
Reconfiguration problems
by

Zuzana Masárová

June, 2020

A thesis presented to the
Graduate School

of the
Institute of Science and Technology Austria, Klosterneuburg, Austria

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

The thesis of Zuzana Masárová, titled Reconfiguration Problems, is approved by:

Supervisor: Uli Wagner, IST Austria, Klosterneuburg, Austria

Signature:

Co-supervisor: Herbert Edelsbrunner, IST Austria, Klosterneuburg, Austria

Signature:

Committee Member: Anna Lubiw, University of Waterloo, Waterloo, Canada

Signature:

Committee Member: Krzysztof Pietrzak, IST Austria, Klosterneuburg, Austria

Signature:

Defense Chair: Edouard Hannezo, IST Austria, Klosterneuburg, Austria

Signature:

signed page is on file

c� by Zuzana Masárová, June, 2020

Some Rights Reserved.

CC BY-SA 4.0 The copyright of this thesis rests with the author. Unless otherwise

indicated, its contents are licensed under a Creative Commons Attribution-ShareAlike

4.0 International. Under this license, you may copy and redistribute the material in

any medium or format for both commercial and non-commercial purposes. You may

also create and distribute modified versions of the work. This on the condition that:

you credit the author and share any derivative works under the same license.

IST Austria Thesis, ISSN: 2663-337X

ISBN: 978-3-99078-005-3

I hereby declare that this thesis is my own work and that it does not contain other peo-

ple’s work without this being so stated; this thesis does not contain my previous work

without this being stated, and the bibliography contains all the literature that I used in

writing the dissertation.

I declare that this is a true copy of my thesis, including any final revisions, as approved

by my thesis committee, and that this thesis has not been submitted for a higher de-

gree to any other university or institution.

I certify that any republication of materials presented in this thesis has been approved

by the relevant publishers and co-authors.

Signature:

Zuzana Masárová

June, 2020

signed page is on file

v

Abstract

This thesis considers two examples of reconfiguration problems: flipping edges in

edge-labelled triangulations of planar point sets and swapping labelled tokens placed

on vertices of a graph. In both cases the studied structures – all the triangulations

of a given point set or all token placements on a given graph – can be thought of as

vertices of the so-called reconfiguration graph, in which two vertices are adjacent if

the corresponding structures differ by a single elementary operation – by a flip of a

diagonal in a triangulation or by a swap of tokens on adjacent vertices, respectively.

We study the reconfiguration of one instance of a structure into another via (shortest)

paths in the reconfiguration graph.

For triangulations of point sets in which each edge has a unique label and a flip

transfers the label from the removed edge to the new edge, we prove a polynomial-time

testable condition, called the Orbit Theorem, that characterizes when two triangula-

tions of the same point set lie in the same connected component of the reconfiguration

graph. The condition was first conjectured by Bose, Lubiw, Pathak and Verdonschot.

We additionally provide a polynomial time algorithm that computes a reconfiguring flip

sequence, if it exists. Our proof of the Orbit Theorem uses topological properties of a

certain high-dimensional cell complex that has the usual reconfiguration graph as its

1-skeleton.

In the context of token swapping on a tree graph, we make partial progress on

the problem of finding shortest reconfiguration sequences. We disprove the so-called

Happy Leaf Conjecture and demonstrate the importance of swapping tokens that are

already placed at the correct vertices. We also prove that a generalization of the prob-

lem to weighted coloured token swapping is NP-hard on trees but solvable in polyno-

mial time on paths and stars.

vi

Acknowledgments

I am grateful to my supervisors for the support I have received throughout my doctoral

studies and especially to Prof Anna Lubiw who, despite being on another continent,

informally co-supervised me through weekly video chat meetings during my entire

degree. Also, the work on the Orbit Theorem (Chapter 2) was initiated during my visit

to University of Waterloo in July 2015 and the work on Token Swapping (Chapter 3)

during a visit in January 2018.

vii

List of Publications

The following publications are included in this thesis:

[i] Anna Lubiw, Zuzana Masárová, and Uli Wagner. A proof of the Orbit Conjecture

for flipping edge-labelled triangulations. Discrete & Computational Geometry,

61(4):880-898, Jun 2019.

[ii] Ahmad Biniaz, Kshitij Jain, Anna Lubiw, Zuzana Masárová, Tillmann Miltzow, De-

bajyoti Mondal, Anurag Murty Naredla, Josef Tkadlec, and Alexi Turcotte. Token

swapping on trees. CoRR, abs/1903.06981, 2019.

Chapter 2 of this thesis is joint work with Anna Lubiw and Uli Wagner. Most of this

work appeared in [i].

The talk entitled ‘A proof of the Orbit Conjecture for flipping edge-labelled trian-

gulations’ at Symposium on Computational Geometry’17 received the Best Student

Presentation Award.

Chapter 3 of this thesis is joint work with Ahmad Biniaz, Kshitij Jain, Anna Lubiw,

Tillmann Miltzow, Debajyoti Mondal, Anurag Murty Naredla, Josef Tkadlec, and Alexi

Turcotte. The results presented in Chapter 3 cover those sections of [ii] in which I,

Zuzana Masárová, was significantly involved. The only exception is Section 3.6 which

is very related, hence I provide a sketch of the result and point the reader to the full

version of the paper.

viii

Table of Contents

Abstract v

Acknowledgments vi

List of Publications vii

List of Tables x

List of Figures xi

1 Introduction to Reconfiguration Problems xiv

1.1 Reconfiguration framework . 4

1.2 Examples of reconfiguration and applications 11

1.3 Reconfiguration of planar graphs . 14

1.4 Reconfiguration of matroid bases . 25

1.5 Reconfiguration of token arrangements 28

2 Triangulation Reconfiguration and a Proof of the Orbit Conjecture for Edge-

Labelled Triangulations 35

2.1 Basic definitions and reconfiguration set-up 36

2.2 Some triangulation properties . 39

2.3 Review of flip graph properties and triangulation reconfiguration 42

2.4 Introduction to edge-labelled triangulations 50

2.5 Basic definitions and motivation for edge-labelling 52

ix

2.6 Orbit Conjecture and related results . 54

2.7 A Proof of the Orbit Theorem: general outline 58

2.8 Proof of the Orbit Theorem . 61

2.9 Proof of the Elementary Swap Theorem 63

2.10 Proofs of Properties of Elementary Swaps 77

2.11 Orbit Theorem for Constrained Triangulations: existence of a flip se-

quence respecting some fixed edges 82

2.12 Shortest flip sequences in constrained versus unconstrained triangula-

tions . 91

3 Token Swapping on Trees 95

3.1 Introduction to token swapping and reconfiguration set-up 96

3.2 Survey of token swapping results . 99

3.3 Our results . 106

3.4 Counterexample to the Happy Leaf Conjecture 108

3.5 Generalized counterexample . 109

3.6 Weighted coloured token swapping is NP-hard 112

3.7 Weighted coloured token swapping on paths and stars 112

4 Conclusions 125

4.1 Conclusions and Open Problems related to Orbit Theorem 125

4.2 Conclusions and open problems related to token swapping on trees . . 127

Bibliography 129

x

List of Tables

1.1 Classes of planar graphs and the corresponding transformation steps

in the reconfiguration graph. The source problem is to compute an in-

stance of a particular planar graph (for example, a triangulation) on a

given set P of n points in the plane. The vertices (feasible configu-

rations) of the reconfiguration graph are then all planar graphs of that

class (for example, all triangulations) on P 15

1.2 Some studied variants of token reconfiguration problems, part I. Here n

is the number of vertices in the input graph G. 29

1.3 Some studied variants of token reconfiguration problems, part II. Here

n is the number of vertices in the input graph G. 30

2.1 Overview of flip graph properties for triangulations of size n. 43

2.2 Comparison of bounds on flip sequence lengths d required to recon-

figure triangulations of different types by unlabelled/labelled and classi-

cal/simultaneous flips. In cases marked with (*) the flip graph may not

be connected; these are the bounds on a connected component. . . . 57

xi

List of Figures

1.1 Reconfiguration framework. 5

1.2 Left: Two projections of a tetrahedron to a plane, viewed from above.

Right: Generalized 2D flips derived from the projections on the left. The

flips can be generalized to higher dimensions and to cubical meshes. . 18

1.3 Examples of two pseudo-flips. The first one results in a deletion of an

edge. In each pseudo-flip, we label vertices a, b, x, y. 20

2.1 Example of a flip graph of point set with size six. 37

2.2 Point set with a disconnected flip graph of labelled triangulations. Colours

of individual diagonals indicate the orbit that they belong to. For exam-

ple, no blue diagonal will ever be able to flip to replace any of the red

diagonals. 54

2.3 Five flips swap the edge labels (a and b) of two diagonals of a convex

pentagon. In the flip graph these five flips form a 5-cycle. 58

2.4 (a) Triangulations that differ in the diagonals of two internally disjoint

quadrilaterals form an elementary 4-cycle in the flip graph. The cycle

does not permute the labels (shown as red and blue). (b) Triangulations

that differ in the diagonals of a convex pentagon form an elementary 5-

cycle in the flip graph. This cycle permutes labels as shown in Figure 2.3. 64

2.5 Examples of 2-cell related walks: in both examples, the blue walk and

the green walk are 2-cell related. 69

2.6 Each row gives an example of 2-cell related walks (blue and green),

where, up to spurs, the blue walk is written as a composition of an ele-

mentary walk (in red) and the green walk. 70

xii

2.7 Summary of the proof of the Orbit Theorem from Sections 2.4 – 2.10. . 81

2.8 Examples of links. The entire simplicial complex consists of all vertices,

edges and yellow triangles. The white triangles are holes. Simplex � is

in orange, in the first two examples � is a vertex, in the last two � is an

edge. The corresponding links lk(�) are in green (the last link is empty). 85

2.9 Two triangulations of a capped channel. Labelling the triangles inside

the channel by ‘0’ or ‘1’ shows that at least 25 flips are necessary to

reconfigure T1 into T2 if the happy edges remain fixed. 93

2.10 Reconfiguring triangulation T1 into T2 is possible in 20 flips if the flip

sequence goes via the canonical triangulation. 93

2.11 Two labelled triangulations of a regular 7-gon with a point in the middle

for which the shortest reconfiguring flip sequence does not fix the happy

label l. A shortest reconfiguration sequence consists of 37 flips. If the

happy edge l must remain fixed, 55 flips are required to reconfigure T1

to T2. 93

3.1 An example of the token swapping problem. Left: a tree of 6 vertices and

an initial placement of tokens (in circles) on the vertices. Blue dashed

arrows indicate where each token should go. Token 4 is home. The cor-

responding permutation is (1 5 3)(2 6)(4). Right: the effect of swapping

tokens 4 and 6. Now token 6 is closer to its destination but token 4 is

further from its destination. One swap sequence that sorts the tokens

to their destinations is (4 6), (6 2), (2 4), (3 4), (3 2), (3 1), (1 5), (5 2), (5

4). This sequence has 9 swaps, but there is a swap sequence of length 7. 97

3.2 Illustration of Operation B and C. The solid lines indicate paths in the

tree and the dotted lines indicate the target vertex of the corresponding

token. 102

xiii

3.3 A counterexample to the Happy Leaf Conjecture where an optimum

swap sequence involves moving the happy token 10. (a) The initial to-

kens (in circles). (b) Three swaps move token 10 to v1. (Dashed arrows

show the upcoming moves.) (c) The result of homing tokens 9 and 8.

(d) The result of homing tokens 9 through 4. Four additional swaps will

sort the tokens. 108

3.4 The swap-saving idea can also be used with blocks of tokens. 110

3.5 A generalized counterexample: X is the block of initially happy tokens.

It is being stored at the beginning of the path, while the swap-saving

idea from Figure 3.4 is used to reverse the yellow and blue tokens along

the path. Eventually X is returned to its original place. Tokens within

each block (apart from X) must be reversed in a standard way. 111

3.6 Illustration for the NP-hardness proof; (a) input graphG for Vertex Cover;

(b) tree T corresponding to G to hang off a long path; (c) initial config-

uration of coloured tokens on T ; (d) tree T 0 (obtained by attaching T to

a long path) with initial configuration of coloured tokens; (g) T 0 with final

configuration of coloured tokens. Note that the green tokens are, in fact,

a collection of |E(G)| different colours. 113

3.7 Left: an input for coloured token swapping on a star. The token at a

vertex is drawn as a disc near the vertex. A token must move to a vertex

of the same colour. Middle: the multi-graph G with edges labelled by

the corresponding vertex of the star. There are 3 loops but one of them

corresponds to the center vertex of the star, so � = 2. There are 3

connected components, but one is trivial, and one contains the edge

corresponding to the center vertex so  = 1. Right: a token-vertex

assignment (shown by the dashed arrows) that minimizes nU + `. One

may also observe that assigning token t10 to the center vertex v10 or

token t7 to vertex v8 are both sub-optimal. 119

xiv

1

1 Introduction to Reconfiguration Problems

Problems of turning one configuration into another using a limited repertoire of steps

have a long history, for example in the study of puzzles and permutation groups [40].

A classic problem is the 15-Puzzle that consists of a 4⇥4 playing board covered by 15

numbered square tiles and one empty square. The goal is to arrange the numbers by

sliding the tiles.

The puzzle can be generalized to an arbitrary graph as the playing board, some

number of tokens placed on its vertices, and a rule determining when a token can

slide to another vertex along a graph edge. Characterizing which token configurations

are reachable from an initial token placement by following the given rule, or in how

many steps they can be reached, are intriguing problems that have been studied by

communities in mathematics, computer science and engineering. Tokens on graphs

can serve as abstract models for various practical problems like robot motion planning

or packet switching.

Another example that demonstrates the importance of local changes is triangula-

tion flipping. In order to construct a triangulation with particular properties, such as one

would need when modelling surfaces, it often seems easier if the algorithm starts from

an arbitrary triangulation and, by a sequence of local changes (called flips) eventually

reaches a required triangulation; rather than to construct the special triangulation right

away.

There are many other examples of similar flavour, sometimes in seemingly unre-

lated settings: recolouring graphs one vertex at a time; changing variable assignments,

one value at a time in satisfiability problems; modifying one spanning tree / matching

/ matroid into another one by local changes; string editing and others; to name a few

examples.

2

Recently, the name reconfiguration has been applied to these problems. Recon-

figuration problems can be formulated in terms of a reconfiguration graph that has a

vertex for each configuration and an edge for each possible reconfiguration step. In

case of the 15-puzzle, the vertices are all possible configurations of the 15 numbered

tokens on the playing board and two configurations are adjacent if one can be obtained

from the other by sliding a single token into a neighbouring empty space.

The general questions that are considered in reconfiguration problems are: can

any configuration be reconfigured to any other (connectivity); what is the worst case

number of steps required (diameter); and what is the complexity of computing the

minimum number of steps required to get from one given configuration to another

given configuration (distance).

This thesis develops results in two of the reconfiguration settings: flipping triangu-

lations of 2-dimensional point sets; and token swapping on trees.

Triangulation flipping. Fix a set P on n points in the plane. A triangulation of P is

a maximal set of pairwise non-crossing line segments, also called edges, whose end

vertices are the points of P . The edges subdivide the convex hull of P into triangular

regions, hence the name. A flip deletes an edge e whose removal leaves a convex

quadrilateral, and replaces e by the opposite diagonal of the quadrilateral. The re-

configuration graph in this setting is known as the flip graph. It is well known that the

flip graph is connected, i.e. any triangulation of a point set can be reconfigured to any

other triangulation by some sequence of flips.

We explore the connectivity question in the setting where each edge of a triangula-

tion has a label, and a flip transfers the label of the removed edge to the new edge. It

is not true that every labelled triangulation of a point set can be reconfigured to every

other labelled triangulation via a sequence of flips, but we characterize when this is

possible. There is an obvious necessary condition: for each label l, if edge e has label

l in the first triangulation and edge f has label l in the second triangulation, then there

must be some sequence of flips that moves label l from e to f , ignoring all other labels.

Bose, Lubiw, Pathak and Verdonschot formulated the “Orbit Conjecture”, which states

that this necessary condition is also sufficient, i.e. that all labels can be simultaneously

mapped to their destination if and only if each label individually can be mapped to its

3

destination. We prove this conjecture. Furthermore, we give a polynomial-time algo-

rithm to find a sequence of flips to reconfigure one labelled triangulation to another, if

such a sequence exists, and we prove an upper bound of O(n7
) on the length of the

flip sequence.

Our proof uses the topological result that the sets of pairwise non-crossing edges

on a planar point set form a simplicial complex that is homeomorphic to a high-dimen-

sional ball (this follows from a result of Orden and Santos; we give a different proof

based on a shelling argument). The dual cell complex of this simplicial ball, called

the flip complex, has the usual flip graph as its 1-skeleton. We use properties of the

2-skeleton of the flip complex to prove the Orbit Conjecture.

We also provide a modified version of the proof to show that the Orbit Theorem

applies to triangulations in which a subset of edges is forbidden from flipping and,

consequently, also to triangulations of simple polygons.

Finally, the chapter on triangulations closes by considering examples in which

happy edges – i.e. edges in a triangulation that already have the correct position and

label – must be flipped in order to obtain a shortest flipping sequence between a pair

of triangulations. This brings us to analogous problems as are considered in the next

chapter on token swapping.

Token swapping on trees. The input to the token swapping problem is a graph with

vertices v1, v2, . . . , vn, and n tokens with labels 1, 2, . . . , n, one on each vertex. The

goal is to get token i to vertex vi for all i = 1, . . . , n using a minimum number of swaps,

where a swap exchanges the tokens on the endpoints of an edge.

The set of moves generate a permutation group and so the reconfiguration graph in

this setting is the Cayley graph. In this chapter we concentrate on distance questions

on the reconfiguration graph, i.e. on computing optimal token swapping sequences to

transform one token configuration into another.

The token swapping problem on general graphs was shown to be NP-complete

[13]. Token swapping on a tree, also known as “sorting with a transposition tree,” is not

known to be in P nor NP-complete. We present some partial results:

1. An optimum swap sequence may need to perform a swap on a leaf vertex that

4

has the correct token (a happy leaf), disproving a conjecture of Vaughan. In fact,

we give an example where swapping the happy tokens/leaves saves a constant

fraction of swaps as compared to any sequence that would fix them.

2. A generalized problem—weighted coloured token swapping—is NP-hard on trees,

but solvable in polynomial time on paths and stars. In this version, tokens and

vertices have colours, and colours have weights. The goal is to get every token

to a vertex of the same colour, and the cost of a swap is the sum of the weights

of the two tokens involved.

Before describing our results in Chapters 2 (Triangulation Reconfiguration) and 3 (Token

Swapping), the remainder of this chapter will give a survey of the general reconfigura-

tion framework and some examples of reconfiguration and their applications in other

fields.

1.1 Reconfiguration framework

The many examples of reconfiguration mentioned in the previous section were first

unified into a common framework in a paper by Ito et al. [85] in 2011. Since then the

goal has been to formalize general patterns behind the problems, unify a set of tech-

niques to study the problems, as well as to derive general results that apply to classes

of problems across the different contexts. This section provides a brief introduction

to the framework. It is based on the surveys by van den Heuvel [137] and Nishimura

[111].

In full generality, a reconfiguration problem specifies a reconfiguration graph and

a problem related to the graph. The reconfiguration graph captures relations among

certain allowed configurations, given a specific transformation rule. More precisely, the

vertices of a reconfiguration graph are all feasible configurations and two such configu-

rations are adjacent if one can be obtained from the other by a single application of the

transformation rule. What counts as a feasible configuration is often determined by a

source problem. Consequently, configurations are sometimes called feasible solutions

[111].

5

Source Problem

Reconfiguration Graph:

vertices feasible configurations / solutions

adjacency transformation / reconfiguration step

Reconfiguration Problems on the graph:

connectivity / diameter / shortest transformation / . . .

=

=

Figure 1.1: Reconfiguration framework.

For example, in Independent Set Reconfiguration under the token sliding (TS) rule,

the source problem is the Independent Set Problem. Recall that given a graph, an

independent set is a subset of its vertices such that no two vertices are adjacent to

each other. Given a graph G and a number k, the Independent Set Problem is the

decision problem to determine whether or not G contains an independent set of size

k. The feasible configurations are then all independent sets of G of size k. These

can be represented as token configurations, by placing k tokens on the respective k

independent vertices of G. The token sliding rule specifies that two configurations are

adjacent in the reconfiguration graph if one can be obtained from the other by sliding

a single token along an edge to an adjacent empty vertex.

Another example of a reconfiguration graph is the flip graph of triangulations for a

planar point set. Here the source problem is to triangulate a point set P (i.e., to partition

the convex hull of P into triangles whose vertices are all of points in P), the feasible

configurations are all triangulations of P and two triangulations are adjacent if one can

be obtained from the other by a single flip, as defined earlier in the introduction.

Note that reconfiguration graphs can be formed based on both tractable and in-

tractable source problems: while the Independent Set Problem is NP-complete, there

are polynomial time algorithms to triangulate a point set [50]. Also a trivial source

problem can result in a reconfiguration graph with interesting properties. For example,

as in Token Swapping, where the feasible configurations are all permutations of tokens

1, . . . , n on n vertices of a graph and the reconfiguration step is to swap two tokens on

the endpoints of an edge.

Given a reconfiguration graph GR, the typical reconfiguration problems studied by

6

the community are the following:

1. Connectivity of GR. Can any feasible configuration be reconfigured into any

other?

2. Diameter of GR. What is the worst case number of transformations needed to

reconfigure one configuration into another?

3. Reachability of B from A on GR. Can a configuration A be reconfigured to

configuration B by a sequence of transformations?

4. Shortest / bounded transformation of A to B on GR.

(a) What is the minimum number of transformations, also known as distance,

required to reach configuration B from configuration A? Or, equivalently,

phrasing the optimization question as a decision problem: can A be recon-

figured to B by using at most k reconfiguration steps?

(b) What is the actual reconfiguration sequence?

5. Property optimization. Given a property p, find a configuration on GR that opti-

mizes p over all feasible configurations.

Examples of solutions to the above problems for the main topics of this thesis – the

triangulation flipping and token swapping – can be found in Sections 2.1 and 3.1.

As already mentioned, the source problems and feasible configurations come in

many different forms. Token configurations on graphs are one of the most studied,

due to historical reasons – the 15-puzzle and its generalizations have been around

since the 19th century – and also because these configurations can represent any

problem whose solutions can be described as subsets of vertices [111]. Other frequent

configurations include (proper) colourings of graphs, Boolean variable assignments,

specific subgraphs of a given graph, and others. We will review some of these and their

associated source problems in the following sections 1.2 - 1.5. The configurations can

be labelled, depending on whether this makes sense for a particular source problem.

In the past, such variants included coloured tokens on graphs, labelled triangulations,

labelled subgraph reconfiguration and others [111].

7

The size of the reconfiguration graph is usually exponential in the size of the source

problem input and so it is not possible to construct the graph directly. It is, however,

common to assume that testing whether a given configuration is feasible as well as

whether two feasible configurations are adjacent in the reconfiguration graph can be

done in time polynomial in the original input [137].

The reconfiguration graph is usually undirected since most transformation steps

can be reversed. Most commonly the transformation rule involves a single local change,

for example, a flip in a triangulation, sliding a single token along an edge, recolouring

a single graph vertex, changing a single value of a Boolean variable or reversing the

orientation of a single directed edge. In a few variants the transformation rule allows

multiple changes in parallel, such as when recolouring graphs by Kempe chains, in

parallel token swapping or in simultaneous edge flipping in triangulations.

The reconfiguration problems listed above comprise both structural and algorithmic

aspects [111]. Depending on the context, properties of the reconfiguration graph as

well as the complexity to compute them have been studied. For example, in the case

of graph colourings, there is significant interest in classifying instances for which the

reconfiguration graph is connected. In fact, the importance of application to random

sampling and counting via Markov chains and rapid mixing has been so prominent

that the connectivity problem for k-Colouring has also been known as k-Mixing [137;

111].

The algorithmic aspects focus on determining complexity of the optimization prob-

lems listed above. If a problem turns out to be tractable, one aspires to develop ex-

act algorithms and actual reconfiguration sequences. For intractable reconfiguration

problems one can develop approximation algorithms or prove inapproximability; and

to consider parametrized complexity or particular ‘easier’ classes of instances. A gen-

eral approach is to mimic the hardness proofs of the source problem or to restrict the

input to the reconfiguration problem to simpler instances, similarly as in the study of

the source problem. For reconfiguration problems that have been studied across mul-

tiple domains, the reconfiguration framework hopes to unify the results and identify

general patterns. One example is to specify the conditions under which an intractable

[respectively polynomial-time solvable] source problem corresponds to an intractable

[respectively polynomial-time solvable] reconfiguration problem.

8

The rest of this section gives examples of past results within the reconfiguration

framework. At present many reconfiguration problems have been explored unevenly

and not all of the aspects have been studied in all contexts.

Reachability has been one of the most studied reconfiguration problems in the

past and has, in fact, also been called ‘the reconfiguration problem’ [111]. There are

reachability results for variants of graph colouring, satisfiability, independent set, vertex

cover, dominating set, matching, shortest path reconfiguration and other problems. Al-

ready early on a general pattern suggested that NP-complete [respectively polynomial-

time solvable] source problems can correspond to a PSPACE-complete [respectively

polynomial-time solvable] reachability reconfiguration problem [85]. This has been

confirmed for the Independent Set, Vertex Cover, 4-Colouring, 3-Satisfiability, Domi-

nating Set, Clique and other problems as the NP-complete problems and for the 2-

Colouring, 2-Satisfiability, Minimum Spanning Tree and others as the polynomial-time

solvable problems [111]. The hardness proofs, moreover, in multiple cases mirror the

hardness reductions for the source problems [111]. However, exceptions exist in both

directions: for 3-Colouring the source problem is NP-complete and reachability is solv-

able in polynomial time; for Shortest Path Problem the source problem is solvable in

polynomial time and reachability is PSPACE-complete.

For some problems with PSPACE-complete reachability, such as the Independent

Set, Vertex Cover, Clique or the Dominating Set problems, ‘simpler’ classes of graphs

(paths, trees, bipartite graphs, etc.) were considered to pinpoint the tractable versus

intractable boundary between classes and to compare them to the (in)tractability of the

respective classes for the source problems. A general method has been developed to

prove PSPACE-completeness of reachability for problems with input constrained to

graphs of bounded bandwidth [145]. The method worked for k-Colouring, Shortest

Path, Independent Set, Dominating Set and other problems.

Recall the definition of fixed parameter tractability, as given in [111]: a problem

is fixed-parameter tractable (FPT) with respect to parameter p, if it can be solved in

time f(p)nO(1), where n is the input size, p a parameter and f a computable function

depending only on p. Moreover, problems intractable with respect to fixed-parameter

complexity areW [`]-hard, for ` � 1 [111]. Intuitively, parametrized complexity identifies

aspects that make a given intractable problem easy/hard. Parametrized complexity

9

has been investigated in the context of Independent Set, Vertex Cover, Dominating Set,

List Colouring Reconfiguration and other problems. For reachability as well as shortest

transformation it has been common to parametrize the complexity of problems by the

length, l, of a reconfiguration sequence. A general method to prove hardness has

been devised by using the so-called Subset Problem for a Hereditary Property [108].

This problem is an abstraction of multiple source problems (such as the Independent

Set). One version of the general method guarantees that if a reconfiguration graph is

formed based on the Subset Problem in a certain way, then reachability parametrized

by l is at least as hard as the source Subset Problem. On the other hand, a so-called

reconfiguration kernel method has been used to show FPT of reachability based on the

FPT of the corresponding source problem for Vertex Cover with TAR adjacency rule

parametrized by the solution size, and for other problems [108]. Here TAR denotes the

token-addition-removal rule, under which at each step a single token is either removed

from a graph or added to an empty vertex of the graph. The solution size denotes the

maximum number of tokens allowed to be in a configuration at once.

A general way to establish reachability on a reconfiguration graph is to identify a

canonical configuration into which every other configuration can be transformed. An

example is the Delaunay triangulation in (unlabelled) flip graphs of planar point sets,

see Section 2.1. Also in the case of token swapping on a connected graph, it is easy

to show that the reconfiguration graph is always connected and any permutation of

tokens on graph vertices can be reconfigured into any other. Hence in both domains

– in flipping (unlabelled) triangulations and in token swapping on graphs – the main

reconfiguration problems of interest have been variants on the shortest transformation

problem and the diameter of the reconfiguration graph.

Often a way to provide a lower bound on the length of a shortest transformation for

a given pair of configurations, is to quantify how much the two configurations ‘differ’,

given the reconfiguration rule. For example, in the case of tokens on graphs one can

consider the symmetric difference of the original and target token configuration. For

triangulation reconfiguration, the number of edge intersections, when the original and

the target triangulation are overlayed on top of each other, gives an upper bound on

the number of flips needed to reconfigure one triangulation into the other [71] (note

that in contrast to the previous example this result is not trivial to prove).

10

Shortest transformation for triangulation flipping was shown to be NP-complete and

APX-hard [101; 118], but in FPT when parametrized by the length of the reconfigura-

tion sequence [90]. For token swapping on general graphs, the shortest transformation

was also proved to be NP-complete and APX-complete [106], and multiple approxima-

tion algorithms were developed for general graphs, as well as for trees, see Chapter

3.

Apart from triangulations flipping and token reconfigurations, the shortest transfor-

mation problem received a lot of attention in the context of satisfiability, where it was

shown that the complexity of shortest transformation (and of reachability) for particu-

lar classes of problem instances mirrors the respective results for the source problem

[111].

Note that in addition to the five most studied reconfiguration problems that we listed

above – connectivity, diameter, reachability, shortest transformation and property opti-

mization on a given reconfiguration graph – there are questions in the reconfiguration

framework that focus on classes of reconfiguration graphs. For example, comparing

reconfiguration graphs of multiple problems, determining equivalent reconfiguration

steps for a given source problem, or determining the minimal solution size so that

reachability in token reconfigurations under the TAR adjacency rule becomes possible

[111]. Yet other problems in the framework include investigations into the chromatic

number, Hamiltonicity, girth and other properties of reconfiguration graphs, see [111].

To conclude, reconfiguration graphs may be too large to be constructed explicitly,

but they often seem to provide some smart way of ‘searching in the dark’: for example,

proving connectivity leads in multiple contexts to random sampling and counting of

the many configurations; in other contexts the local transformation rule together with

properties of the configurations provides a way to efficiently reach a particular config-

uration without the need of an (impossible) exhaustive search, such as, for example,

when optimizing properties of a triangulation (see Section 2.3).

In the remainder of this chapter, we survey the reconfiguration results organized

by the source problems. Section 1.2 reviews examples of reconfiguration in different

fields and their applications. Section 1.3 gives a broader background to reconfiguration

of planar graphs. Section 1.4 discusses reconfiguration of matroid bases and, finally,

Section 1.5 reconfiguration of tokens on graphs.

11

1.2 Examples of reconfiguration and applications

Reconfiguration problems appear in numerous, sometimes seemingly unrelated con-

texts. The aim of this section is to list some of them, and to give a taste of possible

applications.

Historically the oldest and possibly the largest class of examples includes recon-

figuration of tokens placed on vertices of a graph. We survey the results on token

swapping in Chapter 3. Introduction to other types of token reconfiguration, including

token sliding, jumping, addition and removal as well as different types of constrained

token configurations are covered in Section 1.5.

Another large part of the community studies reconfiguration of planar graphs. See

the survey by Bose and Hurtado [30] for a thorough summary. We include a de-

tailed survey of results on reconfiguring triangulations of planar point sets by flips in

Chapter 2. Some other types of triangulation reconfiguration are covered in Section

1.3.1. Reconfiguration of pseudo-triangulations, non-crossing spanning trees and per-

fect matchings are surveyed in Sections 1.3.2, 1.3.3 and 1.3.4, respectively. General-

ization of spanning trees to matroids and their reconfiguration is discussed in Section

1.4.

Another prominent class of examples consists of graph recolouring problems. The

vertices of the corresponding reconfiguration graph are usually all proper colourings

of a given graph G by k colours. The reconfiguration rule specifies how vertices of G

can be recoloured. Two frequently used rules involve recolouring a single vertex to any

of the k colours, or to a colour from a list of colours assigned to that vertex, subject

to the condition that the result of the recolouring is another proper k-colouring of the

graph G. Another widely studied rule is to recolour multiple vertices of the graph G at

once by a so-called Kempe chain (exchange of two colours on a connected component

of a subgraph of G that is induced by the vertices of the two colours), again so that

the result is a valid k-colouring. The most studied reconfiguration problems include

the connectivity of the reconfiguration graph and the complexity of the reachability

problem under different conditions. Surveys by van den Heuvel [137] and Nishimura

[111] provide summaries on graph recolourings.

Another wide field studies reconfiguration of solutions to the satisfiability problems.

12

Given a formula with Boolean variables, the vertices of the reconfiguration graph are all

variable assignments for which the formula is satisfied. The reconfiguration rule allows

to swap one variable to an opposite truth value (0-1) so that the formula stays satisfied.

The well-known reconfiguration results in this area in a way mirror the results about the

source problem. In particular, the complexity of a satisfiability problem was proved to

be in P or NP-complete based on whether the instance is built from the so-called

Schaefer relations or not (Schaefer’s dichotomy theorem [111]). On the other hand,

complexity of the reachability problem was proved to be in P or PSPACE-complete

depending on whether the instance is built from so-called tight relations or not. Similar

results hold for the diameter problem and for complexities of the connectivity and the

shortest transformation problem. The surveys by van den Heuvel [137] and Nishimura

[111] give a review.

Yet other popularly studied reconfiguration problems are derived from a variety

of games and puzzles (see [73]), or from other graph-theoretic problems, such as

the independent set, vertex cover, dominating set, clique, shortest path problem, and

others. See [73; 85] or the surveys in [111; 137].

The many applications of reconfiguration problems include optimizing configuration

properties, enumeration and random generation of configurations, identifying ‘similar’

configurations based on their close position in the reconfiguration graph, applications

to other fields of mathematics and computer science, to engineering, as well as prac-

tical applications to the industry. We mention a few in the remainder of this section.

Regarding optimizing configuration properties, the section on page 48 gives exam-

ples of algorithms that use the flip graphs in order to compute triangulations which

are optimal with respect to certain quality measures such as the angle sizes or oth-

ers, out of all possible triangulations of a given point set. See the same section or

the discussion in Section 1.3.1 for examples of using reconfiguration and triangular

meshes to approximate shapes in computer graphics or to reconstruct surface from

samples. Section 2.1 gives examples of applications of triangulation reconfiguration to

other fields, such as to the study of associahedra, rotations in binary trees, graph un-

tangling, reconfigurations of other planar graphs, and others. For application of recon-

figuration to object animation in computer graphics, or to morphing of graph drawings

and of polygons, see the references in [111]. Some of the applications related to re-

13

configuration of tokens on graphs include string editing algorithms, algorithms for robot

motion planning (discussed in Section 1.5.2), for transferring data packets over a net-

work without exceeding capacities of data buffers at individual vertices (see [37]), for

controlling memory usage in distributed systems [16] and many others. Graph colour-

ing reconfiguration has been used in assigning radio frequences to transmitters in a

continuously changing mobile network so as not to interfere with one another while at

the same time using as little frequency range as possible, see [137]. Other versions

of the application include routers in a changing network which can be modelled as re-

configuration of independent sets on a graph [89]. Finally, a non-negligible amount of

applications of reconfiguration also cover numerous pastime puzzles and games, see

the survey by Demaine and Hearn [49].

