
Automatic Time-Unbounded
Reachability Analysis of

Hybrid Systems
by

Mirco Giacobbe

September 22, 2019

A thesis presented to the
Graduate School

of the
Institute of Science and Technology Austria, Klosterneuburg, Austria

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy





The thesis of Mirco Giacobbe, titled Automatic Time-Unbounded Reachability Analysis

of Hybrid Systems, is approved by:

Supervisor: Thomas A. Henzinger, IST Austria, Klosterneuburg, Austria

Signature:

Committee Member: Goran Frehse, ENSTA ParisTech, Palaiseau, France

Signature:

Committee Member: Radu Grosu, TU Wien, Vienna, Austria

Signature:

Defense Chair: Daria Siekhaus, IST Austria, Klosterneuburg, Austria

Signature:

signed page is on file





c© by Mirco Giacobbe, September 22, 2019

Some Rights Reserved - CC BY 4.0 The copyright of this thesis rests with the author.

Unless otherwise indicated, its contents are licensed under a Creative Commons

Attribution 4.0 International License. Under this license, you may copy and redistribute

the material in any medium or format. You may also create and distribute modified

versions of the work. This is on the condition that you credit the author.

IST Austria Thesis, ISSN: 2663-337X

I hereby declare that this thesis is my own work and that it does not contain other people’s

work without this being so stated; this thesis does not contain my previous work without

this being stated, and the bibliography contains all the literature that I used in writing

the dissertation.

I declare that this is a true copy of my thesis, including any final revisions, as approved by

my thesis committee, and that this thesis has not been submitted for a higher degree to

any other university or institution.

I certify that any republication of materials presented in this thesis has been approved by

the relevant publishers and co-authors.

Signature:

Mirco Giacobbe

September 22, 2019

signed page is on file





v

Abstract

Hybrid automata combine finite automata and dynamical systems, and model the interac-

tion of digital with physical systems. Formal analysis that can guarantee the safety of

all behaviors or rigorously witness failures, while unsolvable in general, has been tackled

algorithmically using, e.g., abstraction, bounded model-checking, assisted theorem proving.

Nevertheless, very few methods have addressed the time-unbounded reachability analysis

of hybrid automata and, for current sound and automatic tools, scalability remains critical.

We develop methods for the polyhedral abstraction of hybrid automata, which construct

coarse overapproximations and tightens them incrementally, in a CEGAR fashion. We use

template polyhedra, i.e., polyhedra whose facets are normal to a given set of directions.

While, previously, directions were given by the user, we introduce (1) the first method

for computing template directions from spurious counterexamples, so as to generalize and

eliminate them. The method applies naturally to convex hybrid automata, i.e., hybrid

automata with (possibly non-linear) convex constraints on derivatives only, while for linear

ODE requires further abstraction. Specifically, we introduce (2) the conic abstractions,

which, partitioning the state space into appropriate (possibly non-uniform) cones, divide

curvy trajectories into relatively straight sections, suitable for polyhedral abstractions.

Finally, we introduce (3) space-time interpolation, which, combining interval arithmetic

and template refinement, computes appropriate (possibly non-uniform) time partitioning

and template directions along spurious trajectories, so as to eliminate them.

We obtain sound and automatic methods for the reachability analysis over dense

and unbounded time of convex hybrid automata and hybrid automata with linear ODE.

We build prototype tools and compare—favorably—our methods against the respective

state-of-the-art tools, on several benchmarks.



vi

Acknowledgments

I thank my supervisor Tom for guiding me through my Phd and for encouraging me to

pursue the problems I wanted to; I thank him for teaching me how to write papers, when

it worked, and for his patience, when it didn’t. I thank Tom for all inspiring ideas, and for

the example.

I thank Goran for getting his hands dirty. I thank him for sharing with me problems

to solve and for bouncing ideas off each other, for all technical insights and for checking

every single line of the papers we wrote together. Also, I thank Goran for his hospitality,

when having me stay in Grenoble and Paris.

I thank Sergiy for introducing me to the problem domain of this thesis and I thank

Hui for his invaluable help and knowledge in developing the conic abstractions. I thank

both for their energy and for sharing with me their expertise.

I thank Ashutosh, Calin, Tanja, and Tiago for jumping with me into the model-checking

of gene regulatory networks. I thank them for inspiring me and all help they gave to me

in the early stage of my Phd.

I thank all my fellow group members and all group members of Chatterjee’s group for

the good time we had together and for sharing with me, every day, a bit of their talent.

I finally thank my family, for their love and support.



vii

About the Author

Mirco Giacobbe completed a BSc in Computer Science at the University of Trento, a MSc

is Software Systems Engineering at RWTH Aachen, and a MSc in Computer Science at

the University of Trento. He is currently a Phd student in Henzinger’s group, at IST

Austria. His main research interests include the analysis of timed and hybrid systems, and

the application of formal methods in systems biology and artificial intelligence.



viii

List of Publications

Chapter 4 is a joint work with Sergiy Bogomolov, Goran Frehse, and Thomas A. Henzinger,

and appeared in the proceedings of TACAS 2017 in the paper Counterexample-guided

refinement of template polyhedra [23]; its theoretical foundations are presented in Ch. 3.

Chapter 5 is a joint work with Sergiy Bogomolov, Hui Kong, and Thomas A. Henzinger,

and appeared in the paper Conic Abstractions for Hybrid Systems [24], in the proceedings of

FORMATS 2017. Chapter 6 is a joint work with Goran Frehse and Thomas A. Henzinger,

and appeared in the paper Space-Time Interpolants [55], in the proceedings of CAV 2018.



ix

Table of Contents

Abstract v

Acknowledgments vi

About the Author vii

List of Publications viii

List of Tables xi

List of Figures xii

List of Abbreviations xiv

1 Introduction 1

2 Template-polyhedral Abstraction of Hybrid Automata 10

2.1 Hybrid Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Template-polyhedral Abstraction . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Support Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Automatic Template Refinement 19

3.1 Halfspace Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Interpolation as Convex Optimization . . . . . . . . . . . . . . . . . . . . . 28



x

4 Counterexample-guided Refinement for Convex Hybrid Automata 34

4.1 Motivating Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Abstractions of Convex Hybrid Automata using Template Polyhedra . . . 38

4.3 Counterexample-guided Refinement using Halfspace Interpolants . . . . . . 41

4.4 Craig’s Interpolation as Convex Optimization . . . . . . . . . . . . . . . . 45

4.5 Abstraction Refinement for Quadratic Systems . . . . . . . . . . . . . . . . 51

4.6 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.7 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5 Conic Abstractions for Affine Hybrid Automata 63

5.1 Affine Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2 Conic Abstractions of Affine Systems . . . . . . . . . . . . . . . . . . . . . 66

5.3 Diagonalizable Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.4 Time-unbounded Reachability Analysis . . . . . . . . . . . . . . . . . . . . 75

5.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6 Space-Time Interpolation for Affine Hybrid Automata 82

6.1 Motivating Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.2 Hybrid Automata with Piecewise Affine Dynamics . . . . . . . . . . . . . . 87

6.3 Time Abstraction using Interval Arithmetic . . . . . . . . . . . . . . . . . 88

6.4 Space Abstraction using Support Functions . . . . . . . . . . . . . . . . . . 93

6.5 Abstraction Refinement using Space-time Interpolants . . . . . . . . . . . . 95

6.6 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7 Conclusions 103

Bibliography 107



xi

List of Tables

4.1 Runtimes for the reachability of convex hybrid automata. . . . . . . . . . . 60

5.1 Runtimes for the conic abstraction of affine hybrid automata . . . . . . . . 80

6.1 Runtimes for the reachability of affine hybrid automta using space-time

interpolants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100



xii

List of Figures

2.1 Counterexample-guided abstraction refinement loop. . . . . . . . . . . . . . 11

2.2 Thermostat automaton of an air conditioner. . . . . . . . . . . . . . . . . . 14

2.3 A discrete time LTI system. . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 A sequence of template polyhedral abstractions. . . . . . . . . . . . . . . . 16

3.1 Template refinement using halfspace interpolants. . . . . . . . . . . . . . . 20

3.2 Intersection that does not allow proper halfspace interpolation. . . . . . . . 21

3.3 Intersection that does not allow strong halfspace interpolation. . . . . . . . 24

3.4 Intersection of halfspaces for which Eq. 3.18 is incomplete. . . . . . . . . . 31

4.1 A convex hybrid automaton . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Template-polyhedra abstraction refinement of a CHA . . . . . . . . . . . . 37

4.3 Halfspace interpolants for a spurious path . . . . . . . . . . . . . . . . . . 43

4.4 Process automaton of the Fischer’s protocol . . . . . . . . . . . . . . . . . 54

4.5 Follower automaton of the adaptive cruise controller . . . . . . . . . . . . . 55

4.6 Compression master of the TTEthernet protocol . . . . . . . . . . . . . . . 57

4.7 Synchronization master of the TTEthernet protocol . . . . . . . . . . . . . 57

5.1 Conic partitioning of state and derivative space . . . . . . . . . . . . . . . 67

5.2 Accuracy of conic abstractions . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3 State vs. derivative space conic partitioning . . . . . . . . . . . . . . . . . 71

5.4 Conic abstractions with different precicions . . . . . . . . . . . . . . . . . . 78

5.5 Run-times for the conic abstraction of purely continuous systems . . . . . . 79



xiii

5.6 Conic abstractions of the heating benchmark . . . . . . . . . . . . . . . . . 81

6.1 Space-only vs. Time-only vs. Space-time abstraction refinement . . . . . . 86



xiv

List of Abbreviations

CHA Convex Hybrid Automaton

LHA Linear Hybrid Automaton

ODE Ordinary Differential Equation

PWA Piece-wise Affine Hybrid Automaton

QHA Quadratic Hybrid Automaton



1

1 Introduction

Hybrid systems arise from the interaction of digital—discrete—systems and physical—

continuous—systems. Typical examples are digitally controlled physical plants, from the

autopilot of an airplane to the thermostat of your home. Other examples are digital

systems subject to physical inputs, from sophisticated measurement devices to audio

card of your laptop; in a sense, every real-time system is so, if one considers time

as a continuous physical quantity. As hybrid systems are often employed in critical

applications, quality assurance is necessary. Unfortunately analyzing hybrid systems

at runtime is even harder than analyzing programs, as their behavior depends on a

physical environment; one does not need to resort to Mars rovers, but just imagine

how onerous it would be to test the implementation of a thermostat across several

conditions. For this reason, hybrid systems are preferably analyzed using models. The

digital component consists of a computer program, which is modeled by means of an

automaton that manipulates integer numbers. The physical component, in a large variety

of cases, is modeled by means of differential equations or, more generally, flows over

the reals. The combination of automata and flows gives rise to hybrid automata [92; 7;

63]. More precisely, a hybrid automaton models a family of continuous trajectories—the

flowpipe—whose initial and flow conditions are non-deterministically governed by an

automaton. In its turn, the hybrid automaton non-deterministically induces discontinuous

switches. Our subject of study is their safety verification of hybrid automata.

Verifying safety amounts to deciding whether all systems’ trajectories remain within

a safe region of states; dually, it consists of proving that no trajectory can reach an

unsafe region and, for this reason, we talk about reachability analysis. Formal decidability,

that is the existence of a procedure that is sound, in the sense that if it answers safe

or unsafe then the system is so, and complete, in the sense that it always terminates



2

providing a definite answer, has been identified for specific classes of hybrid automata.

For timed automata, i.e., hybrid automata whose variables have equal and constant

derivatives, and guards and invariant are rectangular, reachability is decidable [11]; on the

other hand, it becomes undecidable if one allows two variables to have different constant

derivatives [71]. Only if one initializes the variables before every derivative change, and

never compares variables with different derivatives, then reachability is decidable; indeed,

under the same conditions, it is decidable for rectangular hybrid automata, i.e., hybrid

automata where derivatives are taken non-deterministically from rectangular regions

[71]. Beyond initialized rectangular automata, all general reachability problems for hybrid

automata are undecidable, with only a few exceptions, e.g., o-minimal hybrid automata [84;

83], or orbit problems [77; 60; 32; 38; 39]. In particular, it is undecidable for the simplest

of our classes of study, the linear hybrid automata (LHA), i.e., hybrid automata with

non-deterministic derivatives taken within polyhedra. Nevertheless, one can get around

undecidability by relaxing on soundness or completeness, but, in this case, safety and

reachability are to be treated distinctly. For instance, take overapproximative abstraction

[46], sound for safety, but cannot claim a bad state reachable, or take time-bounded

analysis [29], sound for reachability, but cannot declare the system safe. Also, one

can achieve one-sided completeness by, e.g., incrementally tightening an abstraction [97;

45], terminating for systems that are robustly safe (i.e., safe with some gap), not terminating

otherwise, or incrementally increasing a time-bound, terminating for systems that reach

the bad region [22], not necessarily terminating for safe systems. In this work, we develop

a portfolio of techniques all of which, for safety, are sound but formally incomplete.

Nevertheless, we experiment and demonstrate they terminate in practice, on reference

benchmarks.

The reachability analysis—in practice—has been studied both the by control theory

and formal methods communities. Classically, control theorists focus on the analysis of

purely continuous, but highly non-linear systems, seen as transformers of signals. They use

analytical proofs or, alternatively, numerical methods. In particular, numerical methods

often suffice when the robustness can be guaranteed, in the sense that small perturbations

in the input signal lead to small perturbations to the output signal. Unfortunately, hybrid

controllers are often highly sensitive to perturbations, even for systems with relatively



3

simple continuous dynamics, such as linear ODE; this is due to the fact that they are

highly discontinuous. On the other hand, their complex discrete structure and relatively

simple continuous dynamics make them amenable to algorithmic analysis tools, inspired

by the verification of computer programs.

Formal methods for the reachability analysis of hybrid systems has been studied

from multiple perspectives, mainly inspired by the theories of abstract interpretation [46;

67], SMT-solving [18], and theorem proving. Abstractly interpreting a system consists of

computing an abstract representation of its reachable states—the reach set—and prove

safety by showing disjointedness from a set of undesired states—the bad set. The efficiency

and precision of abstract interpreters are mainly characterized by the data structure used

for the representation of state sets. The first abstract interpreter for hybrid automata,

Hytech [66; 68], used polyhedra and treated systems with linear reach sets [6], i.e., linear

hybrid automata (LHA); as for systems with linear ODE, i.e., piece-wise affine automata

(PWA), whose reach sets are generally non-linear, linear phase approximation into LHA

was applied [69]. Polyhedral methods have been further optimized by HybridSAL, which

employs predicate abstraction [8], and Phaver [52], which employs abstraction widening;

Phaver remained, until today, the state-of-the-art tool for the automatic time-unbounded

reachability of LHA. The direct abstract interpretation of PWA has been tackled by

polyhedral approximations of the flow pipe, pioneered in the tool Checkmate [40]. Yet,

constructing polyhedral flowpipes is computationally costly, therefore efficient but coarser

data structures have been introduced; these include hyperrectangles [27], ellipsoids [82],

zonotopes [58], and template polyhedra [102; 86], implemented in d/dt [15], VeriSHIFT

[26], CORA [5], SpaceEX [57]. Besides, flow pipe approximation relies on partitioning the

continuous time and controlling the approximation error, at the expenses of termination

(in practice) for the time-unbounded problem; notably, all flow pipe approximation tools

bound the continuous time. Similarly, tools based on validated numerical analysis also

bound the continuous time; one example is Flow* [36], which uses interval arithmetic

and Taylor models to solve (non-linear) polynomial differential equations at successive

time intervals [34]. On the other side of the spectrum, methods based on SMT-solving

encode reachability or, similarly, inductive invariants, into first-order logic formulae whose

variable account for variables valuations at discrete steps; naturally, all these methods

are discrete-time bounded. The expressivity of the solver, coupled with the encoding



4

method, translates into the expressivity of the analyzable automata, e.g., LHA in the tool

Bach [30], PWA or hybrid systems with polynomial solution in Hycomp [41], systems with

non-linear differential equations, including polynomials with trigonometric and exponential

functions, in iSat [50] and dReach [81]. Also, unfortunately, expressivity comes at the

price of completeness, both in the sense that safety for the time-bounded does not imply

the safety of the time-unbounded problem, but also that a witness from the solver may not

correspond to a counterexample for the hybrid system (as for most methods for non-linear

systems); for theorem provers, this is not the case. Theorem provers for hybrid systems

[94] or, more specifically, Keymera [95] assist the user to produce sound and complete

proofs of, e.g., safety for any kind system and for unbounded-time; with user intervention,

Keymera can construct an invariant for the reach set like, e.g., a barrier certificate between

flow pipe and bad set. Although, the synthesis of barrier certificate and other invariants

have been also fully automatized [80], but for small systems.

We perform the reachability analysis of hybrid automata over dense and unbounded

time by abstract interpretation. The ingredients of an abstract interpreter are a state

transformation that abstracts the elapse of continuous or discrete time—the post operator—

and a data structure for the abstract representation of sets of states. We consider post

operators that preserve convexity, in the sense that convex sets are necessarily mapped

into convex sets, and represent sets of states using template polyhedra. The introduce a

theory for the abstraction refinement for template polyhedra which naturally applies to

LHA and their generalization involving convex constraints—the convex hybrid automata.

We extend our theory to PWA, whose flowpipes are not necessarily convex, introducing

a technique for their linear phase approximation—the conic abstractions—and for their

flowpipe approximation—the space-time interpolants.

Template polyhedra are convex polyhedra whose defining halfspaces are orthogonal

to a template, i.e., a finite set of directions [103; 102]. In other words, they are those

conjunctions of linear inequalities where all coefficients are fixed and constants can vary;

they naturally generalize geometrical representations like intervals or octagons, yet maintain

low computational cost for several set operations; nevertheless, their precision is sensitive

to the choice of template. In fact, even computing the tightest of the template polyhedra

around a set won’t necessarily bring to an exact representation. This holds for linear

sets, think about using intervals or octagons for representing arbitrary polyhedra, and for



5

non-linear sets, think about using any finite set of directions for representing ellipses or

parabolas. In addition, template polyhedra suffer from the so-called wrapping effect, that

is to say that even if you represent initial and guard constraints of a hybrid automaton

precisely, discrete transitions and time elapse might make new directions necessary. Think

about representing a box using intervals, applying a slight rotation, and representing

it again using intervals. Thus the question is: how do you choose the template? We

discover template directions from spurious counterexamples and add to the template a

few of them at a time. Let us look at a refinement workflow. Initially, we search for

a spurious counterexample using a fixed (and possibly empty) template. Once such a

counterexample is found, we extract an inductive sequence of halfspace interpolants, i.e.,

Craig’s interpolants that consist of single linear inequalities [2]. We take their outward

pointing directions and we add them to the template. Such directions eliminate the

counterexample and generalize to all other counterexamples with the same switching

sequence and any (and possibly unbounded) time elapse. We repeat the procedure in

CEGAR fashion [44].

Discovering directions from counterexamples presents several subtleties. First of all,

even for systems given by linear constraints only, directions cannot always be deduced

statically by analyzing the constraints [33]; the template directions that are necessary

to abstract a reach set in such a way the abstraction is disjoint from the bad set do not

necessarily appear in either constraint. The refining directions are related to the normal

directions of the halfspaces separating reach and bad set [54]. Nevertheless, a simple

local search for separating might not be sufficient; along a spurious counterexample the

overapproximation error may be caused by multiple subsequent template polyhedra (this

is the wrapping effect), therefore refinement may need to add directions to multiple of

these abstractions. Indeed, refining the template directions with respect to a spurious

counterexample consists of finding a sequence of halfspaces along the path that inductively

depend on one another and that finally prove separation from the bad set of states. We

develop a theory for the refinement of template directions: we provide conditions for which

a system admits refinement and, also, provide a method for computing the directions.

For abstractions whose post operator is defined in terms of Minkowski sums, linear



6

transformation, intersections over convex sets, we show that, under sufficient conditions

such as, e.g., compactness or linearity, halfspace interpolants always exist. We also show

that computing halfspace interpolants consists of solving a convex program; as a result,

any appropriate convex programs solver is a valid template refiner.

Our theory of abstraction refinement for template polyhedra naturally applies to convex

hybrid automata. Convex hybrid automata (CHA) are hybrid automata whose dynamics

are given by convex guards and invariants and convex constraints on the derivatives only;

in other words, the derivative along a trajectory do not depend on the current state, but

is non-deterministically taken within that constraint. Multi-variate timed systems whose

clock drifts are given by non-linear constraints or probabilistic systems whose inputs are

taken from a normal distribution truncated by an ellipsoid are modeled by CHA. The

time-unbounded abstraction of CHA can be carried out by a post operator consisting of

Minkowski sums, linear transformation, intersections, with the addition of the conical hull

of the derivative constraints. We extend our theory with the conical hull operator and,

as a result, apply template refinement to any spurious counterexample. As a result, we

enable the time-unbounded reachability analysis of convex hybrid automata, which was

not practical before using polyhedral methods.

The semantics of convex hybrid automata preserves convexity in the sense that the

continuous time evolution of a convex set is a convex set; this is not the case for hybrid

automata with linear ODE, whose continuous time evolution is given by an exponential

function and, since it induces non-convex sets, does not directly allow halfspace interpola-

tion as for CHA. For this reason, we abstract the system constructing post operators that

are convex but overapproximative. First, we partition the system, and then, within every

partition, we construct a convex overapproximation of the respective reach set, for which

halfspace interpolation applies. We obtain two-level abstraction refinement methods in

which the first level takes care of the partitioning and the second level of the template.

With this framework in mind, we introduce two methods that are suitable for different

kinds of systems: one based on the partitioning of space—the conic abstractions—and a

method based on the partitioning of time—the space-time interpolants.



7

The conic abstractions is a linear phase approximation method which partitions the state

space of the PWA system and, within each partition, overapproximates the differential

equation with a constraint over derivatives only. More specifically, it substitutes the

differential equation with the set of all derivatives that can occur within the partition;

since it partitions the system into convex sets, this induces a convex hybrid automaton,

which we analyze using template polyhedra as above. Together with the template, the

precision of the overapproximation is entirely determined by the partitions. We partition

the state space into cones ensuring, as we show, the set of trajectories within each cone to

be as straight as possible, with the result of obtaining a good approximation using linear

constraints. In addition, we control the relative angle between any two trajectories, which

we call the twisting, by controlling the aperture of every conic partition. Altogether, we

obtain an abstraction refinement framework, whose precision is controlled by the value of

twisting. Besides, we show that, for diagonalizable systems, the conic abstraction of each

time-unbounded flowpipe is guaranteed to terminate.

The space-time interpolants is a flowpipe approximation method which partitions the

time into intervals and approximates the solution of the differential equation within each

interval. In particular, it approximates the solution with respect to a dense interval of

time with a dense family of linear transformations, represented by an interval matrix that

we compute using interval arithmetic. We extend our theory of abstraction refinement

for template polyhedra with the operation of transformation through an interval matrix.

As a result, for each time interval, we induce a convex system for which, again, halfspace

interpolation applies. The exploration of the state space terminates when the elapse of

time creates a cycle, which we prove by checking inclusion between template polyhedra.

In particular, the method benefits from using as-small-as-possible templates for which, as

we show on multiple examples, the fixpoint can be found (in practice).

The performance of a time-unbounded abstract interpreter is determined by whether

and when the fixpoint is detected which, as our experiments show, benefit from using

small templates, whose directions are discovered on demand. The analysis of CHA, the

conic abstraction, and space-time interpolation of PWA are fundamentally different, in

this respect. The first deals with systems whose dynamics are straight, the second with

systems whose dynamics are acyclic (diagonalizable), while the third benefits from cyclic

dynamics. Altogether, this work presents a portfolio of techniques for time-unbounded



8

reachability of hybrid systems, each of which is suitable to specific kinds of dynamics,

which we evaluated experimentally. We implemented our template refinement method for

convex systems with linear and quadratic constraints, obtaining, for the first time, effective

time-unbounded reachability analysis of quadratic hybrid automata (QHA), and superior

performance for LHA with respect to Phaver; in particular, we evaluated our method on

linear and quadratic variants of Fischer’s protocol [85], the TTEthernet synchronization

protocol [25], and an adaptive cruise controller [73]. Building on the same framework, we

demonstrated the efficacy of conic abstraction, on the analysis of a coordinated system

of room heaters, and of space-time interpolants, on the analysis of a filtered oscillator

and the control rod of a nuclear reactor. Our method outperformed state-of-the-art tools

like Phaver, SpaceEx, and Ariadne, which, for most examples, did not terminate within

reasonable time for the time-unbounded problem.

At high level, we summarize the contributions of this thesis in the following points.

• We developed a theory for the refinement from the spurious counterexamples from a

CEGAR loop, for template polyhedral abstractions; our theory is complete, in the

sense that it eliminates any counterexamples of a convex system (Sec. 3 and 4).

• We introduced a linear phase approximation method for PWA, the conic abstractions,

which partitions flowpipes into as-straight-as-possible unbounded pieces (Sec. 5).

• We introduced a flowpipe approximation method for PWA, the space-time inter-

polants, which couples template polyhedra refinement with interval arithmetic

(Sec. 6).

On the technical side, we made the following contributions.

• We phrased template refinement as the halfspace interpolation problem and showed

that for abstractions consisting of Minkowski sums, linear maps, and intersections

of linear or compact sets, refinement is complete (Sec. 3.1) and computable using

convex optimization (Sec. 3.2).

• We showed that, to obtain straight linear phase approximations, it is sufficient to

partition the invariant into a specific set of cones (Sec. 5.2), and that computing

the respective flowpipe terminates for purely continuous diagonalizable systems

(Sec. 5.3).



9

• We extended our theory of template refinement and, with it, the theory of support

functions–based abstraction, with the operations of conical hull (Sec. 4.4) and map

trough interval matrix (Sec. 6.4).

We have built prototype tools and demonstrated, through multiple benchmarks, the

effectiveness of our methods against the state-of-the-art tools for the respective kind

of systems, where available. We obtained, for the first time, effective time-unbounded

reachability of QHA (Sec. 4.7), and, with respect to the respective state-of-the-art tools,

we obtained superior performance for LHA (Sec. 4.7), for the analysis of systems of room

heaters (which are diagonalizable PWA), using conic abstractions (Sec. 5.5), for the analysis

of oscillators and control rods (which are PWA with cyclic behavior), using space-time

interpolants (Sec. 6.6).

We give the preliminary notions of hybrid automata, support functions, and template

polyhedra in Sec. 2, and we introduce our theory of refinement for template polyhedra,

general conditions for completeness, and an encoding into convex optimization in Sec. 3.

In Sec. 4, we extend our theory to conical hulls and instantiate it in a CEGAR loop for

the reachability analysis convex hybrid automata; in Sec. 5, we introduce theory and

experimental results for the conic abstractions; in Sec. 6, we extend our theory to interval

matrices and present algorithm and experimental results for the space-time interpolants.



10



11

2 Template-polyhedral Abstraction of Hybrid Automata

We target the time-unbounded reachability analysis of hybrid automata. The problem,

which we define in Sec. 2.1, does not admit a complete algorithm in the general case [], and

for the classes we treat, i.e., linear hybrid automata in Ch. 4, piece-wise affine automata

in Ch. 5 and 6. Nevertheless, several techniques for their symbolic analysis have been

developed, among which we study, in Sec. 2.2, the abstract interpretation using template

polyhedra. We construct an abstractor which takes a hybrid automaton, a bad state, an

abstraction precision, i.e., a template, and tells whether the automaton is safe, in which

case the automaton is indeed safe, or returns a counterexample. The counterexample may

or may not be a genuine counterexample, hence one cannot, directly, tell the system unsafe.

We overcome this by a counterexample-guided abstraction refinement (CEGAR) loop [44],

Figure 2.1: Counterexample-guided abstraction refinement loop.

as illustrated in Fig. 2.1: we give the counterexample to a refiner, which either tells it

genuine, i.e., the bad state reachable, or provides a new template for the abstractor, which

eliminates the counterexample. We develop a general theory for the template refinement

task, in Ch. 3, and give sufficient conditions for the completeness of deciding whether a

given counterexample is genuine. Besides, both abstraction and refinement leverage the

support function representation for convex sets [59], which we present in Sec. 2.3.



12

2.1 Hybrid Automata

Hybrid systems combine continuous dynamical systems and discrete models of computation.

The continuous fragment is typically modeled by differential equations, or their gener-

alizations into differential algebraic equations, differential inclusions, while the discrete

fragment is typically modeled by, e.g., automata, computer programs, process algebra.

The combinations of these continuous and discrete formalisms gives rise to, e.g., hybrid

automata, with different continuous dynamics and different composition rules [108; 88; 92;

7; 63; 87], hybrid programs [12; 93], hybrid process algebras [47; 21]. Hybrid automata

describe piece-wise continuous trajectories over a given set of real variables. In particular,

hybrid automata consist of a finite sets of control modes, each of which determines the con-

tinuous dynamic of a trajectory, and control switches, which determine the discontinuous

transitions between modes. Modes and switches are additionally characterized by invariant

and guard conditions over the variables, which respectively determine when a trajectory

can enter and stay in a mode and when a switch can be taken. Hybrid automata also offer

interfaces for the synchronization of switches between multiple agents (i.e., multiple hybrid

automata), and model systems whose set of control modes and switches is finite and, for

each agent, given explicitly. Conversely, hybrid programs and hybrid process algebras

offer infrastructures for defining modes and switches symbolically. Hybrid programs define

modes and transitions implicitly using discrete variables, conditional choices, and possibly

non-deterministic update rules. Hybrid process algebras define the discrete structure

of the systems using events rather than variables, namely using process composition,

non-deterministic choices, and communication and synchronization channels. While hybrid

programs and hybrid process algebras offer the possibility to reason symbolically both

about the discrete and the continuous component of the system, hybrid automata impose

the discrete component to be explicit. Hybrid automata, while less compact, offer a simpler

framework both for modeling and for reasoning about hybrid systems.

