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Abstract. Quantitative languages are an extension of boolean languages that as-
sign to each word a real number. Mean-payoff automata are finite automata with
numerical weights on transitions that assign to each infinite path the long-run av-
erage of the transition weights. When the mode of branching of the automaton is
deterministic, nondeterministic, or alternating, the corresponding class of quan-
titative languages is notrobustas it is not closed under the pointwise operations
of max, min, sum, and numerical complement. Nondeterministic and alternating
mean-payoff automata are notdecidableeither, as the quantitative generalization
of the problems of universality and language inclusion is undecidable.
We introduce a new class of quantitative languages, defined by mean-payoff
automaton expressions, which is robust and decidable: it is closed under the
four pointwise operations, and we show that all decision problems are decidable
for this class. Mean-payoff automaton expressions subsumedeterministic mean-
payoff automata, and we show that they have expressive powerincomparable to
nondeterministic and alternating mean-payoff automata. We also present for the
first time an algorithm to compute distance between two quantitative languages,
and in our case the quantitative languages are given as mean-payoff automaton
expressions.

1 Introduction

Quantitative languagesL are a natural generalization of boolean languages that assign
to every wordw a real numberL(w) ∈ R instead of a boolean value. For instance,
the value of a word (or behavior) can be interpreted as the amount of some resource
(e.g., memory consumption, or power consumption) needed toproduce it, or bound the
long-run average available use of the resource. Thus quantitative languages can specify
properties related to resource-constrained programs, andan implementationLA satis-
fies (or refines) a specificationLB if LA(w) ≤ LB(w) for all wordsw. This notion of
refinement is aquantitative generalization of language inclusion, and it can be used to
check for example if for each behavior, the long-run averageresponse time of the sys-
tem lies below the specified average response requirement. Hence it is crucial to identify
some relevant class of quantitative languages for which this question is decidable. The
other classical decision questions such as emptiness, universality, and language equiva-
lence have also a natural quantitative extension. For example, thequantitative emptiness
problemasks, given a quantitative languageL and a thresholdν ∈ Q, whether there ex-
ists some wordw such thatL(w) ≥ ν, and thequantitative universality problemasks
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whetherL(w) ≥ ν for all wordsw. Note that universality is a special case of language
inclusion (whereLA(w) = ν is constant).

Weightedmean-payoff automatapresent a nice framework to express such quanti-
tative properties [3]. A weighted mean-payoff automaton isa finite automaton with nu-
merical weights on transitions. The value of a wordw is the maximal value of all runs
overw (if the automaton is nondeterministic, then there may be many runs overw),
and the value of a runr is the long-run average of the weights that appear alongr.
A mean-payoff extension to alternating automata has been studied in [4]. Determinis-
tic, nondeterministic and alternating mean-payoff automata are three classes of mean-
payoff automata with increasing expressive power. However, none of these classes is
closed under the four pointwise operations of max, min (which generalize union and
intersection respectively), numerical complement4, and sum (see Table 1). Determinis-
tic mean-payoff automata are not closed under max, min, and sum [5]; nondeterministic
mean-payoff automata are not closed under min, sum and complement [5]; and alter-
nating mean-payoff automata are not closed under sum [4]. Hence none of the above
classes isrobustwith respect to closure properties.

Moreover, while deterministic mean-payoff automata enjoydecidability of all quan-
titative decision problems [3], the quantitative language-inclusion problem is undecid-
able for nondeterministic and alternating mean-payoff automata [9], and thus also all
decision problems are undecidable for alternating mean-payoff automata. Hence al-
though mean-payoff automata provide a nice framework to express quantitative proper-
ties, there is no known class which is both robust and decidable (see Table 1).

In this paper, we introduce a new class of quantitative languages that are defined
by mean-payoff automaton expressions. An expression is either a deterministic mean-
payoff automaton, or it is the max, min, or sum of two mean-payoff automaton ex-
pressions. Since deterministic mean-payoff automata are closed under complement,
mean-payoff automaton expressions form a robust class thatis closed under max, min,
sum and complement. We show that (a) all decision problems (quantitative empti-
ness, universality, inclusion, and equivalence) are decidable for mean-payoff automaton
expressions; (b) mean-payoff automaton expressions are incomparable in expressive
power with both the nondeterministic and alternating mean-payoff automata (i.e., there
are quantitative languages expressible by mean-payoff automaton expressions that are
not expressible by alternating mean-payoff automata, and there are quantitative lan-
guages expressible by nondeterministic mean-payoff automata that are not expressible
by mean-payoff automata expressions); and (c) the properties of cut-point languages
(i.e., the sets of words with value above a certain threshold) for deterministic automata
carry over to mean-payoff automaton expressions, mainly the cut-point language isω-
regular when the threshold is isolated (i.e., some neeighborhood around the threshold
contains no word). Moreover, mean-payoff automaton expressions can express all ex-
amples in the literature of quantitative properties using mean-payoff measure [1, 5, 6].
Along with the quantitative generalization of the classical decision problems, we also
consider the notion ofdistancebetween two quantitative languagesLA andLB, defined
assupw|LA(w)−LB(w)|. When quantitative language inclusion does not hold between
an implementationLA and a specificationLB, the distance is a relevant information to

4 The numerical complement of a quantitative languagesL is −L.



Closure properties Decision problems
max min sum comp. empt. univ. incl. equiv.

Deterministic × × × X
5

X X X X

Nondeterministic X × × × X × × ×

Alternating X X × X
5

× × × ×

Expressions X X X X X X X X

Table 1. Closure properties and decidability of the various classesof mean-payoff automata.
Mean-payoff automaton expressions enjoy fully positive closure and decidability properties.

evaluate how close they are, as we may accept implementations that overspend the re-
source but we would prefer the least expensive ones. We present the first algorithm to
compute the distance between two quantitative languages: we show that the distance
can be computed for mean-payoff automaton expressions.

Our approach to show decidability of mean-payoff automatonexpressions relies on
the characterization and algorithmic computation of the values set{LE(w) | w ∈ Σ

ω}
of an expressionE, i.e. the set of all values of words according toE. The value set can
be viewed as an abstract representation of the quantitativelanguageLE, and we show
that all decision problems, cut-point language and distance computation can be solved
efficiently once we have this set.

First, we present a precise characterization of the value set for quantitative lan-
guages defined by mean-payoff automaton expressions. In particular, we show that it is
not sufficient to construct the convex hullconv(SE) of the set of the values of simple
cycles in the mean-payoff automata occurring inE, but we need essentially to apply
an operatorFmin(·) which given a setZ ⊆ Rn computes the set of pointsy ∈ Rn

that can be obtained by taking pointwise minimum of each coordinate of points of a set
X ⊆ Z. We show that while we need to compute the setVE = Fmin(conv(SE)) to
obtain the value set, and while this set is always convex, it is not always the case that
Fmin(conv(SE)) = conv(Fmin(SE)) (which would immediately give an algorithm to
computeVE ). This may appear counter-intuitive because the equality holds inR2 but
we show that the equality does not hold inR3 (Example 2).

Second, we provide algorithmic solutions to computeFmin(conv(S)), for a finite set
S. We first present a constructive procedure that givenS constructs a finite set of points
S′ such thatconv(S′) = Fmin(conv(S)). The explicit construction presents interesting
properties about the setFmin(conv(S)), however the procedure itself is computationally
expensive. We then present an elegant and geometric construction ofFmin(conv(S)) as
a set of linear constraints. The computation ofFmin(conv(S)) is a new problem in
computational geometry and the solutions we present could be of independent interest.
Using the algorithm to computeFmin(conv(S)), we show that all decision problems for
mean-payoff automaton expressions are decidable. Due to lack of space, most proofs
are given in the appendix.

5 Closure under complementation holds becauseLimInfAvg-automata andLimSupAvg-
automata are dual. It would not hold if onlyLimInfAvg-automata (or onlyLimSupAvg-
automata) were allowed.



Related works.Quantitative languages have been first studied over finite words in
the context of probabilistic automata [16] and weighted automata [17]. Several works
have generalized the theory of weighted automata to infinitewords (see [13, 11, 15, 2]
and [12] for a survey), but none of those have considered mean-payoff conditions. Ex-
amples where the mean-payoff measure has been used to specify long-run behaviours of
systems can be found in game theory [14, 19] and in Markov decision processes [7]. The
mean-payoff automata as a specification language have been first investigated in [3, 5,
4], and extended in [1] to construct a new class of (non-quantitative) languages of infi-
nite words (the multi-threshold mean-payoff languages), obtained by applying a query
to a mean-payoff language, and for which emptiness is decidable. It turns out that a
richer language of queries can be expressed using mean-payoff automaton expressions
(together with decidability of the emptiness problem). A detailed comparison with the
results of [1] is given in Section 5. Moreover, we provide algorithmic solutions to the
quantitative language inclusion and equivalence problemsand to distance computation
which have no counterpart for non-quantitative languages.Related notions of metrics
have been addressed in stochastic games [8] and probabilistic processes [10, 18].

