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Abstract

Recently there has been a significant effort to handle quantitative properties in formal verification and
synthesis. While weighted automata over finite and infinite words provide a natural and flexible framework to
express quantitative properties, perhaps surprisingly, some basic system properties such as average response
time cannot be expressed using weighted automata, nor in any other know decidable formalism. In this work,
we introduce nested weighted automata as a natural extension of weighted automata which makes it possible to
express important quantitative properties such as average response time. In nested weighted automata, a master
automaton spins off and collects results from weighted slave automata, each of which computes a quantity along a
finite portion of an infinite word. Nested weighted automata can be viewed as the quantitative analogue of monitor
automata, which are used in run-time verification. We establish an almost complete decidability picture for the
basic decision problems about nested weighted automata, and illustrate their applicability in several domains. In
particular, nested weighted automata can be used to decide average response time properties.

1 Introduction
Traditionally, formal verification has focused on Boolean properties of systems, such as “every request is eventually
granted.” Automata-theoretic formalisms as well as temporal logics have been studied as specification languages for
such Boolean properties of reactive systems. In recent years there has been a growing trend to extend specifications
with quantitative aspects for expressing properties such as “the long-run average success rate of an operation is at
least one half” or “the long-run average (or the maximal, or the accumulated) resource consumption is below a
threshold.” Quantitative aspects of specifications are essential for resource-constrained systems, such as embedded
systems, and for performance evaluation. For example, quantitative specifications such as accumulated sum can
express properties like number of a events between b events, or memory consumption, whereas long-run average
can express properties related to reliability requirements such as average success rate.

For Boolean properties regular languages provide a robust specification framework. Finding the analogue of
regular languages for quantitative specifications is an active research area [4, 12, 16]. Some of the key features of
such a specification framework are (1) expressiveness, i.e., whether the formalism can express properties of interest;
(2) ease of specification, i.e., whether the properties can be stated naturally; (3) computability, i.e., whether the
basic decision problems can be solved —ideally with elementary complexity— for interesting fragments of the
formalism; and (4) robustness, i.e., whether the formalism is robust against small changes in its definition.

While automata are an expressive, natural, elementarily decidable, and robust framework for expressing Boolean
properties, weighted automata provide a natural and flexible framework for expressing quantitative1 properties [12].
Weighted automata are an extension of finite automata in which every transition is labeled by a rational weight.
Thus, each run produces a sequence of weights, and a value function aggregates the sequence into a single
value. For non-deterministic weighted automata, the value of a word w is the infimum value of all runs over w.
Initially, weighted automata were studied over finite words with weights from a semiring, and ring multiplication
as value function [16]. They have been extended to infinite words with limit averaging or supremum as value

∗This research was funded in part by the European Research Council (ERC) under grant agreement 267989 (QUAREM), by the Austrian
Science Fund (FWF) projects S11402-N23 (RiSE), Z211-N23 (Wittgenstein Award), FWF Grant No P23499- N23, FWF NFN Grant No
S11407-N23 (RiSE), ERC Start grant (279307: Graph Games), and Microsoft faculty fellows award.

1We use the term “quantitative” in a non-probabilistic sense, which assigns a quantitative value to each infinite run of a system, representing
long-run average or maximal response time, or power consumption, or the like, rather than taking a probabilistic average over different runs.
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function [9, 11, 12]. While weighted automata over semirings can express several quantitative properties [25], they
cannot express the following basic quantitative properties.

Example 1. Consider infinite words over {r, g, i}, where r represents requests, g represents grants, and i represents
idle. A first basic property is the long-run average frequency of r’s, which corresponds to the average workload
of a system. A second interesting property is the average number of i’s between a request and the corresponding
grant, which represents the long-run average response time of the system.

While weighted automata with limit-average as value function can express the average workload property (which
weighted automata over semirings cannot express), perhaps surprisingly, they are not capable of expressing the
long-run average response time. To see this, notice that the value of a weighted automaton with limit-average value
function is bounded by the maximal weight that occurs in the automaton, whereas the long-run average response
time can be unbounded. However, long-run average response time can be computed if the sum value function can
be applied between requests and subsequent grants, and the values of the sum function can be aggregated using
limit-average function. Such a mechanism can be expressed naturally by an extension of weighted automata, called
nested weighted automata, which we introduce in this paper.

A nested weighted automaton consists of a master automaton and a set of slave automata. The master automaton
runs over an infinite word, and at each transition of the infinite run, it may invoke a slave automaton that runs
over a finite subword of the infinite word, starting from the position where the master automaton invokes the
slave automaton. Each slave automaton terminates after a finite number of steps and returns a value to the master
automaton. To compute its return value, each slave automaton is equipped with a value function for finite words,
and the master automaton aggregates all return values using a value function for infinite words. While in the case of
Boolean finite automata, nested automata are no more expressive than their non-nested counterpart, we show that
the class of nested weighted automata is strictly more expressive than non-nested weighted automata. For example,
with nested weighted automata, the long-run average response time of a word can be computed, as in the following
example.

Example 2. In Example 1 there is only a single type of request and grant, but in general there can be multiple types
of requests and grants, and the intervals between requests and corresponding grants for different requests may
overlap. Using a nested weighted automaton, the average response time can be specified across all requests. We
illustrate this for two types of requests and corresponding grants. The input alphabet is {r1, g1, r2, g2, i}. At every
request r1 (resp. r2) the master automaton spins off a slave automaton B1 (resp. B2) with a sum value function,
which counts the number of idle events to the next corresponding grant g1 (resp. g2). Observe that many slave
automata may run concurrently. Indeed, for the word (rn1 r

n
2 g1g2)ω , at all positions with the letter g1 there are 2 · n

slave automata that run concurrently. The master automaton with limit-average value function then averages the
response times returned by the slave automata.

Our contributions are three-fold. First, we introduce nested weighted automata over infinite words (Section 3),
which is a new formalism for expressing important quantitative properties, such as long-run average response time,
which cannot be specified by non-nested weighted automata.

Second, we study the decidability and complexity of emptiness, universality, and inclusion for nested weighted
automata. We present an almost complete decidability picture for several natural and well-studied value functions.
• On the positive side, we show that if the value functions of the slave automata are max, min, or bounded sum,

then the decision problems for nested weighted automata can be reduced to the corresponding problems for
non-nested weighted automata. Moreover, we show that if the value function of the master automaton is limit
average and the value function of the slave automata is non-negative sum (i.e., sum over non-negative weights),
which includes the long-run average response time property, then the emptiness question is decidable in
exponential space. Along with the decidability results, we also establish parametric complexity results, that
show that when the total size of the slave automata is bounded by constant (which is the case for average
response property), then for all decidability results the complexity matches that of Boolean non-nested
automata (see Remark 23). The decidability proof is obtained by establishing certain regularity properties of
optimal runs, which can be used to reduce the problem to the emptiness question for non-nested weighted
automata with limit-average value function.

• On the negative side, we show that even for deterministic nested weighted automata with sup value function for
the master automaton and sum value function for the slave automata, the emptiness question is undecidable.
This result is in sharp contrast to non-nested weighted automata, where the emptiness and universality
questions are always decidable for deterministic automata, and the emptiness question is decidable also for
non-deterministic sup and sum automata.
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Our results are summarized in Table 1 and Table 2 (in Table 3 and Table 4 for parametric complexity results) in
Section 4.4.

Third, nested weighted automata provide a convenient formalism to express quantitative properties. In the
Boolean case, monitor automata offer a natural compositional way of specifying complex temporal properties [26],
and nested weighted automata can be seen as a quantitative extension of monitor automata. Each monitor
automaton tracks a subproperty (which corresponds to a slave automaton in our formalism), and the results of the
monitor automata are combined by another monitor automaton (which corresponds to the master automaton in our
formalism).

• A key advantage of the monitor-automaton approach is that it allows complex specifications to be decomposed
into subproperties, which eases the task of specification. Our nested weighted automata enjoy the same
advantage: e.g., for long-run average response time, each slave automaton computes the response time (as
a sum automaton) of an event, and the master automaton averages the response times. Formally, we show
that deterministic nested weighted automata can be exponentially more succinct than non-deterministic
weighted automata even when they express the same property (Theorem 25). Moreover, monitor automata
are used heavily in run-time verification [20]. Hence our framework can also be seen as a first step towards
quantitative run-time verification, where the slave automata return values of subproperties, and the master
automaton (assuming a commutative value function) computes on-the-fly an approximation of the value.

• More importantly, for Boolean properties monitor automata simply provide a more convenient framework for
specification, as they are equally expressive as standard automata, whereas we show that nested weighted
automata are strictly more expressive than non-nested weighted automata (e.g., long-run average response
time, which cannot be expressed using non-nested weighted automata, can be expressed using nested
weighted automata.

In other words, we provide a natural combination of weighted automata (for quantitative properties) and nesting
of automata (for ease of expressiveness), and as a result obtain a more expressive, elementarily decidable, and
convenient quantitative specification framework.

Finally, we illustrate the applicability of nested weighted automata in several domains. (1) We show that the
model-measuring problem of [21] can be expressed in the nested weighted automaton framework (Section 5.2). The
model-measuring problem asks, given a model and a specification, how robustly the model satisfies the specification,
i.e., how much the model can be perturbed without violating the specification. (2) As dual of the model-measuring
problem, we introduce the model-repair problem and show that it, as well, can be solved using nested weighted
automata (Section 5.3). The model-repair problem asks, given a specification and a model that does not satisfy the
specification, for the minimal restriction of the model that satisfies the specification. We show that we need nested
weighted automata in order to express interesting measures on models for the model-measuring and model-repair
problems.

In summary, we introduce nested weighted automata, which offer an expressive and convenient quantitative
specification framework, and establish that the basic verification problems are decidable for several interesting
fragments (which include the long-run average response time property). While there exist many frameworks to
express quantitative properties (that we discuss in details in Section 7), there exists no framework (to the best of
our knowledge) that can express the average response time property and admit algorithms with elementary time
complexity for the basic decision problems. We present a framework (of nested weighted automata) that can express
such basic system properties and have decidable algorithms with elementary complexity.

The paper is a full version of [13].

2 Preliminaries
Words. Given a finite alphabet Σ of letters, a finite (resp. infinite) word w is a finite (resp. infinite) sequence of
letters. For a word w and i, j ∈ N, we define w[i] as the i-th letter of w and w[i, j] as the word w[i]w[i+ 1] . . . w[j].
We allow j to be∞ for infinite words. For a finite word w, we denote by |w| its length; and for an infinite word the
length is∞.
Non-deterministic automata. A (non-deterministic) automaton A is a tuple (Σ, Q,Q0, δ, F ), where Σ is the
alphabet, Q is a finite set of states, Q0 ⊆ Q is a set of initial states, δ ⊆ Q× Σ×Q is a transition relation, and
F ⊆ Q is a set of accepting states.
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Runs. Given an automaton A and a word w, a run π = π[0]π[1] . . . is a sequence of states such that π[0] ∈ Q0 and
for every i ∈ {1, . . . , |w|} we have (π[i− 1], w[i], π[i]) ∈ δ. Given a word w, we denote by Run(w) the set of all
possible runs on w.
Boolean acceptance. The acceptance of words is defined using the accepting states. A finite run π of length j + 1 is
accepting if π[j] ∈ F ; and an infinite run π is accepting, if there exist infinitely many j such that π[j] ∈ F . Let
Acc(w) ⊆ Run(w) denote the set of accepting runs. A word w is accepted iff Acc(w) is non-empty. We denote by
LA the set of words accepted by A.
Labeled and weighted automata. Given a finite alphabet Γ, a Γ-labeled automaton is an automaton whose
transitions are labeled by elements from Γ. Formally, a Γ-labeled automaton A is a tuple (Σ, Q,Q0, δ, F, C) such
that (Σ, Q,Q0, δ, F ) is an automaton and C : δ 7→ Γ. A weighted automaton is a Γ-labeled automaton, where Γ is
a finite subset of rationals; and the labels of the transitions are referred to as weights.
Semantics of weighted automata. To define the semantics of weighted automata we need to define the value of a
run (that combines the sequence of weights of a run to a single value) and the value across runs (that combines
values of different runs to a single value). To define values of runs, we will consider value functions f that assign
real numbers to sequences of rationals. Given a non-empty word w, every run π of A on w defines a sequence
of weights of successive transitions of A, i.e., C(π) = (C(π[i− 1], w[i], π[i]))1≤i≤|w|; and the value f(π) of the
run π is defined as f(C(π)). We will denote by (C(π))[i] the cost of the i-th transition, i.e., C(π[i− 1], w[i], π[i]).
The value of a non-empty word w assigned by the automaton A, denoted by LA(w), is the infimum of the set of
values of all accepting runs; i.e., infπ∈Acc(w) f(π), and we have the usual semantics that infimum of an empty set
is infinite, i.e., the value of a word that has no accepting runs is infinite. Every run π on an empty word has length
1 and the sequence C(π) is empty, hence we define the value f(π) as an external (not a real number) value ⊥.
Thus, the value of the empty word is either ⊥, if the empty word is accepted by A, or∞ otherwise. To indicate a
particular value function f that defines the semantics, we will call a weighted automaton A an f -automaton.
Types of automata. A weighted automaton is
• deterministic iff Q0 is singleton and the transition relation is a function; and
• functional iff for every word w, all accepting runs on w have the same value.

Value functions. We will consider the classical functions and their natural variants for value functions. For finite
runs we consider the following value functions: for runs of length n+ 1 we have

1. Max and min:
• MAX(π) = maxni=1(C(π))[i] and
• MIN(π) = minni=1(C(π))[i].

2. Sum and variants:
• the sum function SUM(π) =

∑n
i=1(C(π))[i],

• the absolute sum SUM+(π) =
∑n
i=1 Abs((C(π))[i]) is the sum of the absolute values of the weights

(Abs denotes the absolute value of a number), and
• the bounded sum value function returns the sum if all the partial absolute sums are below a bound B,

otherwise it returns the bound B, i.e., formally, SUMB(π) = SUM(π), if for all prefixes π′ of π we
have Abs(SUM(π′)) ≤ B, otherwise B.

