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Abstract. Quantitative languages are an extension of boolean laegtthgt as-
sign to each word a real number. Mean-payoff automata ate fiitomata with
numerical weights on transitions that assign to each iefipéith the long-run av-
erage of the transition weights. When the mode of branchiniyeoautomaton is
deterministic, nondeterministic, or alternating, theresponding class of quan-
titative languages is na@bbustas it is not closed under the pointwise operations
of max, min, sum, and numerical complement. Nondeterniinéstd alternating
mean-payoff automata are ri¢cidableeither, as the quantitative generalization
of the problems of universality and language inclusion idaaidable.

We introduce a new class of quantitative languages, defiyechdan-payoff
automaton expressionsvhich is robust and decidable: it is closed under the
four pointwise operations, and we show that all decisiorblamms are decidable
for this class. Mean-payoff automaton expressions subsieteministic mean-
payoff automata, and we show that they have expressive gas@mparable to
nondeterministic and alternating mean-payoff automat.also present for the
first time an algorithm to compute distance between two dizine languages,
and in our case the quantitative languages are given as pagarff automaton
expressions.

1 Introduction

Quantitative languagek are a natural generalization of boolean languages thajrassi
to every wordw a real numbet (w) € R instead of a boolean value. For instance,
the value of a word (or behavior) can be interpreted as theuaitnaf some resource
(e.g., memory consumption, or power consumption) needpdbtduce it, or bound the
long-run average available use of the resource. Thus datveilanguages can specify
properties related to resource-constrained programsaarnichplementatiorl. 4 satis-
fies (or refines) a specificatiaig if L4(w) < Lp(w) for all wordsw. This notion of
refinement is @uantitative generalization of language inclusj@md it can be used to
check for example if for each behavior, the long-run averagponse time of the sys-
tem lies below the specified average response requirementeHt is crucial to identify
some relevant class of quantitative languages for whighghestion is decidable. The
other classical decision questions such as emptinesgnsality, and language equiva-
lence have also a natural quantitative extension. For ebeit@quantitative emptiness
problemasks, given a quantitative languag@nd a threshold € Q, whether there ex-
ists some wordv such thatl(w) > v, and thequantitative universality problerasks
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whetherL (w) > v for all wordsw. Note that universality is a special case of language
inclusion (wherel 4 (w) = v is constant).

Weightedmean-payoff automataresent a nice framework to express such quanti-
tative properties [3]. A weighted mean-payoff automatoa fimite automaton with nu-
merical weights on transitions. The value of a wards the maximal value of all runs
overw (if the automaton is nondeterministic, then there may beymrans overw),
and the value of a run is the long-run average of the weights that appear along
A mean-payoff extension to alternating automata has besmtiest in [4]. Determinis-
tic, nondeterministic and alternating mean-payoff autianaae three classes of mean-
payoff automata with increasing expressive power. Howawvene of these classes is
closed under the four pointwise operations of max, min (Wigeneralize union and
intersection respectively), numerical complemeand sum (see Table 1). Determinis-
tic mean-payoff automata are not closed under max, min, amd’s]; nondeterministic
mean-payoff automata are not closed under min, sum and eomapit [5]; and alter-
nating mean-payoff automata are not closed under sum [4jcélaeone of the above
classes isobustwith respect to closure properties.

Moreover, while deterministic mean-payoff automata ewjegidability of all quan-
titative decision problems [3], the quantitative languagdusion problem is undecid-
able for nondeterministic and alternating mean-payofémata [9], and thus also all
decision problems are undecidable for alternating megwofpautomata. Hence al-
though mean-payoff automata provide a nice framework toesgquantitative proper-
ties, there is no known class which is both robust and detddabe Table 1).

In this paper, we introduce a new class of quantitative laggs that are defined
by mean-payoff automaton expressioAs expression is either a deterministic mean-
payoff automaton, or it is the max, min, or sum of two meangfagutomaton ex-
pressions. Since deterministic mean-payoff automata lased under complement,
mean-payoff automaton expressions form a robust classstoblitsed under max, min,
sum and complement. We show that (a) all decision probleman(ifative empti-
ness, universality, inclusion, and equivalence) are @dd@for mean-payoff automaton
expressions; (b) mean-payoff automaton expressions acemiparable in expressive
power with both the nondeterministic and alternating mpayeff automata (i.e., there
are quantitative languages expressible by mean-payafh@aton expressions that are
not expressible by alternating mean-payoff automata, hacetare quantitative lan-
guages expressible by nondeterministic mean-payoff aat@that are not expressible
by mean-payoff automata expressions); and (c) the preseofi cut-point languages
(i.e., the sets of words with value above a certain thregHoltddeterministic automata
carry over to mean-payoff automaton expressions, maimcth-point language is-
regular when the threshold is isolated (i.e., some neeigditmal around the threshold
contains no word). Moreover, mean-payoff automaton exgiwas can express all ex-
amples in the literature of quantitative properties usirepmpayoff measure [1, 5, 6].
Along with the quantitative generalization of the claskecision problems, we also
consider the notion afistancebetween two quantitative languages and[ g, defined
assup,,|L 4 (w)—L g (w)|. When quantitative language inclusion does not hold batwee
an implementatiorL. 4 and a specificatioll g, the distance is a relevant information to

4 The numerical complement of a quantitative langualjés— L.



Closure properties Decision problems

max | min | sum | comp.| empt.| univ. | incl. | equiv.
Deterministic x | x| x Gl vl v v
Nondeterministic v X X X v X X X
Alternating v | v | x VI % x | x X
Expressions vV vV |V v v v |V v

Table 1. Closure properties and decidability of the various clasfesiean-payoff automata.
Mean-payoff automaton expressions enjoy fully positiasare and decidability properties.

evaluate how close they are, as we may accept implemergdtiahoverspend the re-
source but we would prefer the least expensive ones. Wergrdeefirst algorithm to
compute the distance between two quantitative languageshow that the distance
can be computed for mean-payoff automaton expressions.

Our approach to show decidability of mean-payoff automatqressions relies on
the characterization and algorithmic computation of tHaessef{ Lg(w) | w € X}
of an expressioiiy, i.e. the set of all values of words accordingfoThe value set can
be viewed as an abstract representation of the quantitatigeiagel. z, and we show
that all decision problems, cut-point language and digtawenputation can be solved
efficiently once we have this set.