2 Mean-Payoff Automaton Expressions

Quantitative languages.A quantitative languageL over a finite alphabetΣ is a func-
tion L : Σω → R. Given two quantitative languagesL1 andL2 overΣ, we denote by
max(L1, L2) (resp.,min(L1, L2), sum(L1, L2) and−L1) the quantitative language
that assignsmax(L1(w), L2(w)) (resp.,min(L1(w), L2(w)), L1(w) + L2(w), and
−L1(w)) to each wordw ∈ Σω. The quantitative language−L is called thecomple-
mentof L. Themax andmin operators for quantitative languages correspond respec-
tively to the least upper bound and greatest lower bound for the pointwise order� such
thatL1 � L2 if L1(w) ≤ L2(w) for all w ∈ Σω. Thus, they generalize respectively the
union and intersection operators for classical boolean languages.

Weighted automata.A Q-weighted automatonis a tupleA = 〈Q, qI , Σ, δ,wt〉, where

– Q is a finite set of states,qI ∈ Q is the initial state, andΣ is a finite alphabet;
– δ ⊆ Q×Σ ×Q is a finite set of labelled transitions. We assume thatδ is total, i.e.,

for all q ∈ Q andσ ∈ Σ, there existsq′ such that(q, σ, q′) ∈ δ;
– wt : δ → Q is aweightfunction, whereQ is the set of rational numbers. We assume

that rational numbers are encoded as pairs of integers in binary.

We say thatA is deterministicif for all q ∈ Q andσ ∈ Σ, there exists(q, σ, q′) ∈ δ for
exactly oneq′ ∈ Q. We sometimes call automatanondeterministicto emphasize that
they are not necessarily deterministic.

Words and runs. A wordw ∈ Σω is an infinite sequence of letters fromΣ. A lasso-
wordw in Σω is an ultimately periodic word of the formw1 · w

ω
2 wherew1 ∈ Σ

∗ is a
finite prefix, andw2 ∈ Σ

+ is nonempty. Arun ofA over an infinite wordw = σ1σ2 . . .
is an infinite sequencer = q0σ1q1σ2 . . . of states and letters such that (i) q0 = qI , and
(ii) (qi, σi+1, qi+1) ∈ δ for all i ≥ 0. We denote bywt(r) = v0v1 . . . the sequence of
weights that occur inr wherevi = wt(qi, σi+1, qi+1) for all i ≥ 0.



Quantitative language of mean-payoff automata.The mean-payoff value(or limit-
average) of a sequencev̄ = v0v1 . . . of real numbers is either

LimInfAvg(v̄) = lim inf
n→∞

1

n
·

n−1
∑

i=0

vi, or LimSupAvg(v̄) = lim sup
n→∞

1

n
·

n−1
∑

i=0

vi.

Note that if we delete or insert finitely many values in an infinite sequence of numbers,
its limit-average does not change, and if the sequence is ultimately periodic, then the
LimInfAvg andLimSupAvg values coincide (and correspond to the mean of the weights
on the periodic part of the sequence).

ForVal ∈ {LimInfAvg, LimSupAvg}, the quantitative languageLA of A is defined
by LA(w) = sup{Val(wt(r)) | r is a run ofA overw} for all w ∈ Σω. Accordingly,
the automatonA and its quantitative languageLA are calledLimInfAvg or LimSupAvg.
Note that for deterministic automata, we haveLA(w) = Val(wt(r)) wherer is the
unique run ofA overw.

We omit the weight functionwt when it is clear from the context, and we write
LimAvg when the value according toLimInfAvg andLimSupAvg coincide (e.g., for
runs with a lasso shape).

Decision problems and distance.We consider the following classical decision prob-
lems for quantitative languages, assuming an effective presentation of quantitative lan-
guages (such as mean-payoff automata, or automaton expressions defined later). Given
a quantitative languageL and a thresholdν ∈ Q, thequantitative emptiness problem
asks whether there exists a wordw ∈ Σω such thatL(w) ≥ ν, and thequantitative
universality problemasks whetherL(w) ≥ ν for all wordsw ∈ Σω.

Given two quantitative languagesL1 andL2, thequantitative language-inclusion
problemasks whetherL1(w) ≤ L2(w) for all wordsw ∈ Σω, and thequantitative
language-equivalence problemasks whetherL1(w) = L2(w) for all wordsw ∈ Σω.
Note that universality is a special case of language inclusion whereL1 is constant.
Finally, thedistancebetweenL1 andL2 isDsup(L1, L2) = supw∈Σω |L1(w)−L2(w)|.
It measures how close is an implementationL1 as compared to a specificationL2.

It is known that quantitative emptiness is decidable for nondeterministic mean-
payoff automata [3], while decidability was open for alternating mean-payoff automata,
as well as for the quantitative language-inclusion problemof nondeterministic mean-
payoff automata. Recent undecidability results on games with imperfect information
and mean-payoff objective [9] entail that these problems are undecidable (see Theo-
rem 5).

Robust quantitative languages.A classQ of quantitative languages isrobust if the
class is closed undermax,min, sum and complementation operations. The closure
properties allow quantitative languages from a robust class to be described composi-
tionally. While nondeterministicLimInfAvg- andLimSupAvg-automata are closed un-
der themax operation, they are not closed undermin and complement [5]. Alternating
LimInfAvg- and LimSupAvg-automata6 are closed undermax andmin, but are not
closed under complementation andsum [4] We define arobust class of quantitative

6 See [4] for the definition of alternatingLimInfAvg- andLimSupAvg-automata that generalize
nondeterministic automata.



languages for mean-payoff automata which is closed undermax, min, sum, and com-
plement, and which can express all natural examples of quantitative languages defined
using the mean-payoff measure [1, 5, 6].

Mean-payoff automaton expressions.A mean-payoff automaton expressionE is ob-
tained by the following grammar rule:

E ::= A | max(E,E) | min(E,E) | sum(E,E)

whereA is adeterministicLimInfAvg- or LimSupAvg-automaton. The quantitative lan-
guageLE of a mean-payoff automaton expressionE is LE = LA if E = A is a
deterministic automaton, andLE = op(LE1

, LE2
) if E = op(E1, E2) for op ∈

{max,min, sum}. By definition, the class of mean-payoff automaton expression is
closed undermax, min andsum. Closure under complement follows from the fact that
the complement ofmax(E1, E2) ismin(−E1,−E2), the complement ofmin(E1, E2)
is max(−E1,−E2), the complement ofsum(E1, E2) is sum(−E1,−E2), and the
complement of a deterministicLimInfAvg-automaton can be defined by the same au-
tomaton with opposite weights and interpreted as aLimSupAvg-automaton, and vice
versa, since− lim sup(v0, v1, . . . ) = lim inf(−v0,−v1, . . . ). Note that arbitrary linear
combinations of deterministic mean-payoff automaton expressions (expressions such
asc1E1 + c2E2 wherec1, c2 ∈ Q are rational constants) can be obtained for free since
scaling the weights of a mean-payoff automaton by a positivefactor |c| results in a
quantitative language scaled by the same factor.

3 The Vector Set of Mean-Payoff Automaton Expressions

Given a mean-payoff automaton expressionE, let A1, . . . , An be the determin-
istic weighted automata occurring inE. The vector setof E is the setVE =
{〈LA1

(w), . . . , LAn
(w)〉 ∈ Rn | w ∈ Σω} of tuples of values of words according

to each automatonAi. In this section, we characterize the vector set of mean-payoff
automaton expressions, and in Section 4 we give an algorithmic procedure to compute
this set. This will be useful to establish the decidability of all decision problems, and
to compute the distance between mean-payoff automaton expressions. Given a vector
v ∈ Rn, we denote by‖v‖ = maxi |vi| the∞-normof v.

Thesynchronized productof A1, . . . , An such thatAi = 〈Qi, q
i
I , Σ, δi,wti〉 is the

Qn-weighted automatonAE = A1×· · ·×An = 〈Q1×· · ·×Qn, (q
1
I , . . . , q

n
I ), Σ, δ,wt〉

such thatt = ((q1, . . . , qn), σ, (q
′
1, . . . , q

′
n)) ∈ δ if ti := (qi, σ, q

′
i) ∈ δi for all

1 ≤ i ≤ n, andwt(t) = (wt1(t1), . . . ,wtn(tn)). In the sequel, we assume that allAi’s
are deterministicLimInfAvg-automata (hence,AE is deterministic) and that the under-
lying graph of the automatonAE has only one strongly connected component (scc). We
show later how to obtain the vector set without these restrictions.

