
Monitoring Event Frequencies
Thomas Ferrère
IST Austria, Klosterneuburg, Austria

Thomas A. Henzinger
IST Austria, Klosterneuburg, Austria

Bernhard Kragl
IST Austria, Klosterneuburg, Austria

Abstract
The monitoring of event frequencies can be used to recognize behavioral anomalies, to identify trends,
and to deduce or discard hypotheses about the underlying system. For example, the performance of a
web server may be monitored based on the ratio of the total count of requests from the least and most
active clients. Exact frequency monitoring, however, can be prohibitively expensive; in the above
example it would require as many counters as there are clients. In this paper, we propose the efficient
probabilistic monitoring of common frequency properties, including the mode (i.e., the most common
event) and the median of an event sequence. We define a logic to express composite frequency
properties as a combination of atomic frequency properties. Our main contribution is an algorithm
that, under suitable probabilistic assumptions, can be used to monitor these important frequency
properties with four counters, independent of the number of different events. Our algorithm samples
longer and longer subwords of an infinite event sequence. We prove the almost-sure convergence of
our algorithm by generalizing ergodic theory from increasing-length prefixes to increasing-length
subwords of an infinite sequence. A similar algorithm could be used to learn a connected Markov
chain of a given structure from observing its outputs, to arbitrary precision, for a given confidence.

2012 ACM Subject Classification Software and its engineering → Software organization and prop-
erties; Theory of computation → Randomness, geometry and discrete structures

Keywords and phrases monitoring, frequency property, Markov chain

Digital Object Identifier 10.4230/LIPIcs.CSL.2020.20

Related Version A full version of the paper is available at http://arxiv.org/abs/1910.06097.

Funding This research was supported in part by the Austrian Science Fund (FWF) under grants
S11402-N23 (RiSE/SHiNE) and Z211-N23 (Wittgenstein Award).

Acknowledgements We thank Jan Maas for showing us a simple proof of convergence of the mode
in the i.i.d. case, and Zbigniew S. Szewczak for pointing out to us the use of Karamata’s Tauberian
theorem in connection with ergodic theory [23].

1 Introduction

The safety and security of computerized systems are ensured by a chain of methods that
use logic and formal semantics to assert and check the correct operation of a system, real or
simulated. Runtime monitoring [4] happens at the end of this chain and complements rigorous
design and verification practices to catch malfunctions as they occur in a live system. In
addition to critical functional aspects, softer performance metrics also need to be monitored
to ensure a suitable quality of service. Monitoring system properties takes place in parallel
with the execution of the system itself. A dedicated component, called monitor, observes the
system behavior as input and generate a verdict about the system behavior as output. Due
to reactivity considerations, the monitor is often required to perform its observations in real
time, and not being the main computational artifact, should consume limited resources.

© Thomas Ferrère, Thomas A. Henzinger, and Bernhard Kragl;
licensed under Creative Commons License CC-BY

28th EACSL Annual Conference on Computer Science Logic (CSL 2020).
Editors: Maribel Fernández and Anca Muscholl; Article No. 20; pp. 20:1–20:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-5199-3143
https://orcid.org/0000-0002-2985-7724
https://orcid.org/0000-0001-7745-9117
https://doi.org/10.4230/LIPIcs.CSL.2020.20
http://arxiv.org/abs/1910.06097
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

20:2 Monitoring Event Frequencies

In this paper we propose a new class of quantitative properties based on event frequencies,
called frequency properties, and study their monitoring problem. In particular, we define a
logic to express composite frequency properties as linear and Boolean combinations of atomic
frequency properties. While all such frequency properties are theoretically monitorable using
counter registers, there are, in general, no efficient monitoring algorithms in the case of large
or infinite input alphabets. As a motivating example we use the mode of a sequence over a
finite alphabet Σ. By definition, a ∈ Σ is the mode of an ω-word w if there exists a length n
such that each prefix of w longer than n contains more occurrences of a’s than occurrences of
any other letter b ∈ Σ. This frequency property can be monitored using a separate counter
for every event in Σ. However, the alphabet Σ is typically too large for this to be practical.1
We show that there is no shortcut to monitor the mode exactly and in real time: in general
|Σ| counters are needed for this task.

However, we are not always interested in monitoring exactly and in real time the mode
after every new event, and sometimes wish to estimate what the mode is expected to be
in the future. Perhaps surprisingly, we can then do much better. Let us assume that the
past, finite, observed behavior of an event sequence is representative of the future, infinite,
unknown behavior. This is the case for stochastic systems, for instance if the observation
sequence is generated by a Markov chain. We move from the real-time monitoring problem,
asking to compute or approximate, in real time, the value of a frequency property for each
observed prefix, to the limit monitoring problem, asking to estimate the future limit value of
the frequency property, if it exists. In particular, for the mode of a connected Markov chain,
the longer we observe a behavior, the higher our confidence in predicting its mode. While
every real-time monitor can be used as limit monitor, there can be limit monitors that use
dramatically fewer resources.

We present a simple, memory-efficient strategy to limit monitor frequency properties
of random ω-words. In particular, our mode monitor uses four counters only. Two of the
counters keep track of the number of occurrences of two letters at a time. The first letter is
the current mode prediction, say a. The second letter is the mode replacement candidate,
say b. We count the number of a’s and b’s over a given subword, until a certain number of
events, say 10, has been processed. The most frequent letter out of a and b in this 10-letter
subword, say a, wins the round and becomes the new mode prediction. The other letter
loses the round and is replaced by a letter sampled at random, say c. In the next round
the subword length will be increased, say to 11, and a will compete against c over the next
subword. We reuse two counters for the two letters, and the other two counters to keep
track of the current subword length and to stop counting when that length is reached. By
repeating the process we get increasingly higher confidence that a is indeed the mode. Even
if by random perturbation the mode a of the generating Markov chain was no longer the
current prediction, it would eventually get sampled again and statistically reappear, and
eventually remain, as the prediction.

The algorithm of our mode monitor easily transfers to an efficient monitor for the median.
Indeed, we also show that our results generalize to any property expressible as Boolean
combination of linear inequalities over frequencies of events. An application of our algorithmic
ideas is to learn the transition probabilities of a connected Markov chain of known structure
through the observation of subword frequencies.

1 Consider the IPv4 protocol alphabet with its 4,294,967,296 letters (addresses) and the UTF-8 encoding
alphabet with its 1,112,064 letters (code points).