We conclude the section by describing the two possibly most significant applica-

tions of reconfiguration: the enumeration and random sampling of configurations that

can be used across a variety of contexts. In their well-known paper, Avis and Fukuda

[18] introduced a so-called reverse search paradigm that enables one to enumerate

vertices of certain reconfiguration graphs. The idea is to form a spanning tree of

the reconfiguration graph based on a so-called local search function that efficiently

determines neighbours of each vertex and which has a unique global optimum and,

subsequently, to traverse this tree. The paradigm can be used for enumeration of point

set triangulations, spanning trees of a given graph, and for many other graph families

(but not quite for combinatorial triangulations where a flip can result in an isomorphic

triangulation). A good summary is included in the survey by Bose and Hurtado [30].

The other important application is to sample (and, consequently, to enumerate,

via a connection described in [87]) configurations almost uniformly at random in poly-

nomial time by performing random walks on the reconfiguration graph. The idea is

that the walk starts at an arbitrary vertex of the reconfiguration graph, and at each

step it advances to one of its neighbours or stays at the current vertex. After a num-

ber of steps, the walk converges to a stationary probability distribution. To be able

to efficiently sample the random configurations, one needs to prove, firstly, that the

stationary distribution is the uniform distribution and, secondly, that the convergence

happens fast, i.e., in polynomial time. More precisely, if � is the maximum degree in

the reconfiguration graph and � < 1 is any positive constant, then one can let the walk

14

advance to each of its k neighbours with probability �/� and stay at the current vertex

with probability 1� k�/�. Provided that the reconfiguration graph is connected, it has

been proven that the corresponding stationary distribution is the uniform random distri-

bution, see the summary in [30]. Regarding the rate of convergence, loosely speaking,

if the walk converges arbitrarily closely to the stationary distribution in polynomial time,

the walk is said to be rapidly mixing (for a rigorous definition of rapid mixing, see, for

example [14]). An important role is played by the so-called expander graphs which are

known to enable rapid mixing of random walks. These graphs are characterized by a

good edge expansion ratio which, for a graph G and a subset S ✓ V (G) of its vertices,

is defined as

min

S✓V (G)

|E(S, ¯S)|
min{|S|, | ¯S|}

.

Here E(S, ¯S) is the set of edges with one endpoint in S and another one in its comple-

ment ¯S = V (G) \ S.

Random sampling by performing a rapidly mixing random walk on a reconfiguration

graph has been used in multiple settings: in graph colouring reconfiguration, for the

so-called Glauber dynamics in theoretical physics, see [137]; or to generate a random

matroid basis (see Section 1.4); or to generate a random triangulation of a convex

polygon [107]. In other settings, where the rapid mixing property has not yet been

proved, random walks on reconfiguration graphs can be used as heuristics. The mixing

time of a random walk on a flip graph of triangulations of a general planar point set is

a major open question.

For more details on random sampling as well as on other applications and exam-

ples of reconfiguration, see the surveys [30; 137; 111].

1.3 Reconfiguration of planar graphs

In this setting, vertices of the reconfiguration graph are all members of a particular

class of planar graphs. The transformation between them is usually some version of a

k-flip that consists of removing k edges from the graph followed by inserting k edges

so that the graph remains in the same class. There may be bounds on k and additional

constraints in order to keep the transformation step small and local.

15

Class of graphs
(feasible configurations)

Reconfiguration step

triangulations flip
simultaneous flip
flip and vertex move
vertex addition or removal
edge insertion (k-flip)

pseudo-triangulations pseudo-flip
pseudo-flip and edge insertion

spanning trees edge move
compatible edge move
edge rotation
empty triangle rotation
edge slide

matchings compatible with single cycle
compatible
compatible disjoint

simple polygons k-flip
convex subdivisions k-flip

Table 1.1: Classes of planar graphs and the corresponding transformation steps in the
reconfiguration graph. The source problem is to compute an instance of a particular
planar graph (for example, a triangulation) on a given set P of n points in the plane.
The vertices (feasible configurations) of the reconfiguration graph are then all planar
graphs of that class (for example, all triangulations) on P .

A typical example is a class of all triangulations of a given planar point set with a

local flip operation (or 1-flip, according to the above definition) that exchanges diago-

nals of a convex quadrilateral in the triangulation. Other examples include classes of

pseudo-triangulations, spanning trees, or perfect matchings, all on a fixed point set.

See Table 1.1 for types of planar graphs and transformation steps typically used with

them. For most classes, the respective reconfiguration graphs are referred to as flip

graphs.

The graphs in a particular class can, futhermore, be considered in a combinatorial

or geometric setting, and be either labelled or unlabelled. The combinatorial setting

does not assume any particular embedding of the graph (and, whenever there is a

need to work with a drawing of such a graph, the embedding can use Jordan curves).

On the other hand, in the geometric setting graphs are assumed to be embedded in the

plane using straight-line, non-crossing edges. The latter, more restrictive setting can

make some flips infeasible. For example, in a geometric triangulation a diagonal of a

non-convex quadrilateral cannot be flipped since this would introduce edge crossings.

16

Throughout in the geometric setting we also assume that the given point set is in

general position, i.e., it does not contain any three collinear points or four point on a

circle.

Variations in which vertices or edges are labelled have been explored especially in

the context of triangulations, pseudo-triangulations and spanning trees, see below.

Most results on reconfiguring planar graphs concentrate on the problems of con-

nectivity and diameter. For some classes, such as simple polygons, connectivity of

the flip graph when using any constant-size local transformation is still open [30]. On

the other hand, for unlabelled triangulations with flips, connectivity of the flip graph has

been solved decades ago and the main problem of interest in recent years has been

the flip distance and its variations. A comprehensive survey on flips in planar graphs

can be found in [30].

1.3.1 Triangulations

As reconfiguration of edge-labelled triangulations is one of the main topics in this the-

sis, we give a comprehensive overview of the results on triangulation flipping in Chap-

ter 2. In particular, that chapter contains a survey on geometric triangulations of planar

point sets and of simple polygons, a summary of results on constrained triangulations

and a brief comparison of the geometric and combinatorial triangulations. Further,

Chapter 2 also contains a comparison of the classical flip operation to simultaneous

flipping and to edge insertion. Finally, that chapter compares results on edge-labelled

versus unlabelled geometric triangulations. In this chapter we discuss further exten-

sions of edge flipping and other local transformations.

For reconfiguring geometric triangulations of a point set a local transformation that

consists of an edge flip and a point move has been studied. A point move modifies

the coordinates of a single vertex in a triangulation so long as it does not introduce

any edge crossings [1]. Since edge flips can only reconfigure between triangulations

of the same point set, the idea was to introduce the point moves to be able to reach

any triangulation of any n-vertex point set, similar to the result by Wagner [142] for

combinatorial triangulations. A series of results showed that, indeed, for an n-vertex

point set and a combination of flips and point moves in the plane, the corresponding

17

flip graph is connected and has diameter O(n log n) [11]. Alternatively, if the original

triangulation is embedded on an n⇥ n grid and the vertices must stay within a 5n⇥ 5n

grid, O(n2
) flips and point moves suffice to transform any triangulation on n points into

any other [1], see also [30].

The survey by Bose and Hurtado [30] also discusses triangulations of 2D surfaces

other than the plane. If graph embeddings are allowed to use the Jordan curves, it has

been shown that any triangulation of n points on a closed surface can be reconfigured

into any other by flips, provided that n is large enough [30]. On the other hand, if edges

must be embedded as arcs of geodesics, Bose and Hurtado [30] give examples of

point sets on a cylinder or torus where one or both diagonals of a convex quadrilateral

are exterior to the quadrilateral. The surface thus imposes further restrictions on the

feasibility of the flip operation or even leads to instances when a maximal set of edges

is not a triangulation. Note that on 2D surfaces triangulations are often required to have

all faces, including the outerface, triangular. If a triangulation of a surface has a non-

triangular outerface, it may be hard to define the triangulated domain. For example,

there is a point set P on a cylinder, such that different triangulations (by arcs) on P

result in different triangulated domains. See [30] for details and further references.

In relation to 2D surfaces, Bose and Hurtado also mention piecewise-linear trian-

gulated surfaces embedded in 3-dimensional space such as triangulated polyhedral

surfaces homeomorphic to a sphere where all edges are embedded as straight-line

non-crossing segments and where a flip alters the surface: it exchanges a pair of tri-

angles, say abc and bcd, for another pair adb and adc that form, in general, a ‘lower’

and ‘upper’ surface of a tetrahedron. A flip is feasible so long as it does not cause

any surface self-intersections. A corresponding flip graph may not be connected, nev-

ertheless such reconfigurations are used as heuristics in surface reconstruction from

samples of data points [30].

Bern et al. [22] discuss a generalized version of flips in the plane that consists of

traditional flips and vertex addition/removal operation. The vertex addition inserts a

vertex into an interior face of a triangulation and connects it to all three vertices of the

face. The vertex removal does the reverse. The two types of operations – flips and

vertex addition/removal – correspond to two different projections of a tetrahedron into

2D: one, in which the four faces of a tetrahedron project onto two triangles, and one in

18

Figure 1.2: Left: Two projections of a tetrahedron to a plane, viewed from above.
Right: Generalized 2D flips derived from the projections on the left. The flips can be
generalized to higher dimensions and to cubical meshes.

which they project onto a single triangle. Both operations can then be viewed as ‘flip-

ping’ between the upper and lower triangles of the tetrahedron in the projection, see

Figure 1.2 (a similar figure appeared in [22]). These operations generalize to higher

dimensions: for tetrahedralizations, different types of flips correspond to different ways

of cutting the surface of a 4-dimensional simplex into a ‘lower and upper half’, and so

on. Bern et al. show that the method can be extended to cubical meshes. Instead

of triangular faces (or simplices), the cubical meshes use quadrilateral faces (or hy-

percubes in higher dimensions). Similarly as for triangulations, flips in d-dimensional

cubical meshes can also be defined by using a (d+ 1)-dimensional hypercube [22].

Turning to labelled triangulations in the plane, Chapter 2 reviews and gives new

results in the context of edge-labelled geometric triangulations. Vertex-labelled com-

binatorial triangulations are also discussed along the way in Section 2.3.

Reconfiguration by using edge flips and point moves, as described above, also

works with vertex-labelled geometric triangulations. Abellanas et al. [1] proved that

O(n2
) edge flips and point moves, where again the sizes of vertex coordinates are

bounded, are sufficient to reconfigure any labelled triangulation of an n-vertex point

set into any other.

Yet other examples of reconfiguring edge-labelled geometric triangulations are de-

scribed by Eppstein in [58]. Eppstein studies similarities between three different types

of edge-labellings. Here we discuss two of them, namely Schnyder and rectangular

labellings. Note that the respective reconfiguration graphs have as feasible configu-

rations all possible labellings of a single triangulation, rather than (all labellings of) all

19

triangulations of a given point set. In both labelling types, the triangulation edges are

assigned colours and orientations so as to satisfy certain local conditions. Each such

labelling can be constructed efficiently in linear time.Schnyder labellings are defined

only for triangulations with a triangular outerface, while rectangular labellings use trian-

gulations with a quadrilateral outerface and no separating triangle – these restrictions

make sense based on the context in which the labellings are used, see below.

Schnyder labellings were used to construct an efficient algorithm to embed a max-

imal planar graph on n vertices in the plane with straight-line edges and vertices as

nodes of the integer grid of linear dimension [58]. Two Schnyder labellings can be

related by a (non-reversible) twisting operation. This produces a reconfiguration graph

which is directed and has been proven to be acyclic [58].

The so-called rectangular labellings of triangulations encode partitions of a rect-

angular region into smaller rectangles, hence the name. The labellings enable one

to generate the corresponding partitions efficiently. One such labelling can be trans-

formed into another one again by a certain twisting operation that involves switching

colours and orientations of some edges in the labelling locally. In this case all rect-

angular labellings of the same triangulation can be reached by a sequence of twisting

operations, so the corresponding flip graph is connected [58].

1.3.2 Pseudo-triangulations

A pseudo-triangle is a simple polygon that has exactly three interior angles convex.

A pseudo-triangulation of an n-vertex point set P in the plane is a subgraph of a tri-

angulation that contains all convex hull edges of P and whose interior faces are all

pseudo-triangles with empty interior. A pseudo-triangulation is called pointed if every

of its vertices has one of its incident angles reflex. It can be shown that every pointed

pseudo-triangulation on n vertices has exactly 2n � 3 edges and n � 1 faces. This is

also the minimum number of edges that a pseudo-triangulation can have, as proved

by Streinu [134].

An interior edge e in a pseudo-triangulation is incident to two pseudo-triangles T1

and T2. Suppose that these have their three convex angles at vertices a, b, c and x, y,

z, respectively. Further assume that e is on the edge chain joining a to b in T1 and x to

20

a

b

x

y

e

a = y

b = x

e

Figure 1.3: Examples of two pseudo-flips. The first one results in a deletion of an
edge. In each pseudo-flip, we label vertices a, b, x, y.

y in T2. Then a pseudo-flip of e removes e from the pseudo-triangulation and inserts

all edges on a geodesic within the created pseudoquadrilateral joining c and z that

were not yet part of the pseudo-triangulation. The result of this operation is another

pseudo-triangulation. Note that sometimes a pseudo-flip consists of a single deletion

of an edge, but it can be shown that in the case of pointed pseudo-triangulations every

pseudo-flip removes and inserts exactly one edge [34; 134]. See Figure 1.3 for an

example of pseudo-flips.

By using a canonical pointed pseudo-triangulation, Bereg [20] proved that the flip

graph of pointed pseudo-triangulations with pseudo-flips is connected and has diame-

ter O(n log n). For general pseudo-triangulations of a point set the corresponding flip

graph is connected if, in addition to pseudo-flips, one also allows insertion of a single

edge as an operation, as long as it produces a pseudo-triangulation. In this case the

diameter of the flip graph is also O(n log n), proven by Aichholzer et al. [5].

Reconfiguring edge-labelled pseudo-triangulations has been considered in [33].

The authors proved that O(n2
) pseudo-flips are always sufficient to transform any

edge-labelled pointed pseudo-triangulation into any other (thus the situation is quite

different from edge-labelled geometric triangulations where the flip graph can be dis-

connected, see Section 2.5).

1.3.3 Non-crossing spanning trees

Spanning trees and their reconfigurations have been researched in many variations:

in the combinatorial and geometric setting, as labelled or unlabelled graphs, using var-

ious reconfiguration steps, and for flips performed one after another or simultaneously.

In the combinatorial setting, spanning trees on n (labelled or unlabelled) vertices

21

are studied as abstract graphs. There are nn�2 different abstract spanning trees if the

points are labelled [41]. For unlabelled points, the vertices of the reconfiguration graph

are the isomorphism classes of trees.

Probably the most natural reconfiguration step on an n-vertex spanning tree T is

an edge move that deletes an edge uv and inserts another edge so that the graph

remains a spanning tree. Another, more restrictive operation is an edge rotation, for

which the deleted and the inserted edge must have a common endvertex u. A third

possible operation is an edge slide. This is a rotation inserting an edge uw such that

vertices v and w are adjacent in the original tree T .

The reconfiguration graphs formed in the combinatorial setting for labelled span-

ning trees using the edge move operation or for unlabelled spanning trees using any

of the above three operations, have been proved to be connected and with a linear

diameter. See [110] for more details on the combinatorial setting and references to

original results.

In the geometric setting, one considers the set TP of spanning trees with pairwise

non-crossing straight-line edges on a fixed set P of n points in the plane. Known

bounds on the size of TP are O(141.07n) [77] and ⌦(12.54n) [80]. The operations

of edge move, rotation and slide work similarly as in the combinatorial setting with

the additional constraint that in order to be feasible, they must output a non-crossing

spanning tree. In the case of an edge slide uv to uw, where v and w are adjacent, we

additionally require that the triangle uvw is empty. In the geometric setting more re-

configuration operations were considered. These include an improving edge move, a

compatible edge move and an empty-triangle rotation [110]. The improving edge move

is an edge move that additionally decreases the Euclidean length of the spanning tree.

A compatible edge move is a move in which the deleted and the inserted edge do not

cross. Finally, an empty-triangle rotation is a rotation of edge uv into uw such that the

triangle uvw has an empty interior. All operations apart from the improving edge move

are reversible and produce an undirected flip graph. Note also that for the set TP the

operations satisfy the following inclusions:

edge slides ✓ empty-triangle rotations ✓ rotations ✓

✓ compatible edge moves ✓ edge moves

22

and so also the corresponding flip graphs are subgraphs of each other.

In the context of enumerating the set TP via a reverse search algorithm, Avis and

Fukuda [18] proved the connectivity of, and provided the first upper bound, 2n � 4 ,

on the diameter of the flip graph for TP with edge rotations (as explained in [110], the

proof was phrased in terms of edge moves, but all used moves were actually rotations).

What followed were results on the special case when the point set is in convex position:

the flip graph for edge moves is Hamiltonian [76], has a minimum number of vertices

as compared to reconfiguration graphs of spanning trees on the same-size but non-

convex point sets [66], and there is a lower bound of 3n/2 � 5 on its diameter [76].

This lower bound is currently the best known for a general point set and all of the

above-mentioned operations apart from the edge slides. The survey [110] lists known

diameter bounds for different scenarios in comprehensive tables.

Aichholzer et al. [4] proved the Fixed Tree Theorem. Given a spanning tree T on a

set P of n points, they study sequences of length-decreasing trees T, f(T), f 2
(T), . . . ,

where f assigns to T a minimum length spanning tree f(T) that is compatible with T ,

i.e., such that the union of edges in f(T) and T form a plane graph. The Fixed Tree

Theorem states that f(T) = T if and only if T is the minimum length spanning tree

on P . Moreover, starting with any tree T 2 TP , the sequence reaches the minimum

spanning tree of P in ⇥(log n) steps. The function f is an example of a simultaneous

compatible edge move on the tree T , and O(log n) is the diameter of the flip graph

formed on TP by the simultaneous compatible edge moves. Aichholzer et al. [4] also

showed that each application of f can be substituted by O(n) improving edge moves.

Thus the directed flip graph of TP with improving edge moves is weakly connected and

has diameter O(n log n). The minimum spanning tree of P is a unique sink in the flip

graph, similarly as the Delaunay triangulation is for the Delaunay flips in the flip graph

of triangulations (see Sections 2.2 and 2.3).

Aichholzer and Reinhardt [8] also proved that any spanning tree in TP can be re-

configured to any other by O(n2
) edge slides, thus showing that in fact the flip graphs

of TP are connected for all the above-mentioned reconfiguration operations. Perhaps

even more importantly, the edge slides demonstrate that reconfiguration of spanning

trees is possible by constant-size and local transformation that can even be performed

in a continuous manner [4].

23

Finally, reconfiguring edge-labelled spanning trees by edge moves that assign the

deleted edge label to the newly inserted edge also produces a connected flip graph

[75].

For more results, including simultaneous flipping, see the recent survey [110].

1.3.4 Perfect Matchings

Another example of planar graphs whose reconfiguration has been studied are per-

fect matchings. The combinatorial setting in this case turns out to be trivial, hence all

results in this section assume the geometric setting. The set of vertices of a reconfig-

uration graph is usually the set MP of all non-crossing perfect matchings on a given

point set P of 2n points in the plane. A perfect matching on P is a set of n straight-line

segments so that each point in P is a vertex of degree one. A perfect matching is said

to be non-crossing if none of its edges pairwise intersect.

If the 2n points of P are in convex position, the number of different non-crossing

perfect matchings on P is known to equal the nth Catalan number, 1
n+1

�
2n
n

�
. It can be

shown that this is the smallest number of non-crossing perfect matchings that a 2n-

vertex point set can have [66]. There also are bounds on the maximum size of MP

for a general point set P , though not tight. See the survey in [3] for details and further

references.

A symmetric difference of two matchings M1 and M2 from MP is in general a

number of possibly (self-)intersecting cycles of alternating edges from M1 and M2.

Three types of adjacency in the reconfiguration graph have been defined based on

this symmetric difference: adjacency by matchings being compatible, compatible with

single cycle, or disjoint compatible. Two matchings in MP are called compatible if

their symmetric difference is a plane graph. They are compatible with single cycle if,

additionally, the symmetric difference consists of a single alternating cycle. Finally,

they are disjoint compatible if they are compatible and have no edge in common. All

these three types of adjacency are examples of k-flips, since a single reconfiguration

step exchanges up to n edges in the matching.

Houle et al. [78] proved that the reconfiguration graph of non-crossing perfect

matchings using the compatible-with-single-cycle adjacency is connected and has di-

24

ameter 2n � 2. Connectivity of the graph is, however, open if the number k of edges

flipped in a single step is required to be bounded. When reconfiguration is done ex-

clusively by 2-flips (i.e. when the symmetric difference must be a single cycle of 4

alternating edges), the authors of [78] report that the corresponding flip graph has no

isolated vertices (but the proof is not included).

Hernando et al. [74] solved the above case of 2-flips for point sets in convex posi-

tion. The corresponding flip graph was proved to be connected, with diameter n � 1,

bipartite for every n, having minimum degree n�1; and containing a Hamiltonian cycle

if and only if n � 4 is even.

The result in Houle et al. [78] implies that the reconfiguration graph is also con-

nected when adjacent matchings are just compatible, dropping the requirement that

they must be compatible with single cycle. In this case, Aichholzer et al. [6] and Razen

[124] proved the upper and lower bounds on its diameter, O(log n) and⌦(log n/ log log n),

respectively.

Aichholzer et al. [6] showed that a non-crossing perfect matching on 2n points in

the plane, where n is odd, may not have any disjoint compatible matching and, hence,

the corresponding flip graph contains an isolated vertex. The opposite is true when n

is even: the Disjoint Compatible Matching Theorem proved in [84] guarantees that for

any non-crossing perfect matching on 4m points there is another disjoint compatible

non-crosing perfect matching. In general, however, the reconfiguration graph in which

adjacency is defined by disjoint compatibility is disconnected. Aichholzer et al. [3] stud-

ied the case for the special case when the point set is in convex position. They proved

that the disjoint compatibility flip graph is disconnected for n � 3 and characterized its

connected components.

Yet another version of a matching reconfiguration problem is the study of bichro-

matic matchings. These are non-crossing perfect matchings on n blue and n red points

in the plane in which every edge connects vertices of different colours. The reconfig-

uration graph of bichromatic matchings where two matchings are adjacent if they are

compatible (but not necessarily disjoint or single cycle) is connected. See [10] for

details of the proof as well as for further background on bichromatic matchings.

Finally, Biniaz et al. [25] consider a different but related problem of flipping perfect

matchings, namely, the transformations by which a given perfect matching can be

25

turned into a non-crossing perfect matching on the same point set. Their operation

is a 2-flip that ‘uncrosses’ a pair of edges. The problem can be thought of as finding

a shortest path in the reconfiguration graph whose vertices are all perfect matchings

on the given point set to a vertex in a subgraph consisting of all non-crossing perfect

matchings.

1.3.5 Other planar graphs

Apart from triangulations, pseudo-triangulations, spanning trees and perfect match-

ings that were described in the previous sections, reconfigurations of other types

of planar graphs by means of k-flips have been considered. Simple polygons (also

known as polygonizations or non-crossing Hamiltonian cycles) received considerable

attention because their reconfiguration could be used to generate a random simple

polygon on the underlying point set [30]. Other examples include reconfiguration of

Hamiltonian paths or of convex subdivisions of a planar point set. The latter are gen-

eralizations of triangulations in which every face is a convex polygon. Similarly as for

perfect matchings, the main open problem in many of these contexts is to establish

local constant-size transformations that result in a connected flip graph, see [30].

1.4 Reconfiguration of matroid bases

Reconfiguration of matroids has been discussed by Ito et al. [85], by Anari et al. [14]

and by Lubiw and Pathak [102].

Recall that a matroid M is a pair (E , I) where E is a ground set and I is a col-

lection of subsets of E , called the independent sets, such that I satisfies the following

properties:

1. ; 2 I,

2. hereditary property: if A 2 I and B ✓ A then B 2 I,

3. augmentation property: if A,B 2 I and |A| > |B| then there is an element

a 2 A \B such that B [{a} 2 I.

26

Any set of elements of E that is not independent is called dependent . A set A 2 I is

called a basis if it is a maximal independent set, i.e., adding any other element of E to A

would make it dependent. Property 3 implies that all bases of M have the same size,

called the rank r(M) of the matroid. A matroid can equivalently be defined in terms of

its set of bases or in terms of its set of circuits, which are the minimal dependent sets

of elements of E .

Matroids generalize the notion of linear independence and bases of vector spaces

from linear algebra and also the notion of independence in graph theory. Matroids that

are derived from graphs are called graphic. In that case E consists of all edges of a

given connected graphG, the independent sets are exactly the cycle-free subgraphs of

G and the bases correspond to edge sets of all spanning trees ofG. For an introduction

to matroids and their properties, see the textbook by Oxley [115].

A fundamental property of matroids is the so-called basis exchange: if A,B are two

distinct bases of a matroid M and a 2 A \ B, then there is an element b 2 B \ A such

that (A \ {a}) [{b} is a basis of M. See [115] for a proof.

Ito et al. [85] used a weighted version of the basis exchange property to show that,

given a connected graph G with a non-negative weight on each edge, reconfiguring

one spanning tree ofG with weight< k into another such spanning tree, using the edge

exchange operation and going only through intermediate spanning trees of weight < k

is always possible.

More generally, consider the reconfiguration graph whose vertices are bases of a

given matroid M and two vertices are adjacent if the corresponding bases differ by a

single basis exchange step. Then, by the basis exchange property, the reconfiguration

graph is connected and, for any pair of bases A,B of M, A can be transformed into

B in |A � B| steps. Consider the following random walk on the reconfiguration graph:

the walk starts at an arbitrary basis A1 of M and, at a step i, forms basis Ai+1 from

Ai as follows. One element a of the basis Ai is chosen uniformly at random and is

deleted and, out of all elements of the matroid that can complete Ai \ {a} to a basis,

one element, say b, is chosen uniformly at random and Ai+1 := {Ai \ {a}} [{b}. It is

easy to see that for any pair of bases A, B and a step i, the probability of going from a

basis A to B is the same as going from B to A, and hence, the stationary distribution

of such a walk is the uniform distribution over all bases of M.

27

In a recent breakthrough, Anari et al. [14] proved that the above walk mixes rapidly,

that is, the above walk converges arbitrarily closely to the uniform distribution in poly-

nomial time (for a rigorous definition of rapid mixing, see [14]). The above random

walk on the reconfiguration graph thus provides the first polynomial-time algorithm to

approximately generate a matroid basis uniformly at random in an arbitrary matroid.

In graphic matroids, this enables one to generate random spanning forests of a given

graph. Using the equivalence between being able to approximately sample and to

approximately count in so-called self-reducible problems [87], the above result implies

that it is also possible to approximately count the number of bases of an arbitrary ma-

troid in polynomial time. Another consequence of the above result is that the expansion

ratio of the bases exchange reconfiguration graph is at least one, as was conjectured

thirty years ago by Mihail and Vazirani [105]. Recall that the expansion ratio of a graph

G is defined as

min

S✓V (G)

|E(S, ¯S)|
min{|S|, | ¯S|}

,

where S is a subset of vertices of G, ¯S is its complement and |E(S, ¯S)| denotes the

number of edges between S and ¯S. As a sideremark, also note that the rapid mixing

result by Anari et al. [14] is not specific to matroids, and holds for any probability

distribution that is d-homogeneous and strongly log-concave, as defined in [14].

Lubiw and Pathak [102] characterized when a labelled matroid basis can be recon-

figured into another labelled basis and proved bounds on the diameter of connected

components of the corresponding reconfiguration graph. The vertices of the graph

are all labelled bases (A, `) of a given matroid M, where A is a basis of rank r and

` : A ! {1, 2, . . . , r} is a one-to-one labelling function. Two labelled bases are ad-

jacent in the reconfiguration graph if one can be obtained from the other by a single

basis exchange step, where a basis exchange assigns the label of the deleted element

to the newly added element. Lubiw and Pathak proved that a labelled basis (A1, `1)

can be reconfigured into a basis (A2, `2) if and only if, for each label l, the elements

in A1 and A2 having label l belong to the same connected component of the matroid.

Two elements e and f of a matroid are said to be in the same connected component if

e = f or if there exists a circuit of M that contains both e and f . They proved a bound

O(r1.5) on the diamater of connected components of the reconfiguration graph. In the

case of graphic matroids, they improved the bound to O(r log r).

28

1.5 Reconfiguration of token arrangements

Ample results on reconfiguration come from the context of token arrangements. Here

the feasible configurations (i.e. the vertices of the reconfiguration graph) are different

assignments of tokens to vertices of a given graph and a reconfiguration step rear-

ranges a subset of the tokens.

The area grew out of the study of the 15-Puzzle (for puzzle’s description, see the

very introduction to Chapter 1) and of its generalizations, and nowadays contains a rich

collection of problem variants. Tokens on graphs also serve as an abstraction for prac-

tical problems, such as robot motion planning (see Section 1.5.2) and, as remarked in

[111], they can in general represent any problem whose solution can be described as

a subset of vertices on a graph (for example, also reconfiguration of perfect matchings

or of spanning trees discussed in previous sections can via line graphs be phrased in

terms of tokens on graphs [137]).

Due to the breadth of the field we will only concentrate here on results broadly

connected to token swapping and do not attempt a complete survey. An interested

reader can consult the surveys in [137; 111]. For pebbling games played on directed

graphs and their relevance to complexity theory, see the survey by Nordström [113].

Token reconfiguration problems generally assume a given undirected graph G. To

define feasible configurations, one specifies the number of tokens to be placed on G’s

vertices, their types and allowed arrangements. Usually each vertex of G can hold

at most one token at a time. The tokens can be all distinct (labelled), or all indistin-

guishable (unlabelled), or in general, coloured, where different colours denote different

tokens but tokens within the same colour class are indistinguishable. Additionally, the

problem may require that only certain token arrangements on G are considered feasi-

ble, for example, requiring that the vertices covered with tokens form an independent

set in G.

Common reconfiguration rules include swapping that exchanges a pair of tokens

placed on adjacent vertices of G, or sliding that slides a token along an edge to an

empty adjacent vertex. A jump (also known as a move) moves a token to any empty

vertex on the graph. A rotation picks a simple cycle in G and pushes all tokens on its

vertices by one vertex around that cycle.

29

Feasible configuration Reconfig.
rule

Tackled reconfiguration
problemsNumber

of tokens
k

Token
types

Token
arrange-
ment

1.5.1 Token Swapping and Sliding
k = n labelled

coloured
any swap see Chapter 3

k = n� 1

labelled

any slide

connectivity, reachability
(Wilson [144])
shortest transformation
(Goldreich [67],
Ratner and Warmuth [123])

coloured shortest transformation
(Yamanaka et al. [147])

any
k < n

labelled

reachability
(Kornhauser et al. [95], Auletta
et al. [16])
diameter
(Kornhauser et al. [95])

coloured reachability
(Goraly and Hassin [68])

unlabelled

reachability
(easy)
shortest transformation
(Călinescu et al. [37])
diameter and other graph
properties
(Fabila-Monroy et al. [61])

Table 1.2: Some studied variants of token reconfiguration problems, part I. Here n is
the number of vertices in the input graph G.

30

Feasible configuration Reconfig.
rule

Tackled reconfiguration
problemsNumber

of tokens
k

Token
types

Token
arrange-
ment

1.5.2 Other sliding variants and motion planning

k < n labelled
unlabelled

any empty
path slide

shortest transformation
(Călinescu et al. [37])

k < n unlabelled
with one
labelled
robot

any & final
position of
obstacles
does not
matter

slide
shortest transformation
(Papadimitriou et al. [117],
Auletta and Persiano [17])

k = n labelled any
robot
carrying
tokens

Graf [69]

k  n
labelled any

rotation &
slides

connectivity, reachability
(Yu and Rus [155])
shortest transformation
(Yu [153],
Yu and LaValle, [154])

k = n
connectivity, reachability,
diameter
(Foerster et al. [62])

k = n

rotation
around
base
cycles

connectivity, reachability
(Scherphius [125],
Yang [151])

1.5.3 Constrained token configurations

k < n unlabelled indep. set slide reachability
(Hearn and Demaine [73])

TAR /
jump /
multiple
token
jump

reachability
(Ito et al. [85],
De Berg et al. [47])
equivalence of TAR and jump
(Kamiński et al. [89])

Table 1.3: Some studied variants of token reconfiguration problems, part II. Here n is
the number of vertices in the input graph G.

31

Tables 1.2 and 1.3 list common combinations of parameter choices – defining the

feasible configurations, the transformation rule and, hence, the reconfiguration graph –

together with the reconfiguration problems studied in the literature. Generally, research

in token reconfiguration has focused on the problems of connectivity, reachability and

shortest transformation (see Section 1.1) in the respective reconfiguration graphs.

The next subsections discuss results on token swapping and sliding, on broader

variants of sliding, and on constrained token configurations.

1.5.1 Token swapping and sliding

A detailed survey on token swapping on graphs is included separately in Chapter 3, as

token swapping is one of the main topics in this thesis. We will concentrate there mainly

on distance questions, but also mention some previous work on deciding reachability

and on diameter. Here we only remark that the shortest transformation problem for a

given pair of labelled/coloured tokens on a graph has also been investigated by using

parallel swaps performed on non-adjacent edges [92].

A related operation to swapping is token sliding. In fact, all sliding puzzles can be

thought of as containing transparent ‘hole’ tokens and performing a special type of

swaps in which one of the swapped tokens must be a ‘hole’.

The classic 15-Puzzle was already studied in the 19th century, see [49; 137; 111]

for surveys. It is a version of token sliding on a 4 ⇥ 4 grid graph with 15 labelled to-

kens and a hole. As a consequence, only half the token configurations (the alternating

group) can be reached. Generalizing beyond the 4 ⇥ 4 grid to general graphs, Wil-

son [144] in 1974 gave a complete characterization of which token configurations on

which graphs can be reached via token sliding, hence deciding connectivity or reach-

ability on the corresponding reconfiguration graph can be done in polynomial time.

Minimizing the number of token slides is NP-complete [67] even for grid graphs [123].