We focus our study on hybrid automata. Hybrid systems often find a natural description

using hybrid automata. In fact, many safety critical time-based protocols and control

systems, as we show in our experimental sections, often exhibit finite and simple discrete

structure that interact against continuous dynamical systems with uncertainty. Hybrid

automata are already challenging to analyze, even for the simplest verification question, that



13

is reachability. Theoretically, the reachability analysis of hybrid automata is undecidable,

in particular for the classes of hybrid systems we consider; in practice, it requires specific

techniques for their analysis, in particular for the approximation of the continuous dynamics.

In this work, we treat hybrid automata with (possibly) non-deterministic and (possibly)

non-linear differential equations and inclusions, according to the following definition.

Definition 1 (Hybrid automata). A hybrid automaton H with n real-valued variables

consists of a finite directed multigraph (V,E) where the vertices v ∈ V are called control

modes and the edges e ∈ E are called control switches. Each v ∈ V is decorated by an

initial constraint Zv ⊆ Rn, denoting an initial condition of the form

x ∈ Zv (2.1)

over the variables x, an invariant constraint Iv ⊆ Rn and a flow constraint Fv : Rn → ℘(Rn),

denoting a differential inclusion of the form

ẋ ∈ Fv(x), x ∈ Iv (2.2)

over the variables x and their derivatives ẋ. Each e ∈ E is decorated by a jump constraint

Je : Rn → ℘(Rn), denoting a difference relation of the form

x′ ∈ Je(x), (2.3)

over the variables x and their successors x′.

The semantics of hybrid automata is given by the notions of control path and trajectory. A

control path v0, e1, v1, . . . , ek, vk is a path of the control graph of H, i.e., for all 0 ≤ i ≤ k

it holds that vi ∈ V and for all 1 ≤ i ≤ k it holds that ei ∈ E and is a switch with source

vi−1 and destination vi. When a control path is clear from the context, we abbreviate any

object indexed by vi or ei as the same object indexed by i, e.g., we abbreviate flow vi as

flow i. A state of the system is given by mode and a valuation for the variables, i.e., a

pair (v, x) ∈ V × Rn. A trajectory is a possibly infinite sequence of states interleaved, in

alternation, first by time elapses t0, t1, · · · > 0, and then by switches e0, e1, · · · ∈ E

(v0, x0)t0(v0, y0)e1(v1, x1)t1(v1, y1)e2 . . . , (2.4)



14

ẋ = 0.1(30− x)

x ≤ 27

off

ẋ = 0.1(30− x)− 5

x ≥ 23

on

x ≥ 26

x ≤ 24

x = 25

Figure 2.2: Thermostat automaton of an air conditioner.

for which there exists a sequence of solutions ψ0, ψ1, . . . : R → Rn such that ψi(0) = xi,

ψi(ti) = yi, which, in their turn, satisfy (i) invariant constraints ψi(t) ∈ Ii and (ii) the flow

constraints ψ̇i(t) ∈ Fi(ψi(t)), for all t ∈ [0, ti]. Moreover, x0 ∈ Z0 and, for every switch ei,

vi+1 is a destination, vi is a source, and the respective states satisfy its jump condition,

namely xi+1 ∈ Ji(yi). The semantics of a hybrid automaton is the maximal set of its

trajectories. A hybrid automaton is safe if none of its trajectories contains a special bad

mode.

Consider, for instance, the hybrid automaton in Fig. 2.2, which models the temperature

controller of an air conditioner. Against an external temperature of 30 degrees, the system

aims at keeping the internal temperature, the variable x, around 25 degrees. Initially, the

internal temperature is 25 and the air conditioner is off. The thermostat switches the air

conditioner on if x rises above 26, and no later than when it reaches 27 degrees. Similarly,

it switches off if x falls below 24, no later then when it reaches 23. The automaton

consists of polyhedral guards and invariants, and flows given by linear ordinary differential

equations, which is the class of piece-wise affine hybrid automata (PWD). We tread the

reachability analysis of PWD in Sec. 5 and Sec. 6. In this chapter, we limit our analysis to

discrete-time systems, i.e., systems with derivative 0.

2.2 Template-polyhedral Abstraction

To illustrate, we consider hybrid automata where the jump condition of every switch e ∈ E

is characterized by a difference equation of the form

x′ = Aex+ u, u ∈ Ue, x ∈ Ge, (2.5)



15

where Ae is a linear map, Ue the input set, and Ge the guard set, and the initial condition

of each mode v ∈ V by the set Zv. In particular, we impose Zv, Ue, and Ge to be closed

convex sets and Zv and Uv to be bounded. While we treat properly continuous flows in

Sec. 4 and 6, in this section we assume the flow to be constant, i.e., ẋ = 0 on each mode,

in other words we treat (discrete time) linear time invariant (LTI) systems. For example,

4x2 + y2 ≤ 1
x′ =

√
2

2
(x− y)

y′ =
√

2
2

(x+ y)

Figure 2.3: A discrete time LTI system.

we consider the 2-dimensional system depicted in Fig. 2.3, which repeatedly applies a

counterclockwise π/4 rotation to an ellipse centered in the origin.

We abstract the reach set of the system by means of template polyhedra [103; 102].

Precisely, given a finite set of non-zero vectors D = {d1, . . . , dm} in Rn, which we call

template directions, a D-polyhedron is a convex polyhedron in Rn for which every facet

is normal to some vector in D. In other words, it is the set of solutions to the system of

inequalities

〈di, x〉 ≤ δi, i = 1, . . . ,m, (2.6)

uniquely determined by the coefficients δ1, . . . , δm, taken over R ∪ {+∞}. Every finite

coefficient denotes the signed distance of the respective facet from the origin in the

respective direction, while every infinite coefficient denotes the absence of the facet.

Notable examples of template polyhedra are the intervals and the octagons, from which

template polyhedra inherit efficient inclusion testing. In fact, for every two D-polyhedra

P and Q respectively represented by the coefficients δ1, . . . , δm and γ1, . . . , γm for P ⊆ Q

it is necessary and sufficient that δi ≤ γi for all i = 1, . . . ,m. On the other hand, they also

inherit the wrapping effect which, in reachability analysis, may cause overapproximation

errors which in their turn may lead into spurious counterexamples.

We associate a template Dv to every mode v ∈ V of the hybrid automaton, we explore

its control graph, incrementally generating paths v0e1v1e2v2 . . . and computing sequences of

template polyhedra P0, P1, . . . , each of which accounts for the reach set in correspondence

of the respective mode along path. More precisely, we let P0 be the tightest D0-polyhedron



16

enclosing Z0 and Pi be the tightest Di-polyhedron enclosing jumpi(Pi−1) for every i > 1,

where

jumpe(X) = Ae(X ∩Ge) + Ue. (2.7)

The jump operator of Eq. 2.7 represents exactly all reached states after transition e from

every state in X. As a result, every template polyhedron overapproximates the reach set

−1 1

−1

1

x

y

0 −1 1

−1

1

x

y

0 −1 1

−1

1

x

y

0

(a) (b) (c)

Figure 2.4: A sequence of template polyhedral abstractions.

of the corresponding mode as it happens, e.g., in Fig. 2.4 which shows the result of an

abstraction of the system in Fig. 2.3. In particular, it depicts the first three polyhedra

obtained using the interval template and also shows an example of wrapping effect: while

the ellipse representing the exact react set rotates, the abstraction grows. The mitigation

of the wrapping effect is our subject of study which, in Sec. 3.1, we tackle by template

refinement, building on top of the idea of using support functions [59].

2.3 Support Functions

Support functions offer a framework to represent operations over convex sets precisely

and efficiently, by (i) allowing to only compute tightest halfspaces in given directions and

(ii) pushing the complexity to evaluation phase, in a lazy fashion. Formally, the support

function of a convex set X in Rn in a direction d ∈ Rn is

ρX(d) = sup{〈d, x〉 : x ∈ X}, (2.8)

which takes values from the extended real line R∪{+∞,−∞} and is convex. Specifically, ρX

takes +∞ if X recedes in direction d, while takes −∞ if X is empty. A finite value indicate

the position of the tightest halfspace including X, that is the supporting halfspace, whose

outward pointing direction is d. For instance, for the ellipse Z = {(x, y) : 4x2 + y2 ≤ 1}



17

depicted in Fig. 2.4a we have, e.g., that ρZ(0, 1) = 1 and ρZ(1, 0) = 0.5. Consequently, the

intersection of respective supporting halfspaces defines exactly the tightest D-polyhedron

enclosing X, which is given by the system

〈d, x〉 ≤ ρX(d), d ∈ D. (2.9)

Thus, to reason about template polyhedral abstractions one can simply reason about the

support function of the reach set or, more precisely, about their properties with respect to

set operations induced by the post operators.

Reachability analysis produces a collection of polyhedra that are related with one

another by post operators, in the current case by the operator jump. The operator jump

acts as a set transformer, which applies a Minkowski sum to a linear transformation to an

intersection; dually, the same operations can be applied to their support functions. More

concretely, the support function of the Minkowski sum of two non-empty convex sets X

and Y in Rn and the support function of a linear transformation A from a convex set X

in Rn to Rm respectively amount to

ρX+Y (d) = ρX(d) + ρY (d), (2.10)

ρAX(d) = ρX(ATd). (2.11)

As a result, we can compute arbitrary nestings of Minkowski sums and linear transforma-

tions from a set of known support functions, first computing their argument directions

and then composing the resulting values. Intersection can be treated similarly, for that

ρX∩Y (d) ≤ min{ρX(d), ρY (d)}; (2.12)

unfortunately, this may introduce overapproximation as, e.g., it occurs to any two non-

empty but disjoint sets. Reasoning about disjointedness and, more generally, about precise

intersections is key in template refinement but requires the online search of appropriate

argument directions.

The exact support function of an intersection is the closure of the infimal convolution

of their support functions [99, Cor. 16.4.1]. More formally, the infimal convolution of a set

of convex functions f1, . . . , fm is

f1 ∗ · · · ∗ fm(x) = inf{f1(x′1) + · · ·+ fm(x′m) : x′1 + · · ·+ x′m = x}. (2.13)



18

The closure of a convex function f , denoted cl f , is the greatest lower semi-continuous

function majorized by f , if f(x) > −∞ for all x; it is the constant function −∞, otherwise.

As it turns out, for every X1, . . . , Xm that are non-empty closed convex sets in Rn the

support function of their intersection amounts to

ρX1∩···∩Xm = cl(ρX1 ∗ · · · ∗ ρXm). (2.14)

However, under certain circumstances the closure can be dropped. For instance, this is

the case when all relative interiors intersect [99, Cor. 16.4.1] and when all sets intersect

and are polyhedral [99, Thm. 20.1]; above all, when all sets do not recede in the same

direction, whether they intersect or not.

Theorem 2.3.1. If X1, . . . , Xm are non-empty closed convex sets in Rn that have no

common direction of recession then ρX1 ∗ · · · ∗ ρXm is closed, hence

ρX1∩···∩Xm = ρX1 ∗ · · · ∗ ρXm . (2.15)

Proof. By the recession condition, we have that for every direction d at least one support

function is bounded above, i.e., w.l.o.g. ρX1(d) < +∞. Then, from the infimal convolution

formula in Eq. 2.13 we have (by setting x2 = · · · = xm = 0) ρX1 ∗ · · · ∗ ρXm(d) ≤

ρX1(d) + ρX2(0) + · · ·+ ρXm(0) = ρX1(d) < +∞. Hence the infimal convolution is bounded

above everywhere, in other words

dom(ρX1 ∗ · · · ∗ ρXm) = Rn. (2.16)

If ρX1 ∗ · · · ∗ρXm turns out to be proper, i.e., bounded below, we know its closure can differ

only on relative boundary points of the effective domain [99, Thm. 7.4]. But Rn has no

boundary points at all, hence ρX1 ∗ · · · ∗ ρXm is closed. If it turns out to be improper, i.e.,

−∞ at some point, then we know it must be −∞ at every point of the relative interior

of its effective domain [99, Thm. 7.2]. But riRn = Rn, hence ρX1 ∗ · · · ∗ ρXm equals −∞

everywhere.

Support functions offer a framework for composing set operations efficiently, and delay

the complexity to the moment of computing the supporting halfspaces for a template

polyhedron. Moreover, support function pose the basic theory for the refinement of

template directions, which we introduce in Ch. 3.



19

3 Automatic Template Refinement

The counterexample-guided abstraction refinement for reachability analysis using template

polyhedra consist of the interaction of an abstractor, which either declares the system

safe or returns a (possibly spurious) counterexample, and a refiner, which either declares

the counterexample feasible or returns a template which eliminates it. The abstractor

constructs a polyhedral enclosure for the reach set, until it finds a fixpoint or a abstract

counterexample, associated with an initial set X in Rn, a finite sequence of post operators

f1, . . . , fk from set in Rn to set in Rn, each of which corresponds to the semantics of the

respective step, and a finite sequence of template polyhedra P1, . . . , Pk in Rn, each of which

complies to the respective template among D1, . . . , Dk. The abstract path is a candidate

counterexample, in the sense that the given polyhedra make it feasible; in other words,

X ⊆ P1, f1(P1) ⊆ P2, f2(P2) ⊆ P3, . . . , fk−1(Pk−1) ⊆ Pk, fk(Pk) 6= ∅. (3.1)

The refiner decides whether the counterexample is actually genuine, namely it decides

whether fk ◦ · · · ◦ f1(X) 6= ∅. Otherwise, if spurious, the refiner computes a sequence of

templates D′1, . . . , D
′
k that refine the previous ones, i.e., D′1 ⊇ D1, . . . , D

′
k ⊇ Dk, and such

that the tightest and respectively complying template polyhedra P ′1, . . . , P
′
k satisfy

X ⊆ P ′1, f1(P ′1) ⊆ P ′2, f2(P ′2) ⊆ P ′3, . . . , fk−1(P ′k−1) ⊆ P ′k, fk(P
′
k) = ∅. (3.2)

As a result, the successive abstraction will necessarily report a different counterexample.

Template refinement is a form Craig’s interpolation. More concretely, for a X in Rn, a

transformation f from set in Rn to set in Rn, and a set Y in Rn, we consider the interpolant

for the inclusion X ⊆ f−1(Y ), which consists of some set I in Rn such that

X ⊆ I and I ⊆ f−1(Y ) (3.3)



20

or, in other words, such that X ⊆ I and f(I) ⊆ Y . Hence, indeed, the polyhedra in Eq. 3.2

can be seen as an inductive sequence of interpolants for X, the transformations f1, . . . , fk,

and the empty set; in fact, with Xi = fi ◦ · · · ◦ f1(X), we have that P ′k interpolates the

inclusion fk(Xk−1) ⊆ ∅, P ′k−1 interpolates fk−1(Xk−2) ⊆ P ′k, and so on. We observe that, if

we can compute any such sequence of polyhedral interpolants, then the outwards pointing

directions of the halfspaces defining the polyhedra also define valid refining templates.

Indeed, it is sufficient to compute a sequence of halfspaces H ′1, . . . , H
′
k in Rn (possibly

including ∅ and Rn) such that

X ⊆ H ′1, f1(H ′1) ⊆ H ′2, f2(H ′2) ⊆ H ′3, . . . , fk−1(H ′k−1) ⊆ H ′k, fk(H
′
k) = ∅. (3.4)

We take the respective outward pointing directions a1, . . . , ak ∈ Rn and add them to the

templates D1, . . . Dk, obtaining D′i = Di ∪ {ai}, for i = 1, . . . , k. As a consequence, the

Figure 3.1: Template refinement using halfspace interpolants.

tightest D′i-polyhedron P ′i must be necessarily included in Pi ∪ H ′i, hence, refining the

abstraction and eliminating the path, as we illustrate in Fig. 3.1.

Halfspace interpolants are sufficient for refinement; next, we wonder whether they are

necessary. First, it is necessary to interpolate at every step along the path. Consider,

e.g., Fig. 3.1, where operators f1 and f2 apply shift and rotation, f3 makes an intersection

and causes infeasibility of the path: it is not sufficient to refine D3 only [], but necessary

to add directions to D1 and D2, too. Second, for infeasible paths interpolants exist and

are necessarily halfspaces, under conditions over sets and operators like, e.g., linearity or

compactness, as we discuss in Sec. 3.1, and are computable using convex optimizations, as

we discuss in Sec. 3.2.



21

3.1 Halfspace Interpolation

We establish the existence of a sequence of halfspace interpolants by first studying whether

each operator along the path admits a halfspace containing its operator provided a

halfspace containing its result. We investigate the halfspace interpolation for the operators

of Minkowski sum, linear map, and intersection of convex sets that are closed. In particular,

while for the first two operators halfspace interpolation seems to work, for the intersection

operator it may fail even with simple examples. Consider the unary operator f(X) = X∩Y

that takes a closed convex set X and returns its intersection with the closed convex set

Y . Provided a halfspace H that contains X ∩ Y , we ask whether there exists a (proper)

halfspace interpolant, namely a halfspace H ′ that contains X and for which H ′ ∩ Y ⊆ H,

in other words containing X and disjoint from Y \H. Unfortunately, this is not the always

the case. Consider the example in Fig. 3.2, where X is the unit ball centered in (−1, 0),

−2 −1 1 2

−2

−1

1

2

x

y

0
X

Y \H

Y

Figure 3.2: Intersection that does not allow proper halfspace interpolation.

Y be the unit box centered in (1, 0), and H is {(x, y) : y ≤ 0}. The only halfspace that

contains X and is disjoint with the interior of Y \H is {(x, y) : x ≤ 0}, which unfortunately

intersects the boundary of Y \H. On the contrary, if we move H as to impose a gap

between Y \H and X ∩ Y , the origin, then a halfspace interpolant exists. We generalize

the idea of imposing a gap around halfspace interpolants with the notion strong halfspace

interpolation and we prove that strong halfspace interpolants exist under conditions for

the constraints such as, e.g., boundedness or linearity.



22

Strong halfspace interpolants are halfspace interpolants that strongly include the

respective operands. Precisely, a set Y includes a set X strongly if there exists some

ε > 0 such that X + εB ⊆ Y , where B is the unit Euclidean ball {x : |x| ≤ 1}; for

known ε, we denote strong inclusion as X ⊆ε Y . Consequently, an m-ary operator f

admits strong halfspace interpolation if for every set of operands X1, . . . , Xm and halfspace

H that includes f(X1, . . . , Xm) strongly there exists some halfspaces H ′1, . . . , H
′
m that

respectively include X1, . . . , Xm strongly and for which H includes f(H ′1, . . . , H
′
m) strongly.

When X1, . . . , Xm, f , and H are clear from the context we call such H ′1, . . . , H
′
m strong

interpolants. Notably, strong interpolation first assumes the result the operation to be

strongly included and then guarantees the operands to be strongly included. As a result,

for any arbitrarily long sequence of operations, each of which admits strong halfspace

interpolation, we can inductively construct a sequence of strong halfspace interpolants to

prove, e.g., emptiness of the result. To this aim, we show that the operations of intersection

(bounded or linear), Minkowski sum, and linear transformation admit strong halfspace

interpolation, and that strong halfspace interpolation for operations extends to sequences

of operations.

The operation of intersection emerges from the abstraction of the semantics of guards

and invariant of a hybrid automaton, which in their turn may emerge from intersections

of multiple constraints. The strong halfspace interpolation of arbitrary intersections of

closed convex sets holds, under the sufficient condition that the infimal convolution of

their support functions is closed.

Theorem 3.1.1. Let X1, . . . , Xm be closed convex sets in Rn. For the intersection of

X1, . . . , Xm to admit strong halfspace interpolation it is sufficient that ρX1 ∗ · · · ∗ ρXm is

closed.

Proof. Let H = {x : 〈a, x〉 ≤ b} be a halfspace such that X1 ∩ · · · ∩Xm ⊆ε H for some

ε > 0. We first assume that X1, . . . , Xm are non-empty and observe that, by Eq. 2.14 and

the closeness hypothesis [99, Cor. 16.4.1], we have that X1 ∩ · · · ∩Xm ⊆ε H translates to

inf{ρX1(a
′
1) + · · ·+ ρXm(a′m) : a′1 + · · ·+ a′m = a}+ ε|a| ≤ b. (3.5)

Under the assumption that H 6= Rn, there exists some c ∈ R such that

inf{ρX1(a
′
1) + · · ·+ ρXm(a′m) : a′1 + · · ·+ a′m = a} < c < b. (3.6)



23

In fact, if H 6= ∅ then ε|a| > 0 and, therefore, the existence of c follows from Eq. 3.5.

If otherwise H = ∅ then X1 ∩ · · · ∩ Xm = ∅ and, therefore, the infimum in Eq. 3.6

equals −∞ and c trivially exists. Altogether, since c is strictly greater than the infimum,

there must exist (by definition of infimum) a′1, . . . , a
′
m such that a′1 + · · · + a′m = a and

ρX1(a
′
1) + · · ·+ ρXm(a′m) ≤ c, which also satisfy

ρX1(a
′
1) + · · ·+ ρXm(a′m) + (b− c) ≤ b. (3.7)

Since c < b, there also exists some ε′ > 0 such that ε′(|a|+
∑m

i=1 |a′i|) ≤ b− c. Then, by

substituting (b− c) with ε′(|a|+
∑m

i=1 |a′i|) in Eq. 3.7, we obtain

ρX1(a
′
1) + ε′|a′1|+ · · ·+ ρXm(a′m) + ε′|a′1|+ ε′|a| ≤ b. (3.8)

We let b′i = ρXi(a
′
i) + ε′|a′i| and Hi = {x : 〈a′i, x〉 ≤ b′i} and show that H1, . . . , Hm

constitute strong interpolants. First, for every halfspace we have that Xi ⊆ε′ Hi which,

in fact, is equivalent to saying ρXi(a
′
i) + ε′|a′i| ≤ b′i. Second, (by definition of closure)

we have that ρH′1∩···∩H′m(a) ≤ ρH′1 ∗ · · · ∗ ρH′m(a) and (by definition of infimum) that

ρH′1 ∗ · · · ∗ ρH′m(a) ≤ ρH′1(a
′
1) + · · ·+ ρHm(a′m), for every a′1 + · · ·+ a′m = a. Since we know

that ρH′1(a
′
1) = b′i then, by Eq. 3.8, we have

ρH′1∩···∩H′m(a) + ε′|a| ≤ b′1 + · · ·+ b′m + ε′|a| ≤ b, (3.9)

in other words H ′1 ∩ · · · ∩H ′m ⊆ε′ H, which concludes the proof under the assumption that

X1, . . . , Xm are non-empty and H 6= Rn. Finally, if either set is empty, say w.l.o.g that

X1 = ∅, we simply take H ′1 = ∅ and H ′2 = · · · = H ′m = Rn. If H = Rn we simply take

H ′1 = · · · = H ′m = Rn. In both cases, H ′1, . . . , H
′
m constitute strong interpolants for any

value of ε′.

Closedness applies for intersection forming bounded sets; more generally, for intersections

of sets without common direction of recession.

Corollary 3.1.1.1. The intersection of a finite number of closed convex sets in Rn without

common direction of recession admits strong halfspace interpolation.

Proof. It follows from Thm. 2.3.1 and 3.1.1.



24

The intersection of Fig. 3.2 allows strong halfspace interpolation as, in fact, it satisfies the

recession condition. In particular, both X and Y have no direction of recession at all, as a

consequence of being bounded; more generally, the recession condition holds when either

set is bounded.

Corollary 3.1.1.2. The intersection of a finite number of closed convex sets in Rn, where

at least one is bounded, admits strong halfspace interpolation.

Proof. Cor. 3.1.1.1 applies, as a bounded set have no directions of recession at all.

Strong halfspace interpolation generalizes strong halfplane separation in the sense that, for

X∩Y strongly included in the empty halfspace H = ∅ and, hence, X and Y disjoint, strong

halfspace interpolants exist when X and Y are strongly separated; in other words, when

there exists a halfplane whose corresponding two halfspaces respectively include X and Y ,

strongly. Consequently, disjoint closed convex sets that do not admit strong separation may

not admit strong halfspace interpolation, which occurs to certain (non-linear) sets that do

not satisfy the recession condition. For instance, take the sets X = {(x, y) : y ≥ 1/x, x ≥ 0}

1 2 3 4

−1

1

2

3

x

y

0

Y

X

Figure 3.3: Intersection that does not allow strong halfspace interpolation.

and Y = {(x, y) : y ≤ 0}, depicted in Fig. 3.3: no halfspace can strongly include X without

intersecting Y . On the contrary, strong halfspace interpolation always succeeds if all sets

are polyhedral, without any further restriction.

Theorem 3.1.2. The intersection of a finite number of polyhedra in Rn admits strong

halfspace interpolation.



25

Proof. Let X1 = {x : A1x ≤ b1}, . . . , Xm = {x : Amx ≤ bm} be polyhedra in Rn. If

X1 ∩ · · · ∩Xm 6= ∅ then ρX1 ∗ · · · ∗ ρXm is closed [99, Thm. 20.1] and, by Thm. 3.1.1, the

statement follows. If X1 ∩ · · · ∩Xm = ∅ then, by Farkas’ lemma, we have that

AT
1λ1 + · · ·+ AT

mλm = 0, 〈b1, λ1〉+ · · ·+ 〈bm, λm〉 < 0, (3.10)

for some vectors λ1, . . . , λm ≥ 0, i.e., where all elements of the vectors are non-negative.

Let ε = 0− 〈b1, λ1〉+ · · ·+ 〈bm, λm〉, then ε > 0. Let ε′ = ε/(m+ 1) and a′i = AT
i λi and

b′i = 〈bi, λi〉+ε′, for i = 1, . . . ,m. Then, we show that the halfspaces H ′i = {x : 〈a′i, x〉 ≤ b′i},

for i = 1, . . . ,m, are valid strong halfspace interpolants. First, we have that

ATi λ = a′i, 〈bi, λi〉+ ε′ ≤ b′i (3.11)

which, by (weak) duality of linear programming, implies ρXi(a
′
i) + ε′ ≤ b′i which, in its

turn, implies X1 strongly included in H ′i. Second, we have that

a′1 + · · ·+ a′m = 0, b′1 + · · ·+ b′m < 0 (3.12)

which, by Farkas’ lemma, implies that H ′1 ∩ · · · ∩ H ′m = ∅ which, trivially, is strongly

included in any halfspace.

The operators of Minkowski sum and linear transformation, unlike intersection, do not

impose restrictions to the operands other than convexity.

Theorem 3.1.3. Every Minkowski sum of two convex sets in Rn admits strong halfspace

interpolation.

Proof. Let X and Y be closed convex sets in Rn and H = {x : 〈a, x〉 ≤ b} be a halfspace

such that X + Y ⊆ε H, for some ε > 0. If X and Y are non-empty, then ρX+Y (a) =

ρX(a) + ρY (a) and the hypothesis of strong inclusion translates into

ρX(a) + ρY (a) + |a|ε ≤ b. (3.13)

Let ε′ = ε/3. If a 6= 0 then H 6= Rn and, therefore, ρX(a) and ρY (a) are finite values.

We let H ′ = {x : 〈a, x〉 ≤ ρX(a) + |a|ε′}, H ′′ = {x : 〈a, x〉 ≤ ρY (a) + |a|ε′}, and show

they are strong halfspace interpolants. First, we have that X ⊆ε′ H ′ and Y ⊆ε′ H ′′, by

definition of H ′ and H ′′. Second, we have that H ′ +H ′′ ⊆ε′ H; in fact, ρH′+H′′+ε′B(a) =

ρH′(a) + ρH′′(a) + |a|ε′ = ρX(a) + |a|ε′ + ρY (a) + |a|ε′ + |a|ε′ and hence, by Eq. 3.13, we



26

have ρH′+H′′+ε′B(a) ≤ b, which concludes the proof for a 6= 0. If a = 0 then b ≥ 0, because

∅ 6= X + Y ⊆ H; consequently, H = Rn and H ′ = H ′′ = Rn are valid strong halfspace

interpolants. Finally, if either X or Y are empty, take H ′ = ∅ for the empty one and

H ′′ = Rn for the other; then H ′ +H ′′ = ∅, trivially included by H strongly.

Theorem 3.1.4. Every linear transformation of a convex set in Rn to Rm admits strong

halfspace interpolation.

Proof. Let X be a convex set in Rn, A a linear transformation from Rn to Rm, and

H = {x : 〈a, x〉 ≤ b} that contains AX strongly, i.e., AX ⊆ε H for some ε > 0. First, let

us assume ∅ 6= X 6= Rn. Since ρAX(a) = ρX(ATa), we have that

ρX(ATa) + |a|ε ≤ b. (3.14)

If ATa 6= 0, then we define ε′ = ε|a|
2|ATa| and H ′ = {x : 〈ATa, x〉 ≤ b− ε′|ATa|}, and rephrase

Eq. 3.14 as

ρX(ATa) + ε′|ATa| ≤ b− ε′|ATa|. (3.15)

First, by Eq. 3.15, we have that X ⊆ε′ H ′. Next, we define ε′′ = ε′|ATa|
|a| and H ′′ =

{x : 〈a, x〉 ≤ b − ε′′|a|}. First, we have ρAH′(a) = b − ε′|ATa| = b − ε′′|a| = ρH′′(a),

namely, AH ′ = H ′′; second, we also have ρH′′(a) + ε′′|a| = b− ε′′|a|+ ε′′|a| = b, namely,

H ′′ + ε′′B = H ′. As a result, X ⊆ε′ H ′ and AH ′ ⊆ε′′ H; in other words, H ′ constitutes

a strong interpolant. Instead, if ATa = 0, we take any halfspace H ′ 6= Rn that includes

X strongly. Since X 6= ∅ and ATa = 0, we have ρX(ATa) = 0; hence, by Eq. 3.14, we

have |a|ε ≤ b. As a result, ρAH′(a) + |a|ε = ρH′(A
Ta) + |a|ε = |a|ε ≤ b; in other words,

AH ′ ⊆ε H. Finally, if X = ∅, we simply take H ′ = ∅; if X = Rn, we simply take

H ′ = Rn.

