


ii

© by Pavel Payne, February, 2017

All Rights Reserved

I hereby declare that this dissertation is my own work, and it does not contain

other peoples work without this being so stated; and this thesis does not contain

my previous work without this being stated, and that the bibliography contains all

the literature that I used in writing the dissertation, and that all references refer to

this bibliography.

I declare that this is a true copy of my thesis, including any final revisions, as

approved by my thesis committee, and that this thesis has not been submitted for

a higher degree to any other University or Institution.

Signature:

Pavel Payne

February, 2017



iii

Biographical Sketch

Pavel Payne was born in 1985 in Prague, where he grew up and obtained

his undergraduate education at the Charles University. In 2009 he received his

Bachelor’s degree in Ecology and Environmental Protection. In 2011 he finished

his Master studies in Theoretical and Evolutionary Biology with a defence of his

Master Thesis entitled The Role of Genetic Variability in Speciation. In the same

year he started his PhD studies at IST Austria.



iv

List of Publications



v

Acknowledgments

I am very much obliged to many people who supported me during my doctoral

studies, but particularly I would like to thank Jon Bollback and Nick Barton for their

guidance, support, patience, and for letting me examine and study topics beyond

the actual topic of my PhD research. I am also particularly thankful to Calin Guet

for his occasional advice on experimental issues and for his boundless encourage-

ment and support when hurdles to my research seemed insurmountable.

It has been an enriching experience to cooperate with Lukas Geyrhofer, who

contributed tremendously to the modelling of bacterial herd immunity. I would also

like to thank Remy Chait, who helped me to establish various experimental setups

necessary to obtain precious data.

Besides those mentioned above, I am grateful to all current and former mem-

bers of both the Bollback and Barton group for the friendly and creative environ-

ment they created and their help with many experimental and theoretical issues.

I am also very grateful to my external committee member Thomas Flatt for his

time and the feedback he gave me both on the PhD thesis proposal and more

importantly on the final thesis.

Furthermore I very much appreciated the interdisciplinary atmosphere of IST

Austria and the support from our group assistants Elisabeth Hacker, Nicole Hotzy,

Julia Asimakis, Christine Ostermann and Jerneja Beslagic.
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Abstract

Bacteria and their pathogens – phages – are the most abundant living entities

on Earth. Throughout their coevolution, bacteria have evolved multiple immune

systems to overcome the ubiquitous threat from the phages. Although the molecu-

lar details of these immune systems’ functions are relatively well understood, their

epidemiological consequences for the phage-bacterial communities have been

largely neglected. In this thesis we employed both experimental and theoretical

methods to explore whether herd and social immunity may arise in bacterial popu-

lations. Using our experimental system consisting of Escherichia coli strains with

a CRISPR based immunity to the T7 phage we show that herd immunity arises

in phage-bacterial communities and that it is accentuated when the populations

are spatially structured. By fitting a mathematical model, we inferred expressions

for the herd immunity threshold and the velocity of spread of a phage epidemic in

partially resistant bacterial populations, which both depend on the bacterial growth

rate, phage burst size and phage latent period. We also investigated the poten-

tial for social immunity in Streptococcus thermophilus and its phage 2972 using

a bioinformatic analysis of potentially coding short open reading frames with a

signalling signature, encoded within the CRISPR associated genes. Subsequently,

we tested one identified potentially signalling peptide and found that its addition

to a phage-challenged culture increases probability of survival of bacteria two

fold, although the results were only marginally significant. Together, these results

demonstrate that the ubiquitous arms races between bacteria and phages have

further consequences at the level of the population.
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1 Introduction

Bacteria and Archaea are the most abundant cellular organisms on Earth (> 10

30

individuals globally) (Whitman et al., 1998) and the most diversified kingdoms on

the tree of life (Hug et al., 2016). They are essential for virtually all biogeochemical

processes and inhabit literally every corner of our planet (Prosser et al., 2007).

However abundant these organisms are, they are outnumbered about ten fold by

their viral pathogens called bacteriophages (Abedon, 2008) or phages1.

Phages have evolved a variety of life history strategies to reproduce in their

prokaryotic hosts. Phages capable of temperate life cycle and filamentous phages

can form long-term associations with their hosts in a process called lysogeny and

pseudolysogeny, respectively (Koskella and Brockhurst, 2014). Phages with a

purely lytic life cycle require lysis of the cell to reproduce, thus they are obligate

killers of their hosts (Hyman and Abedon, 2012). While temperate and filamentous

phages are not necessarily detrimental to the host, and eventually may even alter

the host phenotype in a beneficial way (e.g. provide antibiotic resistance or toxin

production (Brüssow et al., 2004; Waldor and Mekalanos, 1996)), purely lytic

phages pose a significant threat to the hosts and represent a strong selection

pressure. In response, bacteria have evolved a number of immune mechanisms to

defend themselves and many of these mechanisms have been understood in a

great detail at the molecular level. In the next section we briefly review the bacterial

immune mechanisms discovered up to now and explain how they function.

1For clarity, throughout this thesis we will stick to the term ‘phage’ and its plural form ‘phages’,
as has been established in a majority of the literature (Ackermann, 2011).
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1.1 Bacterial immune systems

Bacteria defend themselves against phages in a variety of ways. These defences

can be divided into four classes according to the mechanisms of their function:

(i) preventing phage adsorption, (ii) preventing phage DNA entry, (iii) abortive

infection systems and (iv) phage nucleic acid degradation (Labrie et al., 2010).

Prevention of phage adsorption (i) occurs in a variety of ways including mu-

tations in genes that code for adsorption sites of phages (Luria and Delbrück,

1943), blocking of phage receptors (Nordström and Forsgren, 1974), production

of extracellular matrix (Blumenthal and Cheng, 2002), and competitive inhibitors

(Destoumieux-Garzón et al., 2005).

Another class of bacterial defence is the prevention of phage DNA entry (ii)

encoded by genes often found in prophages to provide superinfection exclusion

(Lu and Henning, 1994). This suggests that they have evolved as a result of

interactions between different phages rather than between phage and host.

The third class of immune responses are abortive infection (Abi) systems (iii),

which are ‘altruistic’ systems that limit phage replication by the host’s suicide,

preventing further spread of the phage through the bacterial population (Chopin

et al., 2005).

The last class of immune responses are those that target phage genomes for

degradation (iv). The first immune systems described, and undoubtedly the most

common, are the host restriction-modification (RM) systems (Oliveira et al., 2014),

which cleave foreign DNA at specific 4-8nt long sites; self-nonself recognition oc-

curs via methylation of sites in the host genome (Blumenthal and Cheng, 2002). A

similar but less common immune system is the recently discovered bacteriophage-

exclusion (BREX) system (Goldfarb et al., 2015), which inhibits phage replication

via some other, yet unknown, mechanism that seems not to involve foreign DNA

cleavage. Some authors also consider so called Argonaute-based RNAi-like sys-

tem (Swarts et al., 2014) as a potential phage RNA interference mechanism (Kaya

et al., 2016). The last of the known foreign DNA degrading immune systems

are the CRISPR/Cas (clustered regularly interspaced short palindromic repeats)
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systems. These systems cleave foreign DNA based on a 26-72nt long stretch of

the phage genome (spacer) that has been previously incorporated into a special

‘immune memory’ locus, with sequence specific self-nonself recognition (Sorek

et al., 2013).

The molecular mechanisms and functional details of some of these bacterial im-

mune systems have been repurposed as extremely powerful tools for DNA manip-

ulations, such as restriction enzymes (Loenen et al., 2014) and the CRISPR/Cas9

genome editing systems (Doudna and Charpentier, 2014).

1.2 Bacteria–phage coevolution

Given the abundance of bacteria and phages and the arsenal of immune systems

bacterial hosts have evolved, the question what consequences interactions be-

tween bacteria and phages can have on their ecology and evolution has been

of an interest to many microbial evolutionary ecologists. The effects of these

interactions have been examined in a number of laboratory experiments focusing

on bacteria–phage coevolution, a process defined as continuous adaptation and

counter-adaptation between interacting species in a community (Van Valen, 1973;

Janzen, 1980; Stern and Sorek, 2011), (for a review see Koskella and Brockhurst,

2014). It has been shown that phages can influence competition among bacterial

strains and species (e.g., Bohannan and Lenski, 2000b,a; Koskella et al., 2012)

maintain bacterial diversity (e.g., Buckling and Rainey, 2002b,a) and that the

phages evolve their infectivity range (Hall et al., 2011).

A common scheme of bacteria-phage coevolutionary experiments is a long

term coculturing of bacteria and phages with periodical quantification of various

factors such as phage and bacterial concentrations and diversities, evolution

of bacterial resistance, and evolution of phage infectivity. These experiments

allow for observations of the outcomes mentioned above, but it is often difficult to

assess whether the processes responsible for these outcomes can be attributed to

ecological, microevolutionary or coevolutionary dynamics (Koskella and Brockhurst,
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2014).

It has been shown that maintenance of bacterial host diversity and their coexis-

tence with the phage can be ascribed to spatial refuges in unshaken flasks (Schrag

and Mittler, 1996), costs of resistance (Bohannan et al., 2002), heterogeneity in

the bacteria and phage populations, and the availability of resources (Chao et al.,

1977; Levin et al., 1977; Lenski and Levin, 1985; Bohannan and Lenski, 1997,

1999, 2000b). Coexistence of phages and bacteria, however, has been shown

to be possible even in cultures without spatial refuges available (Lenski, 1988;

Schrag and Mittler, 1996), whereas the mechanisms allowing the bacteria and

phage to coexist in these environments seemed rather unclear (Lythgoe and Chao,

2003).

Interestingly, none of the approaches employed in the studies mentioned above

has taken into account processes happening at the border of ecology and mi-

croevolution – host–pathogen epidemiology. In the past decades, epidemiologists

have developed a large body of theory addressing questions of how pathogens

spread and persist and the dynamics of immune and susceptible individuals in

populations. Adopting these approaches for bacteria–phage systems can allow us

to disentangle at which level the processes such as coexistence of bacteria and

phages and maintenance of bacterial diversity happen, and even quantify their

effects and dynamics.

The main epidemiological processes playing an important role in host–pathogen

interactions are herd and social immunity. Therefore, investigation whether and

how herd and social immunity may contribute to the dynamics in bacteria–phage

systems can substantially enhance our understanding of the roles of various

ecological, microevolutionary and coevolutionary processes in these microbial

communities.
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1.3 Herd immunity

One important emerging property of immune competent populations, which has an

impact on their ecology and evolution, is herd immunity. The term herd immunity

has a variety of meanings (Fine et al., 2011) but in its most general definition,

herd immunity is a phenomenon when a resistant fraction of a population reduces

the probability of transmission of a pathogen within the susceptible fraction of the

population. Thus, it determines whether and how a pathogen can spread through

a partially resistant population.

The dynamics of pathogen spread through host populations depends on many

factors such as the virulence of the pathogen, modes of transmission, contact

rate, the mode of immunity of the hosts in the population, and the frequency of

resistant and susceptible hosts. The properties of the host-pathogen system (i.e.,

virulence, means of transmission, and contact rate) can be integrated into one

compound parameter, R
0

, which is the basic reproduction number of the pathogen.

R
0

describes the fitness of the pathogen in a fully susceptible population and can

be defined as the number of new cases of a disease initiated by one infected

individual. The fraction of resistant hosts in the population then determines whether

a pathogen will spread and can be described by a simple formula that characterizes

the threshold at which herd immunity will occur,

H =

R
0

� 1

R
0

,

Thus, if the fraction of resistant hosts is higher than the herd immunity threshold,

the resistant individuals provide indirect protection to the susceptible hosts in the

population, i.e., they provide them with herd immunity (Fig. 1.3 and Fig. 1.3).

Herd immunity has mainly been studied in human and animal populations

(Fine, 1993) with respect to individual adaptive immunity (Pancer and Cooper,

2006). Adaptive immunity refers to antigen-specific immune response, which

provides an immune memory of resistance after a recovery from a disease or after

vaccination. It has been shown that unless the resistant fraction of a population is
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forced by vaccination to stay above the herd immunity threshold, the incidence of

the disease cycles around the birth rate and the number of resistant individuals

cycles around the herd immunity threshold. In other words, herd immunity can

generate frequency dependent selection on resistance and maintain polymorphism

for immunity in the population (Fine, 1993).

Susceptible, infected
Resistant
Susceptible, protected

Transmission
No transmission

A B

R0 = 4

Figure 1.1: Illustration of the transmission of a pathogen with a basic reproduction
number R

0

= 4 over three generations. A) Fully susceptible population: Single
introduced case leads to 4 cases and then to 16 cases, so the number of infected
individuals increases exponentially. B) Partially resistant population: ¾ of the
population is resistant, thus a single introduced case leads to only one successful
transmission per generation, i.e., one another infected individual. If more than
¾ of the population are resistant, the pathogen incidence will decline over time,
because the herd immunity threshold, H, would be exceeded.

As we have mentioned above, bacteria may possess many immune systems

against their abundant pathogens, phages, and one of the systems, namely

CRISPR/Cas, shows a high functional analogy to vertebrate adaptive immunity.

Therefore, it is reasonable to expect that herd immunity may also occur in bacterial

populations which are only partially resistant.

1.4 Social immunity

Another interesting property related to resistance of a population to a pathogen is

social immunity. As organisms often live in populations where individuals within
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often called quorum sensing (Miller and Bassler, 2001). Since these two facts are

prerequisites for social immunity, it suggests that bacteria may also be capable of

mounting a social immune response to a phage attack.