T. Ferrère, T. A. Henzinger, and B. Kragl 20:3

The main result of this paper is that, assuming the monitored system is a connected
Markov chain, our monitoring algorithm converges almost surely. The proof of this fact
calls for a new ergodic theory based on subwords as opposed to prefixes. This theory uses
as its main building block a variant of the law of large numbers over so-called triangular
random arrays of the form X1,1, X2,1, X2,2, X3,1, . . . and hinges on deep results from matrix
theory. The correctness of the algorithm can also be understood, in a weaker form, by
showing convergence in probability of its output. Assuming that the Markov chain starts in a
stationary distribution, the probability of a given word u occurring as subword of an ω-word
w at position i is independent of i. As a result, when the value of a function over prefixes
converges probabilistically, then the same limit is reached probabilistically over arbitrary
subwords.

In short, the main conceptual and technical contributions of this paper are the following:
1. We show that precise real-time monitoring is inherently resource-intensive (Section 4).
2. We propose the novel setting of limit monitoring (Section 3).
3. We provide a generic scheme for efficient limit monitoring (Section 5) and instantiate it

to specialized monitoring algorithms for the mode (Section 5.2) and median (Section 5.3).
4. We define a logic for composite frequency properties which combines atomic frequency

properties such that each formula of the logic can be limit monitored efficiently (Section 6).
5. We develop a new ergodic theory for connected Markov chains (Section 5.1) to prove our

monitoring algorithms correct.

1.1 Related Work
In the area of formal verification, probabilistic model checking [15, 16] and quantitative
verification [12] are concerned with the white-box static analysis of a probabilistic system.
Statistical model checking [1] tries to learn the probabilistic structure of a system by sampling
many executions, and thus also applies to black-box systems. These are in contrast to our
monitoring setting where a single execution of a black-box system is dynamically observed
during execution. Our work belongs specifically to the field of runtime verification [4], which is
concerned with the evaluation of temporal properties over program traces. While much of the
research in this domain assumes finite-state monitors, in this work we study an infinite-state
problem based on the model of counter monitors. The expressiveness of different register
machines and resource trade-offs for monitoring safety properties involving counters and
arithmetic registers is studied in [10]. Another infinite-state model for monitoring is that of
quantified event automata [3], which combine finite automata specifications with first-order
quantification. Other quantitative automata machines are surveyed in [7].

The computation of aggregates over an ongoing system execution in real time was
considered in various areas of computer science. Stream expressions [8, 9] and quantitative
regular expressions [2] provide frameworks for the specification of transducers over data
streams. The work on runtime verification and stream processing can be seen as solving
real-time monitoring problems, and very rarely assumes a probabilistic model. A notable
exception can be found in [22], who propose to use hypothesis testing to provide an interval of
confidence on the monitor outcome when evaluating some probabilistic property. In the vast
literature from runtime verification to online algorithms, the problem of limit monitoring as
defined, solved, and applied in this paper was, to the best of our knowledge, not studied before.

It is well-known that certain common statistical indicators can be computed in real time.
For example, the average can be computed by simply maintaining the sum and sample size.
Perhaps more surprisingly, the variance and covariance of a sequence can also be computed
in one pass through classical online algorithms [24]. However, other indicators, like the

CSL 2020

20:4 Monitoring Event Frequencies

median, are hard or impossible to compute in real time. Offline algorithms for the median
include selection algorithms (e.g., quickselect [13]) with O(n) run time (versus O(n logn) for
sorting), median of medians [5] (which is approximate), and the randomized algorithm of
Mitzenmacher & Upfal [18]. The best known online algorithm uses two heaps to store the
lower and higher half of values (i.e., all samples have to be stored), with an amortized cost
of O(logn) per input. To the best of our knowledge, no real-time algorithm to compute the
median exactly was proposed in the literature.

Statistical properties of subword frequencies in Markov chains are studied in [6]. In
Markov chain theory, the existence, uniqueness, and convergence results for stationary
distributions are among the most fundamental results [19]. The rate of convergence towards
a stationary distribution is called mixing time [17]. In general, the mixing time is controlled
by the spectral gap of the transition matrix, with precise results only know for particular
random processes, like card shuffling. These result do not lead to bounds on the convergence
rate of frequencies of events in labeled Markov chains.

An indirect (and somewhat degenerate) approach to monitoring would be to first learn
the monitored system, and then perform offline verification on the learned model. Learning
probabilistic generators was studied in the setting of automata learning [20], but requires
more powerful oracle queries like membership and equivalence. Rudich showed that the
structure and transition probabilities of a Markov chain can, in principle, be learned from a
single input sequence [21]. However, the algorithm is impractical as it essentially enumerates
all possible structures.

2 Definitions

Let Σ be a finite alphabet of events. Given a finite or infinite word or ω-word w ∈ Σ∗ ∪ Σω
and a position i, 1 ≤ i ≤ |w|, we denote by wi its i’th value. Given a pair of positions i
and j, i ≤ j, we denote by wi..j the infix of w from i to j, such that |wi..j | = j − i+ 1 and
(wi..j)k = wi+k−1 for all 1 ≤ k ≤ j − i + 1. We denote by w..i = w1..i the prefix of w of
length i. For any word w ∈ Σ∗ and letter a ∈ Σ we write |w|a for the number of occurrences
of a in w.

2.1 Sequential Statistics
We define a statistic to be any function that outputs an indicator for a given input word.

I Definition 1 (Statistic). Let Σ be a finite alphabet and Λ be an output domain. A statistic
is a function µ : Σ∗ → Λ.

In this paper we focus on statistics that are based on the frequency, or number of
occurrence, of events. Two typical examples are the mode, i.e. the most frequent event, and
the median, i.e., the value separating as evenly as possible the upper half from the lower half
of a data sample.

I Example 2 (Mode). We say that a ∈ Σ is the mode of w when |w|a > |w|σ for all
σ ∈ Σ \ {a}. We denote by mode : Σ∗ → Σ] {⊥} the statistic that maps a word to its mode
if it exists, or to ⊥ otherwise.

I Example 3 (Median). Let Σ be ordered by ≺. We say that a ∈ Σ is the median of w when∑
σ�a |w|σ <

∑
σ4a |w|σ and

∑
σ≺a |w|σ <

∑
σ<a |w|σ. We denote by median : Σ∗ → Σ]{⊥}

the statistic that maps a word to its median if it exists, or to ⊥ otherwise.

T. Ferrère, T. A. Henzinger, and B. Kragl 20:5

An example of a statistic that takes into account the order of events in a word is the
most frequent event that occurs right after some dedicated event.

2.2 Counter Monitors
The task of a monitor is to compute a statistic in real time. We define a variant of monitor
machines that allows us to classify a monitor based on the amount of resources it uses. We
adapt the definition of counter monitors set in [10] to our setting of monitoring frequencies.