Notably, both Minkowski sum and linear transformation do not impose closedness of the

operands. On the other hand, intersection, on top of the recession condition or linearity,

requires closedness of the operands. For this reason, when we have a composition of

multiple operators (involving intersections), we need to ensure that all operands preserve

closedness. Unfortunately, closedness is not preserved, in general, by Minkowski sums

and linear transformations. For instance, the closed set X = {(x, y) : y ≥ 1/x, x ≥ 0} in

Fig. 3.3 through the projection A(x, y) = x is open; conversely, closedness is preserved if,



27

e.g., the operand is compact or the transformation is invertible [99, Thm. 9.1]. Another

example is the Minkowski sum of X = {(x, y) : y ≥ 1/x, x ≥ 0} and Y = {(x, y) : y ≥ 0},

which is the open set X +Y = {(x, y) : y > 0)}. Conversely, for sets, e.g., whose directions

of recession are never opposite to each other, the Minkowski sum is closed [99, Cor. 9.1.2].

The composition of a sequence of unary operators, for which every output complies with

the input of the subsequent operator, admits sequences of strong halfspace interpolants if

every operator admits strong interpolation.

Theorem 3.1.5. Let f1, . . . , fk be a sequence of unary operators that admit strong halfspace

interpolation. For every operand X and halfspace H that includes fk ◦ · · · ◦ f1(X) strongly

there exists a sequence of halfspaces H ′1, . . . , H
′
k such that

X ⊆ε H ′1, f1(H ′1) ⊆ε H ′2, . . . , fk−1(H ′k−1) ⊆ε H ′k, fk(H ′k) ⊆ε H (3.16)

for some ε > 0.

Proof (sketch). LetX1, . . . Xk be the sets given by f1(X) = X1, f2(X1) = X2, . . . , fk(Xk−1) =

Xk. By induction, backward, we have that, if there exists εi > 0 and a halfspace Hi such

that Xi ⊆εi H ′i, then there exists εi−1 > 0 and halfspace Hi−1 such that Xi−1 ⊆εi−1
H ′i−1.

As for the base case, we have that Xk is strongly included in H, by hypothesis. As for

ε > 0, take the minimum between ε1, . . . , εk.

One should note that unary operators can be constructed from generic m-ary operators,

by simply fixing all but one arguments. Also, for unary operators, strong halfspace

interpolation is preserved by composition.

Corollary 3.1.5.1. If f and g admit strong halfspace interpolation then f ◦ g admits

strong halfspace interpolation.

Proof. Apply Thm. 3.1.5 for k = 2.

Besides, interpolation upon emptiness of Eq. 3.4 is a special case of interpolation upon

strong inclusion and, hence, is equally satisfied. Additionally, upon emptiness there must

exist a minimal sequence of non-empty interpolants, from the initial input up to the very

operator causing the result to be empty.



28

Corollary 3.1.5.2. Let f1, . . . , fk be a sequence of monotonic unary operators that admit

strong halfspace interpolation and X an operand such that fk ◦ · · · ◦ f1(X) is empty. For

some 1 ≤ j ≤ k there exists a sequence of non-empty halfspaces H ′1, . . . , H
′
j such that

X ⊆ε H ′1, f1(H ′1) ⊆ε H ′2, . . . , fj−1(H ′j−1) ⊆ε H ′j, fj(H ′j) = fj+1(∅) = · · · = fk(∅) = ∅,

(3.17)

for some ε > 0.

Proof (sketch). Apply Thm. 3.1.5 to the minimal subsequence f1, . . . , fj for which inclusion

within H = ∅ holds. Since fk◦· · ·◦f1(X) is empty, such j must exist. Moreover, H1, . . . , Hj

must be non-empty, otherwise they would contradict minimality. Also, the extension

with Hj+1 = · · · = Hk = ∅ constitutes a valid sequence of interpolants for f1, . . . , fk, by

monotonicity of the operators.

We have established that, for sequences of operators involving Minkowski sum, linear

transformations, and intersections of linear or convex sets without common direction of

recession, sequences of halfspace interpolants always exist. Besides, for operators over

(convex) semi-algebraic sets, halfspace interpolants are computable but, using general

procedures such as the cylindrical algebraic decomposition, cab be very expensive. Nev-

ertheless, as we show in Sec. 3.2, halfspace interpolation can be translated into convex

programming for which, according to the kind of sets, efficient procedures are available.

3.2 Interpolation as Convex Optimization

Convex optimization comprises several methods for computing extrema of convex functions

within convex constraints, whose decision fragment consists of deciding the existence of a

point within the convex constraints. We translate the halfspace interpolation problem for

arbitrary compositions of Minkowski sums, linear transformations, and intersections into

the feasibility problem for convex constraints, amenable to modern convex optimizers. We

also show that, an optimization variant of the same problem, corresponds to the support

function of the result of the same composition.



29

We consider m-ary intersections, Minsk’s sums, and linear transformations, whose

arguments are either the results of other m-ary intersections, Minsk’s sums, or linear

transformations, or sets defined by constraints. In particular, to the result of every

operation and to every set defined by constraints, both of which we generically call X, we

associate a variable aX that takes from Rm, where m is the dimensionality of X, and a

variable bX that takes from R. Then, we construct our encoding over the structure of the

composition, according to the rules

aX1 + · · ·+ aXm = aX1∩···∩Xm bX1 + · · ·+ bXm ≤ bX1∩···∩Xm , (3.18)

aX = aY = aX+Y bX + bY ≤ bX+Y , (3.19)

aX = ATaAX bX ≤ bAX . (3.20)

Interpolation with respect to inclusion of the whole composition, which we call X, within

the halfspace H = {x : 〈aH , x〉 ≤ bH}, consists of imposing the additional constraint

bX = aH bX ≤ bH . (3.21)

To make an example, consider a single application of the discrete post operator of a LTI

system, shown in Eq. 2.7, that is the set A(X ∩G) + U ; then, inclusion with respect to H

gives the encoding

aA(X∩G)+U = aH bA(X∩G)+U ≤ bH ,

aA(X∩G) = aU = aA(X∩G)+U , bA(X∩G) + bU ≤ bA(X∩G)+U ,

aX∩G = ATaA(X∩G) bX∩G ≤ bA(X∩G),

aX + aG = aX∩G bX + bG ≤ bX∩G.

(3.22)

It remains to encode the bottom sets, i.e., those defined by explicit constraints; in the

example, these are X, G, and U . The encoding for the bottom sets is constructed using

the respective theories of duality, which we discuss later. In the meanwhile, independently

of the bottom constraints, we show that a solution to our encoding constitutes halfspace

interpolants. Precisely, for a variable assignment satisfying the system of constraint, the

halfspace interpolant respectively including each set X is given by

HX = {x : 〈aX , x〉 ≤ bX}. (3.23)



30

Concerning the example in Eq. 3.22, the respective interpolants are given by

HA(X∩G)+U = {x : 〈aA(X∩G)+U , x〉 ≤ bA(X∩G)+U}, HU = {x : 〈aU , x〉 ≤ bU},

HA(X∩G) = {x : 〈aA(X∩G), x〉 ≤ bA(X∩G)}, HG = {x : 〈aG, x〉 ≤ bG},

HX∩G = {x : 〈aX∩G, x〉 ≤ bX∩G}, HX = {x : 〈aX , x〉 ≤ bX}.

(3.24)

To show the correctness of the encoding, we show that it is sound, in the sense that every

solution constitutes interpolants; then, we show that it is also complete, in the sense that

for every existing interpolant there exists a solution for the constraints.

As for soundness, we need to show that f(H1, . . . , Hm) ⊆ Hf(H1,...,Hm) for every solution,

where f is any of our operators. As a consequence, we have that X ⊆ HX is preserved

through structural induction over the composition, from bottom to top. More specifically,

we have that X1 ⊆ HX1 , . . . , Xm ⊆ HXm implies f(X1, . . . , Xm) ⊆ Hf(X1,...,Xm), by mono-

tonicity of our operators. Hence, to obtain soundness, we need to guarantee X ⊆ HX for

the bottom constraints as, then, every solution gives us valid halfspace interpolants.

As for completeness, we need to show that, after fixing af(X1,...,Xm) and bf(X1,...,Xm),

for every H ′1, . . . , H
′
m such that f(H ′1, . . . , H

′
m) ⊆ Hf(X1,...,Xm), there exists a solution such

that HX1 ⊇ H ′1, . . . , HXm ⊇ H ′m. As a consequence, we have that for every set of valid

interpolants, an assignment for the encoding can be constructed by structural induction,

from top to bottom. For this purpose, we need two additional properties. First, we need

that interpolants actually exist, which is guaranteed by strong interpolation. Second, we

need that, for every bottom set X and every candidate interpolant HX that includes X

strongly, the encoding for the bottom set admits an assignment.

For the encodings of intersection, Minkowski sum, and linear transformation, soundness

holds, as we respectively show in Thm. 3.2.1, 3.2.2, and 3.2.3. For the encoding of an

intersection, completeness holds for feasible intersections; for disjoint sets, it holds if the

enclosing halfspace is either ∅ or Rn.

Theorem 3.2.1. For every solution to Eq. 3.18 it is necessary that

HX1 ∩ · · · ∩HXm ⊆ HX1∩···∩Xm . (3.25)

Moreover, for all halfspaces H ′1 ∩ · · · ∩H ′m ⊆ HX1∩···∩Xm such that either aX1∩···∩Xm = 0

(i.e., HX1∩···∩Xm is either ∅ or Rn) or H ′1 ∩ · · · ∩H ′m 6= ∅, there exists a solution such that,

for all i = 1, . . . ,m, either HXi = H ′i or HXi = Rn.



31

Proof. As for the first part, we have that ρHX1
∩···∩HXm = cl(ρH1 ∗· · ·∗ρHm) [99, Cor. 16.4.4],

as we show in Eq. 2.14. Then, by definition of closure we have the upper bound cl(ρH1 ∗· · ·∗

ρHm) ≤ ρH1 ∗ · · · ∗ ρHm . Finally, by Eq. 3.18 that aX1 + · · ·+ aXm = aX1∩···∩Xm and, since

ρHi(aXi) = bXi , we obtain the further upper bound ρH1 ∗ · · · ∗ρHm(aX1∩···∩Xm) ≤ bX1 + · · ·+

bXm ≤ bX1∩···∩Xm . As a result, we have that ρHX1
∩···∩HXm (aX1∩···∩Xm) ≤ bX1∩···∩Xm , which

is equivalent to Eq. 3.25. As for the second part, let H ′1 = {x : 〈a′1, x〉 ≤ b′1}, . . . , H ′m =

{x : 〈a′m, x〉 ≤ b′m}. As for ∅ 6= H ′1 ∩ · · · ∩ H ′m ⊆ HX1∩···∩Xm , if HX1∩···∩Xm 6= Rn, since

H ′1 ∩ · · · ∩H ′m is feasible and bounded in direction aX1∩···∩Xm by bX1∩···∩Xm , we have that

for some λ1, . . . , λm ≥ 0, it holds that

λ1a
′
1 + · · ·+ λma

′
m = aX1∩···∩Xm and λ1b

′
1 + · · ·+ λmb

′
m ≤ bX1∩···∩Xm , (3.26)

by duality of linear programming. Let aXi = λia
′
i and bXi = λib

′
i. First, by simple

values substitution, Eq. 3.18 is satisfied. Second, for every 1 ≤ i ≤ m, if λi > 0, we

have that HXi = {x : 〈λia′i, x〉 ≤ λib
′
i} = H ′i, while, if λi = 0, we have that HXi = Rn.

Instead, if HX1∩···∩Xm = Rn, then we have that aX1∩···∩Xm = 0 and bX1∩···∩Xm ≥ 0;

hence, for every i = 1, . . . ,m, take aXi = 0 and bXi = 0, for which HXi = Rn. As for

H ′1 ∩ · · · ∩H ′m ⊆ HX1∩···∩Xm = ∅, we have that aX1∩···∩Xm = 0 and bX1∩···∩Xm < 0, and (ii)

that, by Farkas’ lemma, there exist λ1, . . . , λm ≥ 0 that satisfy Eq. 3.26. As above, we

construct HXi = {x : 〈λia′i, x〉 ≤ λib
′
i} and obtain that either HXi = H ′i or HXi = Rn.

Notably, Eq. 3.18 might be incomplete for empty intersections and general enclosing

halfspaces. For instance, consider H ′1 = {(x, y) : x ≤ −1} and H ′2 = {(x, y) : x ≥ 1},

−2 −1 1 2

−2

−1

1

2

x

y

0

H ′1 H ′2

Figure 3.4: Intersection of halfspaces for which Eq. 3.18 is incomplete.

depicted in Fig. 3.4, and aX1∩X2 = (1, 0) and bX1∩X2 = 1, giving the halfspace HX1∩X2 =

{(x, y) : y ≤ 1}. Finding a solution for Eq. 3.18 such that either HX1 = H ′1 or HX1 = Rn



32

and either HX2 = H ′2 or HX2 = Rn amount to finding λ1, λ2 ≥ 0 such that aX1 = λ1(1, 0),

bX1 = −1λ1, aX2 = λ2(−1, 0), and bX2 = −1λ2, and that satisfy Eq. 3.18. Altogether, it

amounts to finding a solution for1

0

λ1 +

−1

0

λ2 =

0

1

 , −λ1 − λ2 ≤ 1, (3.27)

which does not exist; nevertheless, a solution exist if substituting aX1∩X2 = (0, 1) with

aX1∩X2 = 0. In particular, thanks to Thm. 3.2.1, if HX1∩···∩Xm = ∅, a solution exists if and

only if disjoint interpolants exist; in other words, the encoding is complete for checking

feasibility. As a consequence, for concatenations of several operators, completeness for

checking feasibility holds if (i) Hf(X1,...,Xm) is either ∅ or Rn when f(X1, . . . , Xm) = ∅

and (ii) the respective encoding is complete if either f(X1, . . . , Xm) 6= ∅ or Hf(X1,...,Xm)

is either ∅ or Rn. Point (i) holds, in particular, for monotonic operators that always

allow halfspace interpolation, where Hf(X1,...,Xm) = ∅ whenever f(X1, . . . , Xm) = ∅ (see

Cor. 3.1.5.2). Point (ii) holds for intersection, by Thm. 3.2.1, for Minkowski sum and linear

transformation, by the following theorems.

Theorem 3.2.2. For every solution to Eq. 3.19 it is necessary that

HX +HY ⊆ HX+Y . (3.28)

Moreover, for all halfspaces H ′ and H ′′ such that H ′ +H ′′ ⊆ HX+Y , if either H ′ +H ′′ 6= ∅

or aX+Y = 0, then there exists a solution such that either HX = H ′ or HX = Rn and

either HY = H ′′ or HY = Rn.

Proof. As for the first part, bX+bY ≤ bX+Y implies that ρHX (aX)+ρHY (aY ) ≤ ρHX+Y
(aX+Y ),

by definition of HX , HY , and HX+Y (Eq. 3.23). Since aX = aY = aX+Y , we have that

ρHX (aX+Y ) + ρHY (aX+Y ) ≤ ρHX+Y
(aX+Y ) and, therefore, that Eq. 3.28 holds. As for the

second part, aX and aY are clear by Eq. 3.19. If ∅ 6= H ′ + H ′′ ⊆ HX+Y 6= Rn, we have

ρH′(aX+Y ) + ρH′′(aX+Y ) ≤ bX+Y and, by taking bX = ρH′(aX+Y ) and bY = ρH′′(aX+Y ),

we have HX = H ′ and HY = H ′′, since aX+Y 6= 0. If aX+Y = 0, it is necessary that

aX = aY = 0. If HX (resp. HX) is non-empty, take bX = 0 (resp. bY = 0), while if HX

(resp HX) is empty, choose any negative bX (resp. bY ) that satisfy bX + bY ≤ bX+Y . Note

that, if both HX and HY are non-empty, then bX+Y ≥ 0 and hence bX + bY ≤ bX+Y is

satisfied.



33

Theorem 3.2.3. For every solution to Eq. 3.20 it is necessary that

AHX ⊆ HAX . (3.29)

In addition, for all halfspaces H ′ such that AH ′ ⊆ HAX , if either H ′ 6= ∅ or aAX = 0,

there exists a solution such that either HX = H ′ or HX = Rn.

Proof. Concerning the first part, bX ≤ bAX implies ρHX (aX) ≤ ρHAX (aAX), by definition

of HX and HAX , which, by the constraint aX = ATaAX in Eq. 3.20, is equivalent to

ρHX (ATaAX) ≤ ρHAX (aAX). By Eq. 2.11, we have ρAHX (aAX) ≤ ρHAX (aAX), namely we

have Eq. 3.29. Concerning the second part, take aX = ATaAX . If H ′ 6= ∅, we take

bX = ρH′(aX), which is bounded by bAX , hence finite; we obtain that HX = H ′, if aX 6= 0,

HX = Rn, otherwise. If aAX = 0 then we necessarily take aX = 0. Then, if H ′ = ∅, we

take any bX < 0 and bX ≤ bAX , obtaining HX = ∅. Otherwise, if H ′ 6= ∅, then we have

that bAX ≥ 0, hence we take bX = 0, obtaining HX = Rn.

We have established that, for abstractions consisting of Minkowski sum, linear trans-

formations, and intersections of linear and compact sets, refining directions always exist

and that can be computed using convex programming. In the following chapters, we

instantiate our theory to the analysis of convex hybrid automata in Ch. 4, and extend it

to the analysis of piece-wise affine systems in Ch. 5 and 6.



34



35

4 Counterexample-guided Refinement for Convex Hybrid

Automata

We target the time-unbounded reachability analysis of convex hybrid automata (CHA), i.e.,

hybrid automata whose flow constraints consist of differential inclusions (on derivatives only)

and all constraints (flow, guards, and invariants) are (possibly non-linear) closed convex

sets, and the special cases of linear hybrid automata (LHA) and quadratic hybrid automata

(QHA). A large class of systems belongs to CHA, e.g., timed systems with convex non-linear

clock drifts, or can be approximated as CHA, e.g., systems with Gaussian disturbances

truncated by elliptic sets. The reachability analysis of LHA has a long history [13],

while for QHA or beyond only bounded reachability analysis has been explored [31;

42].

We show that (i) for every CHA halfspace interpolants suitable for refinement always

exist and that (ii) they can be computed efficiently using convex optimization [28], in

particular using linear programming for LHA and second-order conic programming for

QHA. We implement a tool based of this technology and evaluate it on several linear and

quadratic benchmarks, comparing (favorably) against PHAVer where that tool applies [52;

57], namely LHA. This gives the following new results. First, we enable the use of

template polyhedra for the abstract interpretation and the abstraction refinement of CHA,

thus enabling the efficient time-unbounded reachability analysis for the full class where

efficient convex optimizers are available, namely QHA. Second, we achieve greater practical

performance against the state-of-the-art techniques for the time-unbounded reachability of

even LHA. We evaluate our tool on multiple scaling and linear and non-linear variants of

three different benchmarks, namely Fischer’s protocol [85], the TTEthernet protocol [25],

and an adaptive cruise controller [73].



36

Figure 4.1: A CHA with two variables x and y, three good modes zero, one,

and two, two bad modes badone and badtwo, and four switches a, b, c, and

d. The good modes have three different relative speeds for x and y with an

additional spherical drift. All invariants, the jump guards of a and of b are

linear and the jump guards of c and of d are spherical.

4.1 Motivating Example

Consider a system with two real-valued variables x and y whose dynamics follows some

differential equation, which in turn is discontinuously switched by an automaton with

three modes. Figure 4.1 shows such an example. The trajectory starts in the origin and

enters mode zero and follows any differential equation whose derivative is ẋ = 1 and

ẏ = 2 with possibly some drift in the ball of radius 10−
1
2 around this value. The invariant

allows the trajectory to stay in mode zero as long as y ≤ 2. The trajectory can take a if

y ≥ 1 and switch to mode one, where the derivative of y halves. The dynamics continues

similarly on mode one, switch c, and mode two, and similarly can take a switch to badone

and badtwo when the respective guards are satisfied. We know that there does not exists

a trajectory that leads to one of the bad modes, namely the system is safe. We want to

prove it automatically by means of template polyhedra.

The set of states that are respectively reachable on modes zero, one, and two are the

cones spanned by the points that enter the mode and take any possible trajectory, as

respectively depicted in Fig. 4.2 in three shades on gray. We abstract the whole systems

by representing each of these sets using template polyhedra. But first, we need to discover



37

1 2 3 4

1

2

3

4

0 x

y

X1X0

X2

1 2 3 4

1

2

3

4

0 x

y

X1

X0

X2

1 2 3 4

1

2

3

4

0 x

y

X1

X0

X2

(a) octagonal abstraction (b) w/o path to badone (c) w/o path to badtwo

Figure 4.2: Template-polyhedral abstraction refinement for the CHA in

Fig. 4.1. In dark gray, gray, and light gray the points reachable on the modes

zero, one, and two, resp., and the striped polyhedra X0, X1, and X2 are the

resp. template polyhedra. The lower and the upper dashed circles are, resp.,

the guards of the switches c and d to the bad modes. The variant (a) show the

octagonal abstraction, and (b) and (c) show resp. the results of the templates

obtained after refinement of the paths to badone and then to badtwo.

a suitable template. In fact, different templates produce different abstractions and not

all of them can prove safety. Figure 4.2 shows three different such abstractions (striped

polyhedra), but (a) and (b) hit the guards (dashed circled) to the bad modes while only

(c) accomplishes the task. Our goal is to construct a good template like in (c).

We begin with abstraction (a) which uses the octagonal template, i.e., the 8 orthogonal

directions to the facets of an octagon. The abstract interpreter will produce several abstract

paths (sequences of pairs of modes and polyhedra interleaved by switches) among which

will occur the path zero, a, one, c, badone, for the regions X0, X1 ⊆ Rn where X0 = initzero

abstracts the flow on zero, and X1 = posta(X0) abstracts the flow on one (see Fig. 4.2a).

This path reaches a bad mode, but it is spurious, namely it does not have a concrete

counterpart. We prove it by computing a sequence of halfspace interpolants, i.e., two

halfspaces H0 and H1 such that initzero ⊆ H0 and posta(H0) ⊆ H1 and H1 does not intersect

with the guard of the switch c (see Fig. 4.3b). The outward pointing directions d0 and d1

of H0 and H1 are the directions that generalize and eliminate all counterexamples with the



38

switching sequence zero, a, one, c, badone (see Fig. 4.3c). We add them to the template

and we recompute the abstraction, obtaining a necessarily different counterexample (see

Fig. 4.2b). We repeat and eventually obtain Fig. 4.2c, finally proving the safety of the

hybrid automaton.

In the next section we define the modeling and the (template-polyhedral) abstraction

framework for CHA. In Sec. 4.3 we present our interpolant-based refinement technique

and in Sec. 4.4 we phrase it as a convex optimization problem. In Sec. 4.5 we instantiate it

to QHA and in Sec. 6.6 we show our experimental results.

4.2 Abstractions of Convex Hybrid Automata using

Template Polyhedra

Hybrid automata extend finite automata adding constraints on the (discrete and continuous)

dynamics of a set of real variables (see Sec. 2.1). Convex hybrid automata (CHA) are

the class whose constraint define non-linear convex sets that exclusively constrain either

variables or variable derivatives, as it is the case for the well-know class of linear hybrid

automata (LHA) [63], which is thus generalized by CHA.

Definition 2 (Convex hybrid automata). A convex hybrid automaton H is a hybrid

automaton where all constraints define closed convex sets and all flow constraints are

constant and do not contain zero, i.e., for every v ∈ V and all x, y ∈ Rn, 0 6∈ Fv(x) = Fv(y).

In this chapter, we treat every Fv as closed convex sets in Rn and Je as closed convex

sets in R2n (in other words, as relations in Rn × Rn). When a control path is clear from

the context, we abbreviate any object indexed by vi or ei as the same object indexed by i,

e.g., we abbreviate Fvi as Fi. The semantics associates modes to points x ∈ Rn. For every

two points x, x′ ∈ Rn, for every control mode v ∈ V we say that x′ is a v-successor of x if

there exists a derivable solution ψ : R→ Rn and a time delay δ ≥ 0 such that ψ(0) = x,

ψ(δ) = x′, and for all 0 ≤ γ ≤ δ it holds that ψ̇(γ) ∈ Fv and ψ(γ) ∈ Iv, and for every

control switch e ∈ E we say that x′ is an e-successor of x if (x, x′) ∈ Je.

Definition 3 (H-feasibility). A finite control path v0, e1, v1, . . . , ek, vk is H-feasible if for

some x0, x
′
0, x1, x

′
1, . . . , xk, x

′
k ∈ Rn it holds that x0 ∈ Z0, and for all 0 ≤ i ≤ k, x′i is a

vi-successor of xi and xi is a ei-successor of x′i−1.



39

The semantics of H is the maximal set of H-feasible paths. A mode v ∈ V is reachable

if there exists an H-feasible control path whose last mode is v, and a point x′ ∈ Rn is

reachable on v if x′ is the last point of a sequence as in Def. 3.

The abstraction associates modes to regions of Rn into abstract paths whose elements

are related by the init and post operator of an abstraction structure A.

Definition 4 (Abstraction structure). An abstraction structure A for the CHA H consists

of an init operator initv ∈ ℘(Rn) for every v ∈ V and of a post operator poste : ℘(Rn)→

℘(Rn) for every e ∈ E.

Similarly as for H, a control path with an abstract counterpart is called A-feasible.

Definition 5 (A-feasibility). A finite control path v0, e1, v1, . . . , ek, vk is A-feasible if for

some non-empty sets X0, X1, . . . , Xk ⊆ Rn holds that X0 = init0 and for all 1 ≤ i ≤ k,

Xi = posti(Xi−1).

An A-feasible path is genuine if it is also H-feasible, and spurious otherwise. An

abstraction structure A is sound if all H-feasible control paths are A-feasible.

The support function [99] in direction d ∈ Rn of a convex set X ⊆ Rn is

ρX(d) = sup{d · x | x ∈ X}. (4.1)

The support function of X characterizes the template polyhedron [103; 59] of X for the

template ∆ ⊆ Rn (a finite set). We call it the ∆-polyhedron of X, that is⋂
d∈∆

{x ∈ Rn | d · x ≤ ρX(d)}. (4.2)

We aim at computing template polyhedra for the (continuous) flow and the (discrete)

jump post operators (and their compositions) of the hybrid automaton. The flow operator

of mode v ∈ V gives the points reachable by time elapse on v:1

flowv(X) = (X + coniFv) ∩ Iv. (4.3)

The jump operator of switch e ∈ E gives the points reachable through e:

jumpe(X) =
[
0n×n In

] In

0n×n

X +

0n×n

In

Rn

 ∩ Je
 . (4.4)

Flow and jump operators are an exact symbolical characterization for the semantics of

CHA, and follow as an extension of the symbolic analysis of LHA [63; 6].

1For X ⊆ Rn, coniX denotes the conical hull {0} ∪ {αx | α > 0 ∧ x ∈ X}.



40

Lemma 4.2.1. For every CHA H and every set X ⊆ Rn it holds that (i) x′ ∈ flowv(X)

if and only if x′ is a v-successor of some x ∈ X for every control mode v ∈ V and (ii)

x′ ∈ jumpe(X) if and only if x′ is a e-successor of some x ∈ X for every control switch

e ∈ E.

The exact symbolic analysis of CHA has in general high complexity, as it requires

eliminating quantifiers, and possibly from formulae that contain non-linear constraints.

For this reason we approximate them using template polyhedra.

The template-polyhedral abstraction computes the template polyhedra of the flow and

jump operators above and, in our definition, using a different template for each mode,

given by the precision function prec : V → ℘(Rn).

Definition 6 (Template-polyhedral abstraction). The template-polyhedral abstraction

for the CHA H and the precision function prec : V → ℘(Rn) is the abstraction structure

where the init operator initv is the prec(v)-polyhedron of flowv(Zv), and the post operator

poste(X) is the prec(t)-polyhedron of flowt ◦ jumpe(X) where t ∈ V is the destination of e.

It is well-know that the template-polyhedral abstraction constructs a conservative

over-approximation for linear systems [103], and the same holds for CHA.

Theorem 4.2.2. For every CHA H and every precision function prec the template-

polyhedral abstraction for H and prec is sound.

Proof. By induction over any A-feasible path, for the sets X0, X1, . . . , of a template-

polyhedral abstraction for H. As for the base case, X0 = initv ⊇ flow0(Z0), which includes

the v0-successors of Z0 (Lem. 4.2.1), hence the points reachable by v0. As for the inductive

case, Xi+1 = posti+1 ⊇ flowi+1 ◦ jumpi+1(Xi), which includes the vi+1-successors of the

ei+1-successors of Xi (Lem. 4.2.1). Hence, if Xi includes the points reachable by v0e1 . . . vi

then Xi+1 must include those reachable by v0e1 . . . vi+1.

The obvious difficulty is in finding a precision function that is suitable for proving or

disproving reachability. In the next section, we show how to form one such automatically

by means of counter-example guided abstraction refinement.