1.5 Thesis aims

Although it seems reasonable to expect that bacteria may exhibit both herd and

social immunity, any direct evidence of the existence of these phenomena is still

lacking. In order to explore whether and how herd and social immunity may occur in

bacterial populations, we employed both experimental methods and mathematical

modelling. Specifically, the aims of this thesis are to:

1. set up an experimental system consisting of susceptible and resistant bacte-

rial strains and their phage, which allows us to explore whether herd immunity

emerges in bacterial populations;

2. investigate how the effect of herd immunity changes in habitats with or

without a spatial structure;

3. construct a mathematical model and measure as many parameters as possi-

ble to identify the crucial factors determining the effect of herd immunity to

phages in bacteria;

4. examine the means of bacterial communications which can be linked to

immunity and experimentally evaluate candidate pheromones potentially

mediating bacterial social immunity.

Besides our interest in the role of herd and social immunity in bacteria–phage

communities, such experimental systems may also allow for convenient testing

of general epidemiological hypotheses, which can be further applied to non-

microbial host–pathogen systems. In fact, there is a call by epidemiologists

for such analogous model systems which can be informative about traditional

vertebrate host–pathogen systems (Babayan and Schneider, 2012).
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2 CRISPR-based Herd Immunity

Limits Phage Epidemics in

Bacterial Populations

Mathematical modelling contained in this chapter has been done in cooperation

with Lukas Geyrhofer (Technion – Israel Institute of Technology, Haifa, Israel) who

has encoded the model and performed most of the analyses.

2.1 Abstract

Pathogens are a driving force in evolution giving rise to a diversity of host immune

defenses. In order for a pathogen to spread in a population a sufficient number of

individuals must be susceptible to infection as resistant individuals can prevent

the spread of a pathogen to susceptible individuals in a process known as herd

immunity. While herd immunity has been extensively studied in vertebrate popula-

tions, little is known about its role, if any, in the dynamics between bacteria and

their phage pathogens. Here we explore the dynamics of T7 phage epidemics in

structured and unstructured Escherichia coli populations consisting of differing

mixtures of susceptible and resistant individuals harboring CRISPR immunity to

the phage. Using both experiments and mathematical modelling we describe the

conditions under which herd immunity arises in bacterial populations. Notably, the

effects of herd immunity depend strongly on the presence of spatial structure in

the population, the bacterial growth rate, and phage replication rate. In addition,
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we provide a model system for exploring general epidemiological principles. Our

findings suggest that studies of phage-bacterial communities should take herd

immunity into consideration and its impact on the long term evolutionary and

ecological dynamics.

2.2 Introduction

The term “herd immunity” has a variety of meanings (see Fine et al., 2011). Here,

we use it in its general meaning as a phenomenon where a resistant fraction

of a population reduces the probability of transmission of a pathogen among

susceptible individuals. Historically, before large-scale vaccination programs,

acquired immunity occurred through exposure to the pathogen, which often led to

cycles of disease incidence over time (Fine, 1993). After efficient vaccines were

developed and large-scale vaccination began, immunisation of a high proportion

of individuals in populations prevented epidemics of many pathogens. One of

the best known observations of herd immunity was the worldwide vaccination

program to eradicate smallpox between 1959 and 1977 (Fenner, 1993). On the

heels of this success, other vaccination programs were developed and applied in

an attempt to control other pathogens, e.g., poliomyelitis, measles, rubella, mumps,

diphtheria, tetanus, and tuberculosis (Anderson and May, 1985b; Anderson, 1995;

Fine, 1993). Herd immunity has been studied mostly in vertebrates, including

foxes (Jeltsch et al., 1997), birds (Boven et al., 2008; Meister et al., 2008) , and

cattle (Mariner et al., 2012), but also in some invertebrates (Konrad et al., 2012;

Wang et al., 2013).

Concurrent with advances in vaccination programs, mathematical theories

aiming at discovering the principles underlying herd immunity were developed.

The first theory of herd immunity was proposed by Hamer (1906), showing that

the number of transmission events of measles was a function of the number of

susceptible individuals in the population. This theory has become known as the

epidemiologic ‘law of mass action’ by analogy to the rate of a chemical reaction
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as a product of the initial concentrations of the reagents (Soper, 1929). This

approach led to formalisation of a general theory of herd immunity, with a central

parameter R
0

, which can be linked to the ‘law of mass action theory’ as being

the number of further infections after a single case has been introduced into

a fully susceptible population (for a historical review of R
0

see (Heesterbeek,

2002)). R
0

thus describes the fitness of the pathogen, which determines the

spreading potential of an infection in a population and is a function of the biological

mechanisms of transmission and the rate of contact between individuals. This

leads to a critical condition, the herd immunity threshold,

H =

R
0

� 1

R
0

, (2.1)

which determines the minimum fraction of resistant individuals needed to halt an

epidemic (Grassly and Fraser, 2008). A simple derivation for (2.1) is presented in

Box 1.

Although H tells us the fraction of a population that needs to be vaccinated, it

does not explicitly describe the mechanisms of transmission or the rate of contacts

in the population. In other words it is a ‘black box’ parameter, which is influenced by

the biological details of the pathogen and of the population itself. Many theoretical

studies have addressed the influence of some of these factors on R
0

, in particular

maternal immunity (Anderson and May, 1992), age at vaccination (Anderson and

May, 1982; Nokes and Anderson, 1988), age related or seasonal differences in

contact rates (Schenzle, 1984; Anderson and May, 1985a; Yorke et al., 1979),

social structure (Fox et al., 1971), geographic heterogeneity (Anderson and May,

1984; Lloyd and May, 1996; Real and Biek, 2007), and the general underlying

contact network of individuals (Ferrari et al., 2006).

2.2.1 Herd immunity in bacteria

As is evident from studies of herd immunity in vertebrates, when and how herd

immunity occurs is strongly host and pathogen specific. Therefore, the question
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Herd immunity in liquid culture can be explained with a simple, but compelling,
intuition. The number of additional infections originating from a single infected host
is usually denoted R

0

in the epidemological literature. If one infection produces at
least one more infected host, 1 < R

0

, the pathogen will spread. In our case, we
have a mixture of immune and susceptible hosts, and S indicates the fraction of
susceptible individuals.
For well mixed populations, that do not exhibit any spatial structure, we can
estimate the herd immunity threshold H via a straightforward argument: With
probability S the pathogen infects a susceptible host and produces R

0

additional
pathogens, while with probability 1 � S a pathogen encounters a resistant host,
which can terminate the infection. Again, if on average at least one additional
infection is generated from a single infected host, the epidemic will spread. Mathe-
matically, this can be expressed in the condition 1 < SR

0

.
Usually, the herd immunity threshold H is defined as the fraction of resistant hosts
(instead of the fraction of susceptible hosts). This leads to H = 1� S

c

, where S
c

is the critical fraction of susceptible individuals that allows an infection to barely
spread, i.e., an infection produces exactly one offspring. Inverting the resulting
condition, 1 = (1�H)R

0

, yields immediately the expression,

H =

R
0

� 1

R
0

,

which we also stated in the main text, (2.1). Additionally, one can adopt a dynamical
interpretation for this expression: Over time, the fraction of susceptible individuals
will decline further, and pathogen encounter more resistant cells, leading to a
increasingly immune population.
In the context of phages infecting bacterial populations, R

0

is as a first approxima-
tion simply the burst size of phages �. However, even in liquid culture, this number
R

0

is modified by additional interactions between host, pathogen, and environment.

Box 1: Basic principles of herd immunity.

to what extent patterns of herd immunity apply also to the microbial world is still

unanswered. Bacteria and phages are the most abundant organisms on Earth

(Whitman et al., 1998; Abedon, 2008). Thus, investigating their interaction can

provide clues for understanding their impact on other ecological processes, but

also for the dynamics of infectious diseases in general. The advantage of using

bacteria and phages as a model system is that theoretical predictions can be

directly tested under controlled laboratory conditions. In following sections we

briefly discuss bacterial immune systems with respect to their potential to provide

herd immunity against virulent phages.
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2.2.1.1 Bacterial immune systems and their potential for herd immunity

Bacteria have multiple defence mechanisms against phages. These mechanisms

target various stages of the phage life cycle. The early defence mechanisms

include prevention of phage adsorption, e.g., by mutations in genes that code for

adsorption sites of phages (Luria and Delbrück, 1943), blocking of phage receptors

(Nordström and Forsgren, 1974), production of an extracellular matrix (Hammad,

1998; Sutherland et al., 2004), or of competitive inhibitors (Destoumieux-Garzón

et al., 2005). Besides these avoidance mechanisms, bacteria have also evolved

various endogenous immune systems that mostly restrict foreign DNA injected

into the cell by a phage. These immune systems include so called innate immune

systems: restriction-modification (RM) (Blumenthal and Cheng, 2002), abortive

infection (Abi) (Chopin et al., 2005), argonaute-based RNAi-like (Swarts et al.,

2014), and bacteriophage-exclusion (BREX) system (Goldfarb et al., 2015), and

an adaptive immune system called CRISPR/Cas (clustered regularly interspaced

short palindromic repeat) (Sorek et al., 2013).

In order to provide significant herd immunity, the immune system must prevent

further spread of the pathogen, i.e., provide a ‘sink’ for the infectious particles, and

the population must be polymorphic for immunity.

From the defence mechanisms listed above, only RM, BREX, argonaute-based

RNAi-like, and the CRISPR/Cas systems degrade foreign phage DNA after it is

injected into the cell, thus providing a stable ‘sink’ for the phage. Bacterial popula-

tions may certainly be polymorphic for the innate immunity via a presence/absence

(or loss of function) polymorphism. The CRISPR/Cas system, in addition to this

possibility of presence/absence polymorphism, is capable of adaptive acquisition

of new spacers (Barrangou et al., 2007), which can generate another level of

polymorphism for immunity to different phages (Horvath et al., 2008). Although the

exact rate of spacer acquisition is poorly known and varies with experimental con-

ditions (Levin et al., 2013), the probability that a population would be polymorphic

for the CRISPR-based immunity is likely to be higher than for any other immune

response mentioned above.
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In addition to immune system-specific factors, the fecundity of a phage also

depends strongly on the physiology of the host bacterium (Hadas et al., 1997),

and the underlying effective contact network which may vary greatly in bacterial

populations depending on the details of their habitat. Thus, R
0

will vary depending

on the physiological state of the bacteria and the mobility of the phage in the

environment through passive diffusion and movement of infected individuals. Taken

together these details call into question the applicability of the traditional models

of herd immunity in vertebrates to phage-bacterial systems and requires both

experimental investigation and the development of models that take into account

the details of phage-bacterial systems.

2.2.2 Our experimental system

In order to examine under which conditions herd immunity may arise in phage-

bacterial communities, we constructed an experimental system in which we could

explore the dynamics of phage spread in non-structured and structured populations

consisting of phage-susceptible and phage-resistant individuals. The experimental

system consists of Escherichia coli strains, one of them possessing a CRISPR-

based immunity to the T7 phage. In order to be able to monitor the spread of

the epidemic and assess the impact of the CRISPR system on herd immunity of

the population, we constructed the resistant strain so that once a resistant cell

is infected by a phage the cells’ growth is halted. However, cells still function

as a ‘sink’ to the phage. Thus, we rule out the possibility that resistant bacteria

overgrow patches already wiped out by phages. Moreover, it allows us to focus

solely on the dynamics of phage spread in a ‘naive’ population.

In addition, we have developed and analysed a spatially explicit model of our

experimental system in order to determine which parameters are crucial for the

population to exhibit herd immunity.
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Figure 2.1: Percentage of surviving populations at 18h after inoculation. Ini-
tially, the bacterial populations with various fractions of susceptible and resistant
bacteria is infected with ⇠ 50 phages, corresponding to a “multiplicity of infection”
(MOI) ⇠ 10

�4. Each population composition is replicated 16 times. The predicted
herd immunity threshold H = 1 � S

c

coincides with the population composition
where the populations start to survive the phage infection, The dashed light green
curve indicates H as in (2.7), which depends only on the phage burst size �. The
solid dark green line shows the prediction (2.8), which also includes a correction
due to time scales given by the latency time � and the bacterial growth rate ↵.

2.3 Results

2.3.1 Herd immunity in spatially unstructured liquid cultures

To understand the influence of spatial population structure, or lack thereof, we

conducted a set of experiments in a well mixed liquid environment consisting

of differing proportions of resistant and susceptible individuals. Under these

conditions, with no spatial structure, all 16 replicate populations survive a phage

epidemic when 99.6% of individuals are resistant, 4 out of 16 replicate populations

survive when 98.4% of individuals are resistant, and all populations went extinct

when the proportion of resistant individuals drops below 96.9% (see Figure 2.1).

Such a simple dilution scheme thus provides a first clue for the value of the herd

immunity threshold H, and we can estimate R
0

of the phage in this environment

as ranging between 32 and 256. However, utilising our theoretical approach

(below), we can refine this estimate by using more accessible measurements.

After all, each population in such a dilution series has to be replicated several

times (we used 16 replicates) and each set of parameters only can provide a
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limiting boundary for the actual value.

Phage fecundity plays a major role in determining a viable population composi-

tion of susceptible and resistant bacteria. This can be seen directly by decreasing

the nutrient concentration in the media, which entails slower bacterial growth. In

turn, phages that depend on bacterial metabolism grow slower, too, affecting herd

immunity. Indeed, we observe a substantial increase in the critical fraction of

susceptible cells, such that the bacterial populations survive a phage infection

(see Fig. 2.3). Additional support is provided by results in Fig. 2.5 and Tables 2.3

and 2.2, which list measured growth rates for phages and bacteria in different

conditions, respectively.