Recently, a version with n� 1 coloured tokens on n-vertex graphs has also been con-

sidered [147] (note that the problem is phrased in terms of n tokens being swapped, but

each swap involves the same particular token). They show it is APX-hard to minimize

number of moves, but polynomial time for trees, complete graphs and cycles.

32

Several papers explore generalizations of the 15-Puzzle to fewer tokens. For k < n

labelled tokens on an n-vertex graph, Kornhauser et al. [95] in 1984 gave a polynomial

time algorithm to decide if reconfiguration between two token placements is possible,

and proved a tight bound of O(n3
) on the diameter of the associated reconfiguration

graph. For k < n labelled tokens on a tree Auletta et al. [16] gave a linear time

algorithm to decide reachability between two token configurations. This result was

used to get a linear time algorithm for reachability for k < n coloured tokens on any

graph by Goraly and Hassin [68].

For k  n unlabelled sliding tokens, many of the reconfiguration problems become

easy, as pointed out in [37; 137]. Two token configurations on an n-vertex graph G are

reachable from each other if and only if each connected component of G contains the

same number of tokens in both configuration. The minimum number of token slides

can be found in polynomial time and the diameter of the reconfiguration graph is at

most n2 [37]. Fabila-Monroy et al. [61] showed that the diameter of the reconfiguration

graph (which they call the “token graph”) is at most k times the diameter of the original

graph. The authors also study other graph-theoretic properties of the reconfiguration

graph like connectivity, chromatic number, Hamiltonian paths, and others.

1.5.2 Other sliding variants and motion planning

Călinescu et al. [37] consider a different notion of the distance where a token in one

move can slide through a path of empty vertices. They show that computing the mini-

mum number of moves is APX-hard even for unlabelled tokens.

Papadimitriou et al. [117] considered a “motion planning” version where all the

k < n tokens are unlabelled “obstacles” except for one labelled “robot” token. The goal

is to move the robot from a start vertex to a destination vertex by sliding the robot or

the obstacles. Note that the endpositions of the obstacles do not matter in this variant.

They showed that minimizing the number of moves is NP-complete for planar graphs

but solvable in polynomial time for trees. The run time for trees was improved in [17].

In another variant, there are k = n labelled tokens and token movement must be

carried out by a single robot walking along the graph edges and carrying at most one

token at a time. The robot does not count as a token and when carrying a token, the

33

robot can pass through other vertices containing tokens until he decides to exchange

the token for another one at some vertex. Graf [69] includes a good summary.

Rather than token sliding across an edge, an alternative motion is rotation of tokens

around a simple cycle in the graph. At one step the tokens can rotate around multiple

disjoint cycles or slide to an adjacent empty vertex. This is of interest in the robotics

community since it models movement of robots with the restriction that no two robots

can travel along the same edge at the same time. When all cycles in a graph may

be used, there are polynomial time algorithms to decide if reconfiguration is possible

[155; 62]. Diameter of the reconfiguration graph is also polynomial [155; 62]. See

also [153] for hardness of shortest transformation (with several ways to measure dis-

tance) and [154] for practical approaches. If rotation is only allowed around the cycles

of a cycle basis (e.g., the faces of a planar graph) Scherphuis [125] provided a char-

acterization (similar to Wilson’s for the 15-puzzle generalization) of which graph/cycle-

basis/token-placement combinations permit reconfiguration (see also Yang [151], who

relates Scherphuis’ result to Wilson’s result).

1.5.3 Constrained token configurations

Sometimes tokens placed on a graph must satisfy some constraints in order to be

considered a feasible configuration. For example, the vertices occupied by tokens

may be required to form an independent set in the underlying graph, i.e. no edge can

connect two vertices with a token. Hearn and Demaine [73] showed that deciding

whether two independent set configurations of k unlabelled tokens on an n-vertex

graph can be reconfigured into each other by sliding is PSPACE-complete, even when

restricted to planar graphs with maximum degree three (in fact, the result holds even

for deciding whether a particular token in the independent set configuration can be

moved). The paper proves the PSPACE-completness of reachability for multiple other

reconfiguration puzzles, not necessarily involving tokens.

Reconfiguration of an independent set of k tokens on a graph has also been stud-

ied using different reconfiguration rules, in particular token jumping; and token addition

and removal (TAR). Note that it is always possible to reconfigure one independent set

of tokens into another if one is allowed to remove sufficiently many tokens. Thus when

34

using TAR, the input to a decision problem also specifies an integer r such that in

the reconfiguration sequence every intermediate token configuration must contain at

least k � r tokens. Ito et al. [85] proved that the reachability problem for independent

set reconfiguration with TAR is PSPACE-complete, again, even when restricted to pla-

nar graphs with maximum degree three. Kamiński et al. [89] showed that using token

jumping on independent sets is equivalent to using TAR with r = 1, i.e. two indepen-

dent set configurations are reconfigurable from one another by using token jumping if

and only if they are reconfigurable by using TAR with r = 1. Intuitively, this is because

any reconfiguration sequence using TAR can be reordered so that token removals and

additions alternate, translating it thus to a (half as long) token jumping sequence. De

Berg et al. [47] study the minimum value of r for which reconfiguration of two indepen-

dent sets via TAR is possible and the structural parameters of the underlying graph

influencing it. They also introduce multiple token jumping, a reconfiguration step when

r tokens can make a jump at once, and again study the minimum value of r for which

the reconfiguration is feasible.

Finally, let us note that similarly as for independent sets, reconfiguration of other

token arangements has been studied as well, for example, reconfiguration of cliques

and vertex covers, see e.g. [85].

35

2 Triangulation Reconfiguration and a Proof of the Orbit

Conjecture for Edge-Labelled Triangulations

In this chapter we discuss problems related to reconfiguration of triangulations and

present new results on flipping edge-labelled triangulations. Our main result is a proof

of the Orbit Conjecture for edge-labelled triangulations, which characterizes when one

edge-labelled triangulation can be reconfigured to another using edge flips.

We start in Section 2.1 by providing basic definitions and introducing the recon-

figuration problems in the context of triangulations. Section 2.2 summarizes the main

triangulation properties and Section 2.3 gives a survey of classical results on triangu-

lation reconfiguration and flip graphs, including flip graphs of triangulations of planar

point sets, simple polygons, convex point set and of combinatorial triangulations; we

also briefly review simultaneous flipping and edge insertion as an alternative way to

reconfigure.

Sections 2.4 to 2.11 cover labelled triangulations. After a general introduction, we

give the basic definitions and motivations for edge labelling in Section 2.5. The Orbit

Theorem as our main result is stated in Section 2.6, together with an overview of re-

lated results. The proof of the Orbit Theorem occupies Sections 2.7 – 2.10. We next

extend the proof of the Orbit Theorem to cover constrained edge-labelled triangula-

tions, which is done in Section 2.11.

We conclude the chapter in Section 2.12 by showing that a shortest flip sequence

reconfiguring one triangulation into another may need to flip edges that already have

the correct position and label, thus bridging into the next chapter where we will explore

analogous problems in the realm of token swapping.

36

2.1 Basic definitions and reconfiguration set-up

Given a set P of n points in a plane, a triangulation of P is a maximal set T of pairwise

non-crossing line segments, also called edges, whose end vertices are the points of

P . When triangulating a simple, not necessarily convex polygon with vertex set Q,

the edges of the triangulation are additionally required to be internal diagonals of the

polygon.

Throughout we assume that the points in P and Q are in general position, i.e., we

require that no three points lie on a line and no four points on a circle. We concentrate

on geometric planar straight-edge triangulations, however, at times we do review some

results on combinatorial triangulations for comparison.

Triangulations have traditionally been studied as reconfiguration problems. A fun-

damental role is played by the flip operation that transforms one triangulation into an-

other and by the reconfiguration graph that is in this context known as the flip graph.

More precisely, an edge e of a triangulation T is called flippable if the two triangles in-

cident to e in T form a convex quadrilateral. Such an edge can be flipped, where a flip

replaces the edge e with the opposite diagonal of the quadrilateral and thus produces

another triangulation T 0. The flip graph has a vertex for each triangulation of the given

point set (or polygon), and an edge whenever two triangulations differ by one flip. Flips

are reversible, hence flip graphs are undirected. An example of a flip graph is given in

Figure 2.1.

The following is a list of classic reconfiguration problems that have been studied in

the context of triangulations. We cover the details in Section 2.3.

Flip graph connectivity. For the classic cases of geometric triangulations of point

sets and polygons, as well as for combinatorial triangulations, the flip graph is con-

nected [97; 98; 52; 142]. This means that any triangulation can be flipped to any other.

For the edge-labelled triangulations that we define in Section 2.5, the flip graph may

be disconnected.

Diameter of the flip graph. The diameter of the flip graph gives the worst-case

number of flips required to reconfigure one triangulation to another. Even though the

37

Figure 2.1: Example of a flip graph of point set with size six.

number of triangulations is exponential, the diameter of the flip graph is usually poly-

nomial in the size of the point set.

Finding some flip sequence between two given triangulations. It is important

to have algorithms that compute a (reasonably short) flip sequence between any two

given triangulations. Often one can flip both triangulations into a canonical one. For

this purpose, the Delaunay triangulation can be used for general point sets, the con-

strained Delaunay triangulation can be used for polygons, or a triangulation where all

edges meet at a single vertex can be used for convex point sets.

Computing the flip distance and shortest paths in flip graphs. The flip distance

between two triangulations is the minimum number of flips needed to transform one

triangulation into the other, i.e., it is the length of the shortest path between the two tri-

angulations in the flip graph. It is NP-complete to compute the flip distance for general

point sets and polygons [101; 7], and the problem is open for convex point sets.

Computing the number of triangulations and generating random triangulations.

Generating a triangulation of a point set uniformly at random by random flipping and

38

a related question of counting the number of triangulations are open. Although it

has been established that point set triangulations contain a linear number of flippable

edges, more results on connectivity of flip graphs and mixing are needed. The existing

bounds on the number of point set triangulations are also not tight.

Optimizing triangulation properties. Sometimes it is desirable to construct trian-

gulations optimizing certain measures. There exist algorithms that use triangulation

reconfiguration (either flipping or edge insertion that is introduced in Section 2.3) to

construct triangulations minimising, maximising or approximating some of the follow-

ing: total length of edges, maximum or minimum angle, triangle area, height, edge

length, eccentricity and others. Finding efficient algorithms to optimize other triangula-

tion properties is mostly open.

As already hinted at in Chapter 1, reconfiguring triangulations via flips has been

important in various applications as well as related to the study of other mathematical

objects. Triangulation flipping has been used in the study of combinatorial structures,

such as associahedra and rotations in binary trees [129], in graph untangling, or in

mixing of triangulation walks [107]. In geometric graph theory triangulations further

give useful information on other kinds of planar graphs, such as non-crossing spanning

trees, as these are subgraphs of triangulations. Flips are also important in practice, for

example in computer graphics, to generate triangular meshes approximating shapes;

and for finding triangulations that optimize certain quality measures [22; 54]. The

survey by Bose and Hurtado [30] discusses these and many other aspects of flips.

Despite the long-term interest, some fundamental questions about triangulations

remain hard to answer. The reason may partially lie in the fact that the number of trian-

gulations is exponential in the size of the point set. Thus it quickly becomes impossible

to construct flip graphs explicitly, and tools like polynomial time shortest paths graph

algorithms must be replaced by other more sophisticated methods.

We give a short survey of the classic results on flip graphs in Section 2.3. To do

that, let us start with a short review of basic triangulation properties in the next section.

39

2.2 Some triangulation properties

In this section we summarise basic triangulation properties. A friendly introduction can

be found, for example, in a textbook by Devadoss and O’Rourke [50].

From the definition of a triangulation, it is easy to see that a triangulation of a poly-

gon or a point set P always exists. Also, any set S of pairwise non-crossing edges with

vertices from P can be extended into a triangulation – this is known as a constrained

triangulation (with respect to S). A triangulation forms a maximal planar graph and it

can be shown that it is a subdivision of the convex hull of the point set or of a polygon

into triangular faces. [50].

The number of edges and of triangles is constant across all triangulations of a

single point set or polygon. All triangulations of a point set P in general position with

h points on the convex hull and k points inside contain h � 2 + 2k triangles and h �

3 + 3k internal edges. In case of an n-vertex polygon Q, triangulations always have

n � 2 triangles and n � 3 internal edges. These counts do not include edges on the

convex hull of P (or on the polygonal boundary of Q), since such edges belong to

every triangulation of P (or Q) and are always non-flippable. Those relations can be

deduced from the Euler’s formula, stating that for any connected planar graph,

vertices�# edges+# faces = 2.

In particular, a maximal planar graph with a triangular outerface on n vertices has 2n�4

faces (including the outerface) and 3n � 6 edges (including the edges on the convex

hull).

Simple algorithms for triangulating include triangle splitting and an incremental al-

gorithm for point sets, or an ear-trimming algorithm for simple polygons without holes

[50].

An ear of a polygon is a triangle abc such that the points a, b, c lie consecutively on

polygonal boundary and the diagonal ac lies in polygon’s interior. It can be proven that

any simple polygon without holes with more than three vertices contains at least two

ears [50]. Then to triangulate a polygon, iteratively “cut off” an ear until a triangulation

is obtained.

40

The triangle splitting algorithm first finds and triangulates the convex hull of a given

point set as if it was a polygon. The remaining interior points of the point set are

then, one at a time, connected to the three vertices of the triangle they are in, until a

triangulation is obtained.

Finally the incremental triangulation algorithm scans the points of a point set in

order of their x-coordinates. The first three points create a triangle and every next

point is connected to all previous previous points that are visible from it, resulting in a

triangulation.

All of the above triangulation algorithms have naive implementations in O(n2
) time,

where n is the number of vertices. It was proven that a simple polygon can be triangu-

lated in O(n) time [42], but this algorithm requires a very cumbersome implementation.

In practice, to obtain a generic triangulation (i.e. a triangulation not optimised for any

specific property), O(n log n) time algorithms are used [50].

The problem of deciding whether a set of edges contains a triangulation of the point

set was shown to be NP-complete [99].

Regarding triangulation embeddings, by a theorem of Whitney (see, for example

[112]) any 3-connected planar graph has a unique plane embedding. This means

that for any 3-connected triangulation T , the set of faces in any plane embedding

of its (abstract) graph is the same and is equal to the set of triangles in the original

triangulation. Moreover, given the graph of T , the plane embedding can be recon-

structed, and drawn with straight-line edges, by using a drawing algorithm for planar

graphs, for example, the one devised by Tutte [136], or some of its improvements [126;

48], where any face can be made into an outer face of such a drawing. For an n-vertex

planar graph, efficient versions of the graph drawing algorithms run in linear time [126;

48]. Finally, if a triangulation is 4-connected, then by Tutte’s theorem it has a Hamilto-

nian circuit [135].

A triangulation that is special in several respects is a Delaunay triangulation; we de-

note it by DT. An introduction to its basic properties can be found, e.g., in the textbook

by Devadoss and O’Rourke [50]. The Delaunay triangulation maximises the minimum

angle present in any triangle of a triangulation over all possible triangulations of a given

point set P . Assuming general position, an edge ab, with a, b 2 P , belongs to DT(P)

if and only if there exists an empty circle through a and b, i.e. a circle that passes

41

through points a and b and contains no other points of P in its interior. The Delaunay

triangulation can be built in time O(n log n). A remarkable fact is that if a triangula-

tion of a point set is not Delaunay, then there always exists a local improvement step:

a Delaunay flip (sometimes also called Lawson flip). An edge ac represents a De-

launay flip for an edge bd if ac crosses bd and ac 2 DT({a, b, c, d}). A sequence of

Delaunay flips cannot be cyclic and so, irrespective of which triangulation of P we start

with, the flip sequence produces the Delaunay triangulation. This algorithm is also

called a Lawson flip algorithm. For details, see the original results by Lawson in [97;

98] or a textbook explanation in, e.g., [50].

Analogous results exist for constrained triangulations. Given a set S of pairwise

non-crossing edges on a point set P , the constrained Delaunay triangulation of P

and S maximizes the minimum angle present in any triangle of a triangulation over all

possible triangulations of P containing the edges in S [54]. It is defined analogously

to the standard Delaunay triangulation, except that the empty circle property of an

edge tolerates points to be inside the circle, as long as they are not visible from the

defining edge. More precisely, points a, b 2 P are said to be visible from each other

if the segment ab does not cross any of the constrained edges in S (assuming the

general position of points). Then the edge ab belongs to the constrained Delaunay

triangulation of P and S if either ab 2 S or if the points a and b are visible from each

other and there is a circle through a and b such that each point inside this circle is

invisible from every point of ab. Note that if the set of constrained edges is empty,

the constrained Delaunay triangulation becomes the standard Delaunay triangulation.

The constrained Delaunay triangulation can be built in time O(n log n), see [44; 22].

As before, if a triangulation T of P constrained to S is not constrained Delaunay, it is

possible to define a local improvement step. Call an edge ab 2 T locally constrained

Delaunay if either ab is a constrained edge from S, or a convex hull edge, or if the

circle defined by points a, b, c does not contain the point d, where abc and abd are

triangles of T . It can be shown that, irrespective of which constrained triangulation we

start with, flipping the non-locally-constrained-Delaunay edges cannot be cyclic and

so, after O(n2
) flips produces a triangulation in which every edge is locally constrained

Delaunay. Finally, one can prove that such a triangulation is the constrained Delaunay

triangulation. For details, see, for example [54].

42

With the above we are ready to discuss the connectivity and other properties of flip

graphs, which we do in the next section.

2.3 Review of flip graph properties and triangulation reconfiguration

In this section we review classical results on triangulation reconfiguration as introduced

in Section 2.1. We survey the topics of connectivity, diameter, flip sequences, flip dis-

tance and other aspects of flipping for planar point sets, simple polygons, the special

case of convex polygon, as well as mention the main results on combinatorial trian-

gulations. An overview of the properties is given in Table 2.1. For further results on

triangulation flipping in geometric, as well as combinatorial settings, see the survey

by Bose and Hurtado [30]. Finally, apart from classic flipping we also briefly discuss

the main results on other ways of reconfiguring triangulations – simultaneous flips and

edge insertion.

Flip graphs of planar point sets

Lawson [97] proved the foundational result that any triangulation can be transformed

into any other triangulation of the same point set via a sequence of flips. His second

proof of this result [98] uses the approach that is more widely known—showing that

any triangulation can be flipped to the Delaunay triangulation as described in Section

2.2, which then acts as a “hub” through which we can flip any triangulation to any other.

Thus the flip graph of a planar point set is always connected. The diameter of the flip

graph is known to be ⇥(n2
) where n is the size of the point set. The upper bound was

proved by Lawson [98] and the lower bound by Hurtado et al. [83]. Their paper also

discusses a result stating that for point sets the diameter of the flip graph depends on

the number of convex layers, l, of the point set and states that the diameter is O(ln)

[83].

Analogous results hold for flip graphs of constrained triangulations. Several times

in the next sections we will use the result that if two triangulations of the same point

set have a subset, S, of constrained edges in common, then there is a sequence of

flips that transforms one triangulation into the other, without ever flipping any edge

43

n = # of tri-
angulation
vertices

a
Flip graph
connectivity
proven by

To
reconfigure
triangulations,

can use

a
aFlip graph
diameter d

a
Computing
the flip
distance

a
Number of

triangulations

Planar point
sets

Lawson [97] Delaunay
triangulation

⇥(n2
)

Lawson [98];
Hurtado et
al. [83]

NP-hard
APX-hard
Lubiw,
Pathak
[101];

Pilz [118]

⌦(8.65n)
O(30

n
)

Dumitrescu et al.
[51];

Sharir, Sheffer
[128]

Constrained
triangulations

Dyn et al.
[52]

constrained
Delaunay

triangulation

a
⇥(n2

)

NP-hard
Aichholzer
et al. [7]

Simple
polygons

Bern,
Eppstein

[22]

constrained
Delaunay

triangulation

⇥(n2
)

Bern,
Eppstein

[22]; Hurtado
et al. [83]

NP-hard
Aichholzer
et al. [7]

Convex point
set

Wagner
[142]

triangulation
with all
edges

meeting at a
single vertex

2n� 10 for
n > 12

Sleator et al.
[129];

Pournin [121]

Catalan number

1

n� 1

✓
2(n� 2)

n� 2

◆

Combinatorial
triangulations

Wagner
[142]

Wagner’s
canonical

form

7n
3 � 34 

d  5n� 23

Frati [63];
Cardinal et
al. [39]

Table 2.1: Overview of flip graph properties for triangulations of size n.

44

of S, i.e., the edges in S remain fixed throughout the flip sequence. This was first

proved by Dyn et al. [52], and can alternatively be proved using constrained Delaunay

triangulations as explained in Section 2.2. The diameter of the constrained flip graph

is again ⇥(n2
). For details, see, for example [22; 54].

Given two point set triangulations, computing some flip sequence transforming one

into the other is easy – just use Lawson’s algorithm from above. The situation changes

if one wants to find the shortest flip sequence between the triangulations. In general

this is possible only for very small n, by explicitly constructing the flip graph and running

a shortest path algorithm. Computing the distance in the flip graph between two given

triangulations of a point set is NP-hard [101], and even APX-hard [118]. It has recently

been shown to be fixed-parameter tractable [90].

If the point set contains no empty convex pentagon (i.e. no five points form a convex

polygon empty of other points of the point set), Eppstein gave an O(n2
)-time algorithm

for computing the flip distance. For arbitrary point sets, this algorithm computes a

lower bound on the flip distance [57].

Yet another result on flip distances was given by Hanke et al. [71] who upper-

bound the flip distance between two triangulations of a point set by the number of

edge intersections when the two triangulations are drawn on top of each other.

Any triangulation of an n-vertex point set in general position was proven to have at

least d(n� 4)/2e flippable edges [83]. Hence, the vertex degrees in the corresponding

flip graph must all be of order ⇥(n), i.e. roughly uniform.

Also notice that the flip graph of a point set is usually not bipartite. This is because

whenever the point set contains an empty convex pentagon, the five flips in Figure 2.3

define a 5-cycle in the flip graph.

The exact numbers of triangulations are unknown. For n points in general position,

the number of triangulations varies, depending on the combinatorial type of the point

set, and there has not been established a tight bound. In [128], it was proved that the

number of different triangulations is O(30

n
). There exist point sets with ⌦(8.65n) trian-

gulations [51]. Also, any n-vertex point set in general position has at least ⌦(2.631n)

geometric triangulations [2]. As compared to a point set in convex position (see be-

low), the number of triangulations of a general point set can be smaller or larger than

45

the Catalan number Cn�2 but it will always be exponential.

Flip graphs of simple polygons

Bern and Eppstein [22] showed that Lawson’s proof [98] of flip graph connectivity in

which each triangulation is transformed into a canonical form applies to simple poly-

gons. One just needs to use the constrained Delaunay triangulation, where the set of

constrained edges contains the polygonal boundary. Hence, it is always possible to

flip between two triangulations of the same polygon.

By an analogous argument as for point sets, the diameter of the flip graph is ⇥(n2
)

[22; 83]. Hurtado et al. [83] express the diameter as a function of the number of its

reflex vertices. In particular, for an n-vertex simple polygon Q with k reflex vertices,

the diameter is O(n+ k2
) [83].

The problem of computing the flip distance remains NP-hard for triangulations of a

simple polygon [7].

The number of flippable edges in a triangulation of a simple polygon with k reflex

vertices is at least n� 3� 2k, proved in [83].

A simple polygon on n vertices can have between 1 and the Catalan number Cn�2

of triangulations, where the latter occurs when the vertices lie in a convex position (see

[50] and below).

For not necessarily simple polygons, Eppstein [59] showed that counting the num-

ber of triangulations of a given polygon is #P-complete.

Flip graphs of the convex point set

Worth discussing is the special case of triangulations of convex point sets. In this

case triangulations correspond to binary trees, and a flip corresponds to a rotation.

A little survey on binary trees and rotations as well as the correspondence between

triangulations and binary trees can be found in [129].

46

Unlike for the general point sets, the exact flip graph size is known: for a convex

n-gon there exist Cn�2 different triangulations where

Cn�2 =
1

n� 1

0

@ 2(n� 2)

n� 2

1

A
= ⇥(n� 3

2 · 4n)

is the Catalan number, see [50]. The flip graph of an n-vertex point set in convex

position is connected, Hamiltonian [103; 81] and, moreover, it is the 1-skeleton of an

(n� 3)-dimensional polytope called the associahedron, see [50].

The diameter of the flip graph is equal to 2n � 10 for all convex point sets of size

n > 12, proved in [129; 121]. The upper bound was proven by Sleator et al. [129]

directly by transforming any pair of triangulations into a triangulation in which all edges

meet at a single vertex. For the lower bound, given a pair of triangulations of the

same point set, Sleator et al. form a polyhedron by gluing the triangulations along

the outer boundaries and show that being able to triangulate the polyhedron with k

tetrahedra corresponds to a flip sequence of length k between the two triangulations.

They use hyperbolic geometry to generate polyhedra that require many tetrahedra to

be triangulated and prove the lower bound of 2n�10 on the flip graph diameter as long

as n is sufficiently large. About tweny-five years later Pournin [121] reproved the result

by purely combinatorial methods, and, moreover, was able to prove the lower bound

of 2n � 10 for all point sets of size n > 12. Note that in terms of the associahedron

dimension, this result states that a d-dimensional associahedron has diameter 2d � 4

whenever d > 9.

Given two convex point set triangulations, computing some flip sequence recon-

figuring one into the other is easy. The situation is again different if one requires the

shortest flip sequence or the flip distance. The complexity status of computing the flip

distance for triangulations of convex polygon is open.

Sleator et al. [129] give some results regarding the shortest flip sequence. In par-

ticular, they prove that if two given triangulations of the same convex point set have

some edges in common, then a shortest flip sequence between them never flips these

edges. Moreover, if such an edge was flipped, the resulting flip sequence would be

by at least two flips longer than the shortest flip sequence. Another result states that

if flipping an edge e in the first triangulation increases the number of edges that the

47

two triangulations have in common then there exists a shortest flip sequence in which

the first flip flips the edge e. All of these results are proven by so-called triangulation

normalization [129].

Flip graphs of combinatorial triangulations

A combinatorial triangulation is a simple maximal planar graph in which a clockwise

order of incident edges is specified around every vertex. There is apriori no specified

embedding. No multiple edges or loops are allowed. If embedded as a triangulation,

the faces, including the outerface, would all be 3-cycles. There would be exactly 3n�

6 edges and 2n � 4 faces, where n is the number of vertices. Since all maximal

planar graphs are 3-vertex-connected, by a result by Whitney (see Section 2.2) the

embedding of a combinatorial triangulation in plane is unique.

Flipping is well-defined in a combinatorial triangulation, since removing an edge ac

determines a 4-cycle abcd, where abc and acd are 3-cycles of the triangulation. Then

ac can flip to bd as long as the edge bd is not yet present in the triangulation. A flip can

result in an isomorphic triangulation and since no loops are allowed, such a flip would

not correspond to an edge in the flip graph.

The fact that the flip graph of combinatorial triangulations is always connected was

first established by Wagner by transforming the triangulations to the so-called Wagner

canonical triangulation form [142].

The diameter of the flip graph was proved to be of order⇥(n) where n is the number

of vertices in the triangulation; Sleator et al. [130] proved the upper bound, while the

lower bound follows from reconfiguring certain classes of triangulations to Wagner’s

canonical form. The best known upper bound on the diameter is currently 5n � 23 by

Cardinal et al. [39] and the best lower bound 7n
3
� 34 by Frati [63].

Sleator et al. [130] also discussed combinatorial triangulations with vertex labels.

These can be seen as a triangulation form in between the classic combinatorial trian-

gulations and the geometric planar triangulations. In this case they proved the diame-

ter of the flip graph for an n-vertex triangulation to be ⇥(n log n).

For a survey on combinatorial triangulations, see [32].

48

Optimizing triangulation properties, silmultaneous flips and edge insertion

So far we discussed properties of flip graphs and flipping. Flips provide a one-step

reconfiguration, transforming a triangulation into an adjacent one in the flip graph. In

this section we review reconfiguration methods that enable one to make bigger ‘jumps’

in the flip graph, between triangulations that are not necessarily adjacent. These are

‘simultaneous flips’ and ‘edge insertion’.

One motivation for studying these types of reconfigurations is that making bigger

steps in the flip graph is useful in optimizing some quality measures in triangulations.

In the case of optimizing a measure by classic flipping, the flip sequences can get stuck

in triangulations that are only locally optimal, and miss a triangulation that optimizes

the given measure over all triangulations.

Simultaneous flipping

Simultaneous flipping was introduced by Hurtado et el. [82]. In the geometric setting

a simultaneous flip can flip a set of edges in parallel, as long as each edge is flippable

individually and no two of these edges are incident to the same triangle.

Galtier et al. [64] proved that any triangulation of an n-vertex point set or a simple

polygon can be reconfigured to any other triangulation in⇥(n) simultaneous flips, while

for triangulations of a convex point set this quantity changes to ⇥(log n) flips.

In the combinatorial setting, in addition to requiring that no two of the edges to be

flipped are incident to the same triangle, we also require that the simultaneous flip

does not create any multiple edges. Note that it is possible that the simultaneous flip

includes an edge that could not be flipped individually. Bose et al. [29] proved that to

reconfigure a combinatorial triangulation into any other, ⇥(log n) simultaneous flips are

sufficient and sometimes necessary.

A comparison of bounds on flip sequence lengths between classical and simultane-

ous flipping for the different triangulation types can be found in the first two columns of

Table 2.2 on page 57. In all cases simultaneous flipping saves a non-constant number

of flips.

49

Edge insertion

As was already discussed in previous sections, important (triangulation) reconfigu-

ration problems involve computing the flip graph diameter and short flip sequences.

Another aspect of triangulations that applications such as mesh generation often ask

for is to generate a triangulation optimizing certain quality measures. The main goal

is the following: given a quality measure, identify a triangulation that optimizes the

measure over all possible triangulations of a given point set.

There are two caveats one needs to consider. Firstly, what constitutes a ‘good’

quality measure is not clearly defined and depends on an application. A general rule

in computer graphics and elsewhere is to require that the triangulations do not contain

‘long and thin’ triangles [21; 50]. This can be ensured by minimizing, for example,

the maximum angle, maximum edge length, maximum triangle eccentricity, maximum

area, maximum radius of a circumcircle or a smallest enclosing circle of a triangle in

the triangulation [21; 55; 138; 43]. Usually, the property to be optimised depends on

a single triangle and the quality of a triangulation is considered to be the quality of its

worst triangle [21]. Secondly, different measures are typically optimised by different

triangulations. For example, the Delaunay triangulation introduced in Section 2.2 max-

imizes the minimum triangle angle present in a triangulation, over all triangulations of

the point set. It also minimizes the maximum circumradius or the maximum radius of

the smallest enclosing circles of triangles in a triangulation [43], however, if one wishes

to, for example, minimize the maximum angle, then the Delaunay triangulation may not

be the globally optimal triangulation [56].

A reasonable approach to obtain an optimal triangulation is to start with an arbitrary

triangulation of the point set and, through a sequence of improvement steps, reach a

triangulation globally optimizing the given criterion. One has to guarantee that when-

ever the current triangulation is not yet optimal, an improvement step is possible. At

the same time the algorithm should be able to find the global optimum in polynomial

time. Lawson’s edge-flipping algorithm introduced in Section 2.2 reaches in this way

the Delaunay triangulation. For other measures, however, Bern et al. [21] show that

edge flipping can get stuck at a locally optimal triangulation.

Edelsbrunner et al. [56] introduce an alternative to edge-flipping: edge insertion.

50

Given a triangulation T of a point set P and two points u, v 2 P , the edge uv is inserted

into T by adding uv into T , deleting all edges of T that cross uv and retriangulating the

created polygonal regions in a suitable way. Similarly to edge flipping, edge insertion

provides a way of generating a new, locally changed triangulation. Unlike edge flipping,

it makes ‘bigger jumps’ between triangulations in a flip graph, and so it might also be

better able to leave local maxima.

Edge insertion is associated with decreasing angle sizes at the endpoints of the

inserted edge. Triangular properties that are at least partially related to angle sizes

are, for example, the maximum angle in a triangulation, minimum height, triangle ec-

centricity, and possibly others. Bern et al. [21] formulate a general edge insertion

paradigm. This gives a polynomial-time edge insertion algorithm that, if applied to a

triangle measure µ satisfying certain specified criteria, is guaranteed to output a trian-

gulation globally optimising µ over all triangulations of a given polygon or a point set.

In particular, the authors [56; 21] prove that the maximum angle and the negative of

the minimum triangle height in a triangulation satisfy the conditions of the paradigm

and, hence, can be optimized via edge insertion.

For a survey on optimizing triangulation properties, including the edge insertion

method, see [22].

2.4 Introduction to edge-labelled triangulations

For the remainder of this chapter we turn our attention to one of the main objects of

study within this thesis: the edge-labelled triangulations of point sets. After introducing

the necessary concepts and background, we present a proof of the Orbit Conjecture

that characterizes when two edge-labelled triangulations are connected by a sequence

of flips.

More precisely, in the labelled setting each edge of a triangulation has a label, and

a flip transfers the label of the removed edge to the new edge. It turns out that it is

no longer true that every labelled triangulation of a point set can be reconfigured to

every other labelled triangulation via a sequence of flips, but we characterize when

this is possible. There is an obvious necessary condition: for each label l, if edge e

51

has label l in the first triangulation and edge f has label l in the second triangulation,

then there must be some sequence of flips that moves label l from e to f , ignoring all

other labels. Bose, Lubiw, Pathak and Verdonschot formulated the “Orbit Conjecture”,

which states that this necessary condition is also sufficient, i.e. that all labels can

be simultaneously mapped to their destination if and only if each label individually

can be mapped to its destination. We prove this conjecture. Furthermore, we give

a polynomial-time algorithm to find a sequence of flips to reconfigure one labelled

triangulation to another, if such a sequence exists, and we prove an upper bound of

O(n7
) on the length of the flip sequence.

Our proof uses the topological result that the sets of pairwise non-crossing edges

on a planar point set form a simplicial complex that is homeomorphic to a high-dimen-

sional ball (this follows from a result of Orden and Santos; we give a different proof

based on a shelling argument). The dual cell complex of this simplicial ball, called

the flip complex, has the usual flip graph as its 1-skeleton. We use properties of the

2-skeleton of the flip complex to prove the Orbit Conjecture.

Although there is a rich literature on associahedra and on cell complexes associ-

ated with triangulations of point sets, there are very few other combinatorial results

that require topological proofs, as our proof of the Orbit Theorem seems to. One other

example is the study of graph colourings and their reconfiguration where topological

properties of the so-called box complex has been used. See Wrochna [146] for a list

of works that used the box complex to obtain lower bounds on chromatic numbers of

various families of graphs, as well as for some new ways of using the box complex for

colouring reconfiguration.

