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Abstract
Graph games provide the foundation for modeling and synthesis of reactive processes. Such
games are played over graphs where the vertices are controlled by two adversarial players. We
consider graph games where the objective of the first player is the conjunction of a qualitative
objective (specified as a parity condition) and a quantitative objective (specified as a mean-
payoff condition). There are two variants of the problem, namely, the threshold problem where
the quantitative goal is to ensure that the mean-payoff value is above a threshold, and the value
problem where the quantitative goal is to ensure the optimal mean-payoff value; in both cases
ensuring the qualitative parity objective. The previous best-known algorithms for game graphs
with n vertices, m edges, parity objectives with d priorities, and maximal absolute reward value
W for mean-payoff objectives, are as follows: O(nd+1 · m ·W ) for the threshold problem, and
O(nd+2 ·m ·W ) for the value problem. Our main contributions are faster algorithms, and the
running times of our algorithms are as follows: O(nd−1 ·m ·W ) for the threshold problem, and
O(nd · m ·W · log(n ·W )) for the value problem. For mean-payoff parity objectives with two
priorities, our algorithms match the best-known bounds of the algorithms for mean-payoff games
(without conjunction with parity objectives). Our results are relevant in synthesis of reactive
systems with both functional requirement (given as a qualitative objective) and performance
requirement (given as a quantitative objective).
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1 Introduction

Graph games. A graph game is played on a finite directed graph with two players, namely,
player 1 and player 2 (the adversary of player 1). The vertex set is partitioned into player-1
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and player-2 vertices. At player-1 vertices, player 1 chooses a successor vertex; and at player-2
vertices, player 2 does likewise. The result of playing the game forever is an infinite path
through the graph. There has been a long history of using graph games for modeling and
synthesizing reactive processes [6, 17, 18]: a reactive system and its environment represent
the two players, whose states and transitions are specified by the vertices and edges of a
game graph. Consequently, graph games provide the theoretical foundation for modeling
and synthesizing reactive processes.

Qualitative and quantitative objectives. For reactive systems, the objective is given as a set
of desired paths (such as ω-regular specifications), or as a quantitative optimization objective
with a payoff function on the paths. The class of ω-regular specifications provide a robust
framework to express all commonly used specifications for reactive systems in verification
and synthesis. Parity objectives are a canonical way to express ω-regular objectives [19],
where an integer priority is assigned to every vertex, and a path satisfies the parity objective
for player 1 if the minimum priority visited infinitely often is even. One of the classical and
most well-studied quantitative objectives is the mean-payoff objective, where a reward is
associated with every edge, and the payoff of a path is the long-run average of the rewards of
the path.

Mean-payoff parity objectives. Traditionally the verification and the synthesis problems
were considered with qualitative objectives. However, recently combinations of qualitative
and quantitative objectives have received a lot of attention. Qualitative objectives such as
ω-regular objectives specify the functional requirements of reactive systems, whereas the
quantitative objectives specify resource consumption requirements (such as for embedded
systems or power-limited systems). Combining quantitative and qualitative objectives is
crucial in the design of reactive systems with both resource constraints and functional
requirements [8, 11, 3, 1]. For example, mean-payoff parity objectives are relevant in
synthesis of optimal performance lock-synchronization for programs [7], where one player is
the synchronizer, the opponent is the environment; the performance criteria is specified as
mean-payoff objective; and the functional requirement (e.g., data-race freedom or liveness)
as an ω-regular objective. Mean-payoff parity objectives have been used in several other
applications, e.g., define permissivity for parity games [4] and robustness in synthesis [2].

Threshold and value problems. For graph games with mean-payoff and parity objectives
there are two variants of the problem. First, the threshold problem, where a threshold ν
is given for the mean-payoff objective, and player 1 must ensure the parity objective and
that the mean-payoff is at least ν. Second, the value problem, where player 1 maximizes the
mean-payoff value while ensuring the parity objective. In the sequel of this section, we will
refer to graph games with mean-payoff and parity objectives as mean-payoff parity games.

Previous results. Mean-payoff parity games were first studied in [11], and algorithms for the
value problem were presented. It was shown in [9] that the decision problem for mean-payoff
parity games lies in NP ∩ coNP (similar to the status of mean-payoff games and parity games).
For game graphs with n vertices, m edges, parity objectives with d priorities, and maximal
absolute reward value W for the mean-payoff objective, the previous known algorithmic
bounds for mean-payoff parity games are as follows: For the threshold problem the results
of [9] give an O(nd+4 ·m · d ·W )-time algorithm. This algorithmic bound was improved in [4]
where an O(nd+2 ·m ·W )-time algorithm was presented for the value problem. The result
of [4] does not explicitly present any other better bound for the threshold problem. However,
the recursive algorithm of [4] uses value mean-payoff games as a sub-routine, and replacing
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value mean-payoff games with threshold mean-payoff games gives an O(n)-factor saving, and
yields an O(nd+1 ·m ·W )-time algorithm for the threshold problem for mean-payoff parity
games.

Contributions. In this work our main contributions are faster algorithms to solve mean-
payoff parity games. Previous and our results are summarized in Table 1.