2.3.2 Herd immunity in spatially structured surface popula-

tions

In order to better understand what role, if any, spatial structure plays in herd

immunity we conducted a set of experiments in a spatially structured semi-solid

environment – on soft agar plates. The approach employed here is a much more

fine grained measure of herd immunity, compared to the binary alive-dead out-

comes for the populations in liquid culture. On plates, phages can spread radially

from a single infection and the radius of the plaque provides an easy measure

that can quantify the influence of the population composition of susceptible and

resistant bacteria. During the first approximately 12 hours of the experiments,

bacteria in the soft agar layer grow exponentially (Fig. 2.5A) and the plaques also

spread fast because the phage burst size on exponentially growing cells is large

( 85). After about 12 hours the bacterial growth starts slowing down because they

deplete available nutrients in the agar and as a consequence, also the burst sizes

decrease dramatically (to 3 on non-growing cells). This reduction in burst size

results in a dramatic decrease in plaque growth or its cessation.

We observed that final plaque sizes were significantly reduced already with

10% of resistant cells in the population (Fig. 2.2). In order to determine the effect

of resistant cells in the exponential phase of their growth, we analysed velocities
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of spread of the plaques between 0 and 24 hours post inoculation (hpi), and found

that the velocity is significantly reduced after 15hpi when the population consists

of 10% of resistant cells (P-value < 0.045). When the fraction of resistant cells is

further increased, the velocity difference is significant at earlier and earlier stages

of the experiments (11.3hpi for 20% resistant, 5.7hpi for 30% resistant) and when

the resistant fraction reaches 40%, the difference in velocity of spread becomes

significant right after the plaques become detectable in our experimental setup

(Fig. 2.7).

The dynamics of the system on soft agar plates is influenced by additional

factors. Movement of phages is characterised with a single diffusion constant

D. Phage adsorption should be considered different, too: The additional spatial

dimension imposes a particular contact network between phages and bacteria,

which are not entirely random encounters. In order to determine the extent

to which these parameters play a role, we conducted additional experiments

to estimate their values. In particular, we inferred the diffusion constant D by

measuring how a fluorescence signal indicating phage presence spreads without

bacteria (see section 2.5.7). Although bacteria may lower the diffusion constant

when they reach high densities, we assume the spread of the phage through

the bacterial population would not be substantially affected because it is likely

dominated by the phage growth parameters and the fraction of resistant individuals

in the population. Therefore, even if the diffusion constant changes, it probably

does not influence the overall dynamics in a detectable way. Moreover, we again

used the independent estimates for phage growth and bacterial growth in various

environmental conditions. These results on growth are summarised in section

2.5.5 for bacteria and in section 2.5.6 for phages.

2.3.3 Modelling phage growth in spatially unstructured liquid

cultures

We developed a model of phage growth that takes several physiological processes

into account: bacterial growth during the experiment, bacterial mortality due to
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phage infection, phage mortality due to bacterial immunity. Lastly, growing phage

populations require an active bacterial metabolism, their burst size � and latent

period � depend heavily on the actual bacterial growth rate (see Table 2.2).

The main processes in our model system can be defined by the following set

of reactions,

B
s

+ Y N
↵�! 2B

s

, (2.2a)

B
r

+ Y N
↵�! 2B

r

, (2.2b)

B
s

+ P
A�! �

B
s

P
�

1/��! � P , (2.2c)

B
r

+ P
A�! �

B
r

P
�
8
<

:

fast�! B
r

,
⌧1/�99K � P .

(2.2d)

Susceptible (B
s

) and resistant (B
r

) cells grow at a rate ↵, (2.2a) and (2.2b), by

using an amount Y of the nutrients with concentration N . Phage infection involves

first adsorption to host cells, (2.2c) and (2.2d), with an absorption term A specified

below. Infected susceptible bacteria produce on average � phage with a rate

inversely proportional to the average latency �. In contrast, resistant bacteria

either survive by restricting phage DNA via their CRISPR/Cas immune system

or at some small rate succumb to the phage infection (⌧ 1/�). When multiplicity

of infection (MOI) is large, however, even resistant cells are susceptible to lysis

resulting in the release of phage progeny (Westra et al., 2015; Chabas et al.,

2016).

In our system, bacteria eventually deplete the available nutrients N resulting in

the cessation of growth. This decline in bacterial growth influences phage growth:

latency increases and burst size decreases, such that phage reproduction declines

dramatically (see Table 3). The critical time point at which cells transition from

exponential growth to stationary phase is defined as,

T
depl

⇡ 1

↵
log

✓
Bfinal

Binitial

◆
. (2.3)

Here, Binitial and Bfinal are the initial and final bacterial densities, respectively. In
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the initial exponential growth phase, our estimates for growth parameters are ↵ =

0.63h�1, � = 85.6 phages/cell and � = 0.60h, for bacteria and phages, respectively.

Even though in reality the transition between exponential growth and stationary

phase is smooth, in our model we use a simplified approximation that after time

T
depl

, bacterial growth rate is set to zero (↵ = 0) and phage growth is reduced to

�
depl

= 3.0 phages/cell and �
depl

= 1.69h. Although it is a simplified representation

of bacterial growth, it still fits well the observed growth dynamics (see Fig. ??) and

allows us to analytically solve the system.

Reactions (2.2) can be recast into dynamical equations for averaged quan-

tities, using densities B
s

, B
s

and P for the populations of bacteria and phages,

respectively,

@
t

B
s

= ↵B
s

� A
⇥
B

s

, P |B
j

⇤
, (2.4a)

@
t

B
r

= ↵B
r

, (2.4b)

@
t

P = � A
⇥
B

s

, P |B
j

⇤� A
⇥
B

s

, P |B
j

⇤� A
⇥
B

r

, P |B
j

⇤
, (2.4c)

which is an approximation for very fast burst, � ⇡ 0h. The probability of resistant

cells failing to successfully mount an immune defence has a negligible contribution

to the overall dynamics of the system and thus we ignore this term. A treatment

of all processes in the set of reactions (2.2) is presented in Appendix 2.6.3.

Adsorption of phages, given by the term A
⇥
B

i

, P |B
j

⇤
, can be influenced by the

whole distribution of populations within the culture. In liquid medium, a common

assumption is that this term is proportional to the concentrations of both the phages

and cells (Weitz, 2016),

A
⇥
B

i

, P |B
j

⇤
= �B

i

P , (2.5)

with an adsorption constant �. This expression assumes constant mixing of the

population and relatively short contact times between phages and bacteria. In

general, this system of equations is akin to Lotka-Volterra dynamics, which has

been analysed in great detail, eg. (Hofbauer and Sigmund, 1998; Nowak, 2006).

We rewrite the set of equations in (2.4) as the total bacterial density B = B
s

+B
r

,
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the fraction of susceptibles S = B
s

/
�
B

s

+B
r

�
and the phage density P , using the

adsorption model from (2.5),

@
t

B =

�
↵� S�P

�
B , (2.6a)

@
t

S = �S
�
1� S

�
�P , (2.6b)

@
t

P = �
�
S� � 1

�
BP . (2.6c)

These equations reveal a time scale separation between the growth of the phage

population and a significant change in proportion of susceptible individuals (S) in

the population. The phage population undergoes explosive (double-exponential)

growth before it affects composition of the bacterial population. In appendix 2.6.3.1

we show how simple phage growth implies that this explosive growth occurs (in

almost all cases) before nutrients are depleted. Thus, as a first approximation, if

the coefficient �
�
S� � 1

�
B in (2.6c) is positive, we can assume that phages not

only grow, but grow to large enough numbers to wipe the bacterial population. As

the herd immunity threshold is related to the fraction of susceptibles via H = 1�S
c

,

we combine these expressions to obtain the herd immunity threshold as

H =

� � 1

�
, (2.7)

which shows very good agreement with the actual threshold between surviving

and wiped out populations observed in experiments, see Fig. 2.1. In appendix

2.6.3.2 we expand the analysis to finite burst times � > 0, to obtain the correction

�S
c

� 1 � �↵ = 0 for the critical condition. Thus, the herd immunity threshold

extends as well to

H =

� � 1� �↵

�
. (2.8)

The natural interpretation of this extension is that slower phage burst and faster

bacterial growth lower the herd immunity threshold, compared to the prediction

based on phage burst size only.

In section 2.3.1 we reported that phage growth parameters � and � are strongly

influenced by bacterial growth rate ↵. Thus, we also expect the herd immunity
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Estimate Units Comment

D 1.17 (± 0.26) · 10�2 mm2/h See Section 2.5.7
↵ 0.63 h�1 During exponential growth
Bfinal

s

4.64 (± 0.80) · 109 cfu/ml In liquid overnight culture
Bfinal

r

4.63 (± 0.87) · 109 cfu/ml In liquid overnight culture
Bfinal/Binitial

250 See Figure 2.5
T
depl

9.6 h

�? 2.91 (± 0.08) · 10�2

cells/phageh Estimate from (2.13)
for spatial cultures

Table 2.1: Model parameters. All values above horizontal line are estimates from
independent experiments, the adsorption constant �? is obtained as fit using our
model and all other parameters. Measurements for growth of bacteria and phages
are listed separately in Tables 2.3.

threshold H should change significantly with varying ↵, because all parameters in

(2.8) change, H(↵) =
�
�(↵)�1��(↵)↵

�
/�(↵). Indeed, adjusting the the available

resources by dilution of the LB medium, which determines the bacterial growth

rate (see Fig. 2.5), shifts the herd immunity threshold (see Fig. 2.3).

All our model predictions assume a simplified scenario of bacterial growth

dynamics. We assume that the growth rate is constant until bacteria enter the

stationary phase at time T
depl

, when the growth rate drops to zero. Although in

reality this transition from exponential growth to stationary phase is a smooth

(Fig. 2.5B), our simplification, which allows for much easier model analysis fits the

observed dynamics reasonably well (see the green line in Fig. 2.5A).

2.3.4 Modelling phage growth in spatially structured surface

populations

The dynamics of phage spread differ between growth in unstructured (e.g., liquid)

and structured (e.g., plates) populations. In structured populations growth is a

radial expansion of phages defined by the plaque radius r and the velocity v, for

which several authors have previously derived predictions (Kaplan et al., 1981; Yin

and McCaskill, 1992; You and Yin, 1999; Fort and Méndez, 2002a; Ortega-Cejas

et al., 2004; Abedon and Culler, 2007; Mitarai et al., 2016).
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Host cell densities have a spatial dimension in addition to their time depen-

dence, B
i

= B
i

(~x; t); the subscript i indicates either susceptible (B
s

) or resistant

(B
r

) hosts. However, the model assumes that only phages disperse and bacteria

are immobile as the rate of bacterial diffusion does not influence the expanding

plaque on timescales relevant in the experiment. Heterogeneity in the spatial

distribution of bacteria is only generated by phage growth.

The size of the bacterial neighbourhood ˆB that phages are able to explore is

only slightly determined by the actual density B, and can be assumed constant for

most of the experiment, ˆB(B) ⇡ const. Consequently, the adsorption term can be

written in the following way,

A
⇥
B

i

, P |B
j

⇤
= �?

B
iP

j

B
j

P , (2.9)

which only depends on the relative frequencies of bacterial strains. The adsorption

constant �? is both the rate of adsorption and inter-host transit time as determined

by the diffusion constant D. Thus, one can expect the formal dependence �? =

�?
�
D, ˆB(B)

�
. For our particular experimental setup, however, �? can be assumed

constant. Writing the equations for B, S, and P , using the adsorption model in

(2.9), yields,

@
t

B = ↵B � �?SP , (2.10a)

@
t

S = ��?S(1� S)P/B , (2.10b)

@
t

P = Dr2P +G
⇥
P, S

⇤
. (2.10c)

where the dynamics of P is modified to account for the spatial diffusion with the

additional term Dr2P . For simplicity, we consider only expansion in a single

dimension (r2 ⌘ @2

x

), which has been found to coincide well with the dynamics

of plaque growth (Yin and McCaskill, 1992). The growth term for phages is then

defined as,

G
⇥
P, S

⇤
= �?

�
S� � 1� �↵

�
P , (2.11)

where we also consider the correction �↵ obtained from the analysis in liquid
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culture (see Appendix 2.6.3.2). Equations similar to (2.10c) have been previously

analysed (Murray, 2002; van Saarloos, 2003; Fisher, 1937; Kolmogorov et al.,

1937). They admit a traveling wave solution – here, this corresponds to phages

sweeping over uninfected bacterial lawn. In general, the asymptotic expansion

speed for the traveling wave solutions is given by the following expression,

v = 2

q
D(@

P

G)

⇥
0, S

⇤

= 2

p
D�?

p
S� � 1� �↵ . (2.12)

Only the linearised growth rate of phages at very low densities is relevant for the

expansion speed, @
P

G
⇥
P = 0, S

⇤
. Thus, the fraction of susceptible individuals S

should be unchanged from its initial value S
0

. It should be noted, that only for

S
0

� > 1+�↵ Eqn. (2.12) remains valid, otherwise we have v = 0. Such a scenario

when the expansion wave stops occurs when nutrients are depleted and phage

growth parameters change to a low �
depl

⇠ 3 and high �
depl

⇠ 1.5h (so the fraction

of resistant individuals becomes greater than the herd immunity threshold).

The expression for the expansion speed also shows the need for the spatial

adsorption model in (2.9), in contrast to the liquid case (2.5). If adsorption would

directly depend on the bacterial density B, the additional linear dependence on B

in (2.11) would lead to an exponentially increasing speed during the experiment.

This is in clear contradiction to experimental observations.