Let X be a set of integer variables, called registers or counters. Registers can be read
and written according to relations and functions in the signature S = 〈0,+1,≤〉 as follows:

A test is a conjunction of atomic formulas over S and their negation;
An update is a mapping from variables to terms over S.

The set of tests and updates over X are denoted Φ(X) and Γ(X), respectively.

I Definition 4 (Counter Monitor). A counter monitor is a tuple A = (Σ,Λ, X,Q, λ, s,∆),
where Σ is an input alphabet, Λ is an output alphabet, X is a set of registers, Q is a set of
control locations, λ : Q× NX → Λ is an output function, s ∈ Q is the initial location, and
∆ ⊆ Q× Σ× Φ(X)× Γ(X)×Q is a transition relation such that for every location q ∈ Q,
event σ ∈ Σ, and valuation v : X → N there exists a unique edge (q, σ, φ, γ, q′) ∈ ∆ such that
v |= φ is satisfied. The sets Σ, X,Q,∆ are assumed to be finite.

A run of the monitor A over a word w ∈ Σ∗ ∪Σω is a sequence of transitions (q1, v1) w1−−→
(q2, v2) w2−−→ . . . labeled by w such that q1 = s and v1(x) = 0 for all x ∈ X. Here we
write (q, v) σ−→ (q′, v′) when there exists an edge (q, σ, φ, γ, q′) ∈ ∆ such that v |= φ and
v′(x) = v(γ(x)) for all x ∈ X. There exists exactly one run of a given counter monitor A
over a given word w.

I Definition 5 (Monitor Semantics). Every counter monitor A computes a statistic JAK :
Σ∗ → Λ, such that JAK(w) = λ(q, v) for (q, v) the final state in the run of A over w ∈ Σ∗.

We remark that the term “counter machine” has various different meanings in the
literature and designates machines with varying computational power. In our definition we
note the use of the constant 0 which enables resets. Such resets cannot be simulated in real
time. On the contrary, arbitrary increments are w.l.o.g., as shown in [11].

2.3 Probabilistic Generators
In this work we model systems as labeled Markov chains, whose executions generate random
ω-words.

I Definition 6 (Markov Chain). A (finite, connected, labeled) Markov chain is a tuple
M = (Σ, Q, λ, π, p), where Σ is a finite set of events, Q is a finite set of states, λ : Q→ Σ
is a labeling, π is an initial-state distribution over Q, and p : Q×Q→ [0, 1] is a transition
distribution with

∑
q′∈Q p(q, q′) = 1 for all q ∈ Q and whose set of edges (q, q′) such that

p(q, q′) > 0 forms a strongly connected graph.

In the rest of this paper, even when not explicitly stated, every Markov chain is assumed
to be finite and connected.

LetM = (Σ, Q, λ, π, p) be a Markov chain. A random infinite sequence (Xi)i≥1 of states
is an execution ofM, Markov(M) for short, if (i) X1 has distribution π and (ii) conditional
on Xi = q, Xi+1 has distribution q′ 7→ p(q, q′) and is independent of X1, . . . , Xi−1. By
extension, a random ω-word w is Markov(M) if wi = λ(Xi) for all i ≥ 1.

CSL 2020

20:6 Monitoring Event Frequencies

We denote by Vq(k) =
∑k
i=1 1{Xi=q} the number of visits to state q within k steps, and

by Tq = inf{i > 1 | Xi = q} the first time of visiting state q (after the initial state). Then
mq = E(Tq | X1 = q) is the expected return time to state q. The ergodic theorem for Markov
chains states that the long-run proportion of time spent in each state q is the inverse of mq.
Thus we call fq = 1

mq
the (long-run) frequency of q.

I Theorem 7 (Ergodic Theorem [19]). LetM be a finite connected Markov chain. If (Xi)i≥1
is Markov(M) then Vq(n)/n a.s.−−→ fq as n→∞ for every state q.

Now summing the frequencies of all states mapped to a letter σ gives the expected
frequency of σ, fσ =

∑
q∈Q
λ(q)=σ

fq, as characterized by the following corollary.

I Corollary 8. Let M be a finite connected Markov chain. If w is Markov(M) then
|w..n|σ/n

a.s.−−→ fσ as n→∞ for every letter σ.

3 The Limit-Monitoring Problem

We want to monitor the value of a given statistic µ : Σ∗ → Λ over the execution of some
(probabilistic) process P. This execution is potentially infinite, forming an ω-word w ∈ Σω.
In practice, the statistic µ is often used as an estimator of some parameter v ∈ Λ of process
P. Such a parameter is always well-defined in the case where µ converges to v as follows.

I Definition 9 (Convergence). A statistic µ : Σ∗ → Λ (almost surely) converges to a value
v ∈ Λ over a random process P, written µ(P) = v, if Pw∼P(limn→∞ µ(w..n) = v) = 1.

Computing the value of the statistic µ over every finite prefix of w can be an objective
in itself. It gives us the most precise estimate of the parameter v when defined. A monitor
fulfilling this requirement is called real-time. Such a monitor is past-oriented, and is concerned
with computing accurately the value µ(w..n) of the statistic at step n, for all n.

I Definition 10 (Real-Time Monitoring). A monitor A is a real-time monitor of statistic µ,
if JAK = µ.

However, if the aim of the monitor is to serve as an estimator of the parameter v, then
it may not be strictly required to output the exact value of µ at every step, as long as its
output almost surely converges to v. A monitor that almost surely converges to v is qualified
as limit. Such a monitor is future-oriented, and is concerned with the asymptotic value of
the statistic µ as time tends to infinity, not necessarily computing its precise value over each
prefix of the computation.

I Definition 11 (Limit Monitoring). A monitor A is a limit monitor of statistic µ : Σ∗ → Λ
on process P, when JAK(P) = v if and only if µ(P) = v for all v ∈ Λ.

In other words, if the statistic converges then the limit monitor converges to the same
value, and if the statistic does not converge then neither does the monitor. To the best of our
knowledge, the notion of limit monitoring was not previously considered. By definition, every
real-time monitor is trivially also a limit monitor for the corresponding statistic. However,
in this paper we show that dedicated limit monitors can be much more efficient.

I Proposition 12. Every real-time monitor of some statistic µ is also a limit monitor of µ,
on arbitrary generating processes.

This is in clear contrast to a common trend in runtime verification, where past-oriented
monitoring (inherently deterministic) often turns out to be computationally easier than
future-oriented monitoring (requiring nondeterministic simulation).