1. Threshold problem. We present an O(nd−1 · m ·W )-time algorithm for the threshold
problem for mean-payoff parity games, improving the previous O(nd+1 ·m ·W ) bound.
The important special case of parity objectives with two priorities correspond to Büchi and
coBüchi objectives. Our bound for mean-payoff Büchi games and mean-payoff coBüchi
games is O(n · m ·W ), which matches the best-known bound to solve the threshold
problem for mean-payoff objectives [5], and improves the previous known O(n3 ·m ·W )
bound [4].

2. Value problem. We present anO(nd·m·W ·log(n·W ))-time algorithm for the value problem
for mean-payoff parity games, improving the previous O(nd+2 ·m ·W ) bound. Our bound
for mean-payoff Büchi games and mean-payoff coBüchi games is O(n2 ·m ·W · log(n ·W )),
which matches the bound of [5] to solve the value problem for mean-payoff objectives,
and improves the previous known O(n4 ·m ·W ) bound.

Technical contributions. Our main technical contributions are as follows:
1. First, for the threshold problem, we present a decremental algorithm for mean-payoff games

that supports a sequence of vertex-set deletions along with their player-2 reachability
set. We show that the total running time is O(n ·m ·W ), which matches the best-known
bound for the static algorithm to solve mean-payoff games. We show that using our
decremental algorithm we can solve the threshold problem for mean-payoff Büchi games
in time O(n ·m ·W ).

2. Second, for mean-payoff coBüchi games, the decremental approach does not work. We
present a new static algorithm for threshold mean-payoff games that identifies subsets
X of the winning set for player 1, where the time complexity is O(|X| ·m ·W ), i.e., it
replaces n with the size of the set identified. We show that with our new static algorithm
we can solve the threshold problem for mean-payoff coBüchi games in time O(n ·m ·W ).

3. Finally, we show for all mean-payoff parity objectives, given an algorithm for the threshold
problem, the value problem can be solved in time n · log(n ·W ) times the complexity of
the threshold problem.

Related works. The problem of graph games with mean-payoff parity objectives was first
studied in [11]. The NP ∩ coNP complexity bound was established in [9], and an improved
algorithm for the problem was given in [4]. The mean-payoff parity objectives has also
been considered in other stochastic setting such as Markov decision processes [10, 12] and
stochastic games [13]. The algorithmic approaches for stochastic games build on the results
for non-stochastic games. In this work, we present faster algorithms for mean-payoff parity
games.

2 Preliminaries

Graphs. A graph G = (V,E) consists of a finite set V of vertices and a finite set of edges
E ⊆ V ×V . Given a graph G = (V,E) and a subset U ⊆ V we denote by G � U = (V ′, E′) the
subgraph of G induced by U , i.e., V ′ = U , E′ = (U × U) ∩E. For v ∈ V we denote by In(v)
(resp., Out(v)) the set of incoming (resp., outgoing) vertices, i.e., In(v) = {v′ | (v′, v) ∈ E},
and Out(v) = {v′ | (v, v′) ∈ E}.

MFCS 2017
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Table 1 Algorithmic bounds for mean-payoff (MP) and parity objectives, and special cases:
threshold problem (left) and value problem (right).

MP-Büchi
MP-coBüchi
MP-parity

threshold problem
Previous Our

O(n3 ·m ·W ) O(n ·m ·W )
O(n3 ·m ·W ) O(n ·m ·W )
O(nd+1 ·m ·W ) O(nd−1 ·m ·W )

value problem
Previous Our

O(n4 ·m ·W ) O(n2 ·m ·W · log(nW ))
O(n4 ·m ·W ) O(n2 ·m ·W · log(nW ))
O(nd+2 ·m ·W ) O(nd ·m ·W · log(nW ))

Game graphs. A game graph Γ = (V,E, 〈V1, V2〉) is a graph whose vertex set is partitioned
into V1 and V2, (i.e., V = V1 ∪ V2 and V1 ∩ V2 = ∅). In a game graph every vertex v ∈ V
has a successor v′ ∈ V , i.e., Out(v) 6= ∅ for all v ∈ V . Given a game graph Γ and a set U
such that for all vertices u in U we have Out(u) ∩ U 6= ∅, we denote by Γ � U the subgame
induced by U .

Plays. Given a game graph Γ and a starting vertex v0, the game proceeds in rounds. In
each round, if the current vertex belongs to player 1, then player 1 chooses a successor vertex,
and player 2 does likewise if the current vertex belongs to player 2. The result is a play ρ
which is an infinite path from v0, i.e., ρ = v0v1 . . . , where every (vi, vi+1) ∈ E for all i ≥ 0.
We denote by Plays(Γ) the set of all plays of the game graph.

Strategies. Strategies are recipes to extend prefixes of plays by choosing the next vertex.
Formally, a strategy for player-1 is a function σ1 : V ∗ · V1 7→ V such that (v, σ1(ρ · v)) ∈ E
for all v ∈ V1 and all ρ ∈ V ∗. We define strategies σ2 for player 2 analogously. We
denote by Σ1 and Σ2 the set of all strategies for player 1 and player 2, respectively. Given
strategies σ1 and σ2 for player 1 and player 2, and a starting vertex v0, there is a unique play
ρ = v0v1 . . . such that for all i ≥ 0, (a) if vi ∈ V1 then vi+1 = σ1(v0 . . . vi); and (b) if vi ∈ V2
then vi+1 = σ2(v0 . . . vi). We denote the unique play as outcome(v0, σ1, σ2). A strategy is
memoryless if it is independent of the past and depends only on the current vertex, and
hence can be defined as a function σ1 : V1 7→ V and σ2 : V2 7→ V , respectively.