We start in Section 2.5 with a general motivation and basic definitions related to

edge-labelled triangulations. Section 2.6 states the Orbit Theorem and gives a brief

summary of previous relevant results. In Sections 2.7 - 2.10 we prove the Orbit Theo-

rem. The proof is subsequently extended in Section 2.11 to cover constrained edge-

labelled triangulations.

52

2.5 Basic definitions and motivation for edge-labelling

Despite the extensive work on flips in triangulations, it is only recently that the question

of where edges go under flip operations has been investigated. This is formalized by

attaching a label to each edge in a triangulation. A labelled triangulation T of a planar

point set P is a pair (T, `) where T is a triangulation of P and ` is a labelling function

that maps the edges of T one-to-one onto the labels 1, 2, . . . , tP . Here tP is the number

of (interior) edges in any triangulation of P . Two labelled triangulations (T1, `1) and

(T2, `2) are the same if both the unlabelled triangulations and the corresponding labels

coincide, i.e. T1 = T2 and `1 = `2. When we perform a flip operation on T , the label

of the removed edge is transferred to the new edge. The labelled flip graph has a

vertex for every labelled triangulation of the point set and an edge when two labelled

triangulations differ by a flip.

Edge-labelled triangulations were introduced independently in several papers, by

Araujo-Pardo et al. [15], Bose et al. [31] and Espinas et al. [60]. The idea is that recon-

figuring one triangulation into another moves the edges and labelling them enables us

to track where the individual edges go during this process. This may reveal more about

the structure and flip sequences in the (unlabelled) flip graph. For example, knowing

the start and end position of each edge was used by Eppstein [57] in developing an

algorithm to compute flip distances between triangulations of point sets that contain

no empty convex pentagon, i.e. point sets where no 5 points form a convex polygon

empty of other points in its interior.

Espinas et al. [60] used edge labels in an algorithm that reduces the length of an

existing flip sequence � between (unlabelled) triangulations of point sets (or between

combinatorial triangulations). The reduced flip sequence reconfigures the initial trian-

gulation into the same triangulation as the original flip sequence �, up to a permutation

of labels. The authors show that if T1 and T2 are triangulations of the convex point set,

and the flip sequence � reconfigures T1 into T2 , then � can be transformed into any

other flip sequence, and in particular into the shortest flip sequence between triangu-

lations T1 and T2 by applying some number of their reduction operations [60]. More

results on the convex point set appeared in [15; 31] and are discussed in the next

section.

53

Another potential application of edge labelling is to reconfiguration problems of pla-

nar graphs as these are subgraphs of triangulations or, as a means to carry additional

information about the triangulation [60].

In what follows we work with edge-labelled triangulations as defined above; but we

remind the reader that there exist other types of triangulation labellings, as discussed

in Section 1.3.1.

Throughout, we fix a set P of n points in general position. We say that edges e

and f lie in the same orbit if we can attach label l to e in some triangulation and apply

some sequence of flips to arrive at a triangulation in which edge f has label l. The

orbits are exactly the connected components of a graph that Eppstein [57] called the

quadrilateral graph—this graph has a vertex for every one of the possible
�
n
2

�
edges

formed by point set P , with e and f being adjacent if they cross and their four endpoints

form a convex quadrilateral that is empty of other points (i.e. whenever e and f can be

flipped into each other in some triangulation of P). In particular, this implies that there

is a polynomial-time algorithm to find the orbits.

The orbits can be very different depending on P . For a point set in convex position,

all the non-convex hull edges are in a single orbit [31]. At the other extreme there are

point sets like grids that contain no empty convex pentagon. Eppstein [57] proved that

a point set P with no empty convex pentagon has the property that in any triangulation,

the edges are all in distinct orbits. Then, if one (unlabelled) triangulation of P needs

to be reconfigured into another, every edge has a uniquely determined target edge

in the final triangulation onto which it must eventually flip. If an edge labelling of the

triangulations does not respect these orbits, then no flip sequence exists between the

edge-labelled triangulations.

This illustrates a further difference between labelled and unlabelled triangulations:

unlike in the unlabelled case, a flip graph of labelled triangulations can be discon-

nected. It happens whenever the point set or polygon has multiple orbits: for example,

in point sets with no empty convex pentagon, but also whenever some edge is fixed or

can be flipped only within some restricted region, see for example Figure 2.2.

54

Figure 2.2: Point set with a disconnected flip graph of labelled triangulations. Colours
of individual diagonals indicate the orbit that they belong to. For example, no blue
diagonal will ever be able to flip to replace any of the red diagonals.

2.6 Orbit Conjecture and related results

Orbits tell us where each individual edge label can go, but not how they combine. One

of the main questions that we address in this thesis is:

When is there a sequence of flips to reconfigure one labelled triangulation of point

set P to another labelled triangulation of P?

A necessary condition is that, for each label l, the edges with label l in the two

triangulations must lie in the same orbit. Bose et al. [31] conjectured that this condition

is also sufficient. As our main result on edge-labelled triangulations we prove this

“Orbit Conjecture” and strengthen it by providing a polynomial-time algorithm and a

bound on the length of the flip sequence.

Theorem 1 (Orbit Theorem). Given two edge-labelled triangulations T1 and T2 of a

point set, there is a flip sequence that transforms one into the other if and only if for ev-

ery label l, the edges of T1 and T2 having label l belong to the same orbit. Furthermore,

there is a polynomial-time algorithm (with O(n8
) being a crude bound on its run-time)

that tests whether the condition is satisfied, and if it is, computes a flip sequence of

length O(n7
) to transform T1 to T2.

The Orbit Theorem holds for combinatorial triangulations [31], and for pseudotri-

angulations [33]. In both these cases there is a single orbit, the labelled flip graph is

connected and so any reconfiguration of labels can be realized by flips. There are also

some related results using variants of the flip operation, for example, Cano et al. [38]

reconfigured edge-labelled non-maximal plane graphs by “rotating” edges around one

55

of their endpoints; again there is a single orbit. A related result where there are multi-

ple orbits is an analogue of the Orbit Theorem for edge-labelled spanning trees of an

underlying graph by Hernando et al. [75]. A flip in this case is an exchange of a span-

ning tree edge, carrying over the respective label. This was generalized to an Orbit

Theorem result for labelled (or “ordered”) bases of a matroid—one labelled basis can

be turned into another labelled basis via basis exchange steps if and only if elements

with the same label lie in the same connected component of the matroid [102].

In the geometric triangulations setting, the conjecture had been known to hold for

point sets with no empty convex pentagon based on the work by Eppstein [57]: com-

bining the result that each triangulation of such a point set contains one edge per each

orbit with the fact that unlabelled triangulations can always be reconfigured by a se-

quence of flips gives the Orbit Theorem for this class of point sets. Bose et al. [31]

formulated the Orbit Conjecture and proved it for the special cases of triangulations

of any convex or spiral polygon and in each case found tight bounds on the diameter

of connected components in the corresponding labelled flip graph. Bose et al. [31]

also found the best known lower bound on the diameter of a connected component

of the labelled flip graph for a point set, namely ⌦(n3
). There is a large gap between

this lower bound and our upper bound of O(n7
) stated in the Orbit Theorem. Finally,

after publishing our proof of the Orbit Theorem, Pilz [119] was able to modify hard-

ness proofs from the unlabelled setting and showed that computing the flip distance

between edge-labelled triangulations of point sets is APX-hard and between edge-

labelled triangulations of simple polygons it is NP-hard.

We now describe some of the above results in more detail.

Orbit Theorem for convex point sets. As we mentioned earlier, all edges spanned

by a convex point set (ignoring the convex hull edges that can never flip) lie in a single

orbit, and so proving the Orbit Conjecture amounts to proving that the labelled flip

graph is connected. Bose et al. [31] showed that this is indeed the case and gave tight

bound of ⇥(n log n) on the diameter of the flip graph (where the lower bound ⌦(n log n)

comes from an argument by Sleator et al. [130]). The authors also proved that there

exists a polynomial time approximation algorithm with factor O(log n) for computing

the flip distance for edge-labelled triangulations of convex point sets [31]. In the case

56

when simultaneous labelled flips are allowed, Bose et al. [31] prove that O(log

2 n)

simultaneous flips are always sufficient and ⌦(log n) simultaneous flips are sometimes

necessary to reconfigure one labelled triangulation into another.

Araujo-Pardo et al. [15] independently proved the Orbit Conjecture for convex point

sets, and introduced “colourful associahedra” which generalize associahedra to the

setting of labelled (or coloured) triangulations. More precisely, as the flip graph of

unlabelled triangulations of a convex point set is the 1-skeleton of the polytope called

associahedron, Araujo-Pardo et al. showed that the flip graph of labelled triangulations

is the 1-skeleton of a polytope that they call the colourful associahedron.

Orbit Theorem for spiral polygons. Bose et al. [31] fully characterized the orbits

and proved the Orbit Conjecture for spiral polygons. These are simple polygons with

a single reflex chain. Depending on the vertex set, they can have multiple orbits. The

orbits were shown to consist of all the diagonals in the respective maximal locally

convex subpolygons, where a subpolygon is locally convex if every four consecutive

points on the convex part of its polygonal boundary form a quadrilateral empty of other

points. The labelled flip graph was proved to be connected if the polygon is locally

convex, and to contain multiple connected components otherwise. The authors proved

a tight bound⇥(n2
) on the diameter of each of connected components of the flip graph,

where n is the number of vertices in the polygon. Moreover, local convexity and, hence,

the existence of a reconfiguring flip sequence can be checked in O(n) time [31].

Lower bound on flip graph diameter for planar point sets and polygons. Bose

et al. [31] constructed an example of a polygon on 2n + 2 vertices, the so-called,

augmented channel, whose labelled flip graph has diameter ⇥(n3
). This is the best

known lower bound on the diameter of a connected component of the labelled flip

graph of a polygon or point set. It is larger than the corresponding bound for flip

graphs of unlabelled triangulations.

A comparison of flip sequence lengths required to reconfigure triangulations in dif-

ferent settings as we discussed in Sections 2.3 – 2.6 is given in Table 2.2.

57

n = # of
triangulation
vertices

Unlabelled
(classic) flips

Unlabelled
simultaneous

flips

Edge-labelled
(classic) flips

Edge-labelled
simultaneous

flips

Planar point
sets

⇥(n2
)

Lawson [98];
Hurtado et al.

[83]

⇥(n)

Galtier et al.
[64]

O(n7
) (*) (4)

⌦(n3
) (*) (4)

Lubiw et al.
[100];

Bose et al.
[31]

O(n7
) (*)

⌦(n2
) (*)

follows from
(4) results

Simple
polygons

⇥(n2
)

Bern,
Eppstein [22];
Hurtado et al.

[83]

⇥(n)

Galtier et al.
[64]

O(n7
) (*)

⌦(n3
) (*)

Lubiw et al.
[100] and

Section 2.11
in this thesis;
Bose et al.

[31]
Spiral
polygon

⇥(n)

Hanke [70]
⇥(n2

) (*)
Bose et al.

[31]
Convex point
set

2n� 10 for
n > 12

Sleator et al.
[129]; Pournin

[121]

⇥(log n)

Galtier et al.
[64]

⇥(n log n)
Bose et al.

[31];
Sleator et al.

[130]

O(log

2 n)
⌦(log n)

Bose et al.
[31]

Combinatorial
triangulations

7n
3 � 34  d 

5n� 23

Frati [63];
Cardinal et al.

[39]

⇥(log n)

Bose et al.
[29]

⇥(n log n)
Bose et al.

[31];
Sleator et al.

[130]

O(log

2 n)
⌦(log n)

Bose et al.
[31];

Bose et al.
[29]

Table 2.2: Comparison of bounds on flip sequence lengths d required to reconfigure
triangulations of different types by unlabelled/labelled and classical/simultaneous flips.
In cases marked with (*) the flip graph may not be connected; these are the bounds
on a connected component.

58

a b
a

b
a

b

a

b

a
b ab

Figure 2.3: Five flips swap the edge labels (a and b) of two diagonals of a convex
pentagon. In the flip graph these five flips form a 5-cycle.

The above proofs of the Orbit Theorem for the special cases (of convex point set,

spiral polygon as well as of the combinatorial triangulation) show a general pattern:

given a pair of labelled triangulations that should be reconfigured into each other, one

can first ignore the labels and transform both triangulations into a specific canonical

triangulation. Subsequently the labels are permuted, often by imitating some sorting

algorihm. For example, relabelling edges in a convex polygon imitates quicksort while

in spiral polygon it imitates the insertion sort.

Another insight to be gained from previous work is that empty convex pentagons

in the point set seem to be crucial for swapping edge labels. Certainly, an empty

convex pentagon provides a label swap—Figure 2.3 shows how the edge labels of

two diagonals of an empty convex pentagon can be swapped by a sequence of five

flips. In the other direction, the special cases of the Orbit Theorem that were proved

by Bose et al. [31] for convex and spiral polygons involved moving pairs of labels into

empty convex pentagons and swapping them there. Also, Eppstein [57] showed that

in a triangulation of a point set with no empty convex pentagons, no permutations of

edge labels are possible via flips.

Both of these insights turn out to be relevant and are used in the proof of the Orbit

Theorem for general point sets that we present in the following sections.

2.7 A Proof of the Orbit Theorem: general outline

We present a proof of the Orbit Theorem 1 in Sections 2.7 – 2.10; and a summary is

sketched in Figure 2.7. In this section we start by outlining the general plan for the

proof.

The Orbit Theorem is stated for labelled triangulations T1 and T2 that may have

different edge sets, but—since we know how to use flips to change the edge set—

59

the crux of the matter is the special case where the two triangulations have the same

edge set T but different label functions `1 and `2. In other words, we are given a

permutation of the edge labels of a triangulation, and we seek a flip sequence to

realize the permutation. Furthermore, since every permutation is a composition of

transpositions, we concentrate first on finding a flip sequence to transpose (or “swap”)

two labels. This idea of reducing the problem to the case of swaps appears in [31].

The foundation of our proof is to make the intuition about empty convex pentagons

rigorous. In particular, we show that the only elementary operation that is needed

for label permutation is to transpose two labels by moving them into an empty con-

vex pentagon and swapping them there. More formally, given a labelled triangulation

T = (T , `), an elementary swap of edges e and f in T is a transposition of the labels of

e and f that is accomplished as follows: perform a sequence, �, of flips on T to get to

a triangulation T 0 in which the labels `(e) and `(f) are attached to the two diagonals of

an empty convex pentagon; then perform the 5-flip sequence, ⇡, that transposes these

two labels; then perform the sequence ��1. We say that the sequence �⇡��1 realizes

the elementary swap. Observe that the effect of �⇡��1 on T is to transpose the labels

of e and f while leaving all other labels unchanged. We will prove that an elementary

swap can always be realized by a flip sequence of length O(n6
), and furthermore, that

such a sequence can be found in polynomial time.

One of our main results is the following, from which the Orbit Theorem can readily

be derived:

Theorem 2 (Swap Theorem). In a labelled triangulation T , two edges are in the same

orbit if and only if there is an elementary swap between them.

In order to prove Theorem 2, we use the following key result:

Theorem 3 (Elementary Swap Theorem). Given a labelled triangulation T , any per-

mutation of the labels that can be realized by a sequence of flips can be realized by a

sequence of elementary swaps.

This theorem is proved using topological properties of the flip complex, whose 1-

skeleton is the flip graph. A result of Orden and Santos [114] can be used to show

that the flip complex has the topology of a high-dimensional ball (technically speaking,

60

the flip complex is homotopy equivalent to a ball.). We give an alternate proof of this.

We then use the 2-skeleton of the flip complex, and show that its 2-cells correspond to

cycles in the flip graph of two types: quadrilaterals, which do not permute labels; and

pentagons, which correspond precisely to the 5-cycles of flips shown in Figure 2.3.

Then we prove the Elementary Swap Theorem by translating it into a result about

decomposing closed walks in the flip graph into simpler elementary walks.

We now briefly describe the rest of our method after the Elementary Swap Theorem

is established. In order to prove Theorem 2, we need one more ingredient about the

structure of elementary swaps: we will show that any sequence of elementary swaps

that moves the label of edge e to edge f can be “completed” to get the label of f back

to e, and that, in fact, the resulting sequence provides an elementary swap of e and f .

The high-level idea of our proof of Theorem 2 is then as follows: From our hypoth-

esis that two edges e and f lie in the same orbit, we show that there is a sequence

of flips that permutes the labels of triangulation T , taking the label of e to f . The El-

ementary Swap Theorem then gives us a sequence of elementary swaps to do the

same (this is the significant step of the proof). Finally, from the structure of elementary

swaps we can then find an elementary swap of e and f .

The proof of the Orbit Theorem 1 is organized in the next sections as follows. In

Section 2.9 we prove the Elementary Swap Theorem using topological methods. In

Section 2.10 we prove the properties of elementary swaps that were mentioned above.

In top-down fashion, we begin in Section 2.8 by expanding on the high-level ideas, and

proving the Orbit Theorem assuming the results in the later Sections 2.9 - 2.10.

Preliminaries and Definitions. We reiterate important assumptions and formal def-

initions that will be used in the proof of the Orbit Theorem: throughout, we assume a

set of n point in general position in the plane. A point set determines
�
n
2

�
edges which

are the line segments between pairs of points. Two edges cross if they intersect in a

point that is interior to at least one of the two edges. A diagonal of a convex polygon

is an edge joining two points that are not consecutive on the polygon boundary.

Several times in our proofs we will use the result that if two unlabelled triangulations

of the same point set have a subset, S, of constrained edges in common, then there

is a sequence of flips that transforms one triangulation into the other, without ever

61

flipping any edge of S, i.e. the edges in S remain fixed throughout the flip sequence.

See Sections 2.2 - 2.3 for background on (constrained) triangulations.

2.8 Proof of the Orbit Theorem

In this section we prove the Orbit Theorem assuming the Elementary Swap Theorem

(Theorem 3, proved in Section 2.9), and assuming the following two results on elemen-

tary swaps. The first result shows that every elementary swap can be realized by a

relatively short flip sequence that can be found efficiently, and the second result gives

us a way to combine elementary swaps so that, after moving e’s label to f , we can get

f ’s label back to e. These lemmas will be proved in Section 2.10.

Lemma 4. If there is an elementary swap between two edges in a triangulation T

then there is a flip sequence of length O(n6
) to realize the elementary swap, and,

furthermore, this sequence can be found in polynomial time.

Lemma 5. Let T be a labelled triangulation containing two edges e and f . If there is

a sequence of elementary swaps on T that takes the label of edge e to edge f , then

there is an elementary swap of e and f in T .

As we show in Section 2.10, a simple group-theoretic argument suffices to prove

a weaker version of Lemma 5, namely, that under the stated assumptions, there is

a sequence of elementary swaps exchanging the labels of e and f in T . Proving

the stronger version, which we need for our bounds on the length of flip sequences,

requires using the properties of elementary swaps.

We prove the Orbit Theorem in stages, first Theorem 2 (the Swap Theorem that

handles the case of swapping two labels in a triangulation), then the more general

case of permuting edge labels in a triangulation, and finally the full result.

Proof of Theorem 2. The “if” direction is clear, so we address the “only if” direction.

Suppose that T = (T, `) is the given edge-labelled triangulation and that e and f are

edges of T that are in the same orbit. Then there is a sequence of flips that changes

T to an edge-labelled triangulation T 0
= (T 0, `0) where T 0 contains f and `0(f) = `(e)

(such a flip sequence can be found by, for example, following a path from e to f in the

62

quadrilateral graph). We now apply the result that any constrained triangulation of a

point set can be flipped to any other. Fix edge f and flip T 0 to T . Applying the same

flip sequence to the labelled triangulation T 0 yields an edge-labelling of triangulation

T in which edge f has the label `(e). Thus we have a sequence of flips that permutes

the labels of T and moves the label of e to f .

By the Elementary Swap Theorem (Theorem 3) there is a sequence of elementary

swaps whose effect is to move the label of edge e to edge f (and possibly permute

other labels). By Lemma 5 there is an elementary swap of e and f in T .

Theorem 6 (Edge Label Permutation Theorem). Let T be a triangulation of a point set

with two edge-labellings `1 and `2 such that for each label l, the edge with label l in `1

and the edge with label l in `2 are in the same orbit. Then there is a sequence of O(n)

elementary swaps to transform the first labelling to the second. Such a sequence can

be realized via a sequence of O(n7
) flips, which can be found in polynomial time.

Proof. The idea is to effect the permutation as a sequence of swaps. If every edge

has the same label in `1 and `2 we are done. So consider a label l that is attached

to a different edge in `1 and in `2. Suppose `1(e) = l and `2(f) = l, with e 6= f . By

hypothesis, e and f are in the same orbit. By Theorem 2 there is an elementary swap

of e and f in (T, `1) which results in a new labelling `01 that matches `2 in one more edge

(namely the edge f) and still has the property that for every label l, the edge with label

l in `01 and the edge with label l in `2 are in the same orbit. Thus we can continue this

process until all edge labels match those of `2. In total we use O(n) elementary swaps.

These can be realized via a sequence of O(n7
) flips by Lemma 4. Furthermore, the

sequence can be found in polynomial time.

We can now prove the Orbit Theorem.

Proof of Theorem 1 (Orbit Theorem). The necessity of the condition is clear, and we

can test it in polynomial time by finding all the orbits, so we address sufficiency. The

idea is to reconfigure T1 to have the same underlying unlabelled triangulation as T2

and then apply the previous theorem. The details are as follows. Let T1 = (T1, `1)

and T2 = (T2, `2). There is a sequence � of O(n2
) flips to reconfigure the unlabelled

triangulation T1 to T2, and � can be found in polynomial time. Applying � to the labelled

63

triangulation T1 yields a labelled triangulation T3 = (T2, `3). Note that for every label l,

the edges of T1 and T3 having label l belong to the same orbit. This is because flips

preserve orbits (by definition of orbits). Thus by Theorem 6 there is a flip sequence ⌧

that reconfigures T3 to T2, and this flip sequence can be found in polynomial time and

has length O(n7
). The concatenation of the two flip sequences, �⌧ , reconfigures T1 to

T2, has length O(n7
), and can be found in polynomial time.

2.9 Proof of the Elementary Swap Theorem

As mentioned in the introduction, we prove the Elementary Swap Theorem using topo-

logical properties of the flip complex, whose 1-skeleton (i.e. vertices and edges) is the

flip graph. We will show that 2-cells of the flip complex correspond to 4- and 5-cycles

in the flip graph.

The basic idea is as follows. We will translate the Elementary Swap Theorem to

a statement about walks in the flip graph. The hypothesis of the Elementary Swap

Theorem is that we have a sequence of flips that permutes the edge labels of a trian-

gulation T . In the flip graph, this sequence corresponds to a closed walk w that starts

and ends at triangulation T . Our main topological result is that the flip complex has a

trivial fundamental group, which will imply that such a closed walk w can be decom-

posed into simpler elementary walks. Each elementary walk starts at T , traces a path

in the flip graph, then traverses the edges of a 2-cell, then retraces the path back to

T . The edge-label permutation induced by an elementary walk depends on the 2-cell.

If the 2-cell is a 4-cycle, the permutation is the identity; and if the 2-cell is a 5-cycle,

then the permutation is a transposition, and the elementary walk corresponds to an

elementary swap. Altogether, this implies that the permutation induced by the closed

walk w can be expressed as a composition of elementary swaps, which proves the

Elementary Swap Theorem.

Before stating our main topological theorem, we first define the special cycles that

will be shown to correspond to 2-cells of the flip complex. In the same way that an

edge of the flip complex corresponds to two triangulations that differ on one edge,

every 2-cell of the flip complex corresponds to a set of triangulations that differ on

two edges. Define an elementary 4-cycle to be a cycle of the flip graph obtained in the

64

fefe

(a) (b)

Figure 2.4: (a) Triangulations that differ in the diagonals of two internally disjoint quadri-
laterals form an elementary 4-cycle in the flip graph. The cycle does not permute the
labels (shown as red and blue). (b) Triangulations that differ in the diagonals of a con-
vex pentagon form an elementary 5-cycle in the flip graph. This cycle permutes labels
as shown in Figure 2.3.

following way. Take a triangulation T and two edges e, f 2 T whose removal leaves two

internally disjoint convex quadrilaterals in T . Each quadrilateral can be triangulated in

two ways, which results in four triangulations that contain F := T \ {e, f}. These four

triangulations form a 4-cycle in the flip graph, as shown in Figure 2.4(a). Observe that

a traversal of the cycle corresponds to a sequence of flips that returns edge-labels to

their original positions.

Define an elementary 5-cycle to be a cycle of the flip graph obtained in the following

way. Take a triangulation T and two edges e, f 2 T whose removal leaves a convex

pentagon in T . There are five triangulations that contain F := T \ {e, f}, and they form

a 5-cycle in the flip graph, as shown in Figure 2.4(b). Observe that the sequence of

flips around such a cycle permutes labels of e and f as shown in Figure 2.3.

As a side remark, note that it can be shown that, in fact, any cycle in the flip graph

of length less than 6 is an elementary 4- or 5-cycle. However, we will not need this in

what follows.

Our main topological theorem is the following.

Theorem 7. Let P be a set of n points in general position in the plane. There is a

high-dimensional cell complex X = X(P), which we call the flip complex, such that:

1. The 1-skeleton of X is the flip graph of P ;

65

2. There is a one-to-one correspondence between the 2-cells of X and the elemen-

tary 4-cycles and elementary 5-cycles of the flip graph of P ;

3. X has the topology of (i.e., is homotopy equivalent to) a high-dimensional ball;

therefore its fundamental group, ⇡1(X), is trivial.

Theorem 7 follows from a result of Orden and Santos [114], see Remark 15 at the

end of Section 2.9.3 below for more details; we are grateful to F. Santos for bringing

this reference to our attention.

Before becoming aware of the work of Orden and Santos, we found a different

proof of Theorem 7 that starts out by considering the simplicial complex T = T(P)

whose faces are the sets of pairwise non-crossing edges (line segments) spanned by

P . This complex T is shown to be a shellable simplicial ball (by an argument based on

constrained Delaunay triangulations), and X is then constructed as the dual complex

of T. We hope that this alternative proof of Theorem 7 is of some independent interest

and present it in Sections 2.9.2 and 2.9.3 below. Before that, in Section 2.9.1, we show

how to derive the Elementary Swap Theorem from Theorem 7.

Some topology references. In what follows, we will use a number of notions from

combinatorial topology; most of these we will recall along the way, but others we will

only describe informally or leave undefined and instead refer the reader to standard

textbooks for further background.

Section 2.9.1 uses only a minimum number of topology notions. For ease of read-

ing, familiarity with a basic definition of a (2-skeleton of a) regular cell complex and of

the fundamental group will help, but we introduce most of these in depth, especially

the combinatorial definition of the fundamental group. More details on the fundamental

group of cell complexes can be found in [133, Chap. 3, 4] or in the further references in

the section. A regular cell complex can, intuitively, be thought of as a simplical complex

whose faces are no longer required to be simplices but can be any cells (i.e., home-

omorphic to balls). A recommended friendly introduction to simplicial complexes is in

[104, Chap. 1] and to the cell complexes in [26, Sec. 12] or in [27, Sec. 4.7].

Sections 2.9.2 and 2.9.3 assume some knowledge of (piecewise-linear) topology.

Section 2.9.2 discusses properties of simplicial complexes, concretely pureness and

66

a type of face inclusion in complex T that determine that the complex is a pseudo-

manifold. The faces that constitute the boundary and the interior of the pseudoman-

ifold will be identified. Crucially, the pseudomanifold will be shown to be shellable

(and, consequently, a shellable/piecewice-linear ball). Matoušek’s book [104, Chap. 1]

gives an excellent overview of basic similarity notions between topological spaces,

including homeomorphism, homotopy equivalence or deformation retraction that we

use without defining. The other above mentioned topological notions will be defined

in the section. More background on shellability can be found in [27, Sec. 4.7] and

on piecewise-linear topology of balls, spheres and manifolds in general in [79; 35;

88].

In Section 2.9.3 the dual cell complex X of the piecewise-linear simplicial ball T is

formed. The important steps and the properties of the dual complex are summarized

in Proposition 14 after which the section requires no further topology background. For

readers interested in details of the dual construction, the process starts by considering

the first barycentric subdivision of T, based on which the decomposition of T into dual

cells is formed. The dual cell complex X consists of those dual cells that correspond

to interior faces of T. See [104; 88] for definition and illustrations of the barycentric

subdivision; see Figure 64.1 in [109] for examples of dual cells and see [79, Sec. I.6]

or [109, §64 and §70] (which uses the term ‘dual blocks’ instead of dual cells) for a

rigorous description of the construction of dual cells and of the dual cell complex.

2.9.1 From Topology to the Elementary Swap Theorem

In this section we use Theorem 7 to prove the Elementary Swap Theorem. We begin

by defining elementary walks. A walk in the flip graph is a sequence T0, T1, . . . , Tk

of triangulations (possibly with repetitions) such that Ti�1 and Ti differ by a flip. We

will refer to T0 and Tk as the start and the end of the walk, respectively. A walk is

closed if it starts and ends at the same triangulation. If w1 and w2 are walks such that

the end of w1 equals the start of w2 then we can define their composition w1w2 in the

obvious way. Furthermore, if w = (T = T0, T1, . . . , Tk) is a walk, we will use the notation

w�1
= (Tk, Tk�1, . . . , T0) for the inverse walk.

Fix a triangulation T0. An elementary quadrilateral walk is a closed walk of the form

67

wzw�1, where z is an elementary 4-cycle in the flip graph, and w is a walk from T0 to

some triangulation on z. An elementary pentagonal walk is defined analogously, with

z an elementary 5-cycle.

It is straightforward to check the effect of these elementary walks on labellings:

Lemma 8. Let (T0, `) be a labelled triangulation. An elementary quadrilateral walk from

T0 does not permute the labels. An elementary pentagonal walk swaps the labels of

two edges (e and f in Figure 2.4(b)) and leaves all other labels fixed; this corresponds

exactly to the notion of an elementary swap introduced earlier.

Another operation that does not affect the permutation of labels induced by a closed

walk is the following. A spur ww�1 starting and ending at T is an arbitrary walk w

starting at T , immediately followed by the inverse walk. If w1 and w2 are walks in the

flip graph such that w1 ends at a triangulation T and w2 starts there, and if s is a spur at

T , then we say that the walk w1sw2 differs from w1w2 by a spur insertion. The inverse

operation is called a spur deletion.

Lemma 9. If two closed walks w and w0 in the flip graph differ only by a finite number

of spur insertions and deletions then they yield the same permutation of edge labels.

Proof. A flip immediately followed by its inverse flip has no effect on labels. The lemma

follows by induction on the length of a spur and the number of spur insertions and

deletions.

As proved below, the Elementary Swap Theorem reduces to the following Decom-

position Theorem:

Theorem 10. [Decomposition Theorem / Topological Elementary Swap Theorem] Let

w be a closed walk in the flip graph starting and ending at triangulation T0. Then, up to

a finite number of spur insertions and deletions, w can be written as the composition

of finitely many elementary walks.

Proof. [Proof of Theorem 3 (Elementary Swap Theorem), using Theorem 10]

A permutation of labels in a labelled triangulation T = (T0, `) that can be realized by

a sequence of flips corresponds to some closed walk w starting at T0. The Decompo-

sition Theorem 10 guarantees that, by addition and deletion of finitely many spurs, w

68

can be expressed as a composition w0 of finitely many elementary walks. By Lemma 9,

w0 causes the same permutation of labels in T as w. By Lemma 8, w0 corresponds to

a composition of elementary swaps.

We prove the Decomposition Theorem 10 using Theorem 7 and the well-known

fact that the fundamental group of a regular cell complex can be defined combinato-

rially in terms of closed walks in the 1-skeleton and this definition is equivalent to the

usual topological definition in terms of continuous loops. See [26, Sec. 12] or [27,

Sec. 4.7] for background on regular cell complexes; see [133, Chap. 3] or [72, Chap. 1]

for definition of the fundamental group in terms of continuous loops; and, perhaps

most importantly, see [133, Chap. 4] or [127, Chap. 7] for the equivalent combinatorial

definition of the fundamental group for regular cell complexes.

We describe the combinatorial definition of the fundamental group of the flip com-

plex X in detail. The elements of the fundamental group ⇡1(X) are equivalence classes

of closed walks in the 1-skeleton of X with respect to spur insertions, deletions, and

the so-called 2-cell operations. Note that the fundamental group of a high-dimensional

cell complex is determined by its 2-skeleton, i.e., ⇡1(X) = ⇡1(skel2(X)). (Recall that

skel2(X) is a subcomplex of X consisting of its vertices, edges and the 2-cells.)

By Theorem 7, the 1-skeleton of X is the flip graph of P . Fix a base triangulation T0,

and, for every triangulation T , fix a walk pT from T0 to T . Given two triangulations T1, T2

that differ by a flip, we form the closed walk wT1,T2 in the flip graph, called a generating

walk , that goes from T0 to T1 along pT1, then flips to T2, and then returns to T0 along

p�1
T2
. It is easy to see that, up to a finite number of spur insertions and deletions, every

closed walk starting and ending at T0 can be written as a composition of generating

walks.

We say that walks w and w0 are 2-cell related if we can express them as w = w1w2

and w0
= w1zw2, where z is a closed walk traversing the boundary of a 2-cell (an

elementary cycle) exactly once in either orientation. See Figure 2.5. Notice that w1w2

and w1zz�1w2 differ only by the spur zz�1, hence, up to spur insertion and deletion,

being 2-cell related is symmetric.

Two walks in the flip graph are called equivalent if they differ by a finite number

of spur insertion and/or deletions and by applying a finite number of 2-cell relations.

69

z

w1 w2

w1 w2

z
up to spurs

'

Figure 2.5: Examples of 2-cell related walks: in both examples, the blue walk and the
green walk are 2-cell related.

It is not hard to check that this defines an equivalence relation, and the fundamental

group ⇡1(X) is defined as the set of equivalence classes of closed walks starting and

ending at T0 (with the group operation being induced by the composition of the closed

walks from T0). Finally, note that sinceX is path-connected (i.e., any two points ofX are

connected by a path), ⇡1(X) is independent of the choice of the basepoint triangulation

T0.

With this understanding of the combinatorial definition of ⇡1(X), we can prove the

Decomposition Theorem.

Proof. [Proof of Theorem 10 (Decomposition Theorem), using Theorem 7]By Theo-

rem 7, the fundamental group of the flip complex X is trivial and the 1-skeleton of X

is the flip graph. This means that every closed walk w in the flip graph starting at

triangulation T0 is equivalent to the trivial walk, i.e., w and the trivial walk differ by a fi-

nite number of spur insertion and/or deletions and by applying a finite number of 2-cell

relations. The proof is by induction on the number of 2-cell relations.