First, we present a precise characterization of the valtiéoseguantitative lan-
guages defined by mean-payoff automaton expressions.tinydar, we show that it is
not sufficient to construct the convex halinv(Sg) of the set of the values of simple
cycles in the mean-payoff automata occurringfinbut we need essentially to apply
an operatorF,,,;,, () which given a setZ C R™ computes the set of poinis € R
that can be obtained by taking pointwise minimum of eachdioate of points of a set
X C Z. We show that while we need to compute the Bgt= F},in(conv(Sg)) to
obtain the value set, and while this set is always conves, it always the case that
Fiin(conv(Sg)) = conv(Fumin(SE)) (which would immediately give an algorithm to
computeVz). This may appear counter-intuitive because the equatitsishin R? but
we show that the equality does not holdRA (Example 2).

Second, we provide algorithmic solutions to comphitg, (conv(.S)), for a finite set
S. We first present a constructive procedure that giveonstructs a finite set of points
S’ such thatonv(S’) = Fuin(conv(S)). The explicit construction presents interesting
properties about the sét,;,, (conv(.S)), however the procedure itself is computationally
expensive. We then present an elegant and geometric cotistrof F,,;, (conv(S)) as
a set of linear constraints. The computationff;, (conv(.S)) is a new problem in
computational geometry and the solutions we present cautaf mdependent interest.
Using the algorithm to comput&,,;,,(conv(.S)), we show that all decision problems for
mean-payoff automaton expressions are decidable. Duekoofaspace, most proofs
are given in the appendix.

5 Closure under complementation holds becauseinfAvg-automata andLimSupAvg-
automata are dual. It would not hold if onlyimInfAvg-automata (or onlyLimSupAvg-
automata) were allowed.



Related worksQuantitative languages have been first studied over finitedsvin
the context of probabilistic automata [16] and weightedmata [17]. Several works
have generalized the theory of weighted automata to infimiteds (see [13, 11,15, 2]
and [12] for a survey), but none of those have considered meagaff conditions. Ex-
amples where the mean-payoff measure has been used to/dpegirun behaviours of
systems can be found in game theory [14, 19] and in Markosa®tprocesses [7]. The
mean-payoff automata as a specification language have semdestigated in [3, 5,
4], and extended in [1] to construct a new class of (non-qtaive) languages of infi-
nite words (the multi-threshold mean-payoff languagelsjaimed by applying a query
to a mean-payoff language, and for which emptiness is dblgdé turns out that a
richer language of queries can be expressed using mearfifpay@maton expressions
(together with decidability of the emptiness problem). Aailed comparison with the
results of [1] is given in Section 5. Moreover, we providealthmic solutions to the
quantitative language inclusion and equivalence probkemdsto distance computation
which have no counterpart for non-quantitative languaBesated notions of metrics
have been addressed in stochastic games [8] and prohialplistesses [10, 18].

2 Mean-Payoff Automaton Expressions

Quantitative languages A quantitative languagé over a finite alphabeY is a func-

tion L : X — R. Given two quantitative languagés and L, over X', we denote by
max (L1, Ls) (resp.,min(Ly, L), sum(Ly, L2) and —L;) the guantitative language
that assignsnax(Li(w), La(w)) (resp.,min(L;(w), La(w)), Li(w) + La(w), and
—L+(w)) to each wordw € X“. The quantitative languageL is called thecomple-
mentof L. Themax andmin operators for quantitative languages correspond respec-
tively to the least upper bound and greatest lower boundfopbintwise ordex such
thatL; < Lo if Ly (w) < Lo(w) forallw € X¥. Thus, they generalize respectively the
union and intersection operators for classical booleaguages.

Weighted automata.A Q-weighted automatois a tupleA = (Q, qr, X, §, wt), where

— @ is afinite set of stateg; € @ is the initial state, and’ is a finite alphabet;

— 6 C Q x X xQis afinite set of labelled transitions. We assume ghattotal, i.e.,
forall ¢ € Q ando € X, there existg’ such thatq, o, ¢’) € ;

— wt : 6 — Qis aweightfunction, wherd) is the set of rational numbers. We assume
that rational numbers are encoded as pairs of integers anpin

We say that4 is deterministiaf for all ¢ € Q ando € ¥, there existgq, 0, ¢’) € ¢ for
exactly oneg’ € Q. We sometimes call automatendeterministito emphasize that
they are not necessarily deterministic.

Words and runs. A word w € X is an infinite sequence of letters froh A lasso-
word w in X is an ultimately periodic word of the form; - w§ wherew, € X* is a
finite prefix, andwy € X1 is nonempty. Arun of A over an infinite wordy = o105 ...

is an infinite sequence= qgo1q102 ... Of states and letters such tha) 4, = ¢;, and
(%) (¢iy 041, qiy1) € 6 foralli > 0. We denote byt(r) = vgvy ... the sequence of
weights that occur im wherev; = wt(g;, 041, ¢;+1) forall ¢ > 0.



Quantitative language of mean-payoff automataThe mean-payoff valuéor limit-
average) of a sequence= vgv; ... of real numbers is either

n—1 n—1
1 1
LimInfAvg(v) = 1inrgi£f — ;:0 v;, Or  LimSupAvg(v) = hgl—i%p . ;_0 vj.

Note that if we delete or insert finitely many values in an inéisequence of numbers,
its limit-average does not change, and if the sequenceiisaikly periodic, then the
LimInfAvg andLimSupAvg values coincide (and correspond to the mean of the weights
on the periodic part of the sequence).

ForVal € {LimInfAvg, LimSupAvg}, the quantitative language, of A is defined
by L 4(w) = sup{Val(wt(r)) | is arun ofA overw} for all w € X*. Accordingly,
the automatonl and its quantitative languade, are called_imInfAvg or LimSupAvg.
Note that for deterministic automata, we halg(w) = Val(wt(r)) wherer is the
unique run ofA overw.

We omit the weight functiomt when it is clear from the context, and we write
LimAvg when the value according toimInfAvg and LimSupAvg coincide (e.g., for
runs with a lasso shape).

Decision problems and distanceWe consider the following classical decision prob-
lems for quantitative languages, assuming an effectivegmtation of quantitative lan-
guages (such as mean-payoff automata, or automaton eiqmedgfined later). Given
a gquantitative languagk and a threshold € Q, the quantitative emptiness problem
asks whether there exists a warde X“ such thatL(w) > v, and theguantitative
universality problenasks whethef (w) > v for all wordsw € X«.

Given two quantitative languagds and Ls, the quantitative language-inclusion
problemasks whethel; (w) < Lq(w) for all wordsw € X*, and thequantitative
language-equivalence probleasks whethel; (w) = Ly(w) for all wordsw € X«.
Note that universality is a special case of language inciusiherel; is constant.
Finally, thedistancebetweenL, andLs is Dsup(L1, L2) = sup,, ¢ sw|L1(w) — La(w)].

It measures how close is an implementationas compared to a specificatidn.