T. Ferrère, T. A. Henzinger, and B. Kragl 20:7

4 Precise Real-Time Monitoring

In this section we study the real-time monitoring of statistics by counter monitors. Real-
time monitors can be seen as monitoring the past in a precise manner. We show that for
some common statistics such as the mode and median statistics this problem is inherently
resource-intensive. More precisely, we identify a class of statistical quantities that require at
least as many counters as there are events in the input alphabet.

To illustrate the difficulty of monitoring certain statistics in real time, recall the mode as
defined in Example 2. A straightforward real-time monitor for the mode counts the number
of occurrences of each letter σ in a separate counter xσ. Then σ is the mode if and only if
xσ > xρ for all ρ ∈ Σ \ {σ}. Hence |Σ| counters suffice to monitor the mode. But can we
do better? Intuitively it seems necessary to keep track of the exact number of occurrences
for each individual letter. Indeed, we show in this section that for real-time monitors this
number is tight: any real-time counter monitor of the mode must use at least |Σ| counters.
In many applications where the alphabet Σ is large this may be beyond the amount of
resources available for a monitor. While Proposition 12 implies that the mode can also be
limit monitored using |Σ| counters, we show in the next section that limit monitoring can be
much more resource-sparing.

To capture the hardness of real-time monitoring for a whole class of statistics, we start by
defining an equivalence relation over words relative to a statistic. Two words are µ-equivalent if
it is impossible for µ to distinguish them, even with an arbitrary suffix appended to both words.

I Definition 13 (µ-Equivalence). Let µ be a statistic over Σ. Two words w1, w2 ∈ Σ∗ are
µ-equivalent, denoted w1 ≡µ w2, if µ(w1u) = µ(w2u) for all words u ∈ Σ∗.

Now we define the notion of a Σ-counting statistic, which states that two equivalent
words must have exactly the same number of occurrences per letter, modulo a constant shift
across all letters. Intuitively a Σ-counting statistic induces many equivalence classes, too
many to be possibly tracked by a counter monitor with less than |Σ| counters.

I Definition 14 (Σ-Counting). A statistic µ is Σ-counting if w ≡µ w′ implies that there
exists n ∈ Z such that |w|σ = |w′|σ + n for all σ ∈ Σ.

I Proposition 15. For any Σ such that |Σ| > 1 both the mode and the median statistics are
Σ-counting.

To illustrate the definition of Σ-counting, consider the mode-equivalent words aabc and a
over the alphabet Σ = {a, b, c}. The distance for all letter counts is one. Over the alphabet
with an additional letter d the two words are not mode-equivalent (for example, consider the
extensions aabcd and ad), since the distance for the count of d is zero.

We prove that Σ-counting statistics are expensive to monitor by showing that for large n
the number of µ-inequivalent words of length at most n is strictly greater than the number
of possible configurations reachable by a counter monitor with less than |Σ| − 1 counters
over words of length at most n.

I Theorem 16. Real-time counter monitors of a Σ-counting statistic require Ω(|Σ|) counters.

As a corollary of Proposition 15 and Theorem 16, we have that precisely monitoring
the mode and the median in real time requires roughly as many counters as the size of the
alphabet, which is prohibitive in many practical applications.

CSL 2020

20:8 Monitoring Event Frequencies

5 Efficient Limit Monitoring

In this section we develop a new algorithmic framework for efficient limit monitoring of
frequency-based statistics. We first present a general monitoring scheme and then instantiate it
to derive efficient monitoring algorithms for both mode (Section 5.2) and median (Section 5.3).
In Section 6 we present a monitoring algorithm for a general class of frequency properties.
While corresponding real-time monitors require a number of counters proportional to the size
of the input alphabet, our limit monitors only use a constant number of counters (e.g., four for
the mode), independent of the alphabet size. The algorithmic ideas in our monitoring scheme
are simple and intuitive, which makes our algorithms easy to understand, implement, and
deploy. However, the correctness proofs are surprisingly hard and required us to develop a
new ergodic theory for Markov chains that takes limits over arbitrary subwords (Section 5.1).

Our high-level monitoring strategy comprises the following points:
1. Split the input sequence into subwords of increasing length.
2. In every subword, acquire partial information about the statistic.
3. Assemble global information about the statistic across different subwords.

The idea behind splitting the input sequence into subwords is that when the monitored
property involves frequencies of many events, then different events can be counted separately
over different subwords, which enables us to reuse registers. Because of the probabilistic
nature of the generator we can still ensure that, in the long run, the monitor value converges
to the limit of the statistic. As we will see, there is great flexibility in how exactly the
sequence is partitioned. In principle, the subwords can overlap or leave gaps arbitrarily, as
long as the length of the considered subwords grows “fast enough”.

5.1 An Ergodic Theorem over Infixes
Consider the following Markov chain on the left-hand side, and a random ω-word generated
by this Markov chain in the table on the right-hand side.

x y

z

1

1
3

2
3

1 ω-word x y z x y z x y x y z x y z x y . . .

Prefixes 0 .5 .33 .25 .4 .33 .29 .38 .33 .4 .36 .33 .38 .36 .33 .38 a.s.−−→ 3
8

Infixes 0 .5 .33 .5 .2 a.s.−−→ 3
8

The second row of the table shows the frequency of state y in prefixes of increasing length.
For example, after xyzx we have frequency 1

4 . The classic ergodic theorem (Theorem 7) tells
us that this frequency almost surely converges to fy = 3

8 , the inverse of the expected return
time to y. However, this theorem does not apply to take a limit over arbitrary subwords,
for example, the infixes of increasing length (indicated by vertical lines) in the third row of
the table. We prove a result that shows that also in this much more general case the limit
frequency of y is 3

8 .
The strong law of large numbers states that the empirical average of i.i.d. random variables

converges to their expected value, i.e., (X1 + · · ·+Xn)/n a.s.−−→ E(X1) as n→∞. The fact
that random variables are “reused” from the n’th to the (n+ 1)’st sample does matter in
this statement. Otherwise the mere existence of a mean value is not sufficient to guarantee
convergence. However, when the variance (or higher-order moment) is bounded, then this
“reuse” is no longer required. We now prove such a variant of the law of large numbers.2

2 Such a setting is sometimes called array of rowwise independent random variables in the literature,
see [14] in particular.