For each (simple) cycleρ in AE , let thevector valueof ρ be the mean of the tuples
labelling the edges ofρ, denotedAvg(ρ). To each simple cycleρ in AE corresponds a
(not necessarily simple) cycle in eachAi, and the vector value(v1, . . . , vn) of ρ contains
the mean valuevi of ρ in eachAi. We denote bySE the (finite) set of vector values of
simple cycles inAE . Let conv(SE) be the convex hull ofSE .



q1

A1

q2

A2

a, 1
b, 0

a, 0
b, 1

(0, 0)

(0, 1)

(1, 0)

H = conv(SE)

Fmin(H)

Fig. 1. The vector set ofE = max(A1, A2) is Fmin(conv(SE)) ) conv(SE).

Lemma 1. Let E be a mean-payoff automaton expression. The setconv(SE) is the
closure of the set{LE(w) | w is a lasso-word}.

The vector set ofE contains more values than the convex hullconv(SE), as shown
by the following example.

Example 1.Consider the expressionE = max(A1, A2) whereA1 andA2 are deter-
ministic LimInfAvg-automata (see Fig. 1). The productAE = A1 × A2 has two sim-
ple cycles with respective vector values(1, 0) (on letter ‘a’) and (0, 1) (on letter ‘b’).
The setH = conv(SE) is the solid segment on Fig. 1 and contains the vector values
of all lasso-words. However, other vector values can be obtained: consider the word
w = an1bn2an3bn4 . . . wheren1 = 1 andni+1 = (n1 + · · ·+ ni)

2 for all i ≥ 1. It is
easy to see that the value ofw according toA1 is 0 because the average number ofa’s in
the prefixesan1bn2 . . . anibni+1 for i odd is smaller than n1+···+ni

n1+···+ni+ni+1
= 1

1+n1+···+ni

which tends to0 wheni → ∞. SinceA1 is aLimInfAvg-automaton, the value ofw is
0 in A1, and by a symmetric argument the value ofw is also0 in A2. Therefore the
vector(0, 0) is in the vector set ofE. Note thatz = (0, 0) is the pointwise minimum
of x = (1, 0) andy = (0, 1), i.e. (0, 0) = fmin((1, 0), (0, 1)) wherez = fmin(x, y) if
z1 = min(x1, y1) andz2 = min(y1, y2). In fact, the vector set is the whole triangular
region in Fig. 1, i.e.VE = {fmin(x, y) | x, y ∈ conv(SE)}.

We generalizefmin to finite sets of pointsP ⊆ Rn in n dimensions as fol-
lows: fmin(P ) ∈ Rn is the pointp = (p1, p2, . . . , pn) such thatpi is the minimum
ith coordinate of the points inP , for 1 ≤ i ≤ n. For arbitraryS ⊆ Rn, define
Fmin(S) = {fmin(P ) | P is a finite subset ofS}. As illustrated in Example 1, the next
lemma shows that the vector setVE is equal toFmin(conv(SE)).

Lemma 2. Let E be a mean-payoff automaton expression built from deterministic
LimInfAvg-automata, and such thatAE has only one strongly connected component.
Then, the vector set ofE is VE = Fmin(conv(SE)).

For a general mean-payoff automaton expressionE (with both deterministic
LimInfAvg- andLimSupAvg automata, and with multi-scc underlying graph), we can
use the result of Lemma 2 as follows. We replace eachLimSupAvg automatonAi

occurring inE by the LimInfAvg automatonA′
i obtained fromAi by replacing ev-

ery weightwt by −wt. The duality oflim inf and lim sup yieldsLA′

i
= −LAi

. In



each strongly connected componentC of the underlying graph ofAE , we compute
VC = Fmin(conv(SC)) (whereSC is the set of vector values of the simple cycles inC)
and apply the transformationxi → −xi on every coordinatei where the automatonAi

was originally aLimSupAvg automaton. The union of the sets
⋃

C VC whereC ranges
over the strongly connected components ofAE gives the vector set ofE.

Theorem 1. Let E be a mean-payoff automaton expression built from deterministic
LimInfAvg-automata, and letZ be the set of strongly connected components inAE .
For a strongly connected componentC let SC denote the set of vector values of the
simple cycles inC. The vector set ofE is VE =

⋃

C∈Z Fmin(conv(SC)).

4 Computation ofFmin(conv(S)) for a Finite Set S

It follows from Theorem 1 that the vector setVE of a mean-payoff automaton expres-
sion E can be obtained as a union of setsFmin(conv(S)), whereS ⊆ Rn is a fi-
nite set. However, the setconv(S) being in general infinite, it is not immediate that
Fmin(conv(S)) is computable. In this section we consider the problem of computing
Fmin(conv(S)) for a finite setS. In subsection 4.1 we present an explicit construction
and in subsection 4.2 we give a geometric construction of theset as a set of linear
constraints. We first present some properties of the setFmin(conv(S)).

Lemma 3. If X is a convex set, thenFmin(X) is convex.

By Lemma 3, the setFmin(conv(S)) is convex, and sinceFmin is a monotone oper-
ator andS ⊆ conv(S), we haveFmin(S) ⊆ Fmin(conv(S)) and thusconv(Fmin(S)) ⊆
Fmin(conv(S)). The following proposition states that in two dimensions the above sets
coincide.

Proposition 1. LetS ⊆ R2 be a finite set. Then,conv(Fmin(S)) = Fmin(conv(S)).

We show in the following example that in three dimensions theabove proposition
does not hold, i.e., we show thatFmin(conv(SE)) 6= conv(Fmin(SE)) in R3.

Example 2.We show that in three dimension there is a finite setS such that
Fmin(conv(S)) 6⊆ conv(Fmin(S)). Let S = {q, r, s} with q = (0, 1, 0), r =
(−1,−1, 1), ands = (1, 1, 1). Thenfmin(r, s) = r, fmin(q, r, s) = fmin(q, r) =
t = (−1,−1, 0), and fmin(q, s) = q. ThereforeFmin(S) = {q, r, s, t}. Consider
p = (r + s)/2 = (0, 0, 1). We havep ∈ conv(S) and fmin(p, q) = (0, 0, 0).
Hence(0, 0, 0) ∈ Fmin(conv(S)). We now show that(0, 0, 0) does not belong to
conv(Fmin(S)). Consideru = αq ·q+αr ·r+αs ·s+αt ·t such thatu in conv(Fmin(S)).
Since the third coordinate is non-negative forq, r, s, andt, it follows that ifαr > 0 or
αs > 0, then the third coordinate ofu is positive. Ifαs = 0 andαr = 0, then we have
two cases: (a) ifαt > 0, then the first coordinate ofu is negative; and (b) ifαt = 0,
then the second coordinate ofu is 1. It follows(0, 0, 0) is not inconv(Fmin(S)). ⊓⊔



4.1 Explicit construction

Example 2 shows that in generalFmin(conv(S)) 6⊆ conv(Fmin(S)). In this section we
present an explicit construction that given a finite setS constructs a finite setS′ such
that (a)S ⊆ S′ ⊆ conv(S) and (b)Fmin(conv(S)) ⊆ conv(Fmin(S

′)). It would follow
thatFmin(conv(S)) = conv(Fmin(S

′)). Since convex hull of a finite set is computable
andFmin(S

′) is finite, this would give us an algorithm to computeFmin(conv(S)). For
simplicity, for the rest of the section we writeF for Fmin andf for fmin (i.e., we drop
the min from subscript). Recall thatF (S) = {f(P ) | P finite subset ofS} and let
Fi(S) = {f(P ) | P finite subset ofS and|P | ≤ i}. We considerS ⊆ Rn.

Lemma 4. LetS ⊆ Rn. Then,F (S) = Fn(S) andFn(S) ⊆ F
n−1
2 (S).

Iteration of a construction γ. We will present a constructionγ with the following
properties: input to the construction is a finite setY of points, and the outputγ(Y )
satisfies the following properties

1. (Condition C1). γ(Y ) is finite and subset ofconv(Y ).
2. (Condition C2). F2(conv(Y )) ⊆ conv(F (γ(Y ))).

Before presenting the constructionγ we first show how to iterate the construction to
obtain the following result: given a finite set of pointsX we construct a finite set of
pointsX ′ such thatF (conv(X)) = conv(F (X ′)).