The density of phages behind the expanding front is large and as previously

noted at large MOIs the CRISPR/Cas system fails to provide effective immunity

(see section 2.5.4 and appendix 2.6.3.4). However, in comparison to an unstruc-

tured environment (e.g., liquid) the structured environment effectively limits transit

of phage from within a plaque to expanding front: The combined effect of growth

and diffusion usually generates a much faster expansion of phages during plaque

formation, than diffusion alone. Only when nutrients are depleted, pure diffusion

processes can explain the slow decrease in speed observed in experiments (see

Fig. 2.7A). Our model assumes a sharp drop to v = 0 at T
depl

for small S.

In order to derive an expression for the plaque radius r, we integrate the
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expansion speed (2.12) over time, r =
´
t

0

dt0v(t0). Employing the simplification that

only two values of phage growth are necessary to describe the dynamics – before

T
depl

phages grow normally with � and �, after T
depl

phage growth changes to �
depl

and �
depl

(for the exact values see Table 2.3) – we can evaluate the integral for the

radius directly, arriving at,

r =

8
<

:
2t
p
D�?

p
S� � 1� �↵ , 0 < t < T

depl

,

2

p
D�?

⇣
T
depl

p
S� � 1� �↵ +

�
t� T

depl

�p
S�

depl

� 1

⌘
, T

depl

< t .

(2.13)

Note that this expression remains valid only when the fraction of resistant individ-

uals in the population is below the actual herd immunity threshold (Eqn. 2.14),

otherwise the plaques cannot spread.

Using this expression we estimated the adsorption constant �? from the growth

experiments as it difficult in practice to easily measure. The green line in Fig. 2.2B

is our best fit, yielding the value �? = 2.91(±0.08) · 10�2

bacteria/phageh for the

adsorption constant.

In addition to using the plaque radius to understand population composition

we can define the threshold at which the expanding plaque halts. Namely, the

herd immunity threshold is reached when the last term in Eqn. (2.13) becomes

negative,

H =

� � 1� �↵

�
. (2.14)

It should be noted that the herd immunity threshold is independent of the additional

parameters of the spatial case, the diffusion constant D, and the adsorption

constant �?. We expect them to only generate additional subtle corrections.

Predictions of our model show a discrepancy from experimental results on

plates. We independently estimated �
depl

= 3.0, which results in H
depl

=

�
�
depl

�
1

�
/�

depl

⇡ 0.67. Thus, all experiments with S > 0.33 should exhibit expanding

plaques after nutrients are depleted. In the experimental setup plaques stop

expanding in all mixtures of resistant to susceptible cells (S  0.9), which would

correspond to �
depl

< 1.1. This value is, however, still within experimental accuracy

of our estimates of �
depl

.
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Our results for spatial culture allows us to speculate on a general epidemiologi-

cal question: If an infection is not stopped by herd immunity in a partially resistant

population, by how much is its spread slowed down? By generalising (2.12) we can

postulate a relative expansion speed, compared to a fully susceptible population,

v
rel

=

r
R

0

S � 1

R
0

� 1

. (2.15)

This expression, (2.15), is devoid of any (explicit) environmental conditions, which

are not already contained in R
0

. Thus, it could apply to any pathogen-host system.

Ultimately, the only dependence of the relative speed of spreading in structured

populations is on the growth properties of the pathogen R
0

and the resistant

fraction of the population S.

2.4 Discussion

This report is the first to show that herd immunity may arise in phage-bacterial

communities. The extent to which herd immunity occurs strongly depends on

bacterial growth rates and the spatial organisation of the habitat they are growing

in. As our results show, the herd immunity threshold H, (2.7) and (2.14), depends

on phage growth via burst size � and latency time �, but also on bacterial growth

rate ↵. We also show that when populations are spatially structured, plaque

expansion is significantly reduced even if the resistant fraction is far below the herd

immunity threshold. We quantified these spatial effects by deriving expressions for

expansion speed (2.12) and final plaque radius (2.13).

Our model has one free parameter, which was the adsorption constant �? of

phages. We used the measured plaque radius to fit this parameter, which could

correctly reproduce the functional dependence on the fraction of susceptible indi-

viduals S. We expect that the absorption constant is influenced by the diffusion

constant, and thus the combination of D�? in equations (2.12) and (2.13) can be a

seen as a single measure for all processes for the phage outside bacterial cells,

also including the effects of the contact network between phage and bacteria.
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Similarly, all processes within a single cell could be characterised by the growth pa-

rameters �, �, and ↵. This allows us to group both internal and external processes

of the phage spread, each with a single compound parameter. Consequently, also

relative speeds (as measured with respect to other population compositions S and

the same experimental conditions) only depend on these internal parameters as

single combined parameter R
0

(2.15). This relative observables do not depend

on the inferred parameter, and one might speculate about their importance and

application in epidemiology, independent of a particular pathogen-host system.

Although our experimental system explores bacterial herd immunity under

laboratory conditions, these environments may represent the extremes bacteria

encounter in the wild, both in terms of growth rates and of spatial organisation.

Average growth rates of bacteria in the wild have been estimated as substantially

slower than those under optimal laboratory conditions (median generation time

6.5 fold longer (Gibson et al., 2016)). Bacterial populations in the wild are also

often structured, as bacteria readily form colonies or biofilms (Hall-Stoodley et al.,

2004) and grow in highly structured environments such as soil (Fierer and Jackson,

2006), the surface of leaves, or the gastrointestinal tract of animals. Since both

reduced growth rate and spatial structure favour higher degrees of herd immunity,

we predict that herd immunity is not unlikely in natural bacterial populations.

The fact that herd immunity can readily occur in bacterial populations may

have substantial consequences for eco-evolutionary dynamics in phage-bacterial

communities. While in a general deterministic situation a beneficial allele that

arises in a population is eventually fixed, an allele that provides herd immunity can

reach only the frequency equal to the herd immunity threshold. In other words,

once the resistant allele reaches the herd immunity threshold frequency, pathogen

cannot spread in the population and the allele cannot further increase in frequency

because the selection pressure ceases. As a consequence, herd immunity has a

potential to generate and maintain polymorphism in immunity-conferring loci, as

has been studied in genes coding for the major histocompatibility complex (MHC)

(Wills and Green, 1995). Polymorphisms in CRISPR spacer contents have been

demonstrated in various bacterial (Tyson and Banfield, 2008; Sun et al., 2016;
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Kuno et al., 2014) and archaeal (Held et al., 2010) populations and communities

(Pride et al., 2011; Zhang et al., 2013; Andersson and Banfield, 2008). While

these studies mostly explain the polymorphisms in spacer contents as a result

of rapid simultaneous independent acquisitions of new spacers, we propose that

these polymorphisms may also be attributed to herd immunity. As a consequence,

populations with high levels of CRISPR spacer diversity targeting a single phage

are more robust to a phage escaping the CRISPR immunity by a mutation, than

populations with a single spacer variant (van Houte et al., 2016).

Besides the eco-evolutionary consequences for natural bacterial populations,

herd immunity may also occur during phage therapy of infected wounds. Chronic

bacterial infections of wounds typically exhibit biofilm formation (Hall-Stoodley

et al., 2004), thus, acquired CRISPR-based herd immunity may have substantial

impact on efficacy of the treatment. Our results on agar plates are relevant to

this: We showed that phage spread is significantly impaired, even if the fraction of

resistant bacteria is below the herd immunity threshold.

2.5 Materials and Methods

2.5.1 Spacer insertion

Oligonucleotides AAACTTCGGGAAGCACTTGTGGAAG and AAAACTTCCACAAGT-

GCTTCCCGAA were ordered from Sigma-Aldrich and inserted onto pCas9 plas-

mid (available on addgene.org, plasmid #42876) carrying a Streptococcus pyo-

genes truncated CRISPR type II system. For the detailed protocol see (Jiang et al.,

2013). The oligonucleotides were chosen so that the CRISPR system targets an

overlap of phage T7 genes 4A and 4B. Therefore, the CRISPR system allows the

gene 0.7 coding for a protein, which inhibits the RNA polymerase of the cell, to

be expressed before the T7 DNA gets cleaved (Garcı́a and Molineux, 1995). The

subsequent growth of the cells is thus halted but the phage replication is inhibited.
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2.5.2 Time-lapse plaque assays

Soft LB agar (0.7%) containing 25 µg/ml chloramphenicol was melted and poured

into glass test tubes (VWR art.no.: 212-0308) heated to 43

�C in a heating block.

After temperature equilibrated, 0.9ml of bacterial cultures consisting of resistant

and susceptible cells (ratios 10% – 100% of susceptible cells, 10% increments)

were diluted 1 in 10 and added to the tubes. Then, 100ul of bacteriophage stock

diluted appropriately to get ˜10 plaques per dish was added to the solution. Tubes

were vortexed thoroughly and poured onto LB agar plates containing 25 µg/ml

chloramphenicol and distributed evenly using circular motion. After the soft agar

hardened, the plates were placed on scanners (Epson Perfection V600 Photo

Scanner) and scanned regularly every 20 minutes for 48 hours. Increase of

individual plaque areas from time-lapse image series were then analysed with

image analysis software PerkinElmer Volocity v6.3.

2.5.3 Herd immunity in a liquid culture

Herd immunity in a liquid culture was tested in LB broth supplemented with 25

µg/ml chloramphenicol in Nunclon flat bottom 96 well plate in Bio-Tek Synergy

H1 Plate reader. Bacterial cultures were diluted 1 in 1000 and mixed in the

following ratios of resistant to susceptible cells: 50:50, 75:25, 87.5:12.5, 93.75:6.25,

96.88:3.13, 98.44:1.56, 99.22:0.78, 99.61:0.39, 99.8:0.2, 99.9:0.1, 99.95:0.05,

100:0 %. Phage T7 was added with multiplicity of infection (MOI) 10�4 and the

cultures were monitored at optical density 600nm for 18 hours post innoculation

(hpi).

2.5.4 Efficiency of the CRISPR/Cas system

Efficiency of the engineered CRISPR/Cas system was tested using the following

protocol: Overnight culture was diluted 1 in 10, cells were infected with the T7

phage and incubated for 15 minutes in 30

�C. Cells were spun down for 2 min in

room temperature at 21130g. Supernatant was discarded and the cell pellet was
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Estimate Units

↵
max

0.720 (± 0.011)
⇥
h�1

⇤

K
c

0.257 (± 0.012) Dilution N of LB
⇥
0 . . . 1

⇤

Table 2.2: Estimated parameters for bacterial growth using Monod kinetics.
Undiluted LB medium (N = 1) is assumed to have 15mg/ml nutrients (10mg/ml
Tryptone, 5mg/ml yeast extract).

How bacterial densities evolve over time, measured as CFU/ml, is shown in

Figure 2.5A.

2.5.5.2 Nutrient dependent bacterial growth rate in liquid culture

Growth rate of susceptible bacteria was measured in Nunclon flat bottom 96 well

plate in Bio-Tek Synergy H1 Plate reader. Over night cultures were diluted 1:200 in

media consisting of LB broth mixed with 1X M9 salts in ratios 10:90, 20:80, 30:70,

40:60, 50:50, 60:40, 70:30, 80:20, 90:10 and 100:0 %. Optical density at 600nm

was measured every 10 minutes and the maximal growth rate was determined as

a maximal slope of a linear regression of a sliding window spanning 90 minutes.

The resulting growth rates for various nutrient concentrations agree to a very

good extent to Monod’s growth kinetics,

↵ = ↵
max

N

K
c

+N
. (2.16)

Results for the two fitting parameters, ↵
max

and K
c

, are listed in Table 2.2, while

the whole dataset, including the fit, is displayed in Figure 2.5B.

2.5.6 Estimating phage growth

2.5.6.1 Phage burst sizes

Phage burst sizes in bacteria growing at different growth rates were measured

by one-step phage growth experiments. The burst sizes were calculated as the

ratio of average number of plaque before burst to average number of plaques after
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Medium Dilution Latent period Burst size Burst size/hour
N � [min] � �/� [h�1

]

LB 0 0.0 101.1 (± 10.9) 3.0 (± 1.9) 1.8 (± 1.1)
LB 20 0.2 43.4 (± 3.9) 12.0 (± 4.2) 16.6 (± 6.0)
LB 50 0.5 40.0 (± 3.0) 35.6 (± 16.4) 53.4 (± 24.9)
LB 100 1.0 36.1 (± 6.1) 85.6 (± 47.3) 142.1 (± 82.1)

Table 2.3: Estimated parameters for phage growth.

burst. Consecutive samplings before and after burst were used for the calculation

if they were not significantly different from each other (two sided t-test, P > 0.05).

2.5.6.2 Phage latent periods

Phage latent periods were determined as being within the time interval between

the first and the last significantly different consecutive samplings between those

used for phage burst size calculations.

2.5.7 Phage diffusion in soft agar

M9 salts soft agar (0.5%) was supplemented with SYBR safe staining (final conc.

1%) and poured into glass cuvettes (VWR type 6040-OG) to fill ⇠ 2 cm of the

cuvette height. After soft agar solidification, the same stained soft agar was

supplemented with T7 phage particles to a final concentration 10

11

pfu/ml and

poured on top of the agar without phages. The cuvettes were monitored in 30

�C

every hour for 40 hours at the SYBR safe emission spectrum peak wave length

524nm illuminated with the SYBR safe excitation spectrum peak wave length

509nm. The diffusion constant was estimated as the best fit parameter for the

spread of fluorescent phages through the soft agar over time, as detailed in the

next few paragraphs.