We denote the above class of value functions for finite words as FinVal = {MAX,MIN, SUM, SUM+, SUMB}.
Although, the absolute sum value function SUM+ can be equivalently expressed by SUM restricted to the class

of weighted automata with non-negative weights, we consider SUM and SUM+ separately, as the resulting automata
differ in complexity results.

For infinite runs we consider:

1. Supremum and Infimum, and Limit supremum and Limit infimum:

• SUP(π) = sup{(C(π))[i] : i > 0},
• INF(π) = inf{(C(π))[i] : i > 0},
• LIMSUP(π) = lim sup{(C(π))[i] : i > 0}, and
• LIMINF(π) = lim inf{(C(π))[i] : i > 0}.

2. Limit average: LIMAVG(π) = lim sup
k→∞

1
k ·

∑k
i=1(C(π))[i].

We denote the above class of value functions for infinite words as InfVal =
{SUP, INF, LIMSUP, LIMINF, LIMAVG}.
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Decision questions. We consider the standard emptiness and universality questions. Given an f -automaton A and a
threshold λ, the emptiness (resp. universality) question asks whether there exists a non-empty word w such that
LA(w) ≤ λ (resp. for all non-empty words w we have LA(w) ≤ λ). We summarize the main results from the
literature related to the decision questions of weighted automata for the class of value functions defined above.

Theorem 3. (1) The emptiness problem is decidable in polynomial time for all value functions we consider [18, 25].
(2) The universality problem is undecidable for SUM-automata with {−1, 0, 1} weights and LIMAVG-automata
with {0, 1} weights; and decidable in polynomial space for all other value functions [1, 15, 8, 23]. (3) The
universality problem is decidable for all value functions for deterministic and functional automata [19].

3 Nested Weighted Automata
In this section we introduce nested weighted automata. We start with an informal description.
Informal description. A nested weighted automaton consists of a labeled automaton over infinite words, called the
master automaton, a value function f , and a set of weighted automata over finite words, called slave automata.
A nested weighted automaton can be viewed as follows: given an infinite word, we consider a run of the master
automaton on the word, but the weight of each transition is determined by dynamically running slave automata; and
then the value of a run is obtained using the value function f . That is, the master automaton proceeds on an input
word as a usual automaton, except that before it takes a transition, it starts a slave automaton corresponding to the
label of the current transition. The slave automaton starts at the current position of the word of the master automaton
and runs on some finite part of the input word. Once a slave automaton terminates, it returns its value to the master
automaton, which treats the returned value as the weight of the current transition that is being executed. Note that
for some transitions the slave automaton runs on the empty word and returns ⊥; we refer to such transitions as
silent transitions. A given run of a nested weighted automaton, which consists of a run of the master automaton and
runs of slave automata, is accepting if it consists of accepting runs only. Finally, the value of an accepting run of
the master automaton is given by f applied to the sequence of values returned by slave automata (i.e., to compute
the value function the silent transitions are omitted).
Nested weighted automata. A nested weighted automaton is a tuple A = 〈Amas; f ;B1, . . . ,Bk〉, where Amas is a
{1, . . . , k}-labeled automaton over infinite words (where labels are indices of slave automata), called the master
automaton, f ∈ InfVal is a value function on infinite sequences, and B1, . . . ,Bk are weighted automata over finite
words, called slave automata.
Semantics: runs and values. Let w be an infinite word. A run of A on w is an infinite sequence (Π, π1, π2, . . .)
such that (i) Π is a run of Amas on w; (ii) for every i > 0 we have πi is a run of the automaton BC(Π[i−1],w[i],Π[i]),
referenced by the label C(Π[i− 1], w[i],Π[i]) of the master automaton, on some finite subword w[i, j] of w. The
run (Π, π1, π2, . . .) is accepting if all runs Π, π1, π2, . . . are accepting (i.e., Π satisfies its acceptance condition and
each π1, π2, . . . ends in an accepting state) and infinitely many runs of slave automata have length greater than 1
(the master automaton takes infinitely many non-silent transitions). The value of the run (Π, π1, π2, . . .) is defined
as sil(f)(v(π1)v(π2) . . .), where v(πi) is the value of the run πi in the corresponding slave automaton and sil(f) is
the value function that applies f on sequences after removing ⊥ symbols. The value of a word w assigned by the
automaton A, denoted by LA(w), is the infimum of the set of values of all accepting runs. We require accepting
runs to contain infinitely many non-silent transitions because f is a value function over infinite sequences, so we
need the sequence v(π1)v(π2) . . . with ⊥ symbols removed to be infinite.
Notation. Let f, g be value functions. We say that a nested weighted automaton A = 〈Amas;h;B1, . . . ,Bk〉 is
an (f ; g)-automaton iff h = f and B1, . . . ,Bk are g-automata (weighted automata over finite words with value
function g). We illustrate the semantics of nested weighted automata with examples.

Example 4 (Stuttering). Consider the nested weighted automaton A1
stu = 〈A1

mas; LIMAVG;B1,B2〉 where each
slave automaton is a SUM+-automaton. The automaton A1

mas has a single state and two transitions (q0, a, q0)
labeled by 1 and (q0, b, q0) labeled by 2. The slave automaton B1 accepts words from a∗b and assigns to a word
akb value k. The automaton B2 accepts words from b∗a and assigns to a word bka value k.

Consider a word (aaab)ω. A run of A1
stu on (aaab)ω is depicted in Figure 1. The value of the word is 7

4 .
Note that A1

stu accepts only words with infinite number of a’s and b’s, as otherwise, some slave automaton would
not terminate. For word w = (anb)ω the value is ( (n+1)n

2 + 1) · 1
n+1 , and this shows that the nested weighted

automaton can return unbounded values (in contrast to a LIMAVG-automaton whose range is bounded by its
maximal weight). Consider the automaton A2

stu = 〈A2
mas; LIMAVG;B1,B2,B3〉, where B3 has only a single
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state, which is accepting, and it has no transitions. Thus, B3 accepts on the empty word and invoking it is a way
for A2

mas to take a silent transition. Intuitively, each slave automaton counts how many times a given letter occurs.
Thus the value computed by the nested weighted automaton is the average letter repetition (or average stuttering).
Silent transitions, produced by calling the automaton B3, enable A2

mas to compute average only over positions
where a new block starts.

Example 5 (Average response time). Consider the specification for average response time defined as follows: we
consider words for the alphabet {r, g, i}, where r denotes a request, g denotes a grant, and i denotes idle (no
request or grant). Consider a word w, and a position j, such that w[j] is a request, and then the response time
in position j is the distance to the closest grant, i.e., the response time is j′ − j where j′ > j is the least number
greater than j with w[j′] = g. The average response time is the limit-average of the response times of the requests.
Consider a nested weighted automaton, with one slave automaton that has sum of non-negative weights as the
value function, and the master automaton with limit-average value function. The master automaton for every letter
r invokes the slave automaton, and for g and i takes a silent transition (i.e., it is a single state automaton with r
labeled as 1, and g and i labeled as 2). The slave automaton B1 counts the number of steps till the first g and the
slave automaton B2 accepts only the empty word, which is used to produce silent transitions. The nested weighted
automaton specifies the average response time property. As discussed in Section 1 since the average response time
can be unbounded, it cannot be expressed by a non-nested limit-average automaton, whose value is bounded by the
maximal weight that occurs in it.

q0

(a, 1)

(b, 2)
(a) A1

mas

qa q0

(a, 3) (b, 3)
(b, 2)

(a, 1)

(b) A2
mas

qa qF
(a, 1) (b, 0)

(c) B1

a a a b a a a b

3 2 1 1 3

0 1 2 2

0 1 1

0 0

0 0

0 1 2 2

LB1(a3b) = 3

LB1(aab) = 2

LB1
(ab) = 1

LB2(ba) = 1

(d) A run of A1
stu

Figure 1: The master automata (a) A1
mas, (b) A2

mas,
(c) the slave automaton B1, (d) a run of the nested
weighted automaton A1

stu .

Equivalence with weighted automata. We say that a
nested weighted automaton A and a weighted automa-
ton A are equivalent iff their values coincide on each
word, i.e., for all w ∈ Σω we have LA(w) = LA(w).
Determinism of nested weighted automata. There are
two reasons why a nested weighted automaton may be
non-deterministic. The first one is standard: one of
the components, the master automaton or one of the
slave automata is non-deterministic. The second one is
more subtle: it is the termination of slave automata. To
accept, a slave automaton has to terminate in an accept-
ing state, but it not need to be the first time it visits an
accepting state. It can run longer to compute a different
value. However, if the language L recognized by the
slave automaton is prefix-free, i.e., w ∈ L implies that
no extension of w belongs to L, then it has to terminate
once it reaches an accepting state because it will have
no other chance to accept. This intuition suggests the following definition.
Types of nested weighted automata. A nested weighted automaton is deterministic iff the master automaton and all
slave automata are deterministic and each slave automaton recognizes a prefix-free language. A nested weighted
automaton is functional iff for every word w, each accepting run on w has the same weight.

We will consider the decision questions of emptiness and universality for nested weighted automata.

4 Decision Problems
In this section we study the decidability and complexity of the decision problems for nested weighted automata.
We start with some simple observations.
Simple observations. Note that the emptiness (resp. universality) of f -automata and g-automata reduces to the
emptiness (resp. universality) of (f ; g)-automata: by simply considering dummy master or dummy slave automata.
Hence by Theorem 3 it follows that the universality problem for (f ; g)-automata is decidable only if the universality
problem is decidable for f -automata and g-automata.

Theorem 6. (1) For f ∈ InfVal, the universality problem for (f ; SUM)-automata is undecidable. (2) For g ∈
FinVal, the universality problem (LIMAVG; g)-automata is undecidable.
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Proof of (1) from Theorem 6. We show a reduction of the universality problem for SUM-automata with weights
{−1, 0, 1}, which is undecidable (Theorem 3), to the universality problem for (f ; SUM)-automata, where f ∈
{INF, SUP, LIMINF, LIMSUP}. The case f = LIMAVG follows from (2).

Let A be a SUM-automaton with weights {−1, 0, 1}. Consider an (INF; SUM)-automaton A that works
as follows. Its acceptance condition enforces that it accepts only words with infinitely many # letters, i.e.,
the words the form w1#w2# . . . . At each # letter the master automaton starts an instance of A as a slave
automaton that works to the successive # letter. On the positions with a letter different than #, the master
automaton takes a silent transition. Then, the value of a word w1#w2# . . . is equal to the infimum of values
LA(wi). In particular, LA((w#)ω) = LA(w). Since for every word w1#w2# . . . there exists i such that
LA(w1#w2# . . . ) = LA((wi#)ω), the universality problems for A and A coincide.

The same construction shows a reduction of the universality problem for SUM-automata to the universality
problem for (LIMINF; SUM)-automata (resp. (SUP; SUM)-automata, (LIMSUP; SUM)-automata).

Proof of (2) from Theorem 6. For every g ∈ FinVal we can define two dummy g-automata, A0 (resp. A1) that
immediately accept and return the value 0 (resp. 1). Therefore, such (LIMAVG; g)-automata can simulate all
LIMAVG-automata with weights 0, 1, whose universality problem is undecidable (Theorem 3). Therefore, the
universality problem for (LIMAVG; g)-automata is undecidable as well.

In the decidable cases, the lower bound for the emptiness and the universality problems is PSPACE. Recall,
the finite automata intersection problem, which asks, given a set of deterministic finite automata, is there a finite
word accepted by all of them, is PSPACE-complete [22]. That problem can be reduced to the emptiness problem of
deterministic nested weighted automata. This implies PSPACE-hardness of the emptiness problem for deterministic
nested weighted automata. Moreover, for deterministic nested weighted automata, the emptiness problem can be
reduced to the universality problem. Therefore, the universality problem for deterministic nested weighted automata
is also PSPACE-hard.

Proposition 7. For all f ∈ InfVal and g ∈ FinVal, the emptiness (resp. the universality) problem for deterministic
nested weighted automata is PSPACE-hard.

Proof. Let A1, . . . ,An be deterministic finite automata over the alphabet Σ. First, we modify each of them to
obtain A∗1, . . . ,A∗n over Σ ∪ {#, $} such that #, $ /∈ Σ and for every i ∈ {1, . . . , n} we have A∗i accepts u
iff u = #kw$ and Ai accepts w. Observe that A∗1, . . . ,A∗n recognize prefix-free languages. Then, we define
a nested weighted automaton whose slave automata are A∗1, . . . ,A∗n and the master automaton recognizes the
language (#n{a, b}∗$)ω. The master automaton invokes all slave automata on successive # letters. Thus, for a
word #nw1$#nw2$ . . . to be accepted, the slave automaton A∗1 has to accept the words #nw1$,#nw2$, . . ., A∗2
has to accept the words #n−1w1$,#n−1w2$, . . ., and so on. It follows that the nested weighted automaton accepts
the language #nw1$#nw2$ . . . such that all words w1, w2 are accepted by all automata A1, . . . ,An. Therefore,
the nested weighted automaton accepts any word iff there exists a finite word accepted by all automata A1, . . . ,An.
The nested automaton defined as above is deterministic.

4.1 Regular Weighted Slave Automata
We present a general result that ensures decidability for the decision problems for a large class of nested weighted
automata. We now consider slave automata that can only return values from a bounded domain, and present
decidability results for them.

