

6 CHAPTER 1. INTRODUCTION

Figure 1.1: Distinguishing advantage.

in Figure 1.1 (as the advantage is just a probability measure, the most basic bounds are
0 and 1). There are two important values called the lower and upper bound. There are
two ways to place them in the graph, or change their values; the first way is to come up
with a new proof of security and move the right (upper) bound towards the left (we show
that no attacker can achieve a higher distinguishing advantage than this value, hence we
improve the security guarantees for the given scheme). The second way is to move the
left (lower) bound by showing an attack on the construction (we show that there is an
attacker that achieves this distinguishing advantage, hence the security guarantees for
this scheme cannot be better than this value). If the lower bound is not equal to the
upper, we say there is a tightness gap. Ideally, we would like the lower and upper bound
to meet in order to know the exact security of the scheme. Additionally, the more this
exact security bound goes towards the left on the graph, the better.

There are two additional points on the picture. The first one is called generic attacks -
it is a bound that can be reached by using attack that is build for a class of cryptographic
constructions with the same basic structure. They give us a hint that the security of
some schemes has a natural limit. The second point we would like to mention is named
trivial bounds. It marks a basic level of security we expect from a modern cryptographic
scheme.

1.5 Outline and contributions of this thesis

Apart from the introduction you have seen above, this thesis will roughly consist of the
following sections. First, in Chapter 2 we will describe the general notation that we will
use throughout Chapters 3-5. More notation will be added in Chapters 6, and 7, which
is specific to those chapters.

Next, we shall explore what Message Authentication Codes are into greater depth in
Chapter 3. We will introduce security notions, different applications and the currently
most widely used schemes.

In Chapter 4 we move on to describe the first part of the actual contributions of this
thesis. We give a more accessible overview of the work summarized in the paper titled
“The Exact PRF-Security of NMAC and HMAC”, which was published at Crypto 2014
conference [24]. Briefly, NMAC is a mode of operation which turns a fixed input-length
keyed hash function f into a variable input-length function. A practical single-key variant
of NMAC called HMAC is a very popular and widely deployed message authentication code
(MAC). Our first contribution is a simpler and uniform security proof for NMAC. Our
proof is based on a previous result by Bellare et al., who show that cascading is a good
domain extension for PRFs when restricted to prefix-free queries. We then show that

CHAPTER 1. INTRODUCTION 7

the proved bound is basically tight by showing an attack. Finally, we analyze the PRF-
security of a modification of NMAC called NI [4] that differs mainly by using a compression
function with an additional keying input. We carry out an information theoretic analysis,
obtaining a tight bound for this step. The proof uses some combinatorial techniques
originally developed for proving the security of CBC-MAC (see Section 3.2).

The second contribution of this thesis is summarized in Chapter 5, which describes
a paper titled “The Exact Security of PMAC” published in Transactions on Symmetric
Cryptology journal and presented at Fast Software Encryption 2017 conference [26]. We
explore the exact security of another MAC, called PMAC (Parallelizable MAC). PMAC is
a simple and parallel block-cipher mode of operation, which was introduced by Black and
Rogaway at Eurocrypt 2002. If instantiated with a (pseudo)random permutation over
n-bit strings, PMAC constitutes a provably secure variable input-length (pseudo)random
function. In this work we show that the currently best known security bound is tight
by giving an attack with the same advantage. We also give a more general version of
the attack that also applies to other variations of PMAC. Moreover, we investigate if the
security of PMAC can be further improved by some slight modifications in its design. We
prove that the security can increase in certain cases, matching a security upper bound set
by simple extension attacks.

Lastly, Chapter 6 contains the full version of the “The Exact PRF-Security of NMAC
and HMAC” paper [24], while in Chapter 7 you find “The Exact Security of PMAC”
paper [26].

8

CHAPTER 2. PRELIMINARIES 9

2 Preliminaries

Basic Definitions. We reserve the letter λ do denote the empty string. For n ∈ N
we define [n] := {1, . . . , n}, and {0, 1}n∗ :=

⋃
z∈N{0, 1}nz denotes the set of all bitstrings

whose length is a multiple of n. In a slight abuse of notation, we interchangeably view
strings from {0, 1}n∗ also as finite sequences of blocks from {0, 1}n, i.e., for s ∈ {0, 1}nz
we also write s = (s1, . . . , sz) for si ∈ {0, 1}n. The (bit)length of a string w is |w|, and if
|w| is a multiple of n, |w|n = |w|/n denotes the length in n bit blocks. w` := w‖w‖ . . . ‖w
denotes the `-fold concatenation of w. We usually denote sets by calligraphic letters like
X . Fb,c (resp. Fb∗,c) denotes the set of all functions from {0, 1}b to {0, 1}c (resp. from
{0, 1}b∗ to {0, 1}c), FN,b is the set of all functions N → {0, 1}b and Pn the set of all
permutations on {0, 1}n. If P is a (finite or infinite) sequence, then by P[`] we denote a
tuple containing the first ` elements of P . A partition of a set S is a collection of non-
empty subsets Ai, such that if Ai 6= Aj, then Ai

⋂
Aj = ∅, and

⋃
Ai = S. We use the

symbol ⊕ to denote the bit-wise XOR of two bitstrings of the same length. When talking
about a graph G, we denote its set of vertices and edges by V (G) and E(G) respectively.
For an integer n, d(n) = |{i ∈ N : i | n}| is the number of its positive divisors and

d′(n) := max
n′∈{1,...,n}

|{d ∈ N : d | n′}| ≈ n1/ ln lnn

is the maximum, over all positive integers n′ ≤ n, of the number of positive divisors of n′.
More precisely, we have ∀ε > 0 ∃n0 ∀n > n0 : d(n) < n(1+ε)/ ln lnn [29].

Multisets. We denote with mult(x,X) the multiplicity of an element x in a multiset X .
X ↓ is the subset of X that contains only the elements of odd multiplicity, i.e.,

X ↓ = {x ∈ X : mult(x,X) mod 2 = 1} .

Groups and Cosets. For a definition of a commutative group and a discussion of the
notions introduced below, see e.g. [33]. All the groups that we consider in this paper
will be commutative, and we will use additive notation for groups. A subgroup of G is
any subset H that is a group by itself. The order of G, denoted |G| is the number of its
elements. Lagrange’s theorem states that if H is a subgroup of G, then |H| divides |G|.

Let G be a group, and H its subgroup. Take g ∈ G. Then the set g +H := {g + h :
h ∈ H} is called a coset of H in G. Note that trivially any group G is a coset (of G in
G), we call a coset proper if it is not a group. The set of different cosets of H in G forms
a partition of G; and moreover, H itself appears in it as the coset 0 + H, where 0 is the
neutral element of G (and H). The size of a coset is again referred to as its order. Finally,
the order of G is equal to the product of the order of H and the number of different cosets
of H.

10 CHAPTER 2. PRELIMINARIES

Random Variables and Experiments. Random variables and concrete values they
can take are usually denoted by upper-case letters X, Y, . . ., and lower-case letters x, y, . . .
respectively.

If M is a distribution (respectively, a set), then we denote by X
$← M sampling

the random variable X according to M (respectively, choosing it uniformly at random
fromM). By X` we denote ` independent and identically distributed copies of a random
variable X. A joint probability distribution of q random variables (X1, . . . , Xq) is k-wise
independent, if its restriction to any k coordinates is uniform over its domain, e.g., if all
Xi have domain {0, 1}n

∀i1, . . . , ik , 1 ≤ i1 < · · · < ik ≤ q ; ∀x1, . . . , xk ∈ {0, 1}n :

Pr(X1,...,Xq) ((Xi1 , . . . , Xik) = (x1, . . . , xk)) =
(
2−n
)k

.

More generally, let Mn be a probability distribution over FN,n. In this case, we call Mn

k-wise independent, if any k outputs of f(·) sampled fromMn are independent. Formally,
Mn is k-wise independent, if:

∀i1, . . . , ik , 1 ≤ i1 < · · · < ik ; ∀x1, . . . , xk ∈ {0, 1}n :

Pr
f←Mn

((
f(i1), . . . , f(ik)

)
= (x1, . . . , xk)

)
=
(
2−n
)k

.

Adversaries. In this thesis an adversary is a probabilistic (running in polynomial time,
or computationally unbounded) algorithm, sometimes with access to an oracle O(·). We
use sans-serif letters for adversaries, e.g., AO(·), and will only consider “distinguishers”,
which are adversaries, whose final output is just one bit. We distinguish adaptive and
non-adaptive ones. Non-adaptive adversaries must submit all their queries before the
start of an experiment, while the former can use information gained from previous queries
to calculate the next query.

Pseudorandom functions and permutations. Here we give the definitions of a Pseu-
dorandom function (PRF), and of a Pseudorandom permutation (PRP). If the first com-
ponent of the input to a function f is to be seen as a key, we sometimes call f a keyed
function, where the first part of the input is referred to as the key (and K being called the
keyspace of f). For a keyed function f : K×D → R under a key k ∈ K we often write fk(·)
instead of f(k, ·). Given a variable input-length keyed function f : K×{0, 1}n∗ → {0, 1}n,
the PRF-advantage of an adversary A against f is defined as

Advprf
f (A) := Pr[K ← K : AfK(·) = 1]− Pr[R← Fn∗,n : AR(·) = 1] .

We also define
Advprf

f (q, `, t) := max
A

Advprf
f (A)

where the maximum goes over all adversaries that run in time at most t, and ask at
most q queries, each of length at most ` (in n-bit blocks). If we consider computationally
unbounded adversaries, we drop the last argument, i.e., Advprf

f (q, `) := Advprf
f (q, `,∞).

Pseudorandom permutations (PRPs), and their security notions are defined analo-
gously. Given a keyed permutation (i.e., a block-cipher) E : K × {0, 1}n → {0, 1}n, the
PRP-advantage of an adversary A against E is defined as

Advprp
E (A) := Pr[K ← K : AEK(·) = 1]− Pr[P← Pn : AP(·) = 1] .

CHAPTER 2. PRELIMINARIES 11

and
Advprp

E (q, t) := max
A

Advprp
E (A)

where the maximum goes over all adversaries that run in time at most t and ask at most
q queries.

The following quality-characterization of PRFs will be used in Chapters 4 and 6. A
variable input-length keyed function f : {0, 1}c × {0, 1}b∗ → {0, 1}c is an:

• (ε, t, q, `)-secure PRF, if we have Advprf
f (q, `, t) ≤ ε.

• (ε, t, q, `)-NA-secure PRF, if the above is true for all adversaries A that choose their
queries non-adaptively (i.e., A has to choose its q queries before seeing any of the
outputs).

• (ε, t, q, `)-PF-secure PRF, if the above is true for all adversaries A that choose their
queries to be prefix-free (i.e., no query is a prefix of another query).

• (ε, t, q, `)-NA-PF-secure PRF, if the above is true for all adversaries A that choose
queries both non-adaptively and prefix-free.

For fixed input-length functions, we omit the parameter `. Moreover, we refer to an
adversary A as an (ε, t, q, `)-PRF adversary against f if it runs in time t, asks at most q
queries each consisting of at most ` blocks, and achieves the advantage Advprf

f (A) = ε.
We refer analogously to adversaries for the other PRF-notions defined above.

Message authentication codes. A message authentication code (MAC) is a pair of
algorithms called a tagging and a verification algorithm. The tagging algorithm has two
inputs - a key and a message, and one output - a tag. The verification algorithm has three
inputs - a key, a message, and a tag. It outputs a bit representing the validity of the tag
for the given message and key. The standard notion of security for MACs is unforgeability
under chosen-message attack. It is well-known [9] that every PRF achieves this security
property.

Collision security. For a keyed function f : K × {0, 1}n∗ → {0, 1}, we define

Advcol
f (q, `) := max

M1,...,Mq

PrK←K [∃ i 6= j : fK(Mi) = fK(Mj)] ,

where the maximum goes over all q tuples of distinct messages of length at most ` blocks.
With regards to collisions, two useful claims were given in [46], see also [32] for the proof
of claim (ii) and [45] for further discussion. Here we give a very simplified version of
both of these claims. Firstly, a random system for our purposes is a composite object
consisting of two chained functions - an inner function, and an outer random function.
These functions are chained such that the output of the inner function serves as an input
to the outer function. The output of the outer functions serves as an output for the whole
composite object, while the input to the object is fed as input to the inner function.

Lemma 1. Let F and G be random systems. Let A be a binary value indicating that we
have seen no collision on the output of the inner function of F (A is true if no collision
has been observed, false otherwise), let D be a distinguisher asking q queries. Then:

12 CHAPTER 2. PRELIMINARIES

(i) [46, Lemma 7] If F is equivalent to G conditioned on A being true, then the advan-
tage of D is less than or equal to the probability of making A false.

(ii) [46, Theorem 2] For the experiment above, choosing queries adaptively does not
increase the success probability of D.

13

3 Message Authentication Codes

A Message Authentication Code is one of the basic cryptographic primitives that deals
with the task of authentication. In common speech, the name MAC is often given to a
short piece of information that is attached to a message to achieve two of the three basic
cryptographic goals - integrity (the message has not been tampered with), and authenticity
(message was sent by the honest party). In this thesis we use the proper name for this piece
of information - a tag (or MAC-tag). As mentioned above, a MAC is a cryptographic
primitive and its definition consists of three algorithms called the key-generation, the
tagging, and the verification algorithm. The key-generation algorithm generates a key of
some ‘quality’ (length) that is specified by its input, the security parameter. The tagging
algorithm has two inputs - a key and a message, and one output - a tag. The verification
algorithm has three inputs - a key, a message, and a tag. It outputs a bit representing the
validity of the tag for the given message, and the key. A simple illustration of the tagging
and verification algorithms can be seen in Figure 3.1. The textbook security notion for
a MAC is called existential unforgeability under chosen message attack (uf-cma). It is
well-known [9] that every PRF achieves this security property and we will use this fact
later on.

Formal definitions Here, we summarize the paragraph above more formally. Following
the definition from [35], we define a MAC as:

Definition 1 (Message authentication Code). A message authentication code, MAC,
consists of three probabilistic polynomial time algorithms (Gen, Mac, Vrfy) such that:

1. The key-generation algorithm Gen takes as input the security parameter 1n and
outputs a key k with |k| ≥ n.

2. The tag-generation algorithm Mac takes as input a key k and a message m ∈
{0, 1}∗, and outputs a tag t. Since this algorithm may be randomized, we write this
as t← Mack(m).

MACMessage

Key

Tag VrfyMessage,Tag

Key

Valid/Invalid

Figure 3.1: The tagging and verification algorithms.

14 CHAPTER 3. MESSAGE AUTHENTICATION CODES

3. The deterministic verification algorithm Vrfy takes as input a key k, a message
m, and a tag t. It outputs a bit b, with b = 1 meaning valid and b = 0 meaning
invalid. We write this as b := Vrfyk(m, t).

It is required that for for every n, every key k output by Gen(1n), and every m ∈ {0, 1}∗,
it holds that Vrfyk(m, Mack(m)) = 1. If there is a function l, such that for every k output
by Gen(1n), algorithm Mack is only defined for messages m ∈ {0, 1}l(n), then we call the
scheme a fixed-length MAC for messages of length l(n).

Note that even though we formally specified a verification algorithm, usually for de-
terministic MACs the verification algorithm just recomputes the tag and compares it to
the one it received. In this sense, the tagging and verification algorithms will be the same.

When defining a security notion, we would like to capture all the different methods
the adversary can interact with the honest parties. Apart from simply observing the
communication, we also want to consider the possibility of the adversary influencing the
content of the exchanged messages as well. Therefore, in our security model, we want to
allow the adversary to see the tags computed under the valid key on messages of their
choice. This is formally captured by the following textbook notion [35]. Consider the
following experiment:

Definition (The message authentication experiment Mac-forgeA,Π(n)). The experiment
goes as follows:

1. A key k is generated by running Gen(1n).

2. The adversary A is given input 1n and oracle access to Mack(·). The adversary
eventually outputs (m, t). Let Q denote the set of all queries that A asked its
oracle.

3. A succeeds if and only if (1) Vrfyk(m, t) = 1 and (2) m /∈ Q. In that case the
output of the experiment is defined to be 1.

A MAC is secure if no efficient adversary can succeed in the above experiment with
non-negligible probability:

Definition 2 (Existential unforgeablity under chosen message attack (uf − cma)). A mes-
sage authentication code Π = (Gen, Mac, Vrfy) is existentially unforgeable under

adaptive chosen-message attack, or just secure, if for all probabilistic polynomial-
time adversaries A, there is a negligible function negl, such that:

Pr[Mac-forgeA,Π(n) = 1] ≤ negl(n).

Building MACs. The most natural way to build a MAC is to construct it from an-
other cryptographic primitive, most prominently from a pseudorandom function. To be
more precise, it can be easily shown that every PRF with a sufficiently large range is a
MAC. It follows that a PRF is a strictly stronger primitive, candidate examples including
the GGM scheme [28], or constructions based on AES (Advanced Encryption Standard).
This relationship makes the task of constructing MACs easier, however, such straightfor-
ward constructions from candidate PRFs could be computationally expensive and provide
unnecessary level of security for certain scenarios. A second approach to building MACs

CHAPTER 3. MESSAGE AUTHENTICATION CODES 15

avoids going through a PRF, but the MAC is built directly from some cryptographic as-
sumption (e.g. Computational Diffie-Hellman (CDH), or Decisional Diffie-Hellman (DDH)
assumption [21]). These constructions are simpler, but building MACs from such assump-
tions has its caveats in large keys, or large amount of bits being transferred during the
communication. Last, but not least, MACs can be also built from hash functions (SHA3,
Secure Hash Algorithm 3), or modes of operation for block-ciphers (e.g. CBC-MAC, Ci-
pher Block Chaining Message Authentication Code). Analysis of MACs based on hash
functions and block-ciphers forms the core of this thesis and we will introduce them in
more detail later in this chapter.

Connections to other primitives A very similar cryptographic primitive to a MAC
is called the digital signature. A MAC is a symmetric primitive, hence the two parties
that wish to exchange messages use the same (symmetric) key. A digital signature is an
asymmetric primitive - the two parties have different (but mathematically related) keys.
This translates into a simple narrative - whoever can verify a MAC can also compute it
using the same secret key. On the other hand, only the entity in possession of the secret
signing key can generate signatures, while anybody can verify these signatures using a
publicly known verification key. Even though it seems that digital signatures are a more
powerful primitive, their computation is much slower than the computation of a MAC,
therefore MACs are still used whenever possible. As mentioned before, MACs are also
connected to authentication protocols. We note that a secure MAC implies a man-in-
the-middle secure 2-round authentication protocol (one party sends a challenge, while
the other sends back the corresponding MAC) [36]. Additionally, as we mentioned in
the previous paragraph, PRFs are closely connected to MACs as well - any secure PRF
automatically constitutes a secure MAC [9]. Last, but not least, a checksum (or an error-
detection code) is a non-cryptographic primitive used to check for integrity of messages,
but not their authenticity. This means they are designed to protect against random errors
(like electrical interference in wires), but not against malicious adversaries. On the other
hand, the computation of checksums is much simpler and less expensive.

3.1 HMAC

HMAC (and its sister algorithm NMAC) is a deterministic MAC algorithm proposed by
Bellare, Canetti and Krawczyk in 1996 [7]. A simple depiction of the algorithm is given
in Figure 3.2. This popular algorithm is build from a cryptographic hash function and a
secret key. In principle, any cryptographic hash function can be used for its computation,
but HMAC-SHA1 and HMAC-MD5 are standardised [57], and used within IPsec and TLS
protocols (based on SHA1 and MD5, accordingly). The security of HMAC is dependent on
the cryptographic strength of the underlying hash function, the size of its hash output,
and on the size of the key. NMAC differs from HMAC in the way they handle keys - NMAC
is more suited for security proofs (that can be later lifted to HMAC), but HMAC is much
easier to implement in practice and is used in real constructions. We postpone the precise
introduction of the differences until Chapter 6 and will talk only about HMAC until then.

We can think of HMAC as an iterative hash function. An iterative hash function
divides a message into separate blocks of a fixed size and then iteratively applies a com-
pression function on these blocks, where the output of a previous iteration together with
a fresh message block are used as inputs. The size of the output of HMAC is equivalent to

16 CHAPTER 3. MESSAGE AUTHENTICATION CODES

h h hIV h

K ⊕ ipad m1 m2 m`

h
K ⊕ opad

HMACK(m)

Figure 3.2: The construction HMACK .

the output size of the underlying hash function, unless truncated, which is also possible.
HMAC tries to mimic the most intuitive way of building a MAC, which is simply prepend-
ing/appending a key to a message and hashing the result to produce a tag. When used
naively, this method is, however, susceptible to a so called length-extension attacks. By
using an additional call to a hash function at the end of the construction, HMAC achieves
resistance to these attacks. Here, we would like to point a very similar construction that
avoids these attacks slightly differently. The “sandwich” MAC (it both prepends and
appends the key to a message) was proved to be secure as well [64].

Interestingly, the Keccak hash function, the winner of the recent SHA3 hash com-
petition, is actually resistant against length-extension attacks (unlike SHA1, MD5, etc).
Therefore, it doesn’t need the nested approach of HMAC, and therefore can be used to
generate a MAC by simply prepending the key to a message [1], hence saving one call to
the underlying building block in terms of efficiency.

3.2 CBC-MAC

Together with HMAC, CBC-MAC is one of the most famous and widely deployed message
authentication codes. You can see its sketch in Figure 3.3. Its design is borrowed from
encryption, as CBC stands for Cipher-Block-Chaining, and it is a mode of operation for
block-ciphers. However, it can be easily modified to form a MAC, hence CBC-MAC. The
computation is almost the same as in encryption, apart from the initialization process and
the fact that most of the ciphertext blocks are dropped, only the last one is output as a Tag.
CBC-MAC has been standardised and is used, for example, in TLS. Apart from the pure
CBC-MAC, there exist many variants of this algorithm, most prominently ECBC-MAC that
has the Tag encrypted under a different key and benefits from a higher level of security.

EK

+

m1

0

EK

+

m2

EK

+

m3 . . .

. . . EK

+

m`−1

EK

+

m`

CBC-MACK(m)

Figure 3.3: The construction CBC-MACK .

CHAPTER 3. MESSAGE AUTHENTICATION CODES 17

Lastly, it is important to note that some combinatorial techniques developed for proving
an improved bound for CBC [11] were used to prove the results of Chapters 4 and 6.

3.3 PMAC

PMAC is a parallelizable MAC that is based on a block-cipher, as opposed to being
based on a hash-function, which was the case in HMAC. It was introduced by Black
and Rogaway at Eurocrypt 2002 [14], and you can see its slightly simplified design in
Figure 3.4. The security of PMAC is parametrized by the block-size and the quality of
the underlying block-cipher over {0, 1}n, which is in turn dependable on the size of the
secret key. The masks that are xor-ed to the message blocks are the multiplication of
a fixed key-dependent value with a Canonical Gray code. The output size of PMAC is
equal to the block-size of the block-cipher, with the possibility of truncation of the Tag.
PMAC is slightly less efficient than, for example, modes based on CBC-MAC, but its main
advantage is that unlike CBC-based MACs, it allows to process the message blocks fully
in parallel. The parallel processing property was in fact the main goal behind its design.
PMAC comes from the family of MAC algorithms of XCBC, OMAC, etc., and is even
vaguely connected to the authenticated cipher OCB. PMAC is not standardised and not
as popular as HMAC, however, there is a pending patent on its design.

3.4 Others Macs

Probabilistic (or Lightweight) MACs Even though we talked about lightweight au-
thentication in Section 1.3, here we would like to add more information directly connected
to MACs. Until recently, MACs were purely deterministic. Recently, we have seen the
introduction of probabilistic MACs, such as those based on LPN (learning parity with
noise) assumption [36, 21, 44]. These MACs use randomness for the computation of the
tags, hence the name probabilistic MACs. Consequently, this also means that for a fixed
key, every message has a set of valid tags, not just a single tag (deterministic case) and the
MAC has some nonzero completeness error. These MACs are especially suited for weak
devices, such as RFID tags, as they replace hard computational operations with using
more randomness, which is actually easy to get on this kind of devices. Additionally, they
have also brought with them a need for new security definitions. As a response, existential

πK

+

m1

τ1

πK

+

m2

τ2

+

πK

+

m3

τ3

+

. . .

. . .

. . .

πK

+

m`−1

τ`−1

+

πK

m`

+ πK PMACK(m)

Figure 3.4: The construction PMACK .

18 CHAPTER 3. MESSAGE AUTHENTICATION CODES

unforgeability under chosen message with verification attack (uf-cmva) was introduced.
The main idea is that for probabilistic MACs, the attacker is allowed to modify tags and
send them to the verification oracle to check if it is valid. Note that for a deterministic
MAC, there is only one valid MAC for every message, therefore, this notion is actually
equivalent to uf-cma (Definition 2). As we deal neither with probabilistic MACs, nor with
uf-cmva in this thesis, we point an interested reader to [21] for details.

Information-Theoretic MACs All the MACs we have talked about so far are se-
cure only in the presence of computationally bounded adversaries. On the other hand,
information-theoretic MACs (in fact, any information-theoretic primitive) are secure even
in the presence of computationally unbounded (“all powerful”) adversaries. Security in
this sense means that the adversary cannot forge a valid tag with probability greater than
taking a random guess, i.e. 2−n for tags of size n-bits. We will not go into further detail,
but information-theoretic security is achievable with some bounds on how many messages
can be authenticated by honest parties per key. This number of messages is closely linked
to the size of the keys, e.g. for a key of length 2n, only a single message can be MAC-ed
using a pairwise independent function to get 2−n security. Similarly, for keys of length
(q + 1)n, we can compute a MAC for q messages using a q-wise independent function.

Wegman-Carter MACs A very influential class of MACs was proposed by Wegman
and Carter in 1981 [63]. Their idea is to use so called universal hash-function families
to efficiently hash down the message, and then encrypt it using a short key. One of the
main constructions built on top of these ideas is UMAC, originally published at Crypto
in 1999 by Black et al.[13].

3.5 Authenticated Encryption

In Section 1.1 we have talked about the CIA (confidentiality, integrity, authenticity)
principle. In this Chapter, we talk about MACs - a primitive that is defined to bring us the
latter two goals. The first goal, confidentiality, is generally achieved through encryption.
By using encryption together with a MAC, we could achieve all three of the cryptographic
goals. In most books you will find the Encrypt-then-MAC recipe to combine these two
primitives. However, in the past decade a new primitive was proposed - authenticated
encryption. Authenticated encryption, as the name suggests, aims to combine MACs with
encryption to provide the most efficient primitive for achieving the CIA goals together. It
is an encryption scheme that apart from the ciphertext also outputs a Tag that satisfies
Definition 2 with slight modifications. Therefore, the output of the authenticated cipher,
ciphertext and the tag, guarantee confidentiality, integrity, and authenticity at the same
time. Several methods have been proposed, out of which OCB, mode of operation for
block-ciphers (“offset codebook”) [59], is the most popular. However, it suffers from some
drawbacks - it is patented and therefore not freely available (like AES, for example), and
there are already nontrivial attacks against it [23]. In January 2013 a new cryptographic
competition called CAESAR 1 was announced, its goal being to select the best candidate
for a standardised, patent free authenticated cipher. The submission deadline was in
March 2014 and the competition is currently in its third round of selection.