Objectives and parity objectives. An objective for a game graph Γ is a subset of the
possible plays, i.e., φ ⊆ Plays(Γ). Given a play ρ we denote by Inf (ρ) the set of vertices
that appear infinitely often in ρ. A parity objective is defined with a priority function p that
maps every vertex to a non-negative integer priority, and a play satisfies the parity objective
for player 1 if the minimum priority vertex that appear infinitely often is even. Formally, the
parity objective is ParityΓ(p) = {ρ ∈ Plays(Γ) | min{p(v) | v ∈ Inf (ρ)} is even}. The Büchi
and coBüchi objectives are special cases of parity objectives with two priorities only. We
have p : V 7→ {0, 1} for Büchi objectives and p : V 7→ {1, 2} for the coBüchi objectives.

Payoff functions. Consider a game graph Γ, and a weight function w : E 7→ Z that
maps every edge to an integer. The mean-payoff function maps every play to a real-
number and is defined as follows: For a play ρ = v0v1 . . . in Plays(Γ) we have MP(w, ρ) =
lim inf
n 7→∞

1
n ·
∑n−1
i=0 w(vi, vi+1). The mean-payoff parity function also maps every play to a

real-number or −∞ as follows: if the parity objective is satisfied, then the value is the
mean-payoff value, else it is −∞. Formally, for a play ρ, we have

MPPΓ(w, p, ρ) =
{

MPΓ(w, ρ) if ρ ∈ ParityΓ(p);
−∞ if ρ 6∈ ParityΓ(p).
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Threshold mean-payoff parity objectives. Given a threshold ν ∈ Q, the threshold mean-
payoff objective MeanPayoff Γ(ν) = {ρ ∈ Plays(Γ) | MP(ρ) ≥ ν} requires that the mean-
payoff value is at least ν. The threshold mean-payoff parity objective is a conjunction of a
parity objective and a threshold mean-payoff objective, i.e., ParityΓ(p) ∩MeanPayoff Γ(ν).

Winning strategies. Given an objective (such as parity, threshold mean-payoff, or threshold
mean-payoff parity) φ, a vertex v is winning for player 1, if there is a strategy σ1 such that
for all strategies σ2 of player 2, the play outcome(v, σ1, σ2) ∈ φ (i.e., the play satisfies the
objective). We denote by W1(φ) the set of winning vertices (or the winning region) for
player 1 for the objective φ. The notation W2(φ) for complementary objectives φ for player 2
is similar.

Value functions. Given a payoff function f (such as the mean-payoff function, or the
mean-payoff parity function), the value for player 1 is the maximal payoff that she can
guarantee against all strategies of player 2. Formally,

valΓ(f)(v) = sup
σ1∈Σ1

inf
σ2∈Σ2

f(outcome(v, σ1, σ2)).

Attractors. The player-1 attractor Attr1(S) of a given set S ⊆ V is the set of vertices from
which player-1 can force to reach a vertex in S. It is defined as the limit of the sequence
A0 = S;Ai+1 = Ai ∪ {v ∈ V1 | Out(v) ∩ Ai 6= ∅} ∪ {v ∈ V2 | Out(v) ⊆ Ai} for all i ≥ 0.
Th Player-2 attractor Attr2(S) is defined analogously exchanging the roles of player 1 and
player 2. The complement of an attractor induces a game graph, as in the complement every
vertex has an outgoing edge in the complement set.

Relevant parameters. In this work we will consider computing the winning region for
threshold mean-payoff parity objectives, and the value function for mean-payoff parity
objectives. We will consider the following relevant parameters: n denotes the number of
vertices, m denotes the number of edges, d denotes the number of priorities of the parity
function p, and W is the maximum absolute value of the weight function w.

3 Decremental Algorithm for Threshold Mean-Payoff Games

In this section we present a decremental algorithm for threshold mean-payoff games that
supports deleting a sequence of sets of vertices along with their player-2 attractors. The
overall running time of the algorithm is O(n ·m ·W ).

Key idea. A static algorithm based on the notion of progress measure for mean-payoff
games was presented in [5]. We show that the progress measure is monotonic wrt to the
deletion of vertices and their player-2 attractors. We use an amortized analysis to obtain the
running time of our algorithm.

Mean-payoff progress measure. Let Γ be a mean-payoff game with threshold ν. Progress
measure is a function f which maps every vertex in Γ to an element of the set CΓ = {i ∈ N |
i ≤ nW} ∪ {>}, i.e., f : V 7→ CΓ. Let (�, CΓ) be a total order, where x � y for x, y ∈ CΓ
holds iff x ≤ y ≤ nW or y = >. We define the operation 	 : CΓ × Z 7→ CΓ for all a ∈ CΓ
and b ∈ Z as follows:

a	 b =
{

max(0, a− b) if a 6= > and a− b ≤ nW ,
> otherwise.