Definition 8 (Regular weighted automata). Let A be a weighted automaton over finite words. We say that the
weighted automaton A is a regular weighted automaton iff there is a finite set {q1, . . . , qn} ⊆ Q and there are
regular languages L1, . . . ,Ln such that

(i) every word accepted by A belongs to
⋃

1≤i≤n Li, and
(ii) for every w ∈ Li, each run of A on w has the weight qi.

Remark 9. Regular weighted automata define the class of are equivalent to recognizable step functions [16].
However, we (implicitly) require regular languages L1, . . . ,Ln to be disjoint, whereas the value of a recognizable
step function at a word w is defined as the minimum qi ∈ {q1, . . . , qn} among such i’s that w belongs to Li.

We define the description size of a given regular weighted automaton A, as the size of automata A1, . . . ,An
recognizing languages L1, . . . ,Ln that witness A being a regular weighted automaton.
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Regular value functions. A value function f is a regular value function iff all f -automata are regular weighted
automata. Examples of regular value functions are MIN,MAX, SUMB . Observe that the description size of a MIN,
MAX and SUMB-automaton A is polynomial in |A|, but it is exponential in the length of binary representation of
B, for a SUMB-automaton A.
Key reduction lemma. In the following key lemma we establish that if the slave automata are regular weighted
automata, then nested weighted automata can be reduced to weighted automata with the same value function as for
the master automata. For regular weighted slave automata, a weighted automaton can simulate a nested weighted
automaton in the following way. Instead of starting a slave automaton, the weighted automaton guesses the weight
of the current transition (i.e., the value to be returned of the slave automaton) and checks that the guessed weight is
correct. The definition of regular weighted automata implies that such a check can be done by a (non-weighted)
finite automaton S . Thus, the weighted automaton takes a universal transition such that in one branch it continues
its execution and in another it runs S. Observe that such a universal transition can be removed by a standard
power-set construction. Given a value function f , recall that sil(f) is the value function that applies f on sequences
after removing silent transitions. The following Lemma 10 along with Theorem 3 implies Theorem 13.

Lemma 10 (Key reduction lemma). Let f ∈ InfVal be a value function. Consider a nested weighted automaton
A = 〈Amas; f ;B1, . . . ,Bk〉 such that all automata B1, . . . ,Bk are regular weighted automata. There is a
sil(f)-automaton A (weighted automaton), that can be constructed in polynomial space, which is equivalent to A;
moreover, if A is functional, then A is functional as well.

Proof. Assume that each slave automaton Bi has the weights from the set {−n, . . . , n}. Then, since all of the
slave automata are regular weighted automata, for all i ∈ {1, . . . , k} and j ∈ {−n, . . . , n} there is a deterministic
finite word automaton Si,j that recognizes the language of all words w such that LBi

(w) = j. Since Bi is a regular
weighted automaton, it accepts precisely when one of the automata Si,0, . . . ,Si,n accepts.

We define QS (resp. FS) as the disjoint union of the sets of states (resp. the sets of accepting states states) of all
automata Si,j . Let Qm (resp. Fm) be the set of all states (resp. all accepting states) the master automaton Amas.
We define a relation STEP ⊆ 2QS × Σ × 2QS , which is the union of transition relations lifted to sets of states,
i.e., ({q1, . . . , ql}, a, {q′1, . . . , q′l}) ∈ STEP iff for every m ∈ {1, . . . , l}, some automaton Si,j has a transition
(qm, a, q

′
m).

We define A, which we show is equivalent to A, as a generalized Büchi automaton, which differs from
an automaton over infinite words (Büchi automaton) in the acceptance condition. An acceptance condition in
a generalized Büchi automaton is a sequence of F1, . . . , Fs of sets of states. A run is accepting iff for each
d ∈ {1, . . . , s} there is a state from Fd visited infinitely often. There is a straightforward reduction of a generalized
Büchi automaton to a Büchi automaton, and we omit the reduction and for technical convenience consider
generalized Büchi condition for the proof.

The automaton A works as follows. It simulates the execution of the master automaton. Every time the master
automaton starts a slave automaton Bi, the automaton guesses the value j that Bi returns and checks it, i.e., it
starts simulating the automaton Si,j , by including the initial state of Si,j in a set of states P1. The automaton A
maintains two sets of states of simulated automata, P1 and P2: states in P1 and P2 represent states of Si,j and
basically, there are states in P2 until all automata corresponding to them terminate. Once they do, P2 is empty and
all states from P1 are copied to P2. Intuitively, the role of P1 and P2 is to ensure that each automaton terminates,
by enforcing P2 to be empty infinitely often. We now formally define A = 〈Σ, Q, q0, C, δ, F 〉 as follows:

1. Q = Qm × ({−n, . . . , n} ∪ {⊥})× 2QS × 2QS

2. q0 = 〈qm0 , 0, ∅, ∅〉, where qm0 is the initial state of the master automaton

3. (〈q, j, P1, P2〉, a, 〈q′, j′, P ′1, P ′2〉) ∈ δ iff (q, a, q′) is a valid transition of the master automaton labeled by i
and one of the following holds (intuitive descriptions follow):

(a) j = ⊥, P ′1 = P ′′1 \ FS , P ′2 = P ′′2 \ FS , where STEP(P1, a, P
′′
1 ) and STEP(P2, a, P

′′
2 ),

(b) j 6= ⊥, P2 = ∅, P ′1 = {qi,j0 } and P ′2 = P ′′2 \ FS , where STEP(P1, a, P
′′
2 ) and qi0 is the initial state of

Si,j , the automaton that checks that the slave automaton Bi started at the current position returns the
value j,

(c) j 6= ⊥, P2 6= ∅, P ′1 = (P ′′1 ∪ {q
i,j′

0 }) \ FS and P ′2 = P ′′2 \ FS , where STEP(P1, a, P
′′
1 ) and

STEP(P2, a, P
′′
2 )
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The intuitive descriptions are as follows: (a) the first transition corresponds to a silent transition, and hence
we compute the successor states of sets P1 and P2 and remove the accepting states (that correspond to
automata that terminate); (b) the second transition is similar to the first case but here a new automaton that
simulates the slave automaton is started, but since P2 is empty we compute the next P ′2 from the successor
of P1 according to STEP but after removing the accepting states, and the new P1 is the initial state of the
simulating automaton; and (c) the third transition is very similar to the first transition just that the initial state
of the simulating automaton is added to the P ′1.

4. the cost function is defined as C(〈q, j, P1, P2〉, a, 〈q′, j′, P ′1, P ′2〉) = j′,

5. F consists of F1 = Fm×({−n, . . . , n}∪{⊥})×2QS×2QS and F2 = Qm×({−n, . . . , n}∪{⊥})×2QS×∅.
Intuitively, F1 ensures that the acceptance condition of the master automaton is satisfied and F2 ensures that
P2 is empty infinitely often.

The correctness follows from the construction.

The automaton A in Lemma 10 is constructed in polynomial space, which means that A can be represented
implicitly, i.e., its exponential-size set of states is represented in a compact way and for each transition triple
(q, a, q′) one can compute in polynomial time whether that triple is a transition of A and what is its weight.

Remark 11. The automaton A from Lemma 10 has exponential size in |A|. More precisely, the size of A is
exponential in the total size of slave automata of A, but only polynomial in the size of the master automaton of A.

Proof. The set of states of the automaton A from is Q = Qm × ({−n, . . . , n} ∪ {⊥}) × 2QS × 2QS , i.e., it is
linear in the size of the master automaton of A. Moreover, the weights of A are bounded by a constant n. Thus, A
is polynomial in the size of the master automaton of A.

Now, we show a simple lemma regarding weighted automata with silent moves.

Lemma 12. Let f ∈ {INF, SUP, LIMINF, LIMSUP}. (1) The emptiness problem for sil(f)-automata is in
NLOGSPACE. (2) The universality problem for sil(f)-automata is in PSPACE.

Proof. Given a sil(f)-automaton A, where f ∈ InfVal, we define the automaton A` as the f -automaton that
results from A by substituting each silent transition by a transition of the weight `. Observe that for every
sil(INF)-automaton A for every infinite word w we have LA(w) ≤ λ iff LA(λ+1)(w) ≤ λ. The same equivalence
holds for every sil(SUP)-automaton A and its variant A(λ−1). Thus, the emptiness and universality problems
for sil(INF)-automata (resp. sil(SUP)-automata) and INF-automata (resp. SUP-automata) coincide. Now, a run
of a sil(INF)-automaton is accepting only if it contains infinitely many non-silent transitions. Therefore, the
above equivalences hold for f ∈ {LIMINF, LIMSUP} and the corresponding problems coincide. As the emptiness
problem for f -automata is in NLOGSPACE we have (1). The universality problem for f -automata is in PSPACE,
hence we have (2).

Finally, we are ready to prove theorem characterizing complexity of decision problem for newsted weighted
automata whose slave automata are {MIN,MAX, SUMB}.

Theorem 13. Let g ∈ {MIN,MAX, SUMB}. The following assertions hold: (1) Let f ∈
{INF, SUP, LIMINF, LIMSUP}. The emptiness problem for non-deterministic (f ; g)-automata is PSPACE-complete.
The universality problem for non-deterministic (f ; g)-automata is PSPACE-hard and in EXPSPACE. (2) The empti-
ness problem for non-deterministic (LIMAVG; g)-automata is PSPACE-complete (3) The universality problem for
functional (LIMAVG; g)-automata is PSPACE-complete.

Proof. PSPACE-hardness in (1), (2) and (3) follows from Proposition 7. We will discuss containment separately:
(1): Let f ∈ {INF, SUP, LIMINF, LIMSUP} and g ∈ {MIN,MAX, SUMB}. Due to Lemma 10 every (f ; g)-

automaton A is equivalent to some sil(f)-automaton A′ of exponential size in |A|. By Lemma 12, the emptiness
problem for sil(f)-automata is in NLOGSPACE. The construction from Lemma 10 implies that the automaton A′
can be represented implicitly, i.e., given two states q, q′ the existence and weight of the transition (q, a, q′) can be
decided in polynomial time. Therefore, the emptiness problem for (f ; g)-automata is in PSPACE.

By Lemma 12, and the universality problem for sil(f)-automata is in PSPACE and |A′| is of exponential size in
|A|, hence we have the universality problem for (f ; g)-automata is in EXPSPACE.
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(2): Lemma 10 state that (LIMAVG; g)-automata are equivalent to sil(LIMAVG)-automata, which enjoy decid-
ability of the emptiness problem (Lemma 35) in NLOGSPACE. As in (1), the automaton A′ can be represented
implicitly, hence the emptiness problem for (LIMAVG; g)-automata is in PSPACE.

(3): The universality problem for functional (LIMAVG; g)-automata reduces to the emptiness problem for
functional (LIMAVG; g)-automata. It suffices to (1) first check that every word has an accepting run, which can be
done in polynomial space, (2) construct a (LIMAVG; g)-automaton A′ by taking additive inverses of all weights in
all slave automata of a given nested weighted automaton. The automaton A satisfies the universality problem with
threshold λ iff it satisfies (1) and the automaton A′ from (2) does not satisfy the emptiness problem with threshold
−λ. Therefore, the universality problem for functional (LIMAVG; g)-automata is in PSPACE.

Remark 14. Assume that the total size of slave automata is bounded. Then, by Remark 11, the size of the automaton
A is polynomial in the size of the master automaton of a given nested automaton. In consequence, the emptiness
problem for automata from (1) and (2) from Theorem 13 becomes PTIME and the universality problem for automata
from (1) from Theorem 13 becomes PSPACE-complete.

Theorem 13 covers the case for all classes of slave automata other than SUM- and SUM+-automata, which we
consider in the following two subsections.

4.2 Undecidability Results for Slave SUM Automata
In this section we study (f ; SUM)-automata and we present a crucial negative result.

Note that for weighted automata with the value function from FinVal or InfVal, the emptiness problem is
decidable (for non-deterministic automata); and all decision problems are decidable for deterministic automata. In
sharp contrast we establish that for deterministic (SUP; SUM)-automata the emptiness problem is undecidable. The
proof is a reduction from the halting problem of a two-counter (Minsky) machine to the emptiness problem. The
key idea is to ensure that words that encode valid computations of the Minsky machine have value 0; and all invalid
computations have value strictly greater than 0. Basically, we need to check consistency of values of each counter
at each step, which is done as follows. The task of the master automaton is to ensure that tests on the counters
c0, c1 are consistent. The master automaton uses several slave automata to track the exact values of the counters.
Each slave automaton operates on an alphabet which is increment and decrement for the counters c0, c1, as well
as zero and positive test, and for each counter we have three slave automata. For positions i < j, let c0-balance
(resp. c1-balance) between position i and j denote the difference in the number of increments and decrements of
the counter c0 (resp. c1) between i and j. For zero tests of a counter, two slave automata are invoked: the first
automaton (resp. second automaton) increments (resp. decrements) with every increment operation on the counter
and decrements (resp. increments) with every decrement operation on the counter and terminates with the value at
the position of the next zero test. Intuitively, the two automata compute c0-balance and the opposite (the additive
inverse) of c0-balance between two consecutive zero tests. Given the zero test of the current position is satisfied,
both automata return zero iff the next zero test is also satisfied, otherwise one of them return a positive value. For
positive tests of a counter we use the third slave automaton to compute the c0-balance plus 1 between the current
position and the next zero test of c0. The c0-balance plus 1 does not exceed zero iff the value of c0 at the current
position is positive. We repeat a similar construction for c1. The construction of slave automata does not depend on
the given two-counter machine, therefore the reduction works even in the presence of a constant bound on the size
of slave automata.

This establishes the undecidability for emptiness of (SUP; SUM)-automata, and the proof also holds for
(LIMSUP; SUM)-automata. Also observe that since we establish the result for deterministic automata, we can take
opposites of weights and change SUP (resp. LIMSUP) to INF (resp. LIMINF) and the emptiness problem to the
universality problem.