41

4.3 Counterexample-guided Refinement using Halfs-

pace Interpolants

A counter-example guided abstraction refinement (CEGAR) loop [44] for a hybrid au-

tomaton H and a set of bad modes T consists of an abstractor and a refiner interacting

with each other. At each iteration i, the abstractor takes an abstraction structure Ai and

attempts to construct the finite state machine that recognizes all Ai-feasible paths. If it

terminates and it does not find a counterexample, i.e., a path leading to a bad mode, then

it returns no. Otherwise, it passes Ai and a set of counterexamples Wi to the refiner. The

refiner attempts to construct an abstraction structure Ai+1 that refines Ai and eliminates

all counterexamples in Wi. If it fails, then it reports yes and a set W̄i ⊆ Wi of genuine

counterexamples. Otherwise, it passes Ai+1 to the abstractor.

The above procedure is sound (upon termination), provided Ai is sound, in the sense

that if it reports no then no mode in T is reachable. It is complete (upon termination),

namely if it reports yes then some mode in T is reachable, if it returns an abstraction

Ai+1 that is locally complete w.r.t. Wi when one exists.

Local completeness An abstraction structure A for the CHA H is locally complete

w.r.t. the set W of control paths of H if all H-infeasible control paths in W are

A-infeasible.

Moreover, if it ensures local completeness w.r.t. ∪{Wj|0 ≤ j ≤ i}, then it ensures progress

of the procedure if the counterexamples are given one by one.

Whenever we find a spurious counterexample, we augment the precision of the modes

along the path with additional template directions, so to make it A-infeasible. First of all,

we start with finding a sequence of Craig’s interpolants and only Craig’s interpolants that

are halfspaces [2]. Formally, let w = v0, e1, v1, . . . , ek, vk be a control path of H, then a

sequence of halfspace interpolants for w is a sequence of sets H0, H1, . . . , Hk ⊆ Rn such

that each element is either the universe, a closed halfspace, or the empty set and

flow0(Z0) ⊆ H0, flow1 ◦ jump1(H0) ⊆ H1, . . . , flowk ◦ jumpk(Hk−1) ⊆ Hk, (4.5)

and Hk ⊆ ∅. If such sequence exists, then the path is clearly H-infeasible. Conversely, it

is not trivial that for every H-infeasible path such sequence exists.



42

Lemma 4.3.1. For every CHA H, where either (i) all constraints are compact or (ii) all

constraints are polyhedral, and every control path w of H, it holds that every control path

w is H-infeasible if and only if there exists a sequence H0, H1, . . . , Hk ⊆ Rn of halfspace

interpolants for w as in Eq. 4.5.

Proof. The if direction follows from the soundness of flowv and jumpe (Lem. 4.2.1). As

for the only if direction, we let v0e1 . . . vk be a control path and show that, for every

i = 1, . . . , k, fi = flowi ◦ jumpi admits strong halfspace interpolation, with the respective

operand Xi = flowi−1 ◦ jumpi−1(Xi−1), for i ≥ 0, and X1 = flow0(Z0). First, we break

down flowv ◦ jumpe into six operations X(1) = [In 0n×n]TX(0), X(2) = X(1) + [0n×n In]TRn,

X(3) = X(2) ∩ Je, X(4) = [0n×n In]X(3), X(5) = X(4) + coniFv, and X(6) = X(5) ∩ Iv.

Second, we show that, if (i) all constraints and X(0) are compact, then X(1), . . . , X(6) are

closed and X(6) is compact. Since X(0) is compact, X(1) is compact [99, Thm. 9.1]. Since

X(1) is compact and [0n×n In]TRn is closed, then X(2) is closed [99, Cor. 9.1.2]. Since Je

is compact, then then X(3) and X(4) are compact, too. Since Fv is compact and does

not contain the origin, coniFv is closed [99, Cor. 9.6.1], and, since X(4) is compact, X(5)

is closed [99, Cor. 9.1.2]. Finally, since Iv is compact, then X(6) is compact. Instead, if

(ii) all constraints and X(0) are polyhedral, then X(1), . . . , X(6) are polyhedral, as every

linear transformation [99, Thm. 19.3], Minkowski sum [99, Cor. 19.3.2], and intersection of

polyhedra are necessarily polyhedral. Third, we show that the premise that the argument

Xi is, resp., compact or polyhedral, holds for every of f1, . . . , fk. Let X(4) = Z0, then, from

the argument above, X1 = X(6) is, resp., compact or polyhedral. Let X(0) = Xi, for i ≥ 1,

and assume it, resp., compact or polyhedra.; by the statements above, Xi+1 = X(6) is, resp.,

compact ot polyhedral. By induction, if (i) all constraints are compact, then X1, . . . , Xk are

compact, if (i) all constraints are polyhedral, then X1, . . . , Xk are polyhedral. Fourth, we

show that each of the six operations composing admit strong halfspace interpolation. As for

the Minkowski sums and the linear transformations, it follows from, resp., Thm. 3.1.3 and

3.1.4. As for the intersections, if (i) all constraints are compact, X(1) and X(4) are closed,

Iv and Je are compact, hence, by Cor. 3.1.1.2, X(1) ∩ Iv and X(4) ∩ Je admit halfspace

interpolation; if (ii) all constraints are polyhedral, X(1) and X(4) are polyhedral and,

hence, the intersections admit halfspace interpolation by Thm. 3.1.2. As a consequence,

by Cor. 3.1.5.1, every fi, for i = 1, . . . , k, admits strong halfspace interpolation. Finally,

the claim of the lemma follows from Cor. 3.1.5.2.



43

1 2 3 4

1

2

3

0 x

y

X0

X1

1 2 3 4

1

2

3

0 x

y

H0 H1
d0 d1

1 2 3 4

1

2

3

0 x

y

X0

X1

d0

d1

(a) octagonal abstraction (b) halfspace interpolants (c) refined abstraction

Figure 4.3: Refinement for the control path zero, a, one, b, badone of the CHA

in Fig. 4.1. In dark gray, the points reachable on mode zero. In (a), (b), and

(c), in light gray are the points reachable on mode one resp. from X0, H0, and

X0. In (a) the spurious path, in (b) the interpolants, and in (c) the abstraction

with the outward pointing directions.

Indeed, existence relies on the conditions we discussed in Sec. 3.1. Computing inter-

polants is the subject of the next section.

The refining directions are the outward pointing directions of the halfspace interpolants,

respectively for each mode along the path. In fact, it is enough to observe that every

abstraction we obtain after adding such directions also satisfy

init0 ⊆ H0, post1(H0) ⊆ H1, . . . , postk(Hk−1) ⊆ Hk. (4.6)

Figure 4.3 shows such an example. The path is the one leading to badone from the CHA of

Fig. 4.1, which is spurious with octagonal template (see Fig. 4.3a), and, in fact, a sequence

H0 and H1 of halfspace interpolants exists (see Fig. 4.3b). The halfspace H1 is disjoint

from the guard of c (dashed circle) and includes the points reachable from H0 (light

gray), which in its turn includes the points reachable from Zzero, i.e., flowzero(Zzero) ⊆ H0,

flowone ◦ jumpa(H0) ⊆ H1, and jumpc(H1) ⊆ ∅. Taking the supporting halfspaces in

the same directions preserves these inclusions, hence adding d0 to prec(zero) and d1 to

prec(one) causes initzero ⊆ H0, posta(H0) ⊆ H1, and postc(H1) ⊆ ∅. Thus d0 and d1

eliminate the counterexample, and regardless of whether prec contains further directions

(see Fig. 4.3c).



44

Definition 7 (Template-polyhedral refinement). LetH be a CHA and let w = v0, e1, v1, . . . ,

ek, vk be a control path. Define the precision function prec such that for some (if one

exists) sequence of halfspace interpolants H0, H1, . . . , Hk ⊆ Rn for w as in Eq. 4.5 then for

all 0 ≤ i ≤ k set di ∈ prec(vi) where di is the outward pointing direction of Hi. We define

the template-polyhedral refinement for H and w as the template-polyhedral abstraction

for H and prec.

Local completeness w.r.t. a single path easily generalizes to local completeness w.r.t.

multiple paths by taking the union of the discovered directions.

Theorem 4.3.2. For every CHA H, where either (i) all constraints are compact or (ii)

all constraints are polyhedral, and every set W of finite control paths of H the union2 over

all w ∈ W of the template-polyhedral refinements for H and w is locally complete w.r.t.

W .

Proof. By Lem. 4.3.1, for every H-infeasible control path v0e1 . . . vk ∈ W there exists a

sequence of halfspace interpolants H0, . . . , Hk. Let d0, . . . , dk be the respective outward

pointing directions, and let Xi = posti ◦ · · · ◦ post1(init0) for, respectively, the templates

{d0}, . . . , {di}. First, we have that init0 ⊆ H0, and then that Xi ⊆ Hi, for every i = 1, . . . , k.

Since HK = ∅, then the control path is A-infeasible.

Summarizing, we search for abstract counterexamples and we accumulate all outward

pointing directions of the respective halfspace interpolants. If either the abstractor finds

a fixpoint or interpolation fails, then we obtain a sound and complete answer. In the

following section, we show how to compute init and post operators and sequences of

halfspace interpolants by using convex optimization.

2The union of the abstractions A1, . . . ,Ai for H and resp. the precisions prec1, . . . , preci is the

abstraction for H and the precision λv.prec1(v) ∪ · · · ∪ preci(v).



45

4.4 Craig’s Interpolation as Convex Optimization

The support function is a central actor both in abstraction, as it defines template polyhedra,

and refinement, as it gives a powerful formalism to talk about inclusion in halfspaces and

separation of convex sets. In either case, the sets we deal with are arbitrary compositions

of flow and jump operators, which in their turn are compositions of Minkowski sums, linear

transformations, conical combinations, and intersections. We characterize the support

functions of such operations as convex programs, with the aim of characterizing abstraction

and refinement as convex programs.

We present a characterization of support functions that is compositional for the set

operations above. The classic support function representation framework3 offers a very

similar machinery [59], but it suffers from the following shortcomings. First, it requires

the operand sets in Minkowski sums and intersections to be compact (i.e., closed and

bounded) and boundedness cannot be easily relaxed, e.g., ρRn(d) + ρ∅(d) = +∞ −∞

while ρRn+∅(d) = −∞ for every d 6= 0. Since we aim at time-unbounded reachability,

it would be too restrictive to assume boundedness. Second, substituting boundedness

with nonemptiness might cause uncorrect results, e.g., for the sets A = {(x, y) | x ≤ −1},

B = {(x, y) | x ≥ 1}, and the direction c = (0, 1) we obtain inf{ρA(c− a) + ρB(a)} = +∞,

while ρA∩B(c) = −∞. We relax both the assumptions of boundedness and nonemptiness

by characterizing the support function ρX(d) with a convex program

minimize ρ̄X(λ)

subject to (λ, d) ∈ ΛX ,
(4.7)

with objective function ρ̄X : Rm → R and constraint ΛX ⊆ Rm+n. The minimum of ρ̄X(λ)

over λ characterizes ρX(d) for directions in which X is bounded, while ΛX characterizes

boundedness. This is encapsulated by the notion of duality.

Duality Let X ⊆ Rn be a nonempty closed convex set. The convex program of Eq. 4.7 is

dual to ρX if for all d ∈ Rn it holds that

(i) ρX(d) = +∞ if and only if there does not exist λ such that (λ, d) ∈ ΛX ,

(ii) ρX(d) < +∞ if and only if ρX(d) = inf{ρ̄X(λ) | (λ, d) ∈ ΛX}.

3ρX+Y (d)= ρX(d) + ρY (d), ρMX(d)= ρX(MTd), and ρX∩Y (d)= inf{ρX(a) + ρY (d− a)}.



46

We define inductive rules for constructing dual convex programs for the support functions

of set operations, provided dual convex programs for their operands (whose instantiation

for sets defined by symbolic constraints is subject of Sec. 4.5):

ρ̄X+Y (λ, µ) = ρ̄X(λ) + ρ̄Y (µ),

ΛX+Y = {(λ, µ, d) | (λ, d) ∈ ΛX , (µ, d) ∈ ΛY },
(4.8)

ρ̄AX(λ) = ρ̄X(λ),

ΛAX = {(λ, d) | (λ,ATd) ∈ ΛX},
(4.9)

ρ̄coniX(λ) = 0,

ΛconiX = {(λ, d) | ρ̄X(λ) ≤ 0, (λ, d) ∈ ΛX},
(4.10)

ρ̄X∩Y (λ, µ) = ρ̄X(λ) + ρ̄Y (µ), and

ΛX∩Y = {(λ, µ, a, d) | (λ, a) ∈ ΛX , (µ, d− a) ∈ ΛY }.
(4.11)

Nevertheless, duality is not sufficient to characterize operations producing the empty set.

Considering the examples above, the constraint ΛRn+∅ is infeasible for every direction

d 6= 0 and the constraint ΛA∩B is infeasible for direction c, contradicting (i). However, it

suffices that the convex program is unbounded for at least d = 0, providing an alternative

for deciding emptiness beforehand.

Alternativity The convex program of Eq. 4.7 is alternative to ρ∅ if for every ε < 0 there

exists (λ, 0) ∈ Λ∅ such that ρ̄∅(λ) ≤ ε.

Altogether, we compute the support of X in direction d as follows. We decide whether

there exists a negative solution in direction 0. If so we return −∞, otherwise we decide

whether ΛX is infeasible in direction d. If so we return +∞, otherwise we solve the

convex program. This is permitted on any combination of the set operations above, as our

construction preserves duality and alternativity. To show this, we first extend the encoding

of Sec. 3.2 with constraints for the conical hull operator, with the following lemma.

Lemma 4.4.1. Let X be a non-empty convex set in Rn, aconiX , aX ∈ Rn and bconiX , bX ∈

Rn, and let HX = {x : 〈aX , x〉 ≤ bX} and HconiX = {x : 〈aconiX , x〉 ≤ bconiX}. If X ⊆ HX

and

aX = aconiX bX ≤ 0 0 ≤ bconiX (4.12)

is satisfied, then coniX ⊆ HconiX . Moreover, for every aconiX and bconiX such that

coniX ⊆ HconiX , there exists aX and bX such that X ⊆ HX and Eq. 4.12 is satisfied.



47

Proof. For every direction d ∈ Rn and, resp., the homogeneous halfspace H = {x : 〈d, x〉 ≤

0}, we have that, if X ⊆ H, then coniX ⊆ H [99, Cor. 11.7.2]. Hence, for d = aX = aconiX ,

H as above, and Eq. 4.12 satisfied, we have that HX ⊆ H ⊆ HconiX . Consequently,

X ⊆ HX implies that X ⊆ H and, hence, that coniX ⊆ H ⊆ HconiX . As for the second

part, take aX = aconiX and bX = 0. First, since coniX ⊆ HconiX , we have that bconiX ≥ 0,

and Eq. 4.12 is satisfied. Second, we also have that coniX ⊆ HX and, since X ⊆ coniX

[99, Cor. 2.6.3], we have that X ⊆ HX .

As a result, we have that ρ̄X and ΛX follow the construction of the encoding of Sec. 3.2

together with Eq. 4.12. In particular, for every set X we have that, if d = aX , then

ρ̄X(λ) ≤ bX and ΛX(λ, aX), where aX and bX correspond to those of Sec. 3.2. More

concretely, for the constraints ΛX we have

ΛX+Y (λ, µ, aX+Y ) ⇐⇒ ΛX(λ, aX),ΛY (µ, aY ), aX = aY = aX+Y , (4.13)

ΛAX(λ, aAX) ⇐⇒ ΛX(λ, aX), aX = ATaMX , (4.14)

ΛconiX(λ, aconiX) ⇐⇒ ΛX(λ, aX), aX = aconiX , bX ≤ 0 (4.15)

ΛX∩Y (λ, µ, aX , aX∩Y ) ⇐⇒ ΛX(λ, aX),ΛY (µ, aY ), aX + aY = aX∩Y , (4.16)

while for the objective function bX we have bX+Y ≥ ρ̄X+Y (λ, µ), bAX ≥ ρ̄AX(λ), bconiX ≥

ρ̄coniX(λ), and bX∩Y ≥ ρ̄X∩Y (λ). Consequently, duality and alternativity follow from

the soundness and completeness of the encoding, as shown in Sec. 3.2. In particular,

completeness relies on the existance of strong halfspace interpolants which, for intersections,

holds for polyhedral and compact intersections, as shown in Sec. 3.1.

Lemma 4.4.2. Let X, Y ⊆ Rn be closed convex sets. If the convex programs for ρ̄X ,ΛX

and ρ̄Y ,ΛY are dual and alternative to resp. ρX and ρY then the convex programs for

Eq. 4.8 and 4.9 are dual and alternative to the respective support functions. If (1) either

X or Y is compact or (2) both X and Y are polyhedral, then also the convex program for

Eq. 4.11 is dual and alternative to ρX∩Y . If (3) X 6= ∅ and the convex program for ρ̄X ,ΛX

attains the infimum (when feasible), then the convex program for Eq. 4.10 is dual to ρconiX .

Proof. Let Z be eitherX+Y , AX, X∩Y , or coniX. If Z 6= ∅ and ρZ(aZ) < +∞ then d 6= 0

and there exists a halfspace HZ = {x : 〈aZ , x〉 ≤ bZ} that strongly includes X. First, we

show that there exists an assignmentHX = {x : 〈aX , x〉 ≤ bX} andHY = {x : 〈aY , x〉 ≤ bY }

such that HX ⊆ X and HY ⊇ Y . For the operations X+Y , AX, and X∩Y , by Thm. 3.1.3,



48

3.1.4, the hypotheses (1) and (2), Cor. 3.1.1.2, and Thm. 3.1.2, we have strong halfspace

interpolation, namely there exist halfspace H ′, H ′′ 6= ∅ and that strongly include X

and Y . By the second part of Thm. 3.2.2, 3.2.3, and 3.2.1, the respective encoding

admit assignments such that either HX = H ′ or HX = Rn and either HY = H ′′ or

HY = Rn. For coniX, the assiment exists by Lem. 4.4.1. Second, since HX ⊇ X, then

ρX(aX) ≤ bX < +∞ (note that, if HX = Rn then aX = 0 and ρX(aX) = 0) and ΛX admits

solution, since, by hypothesis, it satisfies duality; respectively, the same holds for HY . By

the first parts of Thm. 3.2.2, 3.2.3, 3.2.1, and Lem. 4.4.1, if a solution exists and X ⊆ HX

and Y ⊆ HY , then Z ⊆ HZ , hence ρZ(aZ) < +∞. By the duality hypothesis, X ⊆ HX

and Y ⊆ HY hold for every solution and, hence, for every solution, ρZ(aX) < +∞. As

a result, we have (i) ρZ(aZ) = +∞ if and only if a solution does not exists. Next, we

show that, (ii) if a solution exists, then ρZ(aZ) = inf{ρ̄Z(aZ) : ΛZ(λ, aZ)}, in other words,

there exists a solution such that ρZ(aZ) + ε = ρ̄Z(λ, aZ) and ΛZ(λ, aZ), for every ε > 0.

For Z equal to every of X + Y , AX, and X ∩ Y , strong halfspace interpolation guaratees

that, for every HZ that includes Z strongly, there exists a solution where HX and HY resp.

include X and Y strongly. Since, the programs for ρ̄X and ρ̄Y are also dual, for every

ε > 0 a solution for ρZ(aZ) + ε|aZ | = ρ̄Z(λ, aZ) and ΛZ(λ, aZ) exists. For Z = coniX,

by Lem. 4.4.1, for every HZ including Z we have a halfspace HX including X, and, by

hypothesis (3), there exists a solution ρX(aX) = ρ̄Z(λ, aX) ≤ bX ,ΛX(λ, aX). Finally, we

show that the operations X + Y , AX, and X ∩ Y enjoy alternativity. Let aZ = 0 and

bZ = ε < 0 (i.e., Z = ∅). By strong halfspace interpolation, H,H ′ that strongly include

X and Y exist and, since aZ = 0, by the second part of Thm. 3.2.2, 3.2.3, 3.2.1, also

a solution such that either HX = H ′ or HX = Rn (resp. for HY and H ′′). If H ′ 6= ∅,

then ΛX admits solution by the duality hypothesis, if H ′ = ∅, it admits solution by the

alternativity hypothesis (resp. for HY and H ′′).

The construction allows us, not only to compute the support function, but also to

compute sequences of halfspace interpolants. Then, we can extract the outward pointing

directions by looking at the arguments instantiated by an emptiness check. For instance,

aX+Y is the outward pointing direction of the halfspace containing X+Y and, respectively,

aX and aY for the sets X and Y . As a result, we can extract sequences of directions that

refine the templates also arbitrary combinations of basic set operations, from one single

emptiness check.



49

We build such a construction for arbitrary sequences of flow and jump operators

induced by control paths. More concretely, let w = v0, e1, v1, . . . , ek, vk be a control path

of some CHA H then the path operator of w is

Pw = flowk ◦ jumpk ◦ · · · ◦ flow1 ◦ jump1 ◦ flow0(Z0). (4.17)

By applying the above rules, we construct the convex program for the support function of

Pw as follows:

minimize ρ̄Z0(λZ0) +
∑k

i=1 ρ̄Ji(λJi) +
∑k

i=0 ρ̄Ii(λIi)

subject to (λZ0 , a0 − b0) ∈ ΛZ0 ,

(λJi ,
[
−ai−1, ai − bi

]T
) ∈ ΛJi for each i ∈ [1..k],

ρ̄Fi(λFi , ai − bi) ≤ 0 for each i ∈ [0..k],

(λFi , ai − bi) ∈ ΛFi for each i ∈ [0..k],

(λIi , bi) ∈ ΛIi for each i ∈ [0..k],

ak = d.

(4.18)

Duality and alternativity is preserved, therefore we can use such construction to compute

the support functions for init and post (which are special cases of path).

Lemma 4.4.3. For every CHA H, every control path w of H, if either (1) all constraints

are compact or (2) all constraints are polyhedral, if the convex programs for every constraint

X along the path are dual and alternative to ρX , and (3) the convex programs for F0, . . . , Fk

attain the infimum (when feasible), then the convex program in Eq. 4.18 is dual and

alternative to ρPw .

Proof (sketch). The convex program in Eq. 4.18 is the inlining of the construction of Eq. 4.8–

4.11, for the operations composing Pw. To show this, we break down flowv ◦ jumpe into six

operations X(1) = [In 0n×n]TX(0), X(2) = X(1) + [0n×n In]TRn, X(3) = X(2) ∩ Je, X(4) =

[0n×n In]X(3), X(5) = X(4) +coniFv, and X(6) = X(5)∩Iv. Then, we use Eq. 3.18–3.20, and

4.12 to encode the interpolation problem over the directions a0, a4, . . . , a6 ∈ Rn, for, resp.,

X(0), X(4), . . . , X(6), a1, a
′
1, . . . , a3, a

′
3 ∈ Rn, for, resp., X(1), . . . , X(3), aI , aJ , a

′
J , aF ∈ Rn

for, resp., I, J , F and aR, a
′
R ∈ Rn for the set [0n×n In]TRn. Note that unprimed and

primed variables denote, resp., pre- and post-directions over the 2n-dimensional constraints



50

of the jump operator. We obtain the equations

a6 = a5 + aI , a5 = a4 = aF , a4 = a′3,0 · a3

a′3

 =

a2

a′2

+

aJ
a′J

 ,

a2

a′2

 =

a1

a′1

 =

aR
a′R

 ,

0 · aR
a′R

 = 0,

a1 = a0.

(4.19)

Note that (0 ·aR, a′R) = 0 corresponds to the constraint ΛRn(0 ·aR, a′R). From the equations,

we obtain the equalities aJ = −a0 and a′J = aF = a0 − aI . We let a0 = ai−1, a6 = ai+1,

aI = bi, and, after inlining all flow and jump operators, we obtain the convex program in

Eq. 4.18. Then, by the hypotheses (1), (2), and (3), every operation satisfies the premises

of Lem. 4.4.2. Then, by structural induction over the operations composing Pw, the convex

program in Eq. 4.18 satisfies duality and alternativity w.r.t. ρPw .

We identify the arguments that determine a suitable sequence of halfspace interpolants

after the emptiness check.

Lemma 4.4.4. For every CHA H, every control path w of H, every ε < 0, and every

(λ?, 0) ∈ ΛPw whose projection on a0, a1, . . . , ak is a?0, a
?
1, . . . , a

?
k ∈ Rn, if the convex

programs for the constraints X along the path satisfy the conditions of Lem. 4.4.3 and

ρ̄Pw(λ?) ≤ ε then a?0, a
?
1, . . . , a

?
k are the outward pointing directions of a sequence of halfspace

interpolants H0, H1, . . . , Hk for w as in Eq. 4.5.

Proof (sketch). The variable ai respectively corresponds, w.r.t. the encoding of Sec. 3.2, to

the variable aflowi ◦ jumpi ◦···◦flow1 ◦ jump1 ◦ flow0(Z0) and, hence, if ρ̄Pw(λ?) < 0, they constitute

constitute the outward pointing directions of a sequence of interpolants for emptiness.

In summary, we search by convex optimization for an argument for which the convex

program of Eq. 6.20 for d = 0 has negative solution. If so, the argument a?i for the

parameter ai is the outward pointing direction for the interpolant at mode vi. Adding a?i

to prec(vi) eliminates the spurious counterexample w.

In this section, we have built a refiner for every spurious path of every CHA, assuming

dual and alternative convex programs for the constraints along the path. In the following

section, we discuss such functions and show how to instantiate interpolation for the special

case of quadratic hybrid automata.



51

4.5 Abstraction Refinement for Quadratic Systems

The interpolation technique in Sec. 4.4 relies on the notions of duality and alternativity.

Duality and alternativity are preserved by Minkowski sum, linear transformation, conical

combination, and intersection, but whether they hold in the first place depends on the

constraint of the automaton. We discuss these properties for (convex) quadratic programs,

and we show their implications to the classes of quadratic and linear hybrid automata.

Closed convex quadratic sets are sets of the form
⋂m
i=1{x ∈ Rn | xQix

T + pTi x ≤ ri}

where Q1, . . . , Qm ∈ Rn×n are positive semidefinite matrices of coefficients, p1, . . . , pm ∈ Rn

are vectors of coefficients, and r1, . . . , rm ∈ R are constants. Closed convex quadratic sets

characterize quadratic hybrid automata.

Definition 8 (Quadratic hybrid automata). A quadratic hybrid automaton (QHA) is a

CHA whose constraints define closed convex quadratic sets.

The support function of a convex quadratic set is a quadratically constrained (convex)

quadratic program, which is known to cast to second-order conic programming (SOCP)

[3]. We cast the support function to an optimization problem over a (rotated) second-order

cone and we take its dual [3], so obtaining

minimize r1λ1 + · · ·+ rmλm

subject to p1λ1 + LT
1µ1 + · · ·+ pmλm + LT

mµm = d,

λ1 ≥ ‖µ1‖2
2, . . . , λm ≥ ‖µm‖2

2,

(4.20)

where L1, . . . , Lm are the Cholesky decompositions of Q1, . . . , Qm respectively (i.e., Qi =

LiL
T
i ), and λ1, . . . , λm ∈ R and µ1, . . . , µm ∈ Rn are the optimization arguments. Under

the regularity conditions for non-linear optimization, e.g., Slater’s condition, duality and

alternativity hold [28; 3]. Encodings that do not need such conditions exist [96], but are

not discussed in this paper.

Every algorithm that solves feasibility and optimization of SOCP solves init and post

computation and halfspace interpolation for QHA, thus enabling their template-polyhedral

abstraction and abstraction refinement.

Theorem 4.5.1. Let H be a QHA with n variables and m inequalities, where either (i)

all constraints are compact or (ii) all constraints are polyhedral. Let the time complexity

of SOCP be socp(α, β, γ) for α variables, β equalities, and γ cones.



52

• Init and post operators time complexity is p×socp(m,n,m) where p = max{|prec(v)| |

v ∈ V } for the precision function prec.

• Refinement time complexity is c × socp(m × k, n × k,m × k) where c = |W | and

k = max{|w| | w ∈ W} for the set of counterexamples W .

Proof (sketch). Let v0, e1, v1, . . . , ek, vk be a control path of the QHA H and for all con-

ditions X along the path let “minimize fXλX subject to AXλX = d, λX ∈ C“ be the

SOCP of Eq. 4.20 where λX ,fX , AX , and CX are resp. optimization variable, objective

function, equality constraint, and cones. Moreover, let’s split AJe in a upper A′Je and a

lower A′′Je of equal size. We instantiate the convex program in Eq. 4.18 with the SOCP if

each constraint. We obtain

minimize fZ0λZ0 +
∑k

i=1 fJiλJi +
∑k

i=0 fIiλIi

subject to AZ0λZ0 + AI0λI0 = 0,

A′′JiλJi + AIiλIi + A′Ji+1
λJi+1

= 0 for each i ∈ [0..k − 1],

AFiλFi + AIiλIi + A′Ji+1
λJi+1

= 0 for each i ∈ [0..k − 1],

A′′JkλJk + AIkλIk = d,

AFkλFk + AIkλIk = d,

(λZ0 , λF0 , λI0) ∈ CZ0 × CF0 × CI0 ,

(λJi , λFi , λI0) ∈ CJi × CFi × CIi for each i ∈ [1..k],

fFiλFi ≤ 0 for each i ∈ [0..k].

(4.21)

First, by Thm. 4.3.2 halfspace interpolants exist and solve the refinement problem, by

Lem. 4.4.4, the convex program encodes the halfspace interpolation problem. Since H

has n variables, m total (quadratic) inequalities, each SOCP in Eq. 4.20 has at most n

equalities (i.e., rows of p and LT), m variables and m cones. Then, the SOCP in Eq. 4.21

has m× k variables, n× k linear equalities, and m× k cones. Init and post operators are

special cases with k = 1.

