Zero Field Splitting of Heavy-Hole States in Quantum Dots

Georgios Katsaros,* Josip Kukučka, Lada Vukušić, Hannes Watzinger, Fei Gao, Ting Wang, Jian-Jun Zhang, and Karsten Held

ABSTRACT: Using inelastic cotunneling spectroscopy we observe a zero field splitting within the spin triplet manifold of Ge hut wire quantum dots. The states with spin ±1 in the confinement direction are energetically favored by up to 55 μeV compared to the spin 0 triplet state because of the strong spin–orbit coupling. The reported effect should be observable in a broad class of strongly confined hole quantum-dot systems and might need to be considered when operating hole spin qubits.

KEYWORDS: quantum dots, holes, spin–orbit, zero field splitting

Hole states in semiconductor quantum dots have gained increasing interest in the past few years as promising candidates for spin qubits due to their strong spin orbit coupling (SOC).

Thanks to the SOC one now has a full-fledged electrical control of the hole spins, either via the electric-dipole spin resonance, g-tensor modulation, or both. Further, Rabi frequencies exceed 100 MHz and reflectometry measurements reveal spin relaxation times of 1 ms, which underlies the big potential of hole spins as viable qubits.

Despite the fact that a hole is simply a missing electron, their spins behave strikingly different than their electron counterparts. While the electron spin does not correlate with the direction of motion in typical semiconductors given their weak SOC, the hole pseudospin points in the same direction as the momentum already for bulk materials. This can be described by the Luttinger–Kohn Hamiltonian for holes near the Γ point of the valence band, imposing a coupling between the momentum and the hole pseudospin.

By introducing a strong confinement potential creating a quantum well, the heavy-hole (HH) light-hole (LH) degeneracy is lifted and the pseudospin changes its direction. For the HH states, which become energetically favorable, the pseudospin now points perpendicular to the momentum, i.e., in the direction of strong confinement. This implies that HHs confined in quasi two-dimensional quantum dots (QDs), i.e., artificial atoms with strong confinement in one dimension, show anisotropy and could thus manifest similar effects as atoms show in the presence of a magneto-crystalline anisotropy, i.e., a magnetic anisotropy leading to a zero field splitting (ZFS). However, to the best of our knowledge hitherto, no ZFS has been observed for quantum dots.

For adatoms, on the other hand, ZFS studies have been at the focus of intense research as the magnetic anisotropy provides directionality and stability to the spin, which is the key for realizing nanoscale magnets. Scanning tunneling microscopy measurements have been used to reveal the magnetic anisotropy for several adatoms on surfaces and to understand how the local environment can influence it.

Here, we use inelastic cotunneling spectroscopy (CT) to extract information about confined HH states. Figure 2(d) visualizes the inelastic CT, a higher order process in the tunneling rate where both an electron is removed from the QD and added to it in the same CT process. It is inelastic if the energy of the QD changes, which is possible if the applied voltage (red double arrow in Figure 2(d)) matches the level or Zeeman splitting in the QD (green double arrow). A hole–hole interaction strength of 275 μeV, similar to that of GaAs, is reported.

We have furthermore investigated the spin anisotropy of HH states confined in quasi two-dimensional QDs. We measure a...
ZFS of up to 55 μeV for the excited triplet states confined in a QD with an even hole occupation. The evolution of the triplet states both for perpendicular and parallel magnetic fields is in very good agreement with the anisotropic Hamiltonian for the spin-triplet.

The QDs used for this study are fabricated in Ge hut wires (HWs) grown by molecular beam epitaxy. These HWs are site-controlled as they are grown on Si wafers with predefined trenches [Figure 2(a, b)]. The detailed description of the growth conditions can be found in ref 23. They have a height of about 3.8 nm and a width of approximately 38 nm. Due to the strong confinement and compressive strain, the degeneracy between the HH and LH is lifted, leading to confined HH states.23,26 The measured devices have been fabricated by electron beam lithography, metal, and atomic layer deposition. Pt has been chosen as a source and drain material due to its high work function; 25 nm of Pt is deposited on the hut wires after a 10 s BHF etching step in order to remove the native silicon oxide. The spacing between the two Pt leads is about 50 nm. The gate electrode consists of 3 nm Ti plus 25 nm Pt; 80 cycles of hafnium oxide deposited at 150 °C by means of atomic layer deposition serve as the gate oxide. The measurements have been performed in a 3He/4He refrigerator with an effective electron temperature of 100 mK. The electronic setup is displayed in Figure 2(e). Let us also note that the DC lines are filtered with pi filters at room temperature, LC filters at the mixing chamber stage and RC filters on the printed circuit board on which the sample is mounted. Two nominally identical devices from the fabrication point of view have been investigated in this study.