First we estimated the luminosity (i.e. grayscale value) of fluorescence in the

images, and corrected the profiles of luminosity L
i

by subtracting the background

value. This background value was estimated as linear fit at the end of the profile

without phages, where only the gray value of the agar was measured. Moreover,
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luminosity saturates at values above ⇠ 0.4 and does not have a simple linear

dependence on fluorescence: diffusion would lead to a decrease behind the edge

and increase after the edge, but images only show increasing profiles – the bulk

density does not decay. Thus, any estimate should only take the part of the profile

that is below the threshold value of 0.4 into account (see Fig. 2.6).

The diffusion constant D itself was estimated as the minimal value of the total

squared deviation of the convoluted profile L(t) (at time t) with a heat kernel K(D)

compared to the profile L(t+1) at time t+ 1,

D =

*
min

D

X

i

 ⇣X

j

e�(i�j)

2
/4D

p
4⇡D

L
(t)

j

⌘
� L

(t+1)

i

!
2

+
. (2.17)

Such a convolution with the heat kernel K
ij

(D) = (4⇡D)

�1/2

exp

��(i � j)2/4D
�

assumes that the only change in the profile is due to diffusion for a time span

of length 1. Thus, expression (2.17) estimates the diffusion constant in units of

pixel

2/frame, where frame is the time difference between two images. Several

estimates are averaged over different snapshots in the whole experiment that

spans 40h in intervals of 1h each.

The final estimate in appropriate units is

D ⇡ 1.17 (± 0.26) · 10�2 mm2/h , (2.18)

which seems to agree with other measurements on phage diffusion in the order of

magnitude (Stent and Wollman, 1952; Bayer and DeBlois, 1974; Briandet et al.,

2008).
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V ariable /
Parameter

Description

B
s

Density of susceptible bacteria
B

r

Density of resistant bacteria
I
s

Density of infected susceptible bacteria
I
r

Density of infected resistant bacteria
B Total density of bacteria
S Fraction of resistant bacteria
Binitial Initial density of bacteria
Bfinal Final density of bacteria
N Nutrient concentration
Y Nutrient yield coefficient
T
depl

Time until nutrients are depleted
↵ Growth rate of bacteria
P Density of phage
A Phage adsorption function
� Phage adsorption constant in liquid environment
�? Phage adsorption constant in soft agar
� Phage burst size
�
depl

Phage burst size on non-growing cells
� Phage latent period
�
depl

Phage latent period on non-growing cells
⇢ Probability of recovery of resistant cells after phage infection
D Phage diffusion constant in soft agar
G Phage growth function on a soft agar plate
v Velocity of phage epidemic spread
r Plaque radius
H See Box 1 for explanation
S
c

See Box 1 for explanation

Table 2.4: Table of variables and parameters used in the model.

2.6 Supplementary information

2.6.1 Table of variables and parameters used in the model

2.6.2 Significance of reduction in expansion speed

In Figure 2.7 we show the expansion speed for various population compositions. In

a large majority of cases we actually find the reduction in expansion speed of the

plaque is significantly different from the control experiment, which only contains

susceptible bacteria.
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2.6.3 Phage growth on growing bacteria

In the main text we stated that relevant processes for phages growing on bacteria

are given by the set of reactions (2.2). In the following, we will analyse an extended

version of our model, which takes all the processes into account. We try to justify

our approximations and explain the reasoning behind leaving parts of the full

model out. While reactions for single bacteria or phages are inherently stochastic

in nature, we assume that the involved numbers are large enough such that

the dynamics can be described with deterministic differential equations for the

populations. Furthermore, reaction rates are identified with the inverse of the

average time scale of the process. Thus, the full model is given by the coupled

differential equations,

@
t

B
s

= ↵B
s

� �B
s

P , (2.19a)

@
t

B
r

= ↵B
r

� �B
r

P + ⇢I
r

, (2.19b)

@
t

I
s

= �B
s

P � (1/�)I
s

, (2.19c)

@
t

I
r

= �B
r

P � (1/�)I
r

� ⇢I
r

, (2.19d)

@
t

P = (�/�)
�
I
s

+ I
r

�� �
�
B

s

+ B
r

+ I
s

+ I
r

�
P , (2.19e)

@
t

N = �(↵/Y )

�
B

s

+ B
r

�
. (2.19f)

Both bacterial populations B
i

grow with rate ↵ and decay via adsorption of

phages A[B
i

, P |B
j

], an expression that is specified below. Infected populations I
i

gain numbers by adsorption and decrease via bursting. Resistant bacteria also

can recover from their infected state with a recovery rate ⇢. Phages grow by

bursting cells, and lose numbers by adsorption to the various bacterial populations.

Moreover, explicit dynamics for nutrients is considered which is drained by each

grown cell inversely proportional to the yield Y , which acts as conversion factor

between nutrient concentration and cell numbers.

For many of the ensuing calculations it is important that bacteria grow exponen-

tially in an initial phase. Phages growing on such exponentially multiplying bacteria

can almost explode in number within a very short timespan. For such fast growth
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it is important that nutrients are depleted at some point, limiting all populations to

realistic sizes. The combination of these two effects, very fast growth and limited

resources, is at the core of our argument that we can describe the outcome of all

these dynamic processes with static conditions, as we did with when stating the

herd immunity threshold.

For our ensuing analysis, we neglect the population of infected resistant bac-

teria I
r

. Upon examining (2.19d) we find that most cells to leave their infected

state by reducing phage DNA via CRISPR/Cas instead of bursting if ⇢ � 1/�. If

furthermore ⇢ � �P , which is true at least in the initial stages of the experiment,

essentially all infected resistant bacteria immediately recover from a phage infec-

tion. Consequently, with both conditions, the resistant infected bacteria tend to

vanish, I
r

! 0, and their dynamics can be neglected.

2.6.3.1 Exponentially growing bacteria lead to double-exponential growth

for phages

Having reduced the model by two equations by now, we can start to analyse the

remaining ones in more detail. As in the main text, we transform the populations to

the total bacterial density B = B
s

+B
r

, introduce the fraction of susceptible cells

S = B
s

/B and identify the total infected population with I = I
s

. Thus, we obtain

@
t

B = (↵� �SP )B , (2.20a)

@
t

S = �S(1� S)�P , (2.20b)

@
t

I = �SBP � (1/�)I , (2.20c)

@
t

P = (�/�)I � �BP . (2.20d)

Here, we assumed that the density of infected cells is much smaller than the

actual bacterial concentration, I ⌧ B, such that we can ignore the drain in

phage population that infect bacteria multiple times. The essential simplification is,

however, assuming that phages burst immediately upon infection, � ⇡ 0, which

we also used in equations of the main text. As a consequence, phage dynamics
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becomes @
t

P = (�S � 1)�BP . We show that this is indeed the correct limiting

behaviour more rigorously below.

If we assume that in initial stages of phage growth the number of phages

is small, ie. �P ⌧ ↵ ⇠ O(1h�1

), the dynamics of bacteria and the fraction of

susceptibles simplify to @
t

B = ↵B and @
t

S = 0. Note that this term �P also occurs

in the linear phage dynamics, but it is not considered a “coefficient” in this instance.

Rather, we need to view �B as a coefficient, which is likely much larger initially,

and we have to keep terms of order �P . This set of simplified equations can be

solved in closed form,

S(t) = S
0

, (2.21a)

B(t) = B
0

exp(↵t) , (2.21b)

P (t) = P
0

exp

�
(S

0

� � 1)�B
0

(exp(↵t)� 1)/↵
�
. (2.21c)

The structure of phage dynamics is particularly important here – it exhibits a

double-exponential dependence on time t, which is a very fast, almost explosive,

growth. Such explosive growth is almost independent of the actual growth rate of

phages, it only has to be positive. Thus, inspecting the exponent in (2.21c) yields

the condition

�S
0

> 1 (2.22)

for phage growth to be positive, which we identify with the the condition for dead

bacterial populations, as stated in the main text. The double exponential time-

dependence is essentially at the heart of our arguing that a “static” condition like

(2.22) allows us to determine the dynamic effects.

An important question in the context of these solutions is whether nutrients run

out before this explosive growth of phages occurs. Hence, we compute the time T
�

defined as when phages reach a population of P (T
�

) = 1/� assuming phages grow

as (2.21c) until then. and compare it to the depletion time T
depl

= (1/↵) log(B1/B
0

).
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Inverting (2.21c) for time leads to

T
�

=

1

↵
log

✓
1 +

↵ log(1/�P
0

)

(�S
0

� 1)�B
0

◆
(2.23)

When rearranging the inequality T
depl

> T
�

in terms of the fraction of susceptibles

S
0

, we obtain

�S
0

> 1 +

↵ log(1/�P
0

)

�(B1 � B
0

)

. (2.24)

This expression is a condition for phages to grow explosively before nutrients are

depleted. The final population density B1 is usually large enough that �B1 � 1,

such that the correction given by the second term of (2.24) can be considered

small. Thus, if phages grow (�S
0

> 1), they also grow explosively with a double-

exponential time-dependence and reach a considerably large population size

before bacteria stop multiplying (for almost all parameter values).

2.6.3.2 Extending analysis to finite burst times

The analysis above only treated the case � ! 0. However, we reported that the

latency time � increases significantly when bacterial growth rate ↵ declines, see

Table 2.3. Consideration of a finite latency time basically entails dealing with an

infected bacterial population I. There are several ways to achieve this. First, we

could directly solve (2.20b) to obtain the convolution

I(t) = �

tˆ
0

ds e�s/�S(t� s)B(t� s)P (t� s) , (2.25)

using the initial condition I(0) = 0. Subsequently, this expression can be inserted

into (2.20d) to obtain the dynamics of phages as

@
t

P (t) =
��

�

 
tˆ

0

ds e�s/�S(t� s)B(t� s)P (t� s)

!
� �B(t)P (t) . (2.26)

Equation (2.26) is a time-delayed differential equation, where the time-delay (or

latency time) is exponentially distributed with parameter 1/�. This exponential
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distribution of burst times arises due to the direct coupling with averaged rates in

(2.19), and is born out of mathematical necessity rather than biological accuracy.

In general, such time-delayed differential equations are hard, if not impossible, to

solve in closed form.

However, one could take a slightly different route by combining the two equa-

tions (2.20b) and (2.20d), instead of inserting the solution of I into the dynamics

of P . To this end, note that we can rearrange (2.20b) to
�
1 + �@

t

�
I = ��SBP .

Hence, we can use the differential operator (1+�@
t

) and apply it directly to (2.20d)

to reduce the dependence on I in this equation at the cost of introducing higher

order derivatives. In particular, we obtain

�@2

t

P +

�
1 + ��B

�
@
t

P + �B(�S � 1� �↵)P = 0 , (2.27)

where we also inserted @
t

B ⇡ ↵B in the last term, as we aim again for a solution

at initial times where �P ⌧ ↵. Using (2.27) the effects of the limit � ! 0 are

directly observable – no terms are undefined in this limit. In particular, we find

that equation (2.27) and � = 0 lead directly to the dynamics of phages we just

analysed above with the solution (2.21c).

In principle, (2.27) is a hyperbolic reaction-diffusion-equation, which is know

to occur upon transformation (or also approximation) of time-delayed differential

equations (Fort and Méndez, 2002b). Equation (2.27) can be investigated further:

For initial times we can use the solutions B(t) = B
0

exp(↵t) and S(t) = S
0

. To

proceed, we introduce the auxiliary variable

z(t) = ��B
0

exp(↵t)/↵ , (2.28)

which is essentially a rescaled bacterial population (with negative sign), and

assume P (z) as a function of this new variable z. We need to transform the

differential operators of time derivatives, and obtain @
t

=

@z(t)

@t

@
z

= ↵z@
z

and

@2

t

= (↵z@
z

)(↵z@
z

) = ↵2

(z@
z

+ z2@2

z

). Inserting these expressions in (2.27) and

multiplying the whole equation with (↵2�z)�1 yields an accessible dynamics for
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phages,

0 = z@2

z

P (z) + (b� z)@
z

P (z)� aP (z) , (2.29)

where the two extant constants depend on parameters as a = 1� (�S
0

� 1)/(�↵)

and b = 1 + 1/(�↵). Equation (2.29) is called “Kummers equation” with confluent

hypergeometric functions
1

F
1

as solutions (Abramowitz and Stegun, 1964, pg.

504),

P (z) = A
1

F
1

�
a, b; z

�
+ B z1�b

1

F
1

�
a� b+ 1, 2� b; z

�
. (2.30)

As we only allow real-valued function as solutions, we can directly set B = 0 as

z1�b contains a term (�1)

�t/� that is not defined over real numbers. In general,

hypergeometric functions are abbreviations for series expansions – the solution

with
1

F
1

expanded in its original variables is given by

P (t) = A

1X

n=0

�
1� (�S

0

� 1)/�↵
�
n�

1 + 1/�↵
�
n

���B
0

/↵
�
n

n!
en↵t , (2.31)

with a second initial condition determining A via P (t = 0) = P
0

. The terms in the

first fraction of (2.31) involve Pochhammer symbols (or rising factorials) defined

as (a)
n

= a(a + 1) · · · (a + n � 1), (a)
0

= 1. From (2.31) we also recover the

(double-exponential) solution (2.21c) in the limit � ! 0. Thus, we expect (2.31) to

have a similar shape, but more skewed with � > 0. The most important aspect

of (2.31) is to compute the parameters where it switches from a decreasing to

increasing function over time. A careful analysis reveals that at a = 0 the behaviour

of the solution changes. Consequently, we find the condition for growing phage

populations,

�S > 1 + �↵ , (2.32)

which is a non-trivial extension including finite latency times �.