Nevertheless, the complexity SOCP remains an open problem on the Turing machine,

while it is known to be in NP ∩ coNP on the real number model [96]. On the other hand,

several efficient (but incomplete) numerical procedures are available, therefore in practice

we can obtain support functions and interpolants, but with weaker guarantees. We are in

a better position for the case of linear hybrid automata (LHA), i.e., the special case of



53

QHA where all constraints define polyhedra. For linear hybrid automata, the program of

Eq. 4.20 is always a linear program (i.e., all cones are non-negativity constraints), where

duality holds, alternativity is given by Farkas’ lemma, and time complexity is polynomial.

Hence, for LHA, init operator, post operator, and refinement time complexities are as well

polynomial.

4.6 Benchmarks

We evaluate our algorithm on three main classes of benchmarks, namely Fischer’s mutuals

exclusion protocol [85], an adaptive cruise controller [73], and a synchronization protocol

of the time-triggered Ethernet (TTEthernet) [25]. For each class, we consider a version

with linear constraints and a version with nonlinear constraints, as well as for each a safe

version, i.e. that does not reach the bad state, and an unsafe version, i.e. that reaches the

bad state.

All of the benchmark consists of parallel compositions of hybrid automata, which

differ from Def. 1 for the fact that they allow modeling of external and internal variables.

Intuitively, external variables are variable whose name must refer to some variable of some

other automaton in the composition, while internal variables are as for Def. 1. We do not

formally define the composition rules here. For more details we refer the reader to the

related work [87]. Note that such hybrid automata after parallel compositions are indeed

hybrid automata as in Def. 1, hence our algorithm applies w.l.o.g.

In the following, we provide a detailed description of our benchmark classes and discuss

some additional experimental results.

4.6.1 Fischer’s mutual exclusion protocol

Fischer’s protocol is a time based protocol of mutual exclusion between processes. It

consists of m processes which coordinate using a m-dimensional vector of real variables x

(clocks) and a shared variable k which takes integer values between 0 and m.



54

ẋ ∈ F

idle
ẋ ∈ F

xi ≤ 1

set

ẋ ∈ F

test

ẋ ∈ F

cs

k == 0

x′i = 0

k := i

x′i = 0

k == i

x ≥ α

x′i = xi

k != i

x ≥ α

x′i = xi

k := 0

x′i = xi

xi = 0

Figure 4.4: Process automaton of the Fischer’s protocol

We model the shared variable as an automaton (without real-valued variables) with

m+1 control modes. The variable automaton is in mode i exactly and only when variable

k has value i. Each mode i has first an incoming control switch with event k == i from

itself, second an incoming control switch with event k != j from itself, for each mode

j 6= i, and third an incoming control switch with event k := j from each mode j.

The process automaton is depicted in Fig. 4.4. Each process is an instance of this

automaton and has an associated index i between 1 and m and an associated clock xi,

which is an element of x. The automaton consists of the modes idle, set, test, and cs.

Each process starts in mode idle. When process i wants to enter the critical section cs it

first resets xi to 0 (entering set) and then it sets k to i (entering test) before the clock

xi hits value 1. Afterwards (while entering test) it resets x to 0 again and then it tests

whether k equals i only after the clock x hits α. If k equals i then the process enters the

critical section cs, otherwise it repeats from idle. The process always resets k to 0 while

exiting the critical section.

The shared variable automaton and the process automata synchronize on all events

k := 0, . . . , k := m, k == 0, . . . , k == m, and k != 1, . . . , k != m. The variable xi is

internal and all variables xj, for j 6= i, are external to process i.



55

ẋldr
ẋ

 ∈ N
xldr − x ≥ α

cruise ẋldr − ε
ẋ

 ∈ N
xldr − x ≤ γ

recover

crash

xldr − x ≤ β

x′ = x

xldr − x ≥ β

x′ = x

x = xldr − γ

xldr − x ≤ 0

Figure 4.5: Follower automaton of the adaptive cruise controller

The protocol is correct if two processes are never in the critical section at the same

time. Hence, the question is whether a state with two protocols in cs is reachable. The

correctness depends on the relation between the clock drift F ⊆ Rm and α ∈ R. Different

versions of F and α define exactly the different versions of the protocol we are considering.

In the linear case, F is the m-dimensional unit cube centered in 1, i.e., the constraint

over dotted variables given by 1
2
≤ ẋ1 ≤ 3

2
, . . . , 1

2
≤ ẋm ≤ 3

2
, while α equals 2.1 for the safe

case and 1.9 for the unsafe case. In the non-linear case, F is the m-dimensional unit ball

centered in 1, i.e., the constraint over dotted variables given by
√
ẋ2
1 + . . . , ẋ2

1 ≤ 1, while

α equals 1.42 for the safe case and 1.40 for unsafe case (over- and under-approximations

of
√

2 respectively). We verify the linear cases up to 5 processes and the non-linear cases

up to 3 processes..

4.6.2 Adaptive cruise controller

The adaptive cruise controller is a distributed system of distance control of a platoon of

cars on a straight highway. It consists of a sequence of m cars each of which is called the

follower of the previous car in the sequence and the leader of the next car in the sequence.

The task of each follower is to control the speed to the speed of the leader and keeping a

safety distance. The first car in the sequence drives at a constant speed.



56

The automaton for the first car, the leader automaton, consists of one single mode

cruise and one single internal variable x. The variable x models the position of the car

and is initialized at value mγ and its flow consists of a constant positive real value.

The automaton for all other cars, the follower automaton, is shown in Fig. 4.5. It

consists of the modes cruise, recover, and crash, one external variable xldr and one

internal variable x. Variable x models the position of this car and variable xldr models the

position of its leader. The flow N models the speed measurement drift between follower

and leader, e.g., due to sensing noise and other environmental conditions. The switching

logic is governed by the constants 0 < α < β < γ. The car starts in mode cruise with

distance γ from its leader. When the distance falls between β and α, a switch to recover

happens. In recover the follower slows down of a constant ε > 0 w.r.t. the speed of the

leader. When the distance establishes between β and γ, a switch back to cruise happens.

Otherwise, if the distance keeps falling and hits 0, the car switches to crash. We omit the

constraints of crash as they are immaterial for our purpose.

The whole model consists of the parallel composition of one leader and m-1 followers.

The variable xldr of each follower is renamed after the variable x of its leader. No event

synchronizes.

We check for the reachability of any mode in which at least one car is in mode crash.

The distance thresholds α, β, and γ are constants and do not affect the reachability of

crash, but rather the smoothness of the system (switching frequency), therefore we fix

them to 1, 2, and 3 respectively. Reachability if affected by N and ε. For the linear case we

define them as follows. The flow N is a two-dimensional unit cube centered in 0, namely

it defines flow |ẋ− ẋldr| ≤ 1
2

in cruise and |ẋ− ẋldr + ε| ≤ 1
2

in recovery. The constant

ε is 1.1 for the safe case and 0.9 for the unsafe case. For the non-linear case we replace N

with a unit ball centered in 0, and ε with 1.42 for the safe case and 1.40 for the unsafe

case. We analyze platoons up to 7 cars.



57

ẋ = 1

˙cm = 0

x ≤ 1

wait
ẋ = 1

˙cm = 0

x ≤ 0

receive
ẋ = 1

˙cm = 0

x ≤ 0

correctsnd

x ≥ 1

x′ = 0

cm′ = smmed

sync

x′ = x

cm′ = cm

back

x′ = x

cm′ = cm

x = 0

cm = 0

Figure 4.6: Compression master of the TTEthernet protocol

˙sm ∈ F

work

˙sm ∈ F

sent

˙sm ∈ F

syncd
snd

sm′i = smi

sync

sm′i =

f(cm1, cm2, smi)

back

sm′i = smi

smi = 0

Figure 4.7: Synchronization master of the TTEthernet protocol



58

4.6.3 Time-triggered Ethernet synchronization protocol

We describe the protocol for the remote synchronization of possibly drifted clocks in

a TTEthernet. It consists of a set of two compression masters and m synchronization

masters, all sharing a channel. First, the synchronization masters send their clock values

to all compression masters. Then compression masters choose the median among all clocks.

Second, the two compression masters send the median to all synchronization masters.

Then all synchronization masters update their own clocks with the average of the medians.

The automaton for the compression master is shown in Fig. 4.6. It consists of three

modes wait, receive, and correct, two internal variables x and cm and one external

variable smmed. The variable x is the internal clock. The automaton starts in wait. The

protocol begin when the internal clock x hits exactly 1 synchronizing on event snd. It stores

in cm the median of the synchronization master clocks smmed and switches to receive.

Now the automaton immediately (within zero time) performs a sync event in which it

sends its cm value to the synchronization masters and switches to correct. Again the

automaton immediately performs a back event and switches back to wait.

The automaton for the synchronization master is shown in Fig. 4.7. It consists of three

modes work, sent, and syncd, one m dimensional variable sm and two variables cm1 and

cm2. One element of sm is internal, denoted smi, while all others are external. They

model internal clock and clocks of the other synchronization masters, respectively. Both

cm1 and cm2 are external. The clocks sm have possibly drifted speed according to the flow

F . The automaton starts in work and eventually sends its internal clock to the compression

masters on event snd, switching to sent. Afterward it receives the values of the two

compression masters cm1 and cm2. If computes the function value f(cm1, cm2, smi) and

uses it to update its own clock on event sync. It switches to syncd and then back to work.

We compose in parallel the two compression masters and the m synchronization masters.

We arbitrarily choose one of the synchronization master clocks as median value (as hybrid

automata are inherently non-deterministic, there is not a probabilistic distribution among

clocks drifts) and we rename smmed of both compression masters to it (similarly to the

related literature [25]). We rename cm1 and cm2 of each synchronization master to the

variable cm of the two compression masters. The automata synchronize on all events.



59

The protocol aims at guaranteeing a bounded clock difference between the clocks of any

two synchronization masters. Let us denote the bound with α. We compose the systems

with a monitor that start in some mode good and switches to some mode bad as soon as

the difference between any pair of sm falls above α. The reachability question is weather

bad is reachable. The answer depends on F , α, and f . Again, we distinguish between a

linear and a non linear case. For the linear case F is the cube of side 2 centered in 1, i.e.,

the flow 0 ≤ ˙sm1 ≤ 1, . . . , 0 ≤ ˙smm ≤ 1, and α is 2.1. For the non-linear case F is the unit

ball centered in 1, i.e., the flow
√

( ˙sm1 − 1)2 + . . . ( ˙smm − 1)2 ≤ 1, and α is 1.42. In both

linear and non-linear case, for the safe case the update function f is equal to the average

between the two compression master values cm1+cm2

2
, for the unsafe case it is equal to smi.

We verify both linear and non-linear systems with 3,5,9, and 17 synchronization masters.

4.7 Experimental Evaluation

We evaluate our algorithms on three main classes of benchmarks, namely Fischer’s proto-

col [85], an adaptive cruise controller [73], and the TTEthernet protocol [25]. For each

class, we consider a linear version and a non-linear version, as well as for each a safe

version and an unsafe version.

Fischer’s protocol is a time based protocol of mutual exclusion between processes. The

protocol is correct if two processes are never in the critical section at the same time. For

the linear version, the flow constraints are given by 1
2
≤ ẋ1 ≤ 3

2
, . . . , 1

2
≤ ẋm ≤ 3

2
, where

xi is the clock of the i-th process, and for the non-linear case,
√
ẋ2
1 + · · ·+ ẋ2

m ≤ 1. We

verify the linear version up to 5 processes and the non-linear version up to 3 processes.

The adaptive cruise controller is a distributed system for safety distance of platoon of

cars. Each car either cruises or recovers by slowing down. The relative velocity has a drift

|ẋ− ẋldr| ≤ 1
2

when cruising and |ẋ− ẋldr + ε| ≤ 1
2

when recovering, where x and xldr are

the positions of each car the car in front, resp, and ε is the slow-down. We check for car

crashes in platoons up to 7 cars.

Finally, we consider the TTEthernet protocol for the remote synchronization of possibly

drifted clocks distributed over multiple components. Similarly to previous case studies, we

consider flows defined in terms of intervals and unit balls for linear and non-linear cases,

respectively. We verify both linear and non-linear systems with 3, 5, 9, and 17 components.



60

Benchmark
Empty Octagonal PHAVer

#spu #dir cgr [s] itp [s] ver [s] #spu #dir cgr [s] itp [s] ver [s] time [s]

fsr lnr 2 sf 5 8 0.06 0.02 ≈0 0 256 + 0 0.11 0 0.11 ≈0

fsr lnr 3 sf 41 69 1.12 0.02 0.02 12 3456 + 12 5.55 ≈0 0.50 1.25

fsr lnr 4 sf 259 440 33.16 0.29 0.14 221 32768 + 221 1190 0.07 23.06 135

fsr lnr 5 sf 1379 2335 857 2.08 0.76 oot 256k oot oot oot 78807

fsr lnr 2 usf 0 0 ≈0 0 ≈0 0 256 + 0 0 0 0.12 ≈0

fsr lnr 3 usf 0 0 0.03 0 0.03 0 3456 + 0 0 0 0.37 1.01

fsr lnr 4 usf 0 0 0.06 0 0.06 0 32768 + 0 0 0 1.67 300

fsr lnr 5 usf 0 0 0.16 0 0.16 0 256k + 0 0 0 13.63 oom

fsr qdr 2 sf 5 8 5.13 0.10 1.32 0 256 + 0 0 0 8.18 -

fsr qdr 3 sf 41 69 226 0.44 9.04 12 3456 + 12 3599 0.15 886 -

fsr qdr 2 usf 0 0 0.66 0 0.66 0 256 + 0 0 0 6.40 -

fsr qdr 3 usf 0 0 1.76 0 1.76 0 3456 + 0 0 0 26.67 -

acc lnr 2 sf 2 2 ≈0 ≈0 ≈0 0 32 + 0 0 0 ≈0 ≈0

acc lnr 3 sf 8 8 0.04 ≈0 ≈0 0 144 + 0 0 0 0.19 0.03

acc lnr 4 sf 24 24 0.39 ≈0 0.02 0 512 + 0 0 0 0.87 0.53

acc lnr 5 sf 64 64 0.94 ≈0 0.12 oot 1600 oot oot oot 21.78

acc lnr 6 sf 160 160 42.12 0.07 0.74 oot 4608 oot oot oot 1455

acc lnr 7 sf 384 384 569 0.13 4.22 oot 12544 oot oot oot oot

acc lnr 2 usf 1 1 ≈0 ≈0 ≈0 0 32 + 0 0 0 ≈0 ≈0

acc lnr 3 usf 2 2 ≈0 ≈0 ≈0 0 144 + 0 0 0 0.05 ≈0

acc lnr 4 usf 3 3 ≈0 ≈0 ≈0 0 512 + 0 0 0 0.37 0.18

acc lnr 5 usf 4 4 ≈0 ≈0 ≈0 0 1600 + 0 0 0 0.61 22.51

acc lnr 6 usf 5 5 0.06 ≈0 0.04 0 4608 + 0 0 0 1.23 4621

acc lnr 7 usf 6 6 0.17 ≈0 0.06 0 12544 + 0 0 0 2.87 oot

tte lnr 3 sf 17 18 0.17 ≈0 ≈0 oot 864 oot oot oot oot

tte lnr 5 sf 49 50 0.32 ≈0 ≈0 oot 2400 oot oot oot oot

tte lnr 9 sf 161 162 3.47 ≈0 0.06 oot 7776 oot oot oot oot

tte lnr 17 sf 577 578 239 0.06 1.27 oot 27774 oot oot oot oot

tte lnr 3 usf 18 24 0.26 ≈0 0.05 0 864 + 0 0 0 0.42 oot

tte lnr 5 usf 60 80 0.85 ≈0 0.02 0 2400 + 0 0 0 0.95 oot

tte lnr 9 usf 216 288 15.65 ≈0 0.26 0 7776 + 0 0 0 4.36 oot

tte lnr 17 usf 816 1088 1722 0.35 8.68 0 27774 + 0 0 0 109 oot

tte qdr 3 sf 17 18 8.30 0.38 1.36 oot 864 oot oot oot -

tte qdr 5 sf 49 50 56.31 1.25 4.01 oot 2400 oot oot oot -

tte qdr 9 sf 161 162 492 3.94 12.29 oot 7776 oot oot oot -

tte qdr 17 sf 577 578 3325 12.79 47.49 oot 27774 oot oot oot -

tte qdr 3 usf 18 24 3.65 0.21 0.60 0 864 + 0 0 0 6.33 -

tte qdr 5 usf 60 80 37.99 0.66 1.82 0 2400 + 0 0 0 21.68 -

tte qdr 9 usf 216 288 514 2.61 7.32 0 7776 + 0 0 0 58.27 -

tte qdr 17 usf 816 1088 15515 18.28 58.95 0 27774 + 0 0 0 78.19 -

Table 4.1: Runtimes for the reachability analysis of Fishers’ protocol, adaptive

cruise controller, and TTEthernet.



61

We implemented a CEGAR loop based on our procedure in C++ and conducted the

following experiments on a machine with 2.6GHz CPU and 4 GB of dedicated RAM. We

use the GLPK for solving LPs and MOSEK for solving SOCPs [1; 90]. We executed our

tool under the empty strategy and the octagonal strategy. With the empty strategy, the

initial precision is empty, which means that the very first abstraction computation consists

of a simple exploration of the control graph. With the octagonal strategy, the precision at

every mode consists of the octagonal template, with a total of 2|V |n2 directions over all

modes. For all linear instances, we compared against PHAVer [52] (SpaceEx v0.9.8c with

PHAVer scenario).

Table 4.1 shows the results. Specifically, empty and octagonal indicate the initial

precision; #spu is number of discovered spurious counterexamples, #dir is the number of

discovered directions (empty case) or initial directions + discovered directions (octagonal

case); cgr is the total time spent in unsuccessful abstractions (with spurious counterex-

ample), itp is the total time spent in discovering halfspace interpolants, ver is the time

spent in successful abstractions; oot indicates out of time (24 hours), oom indicates out of

memory (4Gb), and dash indicates unsupported. The benchmark names are structured

as follows. fsr indicates Fischer’s protocol, acc indicates adaptive cruise controller, tte

indicates TTEthernet, lnr indicates linear, qdr indicates quadratic, the following number

indicates the number of components, and sf and usf resp. indicate safe and unsafe.

The empty strategy has on average the best runtime and always outperforms PHAVer.

It also outperforms the octagonal strategy for most of the instances. Both strategies spend

most of the time in the first phase (CEGAR iterations ending in a spurious counterexample),

and take a very short time for the final verification step. For Fischer’s protocol the octagonal

strategy is always slower than the empty. For the other benchmarks the difference is less

stunning, in particular for the unsafe cases of the TTEthernet benchmarks, where the

first phase penalizes considerably. On the other hand, we can observe that, under the

assumption that we are not aware of the safety of the systems, our method shows to be

the most scalable. The octagonal strategy tends to run out of time because the higher

number of directions causes the generation of bigger and bigger abstract regions. In fact,

we have verified that for these instances a spurious counter-example is never found. The

same argument likely holds for PHAVer, as its dump shows that new symbolic states are

always found. Not surprisingly, for QHA the performance is generally worse than for LHA.



62

In summary, template polyhedra coupled with our abstraction refinement technique

are faster than the exact polyhedral reachability analysis. Noteworthy is how negligible is

the time required in the final verification step on all instances. Our tool recomputes the

whole abstraction after every refinement phase, as all our efforts have been strictly focused

on implementing an efficient template refinement. The final time sets a lower bound for

the verification time achievable by an incremental abstraction. Furthermore, we could

observe that inferring small template sets plays an important role in the convergence of

the whole analysis.



63

5 Conic Abstractions for Affine Hybrid Automata

For the purpose of unbounded-time analysis, a very useful strategy is to use lightweight

runtime technique for continuous online verification[74; 75], and another important strategy

is to abstract the original system and find an invariant for the abstraction [68]. However,

obtaining a high-quality abstraction automatically for the original system is challenging

by itself and this is why PHAVer chooses to leave this important work to users, who

have some domain expertise available for this purpose [52]. Roughly speaking, the

ultimate goal of abstraction is to use a partition of the state space which is as coarse

as possible, to derive an over-approximation of the original system which is as accurate

as possible and allows a computation of the reachable state set which is as efficient as

possible. Depending on the set representation that is used, the schemes that have been

proposed for state space partition vary significantly [19; 78; 9; 110; 109; 101; 106; 14;

65]. When polyhedra are used for the set representation of states, a guiding principle for

state space partitioning is that the partition should result in a set of regions that are as

“straight” as possible. By “straight region”, we mean that the maximal angle between the

derivative vectors in that region (which we define as the twisting of the region) is small, so

that every trajectory tends to be straight in the region. The benefit of straight regions is

that they can be over-approximated accurately by polyhedra. However, for a given system,

obtaining the least number of straight regions under a given threshold of twisting is by no

means trivial.

With this principle in mind, we propose a new abstraction called conic abstraction

for affine hybrid systems and we compute reachable state sets based on the abstraction.

Given an n-D linear system defined by ~̇x = A~x, assume that A is an invertible matrix

(note that any affine system ~̇x = A~x+~b can be transformed into a linear system under this

assumption). The basic idea behind conic abstraction is as follows. First, the derivative



64

space of the system is partitioned uniformly into a set D of convex polyhedral cones. Then,

D is mapped back from the derivative space to the state space to obtain a conic partition C

of state space, i.e., ∀Ci ∈ C : ∃Di ∈D : Ci = {A−1~y | ~y ∈ Di}. Finally, every state region

Ci is treated as a discrete location (“mode”) and the discrete transitions between these

modes are decided on-the-fly according to whether there exists a trajectory between them.

By doing so, we can easily obtain the differential inclusion Di for each polyhedral cone Ci.

Therefore, for any subset Ii of Ci, the reachable set of Ii in Ci can be overapproximated by

(Ii ⊕Di) ∩ Ci, where ⊕ denotes the Minkowski sum. More importantly, since the twisting

of Ci is determined by the maximal angle of Di, the partition can be refined easily to any

desired precision, by shrinking the maximal angle of the conic partition of the derivative

space. Note that an important feature of Ci is that it is an unbounded set, however,

with a bounded twisting, which means that each Ci captures infinitely long trajectories

only if they are straight enough. Diagonalizable affine systems, for which the matrix A

is diagonalizable, form such a class of systems, because for diagonalizable systems all

trajectories eventually evolve into approximately straight lines.

Using properties of diagonalizable affine systems, we develop an algorithm that con-

structs a conic abstraction as a directed acyclic graph (DAG) for which an invariant (i.e., an

over-approximation of the reachable state set) exists and the computation of the invariant

is guaranteed to terminate. The algorithm is implemented in a tool and experiments on

randomly generated examples as well as published benchmarks show that our approach is

more powerful than PHAVer in finding unbounded invariants. Note that computing an

unbounded invariant for diagonalizable affine systems lies beyond the capability of tools

for time-bounded reachability analysis, such as SpaceEx [57].

The main contributions of this paper are as follows. First, we propose conic abstractions

and a method for constructing them for affine hybrid systems. The core idea lies in deriving

a state space partition from a uniform partition of the derivative space. Second, we develop

an algorithm for building conic abstractions as DAGs for diagonalizable affine systems

and for computing invariants on these abstractions. Finally, we implement and evaluate

our approach in a tool.



65

The paper is organized as follows. Section 5.1 is devoted to preliminary definitions.

In Section 5.2, we introduce conic abstractions for affine systems. In Section 5.3, we

show how to construct conic abstractions as DAGs for diagonalizable systems. Section 5.4

describes how we compute invariants for continuous systems and affine hybrid systems. In

Section 5.5, we present our experimental results.

5.1 Affine Systems

In this section, we recall some concepts used throughout the paper. We first clarify some

notation conventions. We use bold uppercase letters such as A to denote matrices and bold

lowercase letters such as ~b to denote vectors and diag(λ1, · · · , λn) to denote a diagonal

matrix with λ1, · · · , λn as its diagonal elements. We call a dynamical system defined as

~̇x = A~x+~b an affine system and we use a superscript T for the transpose of a matrix.

Definition 9 (Affine System). An n-dimensional affine system consists of a matrix

A ∈ Rn×n and a vector ~b ∈ Rn, which define the vector flow ~̇x = A~x+~b, and an initial

region X0 ⊆ Rn defined by a polyhedron.

Whenever the initial set is immaterial, we refer to an affine system just as to ~̇x = A~x+~b.

We next introduce the concept of Lie derivative.

Definition 10 (Lie derivative). For a given polynomial p ∈ K[~x] and a continuous system

~̇x = ~f , the Lie derivative of p ∈ K[~x] along ~f is defined as L~fp
def
= 〈∇p, ~fT 〉.

For an affine system ~̇x = A~x+~b, we can simply write the Lie derivative as L ~A〈~a, ~x〉 =

〈~aA, ~xT 〉 + 〈~a,~bT 〉. We call a polyhedral cone C an intersection of linear inequalities of

the form 〈~a, ~x〉 ≤ 0, and we denote its boundary as ∂C. For X, Y ⊆ Rn, X ⊕ Y denotes

their Minkowski sum {~x + ~y : ~x ∈ X and ~y ∈ Y }, and for A ∈ Rn×n and X ⊆ Rn, AX

denotes the linear transformation {A~x : ~x ∈ X}.



66

5.2 Conic Abstractions of Affine Systems

Discrete abstraction is a basic strategy for verifying continuous and hybrid systems. There

are many abstraction approaches proposed for this purpose. Rectangular abstraction [68;

78; 52] and nonlinear abstraction [9; 110; 109; 106] are widely used. However, even for

linear systems, the existing abstraction approaches are still inefficient. In this section,

focusing on linear systems, we propose a new abstraction approach called conic abstraction.

However, since every affine system can be transformed into an equivalent linear system

~̇x = A~x, as we discuss in Sec. 5.3, our discussion applies to affine systems too.

The idea is that we partition the state space of a linear system into a set of convex

polyhedral cones. We call this set a conic partition.

Definition 11 (Conic Partition). A conic partition is a set of polyhedral cones ∆ such

that ∪Ci∈∆Ci = Rn and every two cones C1, C2 ∈ ∆ have disjoint interiors, i.e., (C1\∂C1)∩

(C2\∂C2) = ∅.

We call an element of the partition C ∈ ∆ a region. Then we construct a graph whose

vertices correspond to partition regions and edges indicate possible flow between them.

We call such a graph a conic abstraction.

Definition 12 (Conic Abstraction). The conic abstraction of the linear system ~̇x = A~x

derived from the conic partition ∆ consists of the finite directed graph (L,E) as follows.

Every vertex lC ∈ L corresponds to one and only one cone C ∈ ∆. There exists an

edge (lC1 , lC2) ∈ E if and only if there exists a plane F1 = {~x | 〈~a, ~xT 〉 = 0} such that

1) ∂C1 ∩ ∂C2 ⊆ F1, 2) C1 ⊆ {~x | 〈~a, ~xT 〉 ≤ 0}, 3) the Lie derivative of 〈~a, ~xT 〉 is

non-negative at some common point, i.e., L ~A〈~a, ~xT 〉 ≥ 0 for some ~x ∈ ∂C1 ∩ ∂C2.

We elaborate on how to construct a conic abstraction for diagonalizable systems

in Sec. 5.3. A conic abstraction can be seen as a Linear Hybrid Automaton (LHA,

[63]), whose locations lC are such that its invariant is given by C, its flow is given

by a differential inclusion defined as ~̇x ∈ AC, and whose switch guards consist of the

common facet of the respective adjacent cones. Consider the linear system described

by ẋ = −2x− 2y, ẏ = −5x + y. A conic partition of the state space, the corresponding

differential inclusion and the conic abstraction of the system is shown in Figure 5.1a,

Figure 5.1b and Figure 5.1c, respectively. As you can see, both the invariant and the



67

- 10 - 5 0 5 10

- 10

- 5

0

5

10

(a)

- 10 - 5 0 5 10

- 10

- 5

0

5

10

(b)

+

+ +

+

+

+

+

+

+ +

+ =

=

+ =

=

=+

=

=

+

=

(c)

Figure 5.1: Example 5.2. (a) Conic partition of state space. (b) Conic differ-

ential inclusion. (c) Conic abstraction of the system.

differential inclusion of each location are polyhedral cones. Similarly as for

the symbolic reachability analysis of LHA [6], the set of states that are reachable from an

initial set X ⊆ Rn through the continuous flow at location lC ∈ L corresponding to C ∈ ∆

is given by

(X ⊕AC) ∩ C. (5.1)

A conic abstraction represents an overapproximation of the system, whose tightness

depends on the maximum angle between any two points in the cone AC in derivative

space. Roughly speaking, the more acute the cone AC in derivative space, the more

accurate the overapproximation. Figure 5.2a shows a comparison between conic partitions

with different accuracies (depicted in two different shades) for the same initial region. We

encapsulate the accuracy given by a partition with the notion of twisting.



68

Definition 13 (Twisting of a state region). Let ~̇x = A~x be a linear system and P ⊆ Rn

be a (not necessarily conic) region of the state space. Then P is said to have a twisting of

θ (or to be θ twisted) if it satisfies that

sup
~x1,~x2∈P

arccos

(
〈~̇x1, ~̇x2〉
‖~̇x1‖‖~̇x2‖

)
= θ. (5.2)

Intuitively, a cone with smaller twisting allows only trajectory segments that are almost

straight, inducing a more accurate overapproximation. In the context of conic abstraction,

properly inducing smaller and smaller twistings induce refinements of the abstraction,

providing a better overapproximation.

Definition 14 (Conic abstraction refinement). Given two conic abstractions (L1, E1) and

(L2, E2) for a linear system ~̇x = A~x, (L2, E2) refines (L1, E1) if |L2| > |L1| and for all

l1 ∈ L1 with cone C1 there does always exist l12, . . . , l
m
2 ∈ L2 with cones C1

2 , . . . , C
m
2 such

that C1 = C1
2 ∪ · · · ∪ Cm

2 .

It is subject of Sec. 5.3 how to generate abstraction refinements by tuning the value of

twisting.