1http://competitions.cr.yp.to/index.html

19

4 Exact Security of HMAC

We use this Chapter to revisit the HMAC algorithm and give an exposition of results
shown in full detail in Chapter 6. On top of that, we give some additional details and
look into some further research that was done after [24] was published.

To start with, let us briefly reintroduce the NMAC and HMAC algorithms. They were
both proposed by Bellare, Canetti and Krawczyk in 1996 [7], and later standardized [39].
As we already mentioned in Chapter 3, HMAC has become very popular and widely
used, e.g. in TLS. Although originally designed as a MAC, it is also often employed
more broadly as a pseudorandom function (PRF). This is the case, for example, when
used for key-derivation in TLS and IKE (the Internet Key Exchange protocol of IPsec).
This proliferation into practice motivates the need for a good understanding of the exact
security guarantees provided by NMAC and HMAC when used as a PRF.

Formally, NMAC is a mode of operation which transforms a keyed fixed input-length
function f : {0, 1}c × {0, 1}b → {0, 1}c (with b ≥ c) into a keyed variable input-length
function NMACf : {0, 1}2c×{0, 1}b∗ → {0, 1}c (where {0, 1}b∗ denotes all bit strings whose
length is a multiple of b) as

NMACf((K1, K2),M) := f(K2,Casc
f(K1,M)‖0b−c)

where Cascf : {0, 1}c × {0, 1}b∗ → {0, 1}c is the cascade (also known as Merkle-Damg̊ard)
construction

Cascf(K1,m1‖ . . . ‖m`) := f(. . . f(f(K1,m1),m2) . . .m`) .

HMAC is a variant of NMAC tweaked for applicability in practice. As security proofs for
NMAC can typically be lifted to HMAC, it is usually sufficient to analyse the security of
the cleaner NMAC construction. We will discuss this point further in the next paragraph.
As opposed to NMAC, the two keys (K1, K2) in HMAC are derived from a single key
K ∈ {0, 1}b by xor-ing it with two fixed b-bit strings ipad and opad. In addition, the keys
are not given through the key-input of the compression function f, but are prepended
to the message instead. This allows for the usage of existing implementations of hash
functions that contain a hard-coded initialization vector (IV). Formally:

HMACf(K,m) := Cascf(IV, K2‖Cascf(IV, K1‖m)‖fpad)

where (K1, K2) := (K ⊕ ipad, K ⊕ opad)

and fpad is a fixed (b− c)-bit padding not affecting the security analysis.

As we mentioned above, the proofs in this paper consider NMAC. There is a standard
reduction of HMAC-to-NMAC PRF-security given by Bellare [5], albeit under some addi-
tional requirements on the underlying compression function f. Informally, one needs to
assume that f is a PRF even when keyed through the b-bit data input, as opposed to being

20 CHAPTER 4. EXACT SECURITY OF HMAC

h h hIV h

K ⊕ ipad m1 m2 m`

h
K ⊕ opad

HMACK(m)

h hK1 h

m1 m2 m`

h
K2

NMACK1,K2(m)

Figure 4.1: HMAC versus NMAC.

keyed by the c-bit chaining variable. Moreover, security of the single-key version of HMAC
requires the PRF to be secure under a specific class of related-key attacks. Formally, the
reductions are given in Lemmas 5.1 and 5.2 in the full version of [5] for the case of double-
and single-keyed HMAC, respectively. Since these reductions only relate to NMAC via its
PRF-security, they apply to our result in a blackbox way, thus giving clear statements
also for HMAC.

We now discuss the results on PRF security of HMAC, which can be seen in Figure 4.2,
depicted in the form of Section 1.4. Firstly, the lower bound of q2/2n is due to generic
birthday-bound attacks. Secondly, the original bound by Bellare et al. [7] prove that
NMAC is a secure PRF under the condition that f is a PRF, and secondly that Cascf is
weakly collision-resistant (one requires that it is hard to find a pair of messages M 6= M ′,
such that Cascf(K,M) = Cascf(K,M ′) under a random key K). However, in HMAC
instead of Cascf we often use hash functions like MD5 or SHA-1, both of which have
been found not to be weakly collision-resistant [61, 62]. Therefore, for these scenarios we
cannot use the security proof by [7] we described above. We would like to point out that
despite this fact, there are no know attacks (better than generic birthday-bound attacks)
for NMAC or HMAC with MD5 or SHA-1.

Consequently, in a follow-up paper Bellare [5] tries to evaluate the PRF security with-
out the weakly collision-resistant assumption, assuming only that the function f is a good
PRF. The proved result roughly says that if f is an ε-secure PRF (against an adversary
running in time t and asking q queries) and a γ-secure PRF (against time O(`) and 2
queries), then NMACf is an (ε+ `q2γ)-secure PRF against time t and q queries of length
at most ` (in b-bit blocks). The most recent result on the PRF security of HMAC due
to [38] claimed that HMAC is an ε`-secure PRF. However, this bound is falsified by an
attack given in Section 4.2.

Our first contribution is a simpler, and as we will show, basically tight proof for the

Figure 4.2: HMAC results overview.

CHAPTER 4. EXACT SECURITY OF HMAC 21

PRF-security of NMACf assuming only that f is a PRF. The argument states that if f is
an ε-secure PRF against q queries, then NMACf is roughly `qε-secure against q queries of
length at most ` blocks each. The actual result is more fine-grained, and expresses the
security in terms of both the adaptive and non-adaptive security of f. We will discuss the
details later in the following Section 4.1.

Following this result we also prove an upper bound for the PRF security of HMAC in
Section 4.2, proving that the above lower bound is basically tight. From any PRF, we
construct another PRF f for which NMACf can be broken with advantage Θ(`qδ). This
shows that our bound is tight for the practically most important case when `qδ is larger (or
at least comparable) to ε. However, the above-mentioned attack achieving advantage `qδ
against the NMACf construction for a particular f is not really satisfactory, as it assumes
that f contains “pathological” features not expected from any natural PRF. This suggests
that the bound obtained might be a too pessimistic approximation of the security level
of NMAC one should expect in practice. A more “optimistic” way to capture the security
of the NMAC construction itself is to assume that f behaves like an ideal function.

Consequently, as our second main positive result, we analyze the security of NMACf

in the information-theoretic setting where f is an ideal compression function. Not sur-
prisingly, in this idealized setting we are able to give a much stronger `d′(`)q2/2c-bound
where d′(`) ≈ `1/ ln ln ` denotes the maximum number of divisors of any positive integer
not greater than `. This bound is of information-theoretic nature, hence being valid also
for adversaries that are restricted by the number q and length ` of their queries, but are
otherwise computationally unbounded. We also give matching attacks, showing that this
bound is tight for constant q, and almost tight (i.e., up to the d′(`) factor) for general q.
The proof borrows combinatorial techniques originally developed for proving the security
of the CBC-MAC [11]. These techniques need considerable adaptations, as in [11] the
round function for the CBC mode is a permutation with a fixed key, whereas for NMAC
we consider a function which is constantly rekeyed.

This rekeying makes the proof approach typically applied to constructions that use a
PRF f under a fixed random secret key, much harder to perform. There, the analysis starts
by replacing the PRF with an ideal random function (introducing an error that is upper-
bounded by the PRF-security of f) and proceeds by a fully information-theoretic argument
(note that this is the approach we take when analyzing PMAC in Chapters 5 and 7, where
we replace a keyed permutation by a random permutation). Nevertheless, we try to make
such an analysis by investigating the PRF-security of the nested iterated (NI) construction
introduced in [4]. The construction NIh is very similar to NMACf , but is based on a
compression function h that (compared to f) takes an additional k-bit input which is used
for keying instead of the chaining input. Hence, in our analysis NIh uses h under the same
key throughout the whole cascade. The modified keying allows for the simple switching
argument from PRF to a random function we mentioned above. Additionally, we focus
on enhancing the information-theoretic analysis that follows this switch and prove an
essentially tight `q2/2c bound for this step, improving significantly over the trivial bound
of `2q2/2c.

Lastly, we would also like to mention that there is also a recent line of work investigat-
ing generic attacks against iterated hash-based MACs [53, 40, 50, 54]. These works present
various attacks against MACs (e.g. related-key attack, universal forgeries, state recov-
ery) that do not exploit the inner structure and potential weaknesses of the compression
function, instead they rely solely on the iterative structure of the MACs.

22 CHAPTER 4. EXACT SECURITY OF HMAC

4.1 New proof of security

In this section we analyze the PRF security of NMACf in terms of the PRF-security of
the underlying function f.

Before analyzing the actual NMACf construction, we first look at the PRF security of
the inner cascade Cascf when it is queried on prefix-free messages. We adapt the result
of Bellare et al. [8] by modifying it to obtain security against non-adaptive adversaries,
assuming only non-adaptive security of the underlying compression function f. This will
allow us to give a more fine-grained security bound for NMAC, as it will both in terms of
adaptive and non-adaptive security.

Proposition 1 (Cascf as a NA-PF-PRF). Let f : {0, 1}c × {0, 1}b → {0, 1}c be a com-
pression function. There exists an explicit reduction T (described in the proof) such that
for any (ε′, t′, q, `)-NA-PF-PRF adversary A against Cascf , TA is an (εna, t, q)-NA-PRF
adversary against f such that

ε′ ≤ `qεna and t = t′ + Õ(`q) .

The full proof based on the random system framework is given in Appendix 6.5.1. It
uses a hybrid argument with an intermediate construction, hence it is split into two parts.
The intuition is that if we can break the security of the cascade, then we must be able
to break the security of at least one inner block of the cascade. However, each block is a
secure PRF f, hence the statement is proved by contradiction.

The main theorem of this section is presented below. It relates the adaptive PRF-security
of the construction NMACf to both the adaptive and non-adaptive PRF-security of f.

Theorem 1 (NMACf as a PRF). If f : {0, 1}c×{0, 1}b → {0, 1}c is an (ε, t, q)-secure PRF
and an (εna, t, q)-NA-secure PRF, then NMACf is an (ε′, t′, q, `)-secure PRF with

ε′ = ε+ (`+ 1)qεna +
q2

2c
and t = t′ + Õ(`q) . (4.1)

The reduction is uniform. Concretely, there exist explicit reductions T1 and T2 (described
in the proof) such that for any (ε′, t′, q, `)-PRF adversary A against NMACf ,

1. TA
1 is an (ε, t, q)-PRF adversary against f,

2. TA
2 is an (εna, t, q)-NA-PRF adversary against f,

and their parameters satisfy equations (4.1).

The formal proof (again in the random system framework) can be found in Section 6.3.
It basically says that if an adversary breaks the PRF-security of NMACf , then it must
break either the NA-PRF-security of the cascade, or the PRF-security of the outer PRF
f. As we know that both of these are secure, then so must be NMACf .

CHAPTER 4. EXACT SECURITY OF HMAC 23

4.2 Tight security bound via a new attack

In this section, we argue that the PRF-security bound for NMACf obtained in Theorem 3
is essentially tight. First, we show that the term `qεna is unavoidable (up to a constant
factor) by constructing a particular compression function f, which is an (εna, t, q)-NA-
secure PRF, yet there is a simple attack against the PRF-security of NMACf achieving
advantage roughly `qεna.

Proposition 2. Let b, c, ` be positive integers such that b ≥ c, let εna ∈ (0, 1), and more-
over, assume that pseudo-random functions exist. Then there exists a function f : {0, 1}c×
{0, 1}b → {0, 1}c and an adversary A against NMACf such that for any q that satisfies
εna = ω(q22−b, 2−c), we have:

• f is (εna, t, q)-NA-secure PRF;

• the adversary A, when asking q queries of length ` blocks each, runs in time Õ(`q)
and achieves distinguishing advantage

Advprf

NMACf
K

(A) = Θ(`qεna) .

In particular, for any ε ∈ o(`qεna), and some t ∈ Õ(`q), NMACf is not an (ε, t, q, `)-
secure PRF.

The full proof can be found in Chapter 6, Appendix 6.5.2. However, here we give the
intuition of how the attack works.

To start with, we have to construct an (εna, t, q)-NA-secure PRF f that behaves pseudo-
randomly except for a small εna/2-fraction of the keys (note that this is in line with the
definition of a PRF from Chapter 2). We denote the set of these keys by K and refer
to them as the weak keys. Then, the PRF f behaves as follows: under any weak key k,
f(k, ·) outputs some constant value w ∈ K irrespective of its input. For us it is enough to
assume w := 0.

As a next step, let us plug in the function f into the NMAC construction to form
NMACf

K=(K1,K2). For the attack, we sample a random message M of length ` − 1 blocks
at random. Then, we set M1 = M‖x1 and M2 = M‖x2 for two distinct blocks x1, x2 ∈
{0, 1}b. Then if some of the ` − 1 intermediate values in the evaluation of the inner
function Cascf(K1,M) is in K, then all following intermediate values are 0 (because of
the way we defined the function f, once a weak key is hit, then the following keys are
always 0). In particular, we have Cascf(K1,Mi) = 0 for both i ∈ {1, 2}, and hence also
NMACf(K,M1) = NMACf(K,M2) = fK2(0). This implies that it is much more likely to
get a collision for a pair of messages as described above for NMACf

K than for a random
function R. Our adversary A maximises its chances by simply choosing q/2 message pairs
at random as described above, and it outputs 1 if it observes a collision for at least one
of those pairs. There are q/2 message pairs, each of length `, so we have a total of `q/2
possibilities to “hit” a weak key, each having probability εna. We then apply the union
bound to give us a total probability of Θ(`qεna) for observing a collision when querying
NMACf

K . On the other hand, the probability of observing a colliding pair when querying
a random function R is much less, being only O(q/2c). We subtract these two values to
prove the proposition.

24 CHAPTER 4. EXACT SECURITY OF HMAC

4.3 HMAC extension and its security

In this section we analyze the PRF-security of the constructions called NIh and NI2h (NI
stands for Nested Iterated) under the assumption that the keyed compression function
h is a PRF (when keyed via its k-bit input). Now, let us introduce the nested iterated
(NI) construction defined in [4]. For this, we consider a keyed compression function
h : {0, 1}k × {0, 1}c × {0, 1}b → {0, 1}c. When such h is used in a cascading construction,
its c-bit and b-bit inputs are used for the chaining value and the next block, respectively. In
contrast to the function f considered previously, h has an additional k-bit input that is used
for keying. Formally, for such h we define the nested iterated construction NIh : ({0, 1}k)2×
{0, 1}b∗ → {0, 1}c as

NIhK1,K2
(m) := hK2(Casc

hK1
0 (m), |m|)

where 0 denotes the all zero bitstring 0c and |m| is the length of m encoded in b-bit blocks.
For a graphical description, see Figure 4.3.

For a detailed discussion of the relationship of NI to NMAC, see [4]. For completeness,
we also consider the modified version of NI that replaces the message length |m| in the
last (outer) call of the compression function by the constant bitstring 0b, we denote this
variant as NI2. Formally, we have

NI2hK1,K2
(m) := hK2(Casc

hK1
0 (m), 0b) .

We can say that NI2h is the variant of NIh that does not care about the message length.
Recall that d′(n) denotes the maximum, over all positive integers n′ ≤ n, of the number
of positive divisors of n′; i.e., d′(n) := maxn′∈{1,...,n} |{d ∈ N : d | n′}| ≈ n1/ ln lnn.

Our main theorem in this section is as follows:

Theorem 2. If h : {0, 1}k × {0, 1}c × {0, 1}b → {0, 1}c is an (ε1, t, q)-secure PRF and an
(ε2, t, `q)-secure PRF, then NIh is an (ε′, t′, q, `)-secure PRF with

ε′ = ε1 + ε2 +
q2

2c
·
(
`+

64`4

2c

)
and t = t′ + Õ(`q) ,

and NI2h is an (ε′′, t′′, q, `)-secure PRF with

ε′′ = ε1 + ε2 +
q2

2c
·
(
` · d′(`) +

64`4

2c

)
and t = t′′ + Õ(`q) .

As before, the proof can be found in Chapter 6, Theorem 4, and here we provide the
underlying ideas for the proof. Firstly, let us explain the relationship between NIh and

h h h0c h

K1

m1

K1

m2

K1

m3

K1

m`

h

|m|

NIhK1,K2
(m1‖ · · · ‖m`)

K2

Figure 4.3: The construction NIhK1,K2
.

CHAPTER 4. EXACT SECURITY OF HMAC 25

NI2h in terms of proving the statement of the theorem. We start with the proof for NI2h,
as this is the “full” proof, where we work with messages of variable lenght. NIh encodes
the message length as part of the message, therefore, in the proof we have to work with
messages of equal length (this fact will be clear later). Hence, the second proof is simpler,
and can be derived from the first in a straightforward way (the set of messages with fixed
length is a subset of the set of messages with variable length).

The proof for NI2h starts with the basic step of replacing the PRF h by an ideal
compression function, and proceeding in the information-theoretic model (note that we
have discussed this at the beginning of this chapter). This step adds the PRF-security
bounds (ε1, ε2) of h into the resulting bound for NI2h.

In the second step of the proof, we observe that NI2 with an ideal compression function
behaves identically to a random function R, as long as no non-trivial collision occurs in the
outputs of the initial cascade. Let CColl(`) denote the probability that a random choice
of the compression function f1 results in a collision in Cascf10 , maximized over the choice
of the two distinct inputs to the cascade m1,m2, consisting of at most ` blocks each. We
then use the result of Maurer (see Lemma 1) to show that the advantage of the adversary
is upper bounded by q2 ·CColl(`). Thanks to f2, the responses of the composition ZCascf10
with f2 to distinct queries are clearly independent, uniformly random values and in this
case the theorem says that distinguishing NI2 is as hard as forcing a collision on the input
to f2. If we then use the union bound for q2 candidate message pairs, we arrive at the
mentioned bound q2 · CColl(`).

Next, in the third part of the proof, we reduce estimating the probability of a collision
on the output of the inner cascade of NI2 with an ideal compression function to a counting
problem of upper-bounding the number of graphs satisfying certain properties (modeling
the computation of the cascade). We note that the probability CColl(`) could actually be
trivially upper-bounded by O(`2/2c) using a union-bound argument. Achieving a better
and non-trivial bound on CColl(`) is actually the central part of our proof. In order to
do that we use so called structure graphs, which represent the computation of Cascf10 on
various inputs, and are inspired by [11].

To start with, let us assume two distinct messages m1 and m2 (M = (m1,m2)) that
we parse into b-bit blocks as mi = m1

i ‖ · · · ‖m
`i
i for some `1, `2 ≤ `. Then the structure

graph GMf for these messages and a fixed compression function f is defined as the triple
GMf = (V , E ,L), the sets of vertices, edges, and labels.

Intuitively, the vertices in V represent the evolution of the intermediate values of the
chaining variable of Cascf10 , while the directed edges connect consequtive computation
steps. The edges are labelled with message blocks (one or more) that were used in the
computation. If all the values of the chaining variable are distinct, GMf simply consists of

two directed paths starting in the root vertex 0, representing the evaluation of Cascf10 on
the messages m1 and m2 (the edges from E are labeled by the corresponding blocks). If
some collisions among the values of the chaining variable occur, one can obtain the graph
GMf by collapsing every pair of vertices corresponding to such collision into one vertex, as
well as merging the edge labels in the natural way. Let G(M) := {GMf : f ∈ F(c+ b, c)}
denote the set of all structure graphs associated with the message pair M. For a fixed
structure graph G = GMf we denote by Gi = (Vi, Ei,Li) the graph that is obtained after
processing only the first i out of `1 + `2 blocks of M. The idea is that we reveal the
structure graph G step by step, i.e., by a sequence of transitions from Gi−1 to Gi. The
index i belongs to fColl(G) (and we say that the i-th step caused an f -collision), if during

26 CHAPTER 4. EXACT SECURITY OF HMAC

0 1 2 3 4

5

m(1) m(2) m(3) m(4)

m(4) m(5)
m(6) m(7)

Figure 4.4: Illustration of the three cases
from Lemma 2.

M = {m1,m2}, |m1| = |m2| = 4b
m(4) 6= m(1),m(6) = m(3),m(7) 6= m(4)

- m1

- m2

- fresh
- collision
- determined

this computational step, instead of adding a new vertex to Gi, we arrive at a vertex
already visited, while not following an existing edge already labeled with m(i) (i.e., not
repeating a step we have made before).

To actually prove our result, first we upper-bound the probability of GMF taking the
form of any particular fixed structure graph g ∈ G(M).

Lemma 2. Let F ← F(c + b, c) be chosen uniformly at random. For a fixed graph
g ∈ G(M) we have

PrF
[
GMF = g

]
≤ 2−c·|fColl(g)| .

The full argument can be found in the proof of Lemma 7. The high level idea is as
follows. We pick any graph g and then follow GMF , revealing it step by step. Then we
categorize each new edge as (also depicted in Figure 4.4)

Fresh: It arrives at a new vertex not present in gi.

Determined: It follows an already existing edge.

Collision: It causes an f -collision In this case, Gi+1 will stay consistent with g if and only
if its (i+1)-th edge lands on precisely the same vertex as in gi+1. The probability of
this event is 2−c, as the i+ 1-th chaining variable is uniformly random over {0, 1}n
and not determined in the first i steps.

Since the third case occurs exactly |fColl(g)| times, if we trivially upper-bound the
probabilities in the other two cases by 1, we obtain the final bound Pr[G = g] ≤ 2−c·|fColl(g)|.
Using this Lemma 2, it is easy to see that the event that at least two f -collisions occur
in G is highly unlikely (for a proof, see Lemma 8 in Section 6.4).

Lemma 3. Let F ← F(c+ b, c) be chosen uniformly at random. Then

PrF
[∣∣fColl (GMF)∣∣ ≥ 2

]
≤ 4(`1 + `2)4

22c
.

Finally, we give a bound on the number of the structure graphs with a single collision,
and hence we conclude the proof argument. We do that by upper-bounding the value
CColl(`). LetM := (m1,m2) be the two distinct messages of length at most ` blocks that
maximize the probability CColl(`) := maxm1 6=m2 Pr

F
[
CascF0 (m1) = CascF0 (m2)

]
. Then we

claim the following about the structure graph corresponding to a collision for these two
messages - their corresponding paths need to divert after some vertex and come back
together again in a different vertex at least once. The second step corresponds to a
collision, and by Lemma 3, we know that seeing two, or more, collisions is highely unlikely.
The reason behind this claim is that the messages need to differ in at least one block (the
diverting of paths), but if they are to collide, by the definition of structure graphs, they
need to end in the same vertex (hence, the reunion part).

CHAPTER 4. EXACT SECURITY OF HMAC 27

0 1 2 3 4 5 6 7 8 9 10

13 14 15

p j

Figure 4.5: A sample graph from the set H1 in the proof of Lemma 4, with p = 2 and
j∗ = 16.

Therefore, in the last step of the proof, we count the number of graphs, where the paths
corresponding to m1,m2 end in the same vertex, while causing precisely one collision. We
denote these graph by H(M).

Recall that d′(n) denotes the maximum, over all positive integers n′ ≤ n, of the number
of positive divisors of n′; i.e., d′(n) := maxn′∈{1,...,n} |{d ∈ N : d | n′}|.
Lemma 4. For two distinct messages M = {m1,m2} each of length at most ` blocks
we have |H(M)| ≤ `d′(`). If the messages in M are of the same length then we have
|H(M)| ≤ `.

The proof from Section 6.4 handles the general case where we allow the messages m1

and m2 to have different lengths `1 and `2. Without loss of generality, let us assume that
`1 ≥ `2. Then we consider two scenarios - in the first one, the structure graphs contains
a loop (or more), while in the second scenario it does not.

You can see a scenario without a loop in Figure 4.5. The intuition is that the two
paths must part at some vertex p and rejoin at some further vertex j. However, this point
j is determined by the length of the two messages - if at the time the paths rejoin the
number of remaining vertices to travel is different for the two messages, then they will
not end in the same vertex (note that the only way to ”spent” redundant blocks is via
another collision, which is unlikely, or via a loop, which we will cover later). This allows
us to bound the number of structure graphs in this scenario by `, the maximum number
of different values of p.

Now, let us consider a scenario with a loop in it (note that two loops are created by
two collisions, hence we assume just one - but we can reuse the loop multiple times). We
split the graph into 3 different parts - part x is the common prefix of the messages, part y
is the loop, while part z is the common suffix. You can find an illustration in Figure 4.6.
We note that the length of the loop must divide the difference in message length of the
two messages - imagine that the loop is a trick how to get rid of redundant message blocks,
so both message paths end in the same block. Then, we observe that there are at most
` points that determine the start/end of the loop, as well as at most d′(`) different loop
lengths, such that the loop starts and ends in the same vertex. This allows us to bound
the number of consistent structure graphs by ` · d′(`).

The case of NI is almost exactly the same as NI2, but we require the messages m1

and m2 in the definition of CColl(`) to be of the same length. This leads to the use of
the second part of Lemma 4 that assumes equal-length messages, arriving at the claimed
bound.

In Appendix 6.5.3 we show that Lemma 4 is actually tight. As a consequence, the
adversary can simply choose q messages m1, . . . ,mq of the form mi = xi‖0b(`−1) for ar-
bitrary distinct xi’s. In the proof we show that he succeeds with probability Ω(`q2/2c),
hence giving the tight bound.

28 CHAPTER 4. EXACT SECURITY OF HMAC

0 1 2 3 4 5

4

56

7

10 11

y

x z

Figure 4.6: A sample graph from the set H2 in the proof of Lemma 4, with i∗ = 2 and
j∗ = 8.

4.4 Further research

The paper on HMAC was followed by further research into this scheme. It is worth
mentioning the paper by Bellare and Lysyanskaya [10], who study so called “Dual PRFs”.
When one wants to lift the security results of NMAC to results about HMAC, one of
the assumptions that needs to be made is that the underlying compression function is
secure, even if the roles of its two inputs (message, key) are reversed - meaning the
compression function is a dual PRF. The authors of the paper discuss the notion of dual
PRFs, possible constructions as well as constructions that use them, such as HMAC.
Such research gives us further assurance about the close connection between NMAC and
HMAC and strengthens the results of Chapter 6.

AMAC is a simple and fast candidate construction of a PRF from an MD-style hash
function which applies the keyed hash function and then, unlike HMAC, an un-keyed out-
put transform such as truncation. It is also a part of widely-deployed Ed25519 signature
scheme. Its PRF security was also recently analyzed by [6].

In [25] the authors also analyze the PRF security of NMAC/HMAC by slightly modify-
ing them. Apart from tight bounds on the PRF security, this modification protects both
constructions against the recent generic attacks we mentioned previously [53, 40, 54].

Another open question lies within the way we model the adversary, as is is only allowed
to access the ideal compression function f via its access to NMACf . Although this is in line
with almost all previous works analyzing modes of operation in an idealized model, one
has to be more careful to make arguments about the real world security for NMAC, than
for example in the paper on the CBC-MAC [11]. The reason is that in the CBC mode, the
underlying function (which is an ideal permutation) is used with a fixed key, and never
re-keyed. Thus, to get a bound on the real-world PRF-security of the CBC-MAC when
instantiated with a block cipher, one simply has to add (to the security bound in the ideal
model) a term bounding the security of the block-cipher as a pseudorandom permutation
(i.e., the advantage of an adversary in distinguishing the block-cipher, instantiated with
a random key, from a random permutation).