While this result is suggestive that it also should hold in the limit ↵ ! 0, it might

not necessarily be so. This specific limit is actually quite important for the time

when nutrients are depleted in the experiments. However, at several instances in

the calculations above we implied a positive ↵ > 0. The most important of these

is the transformation to z(t) = ��B(t)/↵, which actually exhibits two problems:
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dividing by ↵ should not be allowed and B(t) is essentially constant and cannot

serve as a variable in a differential equation. We also neglected the second term

in @
t

B = (↵ � �SP )B throughout our calculation. For ↵ = 0 this second term is

dominant in bacterial dynamics and would generate non-linear phage dynamics if

inserted for @
t

B right before stating (2.27). However, as an educated guess, we

expect that albeit the process will run very slow, and might not be measureable in

experiments, the simple condition �S
0

> 1 could indicate phage expansion and

bacterial decay.

2.6.3.3 Simulation to determine recovery rate

Throughout this appendix we assumed that resistant bacteria are completely

immune to phage infection as their CRISPR/Cas system immediately kills adsorbed

phages. However, experimental observation suggest that for fractions close

to what we predicted as herd immunity threshold, all bacteria eventually die.

Thus, in the following section we use numerical simulations to investigate the full

set of equations (2.19), with a particular focus on the question why the whole

bacterial population goes extinct. As it turns out, this requires using finite values

for the recovery rate ⇢ (instead of the ⇢ ! 1 approximation we introduced at the

beginning of this section).

A major difficulty in analyzing (2.19) is finding appropriate parameter values.

In particular, we need the adsorption constant �, the recovery rate ⇢ and the

yield coefficient Y . Undiluted LB medium is known to support a population of

5·109 cells/ml (see Table 2.1). Thus one can easily estimate Y as the inverse of this

number, when nutrients are measured in units of dilutions, which we already used

throughout this publication (undiluted medium corresponds to N = 1). Parameter

scans in simulations reveal that the actual value of the adsorption constant � does

usually not influence the actual outcome (dead or alive bacterial population), it

only adjusts time scales. However, deviations in time scales are insignificant,

even when � is changed by orders of magnitude, � ⇠ O�10�6 . . . 10�8

�
. They

are roughly an hour or less, which is small compared to the expected duration



45

of the experiment that lasts a few hours. For definiteness, we use the value of

� = 10

�7 h�1 for our simulations. That the value of the adsorption constant has

only a minor impact on phage growth on bacterial cultures, is also in line with

previous findings (Mitarai et al., 2016).

The most elusive parameter is the recovery rate ⇢. A first indication of the value

of ⇢ can be drawn from our experiments on bursting resistant cells, summarised

in Fig. 2.4. As the probability for bursting resistant cells is 3 orders of magnitude

smaller than for susceptible bacteria, we can use 1/� ⇠ O(1) to estimate ⇢ ⇠
O�103�. However, our results also indicate that recovery via the CRISPR/Cas

system heavily depends on MOI, implying that ⇢ depends on the actual densities

of phages and bacteria. Nevertheless, as experimental determination of recovery

is complicated, even more so determining a functional dependence on dynamically

changing densities B and P , we assume that ⇢ is constant.

We ran parameter sweeps in simulations and compared the outcome – dead

or alive bacterial populations – to the observed experimental results (see Fig. 2.1).

The best agreement of simulations and experiments was reached with ⇢ ⇠ O�1�.
Lower values of ⇢ do not allow the resistant population to recover from phage

infection, while for larger values of ⇢, phages are drained from the culture very fast.

Such a small value of ⇢ is most likely related to the recovery at very large MOI,

when the densities involved in the dynamics are large, which dominate the overall

observed dynamics. At this time phages repeatedly infect the same bacteria and

their CRISPR/Cas immune system cannot deal with such an infection load (or only

too slowly). Thus, we can argue that our final choice ⇢ = 1.5 h�1 is the recovery

rate when the CRISPR/Cas system is heavily stressed, which is compareable to

the actual burst rate 1/� for phages.

In Fig. 2.8 we show three exemplary sets of trajectories for bacteria and phage.

For a tiny fraction of susceptibles, S = 10

�3, which is well below the herd immunity

threshold (see Fig. 2.1), phages do not thrive on the limited number of favourable

hosts and decay fast after a slight increase initially. For intermediate fractions of

susceptibles, S = 0.04, we observe more complex, non-monotonic trajectories

of bacterial populations. For such values of S we also observe mixed outcomes
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dynamics was also observed in the extended simulation model presented in the last

section. Moreover, whether the phage population reaches a size P ⇠ 1/�, which

is after all arbitrary – it only determines if we can employ useful simplifications and

approximations to model equations. However, simulation results presented in the

last section 2.6.3.3 indicate that the bacterial population starts to decay soon after

such a threshold P ⇠ 1/� is exceeded.

In order to proceed, we assume that the phage population is large enough that it

will not be degraded by the CRISPR/Cas immune system. The threat to immediate

phage extinction is low at this point. The actual equations are hard to solve directly,

hence we revert to simple balance equations, ignoring the dynamical component.

Specifically, we compare the number of (present and eventually produced) phages

to the number of infections needed to wipe out the whole population. To incorporate

the effects of the bacterial immune system in resistant bacteria, we assume that

they need M > 1 infections before they burst and produce only � phages, which

reduces the burst size by a (yet unspecified) factor 0 <  < 1.  = 1 implies that

resistant cells produce the same number of phages as susceptible cells, while

 = 0 indicates only cell death. Combining these considerations yields

1/�|{z}
phages present

+ �S
0

B(T
�

)| {z }
phage production Bs

+�(1� S
0

)B(T
�

)| {z }
phage production Br

> S
0

B(T
�

)| {z }
infections Bs

+M(1� S
0

)B(T
�

)| {z }
infections Br

,

(2.33)

where the left side indicates the total number of phages, while the right side

indicates the number of necessary infections to kill all bacteria. The number

of bacteria B(T
�

) can be estimated by inserting the time T
�

from (2.24) into the

exponential growth (2.21b). Subsequently, we can rearrange (2.33), obtaining a

bound on M :

M <
1/�B(T

�

) + S
0

((1� )� � 1) + �

1� S
0

. (2.34)

The first term in the denominator 1/�B(T
�

) is small for non-extremal parameters

when compared to the other terms, which justifies our assumption that the ac-

tual value of � is not crucial. This number M might allow some insight into the

effectiveness of the CRISPR/Cas immune system. For a fraction of susceptibles
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S = 0.03, which corresponds to the minimal value where we observe only dead

bacterial populations in undiluted LB medium (see Figs. 2.1 and 2.3), we would

obtain the relation M . 3 + 86. Thus, each resistant bacterial cell could degrade

up to O�101 . . . 102� phages before their CRISPR/Cas system cannot cope with

the infection load anymore.

2.6.3.5 Considerations for spatial growth on plates

So far, with equations (2.19), we analysed the extended model for population

in unstructured liquid medium. In spatial cultures, we can argue similarly that

the addition of infected populations that can recover will lead to the patterns we

observe: Within the plaque, all bacteria (susceptible and resistant) die due to

phage infection, but obviously bacteria survive in regions not reached by phages.
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3 Pheromone mediated bacterial

social immunity

3.1 Abstract

Social immunity mostly requires transmission of information describing the health

status of the sick individual to healthy individuals. In this chapter, we explore the

potential for pheromone mediated bacterial social immunity using both bioinfor-

matic and experimental approaches in Streptococcus thermophilus and its phage

2972. We employ a bioinformatic analysis of potentially coding short open reading

frames with a signalling signature, encoded within the CRISPR associated genes.

Subsequently, we test one identified potentially signalling peptide and show that

its addition to a phage-challenged cultures increases probability of survival of

bacteria 2 fold. Although the results were only marginally significant, they indicate

a framework for future exploration of pheromone mediated social immunity in

bacteria, particularly for an investigation of potentially coding short open reading

frames encoded within other coding sequences.

3.2 Introduction

Bacterial herd immunity is an effective and viable mechanism for defence against

viral pathogens and may be relatively common in bacterial populations (see Chap-

ter 2). The observation that resistant individuals reduce the transmission probability
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of a pathogen from one susceptible host to another is in this case a byproduct

of selection on the individual immune response. In addition to this ‘side effect’,

the probability of transmission can also be reduced by other processes, such

as social immunity, which cannot be explained solely by natural selection on the

individual. Social immunity is defined as ‘any collective and personal mechanism

that has emerged and/or is maintained at least partly due to the anti parasite

defence it provides to other group members’ (Meunier, 2015). Thus, in a group

living organism any behaviour that reduces the pathogen or parasite load on the

group falls under this definition, even though it may not directly increase the fitness

of the acting individual. This form of immunity occurs in many animals such as ants

and great apes in the form of allogrooming, a behaviour in which one individual

grooms another to remove ectoparasites, or through hygienic behaviours such

as when ant workers remove diseased brood from the nest (Wilson et al., 2003;

de Roode and Lefèvre, 2012). For a review on social immunity in insects see Meu-

nier (2015). In humans, three general social behaviours can be considered under

this definition. First, a reduction in social interactions with other people with the

intent of preventing transmission. Second, healthy individuals often avoid contact

with sick individuals. Third, seeking medical care for treatment by a physician.

In all cases, these behaviours while not necessarily increasing the fitness of the

acting individual does always contribute to limiting the spread of the pathogen.

Often these social immunity behaviours are preceded by the transmission of

information describing the health status of the sick individual (e.g., ‘I am sick’) to

healthy individual(s), or by recognition of the symptoms by the acting individuals.

It is evident that social immunity has evolved many times in group living organ-

isms, particularly in groups with high relatedness because low population diversity

facilitates spread of pathogens (King and Lively, 2012). As bacteria often live in

structured environments and produce clonal offspring, i.e., live in groups with very

high relatedness, it would be particularly beneficial for them to be able to react

to a phage epidemic not only on an individual level but also as a population. As

we have said above, this step would require some sort of communication and

cooperation. Therefore, in order to start considering social immunity in bacteria,
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one has to first take into account what could be the means of communication

that would carry the information to increase the survival probability after a phage

infection, for example to over-express genes involved in immunity.

In this chapter, we show that bacterial communication and cooperation is not

a rare phenomenon and describe how this communication and cooperation is

achieved in different concerted population-wide phenotypes. We first describe the

roles and abundances of small functional peptides in general and then introduce a

special group of these peptides, which are involved in pheromone signalling, i.e.,

cell to cell communication in gram-positive bacteria. Subsequently, we present our

research on the identification of a putative CRISPR/Cas immunity linked signalling

peptide and its experimental verification.

3.2.1 Small functional peptides

Short open reading frames (sORFs), which code for small peptides, have histori-

cally been mostly disregarded, largely due to difficulties in detecting their products.

Only recently, advances in bioinformatic and experimental methods have started

to reveal their coding sequences and functions. sORFs been identified in all king-

doms of life, including humans, species of Drosphila, Arabidopsis, yeast (Andrews

and Rothnagel, 2014), many bacteria (Hobbs et al., 2011) and some archaea

(Mackin, 2011). In Eukaryotes, sORFs encoding small peptides have been found

in a variety of genomic locations: Upstream of coding sequences (CDS) in the the

5’ untranslated regions (UTRs), in between CDS, and, interestingly, overlapping

with CDS. To our best knowledge, in bacteria only intergenic sORFs have been

identified so far but the evidence of overlapping antisense-encoded long ORFs

(Merino et al., 1994) suggests that also CDS overlapping sORFs are potentially

possible. Small peptides vary greatly in terms of their function, which ranges

from intracellular regulatory elements, protein-stabilising and structural units, to

signalling molecules (Hobbs et al., 2011; Andrews and Rothnagel, 2014). Since

our aim is to investigate the potential of sORFs in social immunity, we now focus

on a large group of small peptides involved in bacterial communication – bacterial
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pheromones.

3.2.2 Pheromone signalling in bacteria

Passage of information from one individual to another in bacterial world is mediated

by small molecules called pheromones in a phenomena called quorum sensing.

Pheromones produced by bacteria usually accumulate in the environment with

increasing cell density and trigger a signalling event when a threshold density

(’quorum’) has been reached. Although there is evidence that this signalling can

also occur between members of different species (Miller and Bassler, 2001; Cook

and Federle, 2014), in this chapter we will only consider intraspecific signalling.

Also, not all responses are conditioned by population-wide reaction to a threshold

density of a pheromone but some, such as for example conjugation, occur directly

between neighbouring cells. Since our aim is to investigate potential of pheromone

signalling in bacterial social immunity against phages, we also discuss these direct

communications.

Pheromones have been shown to induce several phenotypes such as virulence

(Rutherford and Bassler, 2012), competence development (Fontaine et al., 2010;

Håvarstein et al., 1996), bacteriocin production (Eijsink et al., 2002; Quadri, 2002),

bioluminiscence (Miller and Bassler, 2001), biofilm formation (Jayaraman and

Wood, 2008; Parsek and Greenberg, 2005), conjugation (Lyon and Novick, 2004;

Grohmann et al., 2003), sporulation (Steiner et al., 2012; Perego et al., 1996), or

plant infection (Cha et al., 1998).

The chemical nature of these small signalling molecules differs between gram-

negative and gram-positive bacteria. While gram-negative bacteria usually commu-

nicate using small molecules such as N-acyl homoserine lactones, gram-positive

bacteria mostly communicate using small peptides (Lyon and Muir, 2003). Be-

cause our experimental system consists of a gram-positive bacterial species,

Streptococcus thermophilus, and its phage, we will focus strictly on small peptides

and briefly discuss the main roles in signalling they mediate.