The property we desire is that the twisting of every state partition is bounded by

a small angle θ. A common strategy to achieve this goal is to split the state space

into small rectangles iteratively until the twisting of each rectangle falls below θ [68; 49;

52]. However, such strategy is inefficient, as the twisting may not change uniformly in a

rectangular partition. On the contrary, a conic partition naturally enjoys bounded twisting

using unbounded regions. This allows a conic partition to accurately overapproximate

both bounded and unbounded reach pipes, if in the latter case the trajectories are straight

enough. Figure 5.2b shows such an example, where the tiny cone overapproximates all

trajectories entering it, as they tend to be parallel to its left boundary.



69

-60 -40 -20 0

-60

-40

-20

0

(a)

-30 -25 -20 -15 -10 -5 0

-30

-25

-20

-15

-10

-5

0

(b)

Figure 5.2: (a) Overapproximation inside different cones. The smaller the

cone, the more precise the overapproximation. (b) A cone capable of offering

accurate overapproximation for unbounded reach pipe.

5.2.1 Conic abstractions derived from derivative space parti-

tions

In existing work on discrete abstraction of continuous systems, to obtain a high-quality

state space partition, the focus is mostly placed on state space. However, what really

matters here is the derivative space. Therefore, our state space partition should be derived

from a derivative space partition. Given a continuous system ~̇x = ~f(~ )x, every convex cone

D in the derivative space with a maximal angle θ corresponds to a set C of states which

has a twisting of θ. Moreover, C can be obtained through simple substitution. However,

for nonlinear systems, C is nonlinear and is hard to handle, so we leave it for future work.

We assume that the systems under consideration are linear. To derive a conic abstraction

for an n-dimensional linear system, we first partition the whole derivative space into a set

Ω of convex polyhedral cones which satisfies that

1.
⋃
Di∈Ω Di = Rn;

2. ∀Di, Dj ∈ Ω : (Di\∂Di)
⋂

(Di\∂Dj) = ∅;

3. ∀Di ∈ Ω : ^Di ≤ θ, where ^Di denotes the maximal angle of Di (i.e. the maximal

angle between the vectors in Di) and θ is a given bound.



70

By mapping Ω back to the state space, we can obtain another set ∆ of state regions. The

property of ∆ is formalized in the following theorem.

Theorem 5.2.1. Given a linear system ~̇x = A~x let Ω be a set of convex polyhedral cones

defined as above and ∆ = {A−1D | D ∈ Ω}. Then,

1. every Ci ∈ ∆ is a convex polyhedral cone and the twisting of Ci is θ-bounded;

2.
⋃
Ci∈∆Ci = Rn;

3. ∀Ci, Cj ∈ ∆ : (Ci\∂Ci)
⋂

(Ci\∂Cj) = ∅;

Proof. 1. Let Ci = A−1Di ∈ ∆, we first prove Ci is a convex polyhedral cone. Given

any two vectors ~x1, ~x2 ∈ Ci, we only need to prove that α~x1 + β~x2 ∈ Ci for any

α > 0, β > 0. Since ~x1, ~x2 ∈ Ci, we have A~x1 ∈ Di,A~x2 ∈ Di, then αA~x1 +

βA~x2 = A(α~x1 + β~x2) ∈ Di because Di is a convex polyhedral cone. Therefore,

α~x1 + β~x2 ∈ A−1Di = Ci. Moreover, since ACi = Di and ^Di ≤ θ, the twisting of

Ci must be θ-bounded.

2. Since A is full rank, then the mapping A−1~x is a bijection. Hence, Rn = A−1Rn =

A−1(
⋃
Di∈Ω Di) =

⋃
Ci∈∆ Ci.

3. Since ∀Di, Dj ∈ Ω : (Di\∂Di)
⋂

(Di\∂Dj) = ∅, by applying A−1 to the above

formula, we can derive that ∀Ci, Cj ∈ ∆ : (Ci\∂Ci)
⋂

(Ci\∂Cj) = ∅ holds.

According to Theorem 5.2.1, we know that, given any linear systemH with an invertible

matrix A and a θ-bounded conic partition Ω of the derivative space, a conic partition ∆

for the state space with θ-bounded twisting can be obtained by a linear transformation.

Note that the twisting of Ci is θ-bounded does not mean that Ci is θ-bounded. Conversely,

the maximal angle of each cone Ci varies significantly depending on how straight the

trajectories are in that cone. Roughly speaking, the straighter the trajectories are, the

larger the maximal angle of Ci is, provided that the twisting is the same.

Now, let us get back to the issue of generating a conic partition of the derivative space.

Our approach borrows the idea of slicing watermelons. Concretely, given an n-dimensional

derivative space, we first choose a group of seed planes passing through the origin and

then generate a cluster of planes by rotating each seed plane counterclockwise around an



71

-10 -5 0 5 10

-10

-5

0

5

10

(a)

-10 -5 0 5 10

-10

-5

0

5

10

(b)

Figure 5.3: Example 5.2.1 (a) Uniformly conic partition of the the derivative

space. (b) Conic partition of state space derived from the derivative space

partition.

independent axis by a fixed angle θ1, step by step until no further θ1 rotation is possible.

Finally, the whole vector space can be sliced into a set of convex polyhedral cones by the

generated planes and each of them is θ2-bounded for some θ2. By mapping these cones

into the state space, we can achieve a conic partition of θ2-bounded twisting for the state

space. The following example shows how a conic state space partition derived from a

uniform derivative space partition looks like.

Consider the following linear system H described by ẋ = −2x− 2y, ẏ = −5x+ y. As

shown in Figure 5.3a, the derivative space is first uniformly partitioned into 18 cones.

Then, these cones are mapped into the state space. As can be seen in Figure 5.3b, in every

cone, the straighter the trajectories are, the larger the maximal angle of the cone is.

The reachable set computation of a conic abstraction is a basic operation of linear

hybrid automata. As usual, due to the undecidable nature of the issue, the reachable set

computation of a conic abstraction cannot guarantee to terminate for a general linear

system. However, for the conic abstraction of a specific class of systems, the reachable set

computation can be guaranteed to terminate, which is shown in the next section.



72

5.3 Diagonalizable Systems

In this section, we focus on a class of affine systems for which the matrix used to describe

the system dynamics is diagonalizable in R, called diagonalizable systems. The reason

why diagonalizable systems are interesting is that, given a conic abstraction, the reachable

set computation is guaranteed to terminate. Formally, a diagonalizable system is defined

as follows.

Definition 15 (Diagonalizable system). An affine system ~̇x = A~x+~b is diagonalizable

if there exist a real matrix Q such that Q−1AQ = diag(λ1, · · · , λn), where λi ∈ R, λi 6=

0, i = 1, · · · , n.

In the following, we introduce how to derive a conic abstraction for a diagonalizable

system and how to overapproximate their reachable sets by the conic abstraction. We also

extend the theory to hybrid affine systems.

5.3.1 Properties of diagonalizable systems

The most important feature of diagonalizable system is that all of their eigenvalues are real

numbers. Given a diagonalizable affine system ~̇x = A~x+~b with initial region X0, by doing

a translation on the coordinate system with ~y = ~x+ A−1~b, we can always transform the

system into a linear system ~̇y = A~y with initial region Y0 = X0 ⊕ {A−1~b}. Let λ1, . . . , λn

be the eigenvalues of A and ~u1, . . . , ~uj be the corresponding eigenvectors respectively, then

the general solution of the linear system can be written as (refer to [72])

~x(t) = c1e
λ1t~u1 + · · ·+ cne

λnt~un (5.3)

where c1, . . . , cn depends on the initial value ~x0 of the system of differential equations

and can be obtained by solving ~x(0) = ~x0. Let U = (~u1, . . . , ~un) and ~c = (c1, . . . , cn),

Cone(~c,U) = {~x ∈ Rn | ~x =
∑n

i=1 tici~ui, ti ≥ 0} denote the convex polyhedral cone

generated by the vectors c1~u1, . . . , cn~un. Then, we have the following theorem.

Theorem 5.3.1. Given a diagonalizable system ~̇x = A~x +~b, let U be defined as above

and Ξ = {−1, 1}n. Then, for every ~ξ ∈ Ξ, Cone(~ξ,U ) is an invariant and the twisting of

Cone(~ξ,U) is bounded by radian π.



73

Proof. For system H2, given any initial point ~x0, there must exist a set of constants

~c = (c1, . . . , cn) such that the solution for the initial value ~x0 satisfies the equation (5.3)

and ~x(0) =
∑n

i=1 ci~ui. Let ~ξ = (sign(c1), . . . , sign(cn)), then ~x(0) ∈ Cone(~ξ,U), where

sign(ci) = 1 if ci ≥ 0 otherwise sign(ci) = −1. Note that ~ξ could be any value in Ξ

depending on ~x0. Since for any t ≥ 0, we have eλit > 0, which means that sign(ci) =

sign(cie
λit). Therefore, ∀t ≥ 0 : ~x(t) ∈ Cone(~ξ,U), i.e. Cone(~ξ,U) is an invariant of

the system. Since Cone(~ξ,U) is a convex polyhedral cone, ACone(~ξ,U) is a convex

polyhedral cone as well, hence the maximal angle of ACone(~ξ,U) must be bounded by π.

Correspondingly, the twisting of Cone(~ξ,U) is bounded by π.

According to Theorem 5.3.1, the state space of a diagonalizable system can always be

partitioned into a set of invariant cones and the twisting of every invariant cone is bounded

by radian π. Therefore, given a diagonalizable system, to overapproximate the reachable

set, we do not have to construct a conic abstraction for the whole state space. Instead, we

only need to figure out which invariant cones the initial set spans and then construct a

conic abstraction for each of them respectively. As mentioned previously, we would start

from partitioning the derivative space. Based on the property of diagonalizable system,

we develop a partitioning scheme which can construct a conic abstraction as a directed

acyclic graph.

5.3.2 Diagonalization and conic partition

The first step of constructing a conic partition consists of diagonalizing the original system.

Given a diagonalizable system ~̇y = A~y with initial region Y0, a diagonalization of it is a

linear system ~̇z = Aλ~z with initial region Z0 where Aλ = Q−1AQ is a diagonal matrix and

Z0 = Q−1Y0 for some Q. In theory, the diagonalized system is equivalent to the original

system in terms of safety verification. However, by doing diagonalization, we manage

to transform every invariant cone and its derivative cone into an independent orthant

respectively. Since an orthant as a cone has some good properties such as having a fixed

maximal angle of π
2

and all the generating vectors of the invariant cones are orthogonal to

each other, we propose a special conic partition scheme, called radial partition, which can

result in a directed acyclic graph for the conic abstraction.



74

Given a diagonalized n-dimensional system ~̇z = Aλ~z and an orthant O = {~z ∈ Rn |

B~z ≤ ~0} in derivative space, where B = diag(b11, . . . , bnn) with bii = 1 or −1. Let

Bi,Bj be the i’th and j’th row vectors of B respectively, where i 6= j. The basic idea

of radial partition is as follows. For every pair of (Bi,Bj), we generate a sequence of

vectors Sij : ~vij1, . . . , ~vij(Kij+1) by rotating the vector ~vij1 = Bj from Bi to Bj step

by step with an rotating amplitude π
2Kij

. Then, Sij is used as the sequence of normal

vectors of partitioning planes. Thus, each pair of adjacent vectors ~vijk, ~vijk+1 forms a slice

{~z ∈ Rn | 〈~vijk, ~zT 〉 ≤ 0, 〈−~vijk+1, ~z
T 〉 ≤ 0} of the orthant O and O will be partitioned into

Kij slices by all the planes formed by Sij. Hence, we can get n(n−1)
2

ordered sequences of

planes at most totally. These planes intersecting each other yield a conic partition D for

the orthant O. However, we do not really need so many sequences of partitioning planes.

Actually, n − 1 sequences of planes suffices to construct a partition with an arbitrarily

small maximal angle.

For the conic abstraction derived from radial partition, we have the following theorem.

Theorem 5.3.2. Every conic abstraction derived from a radial partition of the derivative

space is a directed acyclic graph.

Proof. Let Sij : ~vij1, . . . , ~vij(Kij+1) andO be defined as in Subsection 5.3.2, Pij : ~wij1, . . . , ~wij(Kij+1)

be the ordered sequence obtained from Sij with ~wijk = ~vijkAλ and O1 = {~x ∈ Rn | BAλ ≤

0} be the orthant in state space corresponding to O, which means that all the Pij define

the conic partition for O1. Then, we only need to prove that, for every sequence Pij, all

the trajectories point in the same side on all but the first and last partitioning planes

(note that ~wij1, ~wij(Kij+1) denote the boundaries of O1), or equivalently,

∀k ∈ [2, Kij] : ∀~x ∈ O1 :(〈~wijk, ~x〉 = 0 =⇒ LAλ〈~wijk, ~x〉 ∼ 0) =⇒

(〈~wij(k+1), ~x〉 = 0 =⇒ LAλ〈~wij(k+1), ~x〉 ∼ 0)
(5.4)



75

where ∼∈ {>,<}. Let ~vij1 = Bj and the rotation matrix associated with Bi, Bj be (see

[62])

Rij(θ) =



i j

1 · · · 0 · · · 0 · · · 0
...

. . .
... · · · ... · · · ...

i 0 · · · cos(θ) · · · − sin(θ)biibjj · · · 0
... · · · ...

. . .
... · · · ...

j 0 · · · sin(θ)biibjj · · · cos(θ) · · · 0
... · · · ... · · · ...

. . .
...

0 · · · 0 · · · 0 · · · 1



(5.5)

Then, we can generate all ~vijk iteratively using the formula ~vijk+1 = ~vijkR
−1
ij , where

R−1
ij (θ) = Rij(−θ) and the general representation of ~vijk is as follows.

~vijk = (0, . . . ,−bii sin((k − 1)θ), . . . , bjj cos((k − 1)θ)), . . . , 0) (5.6)

Let A~λ = diag(λ1, . . . , λn), then the general representation of ~wijk = ~vijkAλ and LAλ〈~wijk, ~x〉 =

~wijkAλ are as follows respectively.

~wijk = (0, . . . ,−λibii sin((k − 1)θ), . . . , λjbjj cos((k − 1)θ)), . . . , 0) (5.7)

LAλ〈~wijk, ~x〉 = (0, . . . ,−λ2
i bii sin((k − 1)θ), . . . , λ2

jbjj cos((k − 1)θ)), . . . , 0) (5.8)

Assume ∀~x ∈ O1 : 〈~wijk, ~x〉 = 0 =⇒ LAλ〈~wijk, ~x〉 > 0 holds, by simplification, we get

∀~x ∈ O1 : λj(λj − λi)bjjxj cos((k − 1)θ) > 0. Now, assume 〈~wijk+1, ~x〉 = 0, we can derive

LAλ〈~wijk+1, ~x〉 = λj(λj − λi)bjjxj cos(kθ). Since 0 < kθ < π
2
, then cos((k + 1)θ) > 0

and cos((k + 1)kθ) > 0. Hence, ∀~x ∈ O1 : LAλ〈~wijk+1, ~x〉 > 0. Similarly, the case of

LAλ〈~wijk, ~x〉 < 0 can also be proved. Therefore, the theorem holds.

By Theorem 5.3.2, the reachable set exploration of the conic abstraction derived from

a radial partition is guaranteed to terminate. Moreover, as indicated in the proof, the

direction of the discrete transition between locations can be easily determined by the sign

of the Lie derivatives of the partitioning planes at the beginning [79].

5.4 Time-unbounded Reachability Analysis

In this section, we present how to compute the overapproximation of reach pipe of a given

affine system based on the conic abstraction.



76

Algorithm 1: Reach pipe overapproximation of affine systems

input : System ~̇x = A~x+~b and initial set X0 ;

local : Heap of partition regions H; /*stores unique elements only*/

output : Map from partition region to polyhedron R; /*by default maps to ∅*/

1 A~λ ← Q−1AQ; /*diagonalize*/

2 Z0 ← Q−1(X0 ⊕ {A−1~b}); /*transform into linear system and diagonalize*/

3 foreach C partition region in state space such that Z0 ∩ C 6= ∅ do

4 insert into R(C) the template polyhedron of [(Z0 ∩ C)⊕A~λC] ∩ C;

5 push C into H;

6 end

7 while H is not empty do

8 C ← pop the top of H;

9 foreach D successor partition region of C such that R(C) ∩D 6= ∅ do

10 join R(D) with the template polyhedron of [(R(C) ∩D)⊕A~λD] ∩D;

11 push D into H;

12 end

13 end

We first diagonalize the system (as in Sec. 5.3.2) and we identify the regions that hit

the initial region. Then we iteratively explore the adjacent regions, while computing and

storing the reach pipe. In particular, we build the control graph of the conic abstraction

incrementally and only for those locations that are indeed reachable. We outline our

procedure in Algorithm 1.

• The first two lines aim to translate the equilibrium point to the origin and further

diagonalize the system. The initial set X0 undergoes a similar transformation.

• In line 3–6, we split the initial set into multiple regions. For each split, we compute

the overapproximation of the reach pipe inside the respective region, as defined in Eq.

5.1. We store the result in R and we push the region to H for further exploration.



77

• In line 7–13, we compute the overapproximation of following reach pipes inside the

adjacent regions. The result is joined to what previously computed in the same

region. The join consists of taking a convex hull between template polyhedra. Each

such successor region is pushed to H.

We optimize the exploration order so to explore the successors of a specific region at

most once, namely we want the heap H to never pop a region twice at line 8. To this

aim, we instruct H to maintain a topological order between regions given by the graph of

the conic abstraction (see Def. 12). Such order always exists, as a radial partition always

induces an acyclic one (see Thm. 5.3.2). Similarly, on the enumeration of line 9, each

region D must satisfy the same order w.r.t. C. Concretely, the order between regions is

the closure of the order given by the Lie derivative of their common facets (as in Def. 12).

We produce a map from partition regions to template polyhedra, where each template

polyhedron overapproximates the reach pipe at the respective region. Precisely, the

template polyhedron of a convex set X ⊆ Rn w.r.t. the finite set of directions D ⊆ Rn,

which we call the template, is the tightest polyhedron enclosing X whose facets are normal

to all and only the directions in D. We efficiently compute the template polyhedra at lines

4 and 10 using linear programming [104] and the convex hull at line 10 by simply taking

for each direction the facet that is the loosest between the two. The choice of template

is critical for the quality of the abstraction and the efficiency of the procedure. In each

region we use the octagonal template, augmented with the normals of the facets of both

the derivative and the state space cones.

In the following, we exemplify the result of the procedure on our running example

under different granularities of the partition. Consider the system in Example 5.2, let the

initial set be X0 = {(x, y) ∈ R2 | −30 ≤ x ≤ −28,−45 ≤ y ≤ −43} and the invariant be

R2. We diagonalize and transform the system dynamics into ẋ = −4x, ẏ = 3y with initial

state Z0 = {(x, y) ∈ R2 | −x + 2
5
y ≤ 30, x − 2

5
y ≤ −28,−x − y ≤ 45, x + y ≤ −43}. By

partitioning the orthant into 5, 20 and 60 cones respectively, we got 3 overapproximations

of different accuracies for the unbounded reachable set, which is shown in Figure5.4. As

can be seen, the precision of the overapproximation increases rapidly with the number of

cones.



78

-60 -40 -20 0 20 40 60

-120

-100

-80

-60

-40

-20

0

(a) K = 5

-60 -40 -20 0 20 40 60

-120

-100

-80

-60

-40

-20

0

(b) K = 20

-60 -40 -20 0 20 40 60

-120

-100

-80

-60

-40

-20

0

(c) K = 60

Figure 5.4: Unbounded invariants obtained for Example 13 under different

numbers of slices of partition.

5.4.1 Mode switching

The theory presented in the previous sections can be easily extended to deal with hybrid

systems. Given a hybrid system, the conic abstraction of each discrete location can be done

as presented. However, due to the transformation of the system dynamics in each location,

the same transformation also needs to be applied to the guards and reset operations of

the discrete transitions between locations.

Concretely, let ~̇y = Ai~y+~bi and ~̇y = Aj~y+~bj be the dynamics of two discrete locations

li, lj of a hybrid system, Gij = {~y ∈ Rn | Jij~y ≤ ~hij} be the guard of the transition (li, lj)

and Tij : ~y′ 7→Mij~y + ~eij be the reset operation. Suppose the diagonalization of Ai,Aj

are A~λi
= Q−1

i AiQi,A~λj
= Q−1

j AjQj, respectively. Let ~x be the variable name after

transformation, then we have li : ~y = Qi~x+ A−1
i
~bi and lj : ~y = Qj~x+ A−1

j
~bj. Thus, the

guard and the reset operation are transformed into the following.

G∗ij = {~x ∈ Rn | JijQi~x ≤ ~hij − JijA
−1
i
~bi} (5.9)

T ∗ij : ~x 7→ Q−1
j (MijQi~x+ MijA

−1
i
~bi + ~eij −A−1

j
~bj) (5.10)

Location invariants Ij are transformed as well using the formula I ′j = {~x ∈ Rn | ~x =

Q−1(~y + A−1~b), ~y ∈ Ij}. By applying the above transformations to the whole hybrid

system and then performing the conic abstraction, we obtain an LHA, whose reachability

analysis can be done as usual. However, unlike for pure continuous systems, termination

is not guaranteed.



79

(a) (b)

Figure 5.5: Scalability of our method in computing the abstraction of purely

continuous systems. The abscissa of (a) refer to the number of variables and

each curve refers to a precision (maximum angle), while the abscissa of (b)

refers to precisions and each curve refers to a system size (# variables). Both

ordinates show the average runtime for 50 randomly generated systems for

each system size and precision.

5.5 Experiments

We have implemented the procedure presented above in C++ using the GLPK library for

linear programming [1], and we have performed two experiments. In the first, we have

performed a scalability test using purely continuous systems given by random matrices

of increasing size and for increasing precision of the analysis. In the second, we have

considered the room heating benchmark and compared against SpaceEx under scenarios

supp and stc and PHAVer [86; 56; 52].

We generated random diagonal matrices with non-zero distinct integer values between

-10 and 10 on the diagonal. Then we measured the runtime of our procedure for the

maximum angles of π
2k

for increasing k (two by two) and the initial state being a unit box

centered in (50, . . . , 50). Figure 5.5a shows that the runtime increases exponentially with

the number of variables, while the more the precision increases the less (for fixed system

size) the difference in runtime is affected. The latter is also confirmed by Fig. 5.5b, which

shows that the runtime increases polynomially with the increase in precision and that

the number of variables affects the degree of the polynomial as, in fact, the number of

partitions is worst case kn.



80

Time part. Conic part.

SpaceEx PHAVer Our method

supp stc π/4 π/20 π/40 π/80 π/4 π/20 π/40 π/80

heat-2 err oot 0.17 2.20 9.86 50.86 0.24 0.25 0.31 0.41

heat-3 err oot oot oot oot - 147 2.41 5.18 12.32

heat-4 err oot oot - - - 14155 278 190 1217

heat-5 err oot oot - - - oot oot 27467 56671

heat-6 err oot - - - - oot oot oot oot

Table 5.1: Runtimes for the abstraction of the room heating benchmark with

2 to 6 rooms. SpaceEx has been run with scenarios supp and stc, template

oct, and time horizon of 1. PHAVer has been run on explicit conic partitions

for the given precisions whose generation time is excluded here. We used a

2.6 GHz CPU with 4Gb RAM. The key err indicates error, oot out of time

(24 hours), and - experiment not executed, i.e., the explicit partitioning run

out of 24 hours time.

The room heating benchmark describes a protocol for heating a number of rooms with

a limited number of shared heaters [51]. We consider houses with 2 to 6 ordered rooms,

each room is only adjacent to the previous and the following room, and all but one room

have a heater. The temperature of room i is governed by a linear ODE of the form

ẋi = ch+ bi(u− xi) +
∑
j 6=i

aij(xj − xi) (5.11)

where c is the heater efficiency, h indicates whether the heater is present, bi is the room

dispersion, u is external temperature, and aij is the heat exchange between rooms (aij = 0

for non-adjacent rooms). The switching logic moves a heater from a room to an adjacent

room if the temperature difference exceeds a threshold and the latter is colder. In addition,

we augmented every mode with a dummy self switch, so to force SpaceEx to perform

time-unbounded reachability.

We have verified the room heating benchmark using SpaceEx with both scenarios

supp and stc and in both cases it either crashes or timeouts. Conversely, using PHAVer

the procedure terminated, but for small models only. Similarly to our method, PHAVer

abstracts affine systems into LHA, but it requires the user to provide an explicit partition



81

(a) (b) (c)

(d) (e) (f)

Figure 5.6: Conic abstractions of the heating benchmark for 2 rooms (a, b, and

c) and 2-dimensional projection for 3 rooms (d, e, and f) for resp. precisions

π/20 (a and d), π/80 (b and e), and π/400 (c and f).

of the state space (rather than the derivative space). We have generated equivalent conic

abstractions in the form of explicit LHA and verified them with PHAVer. Note that if

such LHA is not provided, PHAVer computes trivial abstractions by using the whole mode

invariants as partitions. PHAVer uses quantifier elimination for forward reachability, while

we compute template polyhedra.

The time results are shown in Tab. 5.1. First, PHAver always times out for systems

with more than 2 variables and even for 2-dimensional it scales poorly in precision compared

to our method. Second, beyond three dimensional systems our method is even faster than

generating the explicit LHA. The scalability in dimensionality indicated the advantage of

using template polyhedra rather quantifier elimination while the scalability in precision

demonstrates the advantage of using our incremental construction of the conic partition.

Figure 5.6 depicts the abstractions for the 2 and 3 rooms systems and for precisions π/20,

π/80, and additionally π/400, computed using our method. Predictably, one can see how

the quality of the abstraction increases as the precision increases.



82



83

6 Space-Time Interpolation for Affine Hybrid Automata

Formal verification techniques can be used to either provide rigorous guarantees about the

behaviors of a critical system, or detect instances of violating behavior if such behaviors are

possible. Formal verification has become widely used in the design of software and digital

hardware, but has yet to show a similar success for physical and cyber-physical systems.

One of the reasons for this is a scarcity of suitable algorithmic verification tools, such

as model checkers, which are formally sound, precise, and scale reasonably well. In this

paper, we propose a novel verification algorithm that meets these criteria for systems with

piecewise affine dynamics. The performance of the approach is illustrated experimentally

on a number of benchmarks. Since systems with affine dynamics have been studied before,

we first describe why the available methods and tools do not handle this class of systems

sufficiently well, and then describe our approach and its core contributions.

Previous approaches The algorithmic verification of systems with continuous or

discrete-continuous (hybrid) dynamics is a hard problem both in theory and practice. For

piecewise constant dynamics (PCD), the continuous successor states (a.k.a. flow pipe) can

be computed exactly, and the complexity is exponential in the number of variables [61;

63]. While in principle, any dynamics can be approximated arbitrarily well by PCD systems

using an approach called hybridization [65], this requires partitioning of the state space,

which often leads to prohibitive computational costs. For piecewise affine dynamics (PWA),

one-step successors can be computed approximately using complex set representations.

However, all published approaches suffer either from a possibly exponential increase in

the complexity of the set representation, or from a possibly exponential increase in the

approximation error as the considered time interval increases; this will be argued in detail

in Sect. 6.3.



84

In addition to these theoretical obstacles, we note the following practical obstacles

for the available tools and their performance in experiments. The only available model

checkers that are (i) sound (i.e., they compute provable dense-time overapproximations),

(ii) unbounded (i.e., they overapproximate the flowpipe for an infinite time horizon), and (iii)

arbitrarily precise (i.e., they support precision refinement) are, with one exception, limited

to PCD systems, namely, HyTech [64], PHAVer [52], and Lyse [23]. The tool Ariadne [20]

can deal with affine dynamics and is sound, unbounded, and precise. However, Ariadne

discretizes the reachable state space with a rectangular grid. This invariably leads to an

exponential complexity in terms of the number of variables. Other tools that are applicable

to PWA systems do not meet our criteria in that they are either not formally sound (e.g.,

CORA [4], SpaceEx [57]), not arbitrarily precise because of templates or particular data

structures (e.g., SpaceEx, Flow∗ [35], CORA), or limited to bounded model checking (e.g.,

dReach [81], Flow∗). All the above tools exhibit fatal limitations in scalability or precision

on standard PWA benchmarks; they typically work only on well-chosen examples. Note

that while these tools do not meet the criteria we advance in this paper, they of course

have strengths in other areas handling nonlinear and nondeterministic dynamics.

Our approach We view iterative abstraction refinement as critical for soundness and

precision management, and fixpoint detection as critical for evaluating unbounded prop-

erties. We implement, for the first time, a CEGAR (counterexample-guided abstraction

refinement) scheme in combination with a fixpoint detection criterion for PWA systems.

Our abstraction refinement scheme manages complexity and precision trade-offs in a

flexible way by decoupling time from space: the dense timeline is partitioned into a

sequence of intervals that are refined individually and lazily, by splitting intervals, to

achieve the necessary precision and detect fixpoints; state sets are overapproximated

using template polyhedra that are also refined individually and lazily, by adding normal

directions to templates; and both refinement processes are interleaved for optimal results,

while maintaining soundness with each step. A similar approach was recently proposed

for the limited class of PCA systems [23]; this paper can be seen as an extension of the

approach to the class of piecewise affine dynamics.



85

With each iteration of the CEGAR loop, a spurious counterexample is removed by

computing a proof of infeasibility in terms of a sequence of linear constraints in space and

interval constraints in time, which we call a sequence of space-time interpolants. We use

linear programming to construct a suitable sequence of space-time intervals and check for

fixpoints. If a fixpoint check fails, we increase the time horizon by adding new intervals.