Theorem 15 (Crucial undecidability result). (1) The emptiness problem for deterministic (SUP; SUM)- and
(LIMSUP; SUM)-automata is undecidable. (2) The universality problem for deterministic (INF; SUM)- and
(LIMINF; SUM)-automata is undecidable.

Proof of (1) from Theorem 15. Given a Minsky machineM, we construct a deterministic (SUP; SUM)-automaton
A that accepts infinite words of the form w1#w2# . . .. Moreover, the value of the word w1#w2# . . . is 0
iff each subword wi encodes a valid accepting computation ofM. As the problem, given a Minsky machine,
does it have an accepting computation is undecidable, we conclude that the emptiness problem for deterministic
(SUP; SUM)-automata (resp. (LIMSUP; SUM)-automata) is undecidable.
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A Minsky machine M is a finite automaton augmented with two counters c1, c2. The counters can be
incremented, decremented and tested whether they are zero or positive. The transitions of M depend on
the values of counters, namely, whether they are equal zero. That is, each transition has the following form
(q, s, t) → (q′, v1, v2), where s ∈ {c1 = 0, c1 > 0}, t ∈ {c2 = 0, c2 > 0} and v1, v2 ∈ {−1, 0, 1}. E.g.
(q, c1 = 0, c2 > 0)→ (q′,+1,−1) means that if the machine is in the state q, the value of c1 is 0 and c2 greater
than 0, then the next state is q′, c1 is incremented and c2 is decremented.

We define two notions for Minsky machines, a run and a computation. A run of a Minsky machineM is a
sequence (q0, 0, 0), (q1, α1, β1), . . . , (qn, αn, βn) such that for every i < n there is a transition ofM (qi, s, t)→
(qi+1, v1, v2) such that αi satisfies s, βi satisfies t, and αi+1 = αi+v1, βi+1 = βi+v2. A run is accepting iff its last
element is (qF , 0, 0). A computation ofM is a sequence of elements Q× {c1 = 0, c1 > 0} × {c2 = 0, c2 > 0} ×
{−1, 0, 1} × {−1, 0, 1} called configurations. A computation (q0, c1 = 0, c2 = 0, 0, 0), (q1, s1, t1, x1, y1), . . . ,
(qn, c1 = 0, c2 = 0, xn, yn) is valid iff there is an accepting run (q0, 0, 0), . . . , (qn, αn, βn) such that for every
i ∈ {0, . . . , n}, αi =

∑i
j=0 xj and βi =

∑i
j=0 yj .

Consider a valid computation η and the corresponding accepting run π. For positions i < j, let c1-balance
(resp. c2)-balance between position i and j (in η) denote the difference in the number of increments and decrements
of c1 (resp. c2) between i and j. Since the initial value of the counters is 0, the value of a counter c1 (resp. c2)
in π[i] is precisely its c1-balance (resp. c2-balance) between positions 1 and i. Thus, for p ∈ {1, 2}, a zero test
(non-zero test) of cp at the position i is valid iff cp-balance between positions 1 and i is 0 (is strictly positive).

Consider a computation η of a Minsky machineM. If it is invalid then there is a first position in η such that
the corresponding sequence over Q × N × N is not a run. There are two possible reasons for that: (i)M has
no transition consistent with a step from η[i] to η[i + 1] , (ii) the configuration at η[i] is inconsistent with the
current values of c1, c2, i.e., a zero or a non-zero test is inconsistent with the actual value of a counter. A Boolean
automaton can check whether the computation is invalid because of (i). We show how to check (ii), i.e., validity of
zero and non-zero tests, using a nested weighted automaton.

Let p ∈ {1, 2}. First, we check validity of zero tests on cp. All zero tests on cp are valid iff cp-balance between
any two consecutive zero tests is zero. To check that this holds, the nested weighted automaton starts at each
position i with a zero test two deterministic slave SUM-automata: A+

c1=0,A
−
c1=0. The automaton A+

c1=0 computes
cp-balance between i and the next zero test of cp; it increments (decrements) its value whenever cp is incremented
(decremented), and it terminates at the next zero test of cp. The automatonA−c1=0 does the opposite, i.e., it computes
the additive inverse of cp-balance between i and the next zero test of cp. The values of these automata are inverses
of each other and the maximum of their values is the absolute value of cp-balance. Hence, the maximum of their
values is less-or-equal to zero iff cp-balance between i and the next zero test of cp is 0. Thus, the values of all slave
automata A+

c1=0,A
−
c1=0 are less-or-equal to zero if and only if all zero tests of cp are valid.

Second, we check that non-zero tests are valid. To do that, the automaton starts at every position i with a
non-zero test a third slave SUM-automaton Ac1>0 that first increments its value to 1 and then computes cp-balance
between i and the next zero test of cp. The value of cp at the position i is strictly greater than 0 iff cp-balance
between the position i and the next position at which cp is 0 does not exceed −1. Provided that verifying zero tests
succeeds, the value of Ac1>0 is less-or-equal to 0 iff the non-zero test at the position i is valid.

The value of the nested weighted automaton does not exceed 0 if and only if the values of all slave automata are
less-or-equal to 0, which holds precisely when all zero and non-zero tests on cp are valid. In the above construction
up to four automata has to be started at any configuration, while nested weighted automata can start at most one
slave automaton at each step. However, we can encode configurations by some fixed number of letters. E.g.
c $ $ $ $ where c is a letter that fully encodes a configuration (q, α, β, x, y) and $ letters are used only to start
enough slave automata. It follows that A accepts a word w1#w2# . . . and assigns it the value 0 iff each word wi
encodes an valid accepting computation ofM.

Observe that the same automaton, A, considered as (LIMSUP; SUM)-automaton returns the same result. Indeed,
if a given Minsky machine does not have an accepting computation, each accepted word will have positive value.
On the other hand, if there is an accepting computation w, the value of (SUP; SUM)-automata and (LIMSUP; SUM)-
automata the word (w#)ω coincides, hence it is 0.

Proof of (2) from Theorem 15. The universality problem for deterministic (INF; SUM)-automata is the dual of
the emptiness problem for deterministic (SUP; SUM)-automata. Indeed, consider a deterministic (INF; SUM)-
automaton A and the nested weighted automaton A′ that results from taking inverses of all weights in A and
changing its value function to INF. One can easily check that for every word w, the weight of w assigned by A is x,
then A′ assigns to w the weight −x.
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4.3 Decidability Results for Slave SUM- and SUM+-Automata
We now establish the remaining decidability results, namely, for slave automata with SUM+ value function, and
emptiness for (INF; SUM)-automata and (LIMINF; SUM)-automata. In contrast to the reduction of Lemma 10, for
example, (LIMAVG; SUM+)-automaton cannot be reduced to weighted sil(LIMAVG)-automata (Example 5).
Intuitive proof ideas. For (f ; SUM+)-automata, for f ∈ InfVal \ {LIMAVG}, we show that the decision problems
can be reduced to the bounded sum value function; and then derive the decidability results from Theorem 13. The
reductions are polynomial in the size of the master automaton. For (INF; SUM)-automata we show the emptiness
problem is decidable and the main argument is a reduction to the emptiness of non-deterministic weighted automata
with SUM value function. The constructed automaton is exponential in the size of a nested automaton, but only
polynomial in the size of the master automaton, i.e., if the total size of slave automata and the threshold are bounded
by a constant. We summarize the results in the following theorem.

Theorem 16. (1) For f ∈ {INF, LIMINF}, the emptiness problem for (f ; SUM)-automata is PSPACE-complete.
(2) For f ∈ {SUP, LIMSUP}, the universality problem for functional (f ; SUM)-automata is PSPACE-complete.
(3) For f ∈ {INF, SUP, LIMINF, LIMSUP}, the emptiness problem for (f ; SUM+)-automata is PSPACE-complete,
and the universality problem for (f ; SUM+)-automata is PSPACE-hard and in EXPSPACE.

Proof of (1) from Theorem 16. PSPACE-hardness follows from Proposition 7. For containment in PSPACE, let
A = 〈Amas; INF;B1, . . . ,Bk〉 be a nested weighted automaton (INF; SUM)-automaton. We construct a SUM-
automaton over finite words A such that the emptiness problem for A and A coincide. The automaton A works
over words over the alphabet Σ ∪ {#, 1, . . . k} of the form wiv#u′#u, where w, v, u′, u ∈ Σ∗ and i ∈ {1, . . . k},
and the value of its run, if it is accepting, is the value of the slave automaton Bi on the word v. The automaton A
consists of two components. The first component A1, a Boolean one whose all weights are 0, ensures that A has an
accepting run on wvu′uω such that the slave automaton started at the beginning of the word v is Bi and Bi accepts
the word v. The second component, A2, is a weighted one and it computes the value of Bi on v. Clearly, the size
of A2 is proportional to the size of Bi. Observe that the value of each run of A depends only on a finite prefix of a
word, i.e., for each run of A there is a finite prefix wvu′u such that the value of that run equals LA(wiv#u′#u). It
follows that the emptiness problem for A and A coincide. The construction of A1 is similar to the construction
from Lemma 10, hence the emptiness problem for A = A1 ×A2 can be solved in polynomial space w.r.t. |A|.

Assume that A is a (LIMINF; SUM)-automaton. We carry out virtually the same construction of a SUM-
automaton over finite words A. The automaton A accepts words wiv#u such that Bi accepts v and A has an
accepting run on w(vu)ω at which the slave automaton invoked at the positions w,wvu, . . . , w(vu)k, . . . is Bi.
The value of A on an accepted word wiv#u is the value of Bi on v. It follows that if A has a run of value λ on
wiv#u, A has a run of the value λ on w(vu)ω . Conversely, if A has a run of the value λ, there is a reachable state q
of the master automaton Amas of A and a slave automaton Bi such that infinitely often Amas in the state q invokes
Bi which returns the value λ. Thus, there are words v, u such that Bi on v returns the value λ and Amas upon
reading vu returns to the state q. Moreover, there is a word w such that Amas reaches q from the initial state upon
reading w. Therefore, the value of w(vu)ω in A is at most λ. Hence, the emptiness problems for A and A coincide.
Similarly to the (INF, SUM+) case, the emptiness problem for A can be solved in polynomial space w.r.t. |A|.

Remark 17. The construction of A1 is similar to the construction from Lemma 10, hence it is polynomial in the
size of the master automaton. Therefore, the emptiness problem for (INF; SUM)-automata (resp. (LIMINF; SUM)-
automata) is in PTIME provided that the total size of slave automata is bounded.

Proof of (2) from Theorem 16. PSPACE-hardness follows from Proposition 7. The universality problem for func-
tional (INF; SUM)-automata (resp. (LIMINF; SUM)-automata) reduces to the emptiness problem for functional
(SUP; SUM)-automata (resp. (LIMSUP; SUM)-automata). It suffices to (1) first check that every word has an
accepting run, which can be done in polynomial space, (2) construct an automaton (INF; SUM)-automaton (resp.
(LIMINF; SUM)-automaton) A′ by taking inverses of all weights in all slave automata of a given nested weighted
automaton. The automaton A satisfies the universality problem with threshold λ iff it satisfies (1) and the automaton
A′ from (2) does not satisfy the emptiness problem with threshold −λ. Therefore, the universality problem for
functional (INF; SUM)-automata (resp. (LIMINF; SUM)-automata) is in PSPACE.

Proof of (3) from Theorem 16. PSPACE-hardness follows from Proposition 7.
Let λ be the threshold given in the emptiness (resp. universality) problem. Consider a (f ; SUMB)-automaton

Aλ, where B = λ+ 1, obtained from A by changing each slave SUM+ automaton B into SUMλ+1-automaton Bλ.
Basically, such a SUMλ+1-automaton Bλ simulates runs of SUM+-automata by implementing a λ+ 1-bounded
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counter in its states Q × {0, . . . , λ + 1}, where Q is the set of states of B. If B accumulates the value above
λ, the automaton Bλ returns just λ+ 1, regardless of the actual value accumulated by B. The automaton Aλ is
polynomial in λ, which can be exponential in the input size. Observe that for f ∈ {INF, SUP, LIMINF, LIMSUP},
for every word w, A has a run on w of the value not exceeding λ threshold iff Aλ has. It follows that the
emptiness (resp. universality) problem for (f ; SUM+)-automata with threshold λ reduces to the emptiness (resp.
universality) problem for (f ; SUMλ+1)-automata. Since SUMB is a regular value function, Lemma 10 states
that for f ∈ {INF, SUP, LIMINF, LIMSUP}, a (f ; SUMλ+1)-automaton Aλ is equivalent to a sil(f)-automaton A.
Therefore, the emptiness (resp. the universality) problem for (f ; SUM+)-automata reduces to the emptiness (the
universality) problem for sil(f)-automata. However, by employing Lemma 10, we get A of the size exponential in
|Aλ| and doubly-exponential in |A|. We show that the second exponential blow-up can be avoided.

We show that there exists a sil(f)-automaton A−, equivalent to A of the exponential size in the input size.
Infimum case. Let f ∈ {INF, LIMINF}. Original sil(f)-automaton A simulates runs of all slave automata of
Aλ. The modified sil(f)-automaton A− simulates only a single SUMλ+1-automaton at the time, which is chosen
non-deterministically. For remaining slave automata, only their non-weighted counterparts are simulated, i.e.,
SUM+ automata from A with weights removed. Since f is infimum of limit-infimum value function, the automata
A and A− are equivalent. The cardinality of the set of states of A− is O(2|A| · |A| ·B). Therefore, the size of A−
is exponential in the input size.
Supremum case. Let f ∈ {SUP, LIMSUP}. Recall that the set of states of Bλ is Q× {0, . . . , λ+ 1}, where Q is
the set of states of B. We obtain A− from A, by imposing the following condition: (*) at every position k, if A−
simulates two runs πi, πj of Bλ that have states (q, w1) resp. (q, w2) at position k, with w1 > w2, A− discards
the run πj (the one that has the state (q, w2)). Intuitively, the run πj can be completed to an accepting run that
accumulates lower value than πi, thus simulating it is redundant. We argue that A and A− are equivalent.