It is known that quantitative emptiness is decidable for deiarministic mean-
payoff automata [3], while decidability was open for alting mean-payoff automata,
as well as for the quantitative language-inclusion prob&dmondeterministic mean-
payoff automata. Recent undecidability results on gamdls iwiperfect information
and mean-payoff objective [9] entail that these problenesuardecidable (see Theo-
rem5).

Robust quantitative languagesA classQ of quantitative languages rsbustif the
class is closed undenax, min,sum and complementation operations. The closure
properties allow quantitative languages from a robustsctasbe described composi-
tionally. While nondeterministitimInfAvg- andLimSupAvg-automata are closed un-
der themax operation, they are not closed undeim and complement [5]. Alternating
LimInfAvg- and LimSupAvg-automaté are closed undemax and min, but are not
closed under complementation andn [4] We define arobust class of quantitative

6 See [4] for the definition of alternatirigmInfAvg- andLimSupAvg-automata that generalize
nondeterministic automata.



languages for mean-payoff automata which is closed undet, min, sum, and com-
plement, and which can express all natural examples of gagave languages defined
using the mean-payoff measure [1, 5, 6].

Mean-payoff automaton expressionsA mean-payoff automaton expressiéhs ob-
tained by the following grammar rule:

E:=A|max(E,E) | min(E, E) | sum(E, E)

whereA is adeterministid.imInfAvg- or LimSupAvg-automaton. The quantitative lan-
guagelL p of a mean-payoff automaton expressighis Ly = L, if E = Ais a
deterministic automaton, anly = op(Lg,,Lg,) if E = op(E1, Ey) for op €
{max, min, sum}. By definition, the class of mean-payoff automaton expoesss
closed undemax, min andsum. Closure under complement follows from the fact that
the complement ofnax(E1, E2) is min(—F1, —FE»), the complement afin(E,, Es)

is max(—FE,,—FE>), the complement ofum(F1, E2) is sum(—FE,—E>), and the
complement of a deterministidmInfAvg-automaton can be defined by the same au-
tomaton with opposite weights and interpreted dsmaSupAvg-automaton, and vice
versa, since- lim sup(vg, v1, ...) = liminf(—vo, —v1,...). Note that arbitrary linear
combinations of deterministic mean-payoff automaton eggions (expressions such
asc1 E1 + coEs wherecy, co € Q are rational constants) can be obtained for free since
scaling the weights of a mean-payoff automaton by a positicéor |¢| results in a
quantitative language scaled by the same factor.

3 The Vector Set of Mean-Payoff Automaton Expressions

Given a mean-payoff automaton expressin let A;,..., A, be the determin-
istic weighted automata occurring i&. The vector setof E is the setVy =
{{La,(w),...,La,(w)) € R" | w e X} of tuples of values of words according
to each automator;. In this section, we characterize the vector set of meampay
automaton expressions, and in Section 4 we give an algddthracedure to compute
this set. This will be useful to establish the decidabilifyal decision problems, and
to compute the distance between mean-payoff automatoessipns. Given a vector
v € R, we denote byjv|| = max; |v;| theco-normof v.

Thesynchronized produdif Ay, . .., A, such thatd; = (Q;,q}, X, 6;, wt;) is the
Q"-weighted automatod g = Ay x -+ x A, = (Q1 X+ -xQn, (¢}, ..., q}), X, 5, wt)
such thatt = ((q1,...,qn),0,(¢4,--.,q,)) € 0 if t; := (q,0,q,) € §; for all
1 <i < n,andwt(t) = (wti(t1),...,wt,(t,)). In the sequel, we assume that All's
are deterministit.imInfAvg-automata (hencei g is deterministic) and that the under-
lying graph of the automatoA g has only one strongly connected component (scc). We
show later how to obtain the vector set without these regiris.

For each (simple) cyclg in Ag, let thevector valueof p be the mean of the tuples
labelling the edges qf, denotedAvg(p). To each simple cyclg in Ag corresponds a
(not necessarily simple) cycle in eadh, and the vector valu@s, . . . , v, ) of p contains
the mean value; of p in eachA;. We denote bys¢ the (finite) set of vector values of
simple cycles in . Letconv(Sg) be the convex hull obg.



Fig. 1. The vector set off = max (A1, A2) iS Fiin(conv(Sg)) 2 conv(SE).

Lemma 1. Let F be a mean-payoff automaton expression. Thecset(Sg) is the
closure of the sef Lz (w) | w is a lasso-worg.

The vector set of contains more values than the convex hkualiv(Sg), as shown
by the following example.

Example 1.Consider the expressiofi = max(A;, A2) whereA; and A, are deter-
ministic LimInfAvg-automata (see Fig. 1). The produtt = A; x As has two sim-
ple cycles with respective vector valugls 0) (on letter @’) and (0, 1) (on letter 9’).
The setd = conv(Sg) is the solid segment on Fig. 1 and contains the vector values
of all lasso-words. However, other vector values can beingta consider the word
w = a™b"2q"p" ... wheren; = 1 andn; 1 = (nq +---+n;)? foralli > 1. ltis
easy to see that the valuewfaccordmg tad; is0 because the average numbea’efm
the prefixes" 162 . .. a™ b™+! for i odd is smaller thap flin:ﬂ?ﬂ = T
which tends td Whenz — 00. SinceA; is aleIanvg -automaton, the value af is
0in Ay, and by a symmetric argument the valuewfs also0 in As. Therefore the
vector (0, 0) is in the vector set of2. Note thatz = (0, 0) is the pointwise minimum
of x = (1,0) andy = (0,1),i..(0,0) = fmin((1,0),(0,1)) wherez = fuin(z,y) if

z1 = min(z1,y1) andze = min(y1, y=2). In fact, the vector set is the whole triangular
regionin Fig. 1,i.eVg = { fmin(z,y) | ,y € conv(Sg)}.

We generalizefy,;, to finite sets of points®? C R" in n dimensions as fol-
lows: fmin(P) € R™ is the pointp = (p1,p2,...,ps) such thatp; is the minimum
i coordinate of the points itP, for 1 < i < n. For arbitraryS C R”, define
Fnin(S) = {fmin(P) | P is afinite subset of'}. As illustrated in Example 1, the next
lemma shows that the vector 9ét is equal toF,,;,, (conv(Sg)).

Lemma 2. Let £ be a mean-payoff automaton expression built from detestini
LimInfAvg-automata, and such that g has only one strongly connected component.
Then, the vector set & is Vg = Fiin(conv(Sg)).