Currently four different groups of gram-positive bacterial pheromones have
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been described, differing in their features and their receptors (Cook and Federle,

2014): (1) Members of RNPP, (2) Agr-type cyclic peptides, (3) Gly-Gly peptides,

and (4) Rgg regulators and short hydrophobic peptides.

RNPP pheromones have been shown to be involved in conjugation and biofilm

formation in Enteroccocus faecalis, virulence in Bacillus anthracis, and compe-

tence and sporulation in Bacillus subtilis. They are short oligopeptides which

are processed (cleaved at certain sites) after translation, exported out of the cell,

transported into the recipient cell by an oligopeptide permease and then bind to

their cognate intracellular receptor protein. (Rocha-Estrada et al., 2010).

The second group of pheromones of gram-positive bacteria are Agr-type cyclic

peptides. These peptides are involved in virulence in Staphylococcus aureus and

at least 15 other Staphylococcus species and in E. faecalis. Agr-type oligopeptides

are also processed after translation but in a different way – while the N-terminal

processing is again a simple proteolytic cleavage, the C-terminus is cleaved

and circularised. This C-terminal ring is a hallmark of Agr-type peptides and

plays a crucial role in detection of the signal, which also differs from the RNPP

peptides. The Agr pheromones are sensed by a dedicated two-component signal

transduction pathway. Thus, the pheromone binds to a histidine kinase on the

surface of the recipient cell, which transmits the signal further via phosphorylation

of a cytoplasmic response regulator (Lyon et al., 2002; Steiner et al., 2012).

Gly-gly peptides are known to regulate competence and production of bacte-

riocins in B. subtilis and some Streptococci. These peptides are characterised

by a double-glycine (GG) motif in their conserved leader sequence, after which

the peptide is cleaved and the residue is exported out of the cell. Similarly to Agr

pheromones, Gly-gly peptides are also sensed via a two component transduction

pathway (Cook and Federle, 2014; Håvarstein et al., 1996).

The last group are Rgg pheromones, which have been shown to be involved

in competence development and biofilm formation in many Streptococci. They

are similar to RNPP pheromones in the fact that they are internalised and bind

directly to their intracellular regulator. Processing of Rgg pheromones is, however,
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more complicated and they are not only modified within the cell where they are

produced, but also outside the cells in the extracellular environment by an addi-

tional yet unknown exported enzyme. Also, Rgg pathways are thought to be able

to integrate both intercellular signalling and environmental stimuli into a single

adaptive response (Fontaine et al., 2010; Mashburn-Warren et al., 2012).

Albeit the four pheromone types described above differ in many details, they

share one crucial feature, which can be used as a clue for identification of other

putative signalling peptides – they all have a leader sequence, which has a

conserved molecular hallmark indicating a potential signalling molecule. All the

groups have a N-terminal ‘handle’, which is recognized by a conserved protein

exporting machinery of the cell, the translocase, and subsequently cleaved while

the C-terminal part of the protein is being exported out of the cell (Manting and

Driessen, 2000).

3.3 Results

3.3.1 In silico analysis

We analysed the CRISPR/Cas operon of S. thermophilus DGCC7710 for CDS

overlapping sORFs, which resulted in 444 positive results, both on the sense and

antisense strands. Then we analysed in silico translations of these sORFs for

the signature of a signalling peptide, which resulted in 6 putative sORFs within

the cas9 CDS. Subsequently, we ran an analysis of the upstream regions of

these potential signalling sORFs looking for putative promoters. This further

narrowed down the list to a single sORF on the antisense strand whose upstream

region contained a predicted -10 and -35 box (see Fig. 3.1 for the nucleotide

sequence and annotations). We named this putative peptide Pcrap - potential

CRISPR activating peptide. Its amino acid sequence is MVMISITSLLNSPMASQ–

LRCKLATNHGNFCINLVSSKVFLKGIEDNS and the predicted proteolytic cleavage

site is located between positions 17 and 18: ASQ–LR (indicated by a dash in the

sequence, for full results of the test see Fig. 3.2 and Table 3.2).
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ORF Start:End Translation
Initiation Rate

Translation
Coupling

Factor

�G
total

�G �G
start

cas9 0:3363 1.32 1 16.76 17.36 -1.19
pcraP 0:141 0.7 1 18.16 17.36 -1.19

Table 3.1: In silico analysis of translation of cas9 and putative signalling peptide
Pcrap using De Novo DNA Inc. Operon Calculator (Tian and Salis, 2015).

Measure Position Value Cutoff signal peptide?
max. C 18 0.138
max. Y 18 0.302
max. S 15 0.826
mean S 1-17 0.651

D 1-17 0.494 0.420 YES
Name=Pcrap SP=’YES’ Cleavage site between pos. 17 and 18: ASQ-LR

D=0.494 D-cutoff=0.420 Networks=SignalP-noTM

Table 3.2: Results of SignalIP 4.1 analysis of Pcrap

The predicted promoter region of pcraP also contains a predicted regulatory

region binding rpoD17 and/or rpoD15 transcription factors (TFs). The rpoD TFs

(sometimes called sigma 70 TFs) are global TFs regulating diverse processes in

the cell and provide a concerted expression of genes involved in many physiological

processes such as, stress responses, sporulation, iron uptake (Paget and Helmann,

2003) and virulence (Miura et al., 2015). Although sigma 70 factors show high

homology among various bacterial species, they differ in their roles in different

species and to our best knowledge, none have been experimentally investigated

in S. thermophilus. Interestingly, an analysis of the promoter region upstream of

cas9 showed that this gene is regulated by the same TF rpoD17. This evidence

suggests that expression of the CRISPR/Cas immune system, namely of cas9, is

coordinated with expression of the putative signalling sORF.

The last step of our in silico analysis was to look for a ribosome binding site

between the promoter sequence and the start codon and determination of the

translation rate of the peptide. This analysis showed a comparable translation

initiation rate and ribosome binding affinities to that of cas9 (see Table 3.1 for the

details).
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Figure 3.1: Annotations of the pcrap genomic region. Nucleotide sequence of
pcrap (pink) and it its upstream region with annotated -10 and -35 box (yellow),
rpoD15 and rpoD17 TF binding sites (purple), transcription start site (TSS, orange)
and ribosome binding site (RBS, green).

3.3.2 Experimental verification

In order to evaluate whether the predicted signalling peptide Pcrap induces immune

response in S. thermophilus, we ordered a synthetic version of the cleaved Pcrap

and tested whether its addition to a culture increases survival of the bacteria when

challenged by phage 2972. Our results show that the mean ratio of surviving

colony forming units (CFUs) of the population with Pcrap supplementation vs.

control was 2.1 (Fig. 3.3).

3.4 Materials and methods

3.4.1 Potential sORF identification

We analysed the CRISPR/Cas operon of S. thermophilus DGCC7710 using

Geneious® 6.1.7 looking for all sORFs with length ranging between 10 and 70

codons on both sense and antisense strand.
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Figure 3.2: Results of in silico analysis of Pcrap amino acid sequence. The
analysis was performed using SignalIP 4.1 (Petersen et al., 2011). C-score (raw
cleavage site score): The output from the CS networks, which are trained to
distinguish signal peptide cleavage sites from everything else. S-score (signal
peptide score): The output from the SP networks, which are trained to distinguish
positions within signal peptides from positions in the mature part of the proteins
and from proteins without signal peptides. Y-score (combined cleavage site score):
A combination (geometric average) of the C-score and the slope of the S-score,
resulting in a better cleavage site prediction than the raw C-score alone. This is
due to the fact that multiple high-peaking C-scores can be found in one sequence,
where only one is the true cleavage site. The Y-score distinguishes between C-
score peaks by choosing the one where the slope of the S-score is steep (Petersen
et al., 2011)

.
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Figure 3.3: Results of Pcrap induction assays. Boxplot showing the probability
of survival of the Pcrap induced cultures after exposition to phage relative to the
non-induced control. Values of individual experiments are indicated by ”x” symbols.
The mean of the ratios is statistically significant from 1 (p-value = 0.03827, t-
statistic = 2.1362). For more details see Materials and Methods, sections 3.4.3
and 3.4.4.

.

3.4.2 Potential signalling sORF identification

We translated all sORFs found in the previous step in silico using Geneious®

6.1.7 and analysed them for a signature of a signalling peptide using SignalIP 4.1

(Petersen et al., 2011). Subsequently we analysed their upstream regions (150bp)

with SoftBerry BPROM (Solovyev and Salamov, 2011).

3.4.3 Pcrap induction assays

We inoculated overnight (OVN) cultures in M17 medium pre-warmed to 42�C 1:50

and let the cells grow in a shaking incubator at 42�C until an OD
600

⇠ 0.25. After

the cells reached this population density, we added Pcrap to a final concentration of

10µM to the test tubes and distilled water of a corresponding volume to the control.

We incubated the tubes at 42�C for additional 30 minutes and then added phage
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2972 at a multiplicity of infection (MOI) ⇠ 1 and 10mM CaCl into both test and

control tubes. Then we incubated the tubes with bacteria and phages for additional

2 hours until the cultures cleared (complete lysis) and subsequently plated serial

dilutions of the supernatant on M17 agar plates. We counted emerging colonies

after two days of incubation at 42�C.

3.4.4 Pcrap induction statistics

We performed a statistical analysis of the difference in the number of CFUs in the

Pcrap treated and control tubes. Every sample was normalised by the number of

CFUs in the control tube and the difference was compared to 0 using a paired one-

sided T-test. Null hypothesis was that Pcrap has no effect, alternative hypothesis

that CRAP increases the probability of survival.

3.5 Discussion

Induction of immunity by the addition of our candidate signalling CRISPR/Cas

activating peptide (Pcrap) increased survival probability of the treated bacteria 2.1

times, although this finding was only marginally significant. The rather weak effect

of the peptide can be attributed to several factors: First, as we have described

above in section 3.2.2, bacterial signalling pro-peptides are often not only cleaved

at the site between the C-terminal handle and the N-terminal signalling peptide

(which is a signature of signalling peptides) but also further processed. This further

processing often involves additional cleavage of the signalling peptide at other sites

(for example see processing cascade of a conjugation pheromone of E. feacalis

in Table 3.3). Other peptides, like the Agr pheromones, are further modified to

form a ring structure at the N-terminus by forming a lactone or thiolactone ring.

Their modifications result in high variations in signalling efficiency in different S.

aureus groups and often the modified peptides competitively suppress their func-

tional analogs (Lyon et al., 2002). Thus, if our candidate peptide requires further

modifications, its non-processed form may only have a minor effect. Second,
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some bacterial signalling pathways are predicted to be able to integrate not only

information from the signal itself but also information from the environment (Camilli

and Bassler, 2006). It is reasonable to expect that if social immunity occurs in

bacterial populations, it has evolved to suppress phage spread rather in structured

populations. Therefore, the effect of the Pcrap supplementation may be reduced

in a well mixed liquid environment we used in our experiments.

MKKYKRLLLMAGLVTLVFVLSACGTAPVSESSTGIWDRYIV...
# Signal peptidase II )

Membrane translocationMKKYKRLLLMAGLVTLVFVLSA
# Metalloprotease

LVTLVFVLSA
# Exopeptidase

LVTLVFV

Table 3.3: Processing of the Enterococcus faecalis conjugation peptide cCF10.
Processing of the pro-peptide occurs via at least three separate cleavage events
upstream of the amino acids indicated in red. Signal peptidase II cleaves the
lipoprotein upstream of a cysteine residue. The peptide precursor is then cleaved
during the transport process, likely by a metalloprotease. The pro-peptide is
secreted into the extracellular environment where it is further cleaved by an
exopeptidase, removing the terminal three amino acids to yield the cCF10 peptide
pheromone which can be sensed by neighbouring cells. Modified from (Cook and
Federle, 2014).

There is also a possibility that the increased survival is because the peptide is

interfering or inactivating some of the phages rather than signalling to the other

cells (Killmann et al., 1995), and we did not conduct additional experiments to rule

this option out. However, indirect evidence that bacterial signalling as a response to

phage infection exists. First, the average plaque size of phage 2972 on a bacterial

lawn of S. thermophilus is substantially smaller (cca. 10 fold, data not shown) than

plaque sizes of other comparable phage-bacterial systems, for example the E.

coli–phage T7 system we studied in chapter one. As we have shown in Chapter 2,

the velocity of spread (and subsequently the plaque size) is determined by phage

burst size, its diffusion constant and adsorption rate. Phage capsid diameter and

burst size have been shown to be comparable with coliphage T7. Burst size of the

wild type phage 2972 has been estimated as 190 ± 33 (Deveau et al., 2008) which

is very close to an estimate of maximal burst size of T7 on cells growing in 37ºC,
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which is 179 ± 19 (Nguyen and Kang, 2014). The capsid size, which is likely the

main determinant of phage diffusion has been estimated as 55nm both in phage

2972 and T7 (Lévesque et al., 2005; Cerritelli et al., 1997). Although we could not

find measurements of adsorption rate per se of the phage 2972, adsorption tests

have been carried out showing that 95.9% ± 1.7% of the phage particles adsorb to

cells within 10 minutes after inoculation with MOI ˜ 10�3 at 42ºC (Duplessis et al.,

2005). This suggests that the adsorption rate of phage 2972 is even higher than

of T7, where only 26.9% of the phages adsorb within 7 minutes after inoculation

with similar MOI (Bleackley et al., 2009).