The separation of time from space gives us the flexibility to explore different refinement

strategies. Fine-tuning the iteration of space refinement (adding template directions),

time refinement (splitting intervals), and fixpoint checking (adding intervals), we find that

it is generally best to prefer fewer time intervals over fewer space constraints. Based on

performance evaluation, we even expand individual intervals time when this is possible

without sacrificing the necessary precision for removing a counterexample.

6.1 Motivating Example

The ordinary differential equation over the variables x and y

ẋ = 0.1x− y + 1.8

ẏ = x+ 0.1y − 2.2
(6.1)

moves counterclockwise around the point (2, 2) in an outward spiral. We center a box

B (of side 0.92) on the same point and place a diagonal segment S close to the bottom

right corner of B, without touching it (between (2, 1) and (3.5, 2); see Fig. 6.1). Then,

we consider the problem of proving that every trajectory starting from any point in S

never hits B. This is a time-unbounded reachability problem for a hybrid automaton with

piecewise affine dynamics and two control modes. The first mode has the dynamics above

(Eq. 6.1) and S as initial region. It has a transition to a second mode, which in its turn

has B as invariant. The second mode is a bad mode, which all trajectories indeed avoid.

We tackle the reachability problem by abstraction refinement. In particular, we aim at

automatically constructing an enclosure for the flowpipe —i.e., for the set of trajectories

from S— which (i) avoids the bad state B and (ii) covers the continuous timeline up

to infinity. Figure 6.1 shows three abstractions that result from different strategies for

refining an initial space partition (i.e., template) and time partition (i.e., sequence of time

intervals). All three refinement schemes start by enclosing S with an initial template

polyhedron P , and then transforming P into a sequence of abstract flowpipe sections



86

1 2 3

1

2

3

0 x

y

P

B
S

1 2 3

1

2

3

0 x

y

P

B
S

1 2 3

1

2

3

0 x

y

P

B
S

Time refinement only Uniform-time interpolation Adaptive-time interpolation

(a) (b) (c)

Figure 6.1: Comparison of abstraction refinement methods

flow[t,t](P ), one for each interval [t, t] of an initial partitioning of the unbounded timeline.

The computation of new flowpipe sections stops when a fixpoint is reached, —i.e., we reach

a time threshold t∗ whose flowpipe section closes a cycle with flowt
∗
(P ) ⊆ P , sufficient

condition for any further flowpipe section to be contained within the union of previously

computed sections.

Refinement scheme (a) sticks to a fixed octagonal template P —i.e., to the normals of

a regular octagon— and iteratively halves all time intervals until every flowpipe section

avoids the bad set B. This is achieved at interval width 1/64, but the computation does

not terminate because no fixpoint is reached. Refinement scheme (b) splits time similarly

but also computes a different, more accurate template for every iteration: first, an

interval [t, t] is halved until it admits a halfspace interpolant —i.e., a halfspace H that

S ⊆ H and flow[t,t](H) ∩B = ∅; then, a maximal set of linearly independent directions is

chosen as template from the normals of the obtained halfspaces. Refinement scheme (b)

succeeds at interval width 1/16 to avoid B and reach a fixpoint; the latter at time 6.25,

with flow6.25(P ) ⊆ P . Refinement scheme (c) modifies (b) by optimizing the refinement

of the time partition: instead of halving time intervals, the maximal intervals which admit

halfspace interpolants are chosen. This scheme produces a nonuniform time partitioning

with an average interval width of about 1/8, discovers five template directions, and finds a

fixpoint in fewer steps.



87

Each iteration of the abstraction refinement loop consists of first abstracting the initial

region into a template polyhedron, second solving the differential equation into a sequence

of interval matrices, and finally transforming the template polyhedron using each of the

interval matrices. We represent each transformation symbolically, by means of its support

function. Then, we verify (i) the separation between every support function and the bad

region, and (ii) the containment of any support function in the initial template polyhedron.

The separation problem amounts to solving one LP, and the inclusion problem amounts to

solving an LP in each template direction. If the separation fails, then we independently

bisect each time that does not admit halfspace interpolants and expand each that does,

until all are proven separated. Together, these halfspace interpolants form an infeasibility

proof for the counterexample: a space-time interpolant. We forward the resulting new

time intervals and halfspaces to the abstraction generator, and repeat, using the refined

partitioning and the augmented template. If the inclusion fails, then we increase the

time horizon by some amount ∆, and repeat. Once we succeed with both separation and

inclusion, the system is proved safe.

This example shows the advantage of lazily refining both the space partitioning (i.e.,

the template) by adding directions, and the time partitioning, by splitting intervals.

6.2 Hybrid Automata with Piecewise Affine Dynam-

ics

A hybrid automaton with piecewise affine dynamics consists of an n-dimensional vector

x of real-valued variables and a finite directed multigraph (V,E), the control graph. We

call it the control graph, the vertices v ∈ V the control modes, and the edges e ∈ E the

control switches. We decorate each mode v ∈ V with an initial condition Zv ⊆ Rn, a

nonnegative invariant condition Iv ⊆ Rn
≥0, and a flow condition given by the system of

ordinary differential equations

ẋ = Avx+ bv. (6.2)



88

We decorate each switch e ∈ E with a guard condition Ge ⊆ Rn and an update condition

given the difference equations x := Rex+ se. All constraints I, G, and Z are conjuctions

of rational linear inequalities, A and R are constant matrices, and b and s constant vectors

of rational coefficients. In this paper, whenever an indexing of modes and switches is clear

from the context, we index the respective constraints and transformations similarly, e.g.,

we abbreviate Avi with Ai.

A trajectory is a possibly infinite sequence of states (v, x) ∈ V × Rn repeatedly

interleaved first by a switching time t ∈ R≥0 and then by a switch e ∈ E

(v0, x0)t0(v0, y0)e0(v1, x1)t1(v1, y1)e1 . . . (6.3)

for which there exists a sequence of solutions ψ0, ψ1, . . . : R → Rn such that ψi(0) = xi,

ψi(ti) = yi and they satisfy (i) the invariant conditions ψi(t) ∈ Ii and (ii) the flow conditions

ψ̇i(t) = Aiψi(t) + bi, for all t ∈ [0, ti]. Moreover, x0 ∈ Z0, every switch ei has source vi,

destination vi+1, and and the respective states satisfy (i) the guard condition yi ∈ Gi and

(ii) the update xi+1 = Riyi + si. The maximal set of its trajectories is the semantics of the

hybrid automaton, which is safe if none of them contains a special bad mode.

Every hybrid automaton with affine dynamics can be transformed into an equivalent

hybrid automaton with linear dynamics, i.e., the special case where b = 0 on every mode.

We obtain such transformation by adding one extra variable y, rewriting the flow of every

mode into ẋ = Ax+ by, and forcing y to be always equal to 1, i.e., invariant y = 1 and

flow ẏ = 0 on every mode and update y′ = y on every switch. For this reason, in the

following sections we discuss w.l.o.g. the reachability analysis of hybrid automata with

linear dynamics.

6.3 Time Abstraction using Interval Arithmetic

We abstract the reach set of the hybrid automaton with a union of convex polyhedra. In

particular, we abstract the states that are reachable in a mode using a finite sequence

of images of the initial region over a time partitioning, until a completeness threshold is

reached. Thereafter, we compute the template polyhedron of each of the images that can

take a switch. Then, we repeat in the destination mode and we continue until a fixpoint is

found.



89

Precisely, a time partitioning T is a (possibly infinite) set of disjoint closed time

intervals whose union is a single (possibly open) interval. For a finite set of directions

D ⊆ Rn, the D-polyhedron of a closed convex set X is the tightest polyhedral enclosure

whose facets normals are in D. In the following, we associate every mode v to a template

Dv and a time partitioning Tv of the time axis R≥0, we employ interval arithmetic for

abstracting the continuous dynamics (Sec. 6.3.1), and on top of it we develop a procedure

for hybrid dynamics (Sec. 6.3.2).

6.3.1 Continuous Dynamics

We consider w.l.o.g. a mode with ODE reduced to the linear form ẋ = Avx, invariant Iv,

and a given time interval [t, t]. Every linear ODE ẋ = Ax has the unique solution

ψ(t) = exp(At)ψ(0). (6.4)

It follows (see also [59]) that the set of states reachable in v after exactly t time units from

an initial region X is

flowt
v(X) = exp(Avt)X ∩

⋂
0≤τ≤t

exp
(
Av(t− τ)

)
Iv, (6.5)

Then, the flowpipe section over the time interval [t, t] is

flow[t,t]
v (X) = ∪{flowt

v(X) | t ∈ [t, t]}. (6.6)

We note three straightforward but consequential properties of the reach set: (i) The

accuracy of any convex abstraction depends on the size of the time interval: While

flowt
v(X) is convex for convex X, this is generally not the case for flow[t,t]

v (X). (ii) We

can prune the time interval whenever we detect that the reach set no longer overlaps

with the invariant: If for any t∗ ≥ 0, flowt∗

v (X) = ∅, then for all t ≥ t∗, flowt
v(X) = ∅

and flow[t,t]
v (X) = flow[t,t∗]

v (X). (iii) We can prune the time interval whenever we detect

containment in the initial states: If flowt∗

v (X) ⊆ X, then flow[t,∞]
v (X) = flow[t,t∗]

v (X).

For given A and t, the matrix exp(At) can be computed with arbitrary, but only finite,

accuracy. We resolve this problem by computing a rational interval matrix [M,M ], which

we denote intexp(A, t, t), such that for all t ∈ [t, t] we have element-wise that

exp(At) ∈ intexp(A, t, t). (6.7)



90

This interval matrix can be derived efficiently with a variety of methods [89], e.g., using a

guaranteed ODE solver or using interval arithmetic. The width of the interval matrix can

be made arbitrarily small at the price of increasing the number of computations and the

size of the representation of the rational numbers. In our approach, we do not rely in a

fixed accuracy of the interval matrix. Instead, we require that the accuracy increases as

the width of the time interval goes to zero. That way, we don’t need to introduce an extra

parameter. To ensure progress in our refinement loop, we require that the interval matrix

decreases monotonically when we split the time interval. Formally, if [t, t] ⊆ [u, u] we

require the element-wise inclusion intexp(A, t, t) ⊆ intexp(A, u, u). This can be ensured

by intersecting the interval matrices with the original interval matrix after time splitting.

While the mapping with interval matrices is in general not convex [100], we can simplify

the problem by assuming that all points of X are in the positive orthant. As long as X is

bounded from below, this condition can be satisfied by inducing an appropriate coordinate

change. Under the assumption that X ⊆ Rn
≥0,

[M,M ](X) =
{
y ∈ Rn

∣∣Mx ≤ y ≤Mx and x ∈ X
}
. (6.8)

Combining the above results, we obtain a convex abstraction of the flowpipe over a time

interval as

flow[t,t]
v (X) = intexp(A, t, t)X ∩ Iv. (6.9)

The abstraction is conservative in the sense that flow[t,t]
v (X) ⊆ flow

[t,t]
v (X). On the other

hand, the longer is the time interval, the coarser is the abstraction. For this reason, we

construct an abstraction of the flowpipe in terms of a union of convex approximations over

a time partitioning. The abstract flowpipe over the time partitioning T is

flowTv (X) = ∪{flow[t,t]
v (X) | [t, t] ∈ T}. (6.10)

Again, this is conservative w.r.t. the concrete flowpipe, i.e., for all time partitionings T it

holds that flow∪Tv (X) ⊆ flowTv (X). Moreover, it is conservative w.r.t. any refinement of T ,

i.e., the time partitioning U refines T if ∪U = ∪T and ∀[u, u] ∈ U : ∃[t, t] ∈ T : [u, u] ⊆ [t, t],

then flowUv (X) ⊆ flowTv (X).



91

6.3.2 Hybrid Dynamics

We embed the flowpipe abstraction routine into a reachability algorithm that accounts for

the switching induced by the hybrid automaton. The discrete post operator is the image

of a set Y ⊆ Rn through a switch e ∈ E

jumpe(Y ) = Re(Y ∩Ge)⊕ {se}. (6.11)

We explore the hybrid automaton constructing a set of abstract trajectories, namely

sequences abstract states interleaved by time intervals and switches

(v0, X0)[t0, t0](v0, Y0)e0(v1, X1)[t1, t1](v1, Y1)e1 . . . (6.12)

where X0, Y0, · · · ⊆ Rn are nonempty sets of states that comply with template {Dv} and

partitioning {Tv} in the following sense. First, X0 = Z0 and Xi+1 = jumpi(Yi) for all

i ≥ 0. Second, Yi = flow
[ti,ti]
i (Pi) for all i ≥ 0, where Pi is the Di-polyhedron of Xi and

[ti, ti] ∈ Ti. The maximal set of abstract trajectories, the abstract semantics induced by

{Dv} and {Tv}, overapproximates the concrete semantics in the sense that every concrete

trajectory (see Eq. 6.3) has an abstract trajectory that subsumes it, i.e., modes and

switches match, xi ∈ Xi, ti ∈ [ti, ti], and yi ∈ Yi, for all i ≥ 0.

Computing the abstraction involves several difficulties. First, the trajectories might

be not finitary. Indeed, this is unsolvable in theory, because the reachability problem is

undecidable [71]. Second, the post operators are hard to compute. In particular, obtaining

the sets X and Y in terms of conjunctions of linear inequalities in Rn requires eliminating

quantifiers. In Alg. 2, we present a procedure (which does not necessarily terminate) for

tackling the first problem. In the next section, we show how to tackle the second using

support functions.

We employ Alg. 2 to explore the tree of abstract trajectories. We store in the stack W

the leaves to process . . . (v,X), followed by a candidate interval [t, t]. For each leaf, we

retrieve P , the template polyhedron of X. If it leads to a bad mode, we return, otherwise

we search for a completeness threshold t∗ between t excluded and t, checking for inclusion

in the union of visited polyhedra Pv. In case of failure, we extend the time horizon of ∆

and push the next candidate to the stack. Then, we partition the time between t and t∗,

construct the flowpipe, and process switching. Upon each successful switch, we augment

Pv′ with the Dv′-polyhedron of the switching region X ′, avoiding to store redundant



92

Algorithm 2: Reachability procedure.
input :Template {Dv} and partitioning {Tv} indexed by V

output :Optionally an abstract trajectory (counterexample)

1 foreach v ∈ V with nonempty Zv do

2 push (v, Zv)[0,∆] into the stack W ;

3 add the Dv-polyhedron of Zv to Pv ;

4 end

5 while W is not empty do

6 pop . . . (v,X)[t, t] from W ;

7 P ← Dv-polyhedron of X;

8 if v is bad and P ∩ Iv is nonempty then // check counterexample

9 return . . . (v,X);

10 end

11 foreach t∗ ∈ {t+ δ, t+ 2δ, . . . , t} do // find completeness threshold

12 if flowt
∗
v (P ) ⊆ Pv then break;

13 end

14 if t∗ = t and flowtv(P ) 6⊆ Pv then // otherwise extend time horizon

15 push . . . (v,X)[t, t+ ∆] into W ;

16 end

17 foreach [u, u] ∈ Tv and [u, u] ∩ [t, t∗] 6= ∅ do // construct flowpipe

18 Y ← flow
[u,u]
v (P );

19 foreach e ∈ E with source v and destination v′ do

20 X′ ← jumpe(Y );

21 if X′ ⊆ Pv′ then continue;

22 push . . . (v,X)[u, u](v, Y )e(v′, X′)[0,∆] into W ;

23 add the Dv′ -polyhedron of X′ to Pv′ ;

24 end

25 end

26 end

polyhedra. Notably, the latter operation is efficient because all polyhedra comply with

the same template. For the same reason, we obtain efficient inclusion checks, which we

implement by first computing the template polyhedron of the left hand side, and then

comparing the constant terms of the respective linear inequalities.

In conclusion, this reachability procedure that takes a template {Dv} and a partitioning

{Tv} and constructs a tree of reachable sets of states X and Y . It manipulates them

through the post operators and overapproximate them into template polyhedra. In the

next section, we discuss how to efficiently represent X and Y , so to efficiently compute

their template polyhedra. In Sec. 6.5 we discuss how to discover appropriate {Dv} and

{Tv}, so to eliminate spurious counterexamples.



93

6.4 Space Abstraction using Support Functions

Abstracting away time left us with the task of representing the state space of the hybrid

automaton, namely the space of its variable valuations. Such sets consists of polyhedra

emerging from operations such as intersections, Minkowski sums, and linear maps with

simple or interval matrices. In this section, we discuss how to represent precisely all sets

emerging from any of these operations by means of their support functions (Sec. 6.4.1)

and then how to abstract them into template polyhedra (Sec. 6.4.2). In the next section,

we discuss how to refine the abstraction.

6.4.1 Support Functions

The support function of a closed convex set X ⊆ Rn in direction d ∈ Rn consists of the

maximizer scalar product of d over X

ρX(d) = sup{dTx | x ∈ X}, (6.13)

and, indeed, uniquely represents any closed convex set [99]. Classic work on the verification

of hybrid automata with affine dynamic have posed a framework for the construction of

support functions from basic set operations, but under the assumption of unboundedness

and nonemptiness of the represented set, and with approximated intersection [59]. Indeed,

if the set is empty then its support function is −∞, while if it is unbounded an d points

toward a direction of recession is +∞, making the framework end up into undefined

values. Such conditions turn out to be limiting in our context, first because we find

desirable to represent unbounded sets so to accelerate the convergence to a fixpoint of the

abstraction procedure, but most importantly because when encoding support functions for

long abstract trajectories we might be not aware whether its concretization is infeasible.

Checking this is a crucial element of a counterexample-guided abstraction refinement

routine.

Recent work on the verification of hybrid automata with constant dynamics, i.e., with

flows defined by constraints on the derivative only, provides us with a generalization of the

classic support function framework which relaxes away the assumptions of boundedness and

nonemptiness and yields precise intersection [23]. The framework encodes combinations

of convex sets of states into LP (linear programs) which enjoy strong duality with their



94

support function. Similarly, we encode the support function in direction d of any set X

into the LP

minimize cTλ

subject to Aλ = Bd,
(6.14)

over the nonnegative vector of variables λ. The LP is dual to ρX(d), which is to say that

if the LP is infeasible then X is unbounded in direction d, and if the LP is unbounded

then X is the empty set. Moreover, if the LP has bounded solution so does ρX(d) and the

solutions coincide.

The construction is inductive on operations between sets. For the base case, we recall

that from duality of linear programming the support function of a polyhedron given by a

system of inequalities Px ≤ q is dual to the LP over λ ≥ 0

minimize qTλ

subject to PTλ = d.
(6.15)

Then, inductively, we assume that for the set X ⊆ Rn we are given an LP with the

coefficients AX , BX , and cX , and similarly for the set Y ⊆ Rn. For the support functions

of X⊕Y , MX, and X∩Y we respectively construct the following LP over the nonnegative

vectors of variables λ, µ, α, and β:

minimize cTXλ+ cTY µ

subject to AXλ = BXd and AY µ = BY d,
(6.16)

minimize cTXλ

subject to AXλ = BXM
Td, and

(6.17)

minimize cTXλ+ cTY µ

subject to AXλ−BX(α− β) = 0 and

AY µ+BY (α− β) = BY d.

(6.18)

Such construction follows as a special case of [23], which we extend with the support

function of a map through an interval matrix.

The time abstraction of Sec. 6.3 additionally requires us to represent the map of sets of

states through interval matrices. Precisely, we are given convex set of nonnegative values

X ⊆ Rn
≥0, the coefficients for the respective LP, an interval matrix [M,M ] ⊆ Rn×n, and

we aim at computing the support function of all values in X mapped by all matrices in



95

[M,M ]. To this end, we define the LP

minimize cTXλ

subject to AXλ+BX(MTµ−MT
ν) = 0 and

−µ+ ν = d,

(6.19)

over the vectors λ, µ, and ν of nonnegative variables. This linear program corresponds to

the the dual of the interval matrix map in Eq. 6.8.

6.4.2 Computing Template Polyhedra

We represent all space abstractions X and Y in our procedure by their support functions.

In particular, whenever set operations are applied, instead of solving the operation by

removing quantifiers, we construct an LP. We delay solving it until we need to compute

a template polyhedron. In that case, we compute the D-polyhedron of the set X by

computing its support function in each of the directions in D, and constructing the

intersection of halfspaces ∩{dTx ≤ ρX(d) | d ∈ D}.

6.5 Abstraction Refinement using Space-time Inter-

polants

The reachability analysis of hybrid automata by means of the combination of interval

arithmetic and support functions presented in Sec. 6.3 and 6.4 builds an overapproximation

of the system dynamics. It is always sound for safety, but it may produce spurious

counterexamples, due to an inherent lack of precision of the time abstraction and the

polyhedral approximation. The level of precision is given by two factors, namely the choice

of time partitioning and the choice of template directions, excluding the parameters for

approximation of the exponential function, which we assume constant (see Sec. 6.3.1).

In the following, we present a procedure to extract infeasibility proofs from spurious

counterexamples. We produce them in the form of time partitions and bounding polyhedra,

which we call space-time interpolants. Space-time interpolants can then be used to properly

refine time partitioning and template directions.



96

Consider the bounded path v0, e0, v1, e1, . . . , vk, ek, vk+1 over the control graph and

a sequence of dwell time intervals [t0, t0], [t1, t1], . . . , [tk, tk] emerging from an abstract

trajectory. We aim at extracting a sequence X0, X1, . . . , Xk+1 of (possibly nonconvex)

polyhedra and a sequence T0, T1, . . . , Tk of refinements of the respective dwell times

such that Z0 ⊆ X0, jump0 ◦ flowT00 (X0) ⊆ X1, . . . , jumpk ◦ flowTkk (Xk) ⊆ Xk+1, and

Xk+1 ∩ Ik+1 is empty. In other words, we want every Xi+1 to contain all states that can

enter mode vi+1 after dwelling on vi between ti and ti time, and the last to be separated

from the invariant of mode vk+1. Containment is to hold inductively, namely Xi+1 has

to contain what is reachable from Xi, and the time refinements T are to be chosen

in such a way that containment holds in the abstraction. Then, we call the sequence

X0, T0, X1, T1, . . . , Xk, Tk, Xk+1 a sequence of space-time interpolants for the path and the

dwell times above.

We compute a sequence of space-time interpolants by alternating multiple strategies.

First, for the given sequence of dwell times, we attempt to extract a sequence of halfspace

interpolants using linear programming (Sec. 6.5.1). In case of failure, we iteratively

partition the dwell times in sets of smaller intervals, separating nonswitching from switching

times and until every combination of intervals along the path admits halfspace interpolants

(Sec. 6.5.2). We accumulate all halfspaces to form a sequence of unions of convex polyhedra

that, together with the obtained time partitionings, will form a valid sequence of space-

time interpolants. Finally, we refine the abstraction using the time partitionings and the

outwards pointing directions of all computed halfspaces, in order to eliminate the spurious

counterexample (Sec. 6.5.3).

6.5.1 Halfspace Interpolation

Halfspace interpolants are the special case of space-time interpolants where every poly-

hedron in the sequence is defined by a single linear inequality [2]. Indeed, they are the

simplest kind of space-time interpolants, and, for the same reason, the ones that best

generalize the reachable states along the path. Unfortunately, not all paths admit halfspace

interpolants, but, if one such sequence exists, then it can be extrapolated from the solution

of a linear program.



97

Consider a path v0, e0, . . . , vk+1 with the respective dwell times [t0, t0], . . . , [tk, tk]. A

sequence of halfspace interpolants consists of a sequence of sets H0, . . . , Hk+1 among

either any halfspace, or the empty set, or the universe, such that Z0 ⊆ H0, jump0 ◦

flow
[t0,t0]
0 (H0) ⊆ H1, . . . , jumpk ◦ flow

[tk,tk]
k (Hk) ⊆ Hk+1, and Hk+1 ∩ Ik+1 is empty. In

contrast with general space-time interpolants, every time partition consists of a single time

interval and therefore the support function of every post operator jump ◦ flow[t,t] can be

encoded into a single LP (see Sec. 6.4). We exploit the encoding for extracting halfspace

interpolants, similarly to a recent interpolation technique for PCD systems [23].

We encode the support function in direction d of the closure of the image of the post

operators along the path, i.e., the set jumpk ◦flow
[tk,tk]
k ◦ · · · ◦ jump0 ◦flow

[t0,t0]
0 (Z0), inter-

sected with the invariant Ik+1. We obtain the following LP over the free vectors α0, . . . , αk+1

and the nonnegative vectors β, δ0, . . . , δk, γ0, . . . , γk+1, µ0, . . . , µk, and ν0, . . . , νk:

minimize qTZ0
β +

∑k
i=0(qTIiγi + qTGiδi + sTi αi+1) + qTIk+1

γk+1

subject to PT
Z0
β = α0,

MT
i µi −M

T

i νi = −αi for each i ∈ [0..k],

−µi + νi + PT
Ii
γi + PT

Gi
δi = RT

i αi+1 for each i ∈ [0..k],

PT
Ik+1

γk+1 = −αk+1 + d,

(6.20)

where every system of inequalities Px ≤ q corresponds to the constraints of the respective

init, guard, or invariant, every Rix+ si is an update equation, and every interval matrix

[M i,M i] = intexp(Ai, ti, ti). In general, one can check whether the closure is contained in

a halfspace aTx ≤ b by setting the direction to its linear term d = a and checking whether

the objective function can equal its constant term b. In particular, we check for emptiness,

which we pose as checking inclusion in 0x ≤ −1. Therefore, we set d = 0 and the objective

function to equal −1. Upon affirmative answer, from the solution α?0, α
?
1, . . . , ν

?
k we obtain

a valid sequence of halfspace interpolants whose i-th linear term is given by α?i and i-th

constant term is given by qTZ0
β? +

∑i−1
j=0(qTIjγ

?
j + qTGjδ

?
j + sTj α

?
j+1).

6.5.2 Time Partitioning

Halfspace interpolation attempts to compute a sequence of enclosures that are convex for

a sequence of sets that are not necessarily convex. Specifically, it requires each halfspace

to enclose the set of solutions of a linear differential equation, which is nonconvex, by

enclosing its convex overapproximation along a whole time interval. As a result, large



98

Algorithm 3: Nonswitching time partitioning.
input : sequence of intervals [u0, u0], . . . , [uj , uj ]

output : set of intervals

1 b← uj ;

2 while b < uj do

3 a← b;

4 b← b+ ε ;

5 c← uj ;

6 if [u0, u0], . . . , [uj−1, uj−1], [a, b] does not admit halfspace interpolants then

7 continue;

8 end

9 if [u0, u0], . . . , [uj−1, uj−1], [a, c] admits halfspace interpolants then

10 push [a, c] to the output;

11 return;

12 end

13 while c− b > ε do

14 if [u0, u0], . . . , [uj−1, uj−1], [a, εb b+c
2ε
c] admits halfspace interpolants then

15 b← εb b+c
2ε
c;

16 else

17 c← εb b+c
2ε
c;

18 end

19 end

20 push [a, b] to the output;

21 end

time intervals produce large overapproximations, on which halfspace interpolation might

be impossible. Likewise, shorter intervals produce tighter overapproximations, which are

more likely to admit halfspace interpolants. In this section, we exploit such observation to

enable interpolation over large time intervals. In particular, we properly partition the time

into smaller subintervals and we treat each of them as a halfspace interpolation problem.

Later, we combine the results to refine the abstraction.

Time partitioning is a delicate task in the whole abstraction refinement loop. In fact,

while template refinement affects linearly the performance of the abstractor, partitioning

time intervals that can switch induces branching in the search, possibly leading to an

exponential blowup. For this reason, we partition time by narrowing down the switching

time, for incremental precision, until no more is left. In particular, we use Alg. 3 to

compute a set N of maximal intervals that admit halfspace interpolants, by enlarging

or narrowing them of ε amounts. We embed this procedure in Alg. 4 which, along the



99

Algorithm 4: Dwell time partitioning.
input : sequence of intervals [t0, t0], . . . , [tk, tk]

output : set of sequences of intervals

1 push [t0, t0] to the queue Q;

2 while Q is not empty do

3 pop [u0, u0], . . . , [uj , uj ] from Q;

4 N ← nonswitching time partitioning of [u0, u0], . . . , [uj , uj ];

5 foreach [a, a] ∈ N do

6 push [u0, u0], . . . , [uj−1, uj−1], [a, a] to the output;

7 end

8 if j = k then

9 assert [uj , uj ]\ ∪N = ∅;

10 continue;

11 end

12 S ← choose set of intervals that cover [uj , uj ]\ ∪N ;

13 foreach [b, b] ∈ S do

14 push [u0, u0], . . . , [uj−1, uj−1], [b, b], [tj+1, tj+1] to Q;

15 end

16 end

sequence, excludes the time in N , constructing a set of intervals S that overapproximate

the switching time. In particular, we construct the set with the widest possible intervals

that are disjoint from N . Algorithm 4 succeeds when no more intervals are left, otherwise

we half ε and reapply it to the sequences that are left to process.

6.5.3 Abstraction Refinement

The procedures above construct sequences of time intervals [u0, u0], . . . , [uj, uj] that are

included in [t0, t0], . . . , [tk, tk] and that, with the respective halfspace interpolants, this

constitutes a proof of infeasibility for the counterexample. Yet, it does not form a sequence

of space-time interpolants X0, T0, . . . , Xk+1.We form each partitioning Ti by splitting [ti, ti]

in such a way each element of Ti is either contained in [ui, ui] or disjoint from it, for all

intervals [ui, ui]. Then, we refine the partitioning of mode vi similarly. Each polyhedron

Xi is a union of convex polyhedra, each of which is the intersection of all halfspaces Hi

corresponding to some sequence [u0, u0], . . . , [ui, ui]. Nevertheless, to refine the abstraction

we do not need to construct Xi, but just to take the outward point directions of all Hi

and add them to the template of vi.