The case of NMAC is more delicate, as here the inner cascade construction is constantly
re-keying the ideal compression function f . An ideal model that would capture security
better, while still avoiding the poor bounds we get in the real model due to the existence
of PRFs with an unrealistic pathological behavior, is to give the adversary not only access
to NMACf , but also to the ideal f : {0, 1}c × {0, 1}b → {0, 1}c. Finding tight bounds in
this model seems considerably challenging open problem.

29

5 Exact Security of PMAC

In this chapter we explore the exact security of PMAC, which we introduced in Section 3.3.
The results described below are a simplified and more accessible version of Chapter 7, with
some additional details and commentary.

As a remainder, PMAC is the most prominent parallelizable MAC, and is based on
a block-cipher. It was invented by Jon Black and Phil Rogaway, and introduced at
Eurocrypt 2002 [14]. To revisit its design, see Figure 5.2. The formal definition of PMAC
looks as follows: the secret key consists of two permutations π, π′ over {0, 1}n, and a
function τ : N → {0, 1}n that determines the masks used in the construction. The
output, when the input is a message M = m1‖ . . . ‖m`,mi ∈ {0, 1}n, is computed as

PMACπ,π′,τ (M) = π′

(⊕̀
i=1

π(mi ⊕ τ(i))

)
. (5.1)

Additionally, the masks are computed as τ(i) = γi ·L, where γi is the i-th Gray codeword
(defined later). Our definition is slightly idealized, but we postpone the details until
Section 5.1. The security of PMAC is usually analyzed assuming it is a pseudorandom
function (defined in Chapter 2), and this is also the approach we take. Additionally,
we work in the random permutation model - it means we replace the pseudorandom
permutations π, π′ with uniformly random permutations and add the corresponding terms
to the security bound.

In their paper, Black and Rogaway prove that the distinguishing advantage against
PMAC is at most σ2/2n, q being the number of message queries, ` being their maximal
length, n being the block size, and σ the total sum of message blocks being queried. This
was later improved by Minematsu and Matsushima [49] to q2`/2n, and then further to
qσ/2n by Nandi and Mandal [52] (note that qσ can be much less than q2`, if the message
lengths vary a lot). The most recent result on PMAC comes from Luykx et al. [42], who
showed an attack with success probability roughly `/2n. You can see all these results in
relation to each other in Figure 5.1. In order to follow-up on Section 1.4, we mention that
generic attacks on PMAC achieve success probability Ω(q2/2n), while O(q2`2/2n) could be
considered a trivial upper bound.

Figure 5.1: PMAC results overview.

30 CHAPTER 5. EXACT SECURITY OF PMAC

πK

+

m1

τ1

πK

+

m2

τ2

+

. . .

. . .

. . .

πK

+

m`−1

τ`−1

+

πK

m`

+ πK

PMACK(m)

πK

+

m1

τ1

πK

+

m2

τ2

+

. . .

. . .

. . .

πK

+

m`−1

τ`−1

+

πK

+

m`

τ`

+

sPMACK(m)

Figure 5.2: From PMAC to sPMAC.

In Section 5.2 we describe an attack on PMAC with advantage O(q2`/2n), matching
the bound of Nandi et al. [52], thus proving the exact security of PMAC. This attack
is inspired by the one of Luykx et al. [42], but differs in the message construction. The
former constructs 2 messages that are deterministically constructed based on the message
length `, leading to an attack with advantage `/2n. This attack, however, cannot be
extended to q queries. Our attack takes a different approach in message construction and
can utilize the full power of q queries and therefore achieve the advantage of q2`/2n.

The existence of such attack shows that the security bounds of original PMAC cannot
be further improved. Therefore, in Section 5.3, we look at different classes of masks
τ1, . . . , τ` and whether they can boost the security to the desired O(q2/2n) level. More
concretely, we look at masks that are randomly distributed, 4-wise independent, and 2-
wise independent (the original distribution is 1-wise independent). We prove that using
either random masks, or 4-wise independent masks, we can indeed improve the security of
PMAC to q2/2n, while we do not gain any security advantage by using 2-wise independent
masks. The analysis of 3-wise independent masks is left as an open problem.

5.1 sPMAC

As mentioned at the beginning of this chapter, PMAC as we defined it is a somewhat
simplified version of the actual original PMAC as proposed in [14]. We do not consider
issues that deal with “imperfect” messages (such as padding messages that do not have
full-block length) and, in general, issues that do not affect our security analysis. Addi-
tionally, we leave out the last message block, that is not permuted; again, this has no
effect on the analysis. We also assume that the value L used to calculate the masks is
sampled at random, even though technically is derived from the key. Same goes for the
two permutations π and π′ - we assume they are different, even though PMAC uses a
single permutation. These changes simplify our analysis, while not having a significant
effect on the outcome. For more details, see Chapter 7.

The last change we are going to describe is the removal of the outer permutation π′.
Thanks to a result called the PRP/PRF switching lemma, we can replace π′ with a PRF
f , while adding a penalty to the security bound [12]. Then, we can use Lemma 1(i), which
proves that distinguishing the output of f from random is as hard as provoking collisions
on the input to f . Hence, we remove f alltogether and change our goal from distinguishing
PMAC to finding collisions on the output of a new construction we call simplified PMAC, or
just sPMAC (see Figure 5.2 for a comparison between the two constructions). Furthermore,

CHAPTER 5. EXACT SECURITY OF PMAC 31

π

+

x1

m1

τ1

π

+

x2

m2

τ2

+

π

+

x3

m3

τ3

+

. . .

. . .

. . .

π

+

x`−1

m`−1

τ`−1

+

π

+

x`

m`

τ`

+

Figure 5.3: sPMACπ,τ (M).

by Lemma 1(ii), adaptivity does not help in provoking these collisions. Consequently, our
analysis is static and we can submit the q attack queries together.

Formally, we define the simplified PMAC, sPMAC : Pn ×FN,n × {0, 1}n∗ → {0, 1}n as

sPMAC(π, τ,m1‖ . . . ‖m`) :=
⊕̀
i=1

π(mi ⊕ τ(i)) .

For a better understanding, see Figure 5.3. One can also show that PMAC as defined
in Equation 5.1 can be derived from sPMAC by additionally encrypting the final output
using an independent permutation π′:

PMAC(π, π′, τ,M) = π′(sPMAC(π, τ,M))

Sometimes, we write τi instead τ(i), and e.g., sPMACπ,τ (M) instead of sPMAC(π, τ,M),
or, if π, τ are clear from the context, simply sPMAC(M). Lastly, for an input message
M = m1‖ . . . ‖m`, the following variables will be convenient to use later on

xi := mi ⊕ τi, ∀i ; X := (x1, . . . , x`) (5.2)

These variables are also visually defined in the graph of sPMAC in Figure 5.3.

Because we are looking for collision, we need to work with pairs of messages M =
m1‖ . . . ‖ms,M

′ = m′1‖ . . . ‖m′s′ , and so X ∗ denotes the multiset

xi := mi ⊕ τi , x′i := m′i ⊕ τi, ∀i ; X ∗ := (x1, . . . , xs, x
′
1, . . . , x

′
s′) (5.3)

Then, a cross-cancellation for two messages M,M ′ (denoted crCan(M,M ′)) occurs, if for
their corresponding X ∗↓, we have X ∗↓ = ∅ (↓ denotes the reduced set, see Chapter 2). It
follows that a crCan(M,M ′) implies a collision on sPMAC, and hence on PMAC.

Lastly, for a given n, `, and a distribution Tn, we define the following quantity:

θ(`, n, Tn) = max
M 6=M ′

|M|n,|M′|n≤`

Pr
τ←Tn

[{
x1, x2, . . . , x|M |n , x

′
1, x
′
2, . . . , x

′
|M ′|n

}↓
= ∅
]
. (5.4)

32 CHAPTER 5. EXACT SECURITY OF PMAC

θ(`, n, Tn) bounds the maximum probability over all pairs of distinct messages M,M ′ of
maximum length ` that their reduced set X ∗↓ is empty, and hence a cross-cancellation
occurs. It is also the quantity we want to bound, as we show in the following lemma,
relating it directly to sPMAC-collisions.

Lemma 5. For any n, Tn, and ` ≤ 2n−2

Advcol
sPMACPn,Tn

(q, `) ≤ θ(`, n, Tn) · q2 +
q2

2n−1
.

We do not give the proof here, but it can be found in Section 7.3. Intuitevely, θ(`, n, Tn)
is defined for a pair of messages, therefore, we take a union bound over all possible pairs
out of q messages. This is the reason why we see the q2 factor in the security bound. The
q2

2n−1 bounds the probability that there is a collision of two messages as a result of xor-ing
the permuted values xi (which is very unlikely), taking the union bound again.

5.2 New attack on PMAC

In this section we describe the attack on sPMAC (and hence on PMAC) with success
probability roughly `q2/2n.

Our attack can be used against sPMAC using a certain class of 1-wise independent
mask distributions. Namely, we assume that the masks are derived as τi := pi · R for
some progression P = (p1, . . . , p2n), where every pi ∈ {0, 1}n is distinct, and a value

R
$← {0, 1}n, which we model as sampled uniformly at random. The most prominent

progressions that satisfy the definition above are called Gray codes, and are in fact used in
the original PMAC construction. A Gray code is an ordering γ` = γ`0γ

`
1 . . . γ

`
2`−1

of {0, 1}`,
for any ` ≥ 1, such that successive points differ in precisely one bit. The canonical Gray
code from [14] is defined as follows:

γ1 = (γ1
0 , γ

1
1) := (0, 1)

γ2 = (γ2
0 , γ

2
1 , γ

2
2 , γ

2
3) := (00, 01, 11, 10)

...

γ`+1 = (0γ`0, 0γ
`
1, · · · , 0γ`2`−2, 0γ

`
2`−1, 1γ

`
2`−1, 1γ

`
2`−2, · · · , 1γ

`
1, 1γ

`
0)

An important feature of this Gray code is that it forms an additive group in the field
GF (2n) (where addition is the same as xor).

Description

In oder to better describe the attack, we introduce the following notation: given messages
(i.e., attack queries) M1, . . . ,Mq of length ` blocks each, we denote the i-th block of the

a-th message by m
(a)
i . We analogously define x

(a)
i := m

(a)
i · τi = m

(a)
i ⊕ pi ·R.

We describe a version of the attack that works against sPMAC with Gray codes. The
more general version that works for any progression P as we defined it above can be found
in Section 7.7. The main idea is that we look at messages that are constructed as

M1 = (m1,m2, . . . ,m`) = m1||m1|| . . . ||m1

. . .

Mq = (m1,m2, . . . ,m`) = mq||mq|| . . . ||mq

CHAPTER 5. EXACT SECURITY OF PMAC 33

for some message blocks m1, . . . ,mq. Then, we calculate the sets Xi (Equation 5.2) for
each message Mi.

As a first step, we take M1,M2, for now denote them M,M ′, respectively. We want to
analyse under what conditions the corresponding X ∗ = ∅ (see Equation 5.3), and hence
when they cause a crCan. Therefore, we first look at when x1 collide with some block of
the other message, x′i. This happens precisely when

m1 ⊕ τ1 = m′i ⊕ τi (5.5)

τ1 ⊕ τi = m1 ⊕m′i (5.6)

γ1 ·R⊕ γi ·R = m1 ⊕m′i (5.7)

R =
m1 ⊕m′i
γ1 ⊕ γi

. (5.8)

This means there exists precisely one value R which causes x1 = x′i. Additionally, if we
rearrange the elements in Equation 5.5, we can easily see that xi = x′1 (the messages are
composed of equal message blocks). Now, we make use of the fact that γ1, . . . , γ` form a
group, and γ1 is the identity element. It follows from Lagrange’s Theorem that we can
partition the set γ1, . . . , γ` into pairs of elements γa, γb, such that their sum (xor) is equal
to γi = γi ⊕ id = γi ⊕ γ1. If we plug these pairs into Equation 5.8, we can conclude that
xa = x′b, xb = x′a for every pair of indices a, b as defined above. Because these cover the
whole set of γ’s, we can conclude that X ∗ = ∅ for this particular value of R. Moreover,
we have chosen the index i of γi at random from a set of size `− 1, hence we have `− 1
values of R that cause a collision.

The next question is, whether we can extend this attack to q messages. It turns out
we can, if we choose m1, . . . ,mq carefully. Once again, we will not give the exact details
and analysis, just the intuition. We use rejection-sampling method to find message blocks
that maximize the number of R’s that cause a collision among M1, . . . ,Mq. We also show
that our algorithm finds such messages blocks in finite number of steps and is therefore
sensible.

However, there is a slight problem with out attack. The original PMAC from [14] uses
only

γ = (γ1, . . . , γ2n−1) = (γn1 , γ
n
2 , . . . , γ

n
2n−1) , (5.9)

meaning they do not use the first element of the progression, γn0 = 0, for the mask
construction. This however means that the set of masks does not form a group, as γn0
would be the identity element. We can fix this problem by slightly changing our approach
and gaining a factor 2−1 in the security bound. A bit surprisingly, it turns out that one
does not need γ1, . . . , γ` to contain a full group. It is sufficient, if it contains a large
enough coset of some subgroup of a group contained in GF (2n). The Gray code from [14]
contains a coset of size `/2, which means that we can force a collision on sPMAC with

probability roughly q2`
2n+1 .

We conclude the attack description with Algorithm 1, where we present the pseudocode
for the attack on PMAC as defined in [14]. The adversary A := A

O(·)
`,q,n is parametrized by

variables `, q, n (maximal length of messages, number of messages, size of message blocks),
and expects to interact with an oracle O(·) that is either PMAC, or a random function.
If it sees a collision, it guesses the oracle to be PMAC, random function otherwise. As we
said before, it succeeds with probability Ω(q2`

2n+1).

34 CHAPTER 5. EXACT SECURITY OF PMAC

Algorithm 1: Attacker A
O(·)
`,q,n against PMAC

1 e := γ`/2
2 I ′S := indices (`/2 + 1) . . . `
3 U0 := ∅
4 for a := 1 . . . q do
5 repeat

6 m̂(a) $← {0, 1}n

7 until
∣∣∣{ m̂(a)⊕m̂(b)

e⊕γi : b ∈ [a− 1], i ∈ I ′S
}
∩ Ua−1

∣∣∣ ≤ 2(a−1)3((`/2)−1)2

2n

8 Ua := Ua−1 ∪
{
m̂(a)⊕m̂(b)

e⊕γi : b ∈ [a− 1], i ∈ I ′S
}

9 Ma := ∅
10 for a := 1 . . . q do
11 for i := 1 . . . `/2 do
12 Ma := Ma||0n

13 for i := (`/2 + 1) . . . ` do
14 Ma := Ma||m̂(a)

15 for i := 1 . . . q do
16 Tagi := O(Mi)

17 for i := 1 . . . (q − 1) do
18 for j := (i+ 1) . . . q do
19 if Tagi = Tagj then
20 return 1

21 return 0

5.3 PMAC with k-wise independent masks

In this section we look at different distributions of masks τ1, . . . , τ` with the goal of
improving the security of PMAC.

2-wise independence In Section 5.2, we showed that the security of PMAC with the
original distribution on masks from [14], which is only 1-wise independent, the security is
just `q2/2n. As a first step, whether we can get a better security bound by switching to
2-wise independent distribution on masks.

For this reason, we slightly change the original distribution to make it 2-wise indepen-
dent. The mask distribution we used in the attack can be rewritten as a member of the
following family

{i→ a · pi | a ∈ GF (2n)} ,

where pi is the i-th Gray codeword and a stands for our value R. As before, P =
(p1, p2 . . . , p2n) can be thought of any progression without repetitions. Now, let us modify
this distribution by adding another field element to make it 2-wise independent:

{i→ a · pi ⊕ b | a, b ∈ GF (2n)} .

CHAPTER 5. EXACT SECURITY OF PMAC 35

Note that this is the most standard 2-wise distribution. If you recall, in the previous
section we were analyzing collisions, more precisely, we were looking for pairs of xi, x

′
j

(defined in Equation 5.2), such that xi = x′j. Let us know look at one such pair computed
using the 2-wise independent distribution we have just defined.

xi = x′j

mi ⊕ a · pi ⊕ b = m′j ⊕ a · pj ⊕ b
mi ⊕ a · pi = m′j ⊕ a · pj

As we see, the element b is automatically cancelled out, leaving us with exactly same
equation as if we used the original 1-wise independent distribution. Therefore, we can
conclude that using 2-wise independent mask distribution is not enough to improve the
security of PMAC. More details can be found in Section 7.6.

Random masks Next, we look at a mask distribution from the other side of the spec-
trum and analyse what happens if the masks are chosen independently and uniformly at
random.

It turns out that this distribution is enough to improve the security of PMAC to the
q2/2n level. Again, we do not give a formal proof which can be found in Section 7.4, but
rather give an informal argument why this is true. For this thought experiment, let us
assume 2 messages M,M ′. Further assume that we have sampled all the masks τ1, . . . , τ`−1

and consequently determined all the values in X ∗, but two corresponding to τ`. If there is
to be a collision on the output of sPMAC for these two messages, then before τ` is sampled,
the set X ∗↓ must contain precisely 2 elements, called them a, b. Intuitively, these are the
two elements that are “waiting” to be matched with the last two elements determined
from τ`. However, the value of a, b is fixed and τ` is chosen at random. Therefore, there
are at most two values of τ` that match m`⊕τ` to either a, or b. Therefore, the probability
that M,M ′ collide is upper bounded by 2/2n. If we take the union bound over q messages,
we conclude that the security bound for sPMAC (PMAC) with uniformly random masks
against collisions is 2

2n
.

4-wise independence The last mask-distribution we are going to look at is a 4-wise
independent distribution. The argument will be somewhat similar to the one for random
masks, also showing a bound roughly q2

2n
.

Once more, we give only an intuition of the proof that is given in Section 7.5. The
argument starts as before with the assumption that two messages M,M ′ collide with
each other on the output of sPMAC with 4-wise independent masks. We then look at two
pairings of values from X ∗ that are deterministically determined by choosing a specific
pair of indices. The first index determines the block that is paired with x1, call it a.
Now, we define xf to be the element with the lowest index, such that it does not share a
mask with either a, or x1. Then, the second index determines the index of a block that is
paired with xf . Clearly, each of the blocks is calculated based on a different mask. The
probability they are assigned the value causing the pairings described above is at most
2−2n. There are at most 4`2 different pairs of indices we can look at. If we combine these
two bounds together, we see that when the mask distribution is 4-wise independent, a
collision between two messages happens with probability 4/2n. All that remains is to take
a union bound over q messages to reach the final security bound O(q2/2n).

36 CHAPTER 5. EXACT SECURITY OF PMAC

5.4 Further research

In this last section we would like to discuss some other works that are connected to PMAC,
as well as interesting open problems.

Firstly, there are some newer variations of PMAC that show that by somewhat changing
the construction, one can boost the security of PMAC [65, 66, 68] even beyond the q2/2n

birthday bound. These include PMAC+ [65], PMAC with parity [66], and PMACX [68].
These introduce major modifications to the original constructions, therefore we do not
discuss them in more detail. Lastly, LightMAC [43] can be considered a PMAC-like con-
struction.

There is also a later variant of PMAC due to Rogaway [58] called PMAC1, which for
efficiency reasons deviates slightly from PMAC by using a different sequence for the γi
values. It is not clear if our attack can be adapted to this case. Informally, we require
the sequence of γ1, . . . , γ` to contain a large coset of a subgroup of GF (2n), and it’s not
clear if the sequence from [58] contains such a set. There is some experimental data that
suggest that the masks of PMAC1 do not contain large cosets, meaning this variant is
secure against our attack. Furthermore, as it does not contain large subgroups either, the
attack from [42] does not apply as well. Hence, an interesting open question would be to
prove a better security for PMAC1, or find a different attack.

As we mentioned before, we were unable to prove any result for PMAC using 3-wise
independent masks. Consequently, analysis of this scenario constitutes another interesting
open problem.

37

6 Paper 1

The Exact PRF-Security of NMAC and HMAC1

Peter Gaži, Krzysztof Pietrzak, Michal Rybár

IST Austria

August 2014

Abstract. NMAC is a mode of operation which turns a fixed input-length keyed hash function f into a
variable input-length function. A practical single-key variant of NMAC called HMAC is a very popular
and widely deployed message authentication code (MAC). Security proofs and attacks for NMAC can
typically be lifted to HMAC.

NMAC was introduced by Bellare, Canetti and Krawczyk [Crypto’96], who proved it to be a secure
pseudorandom function (PRF), and thus also a MAC, assuming that (1) f is a PRF and (2) the function
we get when cascading f is weakly collision-resistant. Unfortunately, HMAC is typically instantiated with
cryptographic hash functions like MD5 or SHA-1 for which (2) has been found to be wrong. To restore
the provable guarantees for NMAC, Bellare [Crypto’06] showed its security based solely on the assumption
that f is a PRF, albeit via a non-uniform reduction.

• Our first contribution is a simpler and uniform proof: If f is an ε-secure PRF (against q queries)
and a δ-non-adaptively secure PRF (against q queries), then NMACf is an (ε + `qδ)-secure PRF
against q queries of length at most ` blocks each.

• We then show that this ε+`qδ bound is basically tight. For the most interesting case where `qδ ≥ ε
we prove this by constructing an f for which an attack with advantage `qδ exists. This also violates
the bound O(`ε) on the PRF-security of NMAC recently claimed by Koblitz and Menezes.

• Finally, we analyze the PRF-security of a modification of NMAC called NI [An and Bellare,
Crypto’99] that differs mainly by using a compression function with an additional keying input.
This avoids the constant rekeying on multi-block messages in NMAC and allows for a security proof
starting by the standard switch from a PRF to a random function, followed by an information-
theoretic analysis. We carry out such an analysis, obtaining a tight `q2/2c bound for this step,
improving over the trivial bound of `2q2/2c. The proof borrows combinatorial techniques origi-
nally developed for proving the security of CBC-MAC [Bellare et al., Crypto’05]. We also analyze a
variant of NI that does not include the message length in the last call to the compression function,
proving a `1+o(1)q2/2c bound in this case.

Keywords: Message authentication codes, pseudorandom functions, NMAC, HMAC, NI.

1A preliminary version of this paper appears in the proceedings of CRYPTO 2014, this is the full
version. This work was partly funded by the European Research Council under an ERC Starting Grant
(259668-PSPC).

38 CHAPTER 6. PAPER 1

6.1 Introduction

NMAC is a mode of operation which transforms a keyed fixed input-length function f :
{0, 1}c×{0, 1}b → {0, 1}c (with b ≥ c) into a keyed variable input-length function NMACf :
{0, 1}2c×{0, 1}b∗ → {0, 1}c (where {0, 1}b∗ denotes all bit strings whose length is a multiple
of b) as

NMACf((K1, K2),M) := f(K2,Casc
f(K1,M)‖0b−c)

where Cascf : {0, 1}c × {0, 1}b∗ → {0, 1}c is the cascade (also known as Merkle-Damg̊ard)
construction

Cascf(K1,m1‖ . . . ‖m`) := f(. . . f(f(K1,m1),m2) . . .m`) .

HMAC is a variant of NMAC (we postpone its exact definition to Section 6.2.2) tweaked
for applicability in practice. As security proofs for NMAC can typically be lifted to HMAC,
it is usually sufficient to analyse the security of the cleaner NMAC construction, we will
discuss this point further in Section 6.1.2.

NMAC and HMAC were introduced by Bellare, Canetti and Krawczyk in 1996 [7] and
later standardized [39]. HMAC has also become very popular and widely used, being
implemented in SSL, SSH, IPsec and TLS amongst other places. Although originally
designed as a MAC, it is also often employed more broadly, as a pseudorandom function
(PRF). This is the case for example when used for key-derivation in TLS and IKE (the
Internet Key Exchange protocol of IPsec). This proliferation into practice motivates the
need for a good understanding of the exact security guarantees provided by NMAC and
HMAC when used as a PRF.

PRF-Security of NMAC. Bellare et al. [7] prove that NMAC is a secure PRF if (1) f
is a PRF and (2) Cascf is weakly collision-resistant (WCR). This is a relaxed notion of
collision resistance, where one requires that it is hard to find a pair of messages M 6= M ′

such that Cascf(K,M) = Cascf(K,M ′) under a random key K, given oracle access to
Cascf(K, .) (but not K, as in the standard definition of collision resistance).

HMAC is typically instantiated with cryptographic hash functions like MD5 or SHA-1
playing the role of Cascf . However, both of these have been found not to satisfy the
WCR notion [61, 62], which renders the security proof from [7] irrelevant for this case.
Despite that, no attacks (better than standard birthday attacks) are known for NMAC or
HMAC when instantiated with MD5 or SHA-1 (though attacks on reduced round versions
exist [37]).

Security without Collision-Resistance.To restore the provable security of NMAC,
Bellare [5] investigates the security of NMAC dropping assumption (2), that is, assuming
only that f is a secure PRF. The exact security statement from [5] is a bit technical, but
it roughly states that if f is an ε-secure PRF (against an adversary running in time t and
asking q queries) and a γ-secure PRF (against time O(`) and 2 queries), then NMACf is an
(ε+ `q2γ)-secure PRF against time t and q queries of length at most ` (in b-bit blocks).
The security reduction is non-uniform, which means one has to be careful when deducing
what this bound exactly means when instantiated in practice, we will discuss this further
in Section 6.1.2.2

2We note that in a very recent update of the ePrint version of [5], Bellare observes that the proof
in [5] can also give a uniform reduction, differing from the non-uniform case only in the running time of
the 2-query adversary which then becomes t. The uniform bound given in this paper is better for most
reasonable parameters.

CHAPTER 6. PAPER 1 39

6.1.1 Our Contributions

PRF-Security Proof for NMAC. Our first contribution is a simpler, uniform, and
as we will show, basically tight proof for the PRF-security of NMACf assuming only that
f is a PRF: If f is an ε-secure PRF against q queries, then NMACf is roughly `qε-secure
against q queries of length at most ` blocks each.

Our actual result is more fine-grained, and expresses the security in terms of both the
adaptive and non-adaptive security of f. Let δ denote the PRF-security of f against q
non-adaptive queries. Then our Theorem 3 states that NMACf is roughly (ε+ `qδ)-secure
(against q queries, each at most ` blocks). As non-adaptive adversaries are a subset of
adaptive ones we have δ ≤ ε, and if δ � ε, then our fine-grained bound is much better
than the simpler `qε bound. The reduction works in the best running time one could
hope for, its overhead being Õ(`q).

The main technical part of our proof closely follows a proof by Bellare et al. [8] who
show that if f is a secure fixed input-length PRF, then Cascf is a secure PRF if queried
on prefix-free queries. We first observe that their proof also holds in the non-adaptive
setting. Then we reduce the security of NMACf against arbitrary adaptive queries to the
security of Cascf against non-adaptive prefix-free queries.

Matching Attack for NMAC. In Section 6.3.2 we prove that the above lower bound
is basically tight. From any PRF, we construct another PRF f for which NMACf can be
broken with advantage Θ(`qδ). This shows that our bound is tight for the practically
most important case when `qδ is larger (or at least comparable) to ε.