T. Ferrère, T. A. Henzinger, and B. Kragl 20:9

I Theorem 17. Let {Xn,i : n, i ≥ 1} be a family of identically distributed random variables
with E(X1,1) = µ and E(X4

1,1) <∞, such that {Xn,i : i ≥ 1} are mutually independent for
every n ≥ 1. Let (sn)n≥1 be a sequence of indices with sn ≥ an for every n ≥ 1 and fixed
a > 0. Set Sn =

∑sn

i=1Xn,i. Then Sn/sn
a.s.−−→ µ as n→∞.

In our proof the combination of the fourth-moment bound and the linear increase of sn
leads to a converging geometric series. We believe that these assumptions could be slightly
relaxed to a second-moment bound or to sublinearly increasing sequences. Theorem 17
already gives a basis to reason about infix-convergence for i.i.d. processes. We now use it to
derive a corresponding result for Markov chains.

Let M be a Markov chain and (Xi)i≥1 be Markov(M). Given an offset function s :
N → N, we refer to Xs(n)+1Xs(n)+2 · · · as the n’th suffix of X. We denote by V nq (k) =∑k
i=1 1{Xs(n)+i=q} the number of visits to state q within k steps in the n’th suffix. We

generalize the classic ergodic theorem for Markov chains (Theorem 7) to take the limit over
arbitrary subwords.

I Theorem 18. Let M be a finite connected Markov chain and s an offset function. If
(Xi)i≥1 is Markov(M) then V nq (n)/n a.s.−−→ fq as n→∞ for every state q.

Our proof applies Theorem 17 to the i.i.d. excursion times between visiting state q within
the n’th suffix. This requires bounding the moments of excursion times and showing that the
time until visiting q for the first time in every subword becomes almost surely negligible for
increasing size subwords. As a corollary of Theorem 18 we get the following characterization
for the long-run frequencies of letters over infixes.

I Corollary 19. LetM be a finite connected Markov chain and s an offset function. If w is
Markov(M) then |ws(n)+1..s(n)+n|σ/n

a.s.−−→ fσ as n→∞ for every letter σ.

5.2 Monitoring the Mode
As we saw in Section 4, precisely monitoring the mode in real time requires at least |Σ|
counters. By contrast, we now show that the mode can be limit monitored using only four
counter registers. For convenience we also use two registers to store event letters; since we
assume Σ to be finite they can be emulated in the finite state component of the monitor.

The core idea of our monitoring algorithm is to split w into chunks, and for each chunk
only count the number of occurrences of two letters x and y. Letter x is considered the
current candidate for the mode and y is a randomly selected contender. If x does not occur
more frequently than y in the current chunk, y becomes the mode candidate for the next
chunk. The success of the monitor relies on two points: (i) it must be repeatably possible for
the true mode to end up in x, and (ii) it must be likely for the true mode to eventually remain
in x. The first point is achieved by taking y randomly, and the second point is achieved by
gradually increasing the chunk size. It is sufficient to increase the chunk size by one and
decompose w as follows:

σ1 σ2σ3 σ4σ5σ6 σ7σ8σ9σ10 σ11 · · ·

Formally, the decomposition of w into chunks is given by an offset function s : N → N
with s(n) = n(n−1)

2 , such that the n’th chunk starts at s(n) + 1 and ends at s(n) + n. For
convenience, we introduce a double indexing of w by n ≥ 1 and 1 ≤ i ≤ n, such that
wn,i = ws(n)+i is the i’th letter in the n’th chunk.

CSL 2020

20:10 Monitoring Event Frequencies

Algorithm 1: Mode monitor
1 Function Init(σ):
2 x, y := σ, σ

3 cx, cy := 0, 0
4 n, i := 2, 1
5 return x

6 Function Next(σ):
7 if i = 1 then
8 if cx ≤ cy then x := y

9 y := σ

10 cx, cy := 0, 0
11

12 if x = σ then cx := cx + 1
13 if y = σ then cy := cy + 1
14

15 if i = n then n, i := n+ 1, 1
16 else i := i+ 1
17 return x

Algorithm 2: Median monitor
1 Function Init(σ):
2 x := σ

3 c1, c2, c3, c4 := 0, 0, 0, 0
4 n, i := 2, 1
5 return x

6 Function Next(σ):
7 if i = 1 then
8 if c1 ≥ c2 then x := pre≺(x)
9 if c3 ≥ c4 then x := succ≺(x)

10 c1, c2, c3, c4 := 0, 0, 0, 0
11 if σ < x then c1 := c1 + 1
12 if σ ≥ x then c2 := c2 + 1
13 if σ > x then c3 := c3 + 1
14 if σ ≤ x then c4 := c4 + 1
15 if i = n then n, i := n+ 1, 1
16 else i := i+ 1
17 return x

A formal description of our mode monitor is given in Algorithm 1. The counters n and
i keep track of the decomposition of w. For the very first letter σ, Init initializes both
registers x and y to σ (line 2). Then, for every subsequent letter, Next counts an occurrence
of x and y using counters cx and cy, respectively (line 12-13). At the beginning of every
chunk, x is replaced by y if it did not occur more frequently in the previous chunk (line 8),
and y is set to the first letter of the chunk (line 9). At every step, x is the current estimate
of the mode.

I Example 20. For alphabet Σ = {a, b, c} and probability distribution p with p(a) = 0.5,
p(b) = 0.3, and p(c) = 0.2, the following table shows a word w where every letter was
independently sampled from p, and the corresponding mode at every position in w.

w c b b a b a c a a b c a c a a a · · ·
mode c - b b b b b - a - - a a a a a · · ·

In this example, mode first switches between the different letters and undefined, but then
eventually seems to settle on a. We show that this is not an accident, but happens precisely
because a is the unique letter that p assigns the highest probability.

Now the following table shows the execution of Algorithm 1 on the same random word.

n 1 2 3 4 5 6 · · ·
i 1 1 2 1 2 3 1 2 3 4 1 2 3 4 5 1 · · ·
σ c b b a b a c a a b c a c a a a · · ·
x c c b a a a · · ·
y c b a c c a · · ·
cx 1 0 0 0 1 1 0 1 2 2 0 1 1 2 3 1 · · ·
cy 1 1 2 1 1 2 1 1 1 1 1 1 2 2 2 1 · · ·

Initially c is considered the mode and compared to b in the second chunk, where b occurs
more frequently. Thus b is considered the mode and compared to a in the third chunk, where
a occurs more frequently. In the fourth and fifth chunk a is compared to c, where a occurs
more frequently in both chunks. Again, the algorithm seems to settle on a, the true mode.