TheA− simulates only a subset of slave automata. Since its value function is sil(SUP) or sil(LIMSUP), for every
word w, the value of A− does not exceed the value of A. Conversely, consider an accepting run (Π, π1, π2, . . .) of
Aλ on w. We can modify runs of slave automata π1, π2, . . . so that the modified run (Π, π′1, π

′
2, . . .) satisfies the

following condition (**): at every position k in w, if runs πi, πj have states (q, w1), resp. (q, w2) at the positions
corresponding to k, then they accumulate the same value in the remaining part of of the run. One can achieve that
by changing the suffix of the run that accumulates greater value to the suffix of the other run. Such an operation of
substituting a prefix decreases the value, hence it can be executed finitely many times for each run, and it will not
produce infinite runs of slave automata. Observe that the modified run is an accepting run of Aλ of the value not
exceeding the value of (Π, π1, π2, . . .).

Now, observe that for a run of Aλ satisfying (**), if runs πi, πj have states (q, w1), resp. (q, w2) at the positions
k in w, with w1 > w2, the value of πi is greater than the value of πj , and the run πj can be discarded. Such an
operation corresponds to the condition (*) imposed by A−. Therefore, the values of w assigned by Aλ,A and A−
are equal.

The cardinality of the set of states of A− is O((|A| ·B)|A|), which is exponential in the input size.
The emptiness (resp. the universality) problem of a (f ; SUM+)-automaton A reduces to the emptiness (the

universality) problem for sil(f)-automaton A− of the exponential size in |A|+ log(λ). Hence, by Lemma 12, for
(f ; SUM+)-automata, the emptiness problem is in PSPACE and the universality problem is in EXPSPACE.

Remark 18. Let f ∈ {INF, LIMINF, SUP, LIMSUP}. Assume that the threshold λ is given in unary. Then, for
(f ; SUM+)-automata, the emptiness problem is in PTIME and the universality problem is PSPACE-complete.

Proof. Let f ∈ {INF, LIMINF, SUP, LIMSUP}. Assuming that the threshold is given in unary and the total size
of slave automata is bounded, the size of A− is polynomial in the size of A. Therefore, the emptiness (resp.,
the universality) problem for (f ; SUM+)-automata reduce to the emptiness (resp., the universality) problem for
f -automata. The emptiness problem for f -automata is in PTIME and the universality problem is PSPACE-complete.
Hence, the result follows.

Finally, we establish decidability of the emptiness problem with limit-average master automaton and SUM+-
automata as slave automata. The key proof idea is to show that values of certain runs of (LIMAVG; SUM+)-automata
coincide with the values of non-nested limit-average automata, and those runs have values arbitrarily close to
the infimum over values of all runs. This also allows us to show the decidability of the universality problem for
functional (LIMAVG; SUM+)-automata.

Theorem 19. The emptiness problem for (LIMAVG; SUM+)-automata is PSPACE-hard and in EXPSPACE; and
the universality problem for functional (LIMAVG; SUM+)-automata is PSPACE-hard and in EXPSPACE.

13



We present the proof of part (1) from Theorem 15 in Section 6. In the following, we show the proof of part (2)
from Theorem 15.

Observe that for a run of a functional nested weighted automaton, as long as the run is accepting, its value does
not depend on the choices of transitions. Therefore, we will focus on the construction of an accepting run with the
maximal value to compute the minimal threshold for the functionality problem.

Lemma 20. Let A be a functional (LIMAVG; SUM+)-automaton and let Λ be the value bounding weights in all
slave automata of A. Then, one of the following holds:

1. For every accepting run, there is a position s0 such that every slave automaton started after s0 accumulates
the value not exceeding Λ · conf(A).

2. The automaton A has an accepting run of infinite value (whose value exceeds every λ > 0).

Proof. Assume that (1) does not hold. Then, there is an accepting run such that some slave automaton returns values
that exceed the value Λ·conf(A) infinitely often. Observe that if a slave automaton B accumulates a value exceeding
Λ · conf(A) during a run π, then the nested weighted automaton A is in the same configuration at least twice during
the run π and meanwhile B increases its value. Therefore, one can pump the run of the nested weighted automaton
to increase the value returned by B. It follows that we can pump successively the run on A such that infinitely often
the following holds: a slave automaton started at a position k accumulates the value exceeding k2. A run with such
a property has an infinite weight according to the semantics LIMAVG(π) = lim supk→∞

1
k ·

∑k
i=1(C(π))[i].

Now, we are ready to prove decidability of the universality problem for functional (LIMAVG; SUM+)-automata.

Proof of (2) from Theorem 15. If (1) holds, A is equivalent to a functional (LIMAVG; SUMB)-automaton A′, where
B = Λ · conf(A). The size of A′ is exponential in |A|. The universality problem for functional (LIMAVG; SUMB)-
automata is PSPACE-complete, which implies the the universality problem for functional (LIMAVG; SUM+)-
automata is in EXPSPACE. Otherwise, if (2) holds, then an answer to the universality problem for A is “No” for
every λ. Now, it can be detected whether (1) or (2) holds by reduction to the universality problem for functional
(LIMSUP; SUM+)-automata, which is PSPACE-complete.

Remark 21. The size of A′ is polynomial in the size of the master automaton of A. Therefore, the universaility
problem is in PSPACE. The universality problem for functional SUM+-weighted automata is PSPACE-hard, hence
the universality problem for (LIMAVG; SUM+)-automata is PSPACE-complete assuming that the total size of slave
automata is bounded.

4.4 Summary and Open problems
While we have established the decidability and undecidability of the decision problems for nested weighted
automata for almost all cases, there is one open problem which we present as a conjecture.

Conjecture 22. The emptiness problem for non-deterministic (LIMAVG; SUM)-automata is decidable.

Tables 1 and 2 summarize our results.
Complexity. The decision problems are PSPACE-complete, in EXPSPACE, or undecidable. We show in Theorem 25
that (deterministic) nested weighted automata are exponentially more succinct than (non-deterministic) weighted
automata, which explains EXPSPACE complexity of some universality problems.

We present the proof of the emptiness case from Theorem 19 in Section 6.
Discussion on inclusion. The emptiness and universality problems reduce to the inclusion problem, where the
inclusion problem given two automata A1 and A2 asks whether for every word w we have LA1

(w) ≤ LA2
(w).

Therefore, for decidability of the inclusion problem both the emptiness and the universality problem must be
decidable. Hence, in the non-deterministic case, for value functions studied in Table 2, the inclusion problem can
be decidable only in two cases:

1. for (f ; g)-automata, where g is regular value function, and f ∈ InfVal \ {LIMAVG};

2. for (f ; SUM+)-automata, where f ∈ InfVal \ {LIMAVG}.
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INF SUP LIMAVGLIMINF LIMSUP

MIN,MAX Empt. PSP.-c (13)
SUMB Univ.

SUM
Empt. PSP.-c (16) Undec. (15) Open (22)Univ. Undec. (15) PSP.-c (16)

SUM+ Empt. PSP.-c (13) EXPSP. (19)Univ.

Table 1: Decidability and complexity of the emptiness and universality problems for functional (f ; g)-automata.
Functions f are listed in the first row and functions g are in the first column. The undecidability results hold even
for deterministic automata. Next to each result there is a reference to the corresponding theorem or conjecture. PSP.
(resp. EXPSP.) denotes PSPACE (resp. EXPSPACE).

INF SUP LIMAVGLIMINF LIMSUP

MIN,MAX Empt. PSP.-c (13)
SUMB Univ. EXPSP. (13) Undec. (6)

SUM
Empt. PSP.-c (16) Undec. (15) Open (22)
Univ. Undec. (15) Undec. (6) Undec. (6)

SUM+ Empt. PSP.-c (16) EXPSP. (19)
Univ. EXPSP. (16) Undec. (6)

Table 2: Decidability and complexity of the emptiness and universality problems for non-deterministic (f ; g)-
automata. PSP. (resp. EXPSP.) denotes PSPACE (resp. EXPSPACE). The alignment is as in Table 1.

INF SUP LIMAVGLIMINF LIMSUP

MIN,MAX Empt. PTIME

SUMB Univ. PSPACE-c

SUM
Empt. PTIME Undec. Open (22)Univ. Undec. PSPACE-c

SUM+ Empt. PTIME
Univ. PSPACE-c

Table 3: Decidability and complexity of the emptiness and universality problems for functional (f ; g)-automata
whose slave automata have size bounded by a constant. The alignment is as in Table 1.

INF SUP LIMAVGLIMINF LIMSUP

MIN,MAX Empt. PTIME

SUMB Univ. PSPACE-c Undec.

SUM
Empt. PTIME Undec. Open (22)
Univ. Undec. Undec. Undec.

SUM+ Empt. PTIME
Univ. PSPACE-c Undec.

Table 4: Decidability and complexity of the emptiness and universality problems for non-deterministic (f ; g)-
automata whose slave automata have size bounded by a constant. The alignment is as in Table 1.
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In fact, in case (2), the inclusion problem is undecidable as well. Indeed, inclusion of SUM+-automata
over finite words reduces to the inclusion of (f ; SUM+)-automata, where f ∈ {INF, LIMINF, SUP, LIMSUP}.
It has been shown in [1] that the inclusion problem for SUM+-automata is undecidable. Therefore, the in-
clusion problem in case (2) is undecidable. As automata in case (1) are equivalent to sil(f)-automata for
f ∈ {INF, LIMINF, SUP, LIMSUP} (Lemma 10), which are essentially equivalent to f -automata, the inclusion
problem is decidable [12].

Remark 23 (Parametric complexity). The complexity results summarized in Tables 1 and 2 are given w.r.t. the
size of a nested automaton, i.e., the sum of the size of the master automaton and the total size of slave automata.
However, if the total size of slave automata is bounded by a constant, then we show that the complexity of all
emptiness problems decreases from PSPACE (resp. EXPSPACE) to PTIME, and all the universality problems
become PSPACE-complete (Remarks 11 and 39). In other words, we show that the complexity of emptiness and
universality in the size of the master automaton (with the total size of slave automata considered as constant)
matches that of Boolean non-nested automata. (For every f ∈ InfVal the universality problem for functional
f -automata is PSPACE-complete [19]). Interestingly, bounding the total size of slave automata does not change
decidability status; all undecidability results still hold. The parametric complexity results are summarized in
Table 3 and Table 4.

5 Applications
In this section we discuss several applications of nested weighted automata.

5.1 Quantitative system properties
We have shown (Example 5) that basic properties such as average response time can be expressed conveniently as a
nested weighted automaton. We also argue that our framework is a natural extension of the framework of monitor
automata for Boolean verification, and is a step towards quantitative run-time verification.
Quantitative monitor automata. In verification of Boolean properties, the formalism with monitor automata is a
very convenient way to express system properties [26]. The specification for a system can be decomposed into
subproperties, each monitor automaton tracks a subproperty, and the logical value of the specification is inferred
from the results of the monitor automata. To be more specific, given an LTL specification, the logical value of every
subformula is tracked by a monitor automaton. A monitor automaton is a transducer that at each position of the
word outputs whether the current suffix satisfies the given subformula. The monitor automata for complex formulae
are constructed from monitor automata for their immediate subformulae. Finally, the answer whether a given word
satisfies the specification is encoded as the first output of the monitor that corresponds to the whole LTL formula.
Our nested weighted automata framework can be seen as a natural extension of the formalism provided by monitor
automata. Below we argue how nested weighted automata provide a convenient framework for specification, with
added expressiveness, and is a first step towards quantitative run-time verification.

• Ease of specification. A specification formalism is a convenient framework if complex specifications can be
easily decomposed. For Boolean properties, monitor automata were introduced for this purpose: in other
words, for Boolean properties, though monitor are not more expressive than the standard automata, yet they
are widely used as they provide a framework where specifications can be conveniently described. In our
setting, in the spirit of monitor automata, each slave automaton can specify a subproperty of the system,
and the master automaton combines the result obtained from all the slave automata. This (as in the case of
monitor automata) allows decomposing quantitative properties into subproperties and thus eases the task
of specification. For example as shown in Example 5 to compute average response time, for each request
the master automaton invokes a slave automaton that computes the response time (a subproperty for every
request) and then the master automaton with limit-average value function combines the subproperties to
obtain the average response time.

Example 24 (Average resource consumption). Consider a system with at most n concurrently running
processes, in which processes can be started and terminated. The system has available resources r1, . . . , rk.
The quantitative property of average resource consumption, which asks what is the average number of
different resources allocated by processes, can be expressed in a convenient way by a (deterministic) nested
weighted automaton A defined as follows. The master automaton of A starts a separate slave automaton
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B when a new process is started. The slave automaton B runs until the process terminates and counts
how many different resources r1, . . . , rk the given process allocates. The counting can be implemented by
a MAX-automaton with weights {0, 1, . . . , k}. Then, the master automaton computes the limit average of
resource consumption computed by slave automata. Since every (LIMAVG; MAX)-automaton is equivalent
to some sil(LIMAVG)-automaton (Lemma 10), average resource consumption can also be expressed by a
weighted automaton. However, construction of such a weighted automaton is cumbersome and it essentially
follows the proof of Lemma 10.

We use Example 24 to show that (deterministic) nested weighted automata can be exponentially more succinct
than (non-deterministic) weighted automata. Let ARC(n) denote the average resource consumption property
for n-processes.

Theorem 25. There is a deterministic (LIMAVG; MAX)-automaton of the size O(n) expressing ARC(n),
while every non-deterministic sil(LIMAVG)-automaton expressing ARC(n) has 2Ω(n) states.