Iteratingγ. Consider a finite set of pointsX , and letX0 = X andX1 = γ(X0). Then
we have

conv(X1) ⊆ conv(conv(X0)) (since by ConditionC1 we haveX1 ⊆ conv(X0))

and henceconv(X1) ⊆ conv(X0); and

F2(conv(X0)) ⊆ conv(F (X1)) (by ConditionC2)

By iteration we obtain thatXi = γ(Xi−1) for i ≥ 2 and as above we have

(1) conv(Xi) ⊆ conv(X0) (2) F i
2(conv(X0)) ⊆ conv(F (Xi))

Thus forXn−1 we have

(1) conv(Xn−1) ⊆ conv(X0) (2) Fn−1
2 (conv(X0)) ⊆ conv(F (Xn−1))

By (2) above and Lemma 4, we obtain

(A) F (conv(X0)) = Fn(conv(X0)) ⊆ F
n−1
2 (conv(X0)) ⊆ conv(F (Xn−1))

By (1) above we haveconv(Xn−1) ⊆ conv(X0) and henceF (conv(Xn−1)) ⊆
F (conv(X0)). Thus we have

conv(F (conv(Xn−1))) ⊆ conv(F (conv(X0))) = F (conv(X0))



where the last equality follows since by Lemma 3 we haveF (conv(X0)) is convex.
SinceXn−1 ⊆ conv(Xn−1) we have

(B) conv(F (Xn−1)) ⊆ conv(F (conv(Xn−1))) ⊆ F (conv(X0))

Thus by (A) and (B) above we haveF (conv(X0)) = conv(F (Xn−1)). Thus given the
finite setX , we have the finite setXn−1 such that (a)X ⊆ Xn−1 ⊆ conv(X) and
(b) F (conv(X)) = conv(F (Xn−1)). We now present the constructionγ to complete
the result.

The construction γ. Given a finite setY of pointsY ′ = γ(Y ) is obtained by adding
points toY in the following way:

– For all 1 ≤ k ≤ n, we consider allk-dimensional coordinate planesΠ supported
by a point inY ;

– Intersect each coordinate planeΠ with conv(Y ) and the result is a convex polytope
YΠ ;

– We add the corners (or extreme points) of each polytopeYΠ to Y .

The proof that the above construction satisfies conditionC1 and C2 is given in the
appendix, and thus we have the following result.

Theorem 2. Given a finite setS ⊆ Rn such that|S| = m, the following assertion
holds: a finite setS′ with |S′| ≤ m2n · 2n

2+n can be computed inmO(n·2n) · 2O(n3)

time such that (a)S ⊆ S′ ⊆ conv(S) and (b)Fmin(conv(S)) = conv(Fmin(S
′)).

4.2 Linear constraint construction

In the previous section we presented an explicit construction of a finite set of points
whose convex hull gives usFmin(conv(S)). The explicit construction illuminates
properties of the setFmin(conv(S)), however, the construction is inefficient compu-
tationally. In this subsection we present an efficient geometric construction for the
computation ofFmin(conv(S)) for a finite setS. Instead of constructing a finite set
S′ ⊆ conv(S) such thatconv(S′) = Fmin(conv(S)), we representFmin(conv(S)) as a
finite set of linear constraints.

Consider thepositive orthantanchored at the origin inRn, that is, the set of points
with non-negative coordinates:Rn

+ = {(z1, z2, . . . , zn) | zi ≥ 0, ∀i}. Similarly, the
negative orthantis the set of points with non-positive coordinates, denotedasRn

− =
−Rn

+. Using vector addition, we writey + Rn
+ for the positive orthant anchored aty.

Similarly, we writex + Rn
− = x − Rn

+ for the negative orthant anchored atx. The
positive and negative orthants satisfy the following simpleduality relation: x ∈ y+Rn

+

iff y ∈ x− Rn
+.

Note thatRn
+ is ann-dimensional convex polyhedron. For each1 ≤ j ≤ n, we

consider the(n− 1)-dimensional faceLj spanned by the coordinate axes except thej th

one, that is,Lj = {(z1, z2, . . . , zn) ∈ Rn
+ | zj = 0}.

We say thaty + Rn
+ is supportedbyX if (y + Lj) ∩ X 6= ∅ for every1 ≤ j ≤ n.

Assumingy + Rn
+ is supported byX , we can construct a setY ⊆ X by collecting

one point per(n − 1)-dimensional face of the orthant and gety = f(Y ). It is also



allowed that two faces contribute the same point toY . Similarly, if y = f(Y ) for a
subsetY ⊆ X , then the positive orthant anchored aty is supported byX . Hence, we
get the following lemma.

Lemma 5 (Orthant Lemma). y ∈ Fmin(X) iff y + Rn
+ is supported byX .

Construction.We use the Orthant Lemma to constructFmin(X). We begin by describ-
ing the set of pointsy for which thej th face of the positive orthant anchored aty has
a non-empty intersection withX . DefineFj = X − Lj , the set of points of the form
x− z, wherex ∈ X andz ∈ Lj .

Lemma 6 (Face Lemma).(y + Lj) ∩ X 6= ∅ iff y ∈ Fj .

Proof. Let x ∈ X be a point in the intersection, that is,x ∈ y + Lj . Using the duality
relation for the(n− 1)-dimensional orthant, we gety ∈ x− Lj . By definition,x− Lj

is a subset ofX − Lj , and hencey ∈ Fj . ⊓⊔

It is now easy to describe the set defined in our problem statement.

Lemma 7 (Characterization).Fmin(X) =
⋂n

j=1 Fj .

Proof. By the Orthant Lemma,y ∈ Fmin(X) iff y + Rn
+ is supported byX . Equiva-

lently, (y + Lj) ∩ X 6= ∅ for all 1 ≤ j ≤ n. By the Face Lemma, this is equivalent to
y belonging to the common intersection of the setsFj = X − Lj . ⊓⊔

Algorithm for computation of Fmin(conv(S)). Following the construction, we get an
algorithm that computesFmin(conv(S)) for a finite setS of points inRn. Let |S| = m.
We first representX = conv(S) as intersection of half-spaces: we require at mostmn

half-spaces (linear constraints). It follows thatFj = X − Lj can be expressed asmn

linear constraints, and henceFmin(X) =
⋂n

j=1 Fj can be expressed asn · mn linear
constraints. This gives us the following result.

Theorem 3. Given a finite setS ofm points inRn, we can construct inO(n ·mn) time
n ·mn linear constraints that representFmin(conv(S)).

5 Mean-Payoff Automaton Expressions are Decidable

Several problems on quantitative languages can be solved for the class of mean-payoff
automaton expressions using the vector set. The decision problems of quantitative
emptiness and universality, and quantitative language inclusion and equivalence are all
decidable, as well as questions related to cut-point languages, and computing distance
between mean-payoff languages.



Decision problems and distance.From the vector setVE = {〈LA1
(w), . . . , LAn

(w)〉 ∈
Rn | w ∈ Σω}, we can compute thevalue setLE(Σ

ω) = {LE(w) | w ∈ Σω}
of values of words according to the quantitative language ofE as follows. The set
LE(Σ

ω) is obtained by successive application ofmin-, max- and sum-projections
pmin
ij , pmax

ij , psumij : Rk → Rk−1 wherei < j ≤ k, defined by

pmin
ij ((x1, . . . , xk)) = (x1, . . . , xi−1,min(xi, xj), xi+1, . . . , xj−1, xj+1, . . . xk),

psumij ((x1, . . . , xk)) = (x1, . . . , xi−1, xi + xj , xi+1, . . . , xj−1, xj+1, . . . xk),

and analogously forpmax
ij . For example,pmax

12 (pmin
23 (VE)) gives the setLE(Σ

ω) of word
values of the mean-payoff automaton expressionE = max(A1,min(A2, A3)).

Assuming a representation of the polytopes ofVE as a boolean combinationϕE of
linear constraints, the projectionpmin

ij (VE) is represented by the formula

ψ = (∃xj : ϕE ∧ xi ≤ xj) ∨ (∃xi : ϕE ∧ xj ≤ xi)[xj ← xi]

where[x ← e] is a substitution that replaces every occurrence ofx by the expression
e. Since linear constraints over the reals admit effective elimination of existential quan-
tification, the formulaψ can be transformed into an equivalent boolean combination
of linear constraints without existential quantification.The same applies to max- and
sum-projections.