We also consider the case where ε � `qδ, that is, when the PRF has much better
security against non-adaptive than adaptive distinguishers. We observe that for any ε,
we can use a result due to Pietrzak [55] who shows that cascading non-adaptively secure
PRFs does not give an adaptively secure PRF in general, to construct an ε-secure f where
NMACf can be broken with advantage Θ(ε2). This only shows the ε term is necessary if ε
is constant as then Θ(ε) = Θ(ε2) = Θ(1). We conjecture that Θ(ε2) is the correct value,
and the ε term in the lower bound can be improved to Θ(ε2) using security amplification
techniques along the lines of [48, 60].

PRF-Security Proof for NI. The main difficulty in security analyses of NMACf

and HMACf based on the PRF-security of the underlying compression function f is that
both these constructions are constantly rekeying f during the evaluation of Cascf , using
the output from the last invocation as the key for the next one. This prevents the
proof approach typically applied to constructions that use a PRF f under a fixed random
secret key, where the analysis starts by replacing the PRF with an ideal random function
(introducing an error that is upper-bounded by the PRF-security of f) and proceeds by a
fully information-theoretic argument.

To circumvent this issue, as our third contribution we investigate the PRF-security
of the nested iterated (NI) construction introduced in [4]. The construction NIh is very
similar to NMACf , but is based on a compression function h that (compared to f) takes
an additional k-bit input which is used for keying instead of the chaining input: NIh uses
h under the same key throughout the whole cascade. Additionally, it includes the length
of the message in the input to the final, outer h-call. The modified keying allows for
the simple switching argument from PRF to a random function. We focus on enhancing
the information-theoretic analysis that follows this switch and prove an essentially tight
`q2/2c bound for this step, improving significantly over the trivial bound of `2q2/2c. For

40 CHAPTER 6. PAPER 1

completeness, we also consider the modification of NI that does not include the message
length in the last h-call and show a security bound of `d′(`)q2/2c for this case, where
d′(`) ≈ `1/ ln ln ` denotes the maximum number of divisors of any positive integer not
greater than `. Our proofs employ combinatorial techniques originally developed for
proving the security of CBC-MAC [11], considerably adapted for our setting.

6.1.2 More Related Work

Indifferentiability. In practice, the HMAC construction is sometimes used in a set-
ting where stronger guarantees than PRF-security are needed. Motivated by this, recent
work [22] investigates the indifferentiability [47, 17] of HMAC from a (keyed) random or-
acle. This result is incomparable to ours: While the stronger notion of indifferentiability
covers the settings where HMAC is not used as a PRF, the bound achieved in [22] is
understandably much weaker, being Θ(`2q2/2c).

Generic Attacks. There is also a recent line of work investigating generic attacks
against iterated hash-based MACs [53, 40, 50, 54]. These works present various attacks
against MACs (e.g. related-key attack, universal forgeries, state recovery) that do not
exploit the inner structure and potential weaknesses of the compression function, instead
they rely solely on the iterative structure of the MACs.

Another look at [38].As already mentioned, Bellare [5] proved that NMACf is an (ε+
`q2γ)-secure PRF against q queries if f is ε-secure against q queries, and γ-secure against
2 queries. In a recent paper [38], Koblitz and Menezes present a criticism of the way [5]
discusses the practical implications of this result. In a nutshell, Bellare estimates that for
a well-designed PRF the γ term is roughly t/2c (for a 2-query adversary running in time
t), but as this γ is derived in a non-uniform way, it is in the order of 2−c/2 already for
constant t.

At the time when [5] appeared, the fact that non-uniform attacks can distinguish any
pseudorandom object generated using a c-bit key with advantage 2−c/2 in constant time
was not widely known in the crypto community3 and overoptimistic estimates for the
exact security implied by non-uniform reductions have appeared in numerous papers.4

This changed at the latest with the Crypto 2010 paper [18], who discuss this issue in
detail and attribute such generic non-uniform attacks to the 1992 paper by Alon et al. [2].

The paper [38] also claimed that HMAC is an ε`-secure PRF, a bound that is falsified
by an attack given in this paper. In response, [38] was updated to take account of this by
employing a non-standard definition of a PRF for the underlying compression function.
We believe that the updated claim can be obtained via a simpler proof from [8].

HMAC vs NMAC.The proofs in this paper consider NMAC. There is a standard reduc-
tion of HMAC-to-NMAC PRF-security given by Bellare [5], albeit under some additional

3Let us stress that this only holds for pseudorandom objects which do not require additional public
randomness, such as PRFs. This does not extend to weak PRFs, which are defined like PRFs but the
adversary only sees the output on random inputs.

4This should not be confused with the (less trivial, but in the crypto community long well-known) fact
that non-uniform generic attacks beating simple brute-force key search exist for “large” running times,
as shown in a classical result by Hellman [30]. Hellman’s result for example implies that there almost
certainly exist key-recovery attacks against AES with a k bit key (k being 128, 192 or 256) which succeed
with probability at least 1/2 and run in time ≈ 22k/3, and in particular much less than 2k required for
brute-force key search.

CHAPTER 6. PAPER 1 41

requirements on the underlying compression function f. Informally, one needs to assume
that f is a PRF even when keyed through the b-bit data input, as opposed to being keyed
by the c-bit chaining variable. Moreover, security of the single-key version of HMAC re-
quires the PRF to be secure under a specific class of related-key attacks. Formally, the
reductions are given in Lemmas 5.1 and 5.2 in the full version of [5] for the case of double-
and single-keyed HMAC, respectively. Since these reductions only relate to NMAC via its
PRF-security, they apply to our result in a blackbox way, thus giving clear statements
also for HMAC.

6.2 Preliminaries

Basic Definitions. We reserve the letter λ do denote the empty string. We use
{0, 1}b∗ :=

⋃
z≥0{0, 1}bz to denote the set of all bitstrings whose length is a multiple

of b. F(b, c) (resp. F(b∗, c)) denotes the sets of all functions from {0, 1}b to {0, 1}c (resp.
from {0, 1}b∗ to {0, 1}c). We denote by Pow(S) the power set of the set S. For an integer
n, d(n) = |{i ∈ N : i | n}| is the number of its positive divisors and

d′(n) := max
n′∈{1,...,n}

|{d ∈ N : d | n′}| ≈ n1/ ln lnn

is the maximum, over all positive integers n′ ≤ n, of the number of positive divisors of
n′. More precisely, we have ∀ε > 0 ∃n0 ∀n > n0 : d(n) < n(1+ε)/ ln lnn [29]. All logarithms
considered in the paper are base 2 unless indicated otherwise.

Random Variables and Experiments. Random variables and concrete values they
can take are usually denoted by upper-case letters X, Y, . . . and lower-case letters x, y, . . .,
respectively. If M is a distribution (respectively, a set), then we denote by X ← M
sampling the random variable X according to M (respectively, choosing it uniformly
at random from M). For events A and B and random variables U and V with ranges
U and V , respectively, we denote by PrUA|V B the corresponding conditional probability
distribution, seen as a (partial) function U × V → [0, 1]. The value PrUA|V B(u, v) =
Pr[U = u ∧ A|V = v ∧ B] is well-defined for all u ∈ U and v ∈ V such that PrV B(v) > 0
and undefined otherwise. Two probability distributions PrU and PrU ′ on the same set U
are equal, denoted PrU = PrU ′ , if PrU(u) = PrU ′(u) for all u ∈ U . Conditional probability
distributions are equal if the equality holds for all arguments for which both of them are
defined. To emphasize the random experiment E in consideration, we sometimes write it
in the superscript, e.g. PrEU |V (u, v). If the distribution of a random variable U is clear

from the context, we also sometimes write PrU to refer to the random experiment where
U is chosen according to its distribution.

6.2.1 Random Systems

To present our results we make use of Maurer’s random systems framework [46], which
we now introduce in a self-contained exposition sufficient to follow the rest of the paper.
This choice is a matter of authors’ taste, we believe that the results could also be obtained
using the game-playing framework [12].

We start by observing that the input-output behavior of any kind of reactive dis-
crete system with inputs in X and outputs in Y can be described by an infinite family

42 CHAPTER 6. PAPER 1

of functions specifying, for each i ≥ 1, the probability distribution of the system’s i-
th output Yi ∈ Y , given the values of the first i inputs X i ∈ X i and the previous
i − 1 outputs Y i−1 ∈ Y i−1. Using this viewpoint, we say that an (X ,Y)-(random) sys-
tem F is an infinite sequence of functions pFYi|XiY i−1 : Y × X i × Y i−1 → [0, 1] such that∑

yi
pFYi|XiY i−1(yi, x

i, yi−1) = 1 for all i ≥ 1, xi ∈ X i and yi−1 ∈ Y i−1. Note that pFYi|XiY i−1

by itself does not represent a (conditional) probability distribution in any particular ran-
dom experiment with well-defined random variables Yi, X

i, Y i−1 until the system is con-
nected to a distinguisher (see below), in which case these random variables will exist and
take the role of the transcript. We shall typically define discrete systems by a high level
description, as long as the resulting conditional probability distributions could be derived
easily from this description. Two systems F and G are called equivalent (denoted F ≡ G)
if their input-output behaviors are the same, i.e., pFYi|XiY i−1 = pGYi|XiY i−1 for all i ≥ 1.

A system F might often be used as a component (subsystem) in a construction C(·),
resulting in the composed system CF. F . G denotes the serial composition of systems:
every input to F .G is fed to F, its output is fed to G and the output of G is used as the
output of F . G. In case G takes as inputs longer bitstrings than F outputs (as will be
the case in the definition of NMAC), the construction F .G pads the outputs of F with
trailing zeroes before passing them to G.

Examples.We denote by R a system that provides access to a function chosen uniformly
at random from the set of all functions with domain {0, 1}b∗ and range {0, 1}c. (This
unusual domain slightly deviates from the standard definition of R in the random-systems
literature, but will be advantageous for our exposition.) Similarly, for a finite domain
{0, 1}b we denote by r a system realizing a function chosen uniformly from F(b, c). Finally,
we also consider a system f realizing a function chosen uniformly from F(c + b, c). We
refer to R, r and f as a uniformly random function (URF), a fixed input-length URF,
and an ideal compression function, respectively. In each case the parameters b and c will
be clear from the context.

Distinguishers and Adversaries. A distinguisher D for an (X ,Y)-random system
asking q queries is a (Y ,X)-random system which is “one query ahead:” its input-output
behavior is defined by the conditional probability distributions of its queries pDXi|Xi−1Y i−1

for all 1 ≤ i ≤ q. (Its first query is determined by pDX1
.) After the distinguisher asks

all q queries, it outputs a bit Wq depending on the transcript (Xq, Y q). Given a random
system F and a distinguisher D, we denote by DF the random experiment where D
interacts with F, with the distributions of the transcript (Xq, Y q) and of the bit Wq

being uniquely defined by their conditional probability distributions. For two (X ,Y)-
random systems F and G, the distinguishing advantage of D in distinguishing systems F
and G by q queries is the quantity ∆D(F,G) = |PrDF

Wq
(1) − PrDG

Wq
(1)| and the maximal

distinguishing advantage over all distinguishers asking q queries is denoted by ∆q(F,G) =
maxD ∆D(F,G) (with D ranging over all such distinguishers).

As opposed to the information-theoretic notion of a distinguisher, we often need to
consider an attacker with restricted computational resources. Although such an attacker
also participates in a distinguishing experiment, to emphasize this restriction we call it
an adversary and denote using a sans-serif symbol (e.g. A). Note that a computationally
restricted adversary implicitly defines a random system by its input-output behavior and
hence any notation defined for information-theoretic distinguishers is also well-defined
for such an adversary. We often restrict the computational power of an adversary by its
running time, for this we assume some reasonable fixed model of computation.

CHAPTER 6. PAPER 1 43

Monotone Conditions. For a random system F, we often consider an internal mono-
tone condition defined on it. Such a condition is initially satisfied (true), but once it
gets violated, it cannot become true again (hence the name monotone). We use such
conditions to capture whether the behavior of the system meets some additional re-
quirement (e.g. distinct outputs, consistent outputs) or this was already violated dur-
ing the interaction that occurred so far. A monotone condition is formalized by a se-
quence of events A = A0, A1, . . . such that A0 always holds, and Ai holds if the condition
holds after answering the i-th query. The probability that a distinguisher D issuing q
queries to F makes a monotone condition A fail in the random experiment DF is de-
noted by νD(F, Aq) = PrDF(Aq) and maximum over all such distinguishers is denoted
by ν(F, Aq) = maxD ν

D(F, Aq). We also define µ(F, Aq) = maxxq Pr
F
Aq |Xq(x

q) to be the

maximal probability of violating the condition A by a sequence of q non-adaptive queries.

For a random system F with a monotone condition A = A0, A1, . . . and a random
system G, we say that F conditioned on A is equivalent to G, denoted F|A ≡ G, if
pFYi|XiY i−1Ai

= pGYi|XiY i−1 for i ≥ 1, for all arguments for which pFYi|XiY i−1Ai
is defined.

Intuitively, this captures the fact that as long as the condition A holds in F, it behaves
the same as G. The following useful claims were given in [46], see also [32] for the proof
of claim (ii) and [45] for further discussion.

Lemma 6. Let F and G be random systems, let A be a monotone condition defined on
F, let D be a distinguisher asking q queries. Then:

(i) [46, Lemma 7] If F|A ≡ G then ∆D(F,G) ≤ νD(F, Aq).

(ii) [46, Theorem 2] If pFAi|XiY i−1Ai−1
= pFAi|XiAi−1

for all i ≥ 1, then ν(F, Aq) = µ(F, Aq).

6.2.2 Message Authentication Codes and PRFs

The standard security requirement for a MAC is unforgeability under chosen-message
attack. However, it is well-known that any PRF attains this property [9], hence in this
paper we focus on PRF-security of the analyzed constructions.

If the first component of the input to a function f is to be seen as a key, we sometimes
call f a keyed function to emphasize this. For a keyed function f : K × D → R under a
key k ∈ K we often write fk(·) instead of f(k, ·). A variable input-length keyed function
G : {0, 1}c × {0, 1}b∗ → {0, 1}c is an:

• (ε, t, q, `)-secure PRF, if for any adversary A running in time t and making at most
q queries, each of length at most ` (in b-bit blocks), a URF R : {0, 1}b∗ → {0, 1}c
and a uniformly random key K ← {0, 1}c, we have ∆A(GK ,R) ≤ ε.

• (ε, t, q, `)-NA-secure PRF, if the above is true for all adversaries A that choose their
queries non-adaptively (i.e., A has to choose its q queries before seeing any of the
outputs).

• (ε, t, q, `)-PF-secure PRF, if the above is true for all adversaries A that choose their
queries to be prefix-free (i.e., no query is a prefix of another query).

• (ε, t, q, `)-NA-PF-secure PRF, if the above is true for all adversaries A that choose
queries both non-adaptively and prefix-free.

44 CHAPTER 6. PAPER 1

f f fK1 f

m1 m2 m3 m`

fK2
NMACf

K1,K2
(m1‖ · · · ‖m`)

Figure 6.1: The construction NMACf
K1,K2

.

For fixed input-length functions, we define analogous notions by omitting the parameter
` and distinguishing from r instead of R. Moreover, we refer to an adversary A as
an (ε, t, q, `)-PRF adversary against G if it runs in time t, asks at most q queries each
consisting of at most ` blocks, and achieves the advantage ∆A(GK ,R) = ε. We refer
analogously to adversaries for the other PRF-notions defined above.

For a keyed function f : {0, 1}c × {0, 1}b → {0, 1}c we denote with Cascf : {0, 1}c ×
{0, 1}b∗ → {0, 1}c the cascade construction (also known as Merkle-Damg̊ard) built from f
as

Cascf(K,m1‖ . . . ‖m`) := y` where y0 := K and for i ≥ 1 : yi := f(yi−1,mi) ,

in particular Cascf(K,λ) := K.

The construction NMACf : ({0, 1}c)2 × {0, 1}b∗ → {0, 1}c is derived from Cascf by
adding an additional, independently keyed application of f at the end. It assumes that
the domain sizes of f satisfy b ≥ c and the output of the cascade is padded with zeroes
before the last f-call. Formally,

NMACf((K1, K2),M) := f(K2,Casc
f(K1,M)‖0b−c)

or NMACf
K1,K2

:= CascfK1
. fK2 , see Figure 6.1. Note that practical MD-based hash func-

tions take as input arbitrary-length bitstrings and then pad them to a multiple of the
block length, often including the message length in the so-called MD-strengthening. This
padding then also appears in NMAC (and HMAC) but since it does not affect any of
our arguments, we take the customary shortcut and our definition of NMAC above (resp.
HMAC below) actually corresponds to the generalized constructions denoted as GNMAC
(resp. GHMAC) in [5] where this step is also justified in detail.

HMACf is a practice-oriented version of NMACf , where the two keys (K1, K2) are
derived from a single key K ∈ {0, 1}b by xor-ing it with two fixed b-bit strings ipad
and opad. In addition, the keys are not given through the key-input of the compression
function f, but are prepended to the message instead. This allows for the usage of existing
implementations of hash functions that contain a hard-coded initialization vector IV.
Formally:

HMACf(K,m) := Cascf(IV, K2‖Cascf(IV, K1‖m)‖fpad)

where (K1, K2) := (K ⊕ ipad, K ⊕ opad)

and fpad is a fixed (b−c)-bit padding not affecting the security analysis. (Technically, [39]
allows for arbitrary length of the key K: a key shorter than b bits is padded with zeroes
before applying the xor transformations, a longer key is first hashed.) As discussed in
Section 6.1.2, we can focus on the PRF-security of NMAC as it translates to analogous
results for HMAC under the assumptions stated in [5].

CHAPTER 6. PAPER 1 45

h h h0c h

K1

m1

K1

m2

K1

m3

K1

m`

h

|m|

NIhK1,K2
(m1‖ · · · ‖m`)

K2

Figure 6.2: The construction NIhK1,K2
.

Finally, we also introduce the nested iterated (NI) construction defined in [4]. For
this, we consider a keyed compression function h : {0, 1}k × {0, 1}c × {0, 1}b → {0, 1}c.
When such h is used in a cascading construction, its c-bit and b-bit inputs are used for the
chaining value and the next block, respectively. In contrast to the function f considered
above, h has an additional k-bit input that is used for keying. Formally, for such h we
define the nested iterated construction NIh : ({0, 1}k)2 × {0, 1}b∗ → {0, 1}c as

NIhK1,K2
(m) := hK2(Casc

hK1
0 (m), |m|)

where 0 denotes the all zero bitstring 0c and |m| is the length ofm encoded as a b-bit string.
Alternatively, for a function f : {0, 1}c × {0, 1}b → {0, 1}c and a key K we will denote by
LenCascfK a system that given a message m outputs the pair (CascfK(m), |m|). This allows

us to describe NI equivalently as NIhK1,K2
:= LenCasc

hK1
0 . hK2 , see also Figure 6.2. For a

detailed discussion of the relationship of NI to NMAC, see [4]. For completeness, we also
consider the modified version of NI that replaces the message length |m| in the last (outer)
call of the compression function by the constant bitstring 0b, we denote this variant as
NI2. Formally, we have

NI2hK1,K2
(m) := hK2(Casc

hK1
0 (m), 0b)

or NI2hK1,K2
:= ZCasc

hK1
0 . hK2 , where ZCascfK a system that given a message m outputs

the pair (CascfK(m), 0b).

6.3 PRF-Security of NMAC

In this section we analyze the PRF security of NMACf in terms of the PRF-security of
the underlying function f.

6.3.1 Security Lower Bound

Before moving to the NMACf construction, we start by stating a lower bound on the se-
curity of the cascade Cascf when queried on prefix-free inputs. A similar statement has
already been proven in [8], and we follow their proof, modifying it where necessary to ob-
tain security against non-adaptive adversaries, assuming only non-adaptive security of the
underlying compression function f. The proof of Proposition 3 is given in Appendix 6.5.1.

Proposition 3 (Cascf as a NA-PF-PRF). Let f : {0, 1}c × {0, 1}b → {0, 1}c be a com-
pression function. There exists an explicit reduction T (described in the proof) such that

46 CHAPTER 6. PAPER 1

for any (ε′, t′, q, `)-NA-PF-PRF adversary A against Cascf , TA is an (εna, t, q)-NA-PRF
adversary against f such that

ε′ ≤ `qεna and t = t′ + Õ(`q) .

This allows us to present our main result in this section, which relates the adaptive PRF-
security of the construction NMACf to both the adaptive and non-adaptive PRF-security
of f.

Theorem 3 (NMACf as a PRF). If f : {0, 1}c×{0, 1}b → {0, 1}c is an (ε, t, q)-secure PRF
and an (εna, t, q)-NA-secure PRF, then NMACf is an (ε′, t′, q, `)-secure PRF with

ε′ = ε+ (`+ 1)qεna +
q2

2c
and t = t′ + Õ(`q) . (6.1)

The reduction is uniform. Concretely, there exist explicit reductions T1 and T2 (described
in the proof) such that for any (ε′, t′, q, `)-PRF adversary A against NMACf ,

1. TA
1 is an (ε, t, q)-PRF adversary against f,

2. TA
2 is an (εna, t, q)-NA-PRF adversary against f,

and their parameters satisfy equations (6.1).

Proof. Let A be a PRF-adversary running in time t′ and asking q queries, each of length
at most ` blocks. Let r : {0, 1}b → {0, 1}c, R : {0, 1}b∗ → {0, 1}c and K = (K1, K2) ←
{0, 1}c×{0, 1}c denote a fixed input-length URF, a URF and a key pair chosen indepen-
dently at random, respectively.

We turn A into an adversary TA
1 against the PRF-security of fK as follows: Given

access to g (which is either fK or r), sample some key K1 at random, and then invoke
A, answering its queries with CascfK1

. g. Finally, output the decision bit of A. Clearly

we have ∆A(CascfK1
. fK2 ,Casc

f
K1
. r) = ∆TA

1 (fK , r) and if we denote ∆TA
1 (fK , r) by ε then

using triangle inequality we get

∆A(NMACf
K ,R) = ∆A(CascfK1

. fK2 ,R) ≤ ε+ ∆A(CascfK1
. r,R) .

In the experiment where A interacts with CascfK1
. r, let Ci denote the event that

during the first i queries to CascfK1
. r, for any two distinct queries M and M ′ the values

CascfK1
(M) and CascfK1

(M ′) (inputs to the final r-call) are also distinct. As long as the

monotone condition C = C0, C1, . . . remains satisfied, the responses of CascfK1
.r to distinct

queries are equivalent to outputs of r on distinct inputs, and thus independent, uniformly
random values, in particular (CascfK1

. r)|C ≡ R. We can therefore apply Lemma 6(i) to

conclude that distinguishing Cascf . r from a URF R is at least as hard as making the
condition C fail, i.e.,

∆A(CascfK1
. r,R) ≤ νA(CascfK1

. r, Cq) .

Below we explain how to use the adversary A to construct5 a non-adaptive adversary
Ana such that

νA(CascfK1
. r, Cq) = νAna(CascfK1

. r, Cq) . (6.2)

5One could use a lemma from the random system framework [46] in the spirit of Lemma 6(ii) to
switch to non-adaptivity. We prefer to spell out the actual construction to emphasize the uniformity of
our reduction.

CHAPTER 6. PAPER 1 47

Ana simply runs A and responds to all its fresh queries by fresh random values, while
answering repeated queries consistently. In the end, Ana (non-adaptively) asks all the
queries that A asked during this simulated interaction. The equation (6.2) follows from
the fact that the simulation for A is perfect as long as its queries do not violate C. Since
C is defined on CascfK1

and Ana is non-adaptive, we additionally have

νAna(CascfK1
. r, Cq) = νAna(CascfK1

, Cq) .

Next, for Ana we can construct another non-adaptive adversary Apf that violates the
condition C (i.e., creates a collision in the outputs of CascfK1

) with at least the same
probability as Ana, but all its queries are prefix-free. This can be done, for example, by
simply appending an additional block to all queries asked by Ana, such that this block
does not appear in the original queries. Hence we have

νAna(CascfK1
, Cq) ≤ νApf (CascfK1

, Cq)

for a non-adaptive adversary Apf asking prefix-free queries of length at most `+ 1.

Finally, consider the non-adaptive adversary A∗ that simply asks the same prefix-free
queries as Apf and then outputs 1 if and only if the responses to these queries contain a
collision. Then A∗ interacting with CascfK1

outputs 1 with probability νApf (CascfK1
, Cq),

while in an interaction with R it outputs 1 with probability at most q2/2c via the well-
known birthday bound. Hence, by the definition of ∆A∗(CascfK1

,R), we have

νApf (CascfK1
, Cq) ≤ ∆A∗(CascfK1

,R) +
q2

2c
.

Since A∗ is non-adaptive and prefix-free, we can now employ the reduction T guaranteed
by Proposition 3 to obtain an NA-PRF adversary TA∗ against f such that

∆A∗(CascfK1
,R) ≤ (`+ 1)q ·∆TA∗

(f, r) .

Putting TA
2 := TA∗ hence concludes the proof of Theorem 3.

6.3.2 Matching Attacks

We now argue that the bound obtained in Theorem 3 is essentially tight. First, we show
that the term `qεna is unavoidable (up to a constant factor) by constructing a particular
compression function f, which is an (εna, t, q)-NA-secure PRF, yet there is a simple attack
against the PRF-security of NMACf achieving advantage roughly `qεna.

Proposition 4. Let b, c, ` be positive integers such that b ≥ c, let εna ∈ (0, 1), and more-
over, assume that pseudo-random functions exist. Then there exists a function f : {0, 1}c×
{0, 1}b → {0, 1}c and an adversary A against NMACf such that for any q that satisfies
εna = ω(q22−b, 2−c), we have:

• f is (εna, t, q)-NA-secure PRF;

• the adversary A, when asking q queries of length ` blocks each, runs in time Õ(`q)
and achieves distinguishing advantage

∆A(NMACf
K ,R) = Θ(`qεna) .

In particular, NMACf is not an (o(`qεna), Õ(`q), q, `)-secure PRF.

48 CHAPTER 6. PAPER 1

Proof sketch. Here we only describe the high-level idea for constructing f and A and defer
the discussion of the technical obstacles in implementing this idea to Appendix 6.5.2.

Roughly speaking, we construct an (εna, t, q)-NA-secure PRF f that behaves pseudo-
randomly for all keys except for a small, εna/2-fraction of them. We denote the set of
these keys by K and refer to them as the weak keys. Under any weak key k, the function
f(k, ·) outputs some constant value w ∈ K irrespective of its input.

To attack the NA-PRF security of NMACf
K=(K1,K2), consider a pair of messages M1,M2

chosen by sampling M ← {0, 1}b(`−1) at random and then setting M1 = M‖x1 and
M2 = M‖x2 for some distinct blocks x1, x2 ∈ {0, 1}b. If some of the ` − 1 intermediate
values in the evaluation of the inner function Cascf(K1,M) is in K, then all following
intermediate values are w, and in particular we have Cascf(K1,Mi) = w for both i ∈ {1, 2},
and hence also NMACf(K,M1) = NMACf(K,M2) = fK2(w). This implies that it is much
more likely to get a collision for a pair of messages as described above for NMACf

K than
for R. Our adversary A simply choses q/2 message pairs at random as above, and it
outputs 1 if it observes a collision for at least one of those pairs. As there are q/2 message
pairs, each of length `, we have a total of `q/2 possibilities to “hit” a weak key, each
having probability εna. By the union bound this gives us a total probability of Θ(`qεna)
for observing a collision when querying NMACf

K . On the other hand the probability of
observing a colliding pair in R is only O(q/2c).