For a general mean-payoff automaton expressior(with both deterministic
LimInfAvg- andLimSupAvg automata, and with multi-scc underlying graph), we can
use the result of Lemma 2 as follows. We replace ekdieiSupAvg automatonA;
occurring in E by the LimInfAvg automatonA/ obtained fromA; by replacing ev-
ery weightwt by —wt. The duality ofliminf andlimsup yields Ly, = —Ly,. In



each strongly connected componénof the underlying graph ofiz, we compute
Ve = Fin(conv(Sc)) (WhereSc is the set of vector values of the simple cycle€)n
and apply the transformatian — —z; on every coordinatéwhere the automaton;
was originally aLimSupAvg automaton. The union of the sdt§, Ve whereC ranges
over the strongly connected componentsigf gives the vector set df.

Theorem 1. Let ¥ be a mean-payoff automaton expression built from detestiini
LimInfAvg-automata, and leZ be the set of strongly connected componentd jin
For a strongly connected componehtet S denote the set of vector values of the
simple cycles i€. The vector set aF is Vi = (Joc z Fuin(conv(Se)).

4 Computation of F,;, (conv(S)) for a Finite Set .S

It follows from Theorem 1 that the vector sEf; of a mean-payoff automaton expres-
sion E can be obtained as a union of sétg;,(conv(S)), whereS C R" is a fi-
nite set. However, the sebnv(S) being in general infinite, it is not immediate that
Finin(conv(S)) is computable. In this section we consider the problem of mating
Finin(conv(S)) for a finite setS. In subsection 4.1 we present an explicit construction
and in subsection 4.2 we give a geometric construction ofséieas a set of linear
constraints. We first present some properties of thé'ggf(conv(.S)).

Lemma 3. If X is a convex set, theR,,,;, (X ) is convex.

By Lemma 3, the sek,,,;,,(conv(.S)) is convex, and sincé),,;, is a monotone oper-
ator andS C conv(.S), we haveF i, (S) C Fiin(conv(S)) and thusonv(F,in (S)) C
Fhin(conv(S)). The following proposition states that in two dimensions ébove sets
coincide.

Proposition 1. LetS C R? be a finite set. Therpnv(Fiuin(S)) = Fuin(conv(S)).

We show in the following example that in three dimensionseheve proposition
does not hold, i.e., we show thBY,;,,(conv(Sg)) # conv(Fuin(SEg)) in R3.

Example 2.We show that in three dimension there is a finite $etsuch that
Fin(conv(S)) € conv(Fnin(S)). Let S = {q,r,s} with ¢ = (0,1,0), » =
(—-1,-1,1), ands = (1,1,1). Then fuin(r,s) = 7, fmin(q,7,8) = fmin(q,7) =
t = (—1,-1,0), and fuin(g,s) = ¢. ThereforeFy,in(S) = {q,r,s,t}. Consider
p = (r+s)/2 = (0,0,1). We havep € conv(S) and fmin(p,q) = (0,0,0).
Hence(0,0,0) € Fpin(conv(S)). We now show tha{0,0,0) does not belong to
conv(Fmin(9)). Considen = oy -q+ -+ s+aq-t such that in conv(Fpin (S)).
Since the third coordinate is non-negative gor, s, andt, it follows that if o, > 0 or
as > 0, then the third coordinate of is positive. Ifas = 0 anda,. = 0, then we have
two cases: (a) itvy > 0, then the first coordinate of is negative; and (b) it = 0,
then the second coordinatewfs 1. It follows (0, 0, 0) is not inconv(Fyin(S)). O



4.1 Explicit construction

Example 2 shows that in genet&l,;, (conv(S)) Z conv(Fnin(S)). In this section we
present an explicit construction that given a finite Setonstructs a finite sef’ such
that (a)S C S’ C conv(S) and (b)Fiyin (conv(S)) C conv(Fiyin(S”)). It would follow
that Finin (conv(S)) = conv(Fnin(S")). Since convex hull of a finite set is computable
and Fin (57) is finite, this would give us an algorithm to compuig;,, (conv(.S)). For
simplicity, for the rest of the section we wrifé for F,,,;, and f for fi, (i.e., we drop
the min from subscript). Recall thak'(S) = {f(P) | P finite subset of5} and let
F;(S) = {f(P) | P finite subset of5 and|P| < i}. We considelS C R".

Lemma 4. LetS C R™. Then,F(S) = F,(S) andF,(S) C Fy~1(S).

Iteration of a construction ~. We will present a construction with the following
properties: input to the construction is a finite 32bf points, and the outpuf(Y)
satisfies the following properties

1. (Condition C1). v(Y") is finite and subset afonv(Y").
2. (Condition C2). Fy(conv(Y)) C conv(F(v(Y))).

Before presenting the constructignwe first show how to iterate the construction to
obtain the following result: given a finite set of points we construct a finite set of
points X’ such thatF’(conv(X)) = conv(F(X")).

Iterating . Consider a finite set of point¥, and letX, = X andX; = v(Xj). Then
we have

conv(X1) C conv(conv(Xy)) (since by ConditiorC1 we haveX; C conv(Xj))
and henceonv(X;) C conv(Xy); and
Fy(conv(Xp)) C conv(F(Xy)) (by ConditionC2)
By iteration we obtain thak; = v(X,_,) fori > 2 and as above we have
(1) conv(X;) C conv(Xp) (2) Fi(conv(Xy)) C conv(F(X;))

Thus forX,,_; we have

(1) conv(X,,—1) C conv(Xp) (2) F3~(conv(Xy)) C conv(F(X,_1))
By (2) above and Lemma 4, we obtain

(A) F(conv(Xy)) = Fy(conv(Xy)) C Fy ! (conv(Xy)) C conv(F(X,,_1))

By (1) above we haveonv(X,_1) C conv(Xy) and henceF(conv(X,_1)) C
F(conv(Xy)). Thus we have

conv(F(conv(X,,—1))) C conv(F(conv(Xy))) = F(conv(Xp))



where the last equality follows since by Lemma 3 we h&Yeonv(Xy)) is convex.
SinceX,,—1 C conv(X,,_1) we have

(B) conv(F(X,,—1)) C conv(F(conv(X,,—1))) C F(conv(Xp))

Thus by (A) and (B) above we havé(conv(Xj)) = conv(F(X,—_1)). Thus given the
finite setX, we have the finite seX,,_; such that ()X € X,,_1 C conv(X) and
(b) F(conv(X)) = conv(F(X,—1)). We now present the constructigrnto complete
the result.

The construction . Given a finite set” of pointsY”’ = ~(Y") is obtained by adding
points toY” in the following way:

— Forall1 < k£ < n, we consider alk-dimensional coordinate planés supported
by a pointinY’;

— Intersect each coordinate plaiewith conv(Y") and the resultis a convex polytope
Yo,

— We add the corners (or extreme points) of each polyigpe¢o Y.

The proof that the above construction satisfies condi@dnand C2 is given in the
appendix, and thus we have the following result.