100

#

vars

#

modes

#

cex

#

dirs

avg.

width

cex.

time

ref.

time

ver.

time

tot.

time
Ariadne

filtosc 1st ord 3 4 7 13 0.55 0.57 0.96 0.13 1.66 27.56

filtosc 2nd ord 4 4 7 15 0.55 0.83 1.78 0.20 2.81 150.7

filtosc 3rd ord 5 4 7 16 0.55 1.28 4.65 0.32 6.25 oot

filtosc 4th ord 6 4 7 18 0.55 1.53 11.39 0.37 13.29 oot

filtosc 5th ord 7 4 7 19 0.55 2.61 26.60 0.70 29.37 -

filtosc 6th ord 8 4 7 18 0.55 4.56 101.8 1.29 107.7 -

filtosc 7th ord 9 4 7 18 0.55 4.36 109.9 1.13 114.6 -

filtosc 8th ord 10 4 7 17 0.55 5.92 150.9 1.54 158.4 -

filtosc 9th ord 11 4 7 16 0.55 6.49 383.1 1.83 391.3 -

filtosc 10th ord 12 4 7 17 0.55 12.84 428.87 3.73 445.4 -

filtosc 11th ord 13 4 7 17 0.55 15.10 525.2 4.38 544.6 -

reactor 1 rod 2 4 11 3 0.11 5.24 10.64 1.59 17.47 oot

reactor 2 rods 3 5 9 7 0.79 5.68 5.36 2.33 13.37 oot

reactor 3 rods 4 6 12 13 1.07 14.46 13.94 13.13 41.53 -

reactor 4 rods 5 7 15 29 1.67 45.50 42.47 111.5 199.9 -

reactor 5 rods 6 8 16 31 1.81 73.77 27.36 696.46 797.5 -

Table 6.1: Statistics for the benchmark examples (oot when ¿ 1000s).

6.6 Experimental Evaluation

We implemented our method in C++ using GMP and Eigen for multiple precision linear

algebra, Arb for interval arithmetic, and PPL for linear programming [76; 17]. In particular,

all libraries we are using are meant to provide guaranteed solutions, as well as our

implementation. We evaluate it on several instances of a filtered oscillator and a rod

reactor, which are both parametric in the number of variables, and the latter in the number

of modes too [57; 111]. We record several statistics from every execution of our tool: the

number #cex of counterexamples found during the CEGAR loop, the number #dir of

linearly independent directions and the average width of the time partitionings extracted

from all space-time interpolants. Moreover, we independently measure three times. First,

the time spent in finding counterexamples, namely the total time taken by inconclusive

abstractions which returned a spurious counterexample. Second, the refinement time, that

is the total time consumed by computing space-time interpolants. Finally, the verification

time, that is the time spend in the last abstraction of the CEGAR loop, which terminates

with a fixpoint proving the system safe. We compare the outcome and the performance of

our tool against Ariadne which, to the best of our knowledge, is the only verification tool

available that is numerically sound and time-unbounded [45].



101

The filtered oscillator is hybrid automaton with four modes that smoothens a signal x

into a signal z. It has k + 2 variables and a system of k + 2 affine ODE, where k is the

order of the filter. Table 6.1 shows the results, for a scaling of k up to the 11-th order. The

first observation is that the CEGAR loop behaves quite similarly on all scalings: number

of counterexamples, number of directions, and time partitionings are almost identical. On

the other hand, the computation times show a growth, particularly in the refinement phase

which dominates over abstraction and verification. This suggests us that our procedure

exploits efficiently the symmetries of the benchmark. In particular, time partitioning seems

unaffected. What affects the performance is linear programming, whose size depends on

the number of variables of the system.

The rod reactor consists of a heating reactor tank and k rods each of which cools

the tank for some amount of time, excluding each other. The hybrid automaton has

one variable x for the temperature, k clock variables, one heating mode, one error mode,

and k cooling modes. If the temperature reaches a critical threshold and no rod can

intervene, it goes into an error. For this benchmark, we start with a simple template, the

interval around x, and we discover further directions. Table 6.1 highlights two fundamental

differences with the previous benchmark. First, the average width grows with the model

size. This is because the heating mode requires finer time partitioning than the cooling

modes. The cooling modes increase with the number of rods, and so does the average

width over all time partitions. Second, while with the filtered oscillator the difficulty

laid at interpolation, for the rod reactor interpolation is rather easy as well as finding

counterexamples. Most of the time is spent in the verification phase, where all fixpoint

checks must be concluded, without being interrupted by a counterexample. This shows

the advantage of our lazy approach, which first processes the counterexamples and finally

proves the fixpoint.

Our method outperforms Ariadne on all benchmarks. On the other hand, tools

like Flow* and SpaceEx can be dramatically faster [37]. For instance, they analyze

filtosc 8th ord in resp. 9.1s and 0.36s (time horizon of 4 and jump depth of 10). This

is hardly surprising, as our method has primarily been designed to comply with soundness

and time-unboundedness, and pays the price for that.



102

6.7 Related Work

There is a rich literature on CEGAR approaches for hybrid automata, either abstracting

to a purely discrete system [10; 43; 98; 105; 107] or to a hybrid automaton with simpler

dynamics [73; 101]. Both categories exploit the principle that the verification step is easier

to carry out in the abstract domain. The abstraction entails a considerable loss of precision

that can only be counteracted by increasing the number of abstract states. This leads to

a state explosion that severely limits the applicability of such approaches. In contrast,

our approach allows us to increase the precision by adding template directions, which

does not increase the number of abstract states. The only case where we incur additional

abstract states is when partitioning the time domain. This is a direct consequence of the

nonconvexity of flowpipes of affine systems, and therefore seems to be unavoidable when

using convex sets in abstractions. In [91], the abstraction consists of removing selected

ODE entirely. This reduces the complexity, but does not achieve any fine-tuning between

accuracy and complexity. Template reachability has been shown to be very effective in

both scaling up reachability tasks to more efficient successor computations [104; 102;

57] and achieving termination even over unbounded time horizons [48]. The drawback

of templates is the lack of accuracy, which may lead to an approximation error that

accumulates excessively. Efforts to dynamically refine templates have so far not scaled

well for affine dynamics [54]. A single-step refinement was proposed in [16], but as was

illustrated in [23], the refinement needs to be inductive in order to exclude counterexamples

in a CEGAR scheme.



103

7 Conclusions

We have investigated automatic abstraction refinement techniques for the time-unbounded

reachability analysis of hybrid systems using template polyhedra. First, we have introduced

a theory for the refinement of template directions from unfeasible paths coming, e.g.,

from a CEGAR loop. We have identified that, for abstractions whose post operators are

defined in terms of Minkowski sums, linear transformations, conical hulls, maps through

interval matrices, and linear or compact intersections, a refinement always exists and

consists of at most one direction for each step in the path. The theory applies naturally

to the abstraction of convex hybrid automata and, hence, to the special case of linear

hybrid automata. As for hybrid automata with piece-wise affine dynamics, template

refinement applies to overapproximations like linear phase approximations, which reduces

them to convex hybrid automata, and interval arithmetic–based flowpipe approximations,

which reduces them to discrete systems whose updates are given by interval matrices.

Second, we have shown that, to construct a linear phase approximation whose pieces are

unbounded in time and space, but are bounded in the aperture between derivatives, it is

sufficient to partition the state space into cones. With this in mind, we have introduced

the conic abstractions and, furthermore, shown that, for purely continuous diagonalizable

systems, computing the abstraction terminates. Third, we have introduced the space-time

interpolants, which couple the refinement of template directions with the refinement of the

time partitioning, for flowpipe approximations based on interval arithmetic. In particular,

we have developed a best-effort technique for computing space-time interpolants with a

as-small-as-possible number of directions and time intervals that are precise enough to

eliminate a counterexample.



104

Template refinement, conic abstractions, and space-time interpolants allow, in different

ways, to refine the abstraction incrementally and automatically, so as to find an abstraction

that is as coarse as possible, but precise enough to avoid spurious counterexamples. It

turns out from our experiments that, unlike abstraction with fixed template and fixed time

and space partitioning, reachability analysis, particularly over unbounded time, benefits

from coarseness. Intuitively, the wider the abstraction, first, the easier (in our case) it is to

compute and, second, the most likely (empirically) it finds a fixpoint. For convex hybrid

automata, we demonstrated that searching for the smallest number of directions is orders of

magnitude faster than using (and refining, if needed) a fixed template. In particular, refining

the abstraction lazily enabled the practical time-unbounded reachability of quadratic hybrid

automata and resulted in superior efficiency for linear hybrid automata. With the conic

abstractions, we demonstrated that an appropriate conic partitioning guarantees coverage of

the reach set for unbounded time, unlike typical flowpipe approximation methods, without

sacrificing on precision. Finally, with the space-time interpolants, we demonstrated that

using minimal templates and time partitioning allows flowpipe approximation methods,

which were used before in a time-bounded fashion, to outperform the state-of-the-art tools

for sound and automatic reachability over unbounded time.

Convex hybrid automata and hybrid automata with linear ODE can model various

systems. Convex hybrid automata can model, e.g., timed systems whose drift between

clocks is bounded within some Euclidean distance or approximate, e.g., stochastic systems

whose disturbance is drawn from a (truncated) normal distribution; linear ODE can model

various physical phenomena such as, e.g., heat transfer, motion. Proving the safety of these

models can show that, e.g., a certain quantity never exceeds a critical threshold or that, e.g.,

a digital controller never enters an error state; our time-unbounded reachability analysis

methods always provide a formal safety guarantee. Formal safety proofs, if practical, may

constitute a fundamental step in the model-based design of an embedded hybrid systems,

where systems are first modeled and, only after a successful analysis, deployed. Formal

guarantees could be particularly important for systems that are safety critical, that is

where a system’s failure may endanger human lives.



105

We introduced methods for the refinement of template polyhedra for the reachability

analysis of hybrid automata, posing the basis for future directions in terms of expressivity

of the method, efficiency of the procedures, and applicability to other domains. For

instance, as for expressivity, our method needs to be extended to piece-wise affine systems

with non-deterministic inputs, which is challenging because it might involve larger post

operators [53]; as for efficiency, our procedures recompute the abstraction after every

refinement, while may be further optimized by constructing the abstraction incrementally

[70]; as for applicability, our technique not only applies to hybrid automata, but, generally,

to any similar abstract interpretation problem like, e.g., the verification of neural networks.



106



107

Bibliography

[1] GLPK (GNU linear programming kit).

[2] A. Albarghouthi and K. L. McMillan. Beautiful interpolants. In Computer Aided

Verification - 25th International Conference, CAV 2013, Saint Petersburg, Russia,

July 13-19, 2013. Proceedings, pages 313–329, 2013.

[3] F. Alizadeh and D. Goldfarb. Second-order cone programming. Math. Program.,

95(1):3–51, 2003.

[4] M. Althoff. An introduction to cora 2015. In G. Frehse and M. Althoff, editors,

ARCH14-15. 1st and 2nd International Workshop on Applied veRification for Con-

tinuous and Hybrid Systems, volume 34 of EPiC Series in Computer Science, pages

120–151. EasyChair, 2015.

[5] M. Althoff, C. L. Guernic, and B. H. Krogh. Reachable set computation for uncertain

time-varying linear systems. In HSCC, pages 93–102. ACM, 2011.

[6] R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger, P. Ho, X. Nicollin, A. Olivero,

J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems. Theoretical

Computer Science, 138(1):3–34, 1995.

[7] R. Alur, C. Courcoubetis, T. A. Henzinger, and P.-H. Ho. Hybrid automata: An

algorithmic approach to the specification and verification of hybrid systems. In

Hybrid systems, pages 209–229. Springer, 1992.

[8] R. Alur, T. Dang, and F. Ivančić. Reachability analysis of hybrid systems via

predicate abstraction. In Hybrid Systems: Computation and Control (HSCC), pages

35–48. 2002.



108

[9] R. Alur, T. Dang, and F. Ivančić. Progress on reachability analysis of hybrid systems

using predicate abstraction. In HSCC, pages 4–19. Springer, 2003.

[10] R. Alur, T. Dang, and F. Ivančić. Counterexample-guided predicate abstraction of

hybrid systems. Theoretical Computer Science, 354(2):250–271, 2006.

[11] R. Alur and D. L. Dill. A theory of timed automata. Theor. Comput. Sci., 126(2):183–

235, 1994.

[12] R. Alur and T. Henzinger. Modularity for timed and hybrid systems. CONCUR’97:

Concurrency Theory, pages 74–88, 1997.

[13] R. Alur, T. A. Henzinger, and P. Ho. Automatic symbolic verification of embedded

systems. In RTSS. IEEE Computer Society, 1993.

[14] E. Asarin, T. Dang, and A. Girard. Hybridization methods for the analysis of

nonlinear systems. Acta Informatica, 43(7):451–476, 2007.

[15] E. Asarin, T. Dang, and O. Maler. The d/dt tool for verification of hybrid systems.

In Computer Aided Verification, pages 746–770. Springer, 2002.

[16] E. Asarin, T. Dang, O. Maler, and R. Testylier. Using redundant constraints for

refinement. In International Symposium on Automated Technology for Verification

and Analysis, pages 37–51. Springer, 2010.

[17] R. Bagnara, P. M. Hill, and E. Zaffanella. The Parma Polyhedra Library: Toward a

complete set of numerical abstractions for the analysis and verification of hardware

and software systems. Science of Computer Programming, 72(1–2):3–21, 2008.

[18] C. Barrett and C. Tinelli. Satisfiability modulo theories. In Handbook of Model

Checking, pages 305–343. Springer, 2018.

[19] G. Batt, C. Belta, and R. Weiss. Temporal logic analysis of gene networks under

parameter uncertainty. Transactions on Automatic Control, 53(Special Issue):215–

229, 2008.

[20] L. Benvenuti, D. Bresolin, P. Collins, A. Ferrari, L. Geretti, and T. Villa. Assume-

guarantee verification of nonlinear hybrid systems with Ariadne. Int. J. Robust.

Nonlinear Control, 24(4):699–724, 2014.



109

[21] J. A. Bergstra and C. A. Middelburg. Process algebra for hybrid systems. Theoretical

Computer Science, 335(2-3):215–280, 2005.

[22] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu. Bounded model

checking. Advances in computers, 58:117–148, 2003.

[23] S. Bogomolov, G. Frehse, M. Giacobbe, and T. A. Henzinger. Counterexample-guided

refinement of template polyhedra. In TACAS (1), volume 10205 of Lecture Notes in

Computer Science, pages 589–606, 2017.

[24] S. Bogomolov, M. Giacobbe, T. A. Henzinger, and H. Kong. Conic abstractions for

hybrid systems. In FORMATS, volume 10419 of Lecture Notes in Computer Science,

pages 116–132. Springer, 2017.

[25] S. Bogomolov, C. Herrera, and W. Steiner. Benchmark for verification of fault-

tolerant clock synchronization algorithms. In ARCH (2016).

[26] O. Botchkarev and S. Tripakis. Verification of hybrid systems with linear differential

inclusions using ellipsoidal approximations. HSCC, pages 73–88, 2000.

[27] O. Bournez, O. Maler, and A. Pnueli. Orthogonal polyhedra: Representation and

computation. In HSCC, volume 1569 of Lecture Notes in Computer Science, pages

46–60. Springer, 1999.

[28] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge university press,

2004.

[29] T. Brihaye, L. Doyen, G. Geeraerts, J. Ouaknine, J.-F. Raskin, and J. Worrell. On

reachability for hybrid automata over bounded time. In International Colloquium

on Automata, Languages, and Programming, pages 416–427. Springer, 2011.

[30] L. Bu, Y. Li, L. Wang, and X. Li. BACH : Bounded reachability checker for linear

hybrid automata. In FMCAD, pages 1–4. IEEE, 2008.

[31] L. Bu, J. Zhao, and X. Li. Path-oriented reachability verification of a class of

nonlinear hybrid automata using convex programming. In VMCAI, 2010.

[32] T. Chen, N. Yu, and T. Han. Continuous-time orbit problems are decidable in

polynomial-time. Inf. Process. Lett., 115(1):11–14, 2015.



110

[33] X. Chen and E. Ábrahám. Choice of directions for the approximation of reachable

sets for hybrid systems. In EUROCAST (1), volume 6927 of Lecture Notes in

Computer Science, pages 535–542. Springer, 2011.

[34] X. Chen, E. Abraham, and S. Sankaranarayanan. Taylor model flowpipe construction

for non-linear hybrid systems. In Real-Time Systems Symposium (RTSS), 2012

IEEE 33rd, pages 183–192. IEEE, 2012.

[35] X. Chen, E. Ábrahám, and S. Sankaranarayanan. Taylor model flowpipe construction

for non-linear hybrid systems. In RTSS’12, pages 183–192, 2012.

[36] X. Chen, E. Ábrahám, and S. Sankaranarayanan. Flow*: An analyzer for non-linear

hybrid systems. In CAV, 2013.

[37] X. Chen, S. Schupp, I. B. Makhlouf, E. Ábrahám, G. Frehse, and S. Kowalewski. A

benchmark suite for hybrid systems reachability analysis. In NASA Formal Methods

Symposium, pages 408–414. Springer, 2015.

[38] V. Chonev, J. Ouaknine, and J. Worrell. The orbit problem in higher dimensions.

In STOC, pages 941–950. ACM, 2013.

[39] V. Chonev, J. Ouaknine, and J. Worrell. The polyhedron-hitting problem. In SODA,

pages 940–956. SIAM, 2015.

[40] A. Chutinan and B. H. Krogh. Verification of polyhedral-invariant hybrid automata

using polygonal flow pipe approximations. In HSCC, volume 1569 of Lecture Notes

in Computer Science, pages 76–90. Springer, 1999.

[41] A. Cimatti, A. Griggio, S. Mover, and S. Tonetta. Hycomp: An smt-based model

checker for hybrid systems. In TACAS, volume 9035 of Lecture Notes in Computer

Science, pages 52–67. Springer, 2015.

[42] A. Cimatti, S. Mover, and S. Tonetta. A quantifier-free SMT encoding of non-linear

hybrid automata. In FMCAD, 2012.

[43] E. Clarke, A. Fehnker, Z. Han, B. Krogh, J. Ouaknine, O. Stursberg, and M. Theobald.

Abstraction and counterexample-guided refinement in model checking of hybrid

systems. International Journal of Foundations of Computer Science, 14(04):583–604,

2003.



111

[44] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided

abstraction refinement. In CAV, 2000.

[45] P. Collins, D. Bresolin, L. Geretti, and T. Villa. Computing the evolution of hybrid

systems using rigorous function calculus. IFAC Proceedings Volumes, 45(9):284–290,

2012.

[46] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static

analysis of programs by construction or approximation of fixpoints. In POPL, 1977.

[47] P. J. L. Cuijpers and M. A. Reniers. Hybrid process algebra. The Journal of Logic

and Algebraic Programming, 62(2):191–245, 2005.

[48] T. Dang and T. M. Gawlitza. Template-based unbounded time verification of affine

hybrid automata. In Asian Symposium on Programming Languages and Systems,

pages 34–49. Springer, 2011.

[49] L. Doyen, T. A. Henzinger, and J.-F. Raskin. Automatic rectangular refinement

of affine hybrid systems. In Proceedings of the Third International Conference on

Formal Modeling and Analysis of Timed Systems, FORMATS’05, pages 144–161,

Berlin, Heidelberg, 2005. Springer-Verlag.

[50] A. Eggers, M. Fränzle, and C. Herde. SAT modulo ODE: A direct SAT approach

to hybrid systems. In ATVA, volume 5311 of Lecture Notes in Computer Science,

pages 171–185. Springer, 2008.

[51] A. Fehnker and F. Ivančić. Benchmarks for hybrid systems verification. In Inter-

national Workshop on Hybrid Systems: Computation and Control, pages 326–341.

Springer, 2004.

[52] G. Frehse. Phaver: Algorithmic verification of hybrid systems past hytech. In

International workshop on hybrid systems: computation and control, pages 258–273.

Springer, 2005.

[53] G. Frehse. Reachability of hybrid systems in space-time. In EMSOFT, pages 41–50.

IEEE, 2015.



112

[54] G. Frehse, S. Bogomolov, M. Greitschus, T. Strump, and A. Podelski. Eliminating

spurious transitions in reachability with support functions. In Proceedings of the

18th International Conference on Hybrid Systems: Computation and Control, pages

149–158. ACM, 2015.

[55] G. Frehse, M. Giacobbe, and T. A. Henzinger. Space-time interpolants. In CAV (1),

volume 10981 of Lecture Notes in Computer Science, pages 468–486. Springer, 2018.

[56] G. Frehse, R. Kateja, and C. Le Guernic. Flowpipe approximation and clustering in

space-time. In Proceedings of the 16th international conference on Hybrid systems:

computation and control, pages 203–212. ACM, 2013.

[57] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R. Ripado,

A. Girard, T. Dang, and O. Maler. SpaceEx: Scalable verification of hybrid systems.

In CAV’11, pages 379–395, 2011.

[58] A. Girard. Reachability of uncertain linear systems using zonotopes. HSCC, pages

291–305, 2005.

[59] C. L. Guernic and A. Girard. Reachability analysis of hybrid systems using support

functions. In CAV, 2009.

[60] E. Hainry. Reachability in linear dynamical systems. In CiE, volume 5028 of Lecture

Notes in Computer Science, pages 241–250. Springer, 2008.

[61] N. Halbwachs, Y.-E. Proy, and P. Raymond. Verification of linear hybrid systems

by means of convex approximations. In International Static Analysis Symposium,

SAS’94, Namur (Belgium), September 1994.

[62] J. Hanson. Rotations in three, four, and five dimensions. arXiv preprint

arXiv:1103.5263, 2011.

[63] T. Henzinger. The theory of hybrid automata. In Proc. IEEE Symp. Logic in

Computer Science, pages 278–292, 1996.

[64] T. Henzinger, P.-H. Ho, and H. Wong-Toi. HyTech: A model checker for hybrid

systems. Software Tools for Technology Transfer, 1:110–122, 1997.



113

[65] T. Henzinger and H. Wong-Toi. Linear phase-portrait approximations for nonlinear

hybrid systems. Hybrid Systems III, pages 377–388, 1996.

[66] T. A. Henzinger and P. Ho. HYTECH: the cornell hybrid technology tool. In Hybrid

Systems, volume 999 of Lecture Notes in Computer Science, pages 265–293. Springer,

1994.

[67] T. A. Henzinger and P.-H. Ho. A note on abstract interpretation strategies for

hybrid automata. In International Hybrid Systems Workshop, 1994.

[68] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. Hytech: A model checker for hybrid

systems. In International Conference on Computer Aided Verification, pages 460–463.

Springer, 1997.

[69] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. Algorithmic analysis of nonlinear

hybrid systems. IEEE transactions on automatic control, 43(4):540–554, 1998.

[70] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In POPL,

2002.

[71] T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya. What’s decidable about

hybrid automata? J. Comput. Syst. Sci., 57(1):94–124, 1998.

[72] M. W. Hirsch, S. Smale, and R. L. Devaney. Differential equations, dynamical

systems, and an introduction to chaos. Academic press, 2012.

[73] S. K. Jha, B. H. Krogh, J. E. Weimer, and E. M. Clarke. Reachability for linear

hybrid automata using iterative relaxation abstraction. In HSCC, 2007.

[74] Y. Jiang, H. Song, R. Wang, M. Gu, J. Sun, and L. Sha. Data-centered runtime ver-

ification of wireless medical cyber-physical system. IEEE Transactions on Industrial

Informatics, 2016.

[75] Y. Jiang, H. Zhang, Z. Li, Y. Deng, X. Song, M. Gu, and J. Sun. Design and

optimization of multiclocked embedded systems using formal techniques. IEEE

transactions on industrial electronics, 62(2):1270–1278, 2015.

[76] F. Johansson. Arb: efficient arbitrary-precision midpoint-radius interval arithmetic.

IEEE Transactions on Computers, 66:1281–1292, 2017.



114

[77] R. Kannan and R. J. Lipton. Polynomial-time algorithm for the orbit problem. J.

ACM, 33(4):808–821, 1986.

[78] M. Kloetzer and C. Belta. Reachability analysis of multi-affine systems. In HSCC,

pages 348–362. Springer, 2006.

[79] H. Kong, E. Bartocci, S. Bogomolov, R. Grosu, T. A. Henzinger, Y. Jiang, and

C. Schilling. Discrete abstraction of multiaffine systems. In International Workshop

on Hybrid Systems Biology, pages 128–144. Springer, 2016.

[80] H. Kong, F. He, X. Song, W. N. Hung, and M. Gu. Exponential-condition-based

barrier certificate generation for safety verification of hybrid systems. In CAV, pages

242–257. Springer, 2013.

[81] S. Kong, S. Gao, W. Chen, and E. M. Clarke. dreach: δ-reachability analysis for

hybrid systems. In TACAS, volume 9035 of Lecture Notes in Computer Science,

pages 200–205. Springer, 2015.

[82] A. B. Kurzhanski and P. Varaiya. Dynamics and Control of Trajectory Tubes.

Springer, 2014.

[83] G. Lafferriere, G. J. Pappas, and S. Sastry. O-minimal hybrid systems. MCSS,

13(1):1–21, 2000.

[84] G. Lafferriere, G. J. Pappas, and S. Yovine. A new class of decidable hybrid

systems. In HSCC, volume 1569 of Lecture Notes in Computer Science, pages

137–151. Springer, 1999.

[85] L. Lamport. A fast mutual exclusion algorithm. ACM Transactions on Computer

Systems (TOCS), 5(1):1–11, 1987.

[86] C. Le Guernic and A. Girard. Reachability analysis of hybrid systems using support

functions. In International Conference on Computer Aided Verification, pages

540–554. Springer, 2009.

[87] N. Lynch, R. Segala, and F. Vaandrager. Hybrid i/o automata. Information and

computation, 185(1):105–157, 2003.



115

[88] O. Maler, Z. Manna, and A. Pnueli. From timed to hybrid systems. In Work-

shop/School/Symposium of the REX Project (Research and Education in Concurrent

Systems), pages 447–484. Springer, 1991.

[89] C. Moler and C. Van Loan. Nineteen dubious ways to compute the exponential of a

matrix, twenty-five years later. SIAM review, 45(1):3–49, 2003.

[90] MOSEK ApS. The MOSEK C optimizer API manual. Version 7.1 (Revision 53).,

2015.

[91] J. Nellen, E. Ábrahám, and B. Wolters. A cegar tool for the reachability analysis of

plc-controlled plants using hybrid automata. In Formalisms for Reuse and Systems

Integration, pages 55–78. Springer, 2015.

[92] X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. An approach to the description

and analysis of hybrid systems. In Hybrid Systems, pages 149–178. Springer, 1992.

[93] A. Platzer. Differential-algebraic dynamic logic for differential-algebraic programs.

Journal of Logic and Computation, 20(1):309–352, 2008.

[94] A. Platzer. Differential dynamic logic for hybrid systems. Journal of Automated

Reasoning, 41(2):143–189, 2008.

[95] A. Platzer and J. Quesel. Keymaera: A hybrid theorem prover for hybrid systems

(system description). In IJCAR, volume 5195 of Lecture Notes in Computer Science,

pages 171–178. Springer, 2008.

[96] M. V. Ramana. An exact duality theory for semidefinite programming and its

complexity implications. Math. Program., 77, 1997.

[97] S. Ratschan. Safety verification of non-linear hybrid systems is quasi-semidecidable.

In International Conference on Theory and Applications of Models of Computation,

pages 397–408. Springer, 2010.

[98] S. Ratschan and Z. She. Safety verification of hybrid systems by constraint

propagation-based abstraction refinement. ACM Transactions on Embedded Com-

puting Systems (TECS), 6(1):8, 2007.

[99] R. T. Rockafellar. Convex Analysis. Princeton University Press, 1970.



116

[100] J. Rohn. Systems of linear interval equations. Linear algebra and its applications,

126:39–78, 1989.

[101] N. Roohi, P. Prabhakar, and M. Viswanathan. Hybridization based cegar for hybrid

automata with affine dynamics. In International Conference on Tools and Algorithms

for the Construction and Analysis of Systems, pages 752–769. Springer, 2016.

[102] S. Sankaranarayanan, T. Dang, and F. Ivancic. Symbolic model checking of hybrid

systems using template polyhedra. In TACAS, 2008.

[103] S. Sankaranarayanan, H. B. Sipma, and Z. Manna. Scalable analysis of linear systems

using mathematical programming. In VMCAI, 2005.

[104] S. Sankaranarayanan, H. B. Sipma, and Z. Manna. Scalable analysis of linear systems

using mathematical programming. In International Workshop on Verification, Model

Checking, and Abstract Interpretation, pages 25–41. Springer, 2005.

[105] M. Segelken. Abstraction and counterexample-guided construction of ω-automata

for model checking of step-discrete linear hybrid models. In International Conference

on Computer Aided Verification, pages 433–448. Springer, 2007.

[106] A. Sogokon, K. Ghorbal, P. B. Jackson, and A. Platzer. A method for invariant

generation for polynomial continuous systems. In TACAS, pages 268–288. Springer,

2016.

[107] M. Sorea. Lazy approximation for dense real-time systems. In Formal Tech-

niques, Modelling and Analysis of Timed and Fault-Tolerant Systems, pages 363–378.

Springer, 2004.

[108] L. Tavernini. Differential automata and their discrete simulators. Nonlinear Analysis:

Theory, Methods & Applications, 11(6):665–683, 1987.

[109] A. Tiwari. Abstractions for hybrid systems. Formal Methods in System Design,

32(1):57–83, 2008.

[110] A. Tiwari and G. Khanna. Series of abstractions for hybrid automata. In HSCC,

pages 465–478. Springer, 2002.

[111] F. Vaandrager. Hybrid systems. Images of SMC Research, pages 305–316, 1996.