We emphasize that the above attack only uses messages of one particular length and
hence works equally well also if the hash function applies some length-dependent padding
such as the MD-strengthening.

We now consider the tightness of the bound in Theorem 3 when ε � `qεna is the
dominating term. This is the case when the best adaptive attack against f is by more
than a factor `q better than any non-adaptive attack.

In [55] a pair g1, g2 of PRFs is constructed such that g1 and g2 are εna-secure non-
adaptive PRFs for some negligible εna, and the serial composition g1.g2 with independent
keys can be broken by an adaptive attack (in a constant number of queries) with advantage
almost 1.6 From such g1, g2 we can get a single PRF f which is an εna-secure NA-PRF
for a negligible εna, an ε-secure PRF for any ε of our choice, and where f . f is not
Θ(ε2)-secure, by setting f := g1 and f := g2 with probability ε/2, respectively, and some
strong standard PRF with probability 1− ε (over the choice of the key). We now observe
that NMACf

K computed on single-block messages is simply a cascade of two f’s with
independent keys. Thus, when using the above ε-secure PRF f, we can break NMACf

K

with advantage Θ(ε2). This shows that the ε term in Theorem 3 is necessary if ε is
constant as then Θ(ε) = Θ(ε2) = Θ(1). We conjecture that Θ(ε2) is the correct value,
and the ε term in the lower bound can be improved to Θ(ε2) using security amplification
techniques along the lines of [48, 60].

6.4 PRF-Security of the NI Construction

In this section we analyze the PRF-security of the constructions NIh and NI2h under the
assumption that the keyed compression function h is a PRF (when keyed via its k-bit

6The NA-PRF security of this construction relies on the DDH assumption, [16] construct such a PRF
under the weaker assumption that “uniform transcript key-agreement” exists, and this assumption is
necessary [56].

CHAPTER 6. PAPER 1 49

input).

Recall that d′(n) denotes the maximum, over all positive integers n′ ≤ n, of the number
of positive divisors of n′; i.e., d′(n) := maxn′∈{1,...,n} |{d ∈ N : d | n′}|.

Theorem 4. If h : {0, 1}k × {0, 1}c × {0, 1}b → {0, 1}c is an (ε1, t, q)-secure PRF and an
(ε2, t, `q)-secure PRF, then NIh is an (ε′, t′, q, `)-secure PRF with

ε′ = ε1 + ε2 +
q2

2c
·
(
`+

64`4

2c

)
and t = t′ + Õ(`q) ,

and NI2h is an (ε′′, t′′, q, `)-secure PRF with

ε′′ = ε1 + ε2 +
q2

2c
·
(
` · d′(`) +

64`4

2c

)
and t = t′′ + Õ(`q) .

Proof. We first prove Theorem 4 for the case of NI2h and then derive the simpler case NIh

from it. The proof proceeds in four consecutive steps. First, we use the PRF-security of h
to replace it by an ideal compression function, making the rest of our analysis information-
theoretic. Second, we observe that the resulting system behaves identically to R as long
as no non-trivial collision occurs in the outputs of the initial cascade. Third, we reduce
estimating the probability of such a collision to a counting problem of upper-bounding the
number of graphs satisfying certain properties (modeling the computation of the cascade).
Finally, we give a bound on the number of these graphs, hence concluding the argument.

From a PRF to a Random Function.Let A be a PRF-adversary against NI2h running
in time t and asking q queries, each of length at most ` blocks. To simplify the notation
let 0 := 0c. By a standard argument as in the proof of Theorem 3, we have

∆A(NI2hK ,R) = ∆A
(
ZCasc

hK1
0 . hK2 ,R

)
≤ ε1 + ε2 + ∆A

(
ZCascf10 . f2,R

)
(6.3)

where K = (K1, K2) ← ({0, 1}k)2 is a uniformly random key and f1 and f2 are two
independent ideal compression functions. Interestingly, the system ZCascf10 . f2 is very
similar to NMAC with an ideal compression function and keys fixed to zeroes.

Bound via Collision Probability.Let CColl(`) denote the probability that a random
choice of the compression function f1 results in a collision in Cascf10 , maximized over the
choice of the two distinct inputs to the cascade m1,m2 consisting of at most ` blocks
each. (Note that this implies a collision also for ZCascf10 .) Formally, for uniformly random
f1 ← F(c+ b, c) we define

CColl(`) := max
m1 6=m2

|m1|,|m2|≤`b

Prf1
[
Cascf10 (m1) = Cascf10 (m2)

]
. (6.4)

In the experiment where A interacts with ZCascf10 . f2, let Ei denote the event that during
the first i queries to ZCascf10 . f2, for any two distinct queries M and M ′ the values
ZCascf10 (M) and ZCascf10 (M ′) (inputs to the final f2-call) were also distinct. As long as
the monotone condition E = E0, E1, . . . remains satisfied, the responses of ZCascf10 . f2 to
distinct queries are clearly independent, uniformly random values thanks to f2. Hence, we

have (ZCascf10 . f2)|E ≡ R and p
ZCasc

f1
0 .f2

Ei|XiY i−1Ei−1
= p

ZCasc
f1
0 .f2

Ei|XiEi−1
and can therefore consecutively

apply Lemma 6(i), Lemma 6(ii), and finally the union bound to get

∆A(ZCascf10 . f2,R) ≤ ν(ZCascf10 . f2, Eq) ≤ µ(ZCascf10 . f2, Eq) ≤ q2 · CColl(`) . (6.5)

50 CHAPTER 6. PAPER 1

Graph-Based Representation of Casc. The probability CColl(`) could trivially be
upper-bounded by O(`2/2c) using a union-bound argument, achieving a non-trivial and
significantly better bound on CColl(`) is the central part of our proof. To this end, we use
an approach inspired by [11] and represent the computation of Cascf10 on various inputs
by directed graphs.

Let m1 and m2 be two distinct messages that can be parsed into b-bit blocks as
mi = m1

i ‖ · · · ‖m
`i
i for some `1, `2 ≤ `, and let Λ := `1 + `2. For convenience, we use

the notation m(i) as a reference to the block mi
1 if i ≤ `1, otherwise it denotes the block

mi−`1
2 . For any fixed compression function f ∈ F(c + b, c) and a pair of such messages
M = (m1,m2), we define the structure graph GMf to be the triple GMf = (V , E ,L), such
that:

• (V , E) is a directed graph. To describe it, let

si :=


0 for i = 0
f(si−1,m

i
1) for 1 ≤ i ≤ `1

f(0,m1
2) for i = `1 + 1

f(si−1,m
i−`1
2) for `1 + 2 ≤ i ≤ Λ

(6.6)

and consider the mappings [·]G and [·]′G defined on {0, . . . ,Λ} such that [i]G :=
min{j : si = sj} (so [i]G = i if and only if si is “fresh”) and [i]′G := [i]G for i 6= `1,
while [`1]′G := 0. Now we let

V := {[i]G : 0 ≤ i ≤ Λ} and E := {([i− 1]′G, [i]G) : 1 ≤ i ≤ Λ} .

• L : V2 → Pow({0, 1}b) is a labeling function that labels every edge (u, v) ∈ E with
the set {m(i) : [i − 1]′G = u ∧ [i]G = v} and every pair of vertices that do not form
an edge with the empty set ∅ (to simplify our notation later).

Intuitively, if all the values si are distinct, GMf simply consists of two directed paths

starting in the root vertex 0, representing the evaluation of Cascf10 on the messages m1

and m2 (the edges are labeled by the corresponding blocks). If some collisions among
the values si occur, one can obtain the graph GMf by collapsing every pair of vertices i, j
where si = sj into one vertex labeled min{i, j}, as well as merging the edge labels in the
natural way.

Let G(M) := {GMf : f ∈ F(c+ b, c)} denote the set of all structure graphs associated
with the message pair M. Note that the uniformly distributed random variable F ←
F(c+ b, c) also induces a distribution on G(M), therefore we denote by GMF the resulting
random variable (taking on structure graphs as values). Similarly, F also induces a
distribution on the values si defined above and we denote the resulting random variables
Si.

For a fixed structure graph G = GMf we denote by Gi = (Vi, Ei,Li) the graph that
is obtained after processing only the first i out of Λ blocks of M. More formally, Gi :=
GM

′

f where M′ := (m1
1‖ · · · ‖mi

1, λ) if i ≤ `1 and M′ := (m1,m
1
2‖ · · · ‖m

i−`1
2) otherwise.

Building on this notion, we call fColl(G) the set of f -collisions that occurred in G:

fColl(G) :=
{

(i, [i]G) : [i]G < i ∧m(i) 6∈ Li−1([i− 1]′G, [i]G)
}
. (6.7)

Informally, imagine we reveal the structure graph G step by step, i.e., by a sequence of
transitions from Gi−1 to Gi, for i = 1, . . . ,Λ. The pair (i, [i]G) belongs to fColl(G) (and we

CHAPTER 6. PAPER 1 51

0 1 2 3 4

5

m(1) m(2) m(3) m(4)

m(4) m(5)
m(6) m(7)

Figure 6.3: Illustration of the three cases
from Lemma 7.

M = {m1,m2}, |m1| = |m2| = 4b
m(4) 6= m(1),m(6) = m(3),m(7) 6= m(4)

- m1

- m2

- fresh
- collision
- determined

say that the i-th step caused an f -collision), if during this step, instead of adding a new
vertex, we arrive at a vertex already visited, while not following an existing edge already
labeled with m(i) (i.e., not repeating a step we have made before).

Properties of Structure Graphs. We first upper-bound the probability of GMF
taking the form of any particular fixed structure graph g ∈ G(M). The following result
and its proof is inspired by Lemma 8 from [11].

Lemma 7. Let F ← F(c + b, c) be chosen uniformly at random. For a fixed graph
g ∈ G(M) we have

PrF
[
GMF = g

]
≤ 2−c·|fColl(g)| .

Proof of Lemma 7. Let M = {m1,m2}, Λ = `1 + `2 and let m(i) denote the i-th block
of m1‖m2 as before. First, we introduce the notion of consistency. Assume we sample
F ← F(c + b, c) and the values S1, . . . , SΛ belonging to G = GMF are revealed to us
stepwise. (Recall that Si is the random variable representing the chaining variable of the
cascade defined in (6.6) and determined by the choice of F . In turn, the values S1, . . . , SΛ

completely determine the shape of the structure graph G.) We say that G is consistent
with the given graph g after step i ≤ Λ, denoted Consi, if the structure graphs Gi and
gi are equal as triples (V , E ,L) (as before, Gi denotes the part of graph G obtained after
the first i blocks are processed, and gi is defined analogously from g).

Let us assume that Consi is true for some i and then bound the probability
Pr[Consi+1|Consi]. To this end, we inspect the (i + 1)-th step in g where there are the
following 3 possibilities how the next edge corresponding to m(i+1) might look (see also
Fig. 6.3):

Fresh: It arrives at a new vertex not present in gi (i.e., [i+ 1]g = i+ 1).

Determined: It follows an already existing edge (i.e., [i+ 1]g ≤ i and m(i+1) is already in
the label set of the edge ([i]g, [i+ 1]g) in gi).

Collision: It causes an f -collision (i.e., [i + 1]g ≤ i and m(i+1) is not in the label set of
the edge ([i]g, [i + 1]g) in gi). In this case, Gi+1 will stay consistent if and only if
its (i + 1)-th edge lands on precisely the same vertex as in gi+1, in other words, if
Si+1 = si+1. The probability of this event (conditioned on Consi) is 2−c, as Si+1 is
uniformly random over {0, 1}n and not determined in the first i steps.

Since the third case occurs exactly |fColl(g)| times, if we trivially upper-bound the prob-
abilities Pr[Consi+1|Consi] in the other two cases by 1, we obtain the final bound Pr[G =
g] = Pr[ConsΛ] ≤ 2−c·|fColl(g)| as desired.

Using Lemma 7, it is easy to see that the event that at least two f -collisions occur in
G is highly unlikely.

52 CHAPTER 6. PAPER 1

Lemma 8. Let F ← F(c+ b, c) be chosen uniformly at random. Then

PrF
[∣∣fColl (GMF)∣∣ ≥ 2

]
≤ 4Λ4

22c
.

Proof of Lemma 8. Denote by Gr(M) := {G ∈ G(M) : |fColl(G)| = r} the set of all
structure graphs for M containing exactly r f -collisions. Then (using Lemma 7 in the
last step) we have

Pr
[∣∣fColl (GMF)∣∣ ≥ 2

]
=

∞∑
r=2

Pr
[∣∣fColl (GMF)∣∣ = r

]
=

∞∑
r=2

∑
g∈Gr(M)

Pr
[
GMF = g

]
≤

∞∑
r=2

|Gr(M)|
(2c)r

.

Since one can verify that any G ∈ G(M) is completely determined by the set of its f -
collisions fColl(G) ⊆ {(i, j) : 0 ≤ j < i ≤ Λ} and the latter set has Λ(Λ + 1)/2 elements,
we have |Gr(M)| ≤ (Λ(Λ + 1)/2)r and hence

Pr
[∣∣fColl (GMF)∣∣ ≥ 2

]
≤

∞∑
r=2

(
Λ(Λ + 1)

2 · 2c

)r
≤ 4Λ4

22c
.

In the last step we used that 1 ≤ Λ ≤ 2c/2 and c ≥ 2 which can be safely assumed,
since otherwise the statement of the lemma is trivially true (as 1 upper-bounds any
probability).

From Collision Probability to Counting Graphs.We can now proceed to upper-
bounding the value CColl(`). Let M := (m1,m2) be the two distinct messages of length
at most ` blocks that maximize the probability

CColl(`) := max
m1 6=m2

PrF
[
CascF0 (m1) = CascF0 (m2)

]
.

For j ∈ {1, 2} let V i
j be the random variable denoting the i-th vertex (counting from 0)

in the path corresponding to mj in GMF (randomness taken over the uniform choice of

F). Formally, V i
1 := [i]G and V i

2 := [`1 + i]′G. We also refer to the path V 0
j , . . . , V

`j
j as

the mj-path. Using this notation, we have CColl(`) = Pr[V `1
1 = V `2

2]. Since m1 6= m2,
V `1

1 = V `2
2 cannot occur without any f -collision, hence we can split CColl(`) into

Pr
[
V `1

1 = V `2
2 ∧ |fColl(GMF)| = 1

]
+ Pr

[
V `1

1 = V `2
2 ∧ |fColl(GMF)| ≥ 2

]
. (6.8)

The latter probability can be readily upper-bounded by 4Λ4/22c using Lemma 8. As for
the former, let us denote by H(M) the set

H(M) :=
{
G ∈ G1(M) : V `1

1 = V `2
2

}
of structure graphs forM that contain exactly one f -collision and where the vertices V `1

1

and V `2
2 coincide. The first term in (6.8) can then be upper-bounded by |H(M)|/2c using

Lemma 7, hence it remains to bound the size of the set H(M).

CHAPTER 6. PAPER 1 53

0 1 2 3 4 5 6 7 8 9 10

13 14 15

p [j∗]G `1 = [`1 + `2]G

Figure 6.4: A sample graph from the set H1 in the proof of Lemma 9, with p = 2 and
j∗ = 16.

Counting the Structure Graphs. We give such a bound in the following lemma.
Recall that d′(n) denotes the maximum, over all positive integers n′ ≤ n, of the number
of positive divisors of n′; i.e., d′(n) := maxn′∈{1,...,n} |{d ∈ N : d | n′}|.

Lemma 9. For two distinct messages M = {m1,m2} each of length at most ` blocks
we have |H(M)| ≤ `d′(`). If the messages in M are of the same length then we have
|H(M)| ≤ `.

Proof of Lemma 9. Let us first consider the general case where we allow the messages m1

and m2 to have different lengths, let us denote them by `1 and `2 as before. Without loss of
generality let us assume that `1 ≥ `2. We split the set H(M) into two partitions: Let H1

contain all the structure graphs fromH(M) such that them1-path does not contain a loop,
and let H2 contain all the rest. Formally, H1 := {G ∈ H(M);∀i ∈ {1, . . . , `1} : [i]G = i}
and H2 := H(M) \ H1. We now upper-bound the size of both partitions in two separate
claims, which together conclude the proof of the first part of Lemma 9.

Claim 1: |H1| ≤ `.

Towards bounding |H1|, note that if m2 is a prefix of m1 then clearly |H1| = 0, therefore
we assume that this is not the case. Let m1

1‖ · · · ‖m
p
1 be the blocks forming the longest

common prefix of m1 and m2; i.e., let p ∈ N be the smallest index such that mp+1
1 6= mp+1

2

(for illustration see Fig. 6.4). Since f is a function, we clearly have V i
1 = V i

2 for all i ≤ p.
Let us now consider j∗ := min{j > `1 + p : [j]G ≤ `1}. Such a j∗ is well-defined, since
at least the value `1 + `2 belongs to the considered set (we have `1 + `2 > `1 + p and
[`1 + `2]G = `1).

We now prove that the j∗-th edge ([j∗ − 1]′G, [j
∗]G) in G must create an f -collision,

i.e., that (j∗, [j∗]G) ∈ fColl(G). We have [j∗]G ∈ Vj∗−1 by definition of j∗ and to also see
that m(j∗) 6∈ Lj∗−1([j∗ − 1]′G, [j

∗]G) we consider two cases:

1. If [j∗]G ≥ 1 and [j∗]G − 1 = [j∗ − 1]′G (the vertices directly preceding the vertex

V
[j∗]G

1 on m1-path and m2-path coincide), then we must have j∗ = p+ 1, otherwise
this would contradict the minimality of j∗. However, this implies that m([j∗]G) 6=
m(j∗) (as otherwise the common prefix would be longer than p blocks) and hence
m(j∗) 6∈ Lj∗−1([j∗ − 1]′G, [j

∗]G) = {m([j∗]G)}.

2. On the other hand, if [j∗]G − 1 6= [j∗ − 1]′G, then we claim that there was no edge
([j∗ − 1]′G, [j

∗]G) in Gj∗−1 and hence m(j∗) 6∈ Lj∗−1([j∗ − 1]′G, [j
∗]G) = ∅. Indeed, the

only edge leading into the vertex [j∗]G in Gj∗−1 can be from [j∗]G−1, as anything else
would contradict either the absence of cycles within the m1-path, or the minimality
of j∗.

54 CHAPTER 6. PAPER 1

0 1 2 3 4 5

4

56

7

10 11

[j∗]G = i∗

y

x z

Figure 6.5: A sample graph from the set H2 in the proof of Lemma 9, with i∗ = 2 and
j∗ = 8.

Given the j∗-th edge causes an f -collision and |fColl(G)| = 1, no f -collision in G occurs
beyond the j∗-th edge. However, we have [`1]G = [`1 + `2]G and to achieve this without
any additional collision, clearly, we need thatm([j∗]G+1)‖ · · · ‖m(`1) = m(j∗+1)‖ · · · ‖m(`1+`2),
i.e., the suffixes of m1 and m2 after the collision are the same. This, however, implies that
the value j∗ completely determines the structure graph within H1 and hence we arrive at
|H1| ≤ `.

Claim 2: |H2| ≤ ` · d′(`).
For this part, let j∗ := min{j : [j]G < j} and i∗ := [j∗]G, where such a j∗ ≤ `1 exists
by definition of H2. Moreover, it creates an f -collision (i.e., (j∗, i∗) ∈ fColl(G)) by an
argument similar to the one from Claim 1. We now split m1 into x := m1

1‖ · · · ‖mi∗
1 ,

y := mi∗+1
1 ‖ · · · ‖mj∗

1 and some z that is chosen to be the shortest string possible such
that m1 = x‖yk‖z holds for some k ≥ 1 (note that such z always exists and is unique,
possibly empty). This situation is illustrated in Fig. 6.5.

We claim that in any G ∈ H2 the m2-path is a subgraph of the m1-path (ignoring the
labels for now). Indeed, if the m2-path contained any edges not contained in the m1-path,
then (since V `1

1 = V `2
2) the last such “outlying” edge would create an f -collision. To see

this, observe that since this is the last edge not in the path of m1 its end vertex will
be contained in the path of both messages, which causes an f -collision when this edge
is added (see (6.7)). However, the m1-path already created one f -collision and hence
creating another one would violate the definition of H(M).

Moreover, for the same reason the m2-path cannot introduce new labels to the edges
in m1-path, as this would cause another f -collision. This implies that m2 has to be of
the form m2 = x‖yk′‖z for some k′ < k. To achieve this, the number of blocks in y (i.e.,
j∗ − i∗) must divide `1 − `2.

For any fixed M, a structure graph in H2 is fully determined by the choice of j∗ ∈
{1, . . . , `1} and i∗ ∈ {0, . . . , j∗− 1}, such that (j∗− i∗) | `1− `2. There are at most ` ways
to choose such a j∗ and at most d′(`) ways to choose a consistent i∗. Consequently, we
obtain |H2| ≤ ` · d′(`), which concludes the proof for the case of distinct-length messages.

For the second part of the claim it now suffices to observe that if |m1| = |m2| then
|H2| = 0. This is because in H2 the m1-path already contains an f -collision, and since
only one such f -collision is allowed to occur, the only way to achieve V `1

1 = V `2
2 would

hence be if m1 = m2. This however contradicts the assumption that the messages are
distinct.

CHAPTER 6. PAPER 1 55

In Appendix 6.5.3 we also show that Lemma 9 is tight, and discuss the implications
for the tightness of Theorem 4.

Finally, combining the equations (6.3), (6.5), (6.8), and the bounds obtained in Lemma 8
and Lemma 9, we get

∆A(NI2hK ,R) ≤ ε1 + ε2 + q2 ·
(
` · d′(`)

2c
+

4Λ4

22c

)
≤ ε1 + ε2 +

q2

2c
·
(
` · d′(`) +

64`4

2c

)
and conclude the proof of Theorem 4 for NI2h.

The case of NI is handled in the same way as NI2, with the only difference being that
it contains LenCasc instead of ZCasc. Hence, to imply a collision for LenCasc, we require
the messages m1 and m2 in the definition of CColl(`) to be of the same length. This leads
to the use of the second part of Lemma 9 that assumes equal-length messages, arriving
at the claimed bound.

6.5 Appendix

6.5.1 Non-Adaptive Security of the Cascade

Here we prove Proposition 3 that states the PRF-security of the construction Cascf against
non-adaptive prefix-free adversaries, assuming that f itself is a non-adaptively secure PRF.
Our argument follows the proof for the adaptive case in [8] with minor modifications and
we include it here for completeness.

Given a compression function f : {0, 1}c×{0, 1}b → {0, 1}c and a tuple of independent
random keys K = (K1, . . . , Kq) ∈ ({0, 1}c)q, let qfK = (fK1 , . . . , fKq) denote the q-tuple
of oracles providing access to q copies of f, each one being assigned a different key from
K. Moreover, let qr = (r1, . . . , rq) denote the q-tuple of independent, uniformly random
functions ri : {0, 1}b → {0, 1}c. Following [8], we say that f is (ε, t, q)-NA-PRFq-secure,
if for any non-adaptive adversary A running in time t and asking at most q queries, we
have ∆A(qfK ,qr) ≤ ε.

Proposition 3 (restated). Let f : {0, 1}c × {0, 1}b → {0, 1}c be a compression function.
There exists an explicit reduction T (described in the proof) such that for any (ε′, t′, q, `)-
NA-PF-PRF adversary A against Cascf , TA is an (εna, t, q)-NA-PRF adversary against f
such that

ε′ ≤ `qεna and t = t′ + Õ(`q) .

Proof. The proof consists of two consecutive reductions. First, out of an assumed attacker
against the NA-PF-PRF security of Cascf we construct an attacker against the NA-PRFq

security of f. Second, we use the latter to construct an attacker against the NA-PRF-
security of f. In each of these two steps the success probabilities of the two attackers
are related by a hybrid argument. We describe and analyze each of these two steps in a
separate lemma below.

Lemma 10. There exists an explicit reduction T1 (described in the proof) such that for
any non-adaptive adversary A1 against the NA-PF-PRF security of Cascf , running in
time t′ and asking q prefix-free queries of length at most ` blocks each, A2 := TA1

1 is a
non-adaptive adversary against the NA-PRFq-security of f running in time t′+O(`q) and
asking at most q queries, such that ∆A1(CascfK ,R) ≤ ` ·∆A2(qfK ,qr).

56 CHAPTER 6. PAPER 1

Proof of Lemma 10. We start by describing a sequence of adversaries A
(i)
2 for i ∈ {1, . . . , `}.

Given access to oracles (g1, . . . , gq) which are either qfK = (fK1 , . . . , fKq) (for independent

random keys K1, . . . , Kq), or q independent random functions qr = (r1, . . . , rq), A
(i)
2 works

as follows:

1. It runs A1 to obtain its q non-adaptive prefix-free queries x1, . . . , xq, each of length
at most ` blocks (without loss of generality we assume that x1, . . . , xq ∈ {0, 1}b∗

are distinct). Each query xj is parsed into blocks as xj = x1
j‖ · · · ‖x

`j
j , where each

xzj ∈ {0, 1}b.

2. The response rj to each query xj is determined: If `j < i, then rj is chosen indepen-
dently and uniformly at random. Otherwise, an index cj ∈ {1, . . . , q} is determined
consecutively for all queries of length at least i in an arbitrary way, given that two
queries xj and xj′ share the same index (i.e., cj = cj′) if and only if their first i− 1
blocks are identical (i.e., x1

j‖ · · · ‖xi−1
j = x1

j′‖ · · · ‖xi−1
j′). The response rj is then

computed as

rj ← Cascf
gcj(xij)

(
xi+1
j ‖ · · · ‖x

`j
j

)
.

All g-values required for this computation are obtained by querying the g-oracles;
note that this can be done non-adaptively. The tuple of responses (r1, . . . , rq) is
given to A1.

3. A
(i)
2 outputs the same bit that A1 does.

A straightforward analysis using the definition of A
(i)
2 allows one to establish the following

three facts:

(i) A1(CascfK) = A
(1)
2 (qfK),

(ii) A1(R) = A
(`)
2 (qr),

(iii) A
(i+1)
2 (qfK) = A

(i)
2 (qr) for all i ∈ {1, . . . , `},

where the equalities represent equal distributions of the output bits. Combining these
facts, we get

∆A1(CascfK ,R) =
∣∣Pr[A1(CascfK) = 1]− Pr[A1(R) = 1]

∣∣
(i),(ii)

=
∣∣∣Pr[A(1)

2 (qfK) = 1]− Pr[A
(`)
2 (qr) = 1]

∣∣∣
(iii)

≤
∑̀
i=1

∣∣∣Pr[A(i)
2 (qfK) = 1]− Pr[A

(i)
2 (qr) = 1]

∣∣∣
=

∑̀
i=1

∆A
(i)
2 (qfK ,qr) . (6.9)

Now we define A2 to initially choose an index i ∈ {1, . . . , `} uniformly at random and

then act as A
(i)
2 . This implies

∆A2(qfK ,qr) =
1

`
·
∑̀
i=1

∆A
(i)
2 (qfK ,qr)

and hence concludes the proof of Lemma 10.