Notice the precomposition property : whenever two closed walks w00, w0 from T0

are 2-cell related, there is an elementary walk v from T0 such that, up to spurs, w0

can be written as vw00. Indeed, let w00
= w1w2 and w0

= w1zw2 where z is a closed

walk traversing the boundary of a 2-cell. If w00 is precomposed with the closed walk

v = w1zw
�1
1 then the result vw00

= (w1zw
�1
1)(w1w2) = w1z(w

�1
1 w1)w2 differs from w0

only by the spur w�1
1 w1. See Figure 2.6. By Theorem 7, a boundary of a 2-cell is an

elementary 4- or 5-cycle and so the walk v = w1zw
�1
1 above is indeed an elementary

walk.

After applying finitely many 2-cell relations, the original walk w is written, up to

70

z

w1 w2 w1 w2

z

w1 w2

z

w1 w2

z
' '

'

w1zw2 = w1zw
�1
1 w1w2

Figure 2.6: Each row gives an example of 2-cell related walks (blue and green), where,
up to spurs, the blue walk is written as a composition of an elementary walk (in red)
and the green walk.

spurs, as a composition v1 · · · vkwT0 where vi’s are elementary walks and wT0 is the

trivial walk from T0. Hence, up to a finite number of spur insertions and deletions, w is

a composition of finitely many elementary walks.

2.9.2 The Simplicial Complex of Plane Graphs

In this section and the following one, we give a proof of Theorem 7. This section is

about the simplicial complex T = T(P) whose faces are the sets of pairwise non-

crossing edges (line segments) spanned by P .

Let P be a set of n points in general position in the plane, i.e., no three points lie

on a line and no four points lie on a common circle. Let E be the set of edges (closed

line segments) spanned by P . Two edges e, f 2 E are said to be non-crossing if they

are disjoint or if they intersect in a single point of P that is an endpoint of both edges.

We say that a subset F ✓ E is non-crossing if every pair of distinct edges e, f 2 F is

non-crossing. If G is non-crossing and F ✓ G then F is non-crossing as well. Thus,

the non-crossing sets of edges form an abstract simplicial complex

T = T(P) := {F : F ✓ E,F non-crossing},

which we call the complex of plane graphs on P . We collect some basic properties of

T:

71

1. The facets (inclusion-maximal faces) of T are exactly the triangulations of P

(since every non-crossing set of edges F ✓ E can be extended to a triangu-

lation). Thus, the simplicial complex T is of dimension m � 1, where m is the

number of edges in any triangulation of P , and it is pure, i.e., every face of T is

contained in a face of dimension m� 1.

2. Every face F of T of dimension m� 2 is contained in either one or two triangula-

tions. In the latter case, F corresponds to a flip between these two triangulations.

We will show that the topology of T is particularly simple, namely that T is homeomor-

phic to an (m � 1)-dimensional ball. Furthermore, there is a combinatorial certificate

(shellability) for this homeomorphism. This implies that the homeomorphism is partic-

ularly nice and that T is a piecewise-linear ball, which means that there is a subdivision

T0 of T such that T0 is simplicially isomorphic to a subdivision B0 of the d-dimensional

simplex �

d. only property of piecewise-linearity that we will need is that it ensures

that the construction of the dual cell complex T⇤ is well-behaved (see Proposition 14

below).

We refer to [27, Sec. 4.7] and [79; 35; 88] for more details and further references

on shellability and piecewise-linear balls, spheres, and manifolds.

We recall that a pure d-dimensional simplicial complex K is shellable if there exists

a total ordering of its facets F1, F2, · · · , FN (called a shelling order) such that, for every

2  j  N , the intersection of Fj with the simplicial complex generated by the preced-

ing facets is pure of dimension d� 1, i.e., for every i < j and F := Fi \ Fj, there exists

some k < j such that G := Fj \ Fk is of dimension d� 1 and F ✓ G.

We will need the following result (which appears implicitly in [23], and explicitly in

[46]; see [27, Prop. 4.7.22] for a short proof).

Proposition 11. Suppose K is a finite d-dimensional simplicial complex that is a pseu-

domanifold, i.e., K is pure and every (d � 1)-dimensional face of K is contained in

at most two d-faces. If K is shellable then K is either a piecewise-linear ball or a

piecewise-linear sphere. The former case occurs iff there is at least one (d � 1)-

dimensional face that is contained in only one d-face of K, in which case the pseudo-

manifold is said to have non-empty boundary.

72

We remark that the property of being a shellable pseudomanifold (which is a combi-

natorial and algorithmically verifiable condition) is strictly stronger than being a piecewise-

linear ball or sphere, which in turn is strictly stronger than being a simplicial complex

homeomorphic to a ball or sphere.

Using Proposition 11, we now prove:

Theorem 12. T is a shellable (m � 1)-dimensional pseudomanifold with non-empty

boundary, and hence a piecewise-linear ball.

Proof. We observed earlier that T is a pure (m � 1)-dimensional simplicial complex,

and that every (m � 2)-dimensional face of T is contained in at most two (m � 1)-

dimensional faces, hence T is a pseudomanifold. Moreover, if T is a triangulation of P

and if e 2 T is a non-flippable edge (e.g., if e is a convex hull edge) then F := T \ {e}

is an (m� 2)-dimensional face of T that is contained in a unique (m� 1)-face, namely

T . Hence, T has non-empty boundary.

Thus, by Proposition 11, it suffices to show that T is shellable, i.e., to exhibit a

shelling order for the facets of T.

With every triangulation T of P , we associate the sorted vector of angles ↵(T) =

(↵1(T),↵2(T), · · · ,↵3t(T)), where ↵1(T)  ↵2(T)  · · ·  ↵3t(T) are the angles occur-

ring in the triangulation T . We order the triangulations of P by sorting the correspond-

ing angle vectors ↵(T) lexicographically from largest to smallest. Since we assume P

to be in general position, this defines a total ordering of triangulations of P ,

T1, T2, . . . , TN , ↵(T1) >LEX ↵(T2) >LEX · · · >LEX ↵(TN), (2.1)

where N is the number of triangulations of P .

It is well known (see, for example, [50, Chap. 3.4]) that in this ordering, T1 is the

Delaunay triangulation of P . Moreover, if we consider only triangulations containing a

particular plane subgraph corresponding to a face F of T and the corresponding sub-

sequence of the angle vectors, the first of these vectors corresponds to the Delaunay

triangulation constrained to F .

We claim that the triangulation ordering (2.1) defines a shelling. We need to prove

that for every i < j  N and F := Ti\Tj, there exists some k < j such that G := Tk\Tj

73

is of dimension m� 2 and F ✓ G.

To see this, consider the subsequence Tk1 , Tk2 , . . . of the sequence (2.1) consisting

only of those triangulations that contain the edge set F . Then Tk1 is the constrained

Delaunay triangulation with respect to the edge set F , and Ti and Tj both appear in

that subsequence; in particular, Tj 6= Tk1 since Ti precedes it. Since every triangu-

lation containing F can be transformed to the constrained Delaunay triangulation Tk1,

(see, e.g., the description of Lawson’s flip algorithm in [50]) there must exist an edge

e 2 Tj \ Tk1 such that flipping e (a Lawson flip) increases the angle vector; thus, the

triangulation resulting from flipping e is some Tk with k < j and satisfies F ✓ Tk \ Tj

as desired.

Next, we need a characterization of interior versus boundary faces of T. Let B

be a piecewise-linear ball of dimension d. By definition, the boundary @B of B is the

subcomplex of B consisting of all faces F for which there exists a (d� 1)-dimensional

face G of B, with F ✓ G, such that G is contained in a unique d-dimensional face

of B, see, for example, [35; 88]. (In the case B = T, the latter condition means that

G = T \{e} for some triangulation T and some edge e 2 T that is not flippable.) A face

F of B that does not lie in @B is called an interior face.

For the proof of Theorem 7 we need properties of interior faces of T of dimensions

m � 1, m � 2 and m � 3. The following proposition characterizes interior faces more

generally.

Proposition 13. Let T be the simplicial complex of plane graphs on the point set P .

A non-crossing set of edges F on P is an interior face of T if and only if the following

conditions hold:

(i) F contains all convex hull edges of P ;

(ii) Every bounded region in the complement of the plane graph (P, F) is convex.

Proof. Note that a polygon is non-convex iff it has a reflex vertex. More generally, a

bounded region in the complement of the plane graph (P, F) is non-convex iff there is

an interior point p of P and a half-plane H through p with no edge of F from p to a point

interior to H—in this case we say that p “has no edge in a half-plane”. The statement

of the proposition is then equivalent to the following: F is a boundary face if and only

74

if F misses a convex hull edge or there is an interior point p of P with no edge in a

half-plane. We prove this statement.

For the forward direction, suppose that F is a boundary face. Then there is a

triangulation T , F ✓ T , and an edge e 2 T � F such that e is not flippable in T . If e

is a convex hull edge, then F does not contain all convex hull edges. Otherwise e is a

diagonal of a non-convex quadrilateral in T . Set p to be the reflex vertex of the non-

convex quadrilateral and H to contain the other end of e but not the two other vertices

of the quadrilateral. Then p has no edge in the half-plane H.

For the other direction, first note that if F misses a convex hull edge then F is

a boundary face. For the other case, suppose that in F there is a non-convex hull

point p of P that has no edge in the half-plane H. Augment F to a maximal set F 0

of non-crossing edges without using any edge from p into H. This will not yet be a

triangulation (because in a triangulation p is surrounded by triangles and they have

angles bounded by ⇡). Now augment F 0 further to a triangulation T . Then T � F 0

contains some edge e incident to p, and e is not flippable otherwise we could have

further augmented F 0. Thus F is a boundary face.

2.9.3 The Dual Flip Complex X

In this section we define the dual flip complex and prove Theorem 7.

To define the flip complex X, we need the notion of dual cells and the dual cell

decomposition of a piecewise-linear ball; for the precise definition, we refer to [79,

Sec. I.6] or [109, §64 and §70].

In [109], the terminology dual blocks is used instead of dual cells, since the con-

struction is described in a more general setting (for arbitrary triangulated manifolds or

homology manifolds) in which the dual blocks F ⇤ need not be cells (homeomorphic to

balls). However, in the setting of piecewise-linear manifolds, in particular of piecewise-

linear balls, as in our case, this technical issue does not arise.

Here, we simply collect the properties that we will need:

Proposition 14. Let B be a d-dimensional piecewise-linear ball.

75

1. For each interior k-dimensional face F of B, one can define a dual cell F ⇤ (a

certain subcomplex of the barycentric subdivision of B that is a piecewise-linear

ball of dimension d� k [79, Lemma 1.19]).

2. The construction reverses inclusion, i.e., for interior faces F , G of B, F ✓ G iff

F ⇤ ◆ G⇤.

3. The dual cells of the interior faces of B form a regular cell complex, denoted

B⇤ and called the dual cell complex. B⇤ need not be a manifold or pure d-

dimensional, but it is homotopy equivalent to B [109, Lem. 70.1]. (Technically,

the dual complex of a piecewise-linear manifold with boundary is a deformation

retraction of the manifold. For manifolds without boundary, the dual complex is

piecewise-linearly homeomorphic to the original manifold.)

We define the flip complex X := T⇤ as the dual complex of the simplicial complex T.

Proof of Theorem 7. By Theorem 12, T is a piecewise-linear ball and thus it has a

trivial fundamental group. By Proposition 14, X = T⇤ is a regular cell complex that

is homotopy equivalent to the ball T. Consequently (using the fact that homotopy

equivalent spaces have isomorphic fundamental groups, see, for example, [72]), the

fundamental group ⇡1(X) is trivial.

It remains to show the characterization of the vertices, edges, and 2-cells of X.

The vertices of X correspond (are dual) to the faces of T of the highest dimension

(m � 1) = dimT, i.e., to the triangulations of P (these are automatically interior faces

of T).

The edges of X correspond to interior (m� 2)-dimensional faces F of T, i.e., faces

F that are contained in two triangulations T and T 0 that differ by a flip. Thus, the

1-skeleton of X is exactly the flip graph of P .

Every 2-cell of X is the dual cell F ⇤ of an interior face F of T of dimension m� 3 =

dimF . Consider an arbitrary triangulation T containing F , i.e., F is obtained from T by

deleting two edges e, f . By Proposition 13, e and f are both flippable in T since they

lie in a convex polygon in T .

If e and f are not incident to a common triangle in T , (or, equivalently, removing

both e and f from T creates two internally disjoint convex quadrilaterals) then there

76

exist four triangulations containing F and these form an elementary 4-cycle in the flip

graph. It follows from the definition of X = T⇤ that the 4-cycle is the boundary of the

dual cell F ⇤.

Otherwise, e and f are incident to a common triangle in T . By Proposition 13

the union of the three triangles of T containing either e or f forms a convex polygon,

necessarily a pentagon. There are five triangulations containing F and these form an

elementary 5-cycle in the flip graph. It follows from the definition of X = T⇤ that the

5-cycle is the boundary of the dual cell F ⇤.

Hence, every 2-cell of X corresponds to an elementary 4- or 5-cycle of the flip graph.

Conversely, every elementary 4- or 5-cycle of the flip graph gives rise to a 2-cell

F ⇤ of X: more precisely, F ⇤ corresponds to the intersection of the triangulations in the

elementary cycle.

Remark 15. As remarked above, the flip complex X and Theorem 7 are closely related

to a result of Orden and Santos [114]. Specifically, Orden and Santos showed that for

every point set P , there exist a simple polytope Y = Y(P) and a distinguished face F0

of Y with the following properties: The vertices of F0 correspond to pseudotriangula-

tions with vertex set P that are not triangulations. Recall that a pseudotriangulation

of P is a decomposition of the convex hull of P into pseudotriangles, i.e., possibly

non-convex polygons with exactly three non-reflex vertices. By contrast, the vertices

of Y that do not lie in the distinguished face F0 are in one-to-one correspondence

with the triangulations of P . More generally, the faces of Y that are disjoint from the

distinguished face F0 are in one-to-one correspondence with the non-crossing sets of

edges of P that contain all convex hull edges of P . Furthermore, the correspondence

reverses inclusion.

It follows from this that the cell complex K = K(P) of all faces of Y disjoint from

F0 has the flip graph of P as its 1-skeleton, and the fundamental group of K is trivial

(since K is the complement of the star of a face in the boundary of a convex polytope,

where a star of face F0 consists of all faces of Y that have a non-empty intersection

with F0); analogously to the proof of Theorem 7, it can be shown that the 2-faces of

K correspond to the elementary 4-cycles and 5-cycles in the flip graph. Thus, the

complex K could be used instead of the flip complex X to prove the Elementary Swap

77

Theorem.

A different way of viewing the complex K is as follows: Let C be the set of convex

hull edges of P . Then C is a face of the complex T of plane graphs on P , and since

T is a shellable ball, the link L of C in T is a shellable (and hence piecewise-linear)

ball or sphere (see page 84 for a definition of a link of a simplex). The complex K of

Orden–Santos is the dual cell complex of L.

2.10 Proofs of Properties of Elementary Swaps

In this section we prove Lemmas 4 and 5. For ease of reading, we repeat the Lemmas

here:

Lemma 4. If there is an elementary swap between two edges in a triangulation T

then there is a flip sequence of length O(n6
) to realize the elementary swap, and,

furthermore, this sequence can be found in polynomial time.

Lemma 5. Let T be a labelled triangulation containing two edges e and f . If there is

a sequence of elementary swaps on T that takes the label of edge e to edge f , then

there is an elementary swap of e and f in T .

To prove Lemma 4, the idea is to look at paths in the double quadrilateral graph

GD that we will define below. Informally speaking, GD captures where pairs of non-

crossing edges can go via flips, similar to the way the quadrilateral graph captures

where a single edge can go via flips. We will show that there is an elementary swap

between two labels in a triangulation if and only if there exists a path of certain type in

the double quadrilateral graph.

Proof of Lemma 4. Construct a graph GD called the double quadrilateral graph. Ver-

tices of the graph GD are pairs of non-crossing edges on the point set P , and we

define two vertices (e1, f1) and (e2, f2) of GD to be adjacent if either e1 = e2 and f1 and

f2 are adjacent in the quadrilateral graph, or if f1 = f2 and e1 and e2 are adjacent in the

quadrilateral graph. (Recall that two edges a and b are adjacent in the quadrilateral

graph if a and b cross and their four endpoints form an empty quadrilateral.)

78

In the graph GD we identify some vertices as “swap vertices”. These are the ver-

tices (g, h) such that g and h are diagonals of some empty convex pentagon in the

point set. Note that the swap vertices can be identified in polynomial time.

We claim that there is an elementary swap of e and f in the labelled triangulation

T = (T, `) if and only if there is a path in GD from vertex (e, f) to a swap vertex.

For the forward direction, suppose there is such an elementary swap. It begins with

a sequence � of flips from T to a labelled triangulation T 0 in which labels `(e) and

`(f) are attached to two diagonals g and h of some empty convex pentagon. The

subsequence of � consisting of those flips that apply to an edge whose current label

is `(e) or `(f) corresponds to a path in GD from (e, f) to the swap vertex (g, h).

For the other direction, let ⇡ be a path in GD from (e, f) to a swap vertex. It suffices

to show that the path ⇡ provides a sequence of flips, �, that takes T to some labelled

triangulation T 0 in which labels `(e) and `(f) are attached to two diagonals of an empty

convex pentagon, because the rest of the elementary swap is then determined. Con-

sider the first edge of ⇡ and suppose without loss of generality that it goes from (e, f)

to (e, f 0
) (the case when e changes is similar). Then e and f 0 are non-crossing (by

definition of vertices in GD). Because f and f 0 are adjacent in the quadrilateral graph,

they cross and form an empty convex quadrilateral Q. Note that e does not intersect

the interior of Q, since Q is empty and e does not cross f or f 0. We apply the result that

any constrained triangulation can be flipped to any other with O(n2
) flips. Constrain

edges e and f in T and flip T to a labelled triangulation that contains the edges of

quadrilateral Q. In this triangulation, we can flip f to f 0, transferring `(f) to f 0. We con-

tinue in this way to realize each edge of ⇡ via O(n2
) flips, arriving finally at a labelled

triangulation in which labels `(e) and `(f) are attached to edges that are the diagonals

of some empty convex pentagon in the point set. Fixing the two diagonals, we can flip

to a triangulation that contains the edges of the convex pentagon, and at this point we

are done.

Because the graph GD has O(n4
) vertices, the diameter of any of its connected

components is O(n4
). Thus, if there is an elementary swap that exchanges the labels

of edges e and f , then there is one corresponding to a path in GD of length O(n4
). We

can explicitly construct GD and find a path between (e, f) and a swap vertex in GD in

polynomial time. As argued above, every edge of GD can be realized by O(n2
) flips.

79

This proves that, for any elementary swap, we can construct a sequence of O(n6
) flips

to realize it, and the construction takes polynomial time.

As mentioned in Section 2.8, there is a group-theoretic argument proving a weaker

version of Lemma 5. The argument depends on the following claim: If a permutation

group is generated by transpositions and contains a permutation that maps element e

to f then the group contains the transposition of e and f . To prove this claim, notice

that if the group contains transpositions (ab) and (bc), then it also contains transposition

(ac) = (ab)(bc)(ab); and apply induction.

To apply this claim in our situation, observe that by the Elementary Swap Theorem,

all label permutations achievable by flips in a triangulation T are compositions of ele-

mentary swaps, hence, these label permutations indeed form a group G generated by

transpositions. Moreover, by the assumption of Lemma 5, G contains a permutation

taking the label of edge e to edge f . Hence, by the above claim, the group G also

contains a permutation, which is a composition of elementary swaps, whose effect is

to transpose labels of edges e and f .

In order to prove the full result of Lemma 5, i.e., that the label transposition of e and

f can be done with a single elementary swap, we combine the techniques used in the

proof of the group theory claim above with the structure of elementary swaps.

Proof of Lemma 5. An elementary swap in triangulation T acts on two edges of T .

We define a graph GS called the elementary swap graph of T . GS has a vertex for

every edge of T , and we define vertices e and f to be adjacent in GS if there is an

elementary swap of e and f in T .

By hypothesis, there is a sequence of elementary swaps that takes the label of

edge e to edge f . Observe that no sequence of elementary swaps will take the label of

edge e outside the connected component ofGS that contains e. Therefore e and f must

lie in the same connected component of GS. We will now show that each connected

component of GS is a clique. This implies that there is an elementary swap of e and f ,

and completes our proof.

Consider a simple path (e0, e1), (e1, e2), . . . , (ek�1, ek) in GS. Let �i, i = 1, . . . , k be

a flip sequence that realizes the elementary swap (ei�1, ei), and let � = �1�2 . . . �k�1.

Observe that � takes the label of e0 to ek�1, and does not change the label of ek (by

80

the assumption that the path is simple). By definition of an elementary swap, the flip

sequence �k has the form ⇢⇡⇢�1 where ⇢ is a sequence of flips that moves the labels

of ek�1 and ek into an empty convex pentagon, and ⇡ is the sequence of five flips that

exchanges the labels of ek�1 and ek.

Consider the flip sequence ��k��1
= �⇢⇡⇢�1��1

= �⇢⇡(�⇢)�1. The first part of

this flip sequence, �⇢, moves the labels of e0 and ek into an empty convex pentagon;

the middle part, ⇡, exchanges them; and the final part, (�⇢)�1 reverses the first part.

Therefore this flip sequence realizes an elementary swap of e0 and ek.

By this we concluded the proof of the Orbit Theorem 1.

A summary sketch of the proof of the Orbit Theorem from Sections 2.4 – 2.10 is

displayed in Figure 2.7.

Finally, we include a summary of the polynomial-time algorithm that checks whether

reconfiguration between two labelled triangulations T1 = (T1, l1) and T2 = (T2, l2) is

possible and if so, finds a flip sequence of length O(n7
) between them:

1. Given the two labelled triangulations, find orbits of the point set and determine

whether for each label l, the edges in T1 and T2 having label l belong to the same

orbit.

If so, a flip sequence reconfiguring T1 into T2 can be found by the steps 2–3.

Otherwise, reconfiguration between T1 and T2 is not possible.

2. Flip triangulation T1 into a labelled triangulation T 0
= (T 0, l0) where T 0

= T2. Note

that edges having the same label in T 0 and T2 belong to the same orbit.

3. Effect the label permutation between T 0 and T2 by moving one label at a time to

its target position by a single elementary swap. To find an elementary swap of

length O(n6
) between two edges e and f in triangulation T 0:

(a) construct the double quadrilateral graph GD of the point set. Identify its

“swap” vertices (as defined in the proof of Lemma 4), and the vertex (e, f)

corresponding to the pair of edges e, f .

(b) Find a path between (e, f) and some swap vertex in GD and convert the

path to a flip sequence (as in Lemma 4) of length O(n6
) that carries out an

elementary swap of edges e and f .

81

Figure 2.7: Summary of the proof of the Orbit Theorem from Sections 2.4 – 2.10.

82

2.11 Orbit Theorem for Constrained Triangulations: existence of a flip se-

quence respecting some fixed edges

In this section we prove the Orbit Theorem for constrained edge-labelled triangulations.

In particular, we show that the theorem holds if a subset of edges in a triangulation of

point set has to stay fixed during reconfiguration. It will follow that the Orbit Theorem

also holds for triangulations of simple polygons.

Let S be a set of pairwise non-crossing edges on a point set P ; we call S the fixed

edges. Let e and f be edges on P such that e [S and f [S are both non-crossing.

We say that the edges e and f lie in the same orbit with respect to S if we can attach

label l to e in some triangulation containing S and apply some sequence of flips, never

flipping any edge of S, to arrive at a triangulation in which edge f has label l.

In this section we prove the following theorem:

Theorem 16 (Orbit Theorem for Constrained Triangulations). Given two edge-labelled

triangulations T1 and T2 of a point set, and a set S of fixed edges that apear in both T1

and T2, there is a flip sequence that transforms one triangulation into the other, while

keeping edges of S fixed, if and only if for every label l, the edges of T1 and T2 having

label l belong to the same orbit with respect to S.

Furthermore, there is a polynomial-time algorithm (with O(n8
) being a crude bound

on its run-time) that tests whether the condition is satisfied, and if it is, computes a flip

sequence of length O(n7
) to transform T1 to T2.

Without loss of generality we will assume that S does not contain any convex hull

edges of the point set.

Under the stated conditions, Theorem 16 claims the existence of a relatively short

reconfiguration sequence. In Section 2.12 we will show that, however, as compared

to the case when all edges can be flipped, in the constrained case the length of a

shortest flip sequence may increase. Section 2.12 will provide results analogous to a

token swapping reconfiguration problem that we study in Chapter 3.

In the rest of this section we prove Theorem 16 by adapting the original proof of the

Orbit Theorem 1 to the constrained case. Throughout we refer to the relevant proofs

from Sections 2.6 - 2.10.

83

The key is to prove the constrained analogue of the Decomposition Theorem 10,

after which the rest of the proof carries over to the constrained case with only minor

modifications.

The flip graph constrained to the set of fixed edges S is smaller and contains fewer

elementary 4- and 5-cycles than the full flip graph on the point set. Nevertheless we

will be able to prove a Constrained Decomposition Theorem 19 showing that any label

permutation that can be realized by a closed walk in the constrained flip graph can also

be realized by a composition of finitely many elementary walks in that flip graph. The

elementary 4- and 5-cycles and the elementary walks are defined as in Section 2.9

(except now the walks are being performed in the constrained flip graph). As before,

there are two types of elementary walks. The elementary quadrilateral walks result

in trivial label permutations and elementary pentagonal walks result in elementary

swaps of labels, respecting edges of S. Thus the Elementary Swap Theorem for the

contrained case immediately follows from the Constrained Decomposition Theorem 19

by the same argument as in the proof of Theorem 3 on page 67:

Theorem 17 (Elementary Swap Theorem for Constrained Triangulations). Given a

labelled triangualtion T and a set S of its edges, any permutation of the labels that can

be realized by a sequence of flips fixing the edges of S can be realized by a sequence

of elementary swaps fixing the edges of S.

By the same argument as before, from the Constrained Elementary Swap Theorem

one proves the Constrained Swap Theorem, see the proof of Theorem 2 on page 61:

Theorem 18 (Swap Theorem for Constrained Triangulations). In a labelled triangu-

lation T , two edges are in the same orbit with respect to S if and only if there is an

elementary swap between them that fixes the edges of S.

Finally, to find a flip sequence between the two given edge-labelled triangulations

T1 and T2, transform (by flips respecting S) the triangulation T1 into edge-labelled tri-

angulation T 0
1 so that T 0

1 and T2 share the same underlying unlabelled triangulation.

Lastly, build the corresponding label permutation between T 0
1 and T2 from elementary

swaps.

As before, each elementary swap can be realized by a flip sequence of length

O(n6
) which can be found in polynomial time. This follows from the same argument as

84

in the proof of Lemma 4 on page 77, only using the double quadrilateral graph GD|S

restricted with respect to the set S: vertices of the graph GD|S are pairs of edges e,

f on the point set P such that e, f /2 S and S [e [f is non-crossing. The vertex

adjacency in the graph GD|S is defined as in the original double quadrilateral graph.

The rest of the proof, including the algorithm on page 80 that computes a reconfig-

uration sequence if it exists, carries through (only this time using orbits with respect to

S instead of the original orbits). We conclude that the flip sequence between triangu-

lations T1 and T2, if it exists, can be computed in polynomial time and so that it consists

of O(n7
) flips.

Thus, the only missing piece to prove the Constrained Orbit Theorem 16 is to prove

the Decomposition Theorem for closed walks in the flip graph constrained to S:

Theorem 19. [Decomposition Theorem for Constrained Triangulations] Let w be a

closed walk in the (unlabelled) flip graph constrained to S that starts and ends at

triangulation T0. Then, up to a finite number of spur insertions and deletions, w can

be written as a composition of finitely many elementary walks in the constrained flip

graph.

To prove the Constrained Decomposition Theorem 19, we will use a constrained

flip complex XS defined as the dual complex to a certain subcomplex TS of the original

complex of plane graphs T. Faces of TS will correspond to plane graphs F , not con-

taining any of the edges in S and such that F [S is non-crossing. The constrained

flip complex XS will be shown to have a trivial fundamental group, to have the flip

graph constrained to S as its 1-skeleton, and the elementary 4- and 5-cycles of the

constrained flip graph corresponding to its 2-cells.

To define the simplicial complex TS, we start by considering links. The link of a

simplex � in a simplicial complex X, denoted by lk(�), is defined as follows:

lk(�) := {⌧ 2 X : ⌧ \ � = ; and ⌧ [� 2 X},

i.e., the link of � consists of such simplices ⌧ in X which are (as abstract simplices)

disjoint from � and for which there is a simplex in X that contains both � and ⌧ as its

face.

85

Figure 2.8: Examples of links. The entire simplicial complex consists of all vertices,
edges and yellow triangles. The white triangles are holes. Simplex � is in orange, in
the first two examples � is a vertex, in the last two � is an edge. The corresponding
links lk(�) are in green (the last link is empty).

Note that lk(�) is a subcomplex of X: indeed, lk(�) is downward-closed since for

any simplex ⌧ 0 ✓ ⌧ , we have ⌧ 0 \ � = ; and ⌧ 0 [� 2 X since X is downward-closed.

Recall that, as defined in the proof of the Orbit Theorem, T is a simplicial complex of

pairwise non-crossing line segments on the point set P . In particular, the vertices of T

correspond to single segments on P , edges of T to pairs of non-crossing segments on

P , in general a k-dimensional simplex of T corresponds to k+1 pairwise non-crossing

segments on P and, finally, the facets of T correspond to triangulations of the point

set P . The complex T is (m� 1)-dimensional, where m is the number of edges in any

triangulation of P , including the edges on the convex hull.

In what follows, let S be a set of d non-crossing fixed edges on P , contained in

both given triangulations T1 and T2 that must stay fixed during flipping. Throughout, we

assume that S does not contain any convex hull edges, so m� d � 3.

The set S corresponds to a (d�1)-dimensional simplex �S in the simplicial complex

T. The link lk(�S) in T corresponds to a set of plane graphs H on P , with edge set

E(H), which are edge-disjoint from S and such that H [S is plane:

lk(�S) = {H : E(H) \ E(S) = ; and E(H) [E(S) is non-crossing}.

We denote TS :

= lk(�S) and call TS the simplicial complex of plane graphs on P

constrained to the set S. Note that TS is a subcomplex of T.

The plan is to prove that TS is a shellable (m � d � 1)-dimensional pseudomani-

fold with non-empty boundary, from which it will follow by Proposition 11 that TS is a

86

piecewise-linear ball. We then characterize the interior faces of TS, form the dual reg-

ular cell complex XS of TS, prove the key topological properties of XS in an analogue

of Theorem 7 and, finally, we prove the Constrained Decomposition Theorem 19.

Lemma 20. The simplicial complex TS (a subcomplex of T) is an (m�d�1)-dimensional

pseudomanifold, i.e., TS is pure and every (m � d � 2)-dimensional face of TS is con-

tained in at most two (m� d� 1)-faces.

Proof. The highest-dimensional faces of TS correspond to plane graphs on P with

m� d edges (triangulations on P constrained to S, with edges of S removed), so TS is

an (m� d� 1)-dimensional simplicial complex.

We show that each face of TS is contained in some (m�d�1)-dimensional facet. It

is well known that any plane graph on point set P can be completed to a triangulation

by adding edges. Hence, also any plane graph H corresponding to a face h of TS can

be completed to a plane graph H 0 having m � d edges disjoint from S: starting with

H, add edges of S, then complete to an arbitrary triangulation, then delete edges of S.

The resulting graph H 0 has m�d edges and corresponds to a facet h0 of TS containing

the face h, hence, TS is pure.

Finally, any (m � d � 2)-dimensional face of TS corresponds to a plane graph H

with m � d � 1 edges, disjoint from S. There are at most two ways in which to add

an edge to H so that it stays disjoint from S, this is because there are at most two

ways to complete the graph H [S (that is a triangulation with a missing edge) to a

triangulation. Hence, any (m � d � 2)-dimensional face of TS is contained in at most

two (m� d� 1)-faces and TS is a pseudomanifold.

Lemma 21. TS is shellable.

Proof. Recall that to prove shellability, we need to exhibit an order F1, F2, . . . , FN of the

(m � d � 1)-dimensional facets of TS such that for every 2  j  N and every i < j,

there exists some k < j such that Fi\Fj ✓ Fk\Fj and Fk\Fj is (m�d�2)-dimensional.

Complete facets F1, F2, . . . , FN to triangulations TF1 , TF2 , . . . , TFN by adding the edges

of S and with every triangulation T , associate the sorted vector of angles ↵(T) =

(↵1(T),↵2(T), . . . ,↵3t(T)) where ↵1(T)  ↵2(T)  · · ·  ↵3t(T) are the angles occur-

87

ing in the triangulation T . Recall that we assume the point set P to be in general

position. Let

TF1 , TF2 , . . . , TFN (2.2)

be a total ordering of the triangulations sorting the corresponding angle vectors lexico-

graphically from largest to smallest:

↵(TF1) >LEX ↵(TF2) >LEX · · · >LEX ↵(TFN).

Then the sequence contains exactly all triangulations constrained with respect to set

S and, in particular, TF1 is the constrained Delaunay triangulation with respect to S.

Given F :

= Fi \ Fj, consider the subsequence TFk1
, TFk2

, . . . of the sequence (2.2)

consisting only of those triangulations that contain the edge set F [S. Then TFk1
is

the constrained Delaunay triangulation with respect to F [S, triangulations TFi and TFj

both appear in the subsequence and, in particular, TFj 6= TFk1
because TFi precedes

it. Since every triangulation containing F [S can be tranformed to the constrained

Delaunay triangulation TFk1
(see, for example, Dyn et al. [52] and a summary on con-

strained triangulations in Sections 2.2 - 2.3), there must exist an edge e 2 TFj \ TFk1

such that flipping e (Lawson flip) increases the angle vector. Then the triangulation

resulting from flipping e in TFj is some TFk
with k < j, satisfies F [S ✓ TFk

\ TFj and

TFk
\ TFj is (m� 2)-dimensional since the triangulations differ by a single flip.

Then, removing the edges of S, we obtain F = Fi \ Fj ✓ Fk \ Fj and Fk \ Fj is

(m� d� 2)-dimensional, as desired.

Recall the definition of the boundary and interior faces of a piecewise-linear pseu-

domanifold B of dimension k: the boundary @B of B is the subcomplex of B consisting

of all faces F for which there exists a (k � 1)-dimensional face G of B, with F ✓ G,

such that G is contained in a unique k-dimensional face of B. A face F of B that does

not lie in @B is called an interior face.

Lemma 22. TS has non-empty boundary.

Proof. We need to exhibit an (m�d�2)-dimensional face that is contained in only one

(m � d � 1)-face. Since the edge set S does not contain any convex hull edges of P ,

88

any (m � d � 1)-dimensional face h of TS corresponds to a plane graph H containing

all convex hull edges. Then the plane graph H � e, where e is a convex hull edge,

corresponds to an (m � d � 2)-dimensional face h0 of TS that is contained in a single

(m� d� 1)-face of TS.