Proof. Recall the the automaton A from Example 24 that expresses average resource consumption. Its size
is linearly bounded in the number of processes n. It remains to show that every sil(LIMAVG)-automaton
expressing ARC(n), average resource consumption for n processes, has 2Ω(n) states. To show that, we need
to give a more precise description of the system in consideration and its modeling.

We assume for simplicity that there is only a single resource. Each process i ∈ {1, . . . , n} is associated
with the following actions: start (si), allocation of the resource (ai), and termination (ti). Formally, average
resource consumption in w is defined as the limit average over all positions p at which a process starts
w[p] = si (for some i) of the indicator (0/1) whether ai occurs in w between position p and the first
occurrence of ti past p.

We show that unless a sil(LIMAVG)-automaton has at least 20.5n states, it cannot compute average resource
consumption. Assume towards contradiction that a sil(LIMAVG)-automaton A has less than 20.5n states
and computes average resource consumption. For every A ⊆ {a1, . . . , an}, we define a word uA ∈ A∗
as a periodic listing of all letters from A |A| times, i.e., (b1 . . . bs)

|A|, where {b1, . . . , bs} = A. Consider
execution traces wA = (suAt)

ω , where s = s1 . . . sn, t = t1 . . . tn. Given a word wA, let πA be a run of A
on wA of the minimal value. Due to periodicity of wu, such a run exists. We show the following claim:

(*) There exist cycles cA, cB in the automaton A such that (1) cA, cB are labeled with words over different
alphabets A,B, with |A| = |B| = 0.5n, (2) cA, cB share a state q that occurs in both runs πA, πB with
positive density, and (3) each of cA, cB is either silent or its average weight is 0.5n.

We shall prove (*) later; first we show that (*) implies that A does not express average resource consumption.
Indeed, consider a pair cA, cB from (*) and ai from B \ A. We insert into the run πA the cycle cB at all
positions where q occurs. Let π′A be the resulting run, and let w′A be the word that corresponds to π′A. The
resulting run π′A has the same value as πA, 1

2 , but average resource consumption in w′A is higher. Indeed, in
all blocks sut, for some u, in which u is different from uA, the number of different letters in u is at least
|A|+ 1. In the remaining blocks, the number of different letters is |A|. Since blocks sut with u 6= uA occur
with positive density, average resource consumption in w′A is strictly higher than 1

2 . But, the value of w′A
does not exceed 1

2 as π′A is an accepting run on w′A of the value 1
2 . It follows that A does not express the

average resource consumption property.

Now, we prove (*). Consider a word wA and an occurrence of uA at position p in wA. Since |uA| >
|A| + 2 · |A|, there is a state q that occurs twice in the run πA between positions p and p + |uA| (the part
corresponding to the considered occurrence of uA) and the distance between occurrences of q between |A|
and |uA| − |A|. These occurrences of q indicate a cycle, cA,p, in A, which is labeled with all letters from A.
Indeed, among any |A| consecutive letters in uA each letter from A occurs. Now, we select cA from cycles
cA,i, where i varies, that occurs with positive density in πA. Let qA be the state that occurs in cA.

As there are more than 20.5n subsets of {a1, . . . , an} of cardinality 0.5n, there is a state that occurs in two
cycles cA, cB with A 6= B. It remains to show that cA, cB are either silent or their average weight is 1

2 . If the
average weight of cA is greater than 1

2 , we can decrease the value of πA by removing all occurrences of cA.
Recall that the length of cA is at most |uA| − |A|, therefore if we remove all parts of wA that correspond to
cA, each process in the resulting word has resource consumption 0.5n, hence average resource consumption
is still 1

2 . But, the value of the corresponding run is lower than 1
2 , a contradiction. Conversely, if the value is

17



lower than 1
2 , we can pump that cycle to obtain a run of the value smaller than 1

2 on a word whose resource
consumption for each process is 0.5n. Thus, cA is either silent or its average weight value is 1

2 .

• Expressiveness. More importantly, as mentioned above, for Boolean properties, monitor automata only
add convenience but not expressiveness, whereas we show that for quantitative properties, nested weighted
automata are strictly more expressive than non-nested weighted automata. Moreover, we show that the added
expressiveness of nested weighted automata comes with the ability to express natural quantitative properties
(like average response time) that could not be expressed as non-nested weighted automata.

• Quantitative run-time verification. Finally, monitor automata are specially useful for safety properties, and
widely used in run-time verification [20]. Our nested weighted automata can be seen as the first step towards
quantitative run-time verification. Each slave automaton acts as a monitor and returns values of subproperties
of the system. If the value function of the master automaton is commutative (as in all our examples), the
master automaton can compute an on-the-fly approximation of the value function for finite words.

5.2 Model measuring
The model-measuring problem [21] asks, given a model and a specification, what is the maximal distance ρ such
that all models within distance ρ from the model satisfy the specification. Formally, a model M and a specification
S are Boolean automata. GivenM , a similarity measure (ofM ) is a function dM from infinite words to positive real
numbers such that for all traces w in LM we have dM (w) = 0. Similarity measures extend to models in a natural
way; i.e., dM (M ′) = sup{dM (w) : w is a trace ofM ′}. The stability radius of S inM w.r.t. the similarity measure
dM , denoted by srdM (M,S), is defined as srdM (M,S) = sup{ρ ≥ 0 : ∀M ′(dM (M ′) < ρ ⇒ LM ⊆ LS)}.
We are interested in similarity measures dM defined by nested weighted automata (resp. weighted automata as
in [21]). Note that dM is independent of the specification. The model-measuring decision problem of whether
srdM (M,S) ≤ λ reduces to the emptiness decision question [21]. We now show how nested weighted automata
can define interesting similarity measures dM .

Example 26 (Bounded delays). Consider the model M for two processes communicating through a channel, where
every sent packet is delivered in the next state. Let $ denote the event of neither sending or receiving packets, s1

and r1 (resp. s2 and r2) the send and receive for process 1 (resp. process 2). The language of M can be described
as a regular expression as follows: (($)∗ · (s1r1)∗ · ($)∗ · (s2r2)∗)ω .

Note that dM must assign value 0 to every trace in the language of M . Also dM needs to assign values to traces
where the delivery of packets can be delayed by a finite amount. Hence we first need to relax the language of M as
MR such that every packet sent is received with a finite delay; and dM assigns values to traces in the language of
MR. The relaxed language MR is obtained as follows: consider the following languages L1 and L2

L1 = ($∗ · (s1$∗r1)∗ · $∗)ω; and L2 = ($∗ · (s2$∗r2)∗ · $∗)ω;

where L1 denotes that every sent for process 1 can be delayed by a finite amount and analogously L2 for process 2.
The language of MR is the shuffle (arbitrary interleavings) of L1 and L2.

The similarity measure dM is defined as a (SUP; SUM+)-automaton AD that computes the maximum delay in
the following way. When a packet is sent, the master automaton starts a slave SUM+-automaton that counts the
number of transition until the packet is delivered. If no packet is sent, the master automaton takes a silent transition.
The product automaton MR and AD defines the desired similarity measure.

5.3 Model repair
The model-repair problem, given a model and a specification, asks for the minimal restriction of the model such
that the specification is satisfied. Given a model M , a repair measure dM is a function from infinite words to real
numbers such that dM (w) <∞ iff w ∈ LM . Intuitively, the measure evaluates the hardness of traces of M , which
can be used to evaluate severity of the violation of the specification. We are interested in dM specified by nested
weighted automata (resp. weighted automata). Given a model M , a repair measure dM , and a real number r, we
define the language d<rM as {w : dM (w) < r}. The model-repair decision problem, given a model M , a repair
measure dM , and a specification S, asks whether sup{r : d<rM ⊆ LS} ≤ λ. The model-repair decision problem
also reduces to the emptiness question.
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Example 27 (Context-switches). Consider a system consisting of a scheduler and two programs. The scheduler
starts processes infinitely often and does preemptive scheduling. To obtain a finite-state model, we consider that
only a single instance of each program may run at a given time. Consider the repair measure dM that represents
the negative of the minimal slot length, i.e., for all w we have dM (w) = −k iff each process in the execution
w runs for at least k steps. The repair measure can be defined by a functional (SUP; SUM)-automaton AR as
follows. After each context-switch, the master automaton starts an automaton that computes the running time until
the next context-switch and multiplies it by −1 (i.e., add −1 at each step). At steps at which there is no context
switch, the master automaton takes a silent transition. It follows that the supremum of all those values is the length
of the shortest running time of a process multiplied by −1. Although, the emptiness problem is undecidable for
(SUP; SUM)-automata, the automaton AR has only non-positive weights. The emptiness problem for (SUP; SUM)-
automata with non-positive weights reduces to the universality problem for (INF; SUM+)-automata, which is
decidable.

Remark 28 (Decidability of examples). Note that for all examples presented in the paper, they belong to the class
of nested weighted automata for which we establish decidability of the emptiness problem.

Remark 29 (Robustness of nested weighted automata). The model of nested weighted automata is robust with
respect to several changes, e.g., (i) instead of labeling function on transitions we can have labeling function on
states; or (ii) instead of invoking one slave automaton in every transition a constant number of slave automata can
be invoked. These changes do not change the expressive power, nor the decidability and the complexity results for
nested weighted automata.

6 Emptiness of (LIMAVG; SUM+)-automata is in EXPSPACE

In this section we prove that the emptiness problem for (LIMAVG; SUM+)-automata is in EXPSPACE ((1) from
Theorem 19), as the proof itself is interesting and requires new and non-standard techniques. We first present an
overview of the proof.
Overview of the proof. The key argument will be to simulate a given (LIMAVG; SUM+)-automaton A by a
sil(LIMAVG)-automaton, however, the main conceptual difficulty is that (LIMAVG; SUM+)-automata are strictly
more expressive than sil(LIMAVG)-automata. We circumvent this problem (which is non-standard for weighted
automata) in the following way:

1. Step 1. We establish a property C on runs of a (LIMAVG; SUM+)-automaton A such that (a) the infimum
over values of runs satisfying C is the same as the infimum over values of all runs, and (b) there is a
sil(LIMAVG)-automaton that simulates A on runs satisfying C.

2. Step 2. We give the construction of a sil(LIMAVG)-automaton A specified in the condition (b) from Step 1.

Although,A simulates A, weighted automata and nested weighted automata accumulate weights in a different
way; a run of A that satisfies C and the corresponding run of A can have different values.

3. Step 3. We show that the infima over values of all runs of A and A are equal.

Proof of Step 1. We first introduce the notion of bounded multiplicity.
Configuration and multiplicities. In nested weighted automata, starting a slave automaton can be seen as a universal
transition in the sense of alternating automata. We adapt the power-set construction, which is used to convert
alternating automata to non-deterministic automata, to the nested weighted automata case. Given a nested weighted
automaton A, we define configurations and multiplicities of A as follows. Let Qslv be the disjoint union of the sets
of states of all slave automata of A. For a run of A, we say that (qm, A) is the configuration at position p if qm
is the state of the master automaton at position p and A ⊆ Qslv is the set of states of slave automata at position
p. We denote by conf(A) the number of configurations of A. We define the multiplicity mult at position p as the
function mult : Qslv 7→ N, such that mult(q) specifies the number of slave automata in the state q at position p.
The configuration together with the multiplicity give a complete description of the state of A at position p.
Optimal runs. The general idea to solve the emptiness problem for (LIMAVG; SUM+)-automata is to simu-
late a given (LIMAVG; SUM+)-automaton by a sil(LIMAVG)-automaton that keeps track of configurations and
multiplicities. Unfortunately, unbounded multiplicities cannot be encoded in a finite set of states of a sil(LIMAVG)-
automaton. But, the emptiness problem can be solved by inspecting only selected runs. More precisely, given a

19



(LIMAVG; SUM+)-automaton A, we say that runs satisfying a condition C are optimal for A iff the infima over
values of all runs of A and runs that satisfy C are equal. We identify a condition such that the runs satisfying it are
optimal and can be simulated by a sil(LIMAVG)-automaton. First, we observe that without loss of generality we
can assume that nested weighted automata are deterministic. Basically, non-deterministic choices can be encoded
in the input alphabet.

Lemma 30. Given a (LIMAVG; SUM+)-automaton A over Σ, one can compute in polynomial space a deterministic
(LIMAVG; SUM+)-automaton A′ over an alphabet Σ × Γ such that infw∈Σ+ LA(w) = infw′∈(Σ×Γ)+ LA′(w′).
Moreover, conf(A) = conf(A′).

Proof. The proof consists of two steps. We show that (i) for every run (Π, π1, π2, . . . ) of A there exists a simple
run of A of the value not exceeding the value of (Π, π1, π2, . . . ). Next, we show that (ii) there exists a deterministic
(LIMAVG; SUM+)-automaton A′ over an extended alphabet such that the sets of accepting simple runs of A and
accepting runs of A′ coincide and each run has the same value in both automata. Then (i) and (ii) imply the lemma
statement.

(i): A run of a nested weighted automaton is simple if at every position in the run slave automata that are in the
same state take the same transition. Now, consider a run (Π, π1, π2, . . . ) of A. Suppose that πi, πj that are in the
same state at the position s in the word, i.e., πi[i′] = πj [j

′], where i′, j′ are the position in πi, πj corresponding to
the position s in w.

We choose from the suffixes πi[i′, |πi|], πj [j′, |πj |] the one with the smaller value and change the suffixes of
both runs to the chosen one. If these suffixes have the same value, we chose the shorter one. Such a transformation
does not increase the value of the partial sums and does not introduce infinite runs of slave automata. Indeed, a run of
each slave automaton can be changed by such an operation only finitely many times. Thus, this transformation can
be applied to any pair of slave runs to obtain a simple run of the value not exceeding the value of (Π, π1, π2, . . . ).