CHAPTER 6. PAPER 1 57

Lemma 11. There exists an explicit reduction T2 (described in the proof) such that for any
non-adaptive adversary A2 against the NA-PRFq-security of f, running in time t′+O(`q)
and asking at most q queries, A3 := TA2

2 is a non-adaptive adversary against the NA-
PRF-security of f running in time t′ + O(`q) and asking at most q queries, such that
∆A2(qfK ,qr) ≤ q ·∆A3(fK , r).

Proof of Lemma 11. Let us again describe a sequence of adversaries A
(i)
3 for i ∈ {1, . . . , q}.

Given access to an oracle g, which is either fK (for an independent random key K), or an

independent random function r, A
(i)
3 works as follows:

1. It runs A2 to obtain its q non-adaptive queries (o1, x1), . . . , (oq, xq), each consisting
of a pair (o, x) representing a query x to A2’s o-th oracle.

2. A
(i)
3 chooses i− 1 independent random keys K1, . . . , Ki−1 ∈ {0, 1}c. Then, it deter-

mines the response rj to each query (oj, xj) as

rj ←


fKoj

(xj) if oj < i

g(xj) if oj = i
roj(xj) if oj > i,

where ri+1, . . . , rq are independent uniformly random functions, sampled internally

by A
(i)
3 (using lazy sampling to maintain efficiency). All g-values required for this

computation are obtained by querying the g-oracle and once again this can be done
non-adaptively. The tuple of responses (r1, . . . , rq) is given to A2.

3. A
(i)
3 outputs the same bit that A2 does.

This time it is easy to observe that we have

(iv) A2(qfK) = A
(q)
3 (fK)

(v) A2(qr) = A
(1)
3 (r)

(vi) A
(i)
3 (fK) = A

(i+1)
3 (r) for all i ∈ {1, . . . , q}

and hence, similarly as in (6.9), we get

∆A2(qfK ,qr)
(iv),(v)

=
∣∣∣Pr[A(q)

3 (fK) = 1]− Pr[A
(1)
3 (r) = 1]

∣∣∣ (vi)

≤
q∑
i=1

∆A
(i)
3 (fK , r) . (6.10)

Again, letting A3 be an adversary that chooses a random index i ∈ {1, . . . , q} and then

simulates A
(i)
3 gives us

∆A3(fK , r) =
1

q
·

q∑
i=1

∆A
(i)
3 (fK , r) ,

thus proving Lemma 11.

The proof of Proposition 3 is now concluded by combining the two reductions described

above. For any (ε′, t′, q, `)-NA-PF-PRF adversary A against Cascf , we let TA := T
TA

1
2 and

observe that ∆A(CascfK ,R) ≤ `q ·∆TA
(fK , r) while TA runs in time t′ + Õ(`q) and asks at

most q queries as desired.

58 CHAPTER 6. PAPER 1

6.5.2 Proof of Proposition 4

In this appendix we fill in the details omitted in the sketch of the proof of Proposition 4
in Section 6.3.2.

Proposition 4 (restated). Let b, c, ` be positive integers such that b ≥ c, let εna ∈ (0, 1),
and moreover, assume that pseudo-random functions exist. Then there exists a func-
tion f : {0, 1}c×{0, 1}b → {0, 1}c and an adversary A against NMACf such that for any q
that satisfies εna = ω(q22−b, 2−c), we have:

• f is (εna, t, q)-NA-secure PRF;

• the adversary A, when asking q queries of length ` blocks each, runs in time Õ(`q)
and achieves distinguishing advantage

∆A(NMACf
K ,R) = Θ(`qεna) .

In particular, NMACf is not an (o(`qεna), Õ(`q), q, `)-secure PRF.

Proof. We start by showing how to construct the (εna, t, q)-NA-secure PRF f. To sim-
plify our technical arguments later, we design f in such a way that besides having weak
keys as sketched in Section 6.3, it also satisfies the additional property that for any
key k ∈ {0, 1}c and a uniformly distributed input U ∈ {0, 1}b, the value f(k, U) is also
uniformly distributed. Having this goal in mind, we construct f starting from a pseudo-
random permutation (which exists by our assumption and the result [41]). Consider
any (εna/4, t, q)-NA-secure PRP π : {0, 1}c × {0, 1}b → {0, 1}b and a set of “weak keys”
K ⊆ {0, 1}c of size 2c(εna/2), defined as K := 01−log εna‖{0, 1}c+log εna−1 (the set of keys
where the first 1− log εna bits are 0). Let [·]c represent the truncation of a longer bitstring
to its first c bits. We fix a value w ∈ K (say w = 0c) and define f as

f(k, x) :=

{
w for k ∈ K,
[π(k, x)]c for k 6∈ K.

Hence, f behaves as a truncated version of π except when a weak key from K is used, in
this case f(k, ·) always outputs w. By the well-known PRF/PRP switching lemma [31] we
obtain that π is also an (εna/4 + q2/2b, t, q)-NA-secure PRF and by assumption εna/4 +
q2/2b ≤ εna/2. It is easy to see that this implies that also [π(·)]c is an (εna/2, t, q)-NA-
secure PRF. By redefining [π(·)]c on an εna/2-fraction of the keys at most an εna/2 term in
the PRF-distinguishing advantage is lost, hence the function f is an (εna, t, q)-NA-secure
PRF.

Now consider two queries M1,M2 to NMACf(K = (K1, K2), ·) which are determined
by first sampling an (` − 1)-block message M = m1‖ · · · ‖m`−1 ∈ {0, 1}b(`−1) at random
and then setting M1 = M‖x1 and M2 = M‖x2 for some distinct blocks x1, x2 ∈ {0, 1}b.
Let Z0 := K1 and Zi := f(Zi−1,mi) for i ∈ {1, . . . , `− 1}. If any of the `− 1 intermediate
values Z1, . . . , Z`−1 in the evaluation of the inner function Cascf(K1,M) is in K, then
Cascf(K1,Mi) = w for both i ∈ {1, 2} and hence also NMACf(K,M1) = NMACf(K,M2).
We now lower-bound the probability of this event occurring. Since M is chosen indepen-
dently and uniformly at random, the construction of f from a permutation implies that

CHAPTER 6. PAPER 1 59

each value Zi will also be distributed uniformly at random and independently of K, as
long as Zi−1 6∈ K. Therefore, we obtain

PrK,M [{Z1, . . . , Z`−1} ∩ K 6= ∅] = 1− PrK,M [{Z1, . . . , Z`−1} ∩ K = ∅]

= 1−

(
PrK,M [Z0 6∈ K] ·

`−1∏
i=1

PrK,M [Zi 6∈ K|Zi−1 6∈ K]

)
= 1−

(
1− εna

2

)`
≥ `εna/4 .

As explained above, this also lower-bounds the probability of a collision between
NMACf(K,M1) and NMACf(K,M2).

Now, consider an adversary A that queries NMACf
K on q/2 such random and indepen-

dently sampled message pairs M1,M2 and outputs 1 if and only if it observes a collision
for at least one such pair. A interacting with NMACf

K outputs 1 with probability

1−
(

1− `εna
4

)q/2
≥ `qεna

16
= Θ(`qεna) .

However, in the interaction with the random function R, A clearly outputs 1 with prob-
ability only O(q/2c). By our assumption on εna, we get q/2c = o(`qεna) and hence also
∆A(NMACf

K ,R) = Ω(`qεna) as desired.

6.5.3 Tightness of Lemma 9 and Theorem 4

In this appendix we prove a lower bound, for a particular pair of messagesM = {m1,m2},
on the number of structure graphs that contain exactly one f -collision and where the final
vertices V `1

1 and V `2
2 of their message paths coincide. As in Lemma 9 we consider both

the case where the messages are required to have the same length, and the case without
this requirement. Recall that H(M) denotes the set

H(M) :=
{
G ∈ G1(M) : V `1

1 = V `2
2

}
of such graphs and d′(n) := maxn′∈{1,...,n} |{d ∈ N : d | n′}|. Proposition 5 below shows
that Lemma 9 is tight (up to a constant factor 4).

Proposition 5. There exist two distinct messagesM = {m1,m2}, each of length at most

` blocks, such that |H(M)| ≥ `·d′(`)
4

. Moreover, if we additionally require |m1| = |m2| then
there exist two equal-length messages M = {m1,m2} of length at most ` blocks such that
|H(M)| ≥ `.

Proof. Again, let us first consider the case where |m1| = |m2| is not required. Given `,
let `′ ≤ `/2 be any positive integer such that d(`′) = d′(`/2) (it exists by the definition
of d′(·)). We choose m1,m2 ∈ {0, 1}b∗ to be the messages consisting of `/2 + `′ and `/2
equal blocks 0b, respectively. Now, we describe ` · d′(`)/4 distinct structure graphs and
show that they are all in H(M), thus establishing the proof of the first part.

For every i ∈ {0, . . . , `/2} and every d that is a divisor of `′, we denote by Gi,d the
structure graph constructed as follows: Informally, the graph corresponding to m1 starts
with a path of length i + d − 1 edges, and the (i + d)-th edge returns to vertex i, hence

60 CHAPTER 6. PAPER 1

0 1 2 3

45

i = [i+ d]G

` = 8, `′ = 4
m1 = 08b, m2 = 04b

i = 2, d = 4

Figure 6.6: A sample graph Gi,d for the proof of Proposition 5.

causing a collision. Note that now we have a ρ-shaped graph (where the cycle has length
d), and the remaining edges of m1 must follow the edges along the cycle in that graph.
Since m2 is a prefix of m1, this also determines the m2-path (see Figure 6.6 for a sample
Gi,d). Formally, Gi,d := (V , E ,L) where

V := {0, . . . , i+ d− 1},
E := {(j − 1, j) | 1 ≤ j ≤ i+ d− 1} ∪ {(i+ d− 1, i)} and

L(u, v) := {0b} for all (u, v) ∈ E .

It is clear from the definition of Gi,d that for distinct (i, d) 6= (i′, d′) we also have Gi,d 6=
Gi′,d′ . Moreover, we claim that for each (i, d) chosen as above, Gi,d ∈ H(M). To see this,
observe that the m1-path ends in the vertex i+ (`/2 + `′ − i mod d), while the m2-path
ends in the vertex i+ (`/2− i mod d). Since d|`′, this is actually the same vertex and we
have V `1

1 = V `2
2 , establishing Gi,d ∈ H(M). There are (`/2 + 1) · d(`′) ways to choose a

tuple (i, d) with i ∈ {0, . . . , `/2} and d being a divisor of `′, and thus H(M) has at least
(`/2 + 1) · d(`′) ≥ `/2 · d′(`/2) ≥ `d′(`)/4 distinct elements as claimed.

For the case |m1| = |m2|, consider the messages m1 = 1b0b(`−1) and m2 = 01b−10b(`−1).
These messages are both of length ` blocks and differ in their first blocks, while the
remaining `− 1 blocks consist of zeroes in both messages. We again construct ` distinct
structure graphs and show that they all belong to H(M).

For every i ∈ {1, . . . , `}, we denote by G(i) the structure graph constructed as follows:
Informally, the subgraph corresponding to m1 is a path of length `, not containing any
collision itself. Since m2 differs from m1 in the first block, the m2-path will not overlap
with the m1-path as long as no f -collision occurs. In the graph G(i), we let this collision
happen for the i-th edge of the m2-path, hitting the vertex i on the m1-path. In particular,
in the case i = 1 the collision occurs by having V 1

1 = V 1
2 even though the first blocks of

the messages differ. See Figure 6.7 for a sample G(i). Formally, G(i) := (V , E ,L), where

V := {0, . . . , `+ i− 1},

E :=


{(j − 1, j) | 1 ≤ j ≤ `} if i = 1
{(j − 1, j) | j ∈ {1, . . . , `+ i− 1} \ {`+ 1}}

∪{(0, `+ 1)} ∪ {(`+ i− 1, i)} if i > 1

L(u, v) :=



{1b, 01b−1} if (u, v) = (0, 1) and i = 1
{1b} if (u, v) = (0, 1) and i > 1
{0b} if (u, v) ∈ {(j − 1, j) | j ∈ {1, . . . , `+ i− 1} \ {`+ 1}}
{0b} if (u, v) = (`+ i− 1, i) and i > 1
{01b−1} if (u, v) = (0, `+ 1) and i > 1
∅ otherwise.

Again, it is clear from the definition of G(i) that for distinct i 6= i′ we also have G(i) 6=

CHAPTER 6. PAPER 1 61

0 1 2 3 4

5 6

i `
` = 4, i = 3
m1 = 1b03b, m2 = 01b−103b

Figure 6.7: A sample graph G(i) for the proof of Proposition 5.

G(i′). Moreover, it is easy to see that for each i ∈ {1, . . . , `} we have G(i) ∈ H(M). This
proves that in this case |H(M)| ≥ ` as desired.

Finally, the ideas from the proof of Proposition 5 above can be used to give a simple
non-adaptive distinguishing attack achieving advantage Θ(`q2/2c) against LenCascf10 . f2,
i.e., against the system that we obtain after replacing h in NIh by a random compression
function. We sketch this attack below, hence showing that the information-theoretic
analysis in Theorem 4 is tight.

The adversary simply chooses q messages m1, . . . ,mq of the form mi = xi‖0b(`−1) for
arbitrary distinct xi’s. For any 1 ≤ i < j ≤ q and any 1 ≤ p ≤ `, we will have a
collision f2(LenCascf10 (mi)) = f2(LenCascf10 (mj)) if the outputs after computing the inner
cascade Cascf10 on the p-block prefixes of mi and mj collide (as their suffixes and lengths
are identical, and thus such a collision implies that also the final values collide). The
probability that for any fixed (i, j, p) this happens, conditioned on that this collision
is not predetermined (i.e., either p = 1 or Cascf10 applied to the (p − 1)-block prefixes
did not collide) is roughly 2−c as long as ` � 2c/2. We can choose triples (p, i, j) in
`q(q−1)/2 = Θ(`q2) ways, and as just explained every such triple defines a possible event
that leads to a collision and has probability ≈ 2−c (and these events are disjoint as we
required the collisions not to be predetermined), hence this gives the claimed Θ(`q2/2c)
bound.

62

CHAPTER 7. PAPER 2 63

7 Paper 2

The Exact Security of PMAC1

Peter Gaži, Krzysztof Pietrzak, Michal Rybár

IST Austria

January 2017

Abstract. PMAC is a simple and parallel block-cipher mode of operation, which was introduced by Black
and Rogaway at Eurocrypt 2002. If instantiated with a (pseudo)random permutation over n-bit strings,
PMAC constitutes a provably secure variable input-length (pseudo)random function. For adversaries
making q queries, each of length at most ` (in n-bit blocks), and of total length σ ≤ q`, the original paper
proves an upper bound on the distinguishing advantage of O(σ2/2n), while the currently best bound is
O(qσ/2n). In this work we show that this bound is tight by giving an attack with advantage Ω(q2`/2n).

In the PMAC construction one initially XORs a mask to every message block, where the mask for
the ith block is computed as τi := γi ·L, where L is a (secret) random value, and γi is the i-th codeword
of the Gray code. Our attack applies more generally to any sequence of γi’s which contains a large coset
of a subgroup of GF (2n).

We then investigate, if the security of PMAC can be further improved by using τi’s that are k-wise

independent, for k > 1 (the original distribution is only 1-wise independent). We observe that the security

of PMAC will not increase in general, even if the masks are chosen from a 2-wise independent distribution,

and then prove that the security increases to O(q2/2n), if the τi are 4-wise independent. Due to simple

extension attacks, this is the best bound one can hope for, using any distribution on the masks. Whether

3-wise independence is already sufficient to get this level of security is left as an open problem.

Keywords: Message Authentication Codes, PMAC, Attack, Masks

7.1 Introduction

PMAC (for Parallelizable Message Authentication Code) is a block-cipher mode of opera-
tion, introduced by Black and Rogaway at Eurocrypt 2002 [14]. The mode, when instan-
tiated with a block-cipher over {0, 1}n, constitutes a variable input-length pseudorandom
function {0, 1}∗ → {0, 1}n (which is then typically used for message authentication, hence
the name). PMAC is slightly less efficient than, for example, modes based on CBC MAC,
but its main advantage is that unlike CBC-based MACs, it allows to process the message
blocks fully in parallel.

1This paper appeared in the IACR Transactions on Symmetric Cryptology(ToSC) 2017, volume
1. This research was supported by the European Research Council, ERC consolidator grant (682815-
TOCNeT).

64 CHAPTER 7. PAPER 2

The secret key of PMAC specifies two permutations π, π′ over {0, 1}n, and a function
τ : N → {0, 1}n for determining the masks. On input a message M = m1‖ . . . ‖m`,mi ∈
{0, 1}n, the output is computed as

PMACπ,π′,τ (M) = π′

(⊕̀
i=1

π(mi ⊕ τ(i))

)
. (7.1)

In [14], the key is just a single key K ∈ K for a block-cipher E : K × {0, 1}n → {0, 1}n,
π, π′ are instantiated both with E(K, .), and the mask function is defined as τ(i) = γi ·L,
where γi is the ith Gray codeword2 and L = E(K, 0). This is a slightly idealized version
of PMAC, we will discuss all the simplifications we make in greater detail in Section 7.1.3.

7.1.1 Security of PMAC in the Random Permutation Model

The security of a block-cipher mode of operation is usually analyzed assuming the under-
lying block-cipher under a random secret key realizes a uniformly random permutation. A
bound in this model then implies security when instantiated with a block-cipher, we just
have to add an extra term which bounds the advantage of distinguishing the block-cipher
from a random permutation (i.e., the PRP security of the block-cipher, cf. Eq.(7.5) in
this paper).

[14] proved an upper bound of σ2/2n on the distinguishing advantage against PMAC
for any adversary making a total of q queries, each of length at most ` blocks (of n bits),
and a total of σ ≤ `q blocks. This was later improved to q2`/2n by Minematsu and
Matsushima at FSE’07 [49], and then to qσ/2n by Nandi at FSE’10 [51] (note that qσ
can be much less than q2`, if the message lengths vary a lot).

In this work we show that this bound is tight by giving an attack with advantage
Ω(q2`/2n). For this, we show that it is possible to construct q messages M1, . . . ,Mq

(Ma = m
(a)
1 ‖m

(a)
2 ‖ . . . ‖m

(a)
`), such that for any pair of messages (Ma,Mb),⊕̀
i=1

π(m
(a)
i ⊕ τ(i)) =

⊕̀
i=1

π(m
(b)
i ⊕ τ(i)) (7.2)

for `− 1 different choices of L (where τ(i) = γi ·L). Thus, also the PMAC tags of Ma,Mb

(which additionally permutes the value in Eq. 7.2) will collide. This directly gives a
distinguishing attack, and even a forgery as now Ma‖X and Mb‖X will collide for any
string X. Moreover, the set of L’s for which two messages collide will be mostly disjoint
for the

(
q
2

)
pairs of messages, so with q messages of length ` we will observe a collision

with probability in the order of q2`/2n.

Recently, Luykx et al. [42] showed that one can construct a pair of messages which
will collide with probability roughly `/2n, leading to an attack with advantage `/2n for
q = 2 messages. However, their attack does not generalize to q messages. In contrast, our
attack obtains this high collision probability for every of the

(
q
2

)
message pairs.

7.1.2 k-wise Independent Masks

Several works show that by somewhat changing the construction, one can boost the secu-
rity of PMAC [65, 66, 68] even beyond the q2/2n birthday bound. We investigate whether

2This encoding is chosen to allow for efficient sequential computation of the values γ1 · L, γ2, ·L,

CHAPTER 7. PAPER 2 65

one can make the original construction more secure by just changing the distribution of
the masks.

As a warm-up, in Section 7.4 we prove that if the masks τ1, τ2, . . . are uniform and
independent, then the security indeed increases to O(q2/2n). This is the best we can hope
for under any distribution of masks: One can always query on random messages, and if
a collision is found (which occurs with probability q2/2n), add the same block to both
colliding messages, which will also lead to the same output.

The original distribution of masks in PMAC is only 1-wise independent, so we inves-
tigate if the security increases when using k-wise independent distributions for k > 1. In
Section 7.6, we show that 2-wise independence in general does not increase security by
constructing a 2-wise independent distribution which, for any set of messages, gives us
exactly the same collision probability as the original distribution. In Section 7.5 we show
that using any 4-wise independent distribution on masks3 will boost the security to the
optimal O(q2/2n). Whether 3-wise independence is sufficient is left as an open problem.

7.1.3 Variants of the PMAC Construction

The construction that we analyze is a somewhat simplified version of the actual original
PMAC as proposed in [14]. We now discuss the existing differences and the applicability
of our results to other variants.

One difference is that [14] specifies a padding which allows it to take as inputs messages
whose length is not a multiple of n, moreover, the last block is not permuted. Additionally,
a final mask (which is fixed and independent of `) is XORed to the state before the outer
permutation is applied. Our attacks and security proofs can be easily adapted to take
these things into account, we chose not to do so for the sake of conceptual and notational
simplicity. In particular, for our attack we choose q messages for the “simplified” PMAC
as in Eq. (7.1) in a way that maximises the probability of seeing a collision. XORing a
fixed value to the state before applying the outer permutation does not affect this collision
probability. To handle the fact that the last block is not permuted we can simply add an
arbitrary dummy message block to every message. Again, this will not affect the collision
probability.

Another difference is that for our security proofs we assume that the value L used for
the masks is sampled uniformly at random, while in the original construction L := π(0).
This distinction does not matter as long as `q � 2n (as then whp. none of the internal
queries made is 0), which is satisfied for our main security result (Lemma 15) using 4-wise
independent masks, as there we must assume ` ≤ 2n/2 anyway. For our “warm-up” proof
(Lemma 14) using independent random masks we don’t have to make such an assumption,
so here it’s not clear if the result still applies with this difference for very large `. This
distinction also doesn’t affect the success probability of our attack, which works for any
distribution on L.

Moreover, in the security proofs we also assume that the inner and outer permutations
π, π′ are independent, while in the original construction π and π′ are the same. If one
aims for security in the order of q2`/2n (or more generally σ`/2n), this can be handled:
informally, as there are q queries to π′ and q` queries to π, we expect them to overlap only
with probability q2`/2n, and as long as they do not overlap, we can treat them as if they

3For example computed as τi =
∑3

j=0 Lj · ij for random Lj ∈ GF (2n).

66 CHAPTER 7. PAPER 2

were independent. As we aim for q2/2n security, it is not clear whether assuming that π
and π′ are independent is without loss of generality. Again, for our attack this distinction
does not matter, the collision probability is the same no matter what π′ is.

Let us also mention that there exists a later variant of PMAC due to Rogaway [58] called
PMAC1, which for efficiency reasons deviates slightly from PMAC by using a different
sequence for the γi values. It is not clear if our attack can be adapted to this case.
Informally, we require the sequence of γ1, . . . , γ` to contain a large coset of a subgroup of
GF (2n), and it’s not clear if the sequence from [58] contains such a set. Let us mention
that for similar reasons the attack from [42] does not apply to the [58] construction either.

Newer variations of PMAC include PMAC+ [65], PMAC with parity [66], and PMACX [68].
These introduce major modifications to the original constructions, therefore we do not
discuss them in more detail. Lastly, LightMAC [43] can be considered a PMAC-like con-
struction.

7.2 Preliminaries

Basic Definitions. For n ∈ N we define [n] := {1, . . . , n}, and {0, 1}n∗ :=
⋃
z∈N{0, 1}nz

denotes the set of all bitstrings whose length is a multiple of n. In a slight abuse of
notation, we interchangeably view strings from {0, 1}n∗ also as finite sequences of blocks
from {0, 1}n, i.e., for s ∈ {0, 1}nz we also write s = (s1, . . . , sz) for si ∈ {0, 1}n. The
(bit)length of a string w is |w|, and if |w| is a multiple of n, |w|n = |w|/n denotes the
length in n bit blocks. w` := w‖w‖ . . . ‖w denotes the `-fold concatenation of w. We
usually denote sets by calligraphic letters like X . Fb,c (resp. Fb∗,c) denotes the set of
all functions from {0, 1}b to {0, 1}c (resp. from {0, 1}b∗ to {0, 1}c), FN,b is the set of all
functions N → {0, 1}b and Pn the set of all permutations on {0, 1}n. If P is a (finite or
infinite) progression, then by P[`] we denote a tuple containing the first ` elements of P .
A partition of a set S is a collection of non-empty subsets Ai, such that if Ai 6= Aj, then
Ai
⋂
Aj = ∅, and

⋃
Ai = S.

Multisets. We denote with mult(x,X) the multiplicity of an element x in a multiset X .
X ↓ is the subset of X that contains only the elements of odd multiplicity, i.e.,

X ↓ = {x ∈ X : mult(x,X) mod 2 = 1} .

Groups and Cosets. For a definition of a commutative group and a discussion of the
notions introduced below, see e.g. [33]. All the groups that we consider in this paper
will be commutative, and we will use additive notation for groups. A subgroup of G is
any subset H that is a group by itself. The order of G, denoted |G| is the number of its
elements. Lagrange’s theorem states that if H is a subgroup of G, then |H| divides |G|.

Let G be a group, and H its subgroup. Take g ∈ G. Then the set g +H := {g + h :
h ∈ H} is called a coset of H in G. Note that trivially any group G is a coset (of G in
G), we call a coset proper if it is not a group. The set of different cosets of H in G forms
a partition of G; and moreover, H itself appears in it as the coset 0 + H, where 0 is the
neutral element of G (and H). The size of a coset is again referred to as its order. Finally,
the order of G is equal to the product of the order of H and the number of different cosets
of H.

CHAPTER 7. PAPER 2 67

Random Variables and Experiments. Random variables and concrete values they
can take are usually denoted by upper-case letters X, Y, . . ., and lower-case letters x, y, . . .
respectively.

If M is a distribution (respectively, a set), then we denote by X
$← M sampling

the random variable X according to M (respectively, choosing it uniformly at random
fromM). By X` we denote ` independent and identically distributed copies of a random
variable X. A joint probability distribution of q random variables (X1, . . . , Xq) is k-wise
independent, if its restriction to any k coordinates is uniform over its domain, e.g., if all
Xi have domain {0, 1}n

∀i1, . . . , ik , 1 ≤ i1 < · · · < ik ≤ q ; ∀x1, . . . , xk ∈ {0, 1}n :

Pr(X1,...,Xq) ((Xi1 , . . . , Xik) = (x1, . . . , xk)) =
(
2−n
)k

.

More generally, let Mn be a probability distribution over FN,n. In this case, we call Mn

k-wise independent, if any k outputs of f(·) sampled fromMn are independent. Formally,
Mn is k-wise independent, if:

∀i1, . . . , ik , 1 ≤ i1 < · · · < ik ; ∀x1, . . . , xk ∈ {0, 1}n :

Pr
f

$←Mn

((
f(i1), . . . , f(ik)

)
= (x1, . . . , xk)

)
=
(
2−n
)k

.

Adversaries. In this work an adversary is a probabilistic (polynomial time or com-
putationally unbounded) algorithm, sometimes with access to an oracle O(·). We use
sans-serif letters for adversaries, e.g., AO(·), and will only consider “distinguishers”, which
are adversaries, whose final output is just one bit.