T. Ferrère, T. A. Henzinger, and B. Kragl 20:11

To prove the correctness of our algorithm according to Definition 11 requires us to first
characterize when a Markov chain has a mode, i.e., under which conditions the mode statistic
almost surely converges. For this it is illustrative to instantiate Definition 9 for the mode,
which states that a is the mode of an ω-word w if there exists a length n, such that for every
length n′ ≥ n, |w..n′ |a > |w..n′ |b for every b 6= a. In a Markov chain the ergodic theorem
characterizes the long-run frequencies of states, and thus the long-run frequencies of letters
(see Corollary 8). Hence a Markov chain has a mode if and only if its random ω-word almost
surely has a unique letter that occurs most frequently.

I Theorem 21. Over Markov chains, the mode statistic converges to a if and only if fa > fb
for all b 6= a.

Proof. Let M be a Markov chain and w be Markov(M). According to Corollary 8,
|w..n|σ/n

a.s.−−→ fσ as n→∞ for every σ ∈ Σ
Now assuming fa > fb for all b 6= a, we have for sufficiently large n that |w..n|a > |w..n|b

for all b 6= a, and thus a is the mode of w almost surely.
Conversely, if there are two distinct letters a, a′ with equal maximal frequencies fa, fa′ ,

then almost surely the mode switches infinitely often between a and a′, thus neither a nor a′
is the mode of w, and thus w does not have a mode. J

Now we can prove that Algorithm 1 is a limit monitor for the mode. The core of the
argument is that the probability of the true mode eventually staying in register x is lower-
bounded by the probability of a eventually being the most frequent letter in every subword
and a being eventually selected into y, which happens almost surely.

I Theorem 22. Algorithm 1 limit-monitors the mode over Markov chains.

Proof. Let w be Markov(M) and let a be the mode of w (the other case where w does not
have a mode is obvious). Let γn be the function that maps every letter to the number of
its occurrences in the n’th subword, i.e., γn(σ) = |ws(n)+1..s(n)+n|σ. To capture Algorithm 1
mathematically, we define the random variables

Yn = wn,1; X1 = w1,1; Xn+1 =
{
Xn, if γn(Xn) > γn(Yn);
Yn, if γn(Xn) ≤ γn(Yn).

That is, Xn and Yn are the values of x and y throughout the n’th subword. We need to show
that almost surely, eventually Xn = a forever, i.e., P(♦�Xn = a) = 1.3

It is more likely that a eventually stays in x forever as that a eventually is the most
frequent letter in every subword and that a is also eventually sampled into y:

P(♦�Xn = a)
≥ P(♦(�∀b 6= a : γn(b) < γn(a)) ∧ (♦Yn = a))
≥ P((�≥n0∀b 6= a : γn(b) < γn(a)) ∧ (♦≥n0Yn = a))

The last lower bound holds for any fixed n0 and we show that it converges to 1 as n0 →∞.

P((�≥n0∀b 6= a : γn(b) < γn(a)) ∧ (♦≥n0Yn = a))
≥ P(�≥n0∀b 6= a : γn(b) < γn(a)) · P(♦≥n0Yn = a)
= P(�≥n0∀b 6= a : γn(b) < γn(a))

3 In the interest of readability we use temporal (modal) logic notation ♦ and � meaning eventually and
forever, respectively.

CSL 2020

20:12 Monitoring Event Frequencies

Since γn(σ)/n a.s.−−→ fσ (by Corollary 19) and a is the unique letter with highest frequency fa
(by Theorem 21), we have P(�≥n0∀b 6= a : γn(b) < γn(a)) = 1 for sufficiently large n0. Thus,
P(♦�Xn = a) = 1. J

Note that our policy of always selecting the mode contender y from the input is an
optimization, since we expect to see the mode often in the input. Our proof requires that
the true mode is selected into y infinitely often, which is the case because we update y at
irregular positions. Two other policies to update y would be (i) to always uniformly sample
from Σ, or (ii) to cycle deterministically through all elements of Σ.

5.3 Monitoring the Median
Recall from Example 3 that a is the median of a word w over a ≺-ordered alphabet Σ when∑

σ�a
|w|σ <

∑
σ4a

|w|σ (1)

on the one hand, and∑
σ≺a
|w|σ <

∑
σ<a

|w|σ (2)

on the other hand. These equations readily lead to our median limit-monitoring algorithm
shown in Algorithm 2, which we display next to our mode monitor to highlight their common
structure. The idea of the algorithm is to maintain a median candidate x and then use
four counters c1, c2, c3, c4 to compute the sums in inequality (1) and (2), for a = x, in every
subword (line 11-14). Whenever any of the two inequalities is not satisfied at the end of a
subword, a new median candidate is selected into x for the next subword. In particular, if
inequality (1) is violated then the next lower value in the ordering ≺ is selected (line 8), and
if inequality (2) is violated then the next higher value is selected (line 9). Notice that we
could eliminate the counters c3, c4, by alternating the computation of inequality (1) and (2)
over different subwords, and thus reusing c1, c2 to compute inequality (2).

I Theorem 23. Algorithm 2 limit-monitors the median over Markov chains.

6 Monitoring General Frequency Properties

In the previous section we presented high-level principles for efficient limit monitoring and
designed specialized monitoring algorithms for the mode and median statistic, which are both
derived from event frequencies. We postulate that our algorithmic ideas are straightforward
to adapt to obtain monitors for many other frequency-based statistics. However, we did not
yet precisely define what we mean by frequency property, nor demonstrated how efficiently
these can be limit monitored in general. In this section we provide a first step in this direction
by defining a simple language to specify frequency-based Boolean statistics, and showing
that all statistics definable in this language can be limit monitored over Markov chains with
four counters only.

From the defining equations of the mode and median we observe that a characteristic
construction is the formation of linear inequalities over the frequencies (or equivalently,
occurrence counts) of specific events. The key part of the argument for the correctness
of our monitoring algorithms is that since event frequencies almost surely converge, both
over prefixes and infixes, also these inequalities almost surely “stabilize”. We use the same
construction at the core of a language to define general frequency-based statistics. For
simplicity we focus on statistics that output a Boolean value.

T. Ferrère, T. A. Henzinger, and B. Kragl 20:13

I Definition 24. A frequency formula over alphabet Σ is a Boolean combination of atomic
formulas of the form∑

σ∈Σ
ασ · fσ > α (3)

where all α’s are integer coefficients.

A frequency formula φ is built from linear inequalities over frequencies of events. The
evaluation of a frequency formula is as expected (we write w |= φ if φ evaluates to true over
w). Hence we see φ as defining the Boolean statistic JφK : Σ∗ → B, where

JφK(w) =
{

1, if w |= φ;
0, if w 6|= φ.