MFCS 2017
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A player-1 vertex v is consistent if f(v) � f(v′) 	 w(v, v′) for any v′ ∈ Out(v). A player-
2 vertex v is consistent if f(v) � f(v′) 	 w(v, v′) for all v′ ∈ Out(v). Let v ∈ V then
lift(·, v) : [V 7→ CΓ] 7→ [V 7→ CΓ] is defined by lift(f, v) = g where:

g(u) =


f(u) if u 6= v,

min{f(v′)	 w(v, v′) | (v, v′) ∈ E} if u = v ∈ V1,

max{f(v′)	 w(v, v′) | (v, v′) ∈ E} if u = v ∈ V2.

Static Algorithm The static algorithm in [5] is an iterative algorithm which maintains and
returns a progress measure f and a list L of vertices which are not consistent. The initial
progress measure of every vertex is set to zero. Also, w(e) is set to w(e) − ν for all edges
e in E. The list L is initialized with the vertices which are not consistent considering the
initial progress measure. Then the following steps are executed in a while-loop:
1. Take out a vertex v of L.
2. Perform the lift-operation on the vertex, i.e., f ← lift(f, v).
3. If a vertex v′ in In(v) is not consistent, put v′ into L.
4. If L is empty, return f else proceed to the next iteration.
If every vertex is consistent, i.e., the list L is empty, the winning region of player 1 is the set
of vertices which are not set to > in f , i.e., W1(ν) = {v ∈ V | f(v) 6= >}.

Decremental input/output. Let Γ be a mean-payoff game with threshold ν. The input
to the decremental algorithm is a sequence of sets A1, A2, . . . , Ak, such that each Ai is a
player-2 attractor of a set Xi in the game Γi = Γ � (V \

⋃
j<iAj). The output requirement

is the player-1 winning set after the deletion of
⋃
j<iAj for i = 1, . . . , k, i.e., the output

requirement is the sequence Z1, Z2, . . . , Zk, where Zi = W1(φ) in Γi = Γ � (V \
⋃
j<iAj),

where φ = MeanPayoff Γi
(ν) is the threshold mean-payoff objective. In other words, we

repeatedly delete a vertex set Xi along with its player-2 attractor Ai from the current game
graph Γi, and require the winning set for player 1 as an output after each deletion.

Decremental algorithm. We maintain a progress measure fi, 1 ≤ i ≤ k, during the whole
sequence of deletions. The initial progress measure f1 for the mean-payoff game Γ with
threshold mean-payoff objective φ is calculated using the static algorithm. For all edges e in
E, we set w(e) = w(e)−ν. In iteration i with input Ai, in the game Γi with its corresponding
vertex set Vi the following steps are executed:
1. If a vertex in the set {v ∈ Vi \ Ai | ∃v′ : v′ ∈ Out(v) ∧ v′ ∈ Ai} is not consistent in fi

without the set Ai, put it in a list Li.
2. Delete the set Ai from Γi to receive Γi+1 (and thus Vi+1).
3. Execute steps (1)-(4) of the above described iterative algorithm from [5] initialized with

Γi+1, Li and fi restricted to the vertices in Vi+1.
4. Finally the winning region of player 1 can be extracted from the obtained progress

measure fi+1, i.e., W1(φ) = {v ∈ Vi+1 | f(v) 6= >}.

Correctness. Let Γ be a game graph, φ a threshold objective and A1, A2, . . . , Ak a sequence
of sets, such that each Ai is a player-2 attractor in the game Γi = Γ � (V \

⋃
j<iAj). To

show the correctness of the decremental algorithm we need to show that the condition that
the list L contains all vertices which are not consistent is an invariant of the decremental
algorithm at line 3. This property was proved for the static algorithm in [5].

I Lemma 1. The condition that Li contains all vertices which are not consistent with the
progress measure fi restricted to Vi+1 in Γi+1 is an invariant of the static algorithm called
in step 3 of the decremental algorithm for 1 ≤ i ≤ k − 1.
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Proof. The fact that the static algorithm correctly returns a progress measure with only
consistent vertices when the invariant holds was shown in [5]. It was also shown in [5] that
the invariant is maintained in the loop. It remains to show that the condition holds when
we call the static algorithm at step 3. For the base case, let i = 1. In the initial progress
measure f1 and the initial game graph Γ1, every vertex is consistent. By the definition of a
player-2 attractor, deleting the set A1 potentially removes edges (v, v′) where v is a player-1
vertex in V \A1 and v′ is in A1. (Note that v cannot be a player-2 vertex.) All of the vertices
not consistent anymore are added to Li in step 1 of the decremental algorithm. For the
inductive step let i = j. By induction hypothesis, all vertices which were not consistent with
the progress measures fh−1 restricted to Vh for 2 ≤ h ≤ j were added to the corresponding
lists. Thus by the correctness of the static algorithm, it correctly computes the new progress
measure fh for the game graph Γh where every vertex is consistent. Thus also every vertex
in the progress measure fj restricted to Vj is consistent. Again the player-2 attractor is
removed and vertices which are not consistent with progress measure fj restricted to Vj+1
are put into Lj by step 1 of the algorithm. J

Thus we proved that the static algorithm always correctly updates to the new progress
measure in each iteration. The winning region of player-1 is obtained by the returned
progress measure (step 4). The decremental algorithm thus correctly computes the sequence
Z1, Z2, . . . Zk, where Zi = W1(φ) in Γi.