To summarize, Lemmas 20, 21 and 22, together with Proposition 11, imply:

Theorem 23. The simplicial complex TS is a shellable (m� d� 1)-dimensional pseu-

domanifold with non-empty boundary, and hence, it is a piecewise-linear ball.

We next characterize the interior faces of TS, since these will correspond to the

cells in the dual complex.

Proposition 24. Let TS be the simplicial complex of plane graphs on P constrained to

the set S. A face of TS, i.e., a non-crossing set of edges F on P such that F [S is

plane and S and F are edge-disjoint, is an interior face of TS if and only if the following

conditions hold:

(i) F contains all convex hull edges of P ,

(ii) Every bounded region in the complement of the plane graph (P, F[S) is convex.

Proof. (The proof is identical to the proof of Proposition 13, with the exception of con-

sidering a boundary face of the constrained complex TS and considering plane graphs

F [S on P being completed to a triangulation, instead of just F .)

Similarly as in the proof for the original complex T, also here we prove the negation

of the statement: F is a boundary face of TS if and only if F misses a convex hull edge

or F [S has an interior point p of P with no edge in a half-plane, where “having no

edge in a half-plane” is defined as in the original proof.

If F is a boundary face of TS, then there is a triangulation T with F [S ✓ T , and an

edge e 2 T \ (F [S) such that e is non-flippable in T . If e is a convex hull edge, then

F does not contain all convex hull edges. Otherwise e is a diagonal of a non-convex

quadrilateral in T . Set p to be the reflex vertex of the non-convex quadrilateral and H

to contain the other end of e but not the two other vertices of the quadrilateral. Then p

has no edge in the half-plane H in T \ e and hence, also in F [S.

For the other direction, first note that if F misses a convex hull edge then F is a

boundary face in TS. For the other case, suppose that F [S has a non-convex hull

89

point p of P that has no edge in the half-plane H. Augment F [S to a maximal set

F 0 of non-crossing edges without using any edge from p into H. This will not yet be

a triangulation. Now augment F 0 further to a triangulation T . Then T \ F 0 contains

some edge e incident to p, and e is not flippable in T otherwise we could have further

augmented F 0. Thus F is a boundary face in TS.

We next define the flip complex constrained to S, denoted by XS, as the dual com-

plex of the piecewise-linear ball TS. This is done exactly as in the original proof, see

Proposition 14: every interior k-dimensional face of TS gives rise to a dual cell of

dimension (dim TS)� k and the dual cells form a regular cell complex XS.

The following is a key result on topological properties of the constrained flip com-

plex XS, analogous to Theorem 7. The elementary 4- and 5-cycles in the flip graph

constrained to S are defined as in the original proof.

Theorem 25. Let P be a set of n points in general position in the plane. There is a

high-dimensional cell complex XS = XS(P), which we call the flip complex constrained

to S, such that:

1. The 1-skeleton of XS is the flip graph of P constrained to the set of edges S;

2. There is a one-to-one correspondence between the 2-cells ofXS and the elementary

4-cycles and elementary 5-cycles of the flip graph of P constrained to S;

3. XS has the topology of (i.e., is homotopy equivalent to) a high-dimensional ball;

therefore its fundamental group, ⇡1(XS), is trivial.

Proof. (The proof is almost identical to the proof of Theorem 7 on page 75, only instead

of considering the (m� 1)-, (m� 2)- and (m� 3)-dimensional interior faces of complex

T and the plane graphs with m, m� 1 and m� 2 edges, we consider the (m� d� 1)-,

(m� d� 2)- and (m� d� 3)-dimensional interior faces F of TS and the corresponding

plane graphs F [S with m, m� 1 and m� 2 edges.)

By Theorem 23, TS is a piecewise-linear ball and thus it has a trivial fundamental

group. By Proposition 14, XS = T⇤
S is a regular cell complex that is homotopy equiv-

alent to the ball TS. Consequently (using the fact that homotopy equivalent spaces

have isomorphic fundamental groups, see, for example, [72]), the fundamental group

⇡1(XS) is trivial.

90

It remains to show the characterization of the vertices, edges and 2-cells of XS.

The vertices of XS correspond (are dual) to the faces of TS of the highest dimension

m � d � 1 and so are automatically interior faces of TS. The (m � d � 1)-dimensional

faces of TS correspond to plane graphs with m � d edges on P that together with

edges in S form a triangulation. Hence, the vertices of XS are in bijection with the

triangulations of P constrained to S.

The edges of XS correspond to interior (m� d� 2)-dimensional faces F of TS, i.e.,

faces F such that the plane graph F [S is contained in two triangulations of P that

differ by a flip. Thus, the 1-skeleton of XS is exactly the flip graph of P constrained to

S.

Every 2-cell ofXS is the dual cell F ⇤ of an interior face F of TS of dimensionm�d�3.

Consider an arbitrary triangulation T containing F [S, i.e., F [S is obtained from T by

deleting two edges e, f . By Proposition 24, e and f are both flippable in T since they

lie in a convex polygon in T .

If e and f are not incident to a common triangle in T , (or, equivalently, removing

both e and f from T creates two internally disjoint convex quadrilaterals) then there

exist four triangulations containing F [S and these form an elementary 4-cycle in the

constrained flip graph. It follows from the definition of XS = T⇤
S that the 4-cycle is the

boundary of the dual cell F ⇤.

Otherwise, e and f are incident to a common triangle in T . By Proposition 24

the union of the three triangles of T containing either e or f forms a convex polygon,

necessarily a pentagon. There are five triangulations containing F [S and these form

an elementary 5-cycle in the constrained flip graph. It follows from the definition of

XS = T⇤
S that the 5-cycle is the boundary of the dual cell F ⇤.

Hence, every 2-cell of XS corresponds to an elementary 4- or 5-cycle of the flip

graph constrained to S.

Conversely, every elementary 4- and 5-cycle of the constrained flip graph gives

rise to a 2-cell F ⇤ of XS: more precisely, F ⇤ corresponds to the intersection of the

triangulations in the elementary cycle with deleted edges of S.

The elementary quadrilateral/pentagonal walks in the flip graph constrained to S

are defined as before: they are closed walks in the constrained flip graph of the form

91

wzw�1 where z is an elementary 4- or 5-cycle in the constrained flip graph and w is a

walk from some triangulation T0 to some triangulation on z. As before, the elementary

quadrilateral walks do not permute labels and the elementary pentagonal walks per-

form elementary swaps of labels (Lemma 8). Spurs do not permute labels (Lemma 9).

The proofs of Lemmas 8 and 9 carry over to the constrained scenario.

Finally, the Constrained Decomposition Theorem 19 follows from Theorem 25 by

the same argument as the Decomposition Theorem 10 followed from Theorem 7, see

the proof of Theorem 10 on page 69.

This concludes the proof of the Orbit Theorem 16 for Constrained Triangulations.

2.12 Shortest flip sequences in constrained versus unconstrained triangu-

lations

We conclude the chapter by comparing the shortest flip sequences for constrained

versus unconstrained triangulations. We have observed in previous sections that a

flip sequence reconfiguring one triangulation into another exists even if certain set of

edges cannot be flipped. For unlabelled triangulations this was guaranteed by the

fact that the flip graph for constrained triangulations is connected, see Section 2.3.

For labelled triangulations, existence of a flip sequence under certain conditions is

guaranteed by the Orbit Theorem for constrained triangulations in Section 2.11.

In this section we show that the length of a flip sequence to reconfigure one trian-

gulation of a point set into another may increase if we insist that some edges cannot

be flipped. This is the case both in the labelled as well as unlabelled setting since the

constrained edges, even though sitting in their correct position, can obstruct a more

efficient flip sequence. An exceptional case are the unlabelled triangulations of a con-

vex point set, in which the shortest flip sequences never flip edges that are already in

the correct position, see below. This section provides a parallel in terms of triangula-

tion flipping to an analogous problem of swapping ‘happy’ tokens on graphs that we

study in Section 3.4 of Chapter 3 (although to define a truly analogous problem, one

would have to consider constraining only such edges in a triangulation that play the

role analogous to the role of leaf vertices in a graph).

92

Given a pair of unlabelled triangulations of a point set, we call an edge e happy if

it appears in both triangulations. In the case of labelled triangulations, e is happy if it

appears in both triangulations and has the same label.

By a result of Sleator et al. [129] fixing happy edges in unlabelled triangulations of

a convex point set does not affect the flip distances.

Lemma 26 (Lemma 3b in [129]). If T1 and T2 are triangulations of a convex point set

that have an edge e in common, then a shortest flip sequence between T1 and T2 never

flips e.

In fact, Sleator et al. [129] proved that if a happy edge was flipped, the resulting flip

sequence would be at least two flips longer than the shortest possible flip sequence.

On the other hand, the shortest flip sequences between triangulations of a general

point set may need to flip happy edges. Lubiw and Pathak [101] give an example of

a ‘capped channel’ which consists of two reflex vertex chains and an extra vertex on

the left that sees all vertices inside the polygonal channel, see Figure 2.9 where the

example consists of six vertices on each vertex chain.

In the figure, if we require that all the happy edges, including the edge ab and the

reflex chain edges (in bold) stay fixed, then reconfiguring triangulation T1 to T2 takes

at least 25 flips. This can be seen by an argument by Hurtado et al. [83], where each

triangle in the interior of the channel gets assigned either ‘0’ or ‘1’ according to whether

it contains two vertices of the lower or the upper chain. The labelled triangles are

ordered left-to-right and a flip always swaps a neighbouring ‘0’-triangle with ‘1’-triangle

or vice versa. Hence, reconfiguring triangulation T1 into T2 is equivalent to inverting

the sequence 1111100000 into 0000011111 by transposing adjacent elements which

takes at least 25 such adjacent transpositions.

If, however, we allow to flip the happy edge ab, reconfiguring triangulation T1 into T2

can be done in 20 flips by flipping into a canonical triangulation as was used by Lubiw

and Pathak [101]. The flip sequence in Figure 2.10 shows 10 flips to transform T1 into

the canonical form where all edges inside the polygonal channel are incident to vertex

c and another 10 flips to transform it into triangulation T2.

The same result holds for labelled triangulations, i.e., the shortest flip sequences do

not necessarily respect the labelled happy edges. The example in Figure 2.11 consists

93

1

0 0 0 0 0

1 1 1 1 1 1 1 1 1

0 0 0 0 0

a a

b b

c c

d d

e e
T1 T2

Figure 2.9: Two triangulations of a capped channel. Labelling the triangles inside the
channel by ‘0’ or ‘1’ shows that at least 25 flips are necessary to reconfigure T1 into T2

if the happy edges remain fixed.

canonical triangulation

c

T
1

T
2

Figure 2.10: Reconfiguring triangulation T1 into T2 is possible in 20 flips if the flip
sequence goes via the canonical triangulation.

a a

bb

c cdd
e e

f f
l l

T1 T2

Figure 2.11: Two labelled triangulations of a regular 7-gon with a point in the middle for
which the shortest reconfiguring flip sequence does not fix the happy label l. A shortest
reconfiguration sequence consists of 37 flips. If the happy edge l must remain fixed,
55 flips are required to reconfigure T1 to T2.

94

of 7 points that are vertices of a regular 7-gon and a point in the middle. In both trian-

gulations the middle point is connected to all other points, but, apart from one happy

edge l, the edges are labelled in reversed order in the two triangulations T1 and T2.

When all edges can be flipped, it is pretty straightforward to find a reconfiguration se-

quence consisting of 37 flips. The idea is that the labels a and f can be swapped within

the upper region of the 7-gon. If, however, the happy edge l must remain fixed, the

labels a and f must instead travel around the 7-gon. Then the shortest flip sequence

between T1 and T2 has 55 flips, as was confirmed by a program implementation. The

program constructs the constrained labelled flip graph of the point set in which each

triangulation contains the black happy edge labelled l (as in Figure 2.11), and checks

with the Dijkstra algorithm that the shortest path between triangulations T1 and T2 in

the flip graph has length 55.

Hence, we showed that the shortest flip sequences in the constrained setting, if

they exist, may in general not be the shortest flip sequences between the given tri-

angulations; and that this is the case in both the labelled and unlabelled setting. We

will revisit this question in an analogous setting of swapping happy tokens on trees in

Section 3.4 of Chapter 3.

95

3 Token Swapping on Trees

This chapter is about reconfiguring tokens placed on vertices of graphs, and, specifi-

cally, on trees. Throughout we assume that there is one token placed on each vertex

and the tokens are labelled 1, . . . , n, where n is the number of vertices. The recon-

figuration step is to swap two tokens on adjacent vertices, hence the name token

swapping.

We present new results related to computing shortest reconfiguration sequences

for token swapping on trees: we disprove the Happy Leaf Conjecture, and discuss

that computing the shortest reconfiguration sequences for coloured weighted token

configurations is NP-hard on trees, while showing that it is solvable in polynomial time

for paths and stars.

We start in Section 3.1 by providing basic definitions, and by describing the main

reconfiguration questions in the context of token swapping. Section 3.2 gives a short

survey of past results on token swapping on general graphs as well as on trees and

other special classes of graphs.

Sections 3.3 – 3.7 cover the new results. We start with a counterexample to the

Happy Leaf Conjecture in Section 3.4 and its generalization in Section 3.5 that demon-

strates the importance of swapping the already-correctly-placed leaf tokens in order to

obtain optimal reconfiguration sequences. As a step towards establishing whether

the problem of shortest token swapping reconfiguration on trees lies in P or is NP-

complete, we consider a generalization of the problem in Section 3.6 – the weighted

coloured token swapping. Our paper [24] shows that computing the shortest recon-

figurations in the generalized setting is NP-hard on trees, and we provide polynomial

time algorithms for paths and stars in Section 3.7.

For a survey on other variants of token reconfigurations on graphs, such as, for

96

example, token sliding or jumping, involving varying number of (possibly unlabelled)

tokens or constrained token placements, see Section 1.5.

3.1 Introduction to token swapping and reconfiguration set-up

Suppose we wish to sort a list of numbers and the only allowable operation is to swap

two adjacent elements of the list. It is well known that the number of swaps required

is equal to the number of inversions in the list, i.e., the number of pairs that are out of

order. Many other problems of sorting with a restricted set of operations have been

studied, for example, pancake sorting, where the elementary operation is to flip a prefix

of the list; finding the minimum number of pancake flips for a given list was recently

proved NP-complete [36].

A much more general problem arises when we are given a set of generators of

a permutation group, and asked to express a given permutation ⇡ in terms of those

generators. Although there is a polynomial time algorithm to test if a permutation can

be generated, finding a minimum length generating sequence was proved PSPACE-

complete in 1985 [86].

This chapter is about a problem, known recently in the computer science com-

munity as token swapping, that is intermediate between sorting a list by swaps and

general permutation generation. The input is a graph with n vertices v1, . . . , vn. There

are n tokens, labelled 1, 2, . . . , n, and one token is placed on each vertex. The goal

is to “sort” the tokens, which means getting token i on vertex vi, for all i = 1, . . . , n.

The only allowable operation is to swap the tokens at the endpoints of an edge, i.e., if

e = (vi, vj) is an edge of the graph and token k is at vi and token l is at vj, then we can

move token k to vj and token l to vi. See Figure 3.1. The token swapping problem is

to find the minimum number of swaps to sort the tokens. In the special case when the

graph is a path, the token swapping problem is precisely the classic problem of sorting

a list using adjacent swaps, see Knuth [94].

In the terminology of reconfiguration, the reconfiguration graph has as vertices all

possible token-to-vertex assignments on the given graph. Two assignments are adja-

cent if they differ by a single swap. The token swapping problem asks to compute the

97

1

4
3

2
6

5

1

4
3

2
6

5

v4

v1

v2

v3

v5

v6

v1

v2

v3

v4

v5

v6

Figure 3.1: An example of the token swapping problem. Left: a tree of 6 vertices and
an initial placement of tokens (in circles) on the vertices. Blue dashed arrows indicate
where each token should go. Token 4 is home. The corresponding permutation is
(1 5 3)(2 6)(4). Right: the effect of swapping tokens 4 and 6. Now token 6 is closer
to its destination but token 4 is further from its destination. One swap sequence that
sorts the tokens to their destinations is (4 6), (6 2), (2 4), (3 4), (3 2), (3 1), (1 5), (5 2),
(5 4). This sequence has 9 swaps, but there is a swap sequence of length 7.

shortest path between two vertices in the reconfiguration graph (where, without loss of

generality, one token-vertex assignment is assumed to be the identity permutation).

The reconfiguration graph for token swapping on a graph G is also known as the

Cayley graph of transposition graph G. In general, Cayley graphs are defined for any

group and its generating set. Recall that, given a group (F, ⇤), a subset S is a generator

of F , if every element of F can be expressed as the product of finitely many elements

of S and their inverses. Given a group F and a generator S of F , the Cayley graph

�(F, S) has the elements of F as vertices and any two vertices v, w are adjacent, if

there exists an element s 2 S such that v⇤s = w (by default, the edges are undirected).

In our context, we are interested in the Cayley graph of the symmetric group Sn that

consists of all permutations of the n element set {1, . . . , n}. The generating set SG is

determined by a graph G = (V,E) on n vertices, called a transposition graph: SG is

defined as the set of all transpositions corresponding to edges of E. It can be shown

that SG is a minimal generating set for the group Sn if and only if the transposition graph

is a tree. The Token swapping problem corresponds to finding the shortest path in the

Cayley graph �(Sn, SG) from a given permutation ⇡ to the identity permutation, where

the permutation is ⇡(i) = j if token j is initially at vertex vi. Note that this shortest

path corresponds to the minimum length generating sequence of ⇡ by elements of SG.

The worst case minimum number of swaps between two token-vertex assignments

corresponds to the diameter of the Cayley graph.

The following is a short overview of typical reconfiguration problems. Compared to

triangulation reconfiguration in 2.1, some of the problems become easy or even trivial

98

in the context of token swapping. On the other hand, as demonstrated in Section 3.2,

the shortest paths and the diameter questions are a topic of active research in multiple

disciplines.

Size of reconfiguration graph, connectivity and finding some swap sequence

between two token assignments. Token swapping on a graph G with n vertices

corresponds to a reconfiguration graph of size n! which is connected if and only if G

is connected. If a reconfiguration sequence exists, it takes at most O(n2
) swaps, see

Section 3.2.

Diameter of the reconfiguration graph. Bounding the worst-case number of swaps

for a given graph and, in particular, a tree, over all possible token placements, is of in-

terest in the community of sorting networks. Akers and Krishnamurthy [9] gave the first

bounds for diameters of Cayley graphs of transposition trees in 1989. The bounds and

their computation time have subsequently been improved by Ganeson [65], Chitturi

[45] and Kraft [96].

Computing the distance and shortest paths in the reconfiguration graph. The

Token swapping problem on graphs was proved NP-complete [13], and even APX-

hard [106], in 2016, and further hardness results have appeared since then [28]. There

are polynomial time algorithms for paths, cliques [40], cycles [86], and stars [9; 120;

116], and some other special cases.

Token swapping on a tree is not known to be in P or NP-complete. Several papers

have given polynomial time 2-approximation algorithms for trees [9; 141; 148; 106].

The token swapping problem has been generalized in several ways. In weighted

token swapping each token i has a positive weight w(i) and the cost of swapping token

k and token l is w(k) +w(l). The goal is to sort the tokens while minimizing the sum of

the costs of the swaps. In coloured token swapping [68; 149] the tokens have colours,

and we are given an initial and final assignment of coloured tokens to the vertices.

Tokens of the same colour are indistinguishable. The goal is to move from the initial

to the final token arrangement using the fewest swaps. The original problem is the

99

case where each token has a distinct colour. Coloured token swapping on graphs is

NP-hard for 3 colours [149] but solvable in polynomial time for 2 colours. In weighted

coloured token swapping we have coloured tokens and each colour has a weight. Such

a weighted colored version has been studied for string rearrangements under various

cost models, which allow swapping non-adjacent elements [12].

Token swapping on general graphs is an active topic that has been studied by differ-

ent research communities in mathematics, computer science, and engineering, often

unaware of each others’ work. Broadly speaking, mathematicians aim to understand

properties of Cayley graphs, computer scientists study algorithmic aspects of token

swapping. In particular, the network community is interested in using Cayley graphs of

transposition trees as interconnection networks, and the robotics community can apply

some of the algorithms to robot motion planning. We survey all the results about to-

ken swapping that we know of in Section 3.2. Section 1.5 covers some related results

about more general token reconfigurations.

Our results contained in Sections 3.3–3.7 are about token swapping on a tree and,

in particular, our emphasis is on computing the number of swaps, and the actual swap

sequence, needed for a given placement of tokens on a graph. As explained above,

this problem is equivalent to finding a shortest path in the Cayley graph of a transposi-

tion tree and is also known as ‘sorting with a transposition tree’.

3.2 Survey of token swapping results

We start by describing results related to the diameter of Cayley graphs of transposition

trees. Then we turn to the main topic of our interest – the token swapping problem –

and describe the relevant results for general graphs, trees, paths and stars. Finally,

we discuss the work on ‘happy leaves’ and coloured/weighted token swapping that we

extend with our results in the following sections.

Transposition trees and interconnection networks

The sorting network community’s interest in token swapping on trees (“sorting with a

transposition tree”) stems from the use of the corresponding Cayley graphs as inter-

100

connection networks. Specifically, the Cayley graph of a star (a tree with one non-leaf)

is a good alternative to a hypercube. Akers and Krishnamurthy [9] first introduced

this idea in 1989, and their paper has been cited more than 1400 times according to

Google scholar.

Cayley graphs of transposition trees have the following desirable properties: they

are large graphs (n! vertices) that are vertex symmetric, with small degree (n�1), large

connectivity (the same as the degree), and small diameter. In particular, the diameter

is 3
2
n + O(1) when the tree is a star. The commonly used hypercube has 2

n vertices

and diameter n, so the diameter is logarithmic in the size. By contrast, the Cayley

graph of a star has sublogarithmic diameter.

Akers and Krishnamurthy proved a bound on the diameter of the Cayley graph of

a transposition tree, specifically, the maximum over all permutations of the bound D �

(n� c) which is defined in the section on the happy swap algorithm below. This bound

cannot be computed efficiently since it involves the maximum over n! permutations.

Vaughan [139] also gave upper and lower bounds on the diameter of the Cayley graph,

though neither easy to state nor to prove.

Follow-up papers by Ganesan [65], Chitturi [45] and Kraft [96] have lowered the di-

ameter bound and/or the time required to compute the bound. To give a flavour of the

results, we mention a polynomial-time computable upper bound, �, due to Chitturi [45]

that is defined recursively as follows: if the tree is a star, use the known diameter

bound; otherwise choose a vertex v that maximizes the sum of the distances to the

other vertices, increase � by the maximum distance from v to another vertex and re-

curse on the smaller tree formed by removing the leaf v.

Token swapping on graphs

Token swapping on a connected graph of n vertices takes at most O(n2
) swaps—take

a rooted spanning tree and, for vertices in leaf-first order, successively home the token

that goes to that vertex, where homing a token means swapping it along the unique

path to its final location. This bound is tight for a path with tokens in reverse order.

The token swapping problem on graphs (to compute the minimum number of swaps

between two given labellings of the graph) is NP-complete, and in fact, APX-complete,

101

as proved by Miltzow et al. [106]. They complemented these hardness results with a

polynomial-time 4-approximation algorithm, and an exact exponential time algorithm

that is best possible assuming ETH. These results extend to coloured token swapping.

Bonnet et al. [28] showed that token swapping is W[1]-hard parameterized by number

of swaps, but fixed parameter tractable for nowhere dense graphs. This result extends

to coloured token swapping and even to a further generalization called “subset token

swapping”.

There are many special classes of graphs on which token swapping can be solved

via exact polynomial time algorithms. These include (in historical order): cliques [40],

paths [94], cycles [86], stars [9; 120; 116], brooms [140; 92], complete bipartite graphs

[148], and complete split graphs [152]. See the survey by Kim [93].

Token swapping on trees

The big open question is whether the token swapping problem on a tree is in P or is

NP-complete. Various efficient but non-optimal algorithms for token swapping on a tree

have been presented in the literature. Most of them are 2-approximations—i.e., they

use at most twice the optimum number of swaps—although this was not always noted.

Several of the algorithms are expressed in terms of the paths that tokens should take.

For any token i, there is a unique path p(i) from its initial vertex to its final vertex vi.

Let d(i) be the length (the number of edges) of the path p(i), and let D =

P
i d(i).

Happy swap algorithm. The earliest algorithm we are aware of is due to Akers and

Krishnamurthy in 1989 [9]. Their algorithm involves two operations that we will call a

“happy swap” and a “shove.” Let (u, v) be an edge with token i on u and token j on

v. A happy swap exchanges i and j if p(i) includes v and p(j) includes u, i.e., the

two tokens want to travel in opposite directions across the edge e as the first steps in

their paths. A shove exchanges i and j if p(i) includes v and j is home. Akers and

Krishnamurthy show that: (1) one of these operations can always be applied; and (2)

both operations decrease M = D � (n � c) where n is the number of vertices and c

is the number of cycles in the permutation ⇡ defined by ⇡(i) = j if token j is initially

at vi. Note that if ⇡(i) = i (i.e., i is home) this forms a trivial cycle which counts in c.

102

Operation B Operation C

e

i

j

i
j

k

i

j

ke

i

j

+(i, j)

+(j, k)2 swaps

e

e

Figure 3.2: Illustration of Operation B and C. The solid lines indicate paths in the tree
and the dotted lines indicate the target vertex of the corresponding token.

Both aspects (1) and (2) of the proof are fairly straightforward. For (2) they prove that

a shove does not change D but decreases c, whereas a happy swap decreases D by

2 and changes c by at most 1. Their proof implies that M is an upper bound on the

minimum number of swaps. They do not claim that M is at most twice the minimum,

but this follows from the easy observation that M  D and D/2 is a lower bound on

the minimum number of swaps, since a single swap decreases D by at most 2.

Miltzow et al. [106] gave a 4-approximation algorithm for [coloured] token swapping

on general graphs. In case the graph is a tree, their algorithm is the same as the one

of Akers and Krishnamurthy and they prove that it is a 2-approximation.

Vaughan’s algorithm. Independently of the work by Akers and Krishnamuthy, Vaughan

[141] in 1995 gave an algorithm for token swapping on a tree that uses a number of

swaps between D/2 and D (in her notation D is called “PL”). Her algorithm involves

three operations: A, a happy swap; B, a version of a happy swap that alters the final

token assignment; and C, a variant of a shove. Her operations construct the swap

sequence by adding swaps at the beginning and the end of the sequence, whereas

the other algorithms construct the sequence from the start only.

Operation B applies when there is an edge e = (u, v) and tokens i and j such

that the destination of i is u and the destination of j is v and p(i) includes v and p(j)

103

includes u, i.e., the two tokens want to travel in opposite directions across the edge e

as the last steps in their paths. The operation exchanges the final destinations of i and

j, computes a swap sequence for this subproblem, and then adds the swap of i and j

at the end of the sequence.

Operation C applies in the following situation. Suppose there is an edge e = (u, v)

with token i on u and token j on v, where p(i) includes v and token j is home. Suppose

furthermore that there is a token k whose destination is u and whose path p(k) includes

v. (Note that this is a more restrictive condition than for a shove.) The operation

exchanges tokens i and j and exchanges the final destinations of j and k. Recursively

solve this subproblem. The swap sequence consists of the swap of i and j, followed

by the sequence computed for the subproblem, followed by the swap of j and k.

Vaughan proves that if operations A and B do not apply, then operation C does,

and she proves that each operation decreases the sum of the distances by 2.

Cycle algorithm. The first explicit description of a 2-approximation algorithm for to-

ken swapping on trees was given by Yamanaka et al. [148], who gave an algorithm that

sorts the cycles of the permutation one-by-one. Consider a cycle of tokens (t1t2 · · · tq)

in the permutation ⇡. For i = 1, . . . , q � 1 their algorithm swaps token ti along the path

from its current vertex to the vertex currently containing token ti+1—but stops one short

of the destination. Finally, token tq is swapped from its current vertex to its (original)

destination.

We now outline their proof of correctness and the bound on the number of swaps.

Suppose that token t1 is currently at vertex x and that the first edge it wishes to travel

along is e = (x, y). Let j be the minimum index, 2  j  q such that tj wishes to travel in

the opposite direction along e (and observe that j exists). Then the cycle is equivalent

to (t1 · · · tj) followed by (tj · · · tq), where the second cycle is empty if j = q. Also, the

algorithm performs the same swaps on these two cycles as on the original. Thus it

suffices to prove that their algorithm correctly solves the cycle (t1 · · · tj). This cycle has

the special feature that no tokens besides t1 and tj wish to traverse edge e. Yamamoto

et al. prove that their algorithm “almost” achieves the property that just before step i

(the step in which ti moves) tokens t1, . . . , ti�1 are at their final destinations and all

other tokens, including the non-cycle tokens, are at their initial positions. “Almost”

104

means that there is the following exception: there is one path from x along which the

tokens are shifted by 1. Let z be the vertex containing ti, and let z0 be the next vertex

on the path from z to x. All the tokens on the path from z0 to x are one vertex away from

their desired positions–they should all be one vertex closer to z. With this exception,

the property is obvious for i = 1 and i = 2 and can be proved by induction, which

implies that the algorithm is correct.

Because tokens are only “off-by-one” it can be argued that the number of swaps

performed in step i of the algorithm is bounded by the original distance from ti to its

destination. This implies that the total number of swaps is at most the sum of the

distances of labels in the cycle, which gives the factor 2 approximation.

Comparisons. A leaf in a tree that already has the correct token is called a happy

leaf. None of the algorithms will swap a token at a happy leaf, so, as our example in

Section 3.4 demonstrates, there is an instance where the algorithms are not optimal.

The three algorithms differ in how far they allow a token i to stray from its path p(i).

In the happy swap algorithm no token leaves the set of vertices consisting of its path

together with the vertices at distance 1 from its destination. In the cycle algorithm, no

token leaves its path together with vertices at distance 1 from its origin and destination.

In Vaughan’s algorithm, a token may go further away from its path.

Token swapping on paths

Token swapping on a path is the classic problem of sorting a list by transposing ad-

jacent pairs. See Knuth [94, Section 5.2.2]. The minimum number of swaps is the

number of inversions in the list. Curiously, a swap that decreases the number of inver-

sions need not be a happy swap or a shove (as described above) and, on the other

hand, there does not seem to be any measure analogous to the number of inversions

that applies to trees more generally, or even to stars.

The diameter of the Cayley graph for token swapping on a path is ⇥(n2
). Re-

searchers have also studied the number of permutations with a given number of inver-

sions [94], and the relationship between the number of inversions and the number of

cycles [53; 19].

105

Token swapping on stars

A star is a tree with one non-leaf vertex, called the center vertex. We will need the

following known result about token swapping on a star, which expresses the number of

swaps as a function of the number of cycles in the permutation ⇡. The formula is often

written with a delta term whose value depends on whether the center vertex is happy

or not, but we will express it more compactly.

Lemma 27 ([9; 120; 116]). The optimum number of swaps to sort an initial placement

of tokens on a star is nU + `, where nU is the number of unhappy leaves and ` is the

number of cycles in the permutation that have length at least 2 and do not involve the

center vertex.

Proof sketch. Consider a cycle C of length at least 2 in the permutation of tokens

and consider the corresponding vertices of the star. If the center vertex is not in C

then the number of swaps to sort C is its number of leaves plus one. If the center

vertex is in C then the number of swaps is the number of leaves in C. Because the

cycles are independent, we can sum over all non-trivial cycles, which yields the stated

formula.

It follows that the diameter of the Cayley graph for a star is 3
2
n+O(1), which arises

when all cycles have length 2. Further properties of Cayley graphs of stars were

explored by Qiu et al. [122]. Portier and Vaughan [120] analyzed the number of vertices

of the Cayley graph at each distance from the distinguished “sorted” source vertex (see

also [143]). Pak [116] gave a formula for the number of shortest paths between two

vertices of the Cayley graph.

Happy leaves

Vaughan [139] conjectured that a happy leaf in a tree need not be swapped in an

optimal swap sequence. In fact she made a stronger conjecture [139, Conjecture 1]

that if a tree has an edge (a, b) such that no token wishes to cross (a, b) (i.e., no

path from a token to its destination includes edge (a, b)) then there is an optimal swap

sequence in which no token swaps across (a, b). The Happy Leaf Conjecture is the

special case where b is a leaf.

106

Smith [131, Theorem 9] claimed something stronger than the Happy Leaf Conjec-

ture: that no optimal swap sequence would ever swap a happy leaf. But later he found

an error in the proof [132], and gave an example of a small tree where there is an

optimal swap sequence that performs a swap on a happy leaf. In his example, there

is also an optimal swap sequence that does not swap the happy leaf so he did not

disprove the Happy Leaf Conjecture.

Coloured token swapping

Many natural reconfiguration problems involve “coloured” elements, where two ele-

ments of the same colour are indistinguishable. Token swapping for coloured tokens

was considered by Yamanaka et al. [150] (journal version [149]). They proved that the

coloured token swapping problem is NP-complete for c � 3 colours even for planar

bipartite graphs of maximum degree 3, but for c = 2 the problem is solvable in polyno-

mial time, and in linear time for trees. On complete graphs, coloured token swapping

is NP-complete [28] but fixed parameter tractable in the number of colours [149]. The

complexity of coloured token swapping on trees is open.

3.3 Our results

Most of the results in this chapter appear in the paper by Biniaz et al. [24]. Some parts

of the paper in which the author was not significantly involved but are closely related

(such as the NP-hardness proof for weighted coloured token swapping on trees) are

only briefly described in this thesis, but whenever this is the case, we point the reader

to the full version of the paper. Other parts of the paper, such as on factors of approx-

imation algorithms or an algorithm for a ‘broom’ graph have been omitted altogether.

One feature of all the algorithms for token swapping on trees—both the poly-time

algorithms for special cases and the approximation algorithms for the general case—

is that they never swap a happy leaf. As mentioned above, in 1991 Vaughan [139]

conjectured that an optimal swap sequence never needs to swap a token at a happy

leaf. We give a 10-vertex counterexample to this Happy Leaf Conjecture in Section 3.4

107

and a generalized example in Section 3.5. In the paper [24] we furthermore show that

any algorithm that fixes the happy leaves has approximation factor at least 4/3, and we

show that the two best-known 2-approximation algorithms (the happy swap algorithm

and the cycle algorithm) have approximation factor exactly 2. These results provide

new insight that the difficult aspect of token swapping on trees is knowing when and

how to swap happy leaves.

Next, we explore whether this difficult aspect can be used to prove NP-hardness.

In Section 3.6 we outline our result from [24] that the generalized version of weighted

coloured token swapping is NP-hard for trees. Furthermore, we show in Section 3.7

that this generalized version remains poly-time on paths and stars, which gives further

evidence that trees really are harder than paths and stars.