I Example 25. The existence of a mode is expressed as the frequency formula∨
a∈Σ

∧
σ∈Σ
σ 6=a

fa > fσ .

I Example 26. Consider a web server that favors certain client requests over others. Such a
malfunction could be observed by detecting that certain events are disproportionately more
frequent than others. The following frequency formula specifies that no event can occur
100-times more frequent than any other event:∧

a,b∈Σ
a6=b

fa < 100 · fb .

A frequency formula φ can be limit monitored by simply evaluating φ repeatedly over
longer and longer subwords. However, the key to save resources is to evaluate different atomic
subformulas of φ over different subwords, and thus only evaluating one subformula at a time.

I Theorem 27. Over Markov chains, every frequency formula can be limit monitored using
4 counters.

Proof. Let φ be a frequency formula with k atomic subformulas φ1, . . . , φk of the form (3).
The monitor partitions the input word w into infixes wn,i with |wn,i| = n, for n ≥ 1 and
1 ≤ i ≤ k, as follows:

. . . wn,1

φ1

wn,2

φ2

. . . wn,k

φk

φ

. . .

Keeping track of the increasing infix length n and the current position within an infix requires
two counters. Then over every infix wn,i the monitor uses two counters to compute φi, one
for positive and one for negative increments. At the end of wn,i we have a truth value for
φi that is used to partially evaluate φ. This evaluation is implemented in the final-state
component of the monitor, and the two counters are reused across all infixes. Then after
every k’th infix we have a new “estimate” of φ that in the long run converges the same way
as JφK. Hence the resulting automaton is a limit monitor of φ: by Corollary 19, the frequency
of each event over infixes of increasing length tends to its respective asymptotic frequency,
so that strict inequalities holding over empirical frequencies almost surely hold over infixes
of increasing length. J

CSL 2020

20:14 Monitoring Event Frequencies

7 Conclusion

In this paper we have studied the monitoring of frequency properties of event sequences.
We observed that real-time monitoring can be surprisingly hard (i.e., resource-intensive)
for such properties, and introduced the alternative notion of limit monitoring. In this
limit-monitoring setting we showed that a simple algorithmic idea leads to resource-efficient
monitoring algorithms for frequency properties. To prove the correctness of our algorithms
we generalized the ergodic theory of Markov chains.

The results in this paper are a first indicator of the relevance and potential of limit
monitoring. We hope that future research broadens the understanding of this problem and
we close with a number of interesting directions.

First, we are interested in a tighter characterization of properties that can be efficiently
limit monitored. Let us remark that the results in this paper immediately generalize from
counting individual events to counting the occurrences of regular event patterns. This is the
case because regular expression matching can be performed in real time by the finite state
component of a counter monitor. We extended our frequency formulas with free variables
to support non-Boolean statistics, and quantification to reason about unknown alphabet
symbols. However, the shape and efficiency of a generic monitoring algorithm is not yet
clear. For examples, we saw that there are different policies to partition the input sequence
and different policies to obtain candidate values for the monitor output. Certain forms of
existential quantification can be translated to random sampling, but this does not seem
to hold in general since not all events in the alphabet may occur in the execution under
consideration. Going even further, it would be interesting to consider limit monitoring of
properties with temporal aspects (such as always and eventually modalities).

Second, it is well known (see e.g. [6]) that the asymptotic frequencies of k-long subwords
fully characterize a k-state connected Markov chain. Hence the transition probabilities of
a Markov chain (of known structure) can be inferred from the conditional probabilities of
events. Thus, assuming the structure of a Markov chain is known, frequency queries and
the algorithmic ideas in this paper can be used to learn its transition probabilities to an
arbitrary precision. It would be interesting to study more broadly “how much” of a system
can be learned from frequency properties (and similar observations).

Third, throughout this paper we used the term efficient to mean resource-efficient in
the amount of memory used by a monitor. However, there is the orthogonal question of
time-efficiency. For a limit monitor this means how quickly a monitor converges in relation
to the monitored statistic. We hope that future research can provide numerical guarantees
or estimates for convergence rates. For the simple setting of an i.i.d. word over a two-letter
alphabet, we proved that the mode statistic converges exponentially fast. More precisely, if w
is a random ω-word where every letter is i.i.d. according to a probability distribution p over
{a, b} with p(a) > p(b), then P(mode(w..n) = a) ≥ 1− (4p(a)p(b))bn

2 c. Since this depends on
the exact probabilities, the analytical expressions of the confidence value seem to become
intractable for three letters or more. In probability theory, there exist several different notions
of convergence of random variables. The results in this paper use the notion of almost-sure
convergence of a statistic µ (Definition 9), that is, Pw∼P(limn→∞ µ(wn..) = v) = 1. It would
be interesting to study also other notions, for example convergence in probability, that is,
limn→∞ Pw∼P(µ(wn..) = v) = 1.

Fourth, the correctness results we derived for our monitoring algorithms hold for systems
modeled as connected Markov chains. However, we believe that the algorithmic ideas of this
paper are more widely applicable. Thus it would be interesting to study limit monitoring

T. Ferrère, T. A. Henzinger, and B. Kragl 20:15

for other types of systems, for example, Markov decision processes which are challenging
for our monitoring scheme because nondeterminism allows certain events to always occur
deliberately when the monitor is not watching for them. In the security context a monitored
system is usually assumed to be adversarial, not probabilistic. It could be interesting to
turn our deterministic monitors of probabilistic systems into probabilistic monitors for
nondeterministic systems.

References
1 Gul Agha and Karl Palmskog. A survey of statistical model checking. ACM Trans. Model.

Comput. Simul., 28(1):6:1–6:39, 2018. doi:10.1145/3158668.
2 Rajeev Alur, Dana Fisman, and Mukund Raghothaman. Regular programming for quantitative

properties of data streams. In ESOP, volume 9632 of Lecture Notes in Computer Science,
pages 15–40. Springer, 2016. doi:10.1007/978-3-662-49498-1_2.

3 Howard Barringer, Yliès Falcone, Klaus Havelund, Giles Reger, and David E. Rydeheard.
Quantified event automata: Towards expressive and efficient runtime monitors. In FM,
volume 7436 of Lecture Notes in Computer Science, pages 68–84. Springer, 2012. doi:
10.1007/978-3-642-32759-9_9.

4 Ezio Bartocci and Yliès Falcone, editors. Lectures on Runtime Verification - Introductory
and Advanced Topics, volume 10457 of Lecture Notes in Computer Science. Springer, 2018.
doi:10.1007/978-3-319-75632-5.