Theorem 2. Given a finite setS C R”™ such that|S| = m, the following assertion
holds: a finite sets’ with |S’] < m?2" - 27" can be computed im© (2" . 20(n*)
time such that (ap C S” C conv(S) and (b) Finin(conv(S)) = conv(Fpin(S)).

4.2 Linear constraint construction

In the previous section we presented an explicit constonabf a finite set of points
whose convex hull gives u# i, (conv(S)). The explicit construction illuminates
properties of the sef,;,(conv(S)), however, the construction is inefficient compu-
tationally. In this subsection we present an efficient gaomeonstruction for the
computation ofFi,i, (conv(S)) for a finite setS. Instead of constructing a finite set
S’ C conv(S) such thatonv(S") = Fin(conv(S)), we representy;, (conv(S)) as a
finite set of linear constraints.

Consider thepositive orthantanchored at the origin iR"™, that is, the set of points
with non-negative coordinate®’} = {(z1,22,...,2,) | z; > 0,Vi}. Similarly, the
negative orthants the set of points with non-positive coordinates, deneate®” =
—R’ . Using vector addition, we writg + R’} for the positive orthant anchored at
Similarly, we writex + R" = x — R’} for the negative orthant anchoredsatThe
positive and negative orthants satisfy the following siethlality relation = € y +R"}
iff y €z —R7.

Note thatR’; is ann-dimensional convex polyhedron. For each< j < n, we
consider thén — 1)-dimensional facé.; spanned by the coordinate axes exceptjthe
one, thatisl; = {(21, 22,...,2,) € R} | z; = 0}.

We say thaty + R} is supporteddy X if (y +L;) N X # @ foreveryl < j < n.
Assumingy + R’ is supported byX, we can construct a sét C X by collecting
one point per{n — 1)-dimensional face of the orthant and get= f(Y). It is also



allowed that two faces contribute the same pointtoSimilarly, if y = f(Y) for a
subsety” C X, then the positive orthant anchoredyais supported byX. Hence, we
get the following lemma.

Lemma5 (OrthantLemma). y € Fuin(X) iff y +- R7} is supported byX.

Construction.We use the Orthant Lemma to constritgt, (X). We begin by describ-
ing the set of pointg for which the;" face of the positive orthant anchorediahas
a non-empty intersection witl. DefineF; = X — L;, the set of points of the form
x — z,Wherez € X andz € IL;.

Lemma 6 (Face Lemma)(y +L;) N X # @iff y € F.

Proof. Letz € X be a point in the intersection, that is,c y + L;. Using the duality
relation for the(n — 1)-dimensional orthant, we ggte = — IL;. By definition,z — L;
is a subset ok — LL;, and hence € Fj. 0

Itis now easy to describe the set defined in our problem s&tem
Lemma 7 (Characterization). Fi,i, (X) = ﬂ;;l F;.

Proof. By the Orthant Lemmay € F,;n(X) iff y + R is supported byX. Equiva-
lently, (y +L;) N X # @ forall 1 < j < n. By the Face Lemma, this is equivalent to
y belonging to the common intersection of the sBfs= X — L. a

Algorithm for computation of F,,,;,, (conv(.S)). Following the construction, we get an
algorithm that computeB,,;, (conv(.S)) for a finite setS of points inR™. Let |S| = m.
We first represenX = conv(S) as intersection of half-spaces: we require at mao'%t
half-spaces (linear constraints). It follows thgt = X — L; can be expressed as”"
linear constraints, and henég,;,(X) = ﬂ;;l F; can be expressed as m” linear
constraints. This gives us the following result.

Theorem 3. Given a finite sef of m points inR™, we can construct i (n - m™) time
n - m™ linear constraints that represett,,i, (conv(S)).

5 Mean-Payoff Automaton Expressions are Decidable

Several problems on quantitative languages can be solvéddalass of mean-payoff
automaton expressions using the vector set. The decisianlgmns of quantitative
emptiness and universality, and quantitative languadasian and equivalence are all
decidable, as well as questions related to cut-point laggsicand computing distance
between mean-payoff languages.



Decision problems and distancBrom the vector séty = {(La, (w),...,La, (w)) €
R™ | w € X¥}, we can compute thealue setLy(X¥) = {Lg(w) | w € XY¥}
of values of words according to the quantitative languagé’ads follows. The set
Lg(Xv) is obtained by successive application min-, max- and sum-projections

min ,,max

P, pex, piim s RF — RA~1 wherei < j < k, defined by
Pt (@1, k) = (T, T, MIN(T, T5), Tig 1, - Tj—15 Tl - - - Tk,
p?;m((l'h . 7.%%)) = (iCl, PN O J I €T; —|— £Cj 7.%'i+17 . 7.%']'_17.1']'_*_1, . .l’k),

and analogously fqu3**. For examplepiy™ (p5y™ (Vi) gives the sef 5 (X*) of word
values of the mean-payoff automaton expresdios max(A;, min(A4s, A3)).

Assuming a representation of the polytope$/gfas a boolean combinatianes of
linear constraints, the projectimﬁ;i“(VE) is represented by the formula

P = (31‘7 tpp ANz < .%'j) V (E‘TZ TYp NI < l‘l)[.%'] — l‘l]

where[z + e] is a substitution that replaces every occurrence b the expression

e. Since linear constraints over the reals admit effectiimiahtion of existential quan-
tification, the formulayy can be transformed into an equivalent boolean combination
of linear constraints without existential quantificatidie same applies to max- and
sum-projections.

Successive applications of min-, max- and sum-projectitoi®wing the structure
of the mean-payoff automaton expressibhgives the value setx(X“) C R as a
boolean combination of linear constraints, hence it is anof intervals. From this set,
it is easy to decide the quantitative emptiness problem laadtiantitative universality
problem: there exists a word € X such thatLz(w) > v if and only if Lg(X%) N
[v,400[# @, andLg(w) > v for all wordsw € X if and only if Lg(X*)N] —

oo, v[= @.

In the same way, we can decide the quantitative languagasiocl problem “is
Lg(w) < Lp(w) for all wordsw € X ?” by a reduction to the universality problem
for the expressio’ — E and threshold since mean-payoff automaton expressions are
closed under sum and complement. The quantitative langeqgigalence problem is
then obviously also decidable.

Finally, the distance between the quantitative langua@ds and F' can be com-
puted as the largest number (in absolute value) in the velusf §' — . As a corollary,
this distance is always a rational number.

Comparison with [1]. The work in [1] considers deterministic mean-payoff auttana
with multiple payoffs. The weight function in such an autdamais of the formwt :
5 — Q. The value of a finite sequence; )1<i<n (Wherev; € QY) is the mean of the

tuplesw;, that is ad-dimensional vectoAvg,, = % . z;;ol v;. The “value” associated
to an infinite run (and thus also to the corresponding wonggesithe automaton is
deterministic) is the setcc C R? of accumulation points of the sequen@eg,, ),,>1.