Successive applications of min-, max- and sum-projections(following the structure
of the mean-payoff automaton expressionE) gives the value setLE(Σ

ω) ⊆ R as a
boolean combination of linear constraints, hence it is a union of intervals. From this set,
it is easy to decide the quantitative emptiness problem and the quantitative universality
problem: there exists a wordw ∈ Σω such thatLE(w) ≥ ν if and only if LE(Σ

ω) ∩
[ν,+∞[ 6= ∅, andLE(w) ≥ ν for all wordsw ∈ Σω if and only if LE(Σ

ω)∩ ] −
∞, ν[ = ∅.

In the same way, we can decide the quantitative language inclusion problem “is
LE(w) ≤ LF (w) for all wordsw ∈ Σω ?” by a reduction to the universality problem
for the expressionF −E and threshold0 since mean-payoff automaton expressions are
closed under sum and complement. The quantitative languageequivalence problem is
then obviously also decidable.

Finally, the distance between the quantitative languages of E andF can be com-
puted as the largest number (in absolute value) in the value set ofF −E. As a corollary,
this distance is always a rational number.

Comparison with [1]. The work in [1] considers deterministic mean-payoff automata
with multiple payoffs. The weight function in such an automaton is of the formwt :
δ → Qd. The value of a finite sequence(vi)1≤i≤n (wherevi ∈ Qd) is the mean of the
tuplesvi, that is ad-dimensional vectorAvgn = 1

n
·
∑n−1

i=0 vi. The “value” associated
to an infinite run (and thus also to the corresponding word, since the automaton is
deterministic) is the setAcc ⊆ Rd of accumulation points of the sequence(Avgn)n≥1.

In [1], a query language on the set of accumulation points is used to definemulti-
threshold mean-payoff languages. For1 ≤ i ≤ n, let pi : Rn → R be the usual projec-
tion along theith coordinate. A query is a boolean combination of atomic threshold con-
ditions of the formmin(pi(Acc)) ∼ ν or max(pi(Acc)) ∼ ν where∼∈ {<,≤,≥, >}



andν ∈ Q. A word is accepted if the set of accumulation points of its (unique) run satis-
fies the query. Emptiness is decidable for such multi-threshold mean-payoff languages,
by an argument based on the computation of the convex hull of the vector values of the
simple cycles in the automaton [1] (see also Lemma 1). We haveshown that this convex
hull conv(SE) is not sufficient to analyze quantitative languages of mean-payoff au-
tomaton expressions. It turns out that a richer query language can also be defined using
our construction ofFmin(conv(SE)).

In our setting, we can view ad-dimensional mean-payoff automatonA as a product
PA of 2d copiesAi

t of A (where1 ≤ i ≤ d andt ∈ {LimInfAvg, LimSupAvg}), where
Ai

t assigns to each transition theith coordinate of the payoff vector inA, and the au-
tomaton is interpreted as at-automaton. Intuitively, the setAcc of accumulation points
of a wordw satisfiesmin(pi(Acc)) ∼ ν (resp.max(pi(Acc) ∼ ν) if and only if the
value ofw according to the automatonAi

t for t = LimInfAvg (resp.t = LimSupAvg) is
∼ ν. Therefore, atomic threshold conditions can be encoded as threshold conditions on
single variables of the vector set forPA. Therefore, the vector set computed in Section 4
allows to decide the emptiness problem for multi-thresholdmean-payoff languages, by
checking emptiness of the intersection of the vector set with the constraint correspond-
ing to the query.

Furthermore, we can solve more expressive queries in our framework, namely where
atomic conditions are linear constraints onLimInfAvg- andLimSupAvg-values. For ex-
ample, the constraintLimInfAvg(wt1) + LimSupAvg(wt2) ∼ ν is simply encoded as
xk + xl ∼ ν wherek, l are the indices corresponding toA1

LimInfAvg andA2
LimSupAvg re-

spectively. Note that the trick of extending the dimension of the d-payoff vector with,
saywtd+1 = wt1+wt2, is not equivalent becauseLim

{

Sup
Inf

}

Avg(wt1)±Lim
{

Sup
Inf

}

Avg(wt2)
is not equal toLim

{

Sup
Inf

}

Avg(wt1 ± wt2) in general (no matter the choice of
{

Sup
Inf

}

and±).
Hence, in the context of non-quantitative languages our results also provide a richer
query language for the deterministic mean-payoff automatawith multiple payoffs.

Complexity. All problems studied in this section can be solved easily (inpolynomial
time) once the value set is constructed, which can be done in quadruple exponential
time. The quadruple exponential blow-up is caused by(a) the synchronized product
construction forE, (b) the computation of the vector values of all simple cycles inAE ,
(c) the construction of the vector setFmin(conv(SE)), and(d) the successive projec-
tions of the vector set to obtain the value set. Therefore, all the above problems can be
solved in 4EXPTIME.

Theorem 4. For the class of mean-payoff automaton expressions, the quantitative
emptiness, universality, language inclusion, and equivalence problems, as well as dis-
tance computation can be solved in 4EXPTIME.

Theorem 4 is in sharp contrast with the nondeterministic andalternating mean-
payoff automata for which language inclusion is undecidable (see also Table 1). The
following theorem presents the undecidability result thatis derived from the results
of [9].

Theorem 5. The quantitative universality, language inclusion, and language equiva-
lence problems are undecidable for nondeterministic mean-payoff automata; and the



quantitative emptiness, universality, language inclusion, and language equivalence
problems are undecidable for alternating mean-payoff automata.

6 Expressive Power and Cut-point Languages

We study the expressive power of mean-payoff automaton expressions(i) according to
the class of quantitative languages that they define, and(ii) according to their cut-point
languages.

Expressive power comparison.We compare the expressive power of mean-payoff au-
tomaton expressions with nondeterministic and alternating mean-payoff automata. The
results of [5] show that there exist deterministic mean-payoff automataA1 andA2 such
thatmin(A1, A2) cannot be expressed by nondeterministic mean-payoff automata. The
results of [4] shows that there exists deterministic mean-payoff automataA1 andA2

such thatsum(A1, A2) cannot be expressed by alternating mean-payoff automata. It
follows that there exist languages expressible by mean-payoff automaton expression
that cannot be expressed by nondeterministic and alternating mean-payoff automata. In
Theorem 6 we show the converse, that is, we show that there exist languages expressible
by nondeterministic mean-payoff automata that cannot be expressed by mean-payoff
automaton expression. It may be noted that the subclass of mean-payoff automaton ex-
pressions that only uses min and max operators (and no sum operator) is a strict subclass
of alternating mean-payoff automata, and when only the max operator is used we get a
strict subclass of the nondeterministic mean-payoff automata.

Theorem 6. Mean-payoff automaton expressions are incomparable in expressive
power with nondeterministic and alternating mean-payoff automata: (a) there exists
a quantitative language that is expressible by mean-payoffautomaton expressions, but
cannot be expressed by alternating mean-payoff automata; and (b) there exists a quan-
titative language that is expressible by a nondeterministic mean-payoff automaton, but
cannot be expressed by a mean-payoff automaton expression.

Cut-point languages.Let L be a quantitative language overΣ. Given a thresholdη ∈
R, the cut-point languagedefined by(L, η) is the language (i.e., the set of words)
L≥η = {w ∈ Σω | L(w) ≥ η}. It is known for deterministic mean-payoff automata
that the cut-point language may not beω-regular, while it isω-regular if the thresholdη
is isolated, i.e. if there existsǫ > 0 such that|L(w)− η| > ǫ for all wordsw ∈ Σω [5].

We present the following results about cut-point languagesof mean-payoff automa-
ton expressions. First, we note that it is decidable whethera rational thresholdη is
an isolated cut-point of a mean-payoff automaton expression, using the value set (it
suffices to check thatη is not in the value set since this set is closed). Second, iso-
lated cut-point languages of mean-payoff automaton expressions arerobustas they re-
main unchanged under sufficiently small perturbations of the transition weights. This
result follows from a more general robustness property of weighted automata [5] that
extends to mean-payoff automaton expressions: if the weights in the automata occur-
ring in E are changed by at mostǫ, then the value of every word changes by at most



max(k, 1) · ǫwherek is the number of occurrences of thesum operator inE. Therefore
Dsup(LE, LF ǫ)→ 0 whenǫ→ 0 whereF ǫ is any mean-payoff automaton expression
obtained fromE by changing the weights by at mostǫ. As a consequence, isolated cut-
point languages of mean-payoff automaton expressions are robust. Third, the isolated
cut-point language of mean-payoff automaton expressions isω-regular. To see this, note
that every strongly connected component of the product automatonAE contributes with
a closed convex set to the value set ofE. Since themax-, min- andsum-projections
are continuous functions, they preserve connectedness of sets and therefore each sccC
contributes with an interval[mC ,MC ] to the value set ofE. An isolated cut-pointη
cannot belong to any of these intervals, and therefore we obtain a Büchi-automaton for
the cut-point language by declaring to be accepting the states of the product automaton
AE that belong to an sccC such thatmC > η. Hence, we get the following result.