At low temperatures, transport through QDs is dominated by Coulomb blockade (CB), which leads to single electron transport. The stability diagram of a QD device with the characteristic Coulomb diamonds can be seen in Figure 2(e). However, due to second-order elastic CT processes the conductance within the Coulomb diamonds does not drop to zero.27,28 At zero magnetic field, once the energy due to the bias voltage across the QD exceeds the orbital level separation, \(E_{\text{ORB}}\), the inelastic CT process leaves the QD in the excited orbital state \(E > 0\) denotes the elementary charge). The onset of inelastic CT is observed as a step in the differential conductance, \(dI/dV_{\text{SD}}\), at \(V_{\text{SD}} = \pm E_{\text{ORB}}\), indicated by black and white arrows in Figure 2(e).

Inelastic CT is an excellent tool for magnetotransport spectroscopy measurements as the step width is not lifetime limited but depends only on the effective temperature.28 We first use it to extract information related to the strength of hole–hole interactions within a QD. When a QD confines an odd number of holes, the ground state is a (doubly degenerate) spin-doublet. On the other hand, with an even number of holes the ground state of the QD is a singlet state (assuming that the exchange coupling is weaker than the level splitting). Here, the two holes occupy the same (lowest in energy) orbital state with their pseudospins being antiparallel. The first excited states are the triplet states for which one hole occupies a higher orbital. This not only costs a higher energy (assuming that the exchange coupling is weaker than the level splitting). Here, the two holes occupy the same (lowest in energy) orbital state with their pseudospins being antiparallel. The first excited states are the triplet states for which one hole occupies a higher orbital. This not only costs a higher energy (assuming that the exchange coupling is weaker than the level splitting). Here, the two holes occupy the same (lowest in energy) orbital state with their pseudospins being antiparallel.
In order to conclude about the even/odd occupancy of the QD we investigate the evolution of the CT steps. For an odd number of holes, a magnetic field B lifts the spin degeneracy of the doublet state by the Zeeman energy $E_g = gh \mu_B B$, where g and μ_B are the hole g-factor and Bohr magneton, respectively. Once the energy due to the bias voltage across the QD exceeds the Zeeman energy, $eV_{SD} > E_g$, the inelastic CT processes can flip the QD spin, leaving the QD in the excited spin state. This is visible as a step in Figure 3(a). For the zero magnetic field

\begin{equation}
H = -J/2S S + g_\perp \mu_B S S + g_\parallel \mu_B S B - D S^2
\end{equation}

Here, S_1 and S_2 are the projections in the \perp- and \parallel-direction of Figure 2(b), and the terms of the Hamiltonian are from left to right as follows. The magnetic anisotropy term is DS^2, which makes it preferably by an energy D to align the triplet spin-1 in the \perp-direction with strongest confinement. Its origin will be discussed in the next paragraph. The next two terms describe the Zeeman term with the magnetic field in the two directions, B_\perp and B_\parallel, coupling through different (anisotropic) g_\perp and g_\parallel-factors. Finally, we also include the exchange term J which differentiates singlet and triplet but is not relevant in the following as we concentrate on the magnetic field dependence of the triplet states ($S = 1$ fixed) only.

From the effective Hamiltonian (1) for the triplet states we cannot distinguish the origin of the magnetic anisotropy. It might be due to (i) shape anisotropy caused by dipole interactions, (ii) single ion (single quantum dot) anisotropy caused by SOC-induced transitions to excited (virtual) states, or (iii) a SOC-induced anisotropie exchange J_{xx}. The last microscopic origin (iii) is certainly the most natural if we think of the triplet spin-1 state as being made up out of two HH spin $\pm 3/2$ states, which we can describe as two coupled pseudospin-1/2, S_1 and S_2. Given that these pseudospins actually describe HH spin $\pm 3/2$ states (or the strong SOC coupling from a general perspective), the coupling of these pseudospins has to be anisotropic, i.e., $H = -S_1 S_2 - J S_1 S_2$. This reduces to eq 1 with $S = S_1 + S_2$ and $D = J_{xx}/2$ in the triplet subspace, up to a constant. While (i) is unlikely as the dipole–dipole interaction is weak so that many spins have to be involved, we cannot distinguish between (ii) and (iii). These are different mechanisms, resulting both in the same Hamiltonian (1) and explaining both the ZFS.