In [1], a query language on the set of accumulation pointseduo definanulti-
threshold mean-payoff languagé®rl < i < n, letp; : R™ — R be the usual projec-
tion along the™ coordinate. A query is a boolean combination of atomic thoé&scon-

ditions of the formmin(p;(Acc)) ~ v or max(p;(Acc)) ~ v where~e {<, <, >, >}



andv € Q. Aword is accepted if the set of accumulation points of itsgue) run satis-
fies the query. Emptiness is decidable for such multi-tholesimean-payoff languages,
by an argument based on the computation of the convex huileoféctor values of the
simple cycles in the automaton [1] (see also Lemma 1). We $lag@n that this convex
hull conv(Sg) is not sufficient to analyze quantitative languages of meaynff au-
tomaton expressions. It turns out that a richer query laggean also be defined using
our construction of,i, (conv(Sg)).

In our setting, we can view @&dimensional mean-payoff automatdras a product
P4 of 2d copiesA? of A (wherel < i < d andt € {LimInfAvg, LimSupAvg}), where
Al assigns to each transition ti€ coordinate of the payoff vector id, and the au-
tomaton is interpreted asteautomaton. Intuitively, the setcc of accumulation points
of a wordw satisfiesmin(p;(Acc)) ~ v (resp.max(p;(Acc) ~ v) if and only if the
value ofw according to the automatott for ¢ = LimInfAvg (resp.t = LimSupAvg) is
~ v. Therefore, atomic threshold conditions can be encoddarasttold conditions on
single variables of the vector set By . Therefore, the vector set computed in Section 4
allows to decide the emptiness problem for multi-thresmoéin-payoff languages, by
checking emptiness of the intersection of the vector sét thié constraint correspond-
ing to the query.

Furthermore, we can solve more expressive queries in anefnark, namely where
atomic conditions are linear constraintsldmInfAvg- andLimSupAvg-values. For ex-
ample, the constrairtimInfAvg(wt;) + LimSupAvg(wts) ~ v is simply encoded as
x), + x; ~ v wherek, [ are the indices corresponding g, .ca.e @A AT, 5,0 T€-
spectively. Note that the trick of extending the dimensibthe d-payoff vector with,
saywtgy1 = wty +wto, IS not equivalent becausém{SiP}Avg (wty ) = Lim{5F} Avg(wtz)
is not equal td.im{5}Avg(wt; + wts) in general (no matter the choice {6f} and+).
Hence, in the context of non-quantitative languages owlt®esalso provide a richer
query language for the deterministic mean-payoff autowétamultiple payoffs.

Complexity. All problems studied in this section can be solved easilyp@tynomial
time) once the value set is constructed, which can be doneadrgple exponential
time. The quadruple exponential blow-up is caused dythe synchronized product
construction forZZ, (b) the computation of the vector values of all simple cycled jn
(¢) the construction of the vector sél,i,(conv(SE)), and(d) the successive projec-
tions of the vector set to obtain the value set. Therefot¢halabove problems can be
solved in 4EXPTIME.

Theorem 4. For the class of mean-payoff automaton expressions, thethatve
emptiness, universality, language inclusion, and egeive¢ problems, as well as dis-
tance computation can be solved in 4EXPTIME.

Theorem 4 is in sharp contrast with the nondeterministic alternating mean-
payoff automata for which language inclusion is undeciddbke also Table 1). The
following theorem presents the undecidability result tisatlerived from the results
of [9].

Theorem 5. The quantitative universality, language inclusion, anddaage equiva-
lence problems are undecidable for nondeterministic meaynff automata; and the



guantitative emptiness, universality, language inclosiand language equivalence
problems are undecidable for alternating mean-payoff mdta.

6 Expressive Power and Cut-point Languages

We study the expressive power of mean-payoff automatoresgmmsi) according to
the class of quantitative languages that they define(@ndccording to their cut-point
languages.

Expressive power comparisoitVe compare the expressive power of mean-payoff au-
tomaton expressions with nondeterministic and altergatiean-payoff automata. The
results of [5] show that there exist deterministic meangffegutomatad; and A, such
thatmin(A;, A2) cannot be expressed by nondeterministic mean-payoff attrmhe
results of [4] shows that there exists deterministic meayeff automatad; and A,
such thatsum(A;, A2) cannot be expressed by alternating mean-payoff autontata.
follows that there exist languages expressible by meawfpaytomaton expression
that cannot be expressed by nondeterministic and altegnatean-payoff automata. In
Theorem 6 we show the converse, that is, we show that thesglamguages expressible
by nondeterministic mean-payoff automata that cannot Ipeessed by mean-payoff
automaton expression. It may be noted that the subclassaf-payoff automaton ex-
pressions that only uses min and max operators (and no suatopes a strict subclass
of alternating mean-payoff automata, and when only the npexator is used we get a
strict subclass of the nondeterministic mean-payoff aatam

Theorem 6. Mean-payoff automaton expressions are incomparable inressjre
power with nondeterministic and alternating mean-payaffoanata: (a) there exists
a quantitative language that is expressible by mean-paydtimaton expressions, but
cannot be expressed by alternating mean-payoff automath(la) there exists a quan-
titative language that is expressible by a nondeterministean-payoff automaton, but
cannot be expressed by a mean-payoff automaton expression.

Cut-point languagesLet L be a quantitative language ovEr Given a threshold) €
R, the cut-point languagelefined by(L, n) is the language (i.e., the set of words)
L= = {w € ¥* | L(w) > n}. Itis known for deterministic mean-payoff automata
that the cut-point language may notbeegular, while it isv-regular if the thresholg
isisolated i.e. if there existg > 0 such thatL(w) — n| > ¢ for all wordsw € X [5].

We present the following results about cut-point languaf@sean-payoff automa-
ton expressions. First, we note that it is decidable wheghetional threshold is
an isolated cut-point of a mean-payoff automaton exprassising the value set (it
suffices to check thap is not in the value set since this set is closed). Second, iso-
lated cut-point languages of mean-payoff automaton esjes araobustas they re-
main unchanged under sufficiently small perturbations efttansition weights. This
result follows from a more general robustness property aflated automata [5] that
extends to mean-payoff automaton expressions: if the weighthe automata occur-
ring in E are changed by at most then the value of every word changes by at most



max(k, 1) - e wherek is the number of occurrences of then operator inE. Therefore
Dgyp(Lg, Lpe) — 0 whene — 0 whereF' is any mean-payoff automaton expression
obtained fromF by changing the weights by at mastAs a consequence, isolated cut-
point languages of mean-payoff automaton expressionsoarest. Third, the isolated
cut-point language of mean-payoff automaton expressgnségular. To see this, note
that every strongly connected component of the productaatonA i contributes with

a closed convex set to the value setrafSince themax-, min- andsum-projections
are continuous functions, they preserve connectednessoéisd therefore each s€c
contributes with an intervdlng, M¢] to the value set oF. An isolated cut-poing
cannot belong to any of these intervals, and therefore wamhtBuichi-automaton for
the cut-point language by declaring to be accepting thestatthe product automaton
Ap, that belong to an so€ such thatnc > 7. Hence, we get the following result.