Theorem 7. Let L be the quantitative language of a mean-payoff automaton expres-
sion. Ifη is an isolated cut-point ofL, then the cut-point languageL≥η is ω-regular.

7 Conclusion and Future Works

We have presented a new class of quantitative languages, themean-payoff automaton
expressionswhich are both robust and decidable (see Table 1), and for which the dis-
tance between quantitative languages can be computed. The decidability results come
with a high worst-case complexity, and it is a natural question for future works to either
improve the algorithmic solution, or present a matching lower bound. Another question
of interest is to find a robust and decidable class of quantitative languages based on the
discounted sum measure [3].
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games with imperfect information. InProceedings of CSL 2010: Computer Science Logic,
Lecture Notes in Computer Science. Springer-Verlag, 2010.To appear.

10. J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden. Metrics for labeled markov
systems. InProc. of CONCUR: Concurrency Theory, LNCS 1664, pages 258–273. Springer,
1999.

11. M. Droste and P. Gastin. Weighted automata and weighted logics.Th. C. Sci., 380(1-2):69–
86, 2007.

12. M. Droste, W. Kuich, and H. Vogler.Handbook of Weighted Automata. Springer-Verlag,
2009.

13. M. Droste and D. Kuske. Skew and infinitary formal power series. InICALP, LNCS 2719,
pages 426–438. Springer, 2003.

14. A. Ehrenfeucht and J. Mycielski. Positional strategiesfor mean payoff games.Int. Journal
of Game Theory, 8(2):109–113, 1979.

15. O. Kupferman and Y. Lustig. Lattice automata. InVMCAI, LNCS 4349, pages 199–213.
Springer, 2007.

16. M. O. Rabin. Probabilistic automata.Information and Control, 6(3):230–245, 1963.
17. M. P. Schützenberger. On the definition of a family of automata.Inf. and control, 4(2-3):245–

270, 1961.
18. E. Vidal, F. Thollard, C. de la Higuera, F. Casacuberta, and R. C. Carrasco. Probabilistic

finite-state machines-part I.IEEE Trans. Pattern Anal. Mach. Intell., 27(7):1013–1025, 2005.
19. U. Zwick and M. Paterson. The complexity of mean payoff games on graphs.Theor. Comput.

Sci., 158(1&2):343–359, 1996.



A Proofs of Section 3

Proof (of Lemma 1).LetA1, . . . , An be the deterministic weighted automata occurring
in E.

First, letx ∈ conv(SE). Then,x =
∑p

i=1 λivi wherev1, v2, . . . , vp are the vector
values of simple cyclesρ1, ρ2, . . . , ρp in AE = A1 × · · · ×An, and

∑p
i=1 λi = 1 with

λi ≥ 0 for all 1 ≤ i ≤ p.

For each of the above cyclesρi, let qi be a state occurring inρi, and letρi→j be a
simple path inAE connectingqi andqj (such paths exist for each1 ≤ i, j ≤ p because
AE has a unique strongly connected component). Letρ0→i be a simple path inAE

from the initial stateqI to qi. Note that the length ofρi andρi→j is at mostm = |AE |
the number of states inAE . We consider the following sequence of ultimately periodic
paths, parameterized byN ∈ N:

ρ̂N = ρ0→1 · (ρ
kN
1

1 · ρ1→2 · . . . · ρ
kN
p

p · ρp→1)
ω,

wherekNi =
⌊

N ·λi

|ρi|

⌋

for all 1 ≤ i ≤ p. Note thatρ̂N is the run of a lasso-wordwN in

AE , and thatN · λi − |ρi| ≤ |ρi| · kNi ≤ N · λi.

BecausêρN is ultimately periodic, the vector value ofρ̂N gives the value ofwN in
eachAi. It can be computed as

LimAvg(ρ̂N ) = Avg(ρ
kN
1

1 · ρ1→2 · . . . · ρ
kN
p

p · ρp→1)

and it can be bounded along each coordinatej = 1, . . . , n as follows (we denote byW
the largest weight inAE in absolute value):

LimAvgj(ρ̂N ) ≤

p
∑

i=1

kNi · |ρi| · Avgj(ρi) +

p
∑

i=1

|AE | ·W

p
∑

i=1

kNi · |ρi|+

p
∑

i=1

|AE |

≤

p
∑

i=1

N · λi · Avgj(ρi) + p ·m ·W

p
∑

i=1

N · λi − |ρi|+ |AE |

≤
N ·xj+p·m·W

N
= xj +

p·m·W

N



Analogously, we have

LimAvgj(ρ̂N ) ≥

p
∑

i=1

kNi · |ρi| · Avgj(ρi)−

p
∑

i=1

|AE | ·W

p
∑

i=1

kNi · |ρi|+

p
∑

i=1

|AE |

≥

p
∑

i=1

(N · λi − |ρi|) · Avgj(ρi)− p ·m ·W

p
∑

i=1

N · λi + |AE |

≥
N ·xj−2p·m·W

N+p·m = xj −
p·m·(2W−xj)

N+p·m

ThereforeLimAvgj(ρ̂N ) → xj whenN → ∞. This shows thatx is in the closure
of the vector set of lasso-words.

Second, we show that the value of lasso words according to each automatonAi form
a vector which belong toconv(SE) (which is equal to its closure). Letw = w1(w2)

ω be
a lasso-word. It is easy to see that there existsp1, p2 such thatp = p1+p2 ≤ m = |AE |
and the run ofAE onw1w

p
2 has the shape of a lasso (i.e., the automatonAE is in the

same state after readingw1w
p1

2 and after readingw1w
p
2), and thus the cyclic part of the

lasso can be decomposed into simple cycles inAE . The vector value ofw in eachAi is
the mean of the vector values of the simple cycles in the decomposition, and therefore
it belongs to the convex hullconv(SE). ⊓⊔

Proof (of Lemma 2).First, show thatVE ⊆ Fmin(conv(SE)). Let x ∈ VE be a tuple
of values of some wordw according to each automatonAi occurring inE (i.e.,xi =
LAi

(w) for all 1 ≤ i ≤ n). For ǫ > 0 and1 ≤ k ≤ n, we construct a lasso-wordwk
ǫ

such that|LAk
(wǫ) − xk| ≤ ǫ andLAi

(wǫ) ≥ xi − ǫ for all 1 ≤ i ≤ n with i 6= k. If
we denote byykǫ the vector value ofwk

ǫ , then the valuey = fmin({y
k
ǫ | 1 ≤ k ≤ n}) is

such that|yi − xi| ≤ ǫ for all 1 ≤ k ≤ n. By Lemma 1, the limit of the vector valueykǫ
whenǫ→ 0 is in conv(SE), and thusx ∈ Fmin(conv(SE)).

We give the construction ofwk
ǫ for k = 1. The construction is similar fork ≥ 2.

Consider the wordw and letρ be the suffix of the (unique) run ofAE onw which visits
only states in the strongly connected component ofAE . The value ofρ and the value of
w coincide (according to eachAi) since the mean-payoff value is prefix-independent.
SinceLAi

(w) = xi for all 1 ≤ i ≤ n, there exists a positionp ∈ N such that the mean
value of all prefixes ofρ of length greater thanp is at leastxi − ǫ according to each
Ai (since eachAi is aLimInfAvg-automata). SinceLA1

(w) = x1, there exist infinitely
many prefixesρ′ of ρ with mean value according toA1 close tox1, more precisely such
that |Avg1(ρ

′) − x1| ≤ ǫ. Pick such a prefixρ′ of length at leastmax(p, 1
ǫ
). Sinceρ′

is in the strongly connected component ofAE , we can extendρ′ to loop back to its
first state. This requires at mostm additional steps and givesρ′′. Note also thatρ′′ can
be reached from the initial state ofAE since it was the case ofρ, and thus it defines a



lasso-shaped run whose value can be bounded along the first coordinate as follows:

|Avg1(ρ
′′)− x1| ≤

∣

∣|ρ′|·Avg1(ρ
′)−|ρ′′|·x1

∣

∣+m·W

|ρ′′|

≤
|ρ′|·|Avg1(ρ

′)−x1|+(|ρ′′|−|ρ′|)·x1+m·W

|ρ′′|

≤ ǫ+
m·x1+m·W

|ρ′′| ≤ ǫ+
2m·W

|ρ′′|

≤ ǫ · (1 + 2m ·W )

Hence, the value along the first coordinate of the wordw1
ǫ corresponding to the runρ′′

tends tox1 when whenǫ → 0. We show similarly that the value ofw1
ǫ along the other

coordinatesi ≥ 2 is bounded from below byxi − ǫ · (1+ 2m ·W ). The result follows.