Pseudorandom functions and permutations. We call a function f : K × D → R
keyed, where the first part of the input is referred to as the key (and K being called the
keyspace of f). We often write fk(·) instead of f(k, ·). Given a variable input-length
keyed function f : K × {0, 1}n∗ → {0, 1}n, the PRF-advantage of an adversary A against
f is defined as

Advprf
f (A) := Pr[K

$← K : AfK(·) = 1]− Pr[R
$← Fn∗,n : AR(·) = 1] .

We also define
Advprf

f (q, `, t) := max
A

Advprf
f (A)

where the maximum goes over all adversaries that run in time at most t, and ask at
most q queries, each of length at most ` (in n-bit blocks). If we consider computationally
unbounded adversaries, we drop the last argument, i.e., Advprf

f (q, `) := Advprf
f (q, `,∞).

Pseudorandom permutations (PRPs), and their security notions are defined analo-
gously. Given a keyed permutation (i.e., a block-cipher) E : K × {0, 1}n → {0, 1}n, the
PRP-advantage of an adversary A against E is defined as

Advprp
E (A) := Pr[K

$← K : AEK(·) = 1]− Pr[P
$← Pn : AP(·) = 1] .

and
Advprp

E (q, t) := max
A

Advprp
E (A)

where the maximum goes over all adversaries that run in time at most t and ask at most
q queries.

68 CHAPTER 7. PAPER 2

π

+

x1

m1

τ1

π

+

x2

m2

τ2

+

π

+

x3

m3

τ3

+

. . .

. . .

. . .

π

+

x`−1

m`−1

τ`−1

+

π

+

x`

m`

τ`

+

Figure 7.1: The evaluation of sPMAC(π, τ,m1‖ . . . ‖m`), where τi = τ(i).

Collision security. For a keyed function f : K × {0, 1}n∗ → {0, 1}, we define

Advcol
f (q, `) := max

M1,...,Mq

PrK←K [∃ i 6= j : fK(Mi) = fK(Mj)] ,

where the maximum goes over all q tuples of distinct messages of length at most ` blocks.

7.3 PMAC and Simplified PMAC

We define the simplified PMAC, sPMAC : Pn ×FN,n × {0, 1}n∗ → {0, 1}n as

sPMAC(π, τ,m1‖ . . . ‖m`) :=
⊕̀
i=1

π(mi ⊕ τ(i)) .

PMAC : Pn × Pn × FN,n × {0, 1}n∗ → {0, 1}n is derived from sPMAC by additionally
encrypting the final output using an independent permutation π′:

PMAC(π, π′, τ,M) = π′(sPMAC(π, τ,M))

To save on notation, we will sometimes write τi instead τ(i), and e.g., PMACπ,π′,τ (M)
instead of PMAC(π, π′, τ,M), or, if π, π′, τ are clear from the context, simply PMAC(M).

The first three (two) arguments of PMAC (sPMAC) are the key; consider distributions
Π,Π′ over Pn, and Tn over FN,n, then PMACΠ,Π′,Tn(.) denotes a keyed function, where
the key is sampled according to (π, π′, τ) ← Π × Π′ × Tn, and then defines the function
PMACπ,π′,τ (.). If Π is instantiated by a block-cipher E : K × {0, 1}n → {0, 1}n, we think
of it as the uniform distribution over the multiset of functions {E(k, ·) : k ∈ K}.

For an input message M = m1‖ . . . ‖m`, it will be convenient to define the following
variables

xi := mi ⊕ τi, ∀i ; X := (x1, . . . , x`) (7.3)

yi := π(xi), ∀i ; Y := (y1, . . . , y`)

CHAPTER 7. PAPER 2 69

We often consider pairs of messages M = m1‖ . . . ‖ms,M
′ = m′1‖ . . . ‖m′s′ , and so X ∗

denotes the multiset

xi := mi ⊕ τi , x′i := m′i ⊕ τi, ∀i ; X ∗ := (x1, . . . , xs, x
′
1, . . . , x

′
s′) (7.4)

We start by reducing the PRP-security of PMAC with a block-cipher E to the collision
security of sPMAC with a random permutation. The argument is fairly standard and
allows us to perform the rest of our analysis in the information-theoretic setting.

Lemma 12 (PRF security of PMAC from collision security of sPMAC). For a block-cipher
E : K × {0, 1}n → {0, 1}n, and for any distribution Tn over FN,n, we have

Advprf
PMACE,E,Tn

(q, `, t) ≤ 2 ·Advprp
E (`q, t′) + Advcol

sPMACPn,Tn
(q, `) +

q2

2n
,

where t′ ≤ t+O(`q).

Proof. We first replace the block-cipher E with uniformly random permutations, by a
straightforward reduction:

Advprf
PMACE,E,Tn

(q, `, t) ≤ Advprf
PMACPn Pn,Tn

(q, `, t) + 2 ·Advprp
E (`q, t′) . (7.5)

We can now consider computationally unbounded distinguishers (first step below), and
replace the outer permutation by a uniformly random function, using the PRF/PRP
switching lemma [12] in the second step:

Advprf
PMACPn,Pn,Tn

(q, `, t) ≤ Advprf
PMACPn,Pn,Tn

(q, `) ≤ Advprf
PMACPn,Fn,n,Tn

(q, `) +
q2

2n
(7.6)

Finally, we claim that distinguishing PMACPn,Fn,n,Tn from a random function is upper
bounded by the collision security of sPMACπ,τ , i.e.,

Advprf
PMACPn,Fn,n,Tn

(q, `) ≤ Advcol
sPMACPn,Tn

(q, `) (7.7)

The statement of the Lemma follows from Eq.(7.5)-Eq.(7.7). It remains to prove Eq.(7.7).
As the outer function f ← Fn,n is uniformly random, the output of PMACπ,f,τ (.) ≡
f(sPMACπ,τ (.)) is uniformly random, conditioned on not having any collisions on the
inner function sPMACπ,τ (.). By Theorem 1.(i) from [46], this implies that distinguish-
ing PMACπ,f,τ (.) from a random function is at least as hard as provoking a collision on
sPMACπ,τ (.), and further by Theorem 2 from [46], adaptivity does not help in provoking
this condition. This concludes the proof of Eq.(7.7).

A self-cancellation for a message M (denoted seCan(M)) occurs, if for its corre-
sponding X , we have X ↓ = ∅. A cross-cancellation for two messages M,M ′ (denoted
crCan(M,M ′)) occurs, if for their corresponding X ∗↓, we have X ∗↓ = ∅. A PMAC-collision
for two messages M,M ′ (denoted pCol(M,M ′)) occurs, if PMAC(M) = PMAC(M ′).
We define sPMAC-collision (spCol(M,M ′)) analogously. Note that crCan(M,M ′) implies
spCol(M,M ′), and spCol(M,M ′) implies pCol(M,M ′).

For a given n, `, and a distribution Tn, we define the following quantity with the xi’s
as defined in Eq.(7.3):

θ(`, n, Tn) = max
M 6=M ′

|M|n,|M′|n≤`

Pr
τ

$←Tn

[{
x1, x2, . . . , x|M |n , x

′
1, x
′
2, . . . , x

′
|M ′|n

}↓
= ∅
]
. (7.8)

70 CHAPTER 7. PAPER 2

The quantity θ(`, n, Tn) bounds the maximum probability over all pairs of distinct mes-
sages M,M ′ of maximum length ` that their reduced set X ∗↓ is empty, and hence a
cross-cancellation occurs. This probability is taken over the sampling of the mask accord-
ing to the distribution Tn.

The following lemma states that a cross-cancellation is indeed the dominant reason
for an sPMAC-collision to occur.

Lemma 13. For any n, Tn, and ` ≤ 2n−2

Advcol
sPMACPn,Tn

(q, `) ≤ θ(`, n, Tn) · q2 +
q2

2n−1
.

Proof. By taking a union bound over all q messages, we can upper bound the probability
of a collision amongst the q messages by the probability of any pair colliding as:

Advcol
sPMACPn,Tn

(q, `) ≤ Advcol
sPMACPn,Tn

(2, `) ·
(
q

2

)
≤ Advcol

sPMACPn,Tn
(2, `) · q2 .

We upper bound Advcol
sPMACPn,Tn

(2, `) by showing that for any M 6= M ′, |M |n, |M ′|n ≤ `,
we have:

Pr(π,τ)←Pn×Tn [sPMACπ,τ (M) = sPMACπ,τ (M
′)]

= Pr(π,τ)←Pn×Tn [sPMACπ,τ (M) = sPMACπ,τ (M
′) ∧ crCan(M,M ′)] (7.9)

+ Pr(π,τ)←Pn×Tn [sPMACπ,τ (M) = sPMACπ,τ (M
′) ∧ crCan(M,M ′)] (7.10)

≤ θ(`, n, Tn) +
1

2n − 2`

≤ θ(`, n, Tn) +
1

2n−1
(7.11)

Note that this proves the statement of the Lemma. In eq. (7.11), we have used ` ≤ 2n−2.
The term (7.9) can be upper bounded as (using that for any events E0, E1,Pr[E0 ∧E1] ≤
Pr[E0])

(7.9) ≤ Pr(π,τ)←Pn×Tn [crCan(M,M ′)] ≤ θ(`, n, Tn) ,

where the 2nd step follows by definition.

It remains to upper bound the term (7.10) by 1/(2n−2`). We first upper bound (7.10)
by fixing τ to the “worst case”, and condition on crCan (using Pr[E0 ∧ E1] ≤ Pr[E0|E1])

(7.10) ≤ max
τ

Prπ←Pn [sPMACπ,τ (M) = sPMACπ,τ (M
′) | crCan(M,M ′)]

As crCan(M,M ′), the set X ∗↓ = {a1, . . . , as} is non-empty and s ≤ 2`. A necessary
(albeit not sufficient) condition to have a collision is that

⊕s
i=1 π(ai) = 0. We claim that

Prπ←Pn

[
s⊕
i=1

π(ai) = 0

]
= Prπ←Pn

[
s−1⊕
i=1

π(ai) = π(as)

]
≤ 1

2n − s+ 1

The first equality follows as A ⊕ B = 0, if and only if A = B. To see the second step,
assume the output of the random π is defined in a lazy way (sampling a random image
without repetition for every fresh input), starting with inputs a1, . . . , as−1. Once these
have been defined, we know that π(as) will be uniform over a set of size 2n − s + 1, but
at most one value, namely π(as) =

⊕s−1
i=1 π(ai), will satisfy the required condition.

CHAPTER 7. PAPER 2 71

7.4 Independent Random Masks

In this section, as a warm-up, we look at the setting where the masks are chosen inde-
pendently and uniformly at random.

Lemma 14. For any n, ` ∈ N

θ(n, `,FN,n) ≤ 2

2n
.

Before we prove the lemma, we note that this upper bound is tight: consider the
messages M = 0n‖0n and M ′ = 1n‖1n, then for any choice of τ1, we’ll have X ∗↓ =
{τ1, τ2, 1

n ⊕ τ1, 1
n ⊕ τ2} = ∅, if either τ2 = τ1, or τ2 = τ1 ⊕ 1n. As the τi are uniform,

Pr[(τ1 = τ2) ∨ τ1 = τ2 ⊕ 1n] = 2/2n.

Proof. Recall that θ(n, `,FN,n) is the probability, maximized over all M 6= M ′ of length
|M |n, |M ′|n ≤ `, that X ∗↓ = ∅. Let M = m1‖ . . . ‖ms, M

′ = m′1‖ . . . ‖m′s′ denote the
messages maximising this probability.

If s = s′, i.e., the messages are of same length, then let i be the smallest index where
mi 6= m′i (this i exists as M 6= M ′). Assume τ ← FN,n is sampled on all inputs, except i.
Consider the multiset Zi = X ∗ − (xi, x

′
i). Now, we claim X ∗↓ will be empty, if and only

if two conditions are satisfied. Firstly, Z↓i must contain exactly two elements, let’s call
them {a, b}. If this is not the case, then X ∗↓ will not be empty with probability 1.4

If it has exactly two elements {a, b}, then secondly, τ(i) must be chosen such that
{mi ⊕ τ(i),m′i ⊕ τ(i)} = {xi, x′i} = {a, b}. There are at most two possible values for τ(i),
which satisfy this condition (two, not just one, as the sets are not ordered). As τ(i) is
uniform, the probability it hits one of those two values is 2/2n.

Now let us consider the case where s 6= s′ (without loss of generality, s > s′). We can’t
use the above argument here as an index i with mi 6= m′i will not exist if M is a prefix
of M ′. In this case we assume τ(i) is given to us on all inputs except s + 1. Following a
similar argument as with Z↓i above, there will be at most one value for τ(s+ 1) that will
cause X ∗↓ to be empty, which upper bounds the probability of X ∗↓ = ∅ to 1/2n.

Lemma 14, in combination with Lemmas 12 and 13, directly give us the following
statement.

Theorem 5 (PMAC security with uniform masks). For any q, t, n, `, where ` ≤ 2n−2,
and block-cipher E with block-size n, we have

Advprf
PMACE,E,FN,n

(q, `, t) ≤ 5q2

2n
+ 2 ·Advprp

E (`q, t′) ,

where t′ ≤ t+O(`q).

4Intuitively, we need {a, b} and {xi, x′i} to cancel each other out for X ∗↓ = ∅. If Z↓i had more, or less
than precisely two elements, this would not be possible.

72 CHAPTER 7. PAPER 2

7.5 4-wise Independent Masks

In this section we investigate the security of PMAC if the mask distribution Tn is 4-wise
independent. By the following lemma this assumption is sufficient to prove a bound of
order q2/2n (i.e., independent of the message length `) on the PRF-security of PMAC
assuming an exponential upper bound on `.

Lemma 15. For any n, ` ∈ N, where ` ≤ 2n/2, and any 4-wise independent distribution
Tn, we have

θ(`, n, Tn) ≤ 4

2n
. (7.12)

Proof. Let M = m1‖ . . . ‖ms,M
′ = m′1‖ . . . ‖m′s′ ; s, s′ ≤ ` be messages maximizing the

probability in the definition of θ(`, n, Tn) (cf. Eq.(7.8)) for the 4-wise independent mask
distribution Tn.

We start with the case where s = s′. Let I = {i : mi 6= m′i} be the indices of message
blocks where the two messages differ, and X ∗I ⊆ X ∗ = {x1, . . . , xs, x

′
1, . . . , x

′
s} the multiset

containing only xi, x
′
i for i ∈ I. Note that X ∗↓ = X ∗↓I , since mi = m′i implies xi = x′i

and for any multiset S and any x such that mult(S, x) ≥ 2, we have S↓ = (S \ {x, x})↓.
In order to bound the probability that X ∗↓ = ∅, it suffices to bound the probability that
X ∗↓I = ∅, let us denote this event with Ecol.

If Ecol holds, then we can find a complete matching (i.e., a subgraph where every
vertex has degree exactly 1) in a graph, whose vertices are the elements of X ∗I and two
vertices are connected by an edge, if and only if they have the same value. Note that
if Ecol holds, then every value appears with even multiplicity, so this graph consists of
cliques of even size.

We will define a set of events {Eα,β : (α, β) ∈ (I × {0, 1})2} and prove that if |I| ≥ 4
(we will discuss the cases where |I| < 4, and s 6= s′ at the end), then:

i. For any α, β, Pr[Eα,β] ≤ 2−2n.

ii. Ecol implies that for some α, β the event Eα,β holds.

The above two points then imply Pr[Ecol] ≤
∑

α,β Pr[Eα,β] ≤ 22|I|2/22n ≤ 4`2/22n, which

is upper bounded by 4/2n if ` ≤ 2n/2, as claimed in the statement of the lemma.

It will be convenient to define the index of a message as α = (αi, αb) ∈ I × {0, 1},
where mα = mαi

if αb = 0 and mα = m′αi
if αb = 1 (similarly for xα), so the part αi

identifies the block number, and the bit αb indicates whether we consider M or M ′.

Let I = {i1, i2, . . .} and γ = (γi, γb) = (i1, 0), now the event Eα,β is defined as follows.
Let

δ = (δi, δb) = (min{I \ {γi, αi, βi}}, 0) .

Note that above min{I \ {γi, αi, βi} is non-empty, as |I| ≥ 4. If γi = αi, or α = β, the
event Eα,β is defined to never hold, so from now on we assume this is not the case. Then
Eα,β is defined as

Eα,β ⇐⇒ (xγ = xα) ∧ (xδ = xβ) .

CHAPTER 7. PAPER 2 73

We first prove that

Prτ←Tn [Eα,β] = Prτ←Tn [(xγ = xα) ∧ (xδ = xβ)]

= Prτ←Tn [xγ = xα]Prτ←Tn [xδ = xβ|xγ = xα]

= 2−n · 2−n .

To see the last step above, note that

Prτ←Tn [xγ = xα] = Prτ←Tn [mγ ⊕ τγi = mα ⊕ ταi
] = 2−n

holds as τγi , ταi
, coming from a 4-wise independent distribution, are uniformly random

and independent (recall we assume αi 6= γi). To show

Prτ←Tn [xδ = xβ|xγ = xα] = Prτ←Tn [mδ⊕τδi = mβ⊕τβi |mγ⊕τγi = mα⊕ταi
] = 2−n (7.13)

we note that, as the τi are 4-wise independent, and δi 6∈ {αi, βi, γi}, the τδi is uniformly
random even given all the other masks ταi

, τβi , τγi . This concludes the proof of the condi-
tion (i), establishing that Pr[Eα,β] ≤ 2−2n.

It remains to show condition (ii), claiming that Ecol implies that for some α, β the
event Eα,β holds. For this we simply note that if Ecol holds, then xγ (with γ as defined
above) must collide with at least some value xα, and then the value xδ (with δ as defined
above) must collide with some xβ, thus Eα,β holds.

We have so far assumed that |I| ≥ 4 and s = s′. If |I| < 4 (but we still assume s = s′),
then there are at most 2(|I| − 1) = 4 possible values xγ can collide with, this probability
is easily upper bonded by 4/2n (2-wise independence of the τi is sufficient here). As xγ
colliding with another value xα (where αi ∈ I) is a necessary condition for Ecol to hold,
the same upper bound holds of Ecol.

We now shortly describe how to adapt the proof if the messages have different lengths,
say s > s′. Let I again denote the set of indices i ∈ {1, . . . , s′}, such that mi 6= m′i.

If 2|I| + (s′ − s) ≤ 6 then we use basically the same argument as for the |I| < 4
case above; To have the event Ecol the value xγ (where γ = (min{I}, 0), or if |I| = 0,
γ = (s′ + 1, 0)) must collide with some xα, and as there are at most 4 possibilities for
α, this probability is at most 4/2n. If 2|I| + (s′ − s) > 6 then we have at least 4 indices
(namely I and s′ + 1, . . . , s) which correspond to x’s that must collide, and for this one
can use a slight generalisation of the argument for |I| ≥ 4 from above.

Again, combining Lemma 15 with Lemmas 12 and 13 give us the following statement.

Theorem 6 (PMAC security with 4-wise independent masks). For any q, t, n and ` ≤
2n/2, any block-cipher E with block-size n, and any 4-wise independent distribution Tn
over FN,n, we have

Advprf
PMACE,E,Tn

(q, `, t) ≤ 7q2

2n
+ 2 ·Advprp

E (`q, t′) ,

where t′ ≤ t+O(`q).

74 CHAPTER 7. PAPER 2

7.6 2-wise Independent Masks

In Section 7.5, we showed that the security of PMAC with 4-wise independent masks
is q2/2n. On the other hand, in Section 7.7 we will show that when using the original
distribution on masks from [14], which is only 1-wise independent, the security is just
`q2/2n. This leaves open the question, whether we can get q2/2n security already using
any 2-wise or 3-wise independent distribution on masks. Below, we show that using a 2-
wise independent distribution will in general not improve security: We slightly change the
original distribution to make it 2-wise independent, and observe that this does not change
the collision probability of sPMAC, and thus also attacker’s distinguishing advantage of
PMAC in the ideal permutation model, at all. Whether 3-wise independence is sufficient
is left as an open problem.

Recall that in [14] the masks are computed by means of a function chosen at random
from the following family

{i→ a · pi | a ∈ GF (2n)} ,

where pi is the i-th Gray codeword. For the following argument P = (p1, p2 . . . , p2n) can
be any progression without repetitions. Let Tn denote this distribution, and note that it
is 1-wise, but not 2-wise, independent. Let T+

n denote the uniform distribution over

{i→ a · pi ⊕ b | a, b ∈ GF (2n)} ,

which is 2-wise independent.

By the following lemma, the collision security of sPMAC is exactly the same for Tn
and T+

n , thus also the security of PMAC implied by Lemma 12 will be the same for both
distributions.

Lemma 16. Let Tn and T+
n be distributions as defined above. Then, we have

Advcol
sPMACPn,Tn

(q, `) = Advcol
sPMACPn,T+n

(q, `) .

Proof. Consider any messages M,M ′ and X ∗ = (x1, . . . , x|M |n , x
′
1, . . . , x

′
|M ′|n) where xi =

mi ⊕ a · pi ⊕ b, x′i = m′i ⊕ a · pi ⊕ b for random a, b, i.e., according to mask distribution
T+
n . To prove the lemma, it is sufficient to observe that if X ∗↓ = ∅, then we will still have
X ∗↓ = ∅, even if we replace b with any other element of the field, in particular, we can
assume b = 0, in which case we get mask distribution Tn.

7.7 1-wise Independent Masks: PMAC with a Gray

Code

In this section we analyse the PRF-security of PMAC with a one-wise independent mask
distribution.

The Gray Code. The original PMAC construction uses a mask distribution based on
a Gray code, which is an example of a one-wise independent distribution. A Gray code is

CHAPTER 7. PAPER 2 75

an ordering γ` = γ`0γ
`
1 . . . γ

`
2`−1

of {0, 1}`, for any ` ≥ 1, such that successive points differ
in precisely one bit. The canonical Gray code from [14] is defined as follows:

γ1 = (γ1
0 , γ

1
1) := (0, 1)

γ2 = (γ2
0 , γ

2
1 , γ

2
2 , γ

2
3) := (00, 01, 11, 10)

...

γ`+1 = (0γ`0, 0γ
`
1, · · · , 0γ`2`−2, 0γ

`
2`−1, 1γ

`
2`−1, 1γ

`
2`−2, · · · , 1γ

`
1, 1γ

`
0)

In PMAC the sequence τ1, τ2, . . . of masks is defined as τi := γni · L for a pseudorandom
L = EK(0). Let us stress that the first mask is τ1, so the first codeword γn0 = 0n is omitted.
This fact makes our attack somewhat more complicated, as the lack of the zero element
in the progression γn1 , γ

n
2 , . . . will force us to argue over cosets of subgroups, instead of

subgroups directly.

The [42] Attack. [42] show an attack on PMAC using two messages of length ` (for `
being any power of 2) with advantage roughly `/2n. This attack exploits the fact that the
first 2w codewords of the canonical Gray code form a subgroup of the additive group of
the finite field GF (2n). Hence, this two-query attack improves linearly with the increasing
message length `.

However, it is unclear whether this length-dependent attack can be generalized to a
larger number of queries q. This is because the two attack queries are derived from the
Gray code codewords being used, and are fully determined by them. Therefore, having
more available message queries does not increase the success probability of the attack.
Moreover, the set of L values that cause the two messages to collide on PMAC output is
also predetermined by these codewords. Hence, there is a simple countermeasure against
the attack: the user could simply avoid these “weak” keys.

7.7.1 Our Attack on PMAC

In this section we present an attack which scales with q, achieving success probability
roughly `q2/2n against PMAC. Moreover, this attack is randomized, so no “weak” keys
exist, therefore a countermeasure against the [42] attack as mentioned above no longer
applies.

Our attack can be mounted against PMAC using a similar class of 1-wise independent
mask distributions as the attack in [42]. Namely, we assume that the masks are derived
as τi := pi · R for some progression P = (p1, . . . , p2n), where every pi ∈ {0, 1}n, and a

value R
$← {0, 1}n, which we model as sampled uniformly at random.5 We assume that

all elements of P are distinct (any Gray code satisfies this property by definition). Our
attack differs from the one in [42] in the message construction, and the type of collisions
that it is aiming for. While in [42] the authors construct a pair of messages M,M ′, such
that seCan(M) and seCan(M ′) occur with probability `/2n (over the choice of R), we
choose q messages M1, . . . ,Mq, such that for every pair Mi,Mj of them, crCan(Mi,Mj)
occurs with probability `/2n.

5Note that this is not completely true for the value L described above, but we can afford this impre-
cision when modelling an attack, as it obviously does not significantly affect its performance.

76 CHAPTER 7. PAPER 2

Algorithm 2: Attacker A
O(·)
`,q,n against PMAC, where P = (p1, . . . , p2n−1)

1 IS := indices in P[`] of a coset S ⊆ P[`] of a subgroup H in an additive
group G ⊆ GF (2n)

2 `S := |S|
3 fix arbitrary e ∈ S (if S is a group, set e := 0)
4 I ′S := indices in P[`] of S \ {e}
5 U0 := ∅
6 for a := 1 . . . q do
7 repeat

8 m̂(a) $← {0, 1}n

9 until
∣∣∣{ m̂(a)⊕m̂(b)

e⊕pi : b ∈ [a− 1], i ∈ I ′S
}
∩ Ua−1

∣∣∣ ≤ 2(a−1)3(`S−1)2

2n

10 Ua := Ua−1 ∪
{
m̂(a)⊕m̂(b)

e⊕pi : b ∈ [a− 1], i ∈ I ′S
}

11 Ma := ∅
12 for i := 1 . . . ` do
13 for a := 1 . . . q do
14 if i ∈ IS then
15 Ma := Ma||m̂(a)

16 else
17 Ma := Ma||0n

18 for i := 1 . . . q do
19 Tagi := O(Mi)

20 for i := 1 . . . (q − 1) do
21 for j := (i+ 1) . . . q do
22 if Tagi = Tagj then
23 return 1

24 return 0

Description

We will use the following notation: given messages (i.e., attack queries) M1, . . . ,Mq of

length ` each, we denote the i-th block of the a-th message by m
(a)
i . We also analogously

define x
(a)
i := m

(a)
i ⊕ pi ·R.

The adversary A := A
O(·)
`,q,n we present is parametrized by variables `, q, n (maximal

length of messages, number of messages, size of message blocks), and expects to interact
with an oracle O(·) that is either PMAC, or a random function. Its pseudocode is given
as Algorithm 2.

The adversary A first identifies the largest possible subset S ⊆ P[`] = (p1, . . . , p`) that
is an additive subgroup of GF (2n); or more generally, a coset of any group H in G, where
both H and G are additive subgroups of GF (2n) and do not need to be subsets of P[`].
We denote the order of S by `S and the indices of S within P[`] by IS. Additionally, we
choose an arbitrary fixed element e in S. If S is a group, then for notational convenience

CHAPTER 7. PAPER 2 77

we choose e := 0, but this is of no significance to the attack, or its proof. Then, we denote
by I ′S the indices of S \ {e} within P[`].