Theorem 7. Let L be the quantitative language of a mean-payoff automatoresxp
sion. Ify is an isolated cut-point of, then the cut-point language=" is w-regular.

7 Conclusion and Future Works

We have presented a new class of quantitative languages)eha-payoff automaton
expressionsvhich are both robust and decidable (see Table 1), and fachwthie dis-
tance between quantitative languages can be computed.etidadility results come
with a high worst-case complexity, and it is a natural questor future works to either
improve the algorithmic solution, or present a matchingdotaound. Another question
of interest is to find a robust and decidable class of quangttanguages based on the
discounted sum measure [3].
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A Proofs of Section 3

Proof (of Lemmal)etAy,..., A, bethe deterministic weighted automata occurring
in E.

First, letz € conv(Sg). Then,z = ¥ | A\;v; wherevy, vs, ..., v, are the vector
values of simple cycleg,, p2,...,pp IN Ap = A1 X -+ X Ay, andzzlf’:1 i = 1 with

A >0foralll <i<p.

For each of the above cycles, let g; be a state occurring ip;, and letp;_,; be a
simple path inAg connectingy; andg; (such paths exist for eadh< i, j < p because
Ag has a unique strongly connected component).dgef; be a simple path i g
from the initial statey; to ¢;. Note that the length of; andp;,_, ; is at mostn = |Ag|
the number of states id . We consider the following sequence of ultimately periodic
paths, parameterized by € N:

N kN

~ k
PN = po—s1- (Pt p1szc o pps1)”,

wheresz\’ = H’pA J forall 1 < i < p. Note thatpy is the run of a lasso-word in
Ag,andthatV - \; — |pi| < |pi] - kN < N -\,

Becausg is ultimately periodic, the vector value ¢f; gives the value ofvy in
eachA,. It can be computed as

: . kN kY
LimAvg(pn) = Avg(pr' - prse ... pp” - pps1)
and it can be bounded along each coordigatel, . .., n as follows (we denote bi//

the largest weight ind i in absolute value):

p
> kY - |pil - Avg(pi) +Z|AE|

LimAvg, () < =L _——

ST+ 3 1A
i=1 =1
P

ZN-/\i-Avgj(pi)—i—p-m-W

i=1

p
ZN “Ai — |pi| + |Ag]
i=1
N-zj+p-m-W p-m-W
S—xF —=ut



Analogously, we have

p

> kYol - Avg;(pi) Z|AE|
i=1
ZkN IPZI+Z|AE|

=1

LimAvg; (px) >

p
Z —|pil) - Avg;(pi) —p-m-W
ZN i + |Ag|
=1
N-zj—2p-m-W p-m-(2W—x;)
> —~Nmpm =T TN

ThereforelimAvg;(pn) — z; whenN — oo. This shows that is in the closure
of the vector set of lasso-words.

Second, we show that the value of lasso words according tosedomatori; form
a vector which belong teonv(Sg) (which is equal to its closure). Lat = w; (w2)* be
alasso-word. Itis easy to see that there exist®» such thap = p1 +p2 < m = |Ag|
and the run ofd; onw,wh has the shape of a lasso (i.e., the automatgnis in the
same state after reading w' and after reading; w5), and thus the cyclic part of the
lasso can be decomposed into simple cycledjin The vector value ofv in eachA; is
the mean of the vector values of the simple cycles in the deosition, and therefore
it belongs to the convex hutbnv(Sg). O

Proof (of Lemma 2)First, show thal’y C Fi,i,(conv(Sg)). Letz € Vg be a tuple
of values of some wora according to each automatot) occurring inE (i.e.,z; =
La,(w) forall1 <i < n).Fore > 0andl < k < n, we construct a lasso-word®
such thatL 4, (w.) — zx| < eandLa,(w.) > x; —eforall 1 < i < nwithi # k. If
we denote by/* the vector value ofu®, then the valug = foi({y* | 1 <k <n})is
such thaty; — x;| < eforall 1 < k < n. By Lemma 1, the limit of the vector valug
whene — 0 is in conv(Sg), and thuse € F,i,(conv(Sg)).

We give the construction Qf;f for k = 1. The construction is similar fot > 2.
Consider the woray and letp be the suffix of the (unique) run ofg onw which visits
only states in the strongly connected component pf The value of and the value of
w coincide (according to each;) since the mean-payoff value is prefix-independent.
SinceL 4, (w) = z; forall 1 < i < n, there exists a position € N such that the mean
value of all prefixes op of length greater thap is at leastr; — ¢ according to each
A; (since each; is aLimInfAvg-automata). Sincé 4, (w) = z1, there exist infinitely
many prefixep’ of p with mean value according té, close tox;, more precisely such
that |Avg, (o) — 21| < e. Pick such a prefiy’ of length at leastnax(p, 1). Sincep’
is in the strongly connected component4f;, we can exteng’ to loop back to its
first state. This requires at mast additional steps and gives. Note also thap” can
be reached from the initial state dfg since it was the case @f and thus it defines a



lasso-shaped run whose value can be bounded along the firslicate as follows:

|10/ I-Avey (o) 1" -1 | -+m-W
[p]

[Avg, (p") = m1] <

10" |-|Avgy (p") =z +(lp" |=|p'])-z14+m-W
[p"]

Hence, the value along the first coordinate of the wo}ctorresponding to the rup’
tends tor; when whenr: — 0. We show similarly that the value af! along the other
coordinates > 2 is bounded from below by, — ¢ - (1 4+ 2m - W). The result follows.

Now, we show that i, (conv(Sg)) € Vg. In this proof, we use the notatian
for iterated concatenatiodefined as follows. Given nonempty words, w, € X7,
the finite wordw; ©® ws is wy - (w2)* wherek = |w;|?. We assume thap (iterated
concatenation) and(usual concatenation) have the same precedence and thatréhe
left-associative. For example, the expressib@a-b is parsed agub©a)-b and denotes
the wordabaaaab, while the expressioab-a® b is parsed agab-a) ©b and denotes the
word abab®. We use this notation for the purpose of simplifying the grm@sentation,
and some care needs to be taken. For example, explicit usmoatenation (i.eq - b
vs.ab) makes a difference sineé © ab = (ab)® while ab® a - b = aba*b. Finally, we
use notations such &8, - we ®)“ to denote the infinite word); - ws ®wy - wa © . . ..