(ii): Without loss of generality, we can assume that for every slave automaton in A final states have no outgoing
transitions. Let Qall be the disjoint union of the sets of states of the master automaton and all slave automata of A.
We define Γ as the set of all partial functions h : Qall 7→ Qall. We define a (LIMAVG; SUM+)-automaton A′ over
the alphabet Σ× Γ by modifying only the transition relations and labeling functions of the master automaton and
slave automata of A; the sets of states and accepting states are the same as in the original automata. The transition
relation and the labeling function of the master automaton A′mas of A′ is defined as follows: for all states q, q′,
(q, 〈a, h〉, q′) iff h(q) = q′ and Amas has the transition (q, a, q′). The label of the transition (q, 〈a, h〉, q′) is the
same as the label of the transition (q, a, q′) in Amas. Similarly, for each slave automaton Bi in A, the transition
relation of the corresponding slave automaton B′i in A′ is defined as follows: for all states q, q′ of B′i, (q, 〈a, h〉, q′)
iff h(q) = q′ and Bi has the transition (q, a, q′). The label of the transition (q, 〈a, h〉, q′) is the same as the label of
the transition (q, a, q′) in Bi.

First, we see that conf(A) = conf(A′). Second, observe that the master automatonA′mas and all slave automata
B′i are deterministic. Moreover, since we assumed that for every slave automaton in A final states have no outgoing
transitions, slave automata B′i recognize prefix free languages. Finally, it follows from the construction that (i) for
every simple run (Π, π1, π2, . . . ) of A is also a run of A of the same value. One needs to encode non-deterministic
transitions in functions h ∈ Γ. The value of each transition is the same by the construction. Conversely, (ii) a
run (Π, π1, π2, . . . ) of A′ is a simple run of A of the same value. Indeed, the fact that transitions are directed by
functions h ∈ Γ implies that the run is simple.

We attempt to simulate (LIMAVG; SUM+)-automaton A by a sil(LIMAVG)-automaton. For that, we need
to show that runs with bounded multiplicities or bounded values returned by slave automata are optimal for A;
otherwise the state space of the simulating automaton would have to be unbounded. However, such a direct
statement does not hold as we see in the following example.

Example 31. Consider a (LIMAVG; SUM+)-automaton A over {a, b} such that on letter a (resp. b) the master
automaton starts a slave automaton Ba (resp. Bb). The automaton Ba accepts words a∗b, and for a word akb
assigns value k mod 2. The automaton Bb accepts words ba∗b, and for a word bakb assigns value k+ 2. Observe
that the infimum over all runs of A is 3

2 .
At the end of a block of k letters a, the number of slave automata running concurrently is k + 1, one automaton

Bb and k automata Ba, and the value returned by Bb is k+ 2. It follows that if the multiplicity of a run is bounded
by k + 1 or the maximal returned values are bounded by k + 2, lengths of all block of a’s are bounded by k.
However, if the length of block’s of letter a are bounded by k, the value of such a run is at least 3·k+4

2·(k+1) . Thus, runs
of bounded multiplicity or bounded returned value are not optimal for A.
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Example 31 shows that we cannot bound the number of slave automata running concurrently or the values
returned by slave automata. However, we can combine these two conditions, i.e., we show that while computing the
infimum over values of runs of an (LIMAVG; SUM+)-automaton, there is a constant N such that we can discard runs
in which more than N slave automata accumulate value above N. Then, slave automata that return bounded values
are essentially bounded sum automata, and can be eliminated, and only bounded number of slave automata returning
unbounded values remain. E.g. the automaton A from Example 31 is equivalent to a (LIMAVG; SUM+)-automaton
A# that, instead of starting a slave automaton Ba, guesses the parity of the following block of letters a and, based
on that guess, starts Ba0 or Ba1, which terminates after a single transition and returns 0 (Ba0) or 1 (Ba1). The
master automaton verifies the correctness of the guessed parity.
Synchronized silent transitions. The bounded multiplicity property enables simulation of A by sil(LIMAVG)-
automaton, but it does not guarantee that the corresponding runs have the same value. We impose the following
condition on optimal runs of A. We say that a run of A has synchronized silent transitions if at every position where
the master automaton takes a silent transition, each slave automaton takes a transition of weight 0. On runs of A
with synchronized silent transitions, the sil(LIMAVG)-automaton can take a silent transition whenever the master
automaton of A takes a silent transition as no weighted transition is lost. To achieve synchronization of silent
transitions, we modify slave automata so that during silent transitions of the master automaton, slave automata
accumulate their values in their states, while taking transitions of weight 0, and flush the accumulated value λ by
taking transition of weight λ once the master automaton takes a non-silent transition. We prove that runs with
sequences of silent transitions bounded by conf(A) are optimal for A, therefore slave automata have to accumulate
only bounded weights.

We combine the ideas for bounding the multiplicity and synchronization of silent transitions in the following
lemma.

Lemma 32. Let A be a deterministic (LIMAVG; SUM+)-automaton. There is a constant c quadratically bounded
in conf(A) and a deterministic (LIMAVG; SUM+)-automaton A0 equivalent to A such that runs that have (1) mul-
tiplicities bounded by c, and (2) synchronized silent transitions, are optimal for A0. The size of A0 is exponentially
bounded in |A|.

Before we prove Lemma 32, we show its vital components:

Lemma 33. Let A be a deterministic (LIMAVG; SUM+)-automaton that has an accepting run. Runs such that
among every consecutive conf(A) steps, the master automaton of A takes a non-silent transition are optimal for A.

Proof. Consider a run of A on a word w and positions i, j such that i+ 2 · conf(A) < j and A takes only silent
transitions between i and j.

Observe that there are positions i < i′, j′ < j with the same configuration (defined in Section 6). Consider
a word w′ resulting from removing w[i′, j′] from w. The partial sum of the weights of the master automaton up
to the position j − (j′ − i′) on w′ does not exceed the partial sum up to the position j on w. These partial sums
are divided, in the average, by the same number of steps. Thus, the value of the word will not increase even if
we can carry out this operation infinitely often. One should be careful not to remove all positions with accepting
states. However, it is not a serious problem as we can insert sparsely subwords with an accepting state (after
1, 2, . . . , 2k, . . . time increase steps). Such an operation will not increase the limit average of the run.

Lemma 34. Let A be a deterministic (LIMAVG; SUM+)-automaton that recognizes a non-empty language. Let
N = (|Qs|+ 2) · conf(A). The runs that eventually (for every position s greater than some position s0) satisfy the
following condition (*) are are optimal for A: (*) among slave automata active at position s, at most 2 ·N will
accumulate value greater than 4 ·N.

Proof. For a multiplicity mult we define its restriction to N, mult �N, as mult �N (q) = min(mult(q),N), for
every q ∈ dom(mult).

Consider any word uw such that at the position |u| there are 2 ·N slave automata that will accumulate in w
(past the position |u| in uw) value greater than 4 ·N. We show a transformation of uw to uw′, such that uw′ has the
same value and at the position |u| no slave automaton will accumulate in w′ value greater than 4 ·N. Let j0 > |u|
be a position in uw with an accepting state and let j1, . . . , jn be the positions at which each of slave automata
started before the position |u| finishes. Note that n ≤ |Qs|. As slave automata work on finite words such j1, . . . , jn
exist. Finally, let j be the first position greater than max(j0, j1, . . . , jn) with the configuration Cuw[1,j−|u|] = Cu
and multiplicity multuw[1,−|u|] �N= multu �N. There are only finitely many positions |u| for which such j does
not exist. Next, as there is no bound on j, we remove from w[1, j − |u|] all cycles that do not overlap with
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any position from {j0, . . . , jn}. The resulting word v has the length bounded by (|Qs| + 2) · conf(A) = N as
n ≤ |Qs|. It follows that for every q ∈ A we have multuv(q) ≤ N and multuv(q) ≤ multu(q) �N. Indeed,
since cycle removal does not increase the multiplicity, for every q ∈ A we have multuv(q) ≤ multuw[1,j](q) and
multuw[1,j] �N= multu �N. We show that the partial sum of weights of the master automaton at the position |uv|
in uvw is smaller than the partial sum at the position |u| is uw, which implies that the transformation uw → uvw,
removes a position violating our assumption, and even applied infinitely many times, does not increase the value of
the resulting words.

Let val be a function with dom(val) = dom(multu) such that val(q) is the value accumulated in w (past
the position |u| i uw) by any slave automaton that is in the state q at the position |u|. Equivalently, that is the
value accumulated by the same automaton past the position |uv| in uvw. We call a slave automaton active if
val(q) ≥ 4 ·N, where q is the state of that automaton at the position |u| (resp. |uv|). The value of the partial sum
up to the position |u| in uw is the value of all slave automata started before |u|. It consists of (1) + (2), where

• (1) is the value all inactive slave automata plus the value of active slave automata accumulated up to the
position |u|, and

• (2) is the value accumulated in w by all active automata past the position |u|.

Observe that (2) =
∑
q∈A val(q) ·multu(q), where A is the set of states of active slave automata at the position |u|.

The value of the partial sum up to the position |uv| in uvw consists of (1)′ + (2)′ + (3), where

• (1)′ is the value of all inactive slave automata plus the value of active slave automata accumulated up to the
position |u|,

• (2)′ is the value accumulated by active automata in w past position |uv|, and

• (3) is the value accumulated by all active slave automata on the word v, i.e., between the positions |u| and
|uv| in uvw.

Note that (1)′ is bounded by (1), (3) is bounded by 2 ·N · |v| ≤ 2 ·N2, and (2)′ =
∑
q∈A val(q) · multuv(q).

We claim that (2)− (2)′ > (3), which means that the partial sum at the position |uv| in uvw is smaller than the
partial sum at the position |u| in uw. Indeed,

∑
q∈Amultu(q)−multuv(q

′) > 2 ·N−N = N and for each q ∈ A,
val(q) ≥ 4 ·N, therefore (2)− (2)′ is at least 4 ·N2, which is greater than (3).

It follows that aforementioned transformation, even applied infinitely many times, will not increase the value of
the resulting word. Therefore, for every run of A of value λ, there is s0 and an a run of the value not exceeding λ
such that at each position s > s0 at most 2 ·N will accumulate value greater than 4 ·N.

Proof of Lemma 32. We transform the automaton A to an equivalent deterministic (LIMAVG; SUM+)-automaton
A0 for which runs that at each position (1) at most c slave automata run, and (2) if the master automaton takes
a silent transition, each slave automaton takes a silent transition, are optimal. Due to Lemma 34 runs for which
eventually at most 2 ·N slave automata accumulate value greater than 4 ·N are optimal for A. Moreover, by
Lemma 33 runs in which at least one in every conf(A) transitions is non-silent are optimal for A.

We define an automaton A0 by modifying A in two ways. First, we extend the input alphabet to include the
marking of the position s0 past which at most 2 ·N slave automata accumulate value greater than 4 ·N are optimal
for A0. Prior to that marking, a modified automaton starts only dummy slave automata that immediately terminate.
Past that marking A0 simulates A. Second, we modify each slave automaton of A in such a way that is runs as
long as it can accumulate the value exceeding 4 ·N. More precisely, the master automaton starts only automata
that return values exceeding 4 ·N. For other slave automata it “guesses” their value from the set {0, . . . , 4 ·N}
and runs a dummy automaton that takes only a single transition of this weight. As it is deterministic, we assume
that the “guess” is encoded in the input word. Started slave automata run as long as they can accumulate the value
exceeding 4 ·N. Once a slave automaton guesses that this is not possible, it takes a transition of the weight 4 ·N
and terminates. Again, that “guess” is encoded in the input word, therefore the master automaton is able to verify
that this “guess” is correct.

The automaton A0 simulates the runs of A past the position s0 and each running slave automaton accumulates
the value exceeding 4 ·N. Therefore, there is a run of A0 on a word corresponding to wopt such that at most
2 ·N + 1 slave automata run concurrently. The automaton A0 is equivalent to A, as the return values of slave
automata past the position s0 are the same and the LIMAVG value function does not depend on finite prefixes.
Therefore, runs satisfying conditions (1) and (2) are optimal for A0.
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The size of the automaton A0 from Lemma 32 is polynomial in the size of the master automaton of A.
Proof of Step 2. We now prove Step 2 which basically involves the classic power-set construction.
Construction of A. We adapt the classic power-set construction to construct a sil(LIMAVG)-automaton A that
simulates runs of a given (LIMAVG; SUM+)-automaton A with bounded multiplicities and synchronized silent
transitions. Let A be a deterministic (LIMAVG; SUM+)-automaton. Without loss of generality (Lemma 32), we
assume that runs with (1) multiplicities bounded by c and (2) synchronized silent transitions are optimal for
A. The automaton A, which simulates runs satisfying (1) and (2), keeps track of the current configuration and
the multiplicity of A. That is, the set of states of A is Qm × cQslv , where Qm, Qslv are respectively the set of
states of the master automaton and the union of the sets of states of all slave automata of A. The component
cQslv encodes a part of configuration and multiplicity. For all states (q1, h1), (q2, h2) of A and every letter a, A
has a transition 〈(q1, h1), a, (q2, h2)〉 iff the master automaton has a transition (q1, a, q2) with the label i and the
multiplicities h2 follow from h1 according to transitions of the slave automata and invocation of Bi. The weights
of transitions of A are defined as follows. If the transition (q1, a, q2) of the master automaton of A is silent, the
transition 〈(q1, h1), a, (q2, h2)〉 is silent. Otherwise, the weight of 〈(q1, h1), a, (q2, h2)〉 equals the sum of weights
of the corresponding transitions of simulated slave automata multiplied by their multiplicities h1. Recall that the
simulated runs have silent transitions synchronized, therefore, the values accumulated by each slave automaton and
the corresponding simulated automaton are equal.