Running Time. The calculation of the initial progress measure for the mean-payoff game Γ
with threshold ν is in time O(n ·m ·W ). The vertices which are not consistent anymore after
the deletion of Ai can be found in time O(m) (step 1). As at most n such sets Ai exist, the
running time is O(mn). In step 3 the static algorithm is executed with our current progress
measure fi: Every time a vertex v is picked from the list Li it costs O(|Out(v) + In(v)|) time
to use lift on it and to look for vertices in In(v) which are not consistent anymore (steps 1-3
in the static algorithm). This cost is charged to its incident edges. Note that deleting a set of
vertices and their corresponding player-2 attractor will only potentially increase the progress
measure of some player-1 vertices. As we can increase the progress measure of every vertex
only nW times before it is set to > where it is always consistent, we get the desired bound
of O(m · n ·W ).
Thus our decremental algorithm for threshold mean-payoff games works as desired and we
obtain the following result:

I Theorem 2. Given a game graph Γ, a threshold mean-payoff objective φ and a sequence
of sets A1, A2, . . . , Ak such that each Ai is a player-2 attractor of a set Xi in the game
Γi = Γ � (V \

⋃
j<iAj), the sequence Z1, Z2, . . . , Zk, where Zi = W1(φ) in Γi can be

computed in O(n ·m ·W ) time.

I Remark. Note that the running time analysis of our decremental algorithm crucially depends
on the monotonicity property of the progress measure. If edges are both added and deleted,
then the monotonicity property does not hold. Hence obtaining a fully dynamic algorithm
that supports both addition/deletion of vertices/edges with running time O(n ·m ·W ) is an
interesting open problem. However, we will show that for solving mean-payoff parity games,
the decremental algorithm plays a crucial part.

4 Threshold Mean-Payoff Parity Games

In this section we present algorithms for threshold mean-payoff parity games. Our most
interesting contributions are for the base case of mean-payoff Büchi- and mean-payoff coBüchi
objectives, and the general case follows a standard recursive argument.

MFCS 2017
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4.1 Threshold Mean-Payoff Büchi Games
In this section we consider threshold mean-payoff Büchi games.

Algorithm for threshold mean-payoff Büchi games. The basic algorithm is an iterative
algorithm that deletes player-2 attractors. The algorithm proceeds in iterations. In iteration
i, let Di be the set of vertices already deleted. Consider the subgame Γi = Γ � (V \ Di).
Then the following steps are executed:
1. Let V i = V \Di and Bi denote the set of Büchi vertices (or vertices with priority 0) in

Γi. Compute Yi = Attr1(Bi) the player-1 attractor to Bi in Γi.
2. Let Xi = V i \ Yi. If Xi is non-empty, remove Ai = Attr2(Xi) from the game graph, and

proceed to the next iteration.
3. Else V i = Yi. Let Ui = W1(φ) in Γi, where φ = MeanPayoff (ν), be the winning region

for the threshold mean-payoff objective in Γi. Let Xi = V i \ Ui. If Xi is non-empty,
remove Ai = Attr2(Xi) from the game graph, and proceed to the next iteration. If Xi is
empty, then the algorithm stops and all the remaining vertices are winning for player 1
for the threshold mean-payoff Büchi objective.

Correctness. Since the correctness argument has been used before [11], we only present a
brief sketch: The basic correctness argument is to show that all vertices removed over all
iterations do not belong to the winning set for player 1. In the end, for the remaining vertices,
player 1 can ensure to reach the Büchi vertices, and ensures the threshold mean-payoff
objectives. A strategy that plays for the threshold mean-payoff objectives longer and longer,
and in between visits the Büchi vertices, ensures that the threshold mean-payoff Büchi
objective is satisfied.

Running time analysis. We observe that the total running time to compute all attractors is
at most O(n ·m), since the algorithm runs for O(n) iterations and each attractor computation
is linear time. In step 3, the algorithm needs to compute the winning region for threshold
mean-payoff objective. The algorithm always removes a set Xi and its player-2 attractor
Ai, and requires the winning set for player 1. Thus we can use the decremental algorithm
from Section 3, which precisely supports these operations. Hence using Theorem 2 in the
algorithm for threshold mean-payoff Büchi games, we obtain the following result.

I Theorem 3. Given a game graph Γ and a threshold mean-payoff Büchi objective φ, the
winning set W1(φ) can be computed in O(m · n ·W ) time.

4.2 Threshold Mean-Payoff coBüchi Games
In this section we will present an O(n ·m ·W )-time algorithm for threshold mean-payoff
coBüchi games. We start with the description of the basic algorithm for threshold mean-payoff
coBüchi games.