Although the small plaque sizes could be possibly explained also by production

of an extracellular substance, which limits spread or adsorption of the phages,

another observation indicating existence of bacterial signalling in response to

phage infection exists. It has been shown by Levin et al. (2013) that the number

of surviving S. thermophilus bacteria after phage 2972 inoculation is higher than

predicted by a model, which takes into account all known processes of phage

spreading in a bacterial population. Only after allowing for some sort of resistance

induction by a pheromone in their model, its predictions showed a good agreement

with the observed results.

3.5.1 Future directions

The phenomenon of bacterial pheromone signalling in S. thermophilus and phage

2972 model system can be further explored in the following ways:

1. Chemical analysis of supernatant isolated after phages kill bacterial cultures

using LC-MS. This step would allow us to identify whether the supernatant

contains oligopeptides of a size comparable to the peptide we used in the

assays and determine their charge, mass, length and sequence.

2. Testing the effect of Pcrap in a semi-solid soft agar environment. As has been

shown in other pheromone signalling cascades, bacteria can sometimes
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integrate both the information from other cells and environmental stimuli and

respond to them only when both inputs are present.

3. Cloning of the pcraP sequence on a plasmid under control of an inducible

promoter and over expression of the peptide. This should circumvent any

difficulties in identification of all possible post-translational modification – the

pro-peptide would be expressed in its respective cellular environments with

all the modifying enzymes.
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4 Conclusions

4.1 Summary of the main results

In this thesis we examined the epidemiological properties of phage spread in

bacterial populations in the context of emergence of herd immunity and explored

the potential for social immunity.

In Chapter 2 we demonstrated that herd immunity to phages can emerge in

bacterial populations. We explored the dynamics of phage spread in structured

and unstructured populations consisting of phage-susceptible and phage-resistant

individuals and showed that the extent to which herd immunity emerges depends

both on population spatial structure and physiology of the hosts. We constructed a

mathematical model, which we parametrised using independent experiments and

derived predictions for the herd immunity threshold and the velocity of spread of a

phage epidemic in a partially resistant population.

In Chapter 3 we explored one potential path bacteria may employ to achieve

social immunity. Our results suggest that the potential peptide pheromone, which

we identified using bioinformatic analyses and subsequently experimentally tested,

may mediate induction of resistance to a phage.
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4.2 Maintenance of polymorphism

Bacterial herd immunity may substantially influence eco-evolutionary dynamics in

phage-bacterial communities. One of the main consequences of herd immunity is

its ability to maintain polymorphism for immunity in the population. In a general

deterministic situation, a beneficial allele eventually goes to fixation in a population,

but an allele causing resistance to a pathogen can only increase in frequency until

it is equal to the herd immunity threshold. Then the pathogen cannot spread in

the population anymore and the selection pressure favouring this allele ceases.

Thus, once a resistance conferring allele exceeds the herd immunity threshold,

it becomes either neutral or selected against, if the immune response is costly.

This nature of herd immunity thus generates an evolutionary force, which can

generate and maintain polymorphism for immunity in a population. This would not

be of much interest if just two morphs would be maintained in a population, but

as the diversity of phages is high and bacterial populations are being challenged

by more of them simultaneously or sequentially, one can expect that the levels of

polymorphism may in the end reach relatively high values. It has been shown that

wild populations of bacteria and archaea are highly polymorphic in CRISPR spacer

contents (Tyson and Banfield, 2008; Sun et al., 2016; Kuno et al., 2014; Held et al.,

2010; Pride et al., 2011; Zhang et al., 2013; Andersson and Banfield, 2008). The

authors mostly explain this high polymorphism by rapid simultaneous independent

acquisitions of new spacers. In our opinion, this scenario is rather unlikely; we

propose that this polymorphism may be rather attributed to herd immunity. It

also has been shown that higher diversity in the CRISPR spacer content makes

populations more robust to extinction caused by a phage epidemic (van Houte

et al., 2016). Therefore, herd immunity may in the end contribute substantially to

survival of wild bacterial populations.
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4.3 Social immunity

It has been shown that bacteria have evolved many social traits (i.e., population-

wide cooperative responses), which result in improved access to nutrients, pro-

moted collective defence against other competitors or increased survival through

differentiation, which enables them to better respond to the environment (West

et al., 2007; Williams et al., 2007). As phages are presumably a very common

threat that bacteria have to face, social immunity fits well into the mosaic of social

traits bacteria can express. As a result, social immunity increases the probability

of survival of a population by induction of resistance of other members of the pop-

ulation. Although our results are only marginally significant, they show a promising

course towards elucidation of a completely new perspective in evolutionary ecology

of phage–bacterial communities.

One interesting feature of the signalling peptide we identified is where it is

encoded. Its coding sequence is located within a coding sequence of one of the

CRISPR/Cas immune system genes, on the antisense strand. As such location of

a sequence coding for a signalling molecule has, to our best knowledge, not yet

been observed in bacteria, our approach opens a novel framework for a search for

signalling molecules involved in other bacterial social traits, or even for other short

open reading frames coding for other functional small peptides.

4.4 Future directions

Although this thesis has identified two entirely novel phenomena, herd and social

immunity, it provides only the first shards of a mosaic in a new part of evolutionary

ecology of phage–bacterial communities. The extent to which these phenom-

ena play a role in nature, however, requires further experimental and theoretical

investigations.

As we have pointed out in the introduction, bacteria may possess many various

immune systems, whose modus operandi differs substantially from the one we
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examined. Thus, experimental and theoretical investigation of these other immune

systems with respect to their potential to provide herd immunity would help to

assess how general this phenomenon might be in nature. Besides investigation of

other immune systems, also experimental verification of our prediction that herd

immunity may help to maintain polymorphism and promote coexistence of bacteria

and phages would extend our understanding of phage–bacterial communities.

Our research on bacterial social immunity, as we have presented it in Chapter

3, surely requires further investigation. First, more tests of bacterial survival

upon induction with the signalling peptide and phage infection is necessary. These

experiments should be extended to different environments such as soft agar plates,

since bacterial quorum sensing is sometimes dependent on other environmental

clues. In addition, determination of the charge, mass, length and sequence

of peptides isolated form the supernatant using Liquid chromatography–mass

spectrometry (LC-MS) can provide further insights into possible post-translational

modification of the peptide we identified. Lastly, overexpression of the signalling

peptide coding sequence from a plasmid in the wild–type cells would circumvent

any difficulties in identification of possible post-translational modification, because

the peptide could be accessed by all potentially modifying enzymes.
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Joaquim Fort and Vicenç Méndez, “Wavefronts in time-delayed reaction-diffusion

systems. Theory and comparison to experiment,” Reports on Progress in

Physics, 65(6):895, 2002.

J. P. Fox, L. Elveback, W. Scott, L. Gatewood, and E. Ackerman, “Herd immunity:

basic concept and relevance to public health immunization practices,” American

Journal of Epidemiology, 94(3):179–189, September 1971.

L R Garcı́a and I J Molineux, “Rate of translocation of bacteriophage T7

DNA across the membranes of Escherichia coli.,” Journal of Bacteriology,

177(14):4066–4076, July 1995.

Gibson, Wilson, Feil, and Eyre-Walker, “unpublished results,” personal communi-

cation, 2016.

Tamara Goldfarb, Hila Sberro, Eyal Weinstock, Ofir Cohen, Shany Doron, Yoav

Charpak-Amikam, Shaked Afik, Gal Ofir, and Rotem Sorek, “BREX is a novel

phage resistance system widespread in microbial genomes,” The EMBO journal,

34(2):169–183, January 2015.

Nicholas C. Grassly and Christophe Fraser, “Mathematical models of infectious

disease transmission,” Nature Reviews Microbiology, 6(6):477–487, June 2008.



73

Elisabeth Grohmann, Günther Muth, and Manuel Espinosa, “Conjugative Plas-

mid Transfer in Gram-Positive Bacteria,” Microbiology and Molecular Biology

Reviews, 67(2):277–301, June 2003.

H Hadas, M Einav, I Fishov, and A Zaritsky, “Bacteriophage T4 development

depends on the physiology of its host Escherichia coli,” Microbiology (Reading,

England), 143 ( Pt 1):179–185, January 1997.

Alex R. Hall, Pauline D. Scanlan, Andrew D. Morgan, and Angus Buckling, “Host-

parasite coevolutionary arms races give way to fluctuating selection,” Ecology

Letters, 14(7):635–642, July 2011.

Luanne Hall-Stoodley, J. William Costerton, and Paul Stoodley, “Bacterial biofilms:

from the Natural environment to infectious diseases,” Nature Reviews Microbiol-

ogy, 2(2):95–108, February 2004.

W. H. Hamer, Epidemic Disease in England: The Evidence of Variability and of

Persistency of Type, Bedford Press, 1906.

A.m.m. Hammad, “Evaluation of alginate-encapsulated Azotobacter chroococcum

as a phage-resistant and an effective inoculum,” Journal of Basic Microbiology,

38(1):9–16, March 1998.
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Richards, Hélène Deveau, Sylvain Moineau, Patrick Boyaval, Christophe Fre-

maux, and Rodolphe Barrangou, “Diversity, Activity, and Evolution of CRISPR

Loci in Streptococcus thermophilus,” Journal of Bacteriology, 190(4):1401–1412,

February 2008.

Laura A. Hug, Brett J. Baker, Karthik Anantharaman, Christopher T. Brown, Alexan-

der J. Probst, Cindy J. Castelle, Cristina N. Butterfield, Alex W. Hernsdorf, Yuki

Amano, Kotaro Ise, Yohey Suzuki, Natasha Dudek, David A. Relman, Kari M.

Finstad, Ronald Amundson, Brian C. Thomas, and Jillian F. Banfield, “A new

view of the tree of life,” Nature Microbiology, 1:16048, April 2016.

P. Hyman and S. T. Abedon, editors, Bacteriophages in health and disease, CABI,

Wallingford, 2012, DOI: 10.1079/9781845939847.0000.

Daniel H. Janzen, “When is it Coevolution?,” Evolution, 34(3):611, May 1980.

Arul Jayaraman and Thomas K. Wood, “Bacterial Quorum Sensing: Signals, Cir-

cuits, and Implications for Biofilms and Disease,” Annual Review of Biomedical

Engineering, 10(1):145–167, 2008.

F. Jeltsch, M. S. Müller, V. Grimm, C. Wissel, and R. Brandl, “Pattern formation

triggered by rare events: lessons from the spread of rabies,” Proceedings of

the Royal Society of London B: Biological Sciences, 264(1381):495–503, April

1997.

Wenyan Jiang, David Bikard, David Cox, Feng Zhang, and Luciano A. Marraffini,

“RNA-guided editing of bacterial genomes using CRISPR-Cas systems,” Nature

Biotechnology, 2013.

Donald A Kaplan, Louis Naumovski, Bruce Rothschild, and R John Collier, “Ap-

pendix: a model of plaque formation,” Gene, 13(3):221–225, 1981.



75

Emine Kaya, Kevin W. Doxzen, Kilian R. Knoll, Ross C. Wilson, Steven C. Strutt,

Philip J. Kranzusch, and Jennifer A. Doudna, “A bacterial Argonaute with

noncanonical guide RNA specificity,” Proceedings of the National Academy of

Sciences, 113(15):4057–4062, April 2016.

Helmut Killmann, Georgi Videnov, Gunter Jung, Heinz Schwarz, and Volkmar

Braun, “Identification of receptor binding sites by competitive peptide mapping:

phages T1, T5, and phi 80 and colicin M bind to the gating loop of FhuA.,”

Journal of bacteriology, 177(3):694–698, 1995.

K. C. King and C. M. Lively, “Does genetic diversity limit disease spread in natural

host populations?,” Heredity, 109(4):199–203, October 2012.

A.N. Kolmogorov, I. Petrovsky, and N. Piscounoff, “Study of the diffusion equation

with growth of the quantity of matter and its application to a biology problem,”

Bull. Univ. Moscow, Ser. Int. A, 1(1), 1937.

Matthias Konrad, Meghan L. Vyleta, Fabian J. Theis, Miriam Stock, Simon Tragust,

Martina Klatt, Verena Drescher, Carsten Marr, Line V. Ugelvig, and Sylvia

Cremer, “Social Transfer of Pathogenic Fungus Promotes Active Immunisation

in Ant Colonies,” PLOS Biol, 10(4):e1001300, April 2012.

Britt Koskella and Michael A. Brockhurst, “Bacteria–phage coevolution as a driver

of ecological and evolutionary processes in microbial communities,” FEMS

Microbiology Reviews, 38(5):916–931, September 2014.

Britt Koskella, Derek M. Lin, Angus Buckling, and John N. Thompson, “The costs

of evolving resistance in heterogeneous parasite environments,” Proceedings.

Biological Sciences, 279(1735):1896–1903, May 2012.

Sotaro Kuno, Yoshihiko Sako, and Takashi Yoshida, “Diversification of CRISPR

within coexisting genotypes in a natural population of the bloom-forming

cyanobacterium Microcystis aeruginosa,” Microbiology, 160(5):903–916, 2014.

S. J. Labrie, J. E. Samson, and S. Moineau, “Bacteriophage resistance mecha-

nisms,” Nature Reviews Microbiology, 8(5):317–327, 2010.



76

Richard E. Lenski, “Dynamics of Interactions between Bacteria and Virulent

Bacteriophage,” In K. C. Marshall, editor, Advances in Microbial Ecology, num-

ber 10 in Advances in Microbial Ecology, pages 1–44. Springer US, 1988, DOI:

10.1007/978-1-4684-5409-3 1.

Richard E. Lenski and Bruce R. Levin, “Constraints on the Coevolution of Bacteria

and Virulent Phage: A Model, Some Experiments, and Predictions for Natural

Communities,” The American Naturalist, 125(4):585–602, April 1985.
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