Finally, in an attempt to expand the set of “easy” cases, we devised a polynomial

time algorithm for token swapping on a broom—a star with an attached path—only

to discover that this had been done by Vaughan [140] in 1999, and by Kawahara et

al. [91] in 2016. Our simpler proof is in [24].

Preliminaries. We say that a token is home if it is at its destination. In a tree, hom-

ing a token means swapping it along the (unique) path from its current position to its

destination.

We defined the token swapping problem as: move token i from its initial vertex to

vertex vi, with associated permutation ⇡(i) = j if token j is initially at vi. An alternative

formulation is in terms of an initial and final token assignment. Suppose s is an initial

assignment of tokens to vertices, and f is a final assignment of tokens to vertices. The

goal then is to move each token i from its initial vertex s(i) to its final vertex f(i). The

associated permutation is ⇡(i) = s�1
(f(i)). (Our first formulation just eases notation

by assuming that f(i) = vi.)

A solution to a token swapping problem is a sequence of swaps, �1, �2, . . . , �k. Our

convention is that, starting with the initial token assignment, we perform the swaps

starting with �1 and ending with �k to get the tokens to their final positions. Equiva-

lently, performing the transpositions starting with �k and ending with �1 generates the

associated permutation.

108

78

10

14 3 26 59

7

810 14 3 26 59

78

10

14 3 26 59

7

810 14 3 26 5 9

7

810 14 3 26 5 9

810 1 4

3

2 65 97

(a)

(b)

(c)

(d)

v4v1 v2 v3 v5 v6 v7 v8 v9
v10

v4v1 v2 v3 v5 v6 v7 v8 v9
v10

v4v1 v2 v3 v5 v6 v7 v8 v9
v10

v4v1 v2 v3 v5 v6 v7 v8 v9
v10

v4v1 v2 v3 v5 v6 v7 v8 v9
v10

v4v1 v2 v3 v5 v6 v7 v8 v9
v10

Figure 3.3: A counterexample to the Happy Leaf Conjecture where an optimum swap
sequence involves moving the happy token 10. (a) The initial tokens (in circles). (b)
Three swaps move token 10 to v1. (Dashed arrows show the upcoming moves.) (c)
The result of homing tokens 9 and 8. (d) The result of homing tokens 9 through 4. Four
additional swaps will sort the tokens.

3.4 Counterexample to the Happy Leaf Conjecture

In this section we disprove the Happy Leaf Conjecture by giving a tree with initial and

final token placements such that any optimal swap sequence must swap a token on

a happy leaf (recall that a happy leaf is one that has the correct token). Our coun-

terexample has n = 10 vertices and is shown in Figure 3.3(a). This is the smallest

possible counterexample—we have verified by computer search that all trees on less

than 10 vertices satisfy the Happy Leaf Conjecture. Our counterexample can easily be

generalized to larger n.

Our tree consists of a path v1, . . . , v9 and one extra leaf v10 joined by an edge to

vertex v3. The initial token placement has token 10 at v10 (so v10 is a happy leaf) and

tokens 9, 8, . . . , 1 in that order along the path v1, v2, . . . , v9.

If token 10 does not leave vertex v10 (i.e., we fix the happy leaf), then we must

reverse the order of the tokens on a path of length 9, which takes
�
9
2

�
= 36 swaps.

However, as we now show, there is a swap sequence of length 34.

109

Initially, we perform 3 swaps to move token 10 to v1 giving the configuration shown

in Figure 3.3(b). Next, we ignore leaf v1 and perform the sequence of swaps that

homes tokens 9, 8, . . . , 4. The result of homing tokens 9 and 8 is shown in Figure 3.3(c),

and the result of homing all of them is shown in Figure 3.3(d). It is easy to verify that

this takes 7 swaps for token 9, 6 for token 8, . . . , 2 for token 4, which adds up to

7 + 6 + · · ·+ 2 = 27 swaps.

Finally, we perform the following swaps to complete the sort: home token 10 in 3

swaps, then home token 1 in 1 swap. In total, this uses 3 + 27 + 4 = 34 swaps.

The idea of why this saves swaps is as follows. To reverse the order of edges on a

path, every token must swap with every other token. By contrast, the above approach

saves swaps whenever two tokens occupy vertices v2 and v10. For example, tokens 8

and 7 never swap with each other, nor do 7 and 6, etc. We need n � 10 so that this

saving exceeds the cost of the initial set-up and final clean-up.

3.5 Generalized counterexample

The swapping idea behind the counterexample from Section 3.4 that saves swaps

is depicted again in Figure 3.4. Previously, each yellow and blue rectangle in the

figure represented one token. Each rectangle can, however, also represent a block of

tokens. The principle stays the same: always home the largest unhomed token. This

is equivalent to swapping the entire block to the place along the path where it belongs

and then sorting the tokens within the block. An actual swap sequence will additionally

need to perform some extra swaps to initially set-up the tokens and, to clean-up at the

end. Such a general full swap sequence is sketched in Figure 3.5.

In detail, the graph we consider is a path with an extra shorter path attached.

Removal of the single degree-3 vertex splits the graph into three parts that we call

a branch (down), a short path (left), and a long path (right). The blocks of tokens

are chosen to have 3 different lengths. The blue blocks have length d, same as the

branch. We assume that the short path has length l + d, where l is the length of the

yellow blocks (so that one blue block plus one yellow block can exactly fit on the short

path). There are two orange token blocks of length l + 1, originally placed as the very

110

. . .

. . .

. . .

. . .

6 4 2

246

24 6

24 6

5 3 1

7

713

5

713

5

71

3

5

..
.

Figure 3.4: The swap-saving idea can also be used with blocks of tokens.

first and last block on the path, and needed for the initial setting-up swaps and final

cleaning-up to work out. We assume that the long path has length k(l + d) + l + 1 for

some k > 0, so that it fits exactly k repetitions of yellow-blue blocks and one orange

block at the end.

As before, our aim is to reverse the tokens along the horizontal path, and we as-

sume that the branch tokens start happy. See Figure 3.5. After the initial preparatory

swaps we use the same swap-saving idea as in the original 10-vertex counterexample

to reverse the blocks and close by a couple of auxiliary swaps.

The total number of swaps can be determined with a (bit lengthy but) straightfor-

ward computation. It turns out that the number of swaps saved, as compared to the

standard swapping that fixes the happy tokens on the branch, is equal to 2kdl�d(d+1).

Qualitatively, this makes sense: as seen in Figure 3.5, the blue blocks do not cross over

any of the two neighboring yellow blocks. Since a crossing of a blue block with an yel-

low block costs dl swaps in total, the total number of swaps saved should be roughly

2kdl, minus an overhead for preparation and clean up.

Such savings can be significant. In particular, if k = 1 and d = l = n then

the standard method uses
�
5n+1

2

�
⇠ 12.5n2 swaps and the improved method uses

2n2 � n(n + 1) ⇠ n2 fewer swaps, which is a constant-factor improvement. In the

most favourable case that we have found (k = 2, d = 4n, l = 5n) our method saves

approximately 1/8 of the swaps.

111

. . .

. . .

. . .

. . .

. . .

..
.

. . .

. . .

. . .

. . .

. . .

l + 1 d d

d

l l + 1

l + d k · (l + d) + l + 1

0b

0b

0 b

0 b

0 b

0 b

0 b

0 b

0 b

0 b

b� 2 1

X
1X b� 5b� 3

b
�

1

1X b� 5b� 3

b
�

1

1X b� 5

b
�

3

b� 1

1X b� 5

b
�

3

b� 1

1X b� 3 b� 1

3

1X b� 3 b� 1

3

X b� 3 b� 13

1

X b� 3 b� 13

1
X

b� 3 b� 131

b� 2

2b� 4

2b� 4b� 2

2b� 4

b� 2 2b� 4

b� 22b� 4

b� 224

b� 22 4

b� 22 4

b� 22 4

b� 22 4

b� 5b� 3b� 1

Figure 3.5: A generalized counterexample: X is the block of initially happy tokens. It is
being stored at the beginning of the path, while the swap-saving idea from Figure 3.4
is used to reverse the yellow and blue tokens along the path. Eventually X is returned
to its original place. Tokens within each block (apart from X) must be reversed in a
standard way.

112

3.6 Weighted coloured token swapping is NP-hard

Recall that in the coloured token swapping problem, we have coloured tokens, one

on each vertex of the graph, and each vertex has a colour. The goal is to perform a

minimum number of swaps to get each token to a vertex that matches its colour. We

assume that the number of tokens of each colour is equal to the number of vertices of

that colour. The standard token swapping problem is the special case when all colours

are distinct.

For general graphs the coloured token swapping problem can be solved in poly-

nomial time for 2 colours, but becomes NP-complete for k � 3 colours [149]. See

Section 3.2 for further background.

In the weighted coloured token swapping problem, each colour c has a weight w(c),

and the cost of swapping tokens of colours c and c0 is w(c)+w(c0). The goal is to reach

the target configuration with minimum total cost.

In [24] we proved that weighted coloured token swapping is NP-hard on trees. The

idea is as follows: we reduce from Vertex Cover by constructing a long path with some

green tokens initially at the right end of the path. The final configuration has green

tokens at the left end of the path. We can save the cost of moving all those green

tokens the whole length of the path by dislodging some happy green tokens from a

subtree that dangles off the path; we construct this dangling subtree from the vertex

cover instance in such a way that there is a cost savings in the token swapping problem

if and only if there is a small vertex cover, see Figure 3.6.

3.7 Weighted coloured token swapping on paths and stars

In this section we give polynomial time algorithms for weighted coloured token swap-

ping on paths and stars. Recall from the previous section our convention that we have

coloured tokens and coloured vertices, with one token at each vertex, and with the

number of tokens of each colour equal to the number of vertices of that colour. The

goal is to perform swaps to get each token to a vertex that matches its colour. Each

colour c has a weight w(c) and the cost (or weight) of performing a swap on two tokens

of colour c and c0 is w(c) + w(c0). The objective is to minimize the total cost (weight) of

113

Figure 3.6: Illustration for the NP-hardness proof; (a) input graph G for Vertex Cover;
(b) tree T corresponding toG to hang off a long path; (c) initial configuration of coloured
tokens on T ; (d) tree T 0 (obtained by attaching T to a long path) with initial configuration
of coloured tokens; (g) T 0 with final configuration of coloured tokens. Note that the
green tokens are, in fact, a collection of |E(G)| different colours.

114

the swaps. Note that standard token swapping is the special case where all the colours

are distinct and all the weights are 1
2
, since each swap moves two tokens.

The main issue in [weighted] coloured token swapping is to decide which token

should go to which vertex. After fixing such a “token-vertex assignment” the problem

becomes [weighted] token swapping without colours. In some situations—including

for paths and stars—it turns out that the optimum token-vertex assignment does not

depend on the weights. In these situations we can combine an algorithm for coloured

token swapping and an algorithm for weighted token swapping to obtain an algorithm

for weighted coloured token swapping.

Such a separation of colours and weights does not hold for trees in general, as

the NP-hardness proof in the previous section shows. However, when the number of

colours is 2, the weights and colours do separate—we should never swap two tokens

of the same colour, and therefore every swap costs w(c1) + w(c2) where c1 and c2 are

the two colours. This means that, for 2 colours, weighted coloured token swapping is

no harder than coloured token swapping. Yamanaka et al. [149] gave a polynomial-

time algorithm for 2-coloured token swapping on general graphs. Thus, weighted 2-

coloured token swapping can also be solved in polynomial time.

Our main result in this section is an algorithm for weighted coloured token swapping

on stars. Before that, we give a brief solution for paths.

3.7.1 Weighted coloured token swapping on paths

As mentioned above, we should never swap two tokens of the same colour. As noted

by Yamanaka et al. [149], for the case of paths, this constraint imposes a unique as-

signment of tokens to vertices: the ith token of colour c along the path must be as-

signed to the the ith vertex of colour c.

It remains to solve the weighted token swapping problem on paths. As in the un-

weighted case, the required swaps correspond precisely to the inversions, i.e., the

pairs of tokens t, t0 whose order in the initial token placement differs from their order in

the final token placement. The minimum weight of a swap sequence is the sum, over

all inversions t, t0 of w(t) + w(t0).

115

3.7.2 Weighted coloured token swapping on stars

In this section we give a polynomial time algorithm for the weighted coloured token

swapping problem on a star. As announced above, we will show that weights and

colours can be dealt with separately.

Weighted token swapping on a star

The algorithm described in this section is an example of an optimal polynomial-time

token swapping algorithm that must at times move a happy leaf token.

We assume that every token has a distinct colour so we know exactly which vertex

every token must move to. Each token t has a weight w(t) and the cost of swapping

tokens t and t0 is w(t) + w(t0). Let H and U be the sets of tokens initially on the happy

and unhappy leaves, respectively. Let A, the set of active tokens, be all tokens except

those in H, i.e., A is U plus the token at the center vertex.

In the token permutation, the cycle that contains the token at the center vertex of

the star will be called the unlocked cycle, and all other cycles will be called locked

cycles. Using this terminology, Lemma 27 states that the optimum number of swaps

to solve the unweighted token swapping problem is nU + `, where nU = |U | and ` is

the number of non-trivial locked cycles. The intuition for the lemma, and the reason

for our terminology, is that every locked cycle must be ‘unlocked’ by an external token,

introducing one extra swap per locked cycle.

The number of swaps performed in the weighted case must be at least nU + ` and

we will show that an optimum solution uses either this lower bound or two extra swaps.

The idea is the following: each of the locked cycles must be unlocked by some other

token, and we want to use the cheapest possible token for this. Either we will use an

active token and perform nU + ` swaps, or we will introduce two extra swaps that bring

and return a globally cheapest token from an initially happy leaf to the star center and

use this token to unlock all the locked cycles.

Notation. The following notation will be used throughout Section 3.7. Let X be the

unlocked cycle. Let x be a minimum weight token in X, a be a minimum weight token

in A, and h be a minimum weight token in H (h might not exist if there are no happy

116

leaves). Observe that w(a)  w(x). As above, let ` denote the number of non-trivial

locked cycles in the input token permutation. Finally, let d(t) be the distance of token t

from its home and let Dw =

P
token t w(t)d(t). Observe that Dw is a lower bound on the

cost of weighted token swapping.

Before presenting the algorithm, we give an alternative formula for Dw. We will

use this in the forthcoming section on weighted coloured stars. Also, it implies that

in the case of unit weights, Dw = 2nU , which will clarify how the present algorithm

generalizes the unweighted case. For vertex v, recall our notation that s�1
(v) is the

initial token at v, and f�1
(v) is the final token at v. Thus, a leaf vertex v is happy if and

only if s�1
(v) = f�1

(v).

Claim 28. Dw =

P
{w(s�1

(v)) + w(f�1
(v)) : v is an unhappy leaf }.

Proof. If t is an unhomed token whose initial and final vertices are both leaves, then

it contributes 2w(t) to both sides of the equation. If t is a token whose initial vertex

is the center vertex and whose final vertex is a leaf, then it contributes w(t) to both

sides. Similarly, a token whose initial vertex is a leaf and whose final vertex is the

center, contributes w(t) to both sides. Finally, a token that is home contributes 0 to

both sides.

Corollary 29. When the weights are all 1, Dw = 2nU .

We now describe the algorithm for weighted token swapping on a star. The algo-

rithm uses the best of three possible strategies, all of which begin the same way:

1. Stategy 1. Begin solving the unlocked cycle X by repeatedly swapping the token

from the star center to its home until the token x is on the star center. Next, use

x to unlock and solve all the locked cycles. Finally, complete solving X. The total

weight is Dw + 2w(x)`.

2. Strategy 2. This strategy only applies when w(a) < w(x), in which case a 2 U\X.

Begin solving the unlocked cycle X by repeatedly swapping the token from the

star center to its home until the token x is on the star center. Then swap x with

a. Suppose a was in the locked cycle L. Use a to unlock and solve all the other

locked cycles, leaving tokens of X and L \ {a} fixed. Then use a to solve cycle

117

L, which will return x to the center token. Finally, complete solving X. The effect

is that one locked cycle is unlocked by x at a cost of 2w(x) and ` � 1 cycles are

unlocked by a at a cost of 2w(a)(`�1), for a total cost ofDw+2w(x)+2w(a)(`�1).

3. Strategy 3. This strategy only applies when h exists. Begin solving the unlocked

cycle X by repeatedly swapping the token from the star center to its home until

the token x is on the star center. Then swap x with h. Use h to unlock and solve

all the locked cycles, leaving tokens of X fixed. Then swap h and x. Finally,

complete solving X. The total weight is Dw + 2w(x) + 2w(h) + 2w(h)` = Dw +

2w(x) + 2w(h)(`+ 1).

To decide between the strategies we find the minimum of w(x)(` � 1), w(a)(` � 1),

w(h)(` + 1) and use the corresponding strategy 1, 2, or 3, respectively, achieving a

total weight of Dw + 2w(x) + 2min{w(a)(`� 1), w(h)(`+ 1)}.

Theorem 30. The above algorithm finds a minimum weight swap sequence and the

weight of the swap sequence is:

Dw + 2w(x) + 2min{w(a)(`� 1), w(h)(`+ 1)}.

Observe that in the case of unit weights, Dw = 2nU by Corollary 29, so the theorem

says that the minimum number of token moves is 2nU + 2 + 2(` � 1) = 2nU + 2`, i.e.,

the number of swaps is nU + `, which matches what we know for the unweighted case.

To prove the theorem, we will need the following result about the unweighted star.

Lemma 31. Any swap sequence on an unweighted star that moves a happy leaf does

at least two more swaps than an optimal swap sequence.

Proof. By Lemma 27, solving the unweighted problem on a star optimally takes nU + `

swaps, where nU is the number of unhappy leaves and ` is the number of non-trivial

locked cycles. It suffices to check that after swapping a happy token with the center

token the value given by the formula is increased by one. Indeed, the number of non-

trivial locked cycles stays the same and the number of unhomed leaves increases by

one, hence, the net change is +1.

We now prove Theorem 30.

118

Proof. The swap sequence found by the algorithm realizes the formula given in the

theorem. It remains to show that the formula provides a lower bound on the weight of

any swap sequence.

To reach its home, each token t must contribute weight at least w(t)d(t), for a total

over all tokens of Dw. If ` = 0 then U � X is empty so w(a) = w(x) and the formula

evaluates to Dw, which is a lower bound. Assume from now on that ` � 1. In addition

to the moves accounted for in Dw, there must be at least 2` other token moves, two for

each locked cycle. Furthermore, there must be a first move that swaps some token t

ofX with a token outsideX. This swap can only happen when t is at the center vertex.

Since t will then be unhomed, there must be a move that returns token t back to the

center vertex. The minimum weight for each of these moves is w(x), and this provides

the term 2w(x) in the lower bound. Subtracting these two moves from the required 2`

moves leaves 2(`� 1) moves still to be accounted for.

We now consider two cases depending whether a token of H is moved or not. If no

token of H is moved in the swap sequence, then the best we can do for the remaining

2(` � 1) moves is to use a minimum weight token from A, so the weight is at least

Dw + 2w(x) + 2(`� 1)w(a).

Next, consider swap sequences that move a token of H. By Lemma 31, the se-

quence must do at least two extra swaps, i.e., at least 4 extra token moves. Thus the

number of moves (beyond those for Dw) is at least 2` + 4. As argued above, we need

two moves for a token of X, costing at least w(x) each. We also need two moves for a

token of H (to leave its home and then return) costing at least w(h) each. This leaves

2` further moves. This gives weight at least Dw + 2w(x) + 2w(h) + 2`min{w(a), w(h)}.

If w(h) � w(a) then this lower bound is higher than the previous ones and becomes

irrelevant. If w(h) < w(a), then the bound becomes Dw + 2w(x) + 2w(h) + 2`w(h) =

Dw + 2w(x) + 2w(h)(`+ 1).

Thus, combining these possibilities, we have a lower bound of Dw + 2w(x) +

2min{w(a)(`� 1), w(h)(`+ 1)}, which completes the proof.

119

v4

v1
v2

v3

v5
v6

v7

v8

v9

t4

t1

t2

t3

t5
t6

t7

t8

t9

v10

t10

v4

v1
v2

v3

v5
v6

v7

v8

v9

t4

t1

t2

t3

t5
t6

t7

t8

t9

v10

t10
v2

v3

v1

v10

v4v9

v7

v8

v6

v5

Figure 3.7: Left: an input for coloured token swapping on a star. The token at a vertex
is drawn as a disc near the vertex. A token must move to a vertex of the same colour.
Middle: the multi-graph G with edges labelled by the corresponding vertex of the star.
There are 3 loops but one of them corresponds to the center vertex of the star, so
� = 2. There are 3 connected components, but one is trivial, and one contains the
edge corresponding to the center vertex so  = 1. Right: a token-vertex assignment
(shown by the dashed arrows) that minimizes nU + `. One may also observe that
assigning token t10 to the center vertex v10 or token t7 to vertex v8 are both sub-optimal.

Coloured token swapping on a star

Recall that in the coloured token swapping problem, tokens and vertices are assigned

colours, possibly with multiple tokens and vertices sharing the same colour, and the

aim is to move the tokens to vertices of corresponding colours using a minimum num-

ber of swaps.

Our algorithm will find a token-vertex assignment that maps each token t of colour

c to a vertex v of colour c, with the interpretation that token t should move to vertex v in

the token swapping problem. Such an assignment yields a standard token-swapping

problem which, by Lemma 27, requires nU + ` swaps, where nU is the number of

unhappy leaves and ` is the number of non-trivial locked cycles. Thus, we want a

token-vertex assignment that minimizes nU + `. Note that minimizing nU is the same

as maximizing nH , the number of happy leaves since nU = n� 1� nH , where n is the

number of vertices in the star.

We will find an optimum token-vertex assignment using an auxiliary multigraph G

that has a vertex for each colour and one edge for each vertex of the star: for a vertex

of colour c with an initial token of colour d, add a directed edge from c to d in G. In case

c = d this edge is a loop. See Figure 3.7 for an example.

Let � be the number of leaf loops of G—loops corresponding to leaf vertices of

120

the star. Any leaf loop corresponding to leaf vertex v and token t can be turned into

a happy leaf by assigning token t to vertex v. This maximizes the number of happy

leaves, nH .

In the input, the number of vertices of colour c is equal to the number of tokens

of colour c. Thus, each vertex of G has in-degree equal to out-degree, which implies

that any connected component in G is strongly connected and has a directed Eulerian

tour. We call a connected component trivial if it has one vertex. Let  be the number of

non-trivial connected components of G not counting the component that contains the

edge corresponding to the center vertex of the star.

The algorithm for coloured token swapping on a star is as follows:

1. Find a token-vertex assignment:

(a) Construct the multigraph G.

(b) For each of the � leaf-loops, assign its token to its vertex.

(c) Remove the leaf-loops from G to obtain G0. Observe that  is unchanged,

andG0 is still Eulerian. For each connected component ofG0 find an Eulerian

tour that traverses all the edges of the component. Convert each Eulerian

tour to a token-vertex assignment as follows: Suppose the edges of the tour

are labelled by vertices v1, v2, . . . , vb (we are freely re-labelling vertices to

ease the notation), and suppose that the edge of G labelled vi goes from

colour ci�1 to colour ci (subscript addition modulo b). Then vertex vi has

colour ci�1 and the colour of its initial token, say ti, is ci. The next edge

in the tour corresponds to vertex vi+1 of colour ci. Assign token ti to vertex

vi+1. Note that both have colour ci. This assignment is well-defined since the

edges of the walk correspond to distinct vertices with distinct initial tokens.

Note that this token-vertex assignment introduces a cycle t1, t2, . . . tb in the

corresponding token permutation.

2. Solve the (un-coloured) token swapping problem determined by the computed

token- vertex assignment.

This algorithm produces a token-vertex assignment with � happy leaves, and  non-

trivial locked cycles, one for each non-trivial connected component of G0 except the

121

component that contains the edge corresponding to the center vertex of the star. In

other words, nH = �, nU = n � 1 � � and ` = . Thus the number of swaps is

(n� 1� �) +  by Lemma 27.

Our goal in the remainder of this subsection is to prove that the algorithm uses the

minimum number of swaps which means showing that any token-vertex assignment

results in at least (n � 1 � �) +  swaps. The following lemma will help us do that.

(Note: the third statement in the lemma will be useful in the next section.)

Lemma 32. Any token-vertex assignment T has the following properties:

1. T has at most � happy leaves.

2. T has at least  non-trivial locked cycles.

3. If T has � happy leaves then the tokens in the unlocked cycle of T are a subset

of XA, where XA is the set of tokens that are in the unlocked cycle resulting from

the above algorithm.

Proof. 1. Happy leaves only arise from leaf loops so T has at most � happy leaves.

2. The token permutation corresponding to T can be expressed as a set C of cycles.

We claim that each cycle C 2 C corresponds to a closed walk ¯C of the same size in G

and that every edge of G is in ¯C for some C 2 C. This will prove property 2, because it

implies that we need at least one cycle for each connected component in G, and more

precisely, that we need at least one non-trivial locked cycle for each of the components

counted in .

Consider an edge of G, say the edge corresponding to the vertex whose initial

token is t1. Token t1 appears in some cycle C 2 C, say (t1, t2, . . . , tb). (We are freely

re-naming tokens, vertices, and colours in this proof.) Suppose token ti has colour

ci and is initially at vertex vi. Then the cycle moves token ti to vertex vi+1 (subscript

addition modulo b). Since the token-vertex assignment respects the colours, vertex

vi+1 has colour ci. Also, vertex vi+1 has initial token ti+1 of colour ci+1. Thus there is a

corresponding edge ci, ci+1 in G. Therefore, the cycle corresponds to a closed walk in

G. Also, this closed walk uses the edge we began with, the one whose initial token is

t1.

122

3. The unlocked cycle of T is the one that contains the token tc initially on the

center vertex u. By the argument above, the tokens in the unlocked cycle must come

from the connected component of G that contains the edge labelled with u. This set of

tokens consists of XA together with some tokens of leaf-loops. But if T has � happy

leaves, then all the leaf-loops have been turned into happy leaves, so the set of tokens

is reduced to XA. Thus, the tokens of the unlocked cycle are a subset of XA.

We are now ready to prove that the algorithm is optimal:

Theorem 33. The above algorithm uses (n�1��)+ swaps and this is the minimum

possible.

Proof. As already stated, the algorithm uses (n� 1� �) +  swaps.

By Lemma 32 any other token-vertex assignment results in at most � happy leaves,

i.e. at least n � 1 � � unhappy leaves, and at least  non-trivial locked cycles, and

therefore, by Lemma 27, at least (n� 1� �) +  swaps.

Weighted coloured token swapping on a star

Our algorithm for weighted coloured token swapping on a star is as follows:

1. Ignore the weights and find a token-vertex assignment as in Step 1 of the algo-

rithm in the previous section.

2. Using this token-vertex assignment T and the original token weights, run the

algorithm for the (uncoloured) weighted star.

In order to show that this algorithm is correct, we will first show that any optimum

token-vertex assignment must turn all leaf-loops into happy leaves. After that we only

need to compare the solution found by the algorithm to solutions with this property.

Claim 34. Suppose T is a token-vertex assignment and there is a leaf-loop consisting

of a leaf vertex v with token t such that both v and t have colour c, but the token-vertex

assignment does not assign t to v. Then T is not optimum for the weighted problem.

123

Proof. By Theorem 30, the cost of T is

F (T) = Dw + 2w(x) + 2min{w(a)(`� 1), w(h)(`+ 1)},

where Dw, w(x), w(a), w(h), and ` depend on T . We will construct a new token-vertex

assignment T 0 that assigns t to v and has F (T 0
) < F (T).

Since t is not assigned to v, t must be part of some non-trivial cycle C in the

token permutation determined by T . Suppose that the cycle C contains tokens p, t, q

in that order (possibly p = q), with initial vertices s(p), s(t)=v, s(q), respectively. Define

a new token-vertex assignment T 0 that assigns t to v, i.e., v becomes a happy leaf,

and shortcuts the rest of C by assigning token p to vertex s(q). This is valid because

token p and vertex s(q) both have colour c, the same as t. The new cycle C 0 is formed

by deleting t from C. We will compare F (T) and F (T 0
) by looking at the quantities

Dw, w(x), w(a), w(h) and `.

First of all, no leaf becomes unhappy, so no token leaves H and w(h) does not

increase. Furthermore, v becomes happy, so by Claim 28, Dw decreases by at least

2w(t).

Next we show that w(x) does not increase. That would only happen if t leaves the

set X. Then C must be the unlocked cycle. Since t is at a leaf vertex, the token from

the center vertex remains in C 0, so C 0 is the new unlocked cycle. Furthermore, token

p, which is a ‘twin’ of t in the sense that it has the same colour and weight, remains in

C 0, so w(x) remains the same.

Finally we must consider ` and w(a). Here we will separate out one special case—

when |C| = 2 and C exchanges two leaf tokens, in which case C 0 becomes a trivial

locked cycle. If we are not in the special case then either C 0 is a non-trivial locked

cycle, or C 0 is the unlocked cycle. In either case C has the same status, so ` is

unchanged and t’s twin p remains in the active set A so w(a) does not increase. Thus

F (T 0
) < F (T) when we are not in the special case.

It remains to consider the special case when C exchanges two leaf tokens. Then

C was a non-trivial locked cycle, but C 0 is a trivial locked cycle. Thus ` decreases

by 1. Furthermore, by Claim 28, Dw decreases by at least 4w(t) since two leaves

become happy. If w(a) does not increase then we are fine. If it does increase then

124

w(a) = w(t) and t was the minimum weight element in A. Because we are in the

special case, both t and its twin token p have left A and joinedH. If F (T) is determined

by w(h)(`+1) we are again fine. Hence we only need to provide an additional argument

if F (T) = Dw+2w(x)+2w(a)(`�1). Since we now have a token of weight w(a) = w(t)

inH, Strategy 3 gives a swap sequence for T 0 of weight at most (Dw�4w(t))+2w(x)+

2w(t)(`) = Dw � 2w(t) + 2w(x) + 2w(t)(`� 1). Thus F (T 0
) < F (T) even in the special

case.

With this claim in hand, we are ready to prove that the algorithm is correct.

Theorem 35. The above algorithm solves the weighted coloured token swapping prob-

lem on a star optimally.

Proof. By Theorem 30, the cost of a token-vertex assignment T is

F (T) = Dw + 2w(x) + 2min{w(a)(`� 1), w(h)(`+ 1)},

where Dw, w(x), w(a), w(h), and ` depend on T .

We will compare the cost of a token-vertex assignment TA found by the algorithm

to an optimum token-vertex assignment TOPT. By Claim 34, TOPT turns all leaf-loops

into happy leaves, so it has � happy leaves. The algorithm does the same, so TA and

TOPT have the same set H of tokens on happy leaves, and the same set U of tokens

on unhappy leaves. This implies that w(a) and w(h) are the same for TA and TOPT.

Next, we claim that Dw is the same for TA and TOPT. This follows directly from

Claim 28 since the set of unhappy leaves is the same.

It remains to compare ` (the number of non-trivial locked cycles) and w(x) between

TA and TOPT. Both values should be as small as possible in TOPT. The algorithm

achieves ` =  and w(x) = min{w(t) : t 2 XA}, where XA is the set of tokens in the

unlocked cycle of TA. By Lemma 32(2) TOPT has at least  non-trivial locked cycles.

By Lemma 32(3), TOPT’s set of tokens in the unlocked cycle is a subset of XA (here

we again use the fact that TOPT has � happy leaves). Thus TA and TOPT achieve the

same values for ` and w(x). This completes the proof that the algorithm achieves the

minimum value of F (T).

125

4 Conclusions

This thesis presented results related to reconfiguration of triangulations of planar point

sets and of token arrangements on graphs. Both topics were set and discussed in the

greater context of the reconfiguration framework.

In the language of reconfiguration, our results establish a polynomial time check-

able criterion, the Orbit Theorem, to determine reachability in the reconfiguration graph

of edge-labelled triangulations with the labelled edge-flip operation. The presented

proof of the Orbit Theorem, moreover, gives a polynomial time algorithm to find a re-

configuration sequence, if it exists. In token swapping, we have made partial progress

towards the problem of shortest transformation in the reconfiguration graph of tokens

on tree graphs using the swapping operation.

For open problems related to the general reconfiguration framework, we point the

reader to [111] that provides a rich summary. One obvious quest is to unify results

from different fields and identify general patterns.

We conclude the thesis with remarks and open problems specific to the two recon-

figuration topics studied in this thesis: the reconfiguration of edge-labelled triangula-

tions and the token swapping problem on trees.

4.1 Conclusions and Open Problems related to Orbit Theorem

We have characterized when two labelled triangulations of a set of n points belong to

the same connected component of the labelled flip graph, and proved that the diameter

of each connected component is bounded by O(n7
). The following is a list of some

open problems:

126

1. Reduce the gap between the upper bound, O(n7
), and the best known lower

bound of O(n3
) [31] on the diameter of a component of the labelled flip graph.

2. We have studied the case where each edge in a triangulation has a unique label,

and given a bound of O(n7
) on the diameter of a component of the labelled flip

graph. The case where edges are unlabelled can be viewed as the case where

every edge has the same label—in this case the bound becomes O(n2
). A uni-

fying scenario, suggested by Giuseppe Liotta at Symposium on Computational

Geometry’17, is when the edges have labels and labels may appear on more

than one edge. Is there a bound on the diameter of connected components of

the flip graph that depends on the number of labels, or on the maximum number

of edges with the same label?

We note that the existential part of Orbit Theorem applies to the unifying sce-

nario. Without loss of generality, suppose that the two given labelled triangula-

tions are T1 = (T, `1) and T2 = (T, `2) and denote the number of edges in orbit i

having label l by |T1|li and |T2|li, respectively. Clearly, if there is i and l such that

|T1|li 6= |T2|li, i.e., some orbit has different number of edges labelled l in T1 than

in T2, then it is not possible to reconfigure T1 into T2. Conversely, if for all orbits

i and labels l, |T1|li = |T2|li, i.e., within each orbit the number of edges labelled

l coincides between T1 and T2, then the reconfiguration is possible: Theorem

2 guarantees that two labels of edges in the same orbit can be swapped while

fixing all other labels in the triangulation. Hence, the labels get to (any of) their

target positions by inductively applying Theorem 2.

3. We did not analyze the run-time of our algorithms in the main text, and in partic-

ular the run-time of the algorithm on page 80. A crude bound is O(n8
), with the

bottleneck being the explicit construction in the proof of Lemma 4 of the double

quadrilateral graph which has O(n4
) vertices and thus O(n8

) edges. This bound

can surely be improved.