5 Manuel Blum, Robert W. Floyd, Vaughan R. Pratt, Ronald L. Rivest, and Robert Endre
Tarjan. Time bounds for selection. J. Comput. Syst. Sci., 7(4):448–461, 1973. doi:10.1016/
S0022-0000(73)80033-9.

6 Taylor L. Booth. Statistical properties of random digital sequences. IEEE Trans. Computers,
17(5):452–461, 1968. doi:10.1109/TC.1968.226909.

7 Krishnendu Chatterjee, Thomas A. Henzinger, and Jan Otop. Quantitative monitor automata.
In SAS, volume 9837 of Lecture Notes in Computer Science, pages 23–38. Springer, 2016.
doi:10.1007/978-3-662-53413-7_2.

8 Ben D’Angelo, Sriram Sankaranarayanan, César Sánchez, Will Robinson, Bernd Finkbeiner,
Henny B. Sipma, Sandeep Mehrotra, and Zohar Manna. LOLA: runtime monitoring of
synchronous systems. In TIME, pages 166–174. IEEE Computer Society, 2005. doi:10.1109/
TIME.2005.26.

9 Peter Faymonville, Bernd Finkbeiner, Maximilian Schwenger, and Hazem Torfah. Real-time
stream-based monitoring, 2019. arXiv:1711.03829v4.

10 Thomas Ferrère, Thomas A. Henzinger, and N. Ege Saraç. A theory of register monitors. In
LICS, pages 394–403. ACM, 2018. doi:10.1145/3209108.3209194.

11 Patrick C. Fischer, Albert R. Meyer, and Arnold L. Rosenberg. Counter machines and counter
languages. Mathematical Systems Theory, 2(3):265–283, 1968. doi:10.1007/BF01694011.

12 Thomas A. Henzinger. Quantitative reactive modeling and verification. Computer Science -
R&D, 28(4):331–344, 2013. doi:10.1007/s00450-013-0251-7.

13 C. A. R. Hoare. Algorithm 65: find. Commun. ACM, 4(7):321–322, 1961. doi:10.1145/
366622.366647.

14 Tien-Chung Hu, F Moricz, and R Taylor. Strong laws of large numbers for arrays of rowwise
independent random variables. Acta Mathematica Hungarica, 54(1-2):153–162, 1989. doi:
10.1007/BF01950716.

15 Marta Kwiatkowska. Quantitative verification: models techniques and tools. In ESEC/SIG-
SOFT FSE, pages 449–458. ACM, 2007. doi:10.1145/1287624.1287688.

16 Marta Kwiatkowska, Gethin Norman, and David Parker. Probabilistic model checking:
Advances and applications. In Rolf Drechsler, editor, Formal System Verification: State-of
the-Art and Future Trends, pages 73–121. Springer, 2018. doi:10.1007/978-3-319-57685-5_3.

CSL 2020

http://dx.doi.org/10.1145/3158668
http://dx.doi.org/10.1007/978-3-662-49498-1_2
http://dx.doi.org/10.1007/978-3-642-32759-9_9
http://dx.doi.org/10.1007/978-3-642-32759-9_9
http://dx.doi.org/10.1007/978-3-319-75632-5
http://dx.doi.org/10.1016/S0022-0000(73)80033-9
http://dx.doi.org/10.1016/S0022-0000(73)80033-9
http://dx.doi.org/10.1109/TC.1968.226909
http://dx.doi.org/10.1007/978-3-662-53413-7_2
http://dx.doi.org/10.1109/TIME.2005.26
http://dx.doi.org/10.1109/TIME.2005.26
http://arxiv.org/abs/1711.03829v4
http://dx.doi.org/10.1145/3209108.3209194
http://dx.doi.org/10.1007/BF01694011
http://dx.doi.org/10.1007/s00450-013-0251-7
http://dx.doi.org/10.1145/366622.366647
http://dx.doi.org/10.1145/366622.366647
http://dx.doi.org/10.1007/BF01950716
http://dx.doi.org/10.1007/BF01950716
http://dx.doi.org/10.1145/1287624.1287688
http://dx.doi.org/10.1007/978-3-319-57685-5_3

20:16 Monitoring Event Frequencies

17 David A. Levin, Yuval Peres, and Elizabeth L. Wilmer. Markov chains and mixing times,
second edition, 2017. URL: https://pages.uoregon.edu/dlevin/MARKOV/mcmt2e.pdf.

18 Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomized Algorithms and
Probabilistic Analysis. Cambridge University Press, 2005. doi:10.1017/CBO9780511813603.

19 James R. Norris. Markov Chains. Cambridge Series in Statistical and Probabilistic Mathematics.
Cambridge University Press, 1998.

20 Dana Ron. Automata Learning and its Applications. PhD thesis, Hebrew University, 1995.
URL: http://www.cs.huji.ac.il/labs/learning/Theses/Dana_Ron_PhD.pdf.

21 Steven Rudich. Inferring the structure of a markov chain from its output. In FOCS, pages
321–326. IEEE Computer Society, 1985. doi:10.1109/SFCS.1985.34.

22 Usa Sammapun, Insup Lee, and Oleg Sokolsky. RT-MaC: Runtime monitoring and checking of
quantitative and probabilistic properties. In RTCSA, pages 147–153. IEEE Computer Society,
2005. doi:10.1109/RTCSA.2005.84.

23 Zbigniew S. Szewczak. On moments of recurrence times for positive recurrent renewal sequences.
Statistics & Probability Letters, 78(17):3086–3090, 2008. doi:10.1016/j.spl.2008.05.013.

24 B. P. Welford. Note on a method for calculating corrected sums of squares and products.
Technometrics, 4(3):419–420, 1962. doi:10.1080/00401706.1962.10490022.

https://pages.uoregon.edu/dlevin/MARKOV/mcmt2e.pdf
http://dx.doi.org/10.1017/CBO9780511813603
http://www.cs.huji.ac.il/labs/learning/Theses/Dana_Ron_PhD.pdf
http://dx.doi.org/10.1109/SFCS.1985.34
http://dx.doi.org/10.1109/RTCSA.2005.84
http://dx.doi.org/10.1016/j.spl.2008.05.013
http://dx.doi.org/10.1080/00401706.1962.10490022

	Introduction
	Related Work

	Definitions
	Sequential Statistics
	Counter Monitors
	Probabilistic Generators

	The Limit-Monitoring Problem
	Precise Real-Time Monitoring
	Efficient Limit Monitoring
	An Ergodic Theorem over Infixes
	Monitoring the Mode
	Monitoring the Median

	Monitoring General Frequency Properties
	Conclusion