Given a run of A one can construct a run of A with multiplicities bounded by c, and vice versa. Hence, for a
run of A (resp. A) we refer to the corresponding run of A (resp. A). We can solve the emptiness problem for A as
sil(LIMAVG)-automata behave similarly to LIMAVG-automata:

Lemma 35. (1) The emptiness problem for sil(LIMAVG)-automata is in NLOGSPACE. (2) For every sil(LIMAVG)-
automaton A that recognizes a non-empty language, there is a run η of A such that (a) the value of η is minimal
among values of all runs of A, (b) at least one in every |A| transitions is non-silent, and (c) partial sums converge,
i.e.,

lim sup
k→∞

1

k
·
k∑
i=1

(C(η))[i] = lim inf
k→∞

1

k
·
k∑
i=1

(C(η))[i]

Proof. Let A = (Σ, Q, q0, δ, F, C) be a sil(LIMAVG)-automaton. We show that if there is a run of A of the
value not exceeding λ there is a lasso run such that the average weight in its cycle does not exceed λ, i.e.
there is a run π = π[0]π[1] . . . π[n] of length n ≤ |λ| on a word w = w[1] . . . w[n] such that π[0] = q0,
for some i < n we have π[i] = π[n] (such a run π is called a lasso), π[0], . . . , π[n − 1] are distinct and

1
n−i (C(π[i], w[i+1], π[i+ 1])+ . . .+C(π[n− 1], w[n], π[n])) ≤ λ. The existence of such a lasso can be decided
in NLOGSPACE, which shows (1). As there are only finite number of values of lassos, there is λ0 which is the
smallest. It follows that there is no run of A of the value λ′ smaller than λ0; otherwise there would be a lasso of the
value not exceeding λ′. Thus, the lasso of the value λ0 has the minimal value among values of all runs, and the
sequence of partial averages converge.

First, we define a LIMAVG-automaton Afix such that for every accepting run η of A, the run η′, resulting from
η by removing silent transitions, is an accepting run of Afix, and vice versa, every accepting run of Afix can be
extended to a run of A by inserting silent transitions. The set of states of Afix is the same as A and the transition
relation of Afix consists of (q1, a, q2) such that there is (q′1, a, q

′
2) ∈ δ and q′1 (resp. q2) is reachable from q1 (resp.

q′2) by a path consisting of only silent transitions. The weight of such a transition is the infimum over the weights
of transitions (q′1, a, q

′
2) ∈ δ that generate (q1, a, q2). It follows from the construction that Afix has the stipulated

properties and their corresponding runs have the same value. Therefore, Afix has a lasso l0 such that the average
weight in its cycle does not exceed λ. The lasso l0 can be extended to a lasso l1 in A, which can have states that
occur multiple times. We can remove duplicate states in the following way, if the average weight between i and j
with l1[i] = l1[j] is above λ, we remove all the states between i+ 1 and j. Otherwise, if the average weight does
not exceed λ, we can remove all the states following π[j]. Hence, we have shown that if A has a run of the value λ
it has a lasso such that the average weight in its cycle does not exceed λ.

Proof of Step 3. We now prove Step 3, i.e., we show that the emptiness problems for A and A coincide. The main
problem is that, even though a run of A and the corresponding run of A represent the same sequences of weights,
they can have different values. Still, we show that infima over values of all runs of A and A are equal.
Accumulation of weights. The automata A and A compute their values differently. In A a slave automaton started at
a position k computes its value and returns it as a weight of the transition at position k, whereas in A, simulated
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slave automata run concurrently and add their weights to the partial sum at each step. To visualize this, consider a
matrix such that the value at (i, j) is the weight of the transition of j-th slave automaton at position i in the input
word. Then, the value of A is the limit average of the sums of rows, whereas the value of A is the limit average of
the sums of columns.

2 3 1 0 0 master automaton

0 1 0 1 slave automaton 1

1 0 1 1 slave automaton 2

0 1 0 slave automaton 3

0 2 0 3 1

simulation weights

0 1 0 1

1 0 1 1

0 1 0

Figure 2: The matrix depicting the difference in aggregation of weights by A and A.

In consequence, a run of A and the corresponding run of A can have different values.

Example 36. Consider the automaton A# that has been discussed above as a modification of an automaton from
Example 31 and a word w = bab . . . ba2k−1b . . .. At position 2k + 1, the partial sum

∑k
i=1(C(πi)) is equal to the

sum of (1) the values of blocks bab, . . . , ba2k−1−1b and (2) the value of Bb started at the beginning of ba2k−1b

equal 2k − 1. The value of a block ba2i−1b equals 2i − 1 (accumulated by Bb) plus 2i−1 − 1 (accumulated by
Ba1). Thus, the value (1) equals 2k + 2k−1 − 2 · k, i.e., 2k + 2k−1 − O(k). Therefore, the partial average at
position 2k + 1 is 5

2 −O( k
2k

). Thus, the value of w assigned by A# is 5
2 . In contrast, the automatonA# simulating

A# simply takes a transition of weight 0 on letter b, 1 on even occurrences of letter a and 2 on odd occurrences of
letter a. The value of w assigned by A# is 3

2 .

Nevertheless, we show that the emptiness problems for A and A coincide. In the following lemma we will use
a notion of reset words used to terminate long runs of slave automata.
Reset words. Given a word w, a finite word u is a reset word for A at position i if in w[1, i]uw[i+ 1,∞] we have
(1) the configuration of A at positions i and i + |u| is the same (recall that A is deterministic), and (2) all slave
automata active at position i terminate before position i+ |u|. We say that the word w[1, i]uw[i+ 1,∞] is the result
of injecting a reset word at position i. Observe that (1) implies that A accepts w iff it accepts w[1, i]uw[i+ 1,∞].
As in an accepting run of A past some finite position all configurations occur infinitely often and all slave automata
terminate after finite number of steps, therefore at almost all positions p, there exists a reset word that can be
injected at p. Basically, that word occurs already at position p. In addition, by simple (un)pumping argument we
can show that for almost all positions there exist reset words with length bounded by |Qslv| · conf(A).

Lemma 37. The emptiness problems for A and A coincide.

Proof. Observe that for every run (Π, π1, π2, . . .) of A with at most c concurrently running slave automata, and the
corresponding simulation run η of A at every position k we have

∑k
i=1(C(η))[i] ≤

∑k
i=1(C(πi)). Therefore, the

infimum over runs of A does not exceed the infimum over runs of A.
Conversely, due to Lemma 35, A has a run η of the minimal value and whose sequence of partial averages

converges. First, we show that there is a run η′ of the same value as η such that in the corresponding run of A, for
every k greater than some constant, each slave automaton started before position k, terminates before position
k + log(k). Then, we show that η′ and the run of A corresponding to η′ have the same value.

Consider a sequence {ai}i≥0 where a0 is the least position past which every configuration occurs infinitely
often and ai+1 = ai + log ai. Observe that |{ai : ai < k}| = o(k), i.e., limk→∞ |{ai:ai<k}|k = 0. Let η′ be a run
obtained from η by injecting reset words on positions ai in η. The value of η′ is the same as the value of η. Indeed,
for almost all k we have

k∑
i=1

(C(η′))[i] ≤
k∑
i=1

(C(η))[i] + o(k)

It follows from the fact that there are |{ai : ai < k}| = o(k) reset words up to position k and the total increase of
the partial sum due to each of them is bounded by the product of (1),(2),(3), where (1) is the maximal length of a
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reset word, (2) is the number of currently running slave automata, and (3) is the maximal weight a slave automaton
can take. Note that (1),(2),(3) are bounded by a constant, hence up to position k, the total increase of the partial sum
due to injected reset words is o(k). Due to Lemma 35, there are at least k

|A| non-silent transitions up to position k.
Hence the values of η′ do not exceed the value of η, which is minimal. Hence, the values of η, η′ are equal.

Now, we consider a run of (Π, π1, π2, . . .) of A that corresponds to η′. Observe that each slave automaton
started at position k, terminates after at most log k steps. Therefore, the partial sum of weights of (Π, π1, π2, . . .)
up to k is bounded by the partial sum of weights in η′ up to k + log k, i.e., for almost all k we have

k∑
i=1

(C(η′))[i] ≤
k∑
i=1

(C(πi)) ≤
k+log k∑
i=1

(C(η′))[i]

However, each (C(η′))[i] is bounded by a constant. Therefore,
∑k+log k
i=k+1 (C(η′))[i] = O(log k). Again, as the

number of non-silent transitions up to position k is Ω(k), we have limk→∞
O(log k)

Ω(k) = 0. Since A and A take
non-silent transitions at the same positions, the limit averages of (C(η′))[1], (C(η′))[2], . . . and C(π1), C(π2), . . .
are equal. Thus, the value of the infimum over runs of A does not exceed the value of the infimum over runs of A.
This implies that the emptiness problems for A and A coincide.

Finally, we prove the main statement.

Lemma 38. The emptiness problem for (LIMAVG; SUM+)-automata is in EXPSPACE.

Proof. First, we transform a given (LIMAVG; SUM+)-automaton A to a deterministic (LIMAVG; SUM+)-
automaton Ad (Lemma 30). The transformation does not change the cardinality of the set of configurations,
i.e., C(A) = C(Ad). Next, we transform Ad to an equivalent automaton A′ for which runs with (1) multiplicities
bounded by c and (2) synchronized silent transitions are optimal (Lemma 32). Finally, we define a sil(LIMAVG)-
automaton A that simulates A′ on runs that satisfy (1) and (2). Since the emptiness problems for A′ and A coincide
(Lemma 37), we solve the former.

Observe that the size of A is doubly exponential in the size of A. Indeed, let Q′slv be the disjoint union of
the sets of states of the slave automata of A′. The size of Q′slv is exponential in the size of A, therefore |cQ′slv | is
doubly-exponential. However, the emptiness problem for A is decidable in NLOGSPACE (Lemma 35). Hence, the
emptiness problem for (LIMAVG; SUM+)-automata is in EXPSPACE.

Remark 39. The transformations from Lemma 30 and Lemma 32 are polynomial in the size of the master automaton
of a given nested automaton A. Then, the number of configurations and, in consequence, c are polynomial in the
size of the master automaton of A. Finally, the set of states of the sil(LIMAVG)-automaton A constructed in Step 2
is Qm × cQslv . Thus, it is polynomial in the size of the master automaton of A as well as its weights. Therefore, the
emptiness problem of (LIMAVG; SUM+)-automata is in PTIME if the total size of slave automata is bounded by a
constant.

7 Related work
In this section we discuss various related work.
Weighted counterpart of Boolean nested automata. Weighted nested automata have been considered in [7] in the
context of finite words, where the weights are given over semirings. It is further required that the semirings of
all master and slave automata coincide, while in our case, the value functions may differ. Since the semirings of
master and slave automata must coincide for [7], it can be interpreted as defining weighted counterpart of Boolean
nested automata over finite words. Adding nesting structure to words and trees have been extensively studied
for non-weighted automata in [2, 5] and also applied to software model checking [3]. The work of [7] defines
a weighted counterpart of nesting of finite words, whereas we consider nesting of various weighted automata to
express properties of infinite behaviors of systems. Properties such as long-run average response time cannot be
expressed in the framework of [7].
Weighted MSO Logics. Quantitative properties can be expressed in weighted logics, for example, Weighted MSO
Logics [17] and weighted temporal logic [6]. For the basic decision problems for weighted logics over infinite
words, the reduction is to weighted automata. For a given set of value functions that assigns values to infinite runs
(such as FinVal and InfVal), weighted MSO logics are as expressive as weighted automata with the same class of
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value functions [17]. It follows that with FinVal and InfVal as the value functions, weighted MSO logic cannot
express the average response property. One can express average response time in weighted MSO logics by adding
average response time itself as a primitive value function in the ω-valuation monoid. The decidability of weighted
MSO logics with such a primitive can be established by a reduction to weighted automata that are able to express
average response time, such as nested weighted automata. However, the reduction is non-elementary, as the basic
decision problems for even non-weighted MSO logic have non-elementary complexity, whereas our complexity
results range from PSPACE-complete to EXPSPACE.
Register automata. Another related model for specifying quantitative properties are register automata [4], which
are parametrized by cost functions. The main differences between [4] and nested weighted automata are as
follows: (i) register automata are over finite words, whereas we consider infinite words, and (ii) we consider nested
control of automata, whereas register automaton are non-nested. As a result, both in terms of expressiveness and
decidability results nested weighted automata are very different from register automata. For example, the emptiness
of register automata with max and sum value functions is decidable, while we show emptiness to be undecidable
for deterministic nested weighted automata with these value functions.
Other related models. Other possible quantitative models are visibly pushdown automata (VPA) with limit-average
functions, or quantitative models consider in [24]. The framework of [24] neither captures the average response
time property nor presents any decidability results. For VPA with limit-average functions it follows from [14] that
even perfect-information VPA games (that correspond to simulation) with limit-average objectives are undecidable
(the undecidability proof of [14] is for general pushdown games, but the proof itself also works for VPA games).
Thus though there exist many other quantitative models, there exists no framework that can express the average
response time property and have elementary-time complexity algorithms for the basic decision problems.

8 Conclusion and Future Work
Motivated by important system properties such as long-run average response time, we introduced the framework of
nested weighted automata as a new, expressive, and convenient formalism for specifying quantitative properties of
systems. We answered the basic decision questions for nested weighted automata. There are several directions
for future work. First, we have an open conjecture (Conjecture 22) regarding the decidability of the emptiness of
(LIMAVG; SUM)-automata. Second, another interesting direction would be to establish optimal complexity results
for the decision problems. Third, there are several possible extensions of the nested weighted automaton model,
such as (i) two-way master and slave automata, (ii) multiple levels of nesting, and (iii) instead of infimum across
paths consider average measures across paths (i.e., probability distributions over runs and expected value of the
runs, as in [10]).
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