The eigenstates of Hamiltonian (1) can be easily calculated and are shown in Figure 4 for a magnetic field applied once in the \perp- and once in the \parallel-direction. For $B = 0$ the two states with $S_1 = \pm 1$ have a by $-D$ smaller energy than the third triplet state with $S_1 = 0$. Hence, the lowest triplet state is doubly degenerate and the remaining one singly degenerate in Figure 4. Applying now a magnetic field in the anisotropy direction, B_\perp Zeeman splits the doublet and leaves the singly degenerate $S_1 = 0$ state untouched (Figure 4 (a)), with $E_{S_1} = E_{S_2} = 2g_\perp \mu_B B$.

The situation with the magnetic field B_\parallel orthogonal to the anisotropy direction is somewhat more complicated. Here, for small B_\parallel the eigenstates are still predominately $S_1 = \pm 1$, 0 with only a small, perturbative readmixture $\sim g_\parallel \mu_B B_\parallel / D$ as the magnetic field tries to align the spins in the \parallel-direction. The last readmixture of the eigenstates leads to a quadratic change of the energy eigenvalues in Figure 4 (b) for $g_\parallel \mu_B B_\parallel \ll D$. For large $g_\parallel \mu_B B_\parallel \gg D$, the usual Zeeman splitting of the triplet states into $S_1 = \pm 1$, 0 is recovered as the HH pseudo spins now reorient along B_\parallel. This is in very good agreement with the data shown in Figure 3(b), even though we have not adjusted the parameters but extracted these experimentally.
from Figure 3(b), and similar line traces at other B_{\parallel}’s. An even better agreement is obtained when freely adjusting D and g_0 (not shown).

These considerations clearly show that there is a ZFS and that the magnetic field dependence shows a quite different behavior for B_{\parallel} and B_{\perp}. If we have an odd number of electrons, the doublet could also be described with Hamiltonian (1). But in this case, both $S_1 = \pm 1/2$ states have the same anisotropy energy. Hence, there is a Zeeman splitting but no ZFS as observed in Figure 3(a).

In order to further elucidate this behavior of the triplet state, we study in Figures 4 (c) and (d) the dependence on a magnetic field B_{\parallel}. Using a second derivative to sharpen the features, it can be seen even more clearly that the HH triplet states are not degenerate at $B = 0$. Even more, the magnetic field evolution perfectly fits with that of Figure 4(a), which is also indicated as dashed (blue) lines. Figure 4 (e, f) shows the same split degeneracy also for a second device. In this case orbital effects also lead to a slight bending of the states for B_{\parallel}, and the ZFS is extracted to be $30 \mu eV$. Except for this extra bending Figure 4 (e) resembles Figure 4(a) and Figure 4 (f) resembles Figure 4(b) for the two different magnetic field directions. From the observed splitting it is obvious that the ZFS needs to be taken into account when considering the energy band diagram of double QDs, for which it has been assumed so far that triplet HH states are all degenerate at $B = 0$ T.

In conclusion, we have demonstrated the ZFS for heavy-hole states confined in a two-dimensional quantum dot. Specifically, the triplet states are split into a double and a single degenerate level. This is not only of fundamental interest but also needs to be taken into account, for better or for worse, when operating heavy-hole qubits. As the studied hut wires are elongated we expect that our observation should be valid also for a double quantum dot potential. That is, also triplet (1,1) states, important for singlet–triplet qubits, should show a ZFS. In addition, it can be exploited for rotating and preparing a well-defined quantum state using Rabi oscillations at the ZFS (microwave) frequency, similar as for nitrogen vacancy centers in diamond.36-37 A small magnetic field can further help addressing the spin ±1 states individually. If we consider the anisotropic exchange J_\perp as the origin of the ZFS, it can be employed for qubit operations35 but may also be tuned (more) isotropically using proper pulse shaping.34,38

AUTHOR INFORMATION

Corresponding Author

Georgios Katsaros — Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria; orcid.org/0000-0001-8342-202X; Phone: +43 2243 9000 2023; Email: georgios.katsaros@ist.ac.at

Authors

Josip Kukučka — Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria

Lada Vukušić — Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria; orcid.org/0000-0003-2424-8636

Hannes Watzinger — Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria

Fei Gao — Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190 Beijing, China

Ting Wang — Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190 Beijing, China; orcid.org/0000-0002-4619-9575

Jian-Jun Zhang — Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190 Beijing, China; CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, 100049 Beijing, China
Complete contact information is available at: https://pubs.acs.org/10.1021/acs.nanolett.0c01466

ACKNOWLEDGMENTS

The authors declare no competing financial interest.

ADDITIONAL NOTE

“That is, the magnetic flux alters the wave function (and hence energies) of the states in the quantum dot on top of the Zeeman splitting. This can be described, e.g., when calculating the Fock–Darwin states. For illustrations as well as for comparisons of this bending with experiment, we refer the reader to the review in ref 31.

REFERENCES