Now, we show thatFmin(conv(SE)) ⊆ VE . In this proof, we use the notation⊙
for iterated concatenationdefined as follows. Given nonempty wordsw1, w2 ∈ Σ+,
the finite wordw1 ⊙ w2 is w1 · (w2)

k wherek = |w1|
2. We assume that⊙ (iterated

concatenation) and· (usual concatenation) have the same precedence and that they are
left-associative. For example, the expressionab⊙a·b is parsed as(ab⊙a)·b and denotes
the wordabaaaab, while the expressionab ·a⊙b is parsed as(ab ·a)⊙b and denotes the
wordabab9. We use this notation for the purpose of simplifying the proof presentation,
and some care needs to be taken. For example, explicit use of concatenation (i.e.,a · b
vs.ab) makes a difference sinceab⊙ ab = (ab)5 while ab⊙ a · b = aba4b. Finally, we
use notations such as(w1 ·w2⊙)

ω to denote the infinite wordw1 ·w2 ⊙w1 ·w2 ⊙ . . . .
Usually we use the notationw1⊙w2 when the run ofAE onw1 ·w2 can be decom-

posed asρ1 ·ρ2 whereρi corresponds towi (i = 1, 2) andρ2 is a cycle in the automaton.
Then, the mean value of the run onw1 ⊙ w2 is

|ρ1| · Avg(ρ1) + |ρ1|
2 · |ρ2| · Avg(ρ2)

|ρ1|+ |ρ1|2 · |ρ2|

=
Avg(ρ1) + |ρ1| · |ρ2| · Avg(ρ2)

1 + |ρ1| · |ρ2|

= Avg(ρ2) +
Avg(ρ1)− Avg(ρ2)

1 + |ρ1| · |ρ2|

Therefore, since|Avg(ρ1)− Avg(ρ2)| ≤ 2W independently ofw1 andw2, a key prop-
erty of⊙ is that the mean value ofw1 ⊙ w2 can be made arbitrarily close toAvg(ρ2)
by takingw1 sufficiently long (since|w1| = |ρ1|).

We proceed with the proof of the lemma. Letx ∈ Fmin(conv(SE)) and let
y1, . . . , yn ben points inconv(SE) such that theith coordinate ofx andyi coincide
for all 1 ≤ i ≤ n, and thej th coordinate ofx is smaller than thej th coordinate ofyi for
all j 6= i. Suchyi’s exist by definition ofFmin though they may not be distinct.

By Lemma 1, for allǫ > 0 there exist lasso-wordsw1, . . . , wn such that‖vk−yk‖ ≤
ǫ wherevk = 〈LA1

(wk), . . . , LAn
(wk)〉 for each1 ≤ k ≤ n. For each1 ≤ i ≤ n, let



ρi be the cyclic part of the (lasso-shaped) run ofAE onwi, and letqi be the first state
in ρi. For each1 ≤ i, j ≤ n, defineρi→j the shortest path inAE from qi to qj , and let
ρ0→j be a simple path inAE from the initial stateqI to qj (such paths exist because
AE is strongly connected). Note thatAvgj(ρi) = LAj

(wi). We construct the following
infinite run inAE :

ρ̂ = ρ0→1 ⊙ (ρ1 · ρ1→2 ⊙ ρ2 · ρ2→3 ⊙ . . . ρn · ρn→1⊙)
ω

It is routine to show that̂ρ is a run ofAE , and we haveLimAvgj(ρ̂) = vjj because
(i) the cyclesρ1, . . . , ρn are asymptotically prevailing over the cycleρ1→2ρ2→3ρ̇n→1,
(ii) by the key property of⊙, there exist infinitely many prefixes in̂ρ such that the
average of the weight along thej th coordinate converges tovjj , and(iii) all cyclesρi
have average value greater thanvjj along thej th coordinate. Therefore, the liminf of
the averages along thej th coordinate (i.e.,LimAvgj(ρ̂)) is vjj , and the vector of values
of ρ̂ is thus at distanceǫ of x, that is‖LimAvg(ρ̂)− x‖ ≤ ǫ. The construction of̂ρ can
be adapted to obtainLimAvg(ρ̂) = x by changing thekth occurrence ofρi in ρ̂ by a
cycle corresponding to a lasso-wordwi obtained as above forǫ < 1

n
. ⊓⊔

B Proofs of Section 4

Proof (of Lemma 3).Let x = fmin(u
1, u2, . . . , un) and y = fmin(v

1, v2, . . . , vn)
whereu1, . . . , un, v1, . . . , vn ∈ X . Let z = λx + (1 − λ)y where0 ≤ λ ≤ 1 and
we prove thatz ∈ Fmin(X). Without loss of generality, assume thatxi = uii and
yi = vii for all 1 ≤ i ≤ n. Thenzi = λuii + (1− λ)vii for all 1 ≤ i ≤ n.

To show thatz ∈ Fmin(X), we give for each1 ≤ j ≤ n a pointp ∈ X such that
pj = zj andpk ≥ zk for all k 6= j. Takep = λuj + (1 − λ)vj . Clearlyp ∈ X since
uj , vj ∈ X andX is convex, and(i) wj = λujj + (1 − λ)vjj = zj , and(ii) for all

k 6= j, we havewk = λujk + (1 − λ)vjk ≥ λukk + (1 − λ)vkk = zk (sinceuk has the
minimal value onkth coordinate amongu1, . . . , un, similarly for vk). ⊓⊔

Proof (of Proposition 1).By Lemma 3, we already know thatconv(Fmin(S)) ⊆
Fmin(conv(S)) (the setFmin(conv(S)) is convex, and sinceFmin is a monotone opera-
tor andS ⊆ conv(S), we haveFmin(S) ⊆ Fmin(conv(S)) and thusconv(Fmin(S)) ⊆
Fmin(conv(S))).

We prove thatFmin(conv(S)) ⊆ conv(Fmin(S)) if S ⊆ R2. Let x ∈
Fmin(conv(S)) and show thatx ∈ conv(Fmin(S)). Sincex ∈ Fmin(conv(S)), there
existp, q ∈ conv(S) such thatx = fmin(p, q), and assume thatp1 < q1 andp2 > q2
(other cases are symmetrical, or imply thatx = p orx = q for which the result is trivial
as thenx ∈ conv(S)). We show thatx = (p1, q2) is in the convex hull of{p, q, r}
wherer = fmin(u, v) andu ∈ S is the point inS with smallest first coordinate, and
v ∈ S is the point inS with smallest second coordinate, so thatr1 = u1 ≤ p1 and
r2 = v2 ≤ q2. Simple computations show that the equationx = λp+µq+(1−λ−µ)r
has a solution with0 ≤ λ, µ ≤ 1 and the result follows. ⊓⊔

Proof (of Lemma 4).By definition, we haveFn(S) ⊆ F (S). For a pointx = f(P )
for a finite subsetP ⊆ S, choose one point each that contributes to a coordinate and



obtain a finite setP ′ ⊆ P of at mostn points such thatx = f(P ). This shows that
F (S) ⊆ Fn(S).

For the second part, letP = {p1, p2, . . . , pk} with k ≤ n, and letx = f(P ). Let
x1 = f(p1, p2), and fori > 1 we definexi = f(xi−1, pi+1). We havex = xn−1

(e.g.,f(p1, p2, p3) = f(f(p1, p2), p3)). Thus we have obtainedx by applyingf on two
points forn− 1 times, and it follows thatFn(S) ⊆ F

n−1
2 (S). ⊓⊔

Proof (of Theorem 2).We show that the constructionγ satisfies conditionC1 andC2.
Let Y ′ = γ(Y ). Clearly the setY ′ is a finite subset ofconv(Y ) and thus ConditionC1
holds and we now show that ConditionC2 is satisfied.