Algorithm for threshold mean-payoff coBüchi games. The basic algorithm is an iterative
algorithm that deletes player-1 attractors. The algorithm proceeds in iteration. In iteration
i, let Di be the set of vertices already deleted. Consider the subgame Γi = Γ � (V \ Di).
Then the following steps are executed:
1. Let V i = V \Di and Ci denote the set of coBüchi vertices (or vertices with priority 1) in

Γi. Compute Yi = Attr2(Ci) the player-2 attractor to Ci in Γi.
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X1

Γ̂1 Γ̂2

1

deleted

added

A1

player-2 attr.(1)

player-2 attr.(2)

Figure 1 Pictorial illustration of threshold mean-payoff coBüchi games. The subgames Γ̂1 and
Γ̂2 are shown. We observe that Γ̂2 is obtained both by addition and deletion of game parts to Γ̂1.

2. Let Xi = V i \ Yi. Consider the subgame Γ̂i = Γi � Xi. Compute the winning region
Zi = W1(φ) for player 1 in Γ̂i, where φ = MeanPayoff (ν) is the threshold mean-payoff
objective.

3. If Zi is non-empty, remove Attr1(Zi) from Γi, and proceed to the next iteration. Else if
Zi is empty, then all remaining vertices are winning for player 2.

Correctness argument. Consider the subgame Γi. In each subgame Γ̂i of Γi all edges of
player 2 are intact, since it is obtained after removing a player-2 attractor Yi. Moreover,
there is no priority-1 vertex in Γ̂i. Hence ensuring the threshold mean-payoff objective in
Γ̂i for player 1 ensures satisfying the threshold mean-payoff coBüchi objective. Hence the
set Zi and its player-1 attractor belongs to the winning set of player 1 and can be removed.
Thus all vertices removed are part of the winning region for player 1. Upon termination, in
Γ̂i, player 1 cannot satisfy the threshold mean-payoff condition from any vertex. Consider a
player-2 strategy, where in Γ̂i player 2 falsifies the threshold mean-payoff condition, and in
Yi plays an attractor strategy to reach Ci (priority-1 vertices). Given such a strategy, either
(a) Yi is visited infinitely often, and then the coBüchi objective is violated; or (b) from some
point on the play stays in Γ̂i forever, and then the threshold mean-payoff objective is violated.
This shows the correctness of the algorithm. However, the running time of this algorithm is
not O(n ·m ·W ). We now present the key ideas to obtain an O(n ·m ·W )-time algorithm.

First intuition. Our first intuition is as follows. In step 2 of the above algorithm, instead
of obtaining the whole winning region W1(φ) in Γ̂i it suffices to identify a subset Xi of
the winning region (if it is non-empty) and remove its player-1 attractor. We call this the
modified algorithm for threshold mean-payoff coBüchi games. We first describe why we
cannot use the decremental approach in the following remark.

I Remark. Consider the subgames for which the threshold mean-payoff objective must be
solved. Consider Figure 1. The first player-2 attractor removal induces subgame Γ̂1. After
identifying a winning region X1 of Γ̂1 we remove its player-1 attractor A1. After removal
of A1, we consider the second player-2 attractor to the priority-1 vertices. The removal
of this attractor induces Γ̂2. We observe comparing Γ̂1 and Γ̂2 that certain vertices are
removed, whereas other vertices are added. Thus the subgames to be solved for threshold
mean-payoff objectives do not satisfy the condition of decremental or incremental algorithms
(see Remark 3).
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Second intuition. While we cannot use the decremental algorithm, we can solve the problem
in O(n ·m ·W ) time, if we have a modified static algorithm for threshold mean-payoff games,
with the following property: (a) it identifies a subset of the winning region X for player 1, if
the winning region is non-empty, in time O(|X| ·m ·W ); (b) if the winning region is empty,
it returns the empty set, and then it takes time O(n ·m ·W ). With such an algorithm we
analyze the running time of the above modified algorithm for threshold mean-payoff coBüchi
games. The total time required for all attractor computations is again O(n ·m). Otherwise,
we use the modified static algorithm to remove vertices of player-1 and to remove set of size
X we take O(|X| ·m ·W ) time, and thus we can charge each vertex O(m ·W ) time. Hence
the total time required is O(n ·m ·W ). In the rest of the section we present this modified
static algorithm for threshold mean-payoff games.

Problem Statement.

Input: Mean-payoff game Γ with threshold ν.
Question: If W1(MeanPayoff (ν)) is non-empty, return a nonempty set

X ⊆W1(MeanPayoff (ν)) in time O(|X| ·m ·W ),
else return ∅ in time O(n ·m ·W ).

Modified static algorithm for threshold mean-payoff games. The basic algorithm for
threshold mean-payoff games computes a progress measure, with a defined top element value
>. If the progress measure has the value > for a vertex, then the vertex is declared as
winning for player 2. With value > = n ·W , the correct winning region for both players can
be identified. Moreover, for a given value α for >, the progress measure algorithm requires
O(α ·m) time. Our modified static algorithm is based on the following idea:
1. Consider a value α ≤ n ·W for the top element. With this reduced value for the top

element, if a winning region is identified for player 1, then it is a subset of the whole
winning region for player 1.

2. We will iteratively double the value for the top element.
Given the above ideas our algorithm is an iterative algorithm defined as follows: Initialize
top value >0 = W . The i-th iteration is as follows:
1. Run the progress measure algorithm with top value >i.
2. If a winning region X for player is identified, return X.
3. Else >i+1 = 2 · >i (i.e., the top value is doubled).
4. If >i+1 ≥ 2 · n ·W , stop the algorithm and return ∅, else proceed to the next iteration.