127

4.2 Conclusions and open problems related to token swapping on trees

Although we have not resolved the question of whether token swapping on a tree is in

P or NP-complete, we have identified a previously unexplored difficulty—namely that

we must decide how and when to move tokens that are at happy leaves. This difficulty

does not arise for the cases where poly-time algorithms are known, specifically, paths,

stars and brooms. We have demonstrated that even on rather uncomplicated graphs,

like three paths meeting in a single vertex, moving the happy tokens/leaves can save

a constant factor of swaps. In [24] we showed that any algorithm that fixes tokens at

happy leaves cannot achieve better than a 4
3
approximation factor, and that this lower

bound rises to 2 for two of the three known 2-approximation algorithms, thus providing

tight approximation factors for them.

Furthermore, we established a difference in complexity between general trees on

the one hand, and paths and stars on the other hand, namely that weighted coloured

token swapping is NP-hard for general trees, but poly-time for paths and stars.

We conclude with some open questions.

1. Is the token swapping problem on trees NP-complete? Is it in P? For hardness,

a first step would be to show that the problem is NP-complete with either colours

or weights (rather than both, as we proved).

2. Characterize the class of trees for which the Happy Leaf Conjecture holds for

every token assignment. Certainly the tree should not have the 10-vertex tree of

Figure 3.3 as a subtree.

3. Is there a polynomial time algorithm for token swapping on any tree for which

the Happy Leaf Conjecture holds? This may not be easy, given the difficulty of

correctly solving token swapping on such uncomplicated classes of graphs as

brooms – where a broom is a star with a path attached, see [24].

4. Is there an approximation algorithm for token swapping on a tree with approxi-

mation factor better than 2? What is the exact approximation factor of Vaughan’s

algorithm? We conjecture that it is 2, perhaps even for the same example as

used in proving that the happy swap and the cycle algorithms do not have an ap-

128

proximation factor less than 2, see [24]. The proof seems more elusive because

a token can stray further from the path between its initial and target vertices.

5. The example which defeats all algorithms that fix happy leaves, consists of a star

joined to two paths. Such a two-tailed star is like a broom with an extra handle.

We conjecture that there is a polynomial time algorithm for token-swapping on

two-tailed stars. This would be a starting point towards solving token swapping

when happy leaves must be swapped.

6. For general graphs there is a 4-approximation algorithm [106] for token swapping.

Is the approximation factor 4 tight?

129

Bibliography

[1] Manuel Abellanas, Prosenjit Bose, Alfredo García, Ferran Hurtado, Pedro

Ramos, Eduardo Rivera-Campo, and Javier Tejel. On local transformations in

plane geometric graphs embedded on small grids. Computational Geometry,

39(2):65–77, 2008.

[2] Oswin Aichholzer, Victor Alvarez, Thomas Hackl, Alexander Pilz, Bettina Speck-

mann, and Birgit Vogtenhuber. An Improved Lower Bound on the Minimum

Number of Triangulations. In Sándor Fekete and Anna Lubiw, editors, Proceed-

ings of the 32nd International Symposium on Computational Geometry (SoCG

2016), volume 51 of Leibniz International Proceedings in Informatics (LIPIcs),

pages 7:1–7:16, Dagstuhl, Germany, 2016. Schloss Dagstuhl–Leibniz-Zentrum

fuer Informatik.

[3] Oswin Aichholzer, Andrei Asinowski, and Tillmann Miltzow. Disjoint compatibility

graph of non-crossing matchings of points in convex position. The electronic

journal of combinatorics, 22(1):1–53, 2015. 22:P1.65.

[4] Oswin Aichholzer, Franz Aurenhammer, and Ferran Hurtado. Sequences of

spanning trees and a fixed tree theorem. Computational Geometry, 21(1):3 –

20, 2002. Sixteenth European Workshop on Computational Geometry (EuroCG-

2000).

[5] Oswin Aichholzer, Franz Aurenhammer, Hannes Krasser, and Peter Brass.

Pseudotriangulations from surfaces and a novel type of edge flip. SIAM J. Com-

put., 32(6):1621–1653, June 2003.

[6] Oswin Aichholzer, Sergey Bereg, Adrian Dumitrescu, Alfredo García, Clemens

Huemer, Ferran Hurtado, Mikio Kano, Alberto Márquez, David Rappaport,

130

Shakhar Smorodinsky, Diane Souvaine, Jorge Urrutia, and David R. Wood.

Compatible geometric matchings. Computational Geometry, 42(6):617 – 626,

2009.

[7] Oswin Aichholzer, Wolfgang Mulzer, and Alexander Pilz. Flip distance between

triangulations of a simple polygon is NP-complete. Discrete & Computational

Geometry, 54(2):368–389, 2015.

[8] Oswin Aichholzer and Klaus Reinhardt. A quadratic distance bound on sliding

between crossing-free spanning trees. Computational Geometry, 37(3):155 –

161, 2007. Special Issue on the 20th European Workshop on Computational

Geometry.

[9] Sheldon B. Akers and Balakrishnan Krishnamurthy. A group-theoretic model

for symmetric interconnection networks. IEEE Transactions on Computers,

38(4):555–566, 1989.

[10] Greg Aloupis, Luis Barba, Stefan Langerman, and Diane L. Souvaine. Bichro-

matic compatible matchings. Computational Geometry, 48(8):622 – 633, 2015.

[11] Greg Aloupis, Prosenjit Bose, and Pat Morin. Reconfiguring triangulations with

edge flips and point moves. Algorithmica, 47(4):367–378, Apr 2007.

[12] Amihood Amir, Tzvika Hartman, Oren Kapah, Avivit Levy, and Ely Porat. On

the cost of interchange rearrangement in strings. SIAM J. Comput., 39(4):1444–

1461, 2009.

[13] Amihood Amir and Benny Porat. On the hardness of optimal vertex relabeling

and restricted vertex relabeling. In Annual Symposium on Combinatorial Pattern

Matching, volume 9133 of Lecture Notes in Computer Science, pages 1–12.

Springer, 2015.

[14] Nima Anari, Kuikui Liu, Shayan Oveis Gharan, and Cynthia Vinzant. Log-

concave polynomials II: high-dimensional walks and an FPRAS for counting

bases of a matroid. In Proceedings of the 51st Annual ACM SIGACT Sym-

posium on Theory of Computing, pages 1–12, 2019.

131

[15] Gabriela Araujo-Pardo, Isabel Hubard, Deborah Oliveros, and Egon Schulte.

Colorful associahedra and cyclohedra. Journal of Combinatorial Theory, Series

A, 129:122–141, 2015.

[16] Vincenzo Auletta, Angelo Monti, Mimmo Parente, and Pino Persiano. A linear-

time algorithm for the feasibility of pebble motion on trees. Algorithmica,

23(3):223–245, 1999.

[17] Vincenzo Auletta and Pino Persiano. Optimal pebble motion on a tree. Informa-

tion and Computation, 165(1):42–68, 2001.

[18] David Avis and Komei Fukuda. Reverse search for enumeration. Discrete

Applied Mathematics, 65(1):21 – 46, 1996. First International Colloquium on

Graphs and Optimization.

[19] Lajos Balcza. On inversions and cycles in permutations. Periodica Polytechnica

Civil Engineering, 36(4):369–374, 1992.

[20] Sergey Bereg. Transforming pseudo-triangulations. Information Processing Let-

ters, 90(3):141 – 145, 2004.

[21] Marshall Bern, Herbert Edelsbrunner, David Eppstein, Scott Mitchell, and

Tio Seng Tan. Edge insertion for optimal triangulations. Discrete & Compu-

tational Geometry, 10(1):47–65, 1993.

[22] Marshall Bern and David Eppstein. Mesh generation and optimal triangulation.

In Ding-Zhu Du and Frank Hwang, editors, Computing in Euclidean geometry,

volume 1 of Lecture Notes Series on Computing, pages 23–90. World Scientific,

1992.

[23] R. H. Bing. Some aspects of the topology of 3-manifolds related to the Poincaré

conjecture. In Lectures on modern mathematics, Vol. II, pages 93–128. Wiley,

New York, 1964.

[24] Ahmad Biniaz, Kshitij Jain, Anna Lubiw, Zuzana Masárová, Tillmann Miltzow,

Debajyoti Mondal, Anurag Murty Naredla, Josef Tkadlec, and Alexi Turcotte.

Token swapping on trees. CoRR, abs/1903.06981, 2019.

132

[25] Ahmad Biniaz, Anil Maheshwari, and Michiel Smid. Flip distance to some plane

configurations. Computational Geometry, 81:12 – 21, 2019.

[26] Anders Björner. Topological methods. Handbook of combinatorics, 2:1819–

1872, 1995.

[27] Anders Björner, Michel Las Vergnas, Bernd Sturmfels, Neil White, and Günter M.

Ziegler. Oriented Matroids, volume 46 of Encyclopedia of Mathematics and its

Applications. Cambridge University Press, Cambridge, 2nd edition, 1999.

[28] Édouard Bonnet, Tillmann Miltzow, and Paweł Rzążewski. Complexity of token

swapping and its variants. Algorithmica, pages 1–27, 2017.

[29] Prosenjit Bose, Jurek Czyzowicz, Zhicheng Gao, Pat Morin, and David R Wood.

Simultaneous diagonal flips in plane triangulations. Journal of Graph Theory,

54(4):307–330, 2007.

[30] Prosenjit Bose and Ferran Hurtado. Flips in planar graphs. Computational Ge-

ometry Theory and Applications, 42(1):60–80, 2009.

[31] Prosenjit Bose, Anna Lubiw, Vinayak Pathak, and Sander Verdonschot. Flipping

edge-labelled triangulations. Computational Geometry, 68:309–326, 2018.

[32] Prosenjit Bose and Sander Verdonschot. A History of Flips in Combinatorial

Triangulations, pages 29–44. Springer Berlin Heidelberg, Berlin, Heidelberg,

2012.

[33] Prosenjit Bose and Sander Verdonschot. Flips in edge-labelled pseudo-

triangulations. Computational Geometry, 60:45–54, 2017.

[34] Hervé Brönnimann, Lutz Kettner, Michel Pocchiola, and Jack Snoeyink. Count-

ing and enumerating pointed pseudotriangulations with the greedy flip algorithm.

SIAM Journal on Computing, 36(3):721–739, 2006.

[35] John L. Bryant. Piecewise linear topology. In R.J. Daverman and R.B. Sher, ed-

itors, Handbook of Geometric Topology, pages 219 – 259. North-Holland, Ams-

terdam, 2001.

133

[36] Laurent Bulteau, Guillaume Fertin, and Irena Rusu. Pancake flipping is hard.

Journal of Computer and System Sciences, 81(8):1556–1574, 2015.

[37] Gruia Călinescu, Adrian Dumitrescu, and János Pach. Reconfigurations in

graphs and grids. SIAM Journal on Discrete Mathematics, 22(1):124–138, 2008.

[38] Javier Cano, José-Miguel Díaz-Báñez, Clemens Huemer, and Jorge Urrutia.

The edge rotation graph. Graphs and Combinatorics, 29(5):1207–1219, 2013.

[39] Jean Cardinal, Michael Hoffmann, Vincent Kusters, Csaba D. Tóth, and Manuel

Wettstein. Arc diagrams, flip distances, and Hamiltonian triangulations. In 32nd

International Symposium on Theoretical Aspects of Computer Science (STACS

2015). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2015.

[40] Arthur Cayley. LXXVII. Note on the theory of permutations. Philosophical Mag-

azine Series 3, 34(232):527–529, 1849.

[41] Arthur Cayley. A theorem on trees. Quart. J. Math., 23:376–378, 1889.

[42] Bernard Chazelle. Triangulating a simple polygon in linear time. Discrete &

Computational Geometry, 6(3):485–524, 1991.

[43] Siu-Wing Cheng, Tamal K. Dey, and Jonathan Shewchuk. Delaunay Mesh Gen-

eration. CRC Press, 2012.

[44] L. Paul Chew. Constrained Delaunay triangulations. Algorithmica, 4(1-4):97–

108, 1989.

[45] Bhadrachalam Chitturi. Upper bounds for sorting permutations with a transpo-

sition tree. Discrete Mathematics, Algorithms and Applications, 5(01):1350003,

2013.

[46] Gopal Danaraj and Victor Klee. Shellings of spheres and polytopes. Duke Math-

ematical Journal, 41(2):443–451, 1974.

[47] Mark de Berg, Bart M.P. Jansen, and Debankur Mukherjee. Independent-set

reconfiguration thresholds of hereditary graph classes. Discrete Applied Mathe-

matics, 250:165 – 182, 2018.

134

[48] Hubert De Fraysseix, János Pach, and Richard Pollack. How to draw a planar

graph on a grid. Combinatorica, 10(1):41–51, 1990.

[49] Erik D. Demaine and Robert A. Hearn. Playing games with algorithms: Algorith-

mic combinatorial game theory. In Michael H. Albert and Richard J. Nowakowski,

editors, Games of No Chance 3, volume 56 ofMathematical Sciences Research

Institute Publications, pages 3–56. Cambridge University Press, 2009.

[50] Satyan L. Devadoss and Joseph O’Rourke. Discrete and Computational Geom-

etry. Princeton University Press, 2011.

[51] Adrian Dumitrescu, André Schulz, Adam Sheffer, and Csaba D. Tóth. Bounds

on the maximum multiplicity of some common geometric graphs. SIAM Journal

on Discrete Mathematics, 27(2):802–826, 2013.

[52] N. Dyn, I. Goren, and S. Rippa. Transforming triangulations in polygonal do-

mains. Computer Aided Geometric Design, 10:531–536, 1993.

[53] Paul H. Edelman. On inversions and cycles in permutations. European Journal

of Combinatorics, 8(3):269–279, 1987.

[54] Herbert Edelsbrunner. Geometry and Topology for Mesh Generation. Cam-

bridge University Press, Cambridge, 2001.

[55] Herbert Edelsbrunner and Tiow Seng Tan. A quadratic time algorithm for the

minmax length triangulation. SIAM Journal on Computing, 22(3):527–551, 1993.

[56] Herbert Edelsbrunner, Tiow Seng Tan, and Roman Waupotitsch. An o(nˆ2\logn)

time algorithm for the minmax angle triangulation. SIAM Journal on Scientific

and Statistical Computing, 13(4):994–1008, 1992.

[57] David Eppstein. Happy endings for flip graphs. Journal of Computational Ge-

ometry, 1(1):3–28, 2010.

[58] David Eppstein. Regular labelings and geometric structures. In Proceedings

of the 22nd Canadian Conference on Computational Geometry (CCCG 2010),

pages 125–130, 2010.

135

[59] David Eppstein. Counting polygon triangulations is hard. In Proceedings of

the 35th Annual Symposium on Computational Geometry (SoCG 2019), June

18-21, 2019, Portland, Oregon, USA, pages 33:1–33:17, 2019.

[60] Jérémy Espinas, Raphaëlle Chaine, and Pierre-Marie Gandoin. Practical re-

duction of edge flip sequences in two-dimensional triangulations. arXiv preprint

arXiv:1310.2586, 2013.

[61] Ruy Fabila-Monroy, David Flores-Peñaloza, Clemens Huemer, Ferran Hurtado,

Jorge Urrutia, and David R. Wood. Token graphs. Graphs and Combinatorics,

28(3):365–380, 2012.

[62] Klaus-Tycho Foerster, Linus Groner, Torsten Hoefler, Michael Koenig, Sascha

Schmid, and Roger Wattenhofer. Multi-agent pathfinding with n agents on

graphs with n vertices: Combinatorial classification and tight algorithmic bounds.

In International Conference on Algorithms and Complexity (CIAC), pages 247–

259. Springer, 2017.

[63] Fabrizio Frati. A lower bound on the diameter of the flip graph. The Electronic

Journal of Combinatorics, 24(1):1–6, 2017.

[64] Jerôme Galtier, Ferran Hurtado, Marc Noy, Stéphane Pérennes, and Jorge Ur-

rutia. Simultaneous edge flipping in triangulations. International Journal of Com-

putational Geometry & Applications, 13(02):113–133, 2003.

[65] Ashwin Ganesan. An efficient algorithm for the diameter of Cayley graphs gener-

ated by transposition trees. International Journal of Applied Mathematics, 42(4),

2012. Also arXiv preprint arXiv:1202.5888.

[66] Alfredo García, Marc Noy, and Javier Tejel. Lower bounds on the number of

crossing-free subgraphs of KN . Computational Geometry, 16(4):211 – 221,

2000.

[67] Oded Goldreich. Finding the shortest move-sequence in the graph-generalized

15-puzzle is NP-hard. In Studies in Complexity and Cryptography. Miscellanea

on the Interplay between Randomness and Computation, pages 1–5. Springer,

2011.

136

[68] Gilad Goraly and Refael Hassin. Multi-color pebble motion on graphs. Algorith-

mica, 58(3):610–636, 2010.

[69] Daniel Graf. How to sort by walking and swapping on paths and trees. Algorith-

mica, 78(4):1151–1181, 2017.

[70] Sabine Hanke. Ebene Triangulationen. Master’s thesis, Institut für Informatik,

University of Freiburg, 1994.

[71] Sabine Hanke, Thomas Ottmann, and Sven Schuierer. The edge-flipping dis-

tance of triangulations. Journal of Universal Computer Science, 2(8):570–579,

1996.

[72] Allen Hatcher. Algebraic topology. Cambridge University Press, Cambridge,

2000.

[73] Robert A. Hearn and Erik D. Demaine. PSPACE-completeness of sliding-block

puzzles and other problems through the nondeterministic constraint logic model

of computation. Theoretical Computer Science, 343(1):72 – 96, 2005. Game

Theory Meets Theoretical Computer Science.

[74] C. Hernando, F. Hurtado, and Marc Noy. Graphs of non-crossing perfect match-

ings. Graphs and Combinatorics, 18(3):517–532, Oct 2002.

[75] Carmen Hernando, Ferran Hurtado, Mercè Mora, and Eduardo Rivera-Campo.

Grafos de árboles etiquetados y grafos de árboles geométricos etiquetados.

Proc. X Encuentros de Geometra Computacional, pages 13–19, 2003. (in Span-

ish).

[76] M.C. Hernando, F. Hurtado, A. Márquez, M. Mora, and M. Noy. Geometric tree

graphs of points in convex position. Discrete Applied Mathematics, 93(1):51 –

66, 1999. 13th European Workshop on Computational Geometry CG ’97.

[77] Michael Hoffmann, Micha Sharir, Adam Sheffer, Csaba D. Tóth, and Emo Welzl.

Counting plane graphs: Flippability and its applications. In Frank Dehne, John

Iacono, and Jörg-Rüdiger Sack, editors, Algorithms and Data Structures, pages

524–535, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

137

[78] M.E. Houle, F. Hurtado, M. Noy, and E. Rivera-Campo. Graphs of triangulations

and perfect matchings. Graphs and Combinatorics, 21(3):325–331, Sep 2005.

[79] J. F. P. Hudson. Piecewise Linear Topology. W. A. Benjamin, Inc., New York-

Amsterdam, 1969.

[80] Clemens Huemer and Anna de Mier. Lower bounds on the maximum number of

non-crossing acyclic graphs. European Journal of Combinatorics, 48:48 – 62,

2015. Selected Papers of EuroComb’13.

[81] Ferran Hurtado and Marc Noy. Graph of triangulations of a convex polygon and

tree of triangulations. Computational Geometry, 13(3):179–188, 1999.

[82] Ferran Hurtado, Marc Noy, and Jorge Urrutia. Parallel edge flipping. In Pro-

ceedings of the 10th Canadian Conference on Computational Geometry (CCCG

1998), McGill University, Montréal, Québec, Canada, August 10-12, 1998, pages

26–27, 1998.

[83] Ferran Hurtado, Marc Noy, and Jorge Urrutia. Flipping edges in triangulations.

Discrete & Computational Geometry, 22(3):333–346, 1999.

[84] Mashhood Ishaque, Diane L. Souvaine, and Csaba D. Tóth. Disjoint compatible

geometric matchings. Discrete & Computational Geometry, 49(1):89–131, Jan

2013.

[85] Takehiro Ito, Erik D. Demaine, Nicholas J. A. Harvey, Christos H. Papadimitriou,

Martha Sideri, Ryuhei Uehara, and Yushi Uno. On the complexity of reconfigu-

ration problems. Theoretical Computer Science, 412(12–14):1054–1065, 2011.

[86] Mark R. Jerrum. The complexity of finding minimum-length generator se-

quences. Theoretical Computer Science, 36:265–289, 1985.

[87] Mark R Jerrum, Leslie G Valiant, and Vijay V Vazirani. Random generation

of combinatorial structures from a uniform distribution. Theoretical Computer

Science, 43:169–188, 1986.

[88] Jesse Johnson. Notes on Heegard splittings, 2019 (accessed December 16,

2019).

138

[89] Marcin Kamiński, Paul Medvedev, and Martin Milanič. Complexity of indepen-

dent set reconfigurability problems. Theoretical Computer Science, 439:9 – 15,

2012.

[90] Iyad Kanj, Eric Sedgwick, and Ge Xia. Computing the flip distance between

triangulations. Discrete & Computational Geometry, 58(2):313–344, 2017.

[91] Jun Kawahara, Toshiki Saitoh, and Ryo Yoshinaka. The time complexity of per-

mutation routing via matching, token swapping and a variant. arXiv preprint

arXiv:1612.02948, 2016.

[92] Jun Kawahara, Toshiki Saitoh, and Ryo Yoshinaka. The time complexity of the

token swapping problem and its parallel variants. In The 11th International Con-

ference and Workshop on Algorithms and Computation (WALCOM 2017), pages

448–459. Springer, 2017.

[93] Dohan Kim. Sorting on graphs by adjacent swaps using permutation groups.

Computer Science Review, 22:89–105, 2016.

[94] Donald Ervin Knuth. The Art of Computer Programming: Sorting and Searching,

volume 3. Pearson Education, 1997.

[95] Daniel Kornhauser, Gary Miller, and Paul Spirakis. Coordinating pebble motion

on graphs, the diameter of permutation groups, and applications. In Proceedings

of the 25th Annual Symposium on Foundations of Computer Science (FOCS

1984), pages 241–250. IEEE Computer Society, 1984.

[96] Benjamin Kraft. Diameters of Cayley graphs generated by transposition trees.

Discrete Applied Mathematics, 184:178–188, 2015.

[97] Charles L. Lawson. Transforming triangulations. Discrete Mathematics,

3(4):365–372, 1972.

[98] Charles L. Lawson. Software for C1 surface interpolation. In Mathematical Soft-

ware III, pages 161–194. Academic Press, New York, 1977.

139

[99] Errol L. Lloyd. On triangulations of a set of points in the plane. In Proceedings

of the 18th Annual Symposium on Foundations of Computer Science (FOCS

1977), pages 228–240. IEEE, 1977.

[100] Anna Lubiw, Zuzana Masárová, and Uli Wagner. A proof of the Orbit Conjecture

for flipping edge-labelled triangulations. Discrete & Computational Geometry,

61(4):880–898, Jun 2019.

[101] Anna Lubiw and Vinayak Pathak. Flip distance between two triangulations of a

point set is NP-complete. Computational Geometry, 49:17–23, 2015.

[102] Anna Lubiw and Vinayak Pathak. Reconfiguring ordered bases of a matroid.

arXiv:1612.00958, 2016.

[103] Joan M. Lucas. The rotation graph of binary trees is Hamiltonian. Journal of

Algorithms, 8(4):503–535, 1987.

[104] Jiří Matoušek. Using the Borsuk-Ulam theorem: lectures on topological methods

in combinatorics and geometry. Springer Science & Business Media, 2003.

[105] M Mihail and U Vazirani. On the expansion of 0-1 polytopes. Journal of Combi-

natorial Theory, Series B, to appear, 1989.

[106] Tillmann Miltzow, Lothar Narins, Yoshio Okamoto, Günter Rote, Antonis

Thomas, and Takeaki Uno. Approximation and hardness of token swapping.

In 24th Annual European Symposium on Algorithms (ESA 2016), LIPIcs-Leibniz

International Proceedings in Informatics, volume 57. Schloss Dagstuhl-Leibniz-

Zentrum fuer Informatik, 2016.

[107] Michael Molloy, Bruce Reed, and William Steiger. On the mixing rate of the trian-

gulation walk. In DIMACS-AMS volume on Randomization Methods in Algorithm

Design, volume 43 of DIMACS Series in Discrete Mathematics and Theoretical

Computer Science, pages 179–190. AMS, 1999.

[108] Amer E. Mouawad, Naomi Nishimura, Venkatesh Raman, Narges Simjour, and

Akira Suzuki. On the parameterized complexity of reconfiguration problems.

Algorithmica, 78(1):274–297, May 2017.

140

[109] James R. Munkres. Elements of Algebraic Topology. Addison-Wesley Publishing

Company, Menlo Park, CA, 1984.

[110] Torrie L. Nichols, Alexander Pilz, Csaba D. Tóth, and Ahad N. Zehmakan. Tran-

sition operations over plane trees. In Michael A. Bender, Martín Farach-Colton,

and Miguel A. Mosteiro, editors, LATIN 2018: Theoretical Informatics, pages

835–848, Cham, 2018. Springer International Publishing.

[111] Naomi Nishimura. Introduction to reconfiguration. Algorithms, 11(4):52, 2018.

[112] Takao Nishizeki and Norishige Chiba. Planar Graphs: Theory and Algorithms,

volume 32. Elsevier, 1988.

[113] Jakob Nordström. Pebble games, proof complexity, and time-space trade-offs.

Logical Methods in Computer Science, 9(3):15, 2013.

[114] David Orden and Francisco Santos. The polytope of non-crossing graphs on a

planar point set. Discrete & Computational Geometry, 33(2):275–305, 2005.

[115] James Oxley. Matroid Theory, Second Edition. Oxford University Press, 2011.

[116] Igor Pak. Reduced decompositions of permutations in terms of star transpo-

sitions, generalized Catalan numbers and k-ary trees. Discrete Mathematics,

204(1-3):329–335, 1999.

[117] Christos H. Papadimitriou, Prabhakar Raghavan, Madhu Sudan, and Hisao

Tamaki. Motion planning on a graph. In Proceedings of the 35th Annual Sym-

posium on Foundations of Computer Science (FOCS 1994), pages 511–520.

IEEE, 1994.

[118] Alexander Pilz. Flip distance between triangulations of a planar point set is APX-

hard. Computational Geometry, 47(5):589–604, 2014.

[119] Alexander Pilz. A note on the flip distance problem for edge-labeled triangula-

tions. arXiv preprint arXiv:1808.03126, 2018.

[120] Frederick J. Portier and Theresa P. Vaughan. Whitney numbers of the second

kind for the star poset. European Journal of Combinatorics, 11(3):277–288,

1990.

141

[121] Lionel Pournin. The diameter of associahedra. Advances in Mathematics,

259:13–42, 2014.

[122] Ke Qiu, Selim G. Akl, and Henk Meijer. On some properties and algorithms

for the star and pancake interconnection networks. Journal of Parallel and Dis-

tributed Computing, 22(1):16–25, 1994.

[123] Daniel Ratner and Manfred Warmuth. The (n2�1)-puzzle and related relocation

problems. Journal of Symbolic Computation, 10(2):111–137, 1990.

[124] Andreas Razen. A lower bound for the transformation of compatible perfect

matchings. Proceedings of the 24th European Workshop on Computational Ge-

ometry (EuroCG 2008), pages 115–118, 2008.

[125] J. Scherphuis. Rotational puzzles on graphs. http://www.jaapsch.net/

puzzles/graphpuzz.htm.

[126] Walter Schnyder. Embedding planar graphs on the grid. In Proceedings of the

First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’90, pages

138–148, Philadelphia, PA, USA, 1990. Society for Industrial and Applied Math-

ematics.

[127] Herbert Seifert and William Threlfall. A Textbook of Topology, volume 89 of Pure

and Applied Mathematics. Academic Press, 1980.

[128] Micha Sharir and Adam Sheffer. Counting triangulations of planar point sets.

Electronic journal of combinatorics, 18(1):70, 2011.

[129] Daniel D. Sleator, Robert E. Tarjan, and William P. Thurston. Rotation distance,

triangulations, and hyperbolic geometry. Journal of the American Mathematical

Society, 1(3):647–681, 1988.

[130] Daniel D. Sleator, Robert E. Trajan, and William P. Thurston. Short encodings

of evolving structures. SIAM Journal on Discrete Mathematics, 5(3):428–450,

1992.

[131] John H. Smith. Factoring, into edge transpositions of a tree, permutations fixing

a terminal vertex. Journal of Combinatorial Theory, Series A, 85(1):92–95, 1999.

http://www.jaapsch.net/puzzles/graphpuzz.htm
http://www.jaapsch.net/puzzles/graphpuzz.htm

142

[132] John H. Smith. Corrigendum: Corrigendum to factoring, into edge transpositions

of a tree, permutations fixing a terminal vertex [J. Combin. Theory Ser. A 85

(1)(1999) 92-95]. Journal of Combinatorial Theory Series A, 118(2):726–727,

2011.

[133] John Stillwell. Classical Topology and Combinatorial Group Theory, volume 72

of Graduate Texts in Mathematics. Springer-Verlag, 2nd edition, 1993.

[134] I. Streinu. A combinatorial approach to planar non-colliding robot arm motion

planning. In Proceedings of the 41st Annual Symposium on Foundations of

Computer Science (FOCS 2000), pages 443–453, Nov 2000.

[135] William T. Tutte. A theorem on planar graphs. Transactions of the American

Mathematical Society, 82(1):99–116, 1956.

[136] William T. Tutte. How to draw a graph. Proceedings of the London Mathematical

Society, 13(3):743–768, 1963.

[137] Jan van den Heuvel. The complexity of change. Surveys in Combinatorics,

409:127–160, 2013.

[138] Tzvetalin S. Vassilev. Optimal area triangulation. PhD thesis, University of

Saskatchewan Saskatoon, 2005.

[139] Theresa P. Vaughan. Bounds for the rank of a permutation on a tree. Journal of

Combinatorial Mathematics and Combinatorial Computing, 10:65–81, 1991.

[140] Theresa P. Vaughan. Factoring a permutation on a broom. Journal of Combina-

torial Mathematics and Combinatorial Computing, 30:129–148, 1999.

[141] Theresa P. Vaughan and Frederick J. Portier. An algorithm for the factorization

of permutations on a tree. Journal of Combinatorial Mathematics and Combina-

torial Computing, 18:11–31, 1995.

[142] Klaus Wagner. Bemerkungen zum Vierfarbenproblem. Jahresbericht der

Deutschen Mathematiker-Vereinigung, 46:26–32, 1936.

143

[143] Ling Wang, Satishkumar Subramanian, Shahram Latifi, and Pradip K. Srimani.

Distance distribution of nodes in star graphs. Applied Mathematics Letters,

19(8):780–784, 2006.

[144] Richard M. Wilson. Graph puzzles, homotopy, and the alternating group. Journal

of Combinatorial Theory, Series B, 16(1):86–96, 1974.

[145] Marcin Wrochna. Reconfiguration in bounded bandwidth and tree-depth. J.

Comput. Syst. Sci., 93:1–10, 2014.

[146] Marcin Wrochna. The topology of solution spaces of combinatorial problems.

2018.

[147] Katsuhisa Yamanaka, Erik D. Demaine, Takashi Horiyama, Akitoshi Kawamura,

Shin-Ichi Nakano, Yoshio Okamoto, Toshiki Saitoh, Akira Suzuki, Ryuhei Ue-

hara, and Takeaki Uno. Sequentially swapping colored tokens on graphs. In

Sheung-Hung Poon, Md. Saidur Rahman, and Hsu-Chun Yen, editors, The 11th

International Conference and Workshop on Algorithms and Computation (WAL-

COM 2017), volume 10167 of Lecture Notes in Computer Science, pages 435–

447. Springer, 2017.

[148] Katsuhisa Yamanaka, Erik D. Demaine, Takehiro Ito, Jun Kawahara, Masashi

Kiyomi, Yoshio Okamoto, Toshiki Saitoh, Akira Suzuki, Kei Uchizawa, and

Takeaki Uno. Swapping labeled tokens on graphs. Theoretical Computer Sci-

ence, 586:81–94, 2015.

[149] Katsuhisa Yamanaka, Takashi Horiyama, J. Mark Keil, David Kirkpatrick, Yota

Otachi, Toshiki Saitoh, Ryuhei Uehara, and Yushi Uno. Swapping colored tokens

on graphs. Theoretical Computer Science, 729:1–10, 2018.

[150] Katsuhisa Yamanaka, Takashi Horiyama, David Kirkpatrick, Yota Otachi, Toshiki

Saitoh, Ryuhei Uehara, and Yushi Uno. Swapping colored tokens on graphs. In

Workshop on Algorithms and Data Structures (WADS 2015), pages 619–628.

Springer, 2015.

[151] Chao Yang. Sliding puzzles and rotating puzzles on graphs. Discrete Mathe-

matics, 311(14):1290–1294, 2011.

144

[152] Gaku Yasui, Kouta Abe, Katsuhisa Yamanaka, and Takashi Hirayama. Swapping

labeled tokens on complete split graphs. SIG Tech. Rep., 2015(14):1–4, 2015.

[153] Jingjin Yu. Intractability of optimal multirobot path planning on planar graphs.

IEEE Robotics and Automation Letters, 1(1):33–40, 2016.

[154] Jingjin Yu and Steven M. LaValle. Optimal multirobot path planning on graphs:

Complete algorithms and effective heuristics. IEEE Transactions on Robotics,

32(5):1163–1177, 2016.

[155] Jingjin Yu and Daniela Rus. Pebble motion on graphs with rotations: Efficient

feasibility tests and planning algorithms. In Algorithmic foundations of robotics

XI, pages 729–746. Springer, 2015.

	Abstract
	Acknowledgments
	List of Publications
	List of Tables
	List of Figures
	Introduction to Reconfiguration Problems
	Reconfiguration framework
	Examples of reconfiguration and applications
	Reconfiguration of planar graphs
	Reconfiguration of matroid bases
	Reconfiguration of token arrangements

	Triangulation Reconfiguration and a Proof of the Orbit Conjecture for Edge-Labelled Triangulations
	Basic definitions and reconfiguration set-up
	Some triangulation properties
	Review of flip graph properties and triangulation reconfiguration
	Introduction to edge-labelled triangulations
	Basic definitions and motivation for edge-labelling
	Orbit Conjecture and related results
	A Proof of the Orbit Theorem: general outline
	Proof of the Orbit Theorem
	Proof of the Elementary Swap Theorem
	Proofs of Properties of Elementary Swaps
	Orbit Theorem for Constrained Triangulations: existence of a flip sequence respecting some fixed edges
	Shortest flip sequences in constrained versus unconstrained triangulations

	Token Swapping on Trees
	Introduction to token swapping and reconfiguration set-up
	Survey of token swapping results
	Our results
	Counterexample to the Happy Leaf Conjecture
	Generalized counterexample
	Weighted coloured token swapping is NP-hard
	Weighted coloured token swapping on paths and stars

	Conclusions
	Conclusions and Open Problems related to Orbit Theorem
	Conclusions and open problems related to token swapping on trees

	Bibliography