SinceF2(conv(Y )) is convex (by Lemma 3), it suffices to show that all corners
of F2(conv(Y )) belong toconv(F (Y ′)). Consider a pointx = f(p, q) wherep, q ∈
conv(Y ). We will show that eitherp, q ∈ Y ′ or x cannot be a corner ofconv(F2(Y )).
It will follow that F2(conv(Y )) ⊆ conv(F (Y ′)). Our proof will be an induction on
the number of coordinates such that there is atie (tie is the case where the value of a
coordinate ofp andq coincide). If there aren ties, then the pointsp andq are equal and
we havex = p = q, and this case is trivial sinceY ⊆ Y ′. So the base case is done.
By inductive hypothesis, we assume thatk+1-ties yield the result and we consider the
case fork-ties. Without loss of generality we consider the followingcase:

p1 = q1; p2 = q2; · · · ; pk = qk;

pk+1 < qk+1; pk+2 < qk+2; · · · ; pℓ < qℓ;

pℓ+1 > qℓ+1; pℓ+2 > qℓ+2; · · · ; pn > qn;

i.e, the firstk coordinates are ties, thenp is the sole contributor to the coordinatesk+1
to ℓ, and for the rest of the coordinatesq is the sole contributor. Below we will use the
expressioninfinitesimal changeto mean change smaller thanη = mink<i≤n|pi − qi|
(noteη > 0). Consider the planeΠ with first k coordinates constant (given byx1 =
p1 = q1;x2 = p2 = q2; · · · ;xk = pk = qk). We intersect the planeΠ with conv(Y )
and we obtain a polytope. First we consider the case whenp andq are not a corner of
the polytope and then we consider whenp andq are corners of the polytope.

1. Case 1:p is not a corner of the polytopeΠ ∩ conv(Y ). We draw a line inΠ with
p as midpoint such that the line is contained inΠ ∩ conv(Y ). This ensures that the
coordinates1 to k remain fixed along the line.
(a) If any one of coordinates fromk + 1 to ℓ changes along the line, then by

infinitesimal change ofp along the line, we ensure thatx moves along a line.
(b) Otherwise coordinatesk + 1 to ℓ remain constant; and we movep along the

line in a direction such that at least one of the remaining coordinates (sayj)
decreases, and decreasingj we have one of the following three cases:

i. we go down toqj and then we have one more tie and we are fine by induc-
tive hypothesis;

ii. we hit a face of the polytopeΠ ∩ conv(Y ) and then we change direction
of the line (while staying in the hit face) and continue;

iii. we hit a corner of the polytopeΠ ∩ conv(Y ) and thenp becomes a corner
which will be handled in Case 3.



2. Case 2:q is not a corner of the polytopeΠ ∩ conv(Y ). By symmetric analysis to
Case 1 either we are done orq becomes a corner of the polytopeΠ ∩ conv(Y ).

3. Case 3:p and q are corners of the polytopeΠ ∩ conv(Y ). If Π is supported by
Y , then bothp, q ∈ Y ′ and we are done. OtherwiseΠ is not supported byY , and
now we move along lines withp andq as midpoints and slide the planeΠ . In other
words we movep andq alone lines and move such that the ties remain the same.
We also ensure infinitesimal changes along the line so that the contributor of each
coordinate is the same as original. Let

p(λ) = p+ λ · v; q(µ) = q + µ ·w;

be the lines wherev andw are directions. By ties for1 ≤ i ≤ k we haveλ · vi =
µ · wi. Then for infinitesimal change the pointx moves as follows:

x(λ, µ) = f(p(λ), q(µ)))

= (p1 + λ · v1, p2 + λ · v2, · · · pℓ + λ · vℓ, qℓ+1 + µ · wℓ+1, · · · , qn + µ · wn)

= (p1 + λ · v1, p2 + λ · v2, · · · pℓ + λ · vℓ, qℓ+1 + λ · v1
w1
· wℓ+1, · · · , qn + λ · v1

w1
· wn)

It follows thatxmoves along the linex+λ ·z where for1 ≤ i ≤ ℓ we havezi = vi
and forℓ < i ≤ n we havezi =

v1
w1
· wi; note thatw1 > 0 since the plane slides.

Sincex moves along a line it cannot be an extreme point.

This completes the proof. Also note that in the special case when there is no tie at all
then we do not need to consider Case 3 as thenΠ = Rn and thusp andq are corners
of conv(Y ) and hence inY ′.

Analysis. Given a set ofm points, the constructionγ yield at mostm2 · 2n points.
The argument is as follows: consider a pointp, and then we consider allk-dimensional
coordinates planes throughp. There are

(

n
k

)

possiblek-dimensional coordinate plane
throughp, and summing over allk we get that there are at most2n coordinate planes
that we consider throughp. The interesection of a coordinate plane throughp with the
convex hull ofm points gives at mostm new corner points, and this claim is as proved
follows: the new corner points can be constructed as the shadow of the convex hull
on the plane, and since the convex hull hasm corner points the claim follows. Thus it
follows that the construction yield at mostm2 ·2n new points, and thus we have at most
m+m2 · 2n ≤ 2 ·m2 · 2n points. If the setS hasm points, applying the construction
iteratively forn times we obtain the desired setS′ that has at mostm2n · 2n

2+n points.
Since convex hull of a set ofℓ points inn dimension can be constructed inℓO(n) time,
it follows that the setS′ can be constructed inmO(n·2n) · 2O(n3) time. ⊓⊔

Proof (Theorem 5 (Sketch)).We will show the undecidability for the quantitative uni-
versality problem for nondeterministic mean-payoff automata. It will follow that the
quantitative language inclusion and quantitative language equivalence problem are un-
decidable for both nondeterministic and alternating automata. The quantitative uni-
versality for nondeterministic automata can be reduced to the quantitative emptiness
as well as the quantitative universality problem for alternating mean-payoff automata.
Hence to complete the proof we derive the undecidability of quantitative universality
for nondeterministic mean-payoff automata from the recentresults of [9].



The results of [9] show that in two-playerblind imperfect-information mean-payoff
games whether there is a player 1 blind-strategyσ such that against all player 2 strate-
giesτ the mean-payoff valueP (σ, τ) of the play givenσ andτ is greater thanν is unde-
cidable. The result is a reduction from the halting problem of two-counter machines, and
we observe that the reduction has the following property: for threshold valueν = 0, if
the two-counter machine halts then player 1 has a blind-strategy to ensure payoff greater
thanν, and otherwise against every blind-strategy for player 1, player 2 can ensure that
the payoff for player 1 is at mostν = 0. Thus from the above observation about the
reduction of [9] it follows that in two-player blind imperfect-information mean-payoff
games, given a thresholdν, the decision problem whether

∃σ. inf
τ
P (σ, τ) > ν

whereσ ranges over player 1 blind-strategies, andτ over player 2 strategies, is unde-
cidable and dually the following decision problem whether

∀σ. sup
τ
P (σ, τ) ≥ ν

is also undecidable. The universality problem for nondeterministic mean-payoff au-
tomata is equivalent to two-player blind imperfect information mean-payoff games
where the choice of words represents the blind-strategies for player 1 and resolving
nondeterminism corresponds to strategies of player 2. It follows that for nondetermin-
istic mean-payoff automataA, given a thresholdν, the decision problem whether

for all wordsw. LA(w) ≥ ν

is undecidable. ⊓⊔

C Proofs of Section 6

Proof (of Theorem 6).We prove the two assertions.

1. The results of [4] shows that there exists deterministic mean-payoff automataA1

andA2 such thatsum(A1, A2) cannot be expressed by alternating mean-payoff
automata. Hence the result follows.

2. We now show that there exist quantitative languages expressible by nondetermin-
istic mean-payoff automata that cannot be expressed by mean-payoff automaton
expressions. Consider the languageLF of finitely manya’s, i.e., for an infinite
wordw we haveLF (w) = 1 if w contains finitely manya’s, andLF (w) = 0 oth-
erwise. It is easy to see that the nondeterministic mean-payoff automaton (shown
in Fig. 2) definesLF .
We now show thatLF is not expressible by a mean-payoff automaton expression.
Towards contradiction, assume that the expressionE defines the languageLF , and
let AE be the synchronized product of the deterministic automata occurring inE
(assumeAE hasn states). Consider a reachable bottom strongly connected com-
ponentV of the underlying graph ofAE , and letC be ab-cycle inV . We construct



q0 q1 sink

a, b, 0

a, b, 0

b, 1

a, 0

a, b, 0

Fig. 2. A nondeterministic limit-average automaton.

an infinite wordw with infinitely manya’s as follows:(i) start with a prefixw1

of length at mostn to reachC, (ii) loop k times through the b-cycleC (initially
k = 1), (iii) read an ‘a’ and then a finite word of length at mostn to reachC
again (this is possible sinceC is in a bottom s.c.c.), and proceed to step(ii) with
increased value ofk.
The cycleC corresponds to a cycle in each automaton ofE, and since the value
of k is increasing unboundedly, the value ofw in each automaton ofE is given
by the average of the weights along theirb-cycle after readingw1. Therefore, the
value ofw and the value ofw1b

ω coincide in each deterministic automaton ofE.
As a consequence, their value coincide inE itself. This is a contradiction since
LF (w) = 0 whileLF (w1b

ω) = 1.
⊓⊔