Correctness and running time analysis. The key steps of the correctness argument and
the running time analysis are as follows:
1. The above algorithm is correct, since if it returns a set X then it is a subset of the winning

set for player 1.
2. If the algorithm returns a winning set with top value α, then the total running time till

this iteration is m · (α+α/2 +α/4 + · · · ), because the progress with top value α requires
time O(α ·m). Hence the total running time if a set X is returned with top value α is
O(α ·m).

3. Let Z be a set of vertices such that no player-2 vertex in Z has an edge out of Z, and
the whole subgame Γ � Z is winning for player 1. Then a winning strategy in Z ensures
that a progress measure with top value |Z| ·W would identify the set Z as a winning set.

4. From above it follows that if the winning set X is identified at top value α, but no winning
set was identified with top value α/2, then the size of the winning set is at least α/(2W ).
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5. It follows from above that if a set X is identified, then the total running time to obtain
set X is O(|X| ·m ·W ).

6. Moreover, the total running time of the algorithm when no set X is identified is in
O(n ·m ·W ), and in this case, the winning region is empty.

Thus we solved the modified static algorithm for threshold mean-payoff games as desired
and obtain the following result.

I Theorem 4. Given a mean-payoff game Γ and a threshold ν, let Z = W1(MeanPayoff (ν)).
If Z 6= ∅, then a non-empty set X ⊆ Z can be computed in time O(|X| ·m ·W ), else an
empty set is returned if Z = ∅, which takes time O(n ·m ·W ).

Using the above algorithm to compute the winning set for player 1 in the subgames, we
obtain an algorithm for threshold mean-payoff coBüchi games in time O(n ·m ·W ).

I Theorem 5. Given a game graph Γ and a threshold mean-payoff coBüchi objective φ, the
winning set W1(φ) can be computed in O(n ·m ·W ) time.

4.3 Threshold Mean-Payoff Parity Games
The algorithm for threshold mean-payoff parity games is the standard recursive algorithm [11]
(classical parity game-style algorithm) that generalizes the Büchi and coBüchi cases (which
are the base cases). The running time recurrence is as follows: T (n, d,m,w) = n(T (n, d−
1,m) +O(m)) +O(nmW ). Using our approach we obtain the following result.

I Theorem 6. Given a game graph Γ and a threshold mean-payoff parity objective φ, the
winning set W1(φ) can be computed in O(nd−1 ·m ·W ) time.

5 Optimal Values for Mean-payoff Parity Games

In this section we present an algorithm which computes the value function for mean-payoff
parity games. For mean-payoff games a dichotomic search approach was presented in [5]. We
show that such an approach can be generalized to mean-payoff parity games.

Range of Values for the Dichotomic Search. To describe the algorithm we recall a lemma
about the possible range of optimal values of a mean-payoff parity game. The lemma is an
easy consequence of the characterization of [11] that the mean-payoff parity value coincide
with the mean-payoff value, and the possible range of value for mean-payoff games.

I Lemma 7 ([11, 15, 16]). Let Γ be a mean-payoff parity game. For each vertex v ∈ V , the
optimal value valΓ(MPP)(v) is a rational number y

z such that 1 ≤ z ≤ n and |y| ≤ z ·W .

By Lemma 7 the value of each vertex v ∈ V , is contained in the following set of rationals

SΓ =
{
y

z

∣∣∣∣ y, z ∈ Z, 1 ≤ z ≤ n ∧ −z ·W ≤ y ≤ z ·W
}
.

I Definition 8. Let Γ be a mean-payoff parity game. We denote the set of vertices v ∈ V
such that valΓ(MPP)(v) ◦ µ where ◦ ∈ {<,≤,=,≥, >} with V ◦µΓ .

Key Observation. Let Γ = (V,E, 〈V1, V2〉, w, p) be a mean-payoff parity game. Let µ ∈
[−W,W ]. The sets V >µΓ , V =µ

Γ and V <µΓ can be computed using any algorithm for threshold
mean-payoff parity games twice (for example using Theorem 6). To calculate V ≥µΓ and
V <µΓ use the algorithm on Γ with the mean-payoff parity objective φ = ParityΓ(p) ∩
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MeanPayoff Γ(µ). Consider Γ′ = (V,E, 〈V2, V1〉, w′, p), where w′(e) = −w(e) for all edges
e ∈ E and player-1 and player-2 vertices are swapped. To calculate V ≤µΓ and V >µΓ use the
algorithm on Γ′ with mean-payoff parity objective φ = ParityΓ′(p) ∩MeanPayoff Γ′(−µ).
Given the sets V ≤µΓ , V >µΓ , V ≥µΓ and V <µΓ we can extract the sets V >µΓ , V =µ

Γ and V <µΓ .
All values µ′ in SΓ are of the form y

z . For those values we can determine whether v ∈ V ≥µ
′

Γ by
applying the algorithm for threshold mean-payoff parity games on Γ′ = (V,E, 〈V2, V1〉, w′, p)
where w′(e) = w(e) · z for all e ∈ E with the mean-payoff parity objectives φ = ParityΓ(p) ∩
MeanPayoff Γ(y). Note that in the worst case, the weight function w′ of Γ′ is in O(nW ).