Having identified S, the adversary samples q message blocks m̂(1), . . . , m̂(q) $← {0, 1}n
one by one, using a form of rejection sampling. Namely, it maintains a set

Ua−1 =

{
m̂(b) ⊕ m̂(c)

e⊕ pi
: b, c ∈ [a− 1], b 6= c, i ∈ I ′S

}
,

where a is the index of m̂(a) currently sampled (intuitively, all u ∈ Ua−1 have the property
that if R = u, then crCan(Mb,Mc) for some b 6= c ≤ [a − 1] occurs). A random value
sampled for m̂(a) is then accepted, only if the intersection{

m̂(a) ⊕ m̂(b)

e⊕ pi
: b ∈ [a− 1], i ∈ I ′S

}
∩ Ua−1

is not too large (more precisely, if it is not larger than roughly twice its expected value).

From the blocks m̂(1), . . . , m̂(q), A constructs a set of queries by repeating the same
block ` times:

M1 = (m̂(1))` = m̂(1)||m̂(1)|| . . . ||m̂(1)

M2 = (m̂(2))` = m̂(2)||m̂(2)|| . . . ||m̂(2)

. . .

Mq = (m̂(q))` = m̂(q)||m̂(q)|| . . . ||m̂(q)

and then replaces all the blocks of these newly created messages that correspond to indices
not in IS by an all-zero block (in fact, any block with fixed value would do).

From this point on, the attack is simple: A submits the messages constructed above
as the attack queries; if there is a collision among the outputs of the oracle it outputs 1,
otherwise it outputs 0.

Analysis

We first look at the running time of A. The only nontrivial part of it that is worth
consideration is the loop on lines 7–9, which might potentially never terminate. However,
note that the expected size of the set

E
m̂(a) $←{0,1}n

[∣∣∣∣{m̂(a) ⊕ m̂(b)

e⊕ pi
: b ∈ [a− 1], i ∈ I ′S

}
∩ Ua−1

∣∣∣∣] ≤ (a− 1)3(`S − 1)2

2n
,

since each of the (a− 1)(`S − 1) elements of the set intersected with Ua−1 is individually
uniform over {0, 1}n, and we are assessing the probability that it hits the set Ua−1, where
|Ua−1| ≤ (a−1)2(`S−1). Hence, the probability that a single iteration of the loop fails to
satisfy the condition on line 9 is at most 1/2 by Markov’s inequality. Since every sampling
on line 8 is independent, the probability (for a fixed a) that the loop is executed more
than k times is upper bounded by 2−k.

Now we move on to analyze the advantage achieved by our attack.

78 CHAPTER 7. PAPER 2

Theorem 7. Let P = (p1, . . . , p2n) ∈ GF (2n) be a progression as defined above, and let

Tn be the mask distribution defined as τi = pi · R for a random R
$← {0, 1}n. Let Π,Π′

be any distributions over Pn and assume that `q2 ≤ 2n−1. The adversary A`,q,n given in
Algorithm 2 achieves

Advprf
PMACΠ,Π′,Tn

(A`,q,n) ≥ (`S − 1)(q − 1)2

2n+2
− q2

2n
,

where `S is the order of the largest coset S of some subgroup H in an additive subgroup
G of GF (2n), such that the coset S is fully contained in P[`] = (p1, . . . , p`).

Note that as a special case, we can have S = G and hence `S may be the order of the
largest additive group contained in P[`].

Proof. We start by investigating the probability of crCan(Ma,Mb) for two distinct indices
a, b ∈ {1, . . . , q}.

Lemma 17. Let a, b be any two distinct indices from {1, . . . , q}. Then, we have

Pr [crCan(Ma,Mb)] ≥
`S − 1

2n
.

Proof. (of Lemma 17) To slightly simplify the notation, we first prove the theorem for
the case where S is a group and then describe the straightforward extensions needed to
handle the case where S is a proper coset.

Let us hence assume that S is a group and therefore e = 0. We will denote by z the
index of e in P[`], i.e., pz = e = 0. For i ∈ I ′S, let ri denote the value

ri :=
m̂(a) ⊕ m̂(b)

pi
, (7.14)

where the division occurs in GF (2n) (recall that i ∈ I ′S, and hence pi 6= 0). We observe
that if R is sampled to equal ri, we obtain

m̂(a) ⊕ m̂(b) = R · pi = R · (pz ⊕ pi) , (7.15)

and hence

m̂(a) ⊕ pz ·R = m̂(b) ⊕ pi ·R , (7.16)

which is equivalent to x
(a)
z = x

(b)
i .

Moreover, we claim that if R = ri, we obtain a complete cross-cancellation for Ma and
Mb. To observe this, first note that the equation (7.16) also trivially implies x

(a)
i = x

(b)
z .

Additionally, recall that we work in a field of characteristic 2, and hence the set {0 = pz, pi}
is a subgroup of S. Consequently, it induces a partition of S into `S/2 cosets of the form
{pj, pj ⊕ pi}, for j ∈ IS. For a fixed j, let k ∈ IS be an index, such that pk = pi ⊕ pj
(there is a unique such index, since S is a group). For each coset {pj, pk}, we then obtain

equalities x
(a)
j = x

(b)
k and x

(a)
k = x

(b)
j , since (7.15) also implies

m̂(a) ⊕ m̂(b) = R · pi = R · (pj ⊕ pi ⊕ pj) = R · (pj ⊕ pk) .

CHAPTER 7. PAPER 2 79

This is true for any j ∈ IS (hence, for all the `S/2 cosets), implying a cross-cancellation.

Finally, note that for any i 6= j, we have ri 6= rj. This follows from equation (7.14),
and the fact that S is a group. Hence, whenever R is sampled to take any of the `S − 1
distinct values {ri : i ∈ I ′S}, the event crCan(Ma,Mb) occurs, which concludes the proof
for the case where S is a group.

Now assume that the set S is a proper coset of some subgroup H in a group G ⊆
GF (2n). Observe that S = e⊕H, hence we can rewrite any element p ∈ S as p = e⊕ h
for some h ∈ H and vice versa, h = e ⊕ p. For the sake of argument, imagine that the
values pi ∈ S (note S ⊆ P[`] = (p1, . . . , p`)) on all positions in IS would be replaced by
hi := pi ⊕ g ∈ H instead; i.e., we would replace S by H in P[`] (recall that |S| = |H|).
Then the previous analysis (for S being a subgroup) would apply, since H is a group.
Now, if a cross-cancellation occurs in this modified setting with S replaced by H in P[`],
then it also occurs before the replacement, as we have

m̂(a) ⊕ pi ·R = m̂(b) ⊕ pj ·R⇔ m̂(a) ⊕ (pi ⊕ e) ·R = m̂(b) ⊕ (pj ⊕ e) ·R
⇔ m̂(a) ⊕ hi ·R = m̂(b) ⊕ hj ·R .

Hence, all the cancellations occur as before, even if we replace H by S in P[`], and the
rest of the analysis remains the same.

The above lemma shows that for each Ma,Mb there are at least `S − 1 “good” values
R can take that would cause a cross-cancellation for Ma and Mb. Interestingly, this holds
even if Ma and Mb are constructed from arbitrary distinct fixed values m̂(a) and m̂(b).

Let us refer to these potential values of R as (a, b)-good, and let Ra,b denote the set of
all (a, b)-good values, formally

Ra,b = {r ∈ {0, 1}n : (R = r)⇒ crCan(Ma,Mb)} .

Let R =
⋃
a6=b∈[q] Ra,b denote the set of all good values.

We now need to show that when we look at all
(
q
2

)
pairs of A’s queries, most of these

good values for R will not overlap, giving us |R| = Ω(`Sq
2) in total. To this end, we

leverage the rejection sampling that A used to choose the building blocks m̂(a).

Lemma 18. Assuming `Sq
2 ≤ 2n−1, we have

|R| ≥ (`S − 1)(q − 1)2

4
.

Proof. (of Lemma 18) For a ∈ [q], let Va denote the set of fresh values that are added

to the set Ua−1 in the a-th iteration of step 10 of the algorithm A
O(·)
`,q,n to form the set Ua,

formally Va := Ua \ Ua−1. By the definition of Ua on line 10, and the fact that we only
count fresh values, we have

Va =

{
m̂(a) ⊕ m̂(b)

e⊕ pi
: b ∈ [a− 1], i ∈ I ′S

}
\ Ua−1 .

80 CHAPTER 7. PAPER 2

The size of the set above before subtracting Ua−1 is (a− 1)(`S − 1), and by the choice of
m̂(a) on lines 7–9, we know that the subtraction removes at most 2(a− 1)3(`S − 1)2/2n

elements. Hence, we have

|Va| ≥ (a− 1)(`S − 1)− 2(a− 1)3(`S − 1)2

2n

≥ (a− 1)(`S − 1)

(
1− 2(a− 1)2(`S − 1)

2n

)
≥ (a− 1)(`S − 1)

2
,

where the last inequality follows, since a2`S ≤ q2`S ≤ 2n−1. Clearly, Uq =
⋃q
a=1 Va, and

by construction the sets Va are disjoint. Hence, we obtain

|Uq| =
q∑

a=1

|Va| ≥
q∑

a=1

(a− 1)(`S − 1)

2
≥ (`S − 1)(q − 1)2

4
.

Finally, by observations in the proof of Lemma 17, we have Uq ⊆ R. Therefore, we can

also conclude that |R| ≥ (`S−1)(q−1)2

4
.

To conclude the proof of Theorem 7, note that when O = PMAC, and if the randomly
sampled R takes any value from R, A observes a tag collision and outputs 1. According
to Lemma 18, this happens with probability at least (`S − 1)(q − 1)2/2n+2. On the other
hand, if O is a random function, A observes such a collision (and hence outputs 1) with
probability at most q2/2n.

Consider the Gray code used in the original PMAC construction. This code does not
include the zero element, hence the progression P = (p1, . . . , p2n−1) in this case does not
contain any additive groups. However, it does contain some proper cosets. To see this,
let Gi denote the additive subgroup of GF (2n) of size 2i containing elements of the form
0n−iw for w ∈ {0, 1}i. Then for any ` ≥ 2k − 1 we get that P[`] contains the only proper
coset of Gk−1 in Gk, which is of size 2k−1. This gives us the following corollary.

Corollary 1. Consider the setting from Theorem 7, and let Tn be the mask distribution

defined as τi = γni · R for a random R
$← {0, 1}n, and γni being the i-th codeword in the

canonical Gray code. Then, we have

Advprf
PMACΠ,Π′,Tn

(A`,q,n) = Ω(`q2/2n) .

81

Bibliography

[1] The keccak sponge function family. Accessed January, 10th, 2017; http://keccak.
noekeon.org/.

[2] Noga Alon, Oded Goldreich, Johan H̊astad, and René Peralta. Simple construction of
almost k-wise independent random variables. Random Struct. Algorithms, 3(3):289–
304, 1992.

[3] Joël Alwen, Peter Gaži, Chethan Kamath, Karen Klein, Georg Osang, Krzysztof
Pietrzak, Leonid Reyzin, Michal Rolinek, and Michal Rybár. On the memory-
hardness of data-independent password-hashing functions. Cryptology ePrint
Archive, Report 2016/783, 2016. http://eprint.iacr.org/2016/783.

[4] Jee Hea An and Mihir Bellare. Constructing VIL-MACs from FIL-MACs: Mes-
sage authentication under weakened assumptions. In Michael J. Wiener, editor,
CRYPTO’99, volume 1666 of LNCS, pages 252–269. Springer, Heidelberg, August
1999.

[5] Mihir Bellare. New proofs for NMAC and HMAC: Security without collision-
resistance. In Cynthia Dwork, editor, CRYPTO 2006, volume 4117 of LNCS, pages
602–619. Springer, Heidelberg, August 2006.

[6] Mihir Bellare, Daniel J. Bernstein, and Stefano Tessaro. Hash-function based PRFs:
AMAC and its multi-user security. LNCS, pages 566–595. Springer, Heidelberg, 2016.

[7] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying hash functions for message
authentication. In Neal Koblitz, editor, CRYPTO’96, volume 1109 of LNCS, pages
1–15. Springer, Heidelberg, August 1996.

[8] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Pseudorandom functions revisited:
The cascade construction and its concrete security. In 37th FOCS, pages 514–523.
IEEE Computer Society Press, October 1996.

[9] Mihir Bellare, Joe Kilian, and Phillip Rogaway. The security of the cipher block
chaining message authentication code. Journal of Computer and System Sciences,
61(3):362–399, 2000.

[10] Mihir Bellare and Anna Lysyanskaya. Symmetric and dual PRFs from standard
assumptions: A generic validation of an HMAC assumption. Cryptology ePrint
Archive, Report 2015/1198, 2015. http://eprint.iacr.org/2015/1198.

http://keccak.noekeon.org/
http://keccak.noekeon.org/
http://eprint.iacr.org/2016/783
http://eprint.iacr.org/2015/1198

82 BIBLIOGRAPHY

[11] Mihir Bellare, Krzysztof Pietrzak, and Phillip Rogaway. Improved security analyses
for CBC MACs. In Victor Shoup, editor, CRYPTO 2005, volume 3621 of LNCS,
pages 527–545. Springer, Heidelberg, August 2005.

[12] Mihir Bellare and Phillip Rogaway. The security of triple encryption and a framework
for code-based game-playing proofs. In Serge Vaudenay, editor, EUROCRYPT 2006,
volume 4004 of LNCS, pages 409–426. Springer, Heidelberg, May / June 2006.

[13] John Black, Shai Halevi, Hugo Krawczyk, Ted Krovetz, and Phillip Rogaway. UMAC:
Fast and secure message authentication. In Michael J. Wiener, editor, CRYPTO’99,
volume 1666 of LNCS, pages 216–233. Springer, Heidelberg, August 1999.

[14] John Black and Phillip Rogaway. A block-cipher mode of operation for parallelizable
message authentication. In Lars R. Knudsen, editor, EUROCRYPT 2002, volume
2332 of LNCS, pages 384–397. Springer, Heidelberg, April / May 2002.

[15] A. Bogdanov, L.R. Knudsen, G. Leander, C. Paar, A. Poschmann, M.J.B. Robshaw,
Y. Seurin, and C. Vikkelsoe. Present: An ultra-lightweight block cipher. In Pascal
Paillier and Ingrid Verbauwhede, editors, Cryptographic Hardware and Embedded
Systems - CHES 2007, volume 4727 of Lecture Notes in Computer Science, pages
450–466. Springer Berlin Heidelberg, 2007.

[16] Chongwon Cho, Chen-Kuei Lee, and Rafail Ostrovsky. Equivalence of uniform key
agreement and composition insecurity. In Tal Rabin, editor, CRYPTO 2010, volume
6223 of LNCS, pages 447–464. Springer, Heidelberg, August 2010.

[17] Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Malinaud, and Prashant Puniya.
Merkle-Damg̊ard revisited: How to construct a hash function. In Victor Shoup,
editor, CRYPTO 2005, volume 3621 of LNCS, pages 430–448. Springer, Heidelberg,
August 2005.

[18] Anindya De, Luca Trevisan, and Madhur Tulsiani. Time space tradeoffs for attacks
against one-way functions and PRGs. In Tal Rabin, editor, CRYPTO 2010, volume
6223 of LNCS, pages 649–665. Springer, Heidelberg, August 2010.

[19] Oxford Living Dictionaries. Cryptography. Accessed January, 17th, 2017; https:
//en.oxforddictionaries.com/definition/cryptography.

[20] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE
Transactions on Information Theory, 22(6):644–654, 1976.

[21] Yevgeniy Dodis, Eike Kiltz, Krzysztof Pietrzak, and Daniel Wichs. Message au-
thentication, revisited. In David Pointcheval and Thomas Johansson, editors, EU-
ROCRYPT 2012, volume 7237 of LNCS, pages 355–374. Springer, Heidelberg, April
2012.

[22] Yevgeniy Dodis, Thomas Ristenpart, John P. Steinberger, and Stefano Tessaro. To
hash or not to hash again? (In)differentiability results for h2 and HMAC. In Reihaneh
Safavi-Naini and Ran Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages
348–366. Springer, Heidelberg, August 2012.

[23] Niels Ferguson. Collision attacks on ocb. Preprint, February, 2002.

https://en.oxforddictionaries.com/definition/cryptography
https://en.oxforddictionaries.com/definition/cryptography

BIBLIOGRAPHY 83

[24] Peter Gaži, Krzysztof Pietrzak, and Michal Rybár. The exact PRF-security of NMAC
and HMAC. In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014, Part
I, volume 8616 of LNCS, pages 113–130. Springer, Heidelberg, August 2014.

[25] Peter Gazi, Krzysztof Pietrzak, and Stefano Tessaro. Generic security of NMAC and
HMAC with input whitening. In Tetsu Iwata and Jung Hee Cheon, editors, ASI-
ACRYPT 2015, Part II, volume 9453 of LNCS, pages 85–109. Springer, Heidelberg,
November / December 2015.

[26] Peter Gaži, Krzysztof Pietrzak, and Michal Rybár. The exact security of pmac. IACR
Transactions on Symmetric Cryptology, 2016(2):145–161, 2017.

[27] Oded Goldreich. Foundations of cryptography. Cambridge University Press, Cam-
bridge, UK New York, 2006.

[28] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random
functions. Journal of the ACM (JACM), 33(4):792–807, 1986.

[29] G. H. Hardy and Edward M. Wright. An Introduction to the Theory of Numbers
(sixth edition). Oxford University Press, USA, 2008.

[30] Martin E. Hellman. A cryptanalytic time-memory trade-off. IEEE Transactions on
Information Theory, 26(4):401–406, 1980.

[31] Russell Impagliazzo and Steven Rudich. Limits on the provable consequences of one-
way permutations. In Shafi Goldwasser, editor, CRYPTO’88, volume 403 of LNCS,
pages 8–26. Springer, Heidelberg, August 1990.

[32] Dimitar Jetchev, Onur Özen, and Martijn Stam. Understanding adaptivity: Random
systems revisited. In Xiaoyun Wang and Kazue Sako, editors, Advances in Cryptology
- ASIACRYPT 2012, volume 7658, pages 313–330, 2012.

[33] C. R. Jordan. Groups. Newnes, Oxford, 1994.

[34] D. Kahn. The Codebreakers: The Comprehensive History of Secret Communication
from Ancient Times to the Internet. Scribner, 1996.

[35] J. Katz and Y. Lindell. Introduction to modern cryptography, 2nd ed. CRC
Press/Taylor & Francis, Boca Raton, 2015.

[36] Eike Kiltz, Krzysztof Pietrzak, David Cash, Abhishek Jain, and Daniele Venturi.
Efficient authentication from hard learning problems. In Kenneth G. Paterson, editor,
EUROCRYPT 2011, volume 6632 of LNCS, pages 7–26. Springer, Heidelberg, May
2011.

[37] Jongsung Kim, Alex Biryukov, Bart Preneel, and Seokhie Hong. On the Security of
HMAC and NMAC Based on HAVAL, MD4, MD5, SHA-0 and SHA-1. In Roberto
Prisco and Moti Yung, editors, Security and Cryptography for Networks, volume 4116,
pages 242–256, 2006.

[38] Neal Koblitz and Alfred Menezes. Another look at HMAC. Cryptology ePrint
Archive, Report 2012/074, 2012.

84 BIBLIOGRAPHY

[39] Hugo Krawczyk, Mihir Bellare, and Ran Canetti. HMAC: Keyed-hashing for message
authentication. IETF Internet Request for Comments 2104, February 1997.

[40] Gaëtan Leurent, Thomas Peyrin, and Lei Wang. New Generic Attacks against Hash-
Based MACs. In Kazue Sako and Palash Sarkar, editors, Advances in Cryptology -
ASIACRYPT 2013, volume 8270, pages 1–20. 2013.

[41] Michael Luby and Charles Rackoff. How to construct pseudorandom permutations
from pseudorandom functions. SIAM Journal on Computing, 17(2), 1988.

[42] Atul Luykx, Bart Preneel, Alan Szepieniec, and Kan Yasuda. On the influence
of message length in PMAC’s security bounds. LNCS, pages 596–621. Springer,
Heidelberg, 2016.

[43] Atul Luykx, Bart Preneel, Elmar Tischhauser, and Kan Yasuda. A MAC mode for
lightweight block ciphers. In FSE 2016, LNCS, pages 43–59. Springer, Heidelberg,
2016.

[44] Vadim Lyubashevsky and Daniel Masny. Man-in-the-middle secure authentication
schemes from LPN and weak PRFs. In Ran Canetti and Juan A. Garay, editors,
CRYPTO 2013, Part II, volume 8043 of LNCS, pages 308–325. Springer, Heidelberg,
August 2013.

[45] Ueli Maurer. Conditional equivalence of random systems and indistinguishability
proofs. In 2013 IEEE International Symposium on Information Theory Proceedings
(ISIT), pages 3150–3154, July 2013.

[46] Ueli M. Maurer. Indistinguishability of random systems. In Lars R. Knudsen, editor,
EUROCRYPT 2002, volume 2332 of LNCS, pages 110–132. Springer, Heidelberg,
April / May 2002.

[47] Ueli M. Maurer, Renato Renner, and Clemens Holenstein. Indifferentiability, impos-
sibility results on reductions, and applications to the random oracle methodology.
In Moni Naor, editor, TCC 2004, volume 2951 of LNCS, pages 21–39. Springer,
Heidelberg, February 2004.

[48] Ueli M. Maurer and Stefano Tessaro. Computational indistinguishability amplifi-
cation: Tight product theorems for system composition. In Shai Halevi, editor,
CRYPTO 2009, volume 5677 of LNCS, pages 355–373. Springer, Heidelberg, August
2009.

[49] Kazuhiko Minematsu and Toshiyasu Matsushima. New bounds for PMAC, TMAC,
and XCBC. In Alex Biryukov, editor, FSE 2007, volume 4593 of LNCS, pages 434–
451. Springer, Heidelberg, March 2007.

[50] Yusuke Naito, Yu Sasaki, Lei Wang, and Kan Yasuda. Generic State-Recovery and
Forgery Attacks on ChopMD-MAC and on NMAC/HMAC. In Kazuo Sakiyama and
Masayuki Terada, editors, Advances in Information and Computer Security, volume
8231, pages 83–98. 2013.

[51] Mridul Nandi. A unified method for improving PRF bounds for a class of blockcipher
based MACs. In Seokhie Hong and Tetsu Iwata, editors, FSE 2010, volume 6147 of
LNCS, pages 212–229. Springer, Heidelberg, February 2010.

BIBLIOGRAPHY 85

[52] Mridul Nandi and Avradip Mandal. Improved security analysis of pmac. Journal of
Mathematical Cryptology, 2(2):149–162, 2008.

[53] Thomas Peyrin, Yu Sasaki, and Lei Wang. Generic Related-Key Attacks for HMAC.
In Xiaoyun Wang and Kazue Sako, editors, Advances in Cryptology - ASIACRYPT
2012, volume 7658, pages 580–597. 2012.

[54] Thomas Peyrin and Lei Wang. Generic Universal Forgery Attack on Iterative Hash-
Based MACs. In Phong Q. Nguyen and Elisabeth Oswald, editors, Advances in
Cryptology – EUROCRYPT 2014, volume 8441, pages 147–164. 2014.

[55] Krzysztof Pietrzak. Composition does not imply adaptive security. In Victor Shoup,
editor, CRYPTO 2005, volume 3621 of LNCS, pages 55–65. Springer, Heidelberg,
August 2005.

[56] Krzysztof Pietrzak. Composition implies adaptive security in minicrypt. In Serge
Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pages 328–338.
Springer, Heidelberg, May / June 2006.

[57] FIPS Pub. 198, the keyed-hash message authentication code (hmac). Federal Infor-
mation Processing Standards Publication, 198, 2002.

[58] Phillip Rogaway. Efficient instantiations of tweakable blockciphers and refinements
to modes OCB and PMAC. In Pil Joong Lee, editor, ASIACRYPT 2004, volume
3329 of LNCS, pages 16–31. Springer, Heidelberg, December 2004.

[59] Phillip Rogaway, Mihir Bellare, John Black, and Ted Krovetz. Ocb: A block-cipher
mode of operation for efficient authenticated encryption. In Proceedings of the 8th
ACM conference on Computer and Communications Security, pages 196–205. ACM,
2001.

[60] Stefano Tessaro. Security amplification for the cascade of arbitrarily weak PRPs:
Tight bounds via the interactive hardcore lemma. In Yuval Ishai, editor, TCC 2011,
volume 6597 of LNCS, pages 37–54. Springer, Heidelberg, March 2011.

[61] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding collisions in the full SHA-
1. In Victor Shoup, editor, CRYPTO 2005, volume 3621 of LNCS, pages 17–36.
Springer, Heidelberg, August 2005.

[62] Xiaoyun Wang and Hongbo Yu. How to break MD5 and other hash functions. In
Ronald Cramer, editor, EUROCRYPT 2005, volume 3494 of LNCS, pages 19–35.
Springer, Heidelberg, May 2005.

[63] Mark N. Wegman and Larry Carter. New hash functions and their use in authen-
tication and set equality. Journal of Computer and System Sciences, 22:265–279,
1981.

[64] Kan Yasuda. “sandwich” is indeed secure: How to authenticate a message with just
one hashing. In Josef Pieprzyk, Hossein Ghodosi, and Ed Dawson, editors, ACISP
07, volume 4586 of LNCS, pages 355–369. Springer, Heidelberg, July 2007.

86 BIBLIOGRAPHY

[65] Kan Yasuda. A new variant of PMAC: Beyond the birthday bound. In Phillip
Rogaway, editor, CRYPTO 2011, volume 6841 of LNCS, pages 596–609. Springer,
Heidelberg, August 2011.

[66] Kan Yasuda. PMAC with parity: Minimizing the query-length influence. In Orr
Dunkelman, editor, CT-RSA 2012, volume 7178 of LNCS, pages 203–214. Springer,
Heidelberg, February / March 2012.

[67] Fei Yu, Michal Rybar, Caroline Uhler, and Stephen E Fienberg. Differentially-private
logistic regression for detecting multiple-snp association in gwas databases. In In-
ternational Conference on Privacy in Statistical Databases, pages 170–184. Springer
International Publishing, 2014.

[68] Yusi Zhang. Using an error-correction code for fast, beyond-birthday-bound au-
thentication. In Kaisa Nyberg, editor, CT-RSA 2015, volume 9048 of LNCS, pages
291–307. Springer, Heidelberg, April 2015.

	Abstract
	About the Author
	List of Publications
	List of Abbreviations
	Introduction
	Cryptography of today
	Future of Cryptography
	Authentication
	Exact Bounds
	Outline and contributions of this thesis

	Preliminaries
	Message Authentication Codes
	HMAC
	CBC-MAC
	PMAC
	Others Macs
	Authenticated Encryption

	Exact Security of HMAC
	New proof of security
	Tight security bound via a new attack
	HMAC extension and its security
	Further research

	Exact Security of PMAC
	sPMAC
	New attack on PMAC
	PMAC with k-wise independent masks
	Further research

	Paper 1
	Introduction
	Preliminaries
	PRF-Security of NMAC
	PRF-Security of the NI Construction
	Appendix

	Paper 2
	Introduction
	Preliminaries
	PMAC and Simplified PMAC
	Independent Random Masks
	4-wise Independent Masks
	2-wise Independent Masks
	1-wise Independent Masks: PMAC with a Gray Code

	Bibliography