Dichotomic Search. Let Γ be a mean-payoff parity game. The dichotomic search algorithm
is recursive algorithm initialized with Γ0 = Γ and S0 = SΓ. In recursive call i the following
steps are executed:
1. Let ri = min(Si) and si = max(Si).
2. Determine a1, the largest element in Si less than or equal to ri+si

2 and a2, the smallest
element in Si greater than or equal to ri+si

2 .
3. Determine the partitions V <a1

Γi
, V =a1

Γi
, V =a2

Γi
, V >a2

Γi
using the key observation.

4. For all v ∈ V =a1
Γi

set the value to a1, for all v ∈ V =a2
Γi

set the value to a2 and set the value
to −∞ for all vertices v which are not in any set calculated in step 3.

5. Recurse upon Γi � V <a1
Γi

and Γi � V >a2
Γi

.

Correctness. Let Γ be a mean-payoff parity game. We prove that the dichotomic search
algorithm correctly calculates valΓ(MPP)(v) for all v ∈ V . The algorithm is initialized with
Γ and SΓ. By Lemma 7 the values of the vertices v ∈ V are in the set SΓ. Because we
perform a binary search over the set SΓ we can guarantee the termination of the algorithm.
Notice that we need to show that the values calculated in the subgames constructed in step 4
are identical to the values in the original game. Then correctness follows immediately by our
key observation and because we perform a binary search over the set SΓ.

I Lemma 9. Given a mean-payoff parity game Γ and µ ∈ Q, let Γ′ = Γ � V >µΓ and
Γ′′ = Γ � V <µΓ . For all v ∈ V >µΓ , we have valΓ′(MPP)(v) = valΓ(MPP)(v) and for all
v ∈ V <µΓ , we have valΓ′′(MPP)(v) = valΓ(MPP)(v).

Proof. Let v ∈ V >µΓ be arbitrary. We will prove valΓ′(MPP)(v) = valΓ(MPP)(v) by showing
the following two cases:

valΓ′(MPP)(v) ≤ valΓ(MPP)(v): Note that there can be no player-2 vertex in V >µΓ with
an edge to V ≤µΓ . Thus we cut away only edges of player-1 vertices in Γ′. Consequently
player-1 has less choices in Γ′ than in Γ at each of her vertices. Thus valΓ′(MPP)(v) ≤
valΓ(MPP)(v) holds.
valΓ′(MPP)(v) ≥ valΓ(MPP)(v): Let σ1 be an optimal strategy for player 1 and let σ2 be
an optimal strategy for player 2 which both exist by [11]. We will show that σ1 produces
plays with vertices in V >µΓ only, if it starts from v. For the sake of contradiction assume
that a play ρ = outcome(v, σ1, σ2) contains a vertex v∗ ∈ V ≤µΓ . Notice that there are
no player-2 vertices in V >µΓ with edges to V ≤µΓ . Thus σ1 chose a successor vertex in
V ≤µΓ . But when ρ ends up in V ≤µΓ the optimal player-2 strategy σ2 can guarantee that
MPPΓ(w, p, ρ) ≤ µ by the definition of V ≤µΓ . There is a strategy to keep the value of
the play starting at v greater than µ by the definition of V >µΓ . Thus any play ρ leading
to V ≤µΓ by σ1 is not optimal which is a contradiction to our assumption. Consequently
valΓ′(MPP)(v) ≥ valΓ(MPP)(v) follows.

The fact that for all v ∈ V <µΓ , we have valΓ′′(MPP)(v) = valΓ(MPP)(v) follows by a
symmetric argument. J
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Running Time. The running time of the dichotomic search is O(n · log(nW ) · TH) where
TH is the running time of an algorithm for the threshold mean-payoff parity problem. The
additional factor n comes from rescaling the weights of the mean-payoff parity game Γ which
is described in the key observation. The factor O(log(nW )) is from using binary search on S
as |S| = O(n2 ·W ).

I Theorem 10. Given a game graph Γ and an algorithm that solves the threshold mean-payoff
parity problem in O(TH), the value function of Γ can be computed in time O(n · log(nW ) ·TH).

As a corollary of the above theorem and Theorem 6, the value function for mean-payoff
parity games can be computed in O(nd ·m ·W · log(nW )) time.

6 Conclusion

In this paper we present faster algorithms for mean-payoff parity games. Our most interesting
results are for mean-payoff Büchi and mean-payoff coBüchi games, which are the base cases.
For threshold mean-payoff Büchi and mean-payoff coBüchi games, our bound O(n ·m ·W )
matches the current best-known bound for mean-payoff games. For the value problem, we
show the dichotomic search approach of [5] for mean-payoff games can be generalized to
mean-payoff parity games. This gives an additional multiplicative factor of n · log(nW ) as
compared to the threshold problem. A recent work [14] shows that the value problem for
mean-payoff objective can be solved with a multiplicative factor n compared to the threshold
objective (i.e., it shaves of the log factor). An interesting question is whether the approach
of [14] can be generalized to mean-payoff parity games.
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