Usually we use the notatian; ® ws when the run ofd g onws - wy can be decom-
posed a1 - p2 Wherep; corresponds ta; (i = 1, 2) andps is a cycle in the automaton.
Then, the mean value of the run an © ws is

1] - Avg(p1) + |p1* - [p2] - Avg(p2)
lp1| + [p1]? - | p2]

_ Avg(p1) + |1 - 2| - Avg(p2)
L+ |p1]-|p2]

Avg(p1) — Avg(p2)
1+ [p1] - |p2]

= Avg(p2) +

Therefore, sincAvg(p1) — Avg(p2)| < 2W independently ofv; andw., a key prop-
erty of ® is that the mean value af; ® wy can be made arbitrarily close fovg(p2)
by takingw; sufficiently long (sincéw.| = |p1]).

We proceed with the proof of the lemma. Let € F,(conv(Sg)) and let
Y1, .- .,Yn beN points inconv(Sg) such that the™ coordinate ofr andy; coincide
forall 1 < i < n, and thej" coordinate of: is smaller than thé"" coordinate ofy; for
all j # i. Suchy;’s exist by definition ofF,,,;,, though they may not be distinct.

By Lemma 1, for alk > 0 there existlasso-words;, . . ., w,, such thatjv,—y|| <
ewherevy = (La, (wg),...,La, (wg)) foreachl < k < n. Foreachl < i < n, let



p; be the cyclic part of the (lasso-shaped) rundgf on w;, and letg; be the first state
in p;. For eachl < 4, j < n, definep;_,; the shortest path id ; from g; to ¢;, and let
po—; be a simple path il g from the initial statey; to ¢; (such paths exist because
Ap is strongly connected). Note thatg;(p;) = La, (w;). We construct the following
infinite run in Ag:

P=pos1O(p1-pP1o2@p2-p2530 ... pp - Pros1©)”

It is routine to show thap is a run of Az, and we havéimAvg,(p) = v;; because
(1) the cycless, . . ., p, are asymptotically prevailing over the cygle s2po—s30n-51,
(i1) by the key property ofo, there exist infinitely many prefixes ifi such that the
average of the weight along th# coordinate converges tg;, and(iii) all cyclesp;
have average value greater than along the;™ coordinate. Therefore, the liminf of
the averages along th# coordinate (i.e.limAvg;(p)) is v;;, and the vector of values
of p is thus at distanceof z, that is||LimAvg(p) — z|| < e. The construction o can
be adapted to obtaiiimAvg(p) = = by changing the:" occurrence op; in j by a
cycle corresponding to a lasso-warg obtained as above fer< % a

B Proofs of Section 4

Proof (of Lemma 3)Let x = fom(ul,u?,...,u") andy = fum(v!, 0%, ... 0")
whereu!, ... u™ vl,... 0" € X.Letz = Az + (1 — \)y where0 < A < 1 and
we prove that: € F,i,(X). Without loss of generality, assume that = «¢ and
y; =viforalll <i <mn.Thenz = \u! + (1 — A\t foralll <i<n.

To show that € F,in(X), we give for eachl < j < n a pointp € X such that
p; = z; andpy > z forall k # j. Takep = Au? + (1 — A\)v/. Clearlyp € X since
w07 € X and X is convex, andi) w; = )\u;: +(1- )\)v; = z;, and (i) for all
k # j, we havew, = Aul + (1 — Mol > Mk + (1 — \vf = 2 (sinceu” has the
minimal value ork™ coordinate among’, . .., u™, similarly for v*). a

Proof (of Proposition 1).By Lemma 3, we already know thabnv(F,in(S)) C
Finin(conv(S)) (the setF,;n(conv(S)) is convex, and sincél,;, is a monotone opera-
tor andS' C conv(S), we haveF,,i,(S) C Fiin(conv(S)) and thusconv(F,in (S)) C
Finin(conv(95))).

We prove thatFn(conv(S)) C  conv(Fnin(S)) if S C R2% Letz €
Fiin(conv(S)) and show that: € conv(Fin(S)). Sincex € Fin(conv(S)), there
existp, ¢ € conv(S) such thatt = fuin(p, ¢), and assume thay < ¢; andps > ¢o
(other cases are symmetrical, or imply that p or x = ¢ for which the result is trivial
as thenz € conv(5)). We show thatr = (p1, ¢2) is in the convex hull ofp, ¢, r}
wherer = fuin(u,v) andu € S is the point inS with smallest first coordinate, and
v € S is the point inS with smallest second coordinate, so that= u; < p; and
ro = vy < g2. Simple computations show that the equatioas Ap+ pg+ (1 — X —p)r
has a solution witl) < X\, < 1 and the result follows. O

Proof (of Lemma 4)By definition, we havef,(S) C F(S). For a pointz = f(P)
for a finite subsef” C S, choose one point each that contributes to a coordinate and



obtain a finite se”’” C P of at mostn points such that = f(P). This shows that
F(S) C Fu(S5).

For the second part, gt = {p1,p2,...,pr} With & < n, and letx = f(P). Let
x1 = f(p1,p2), and fori > 1 we definex; = f(x;-1,pi+1). We haver = z,,_1

(e.9.,f(p1,p2,p3) = f(f(p1,p2), p3)). Thus we have obtainedby applyingf on two
points forn — 1 times, and it follows thaf’,,(S) C F3*(9). O

Proof (of Theorem 2)We show that the constructionsatisfies conditiol©1 andC2.
LetY’ = ~(Y). Clearly the set” is a finite subset ofonv(Y) and thus Conditiol©1
holds and we now show that Conditi@? is satisfied.

Since Fx(conv(Y)) is convex (by Lemma 3), it suffices to show that all corners
of Fy(conv(Y)) belong toconv(F(Y")). Consider a point = f(p,q) wherep,q €
conv(Y"). We will show that eithep, ¢ € Y’ or 2 cannot be a corner @bnv(F5(Y")).

It will follow that Fy(conv(Y)) C conv(F(Y”)). Our proof will be an induction on
the number of coordinates such that there f@dtie is the case where the value of a
coordinate op andgq coincide). If there are ties, then the points andq are equal and
we haver = p = ¢, and this case is trivial sincE C Y’. So the base case is done.
By inductive hypothesis, we assume that 1-ties yield the result and we consider the
case fork-ties. Without loss of generality we consider the followtage:

P1=q1;p2 = q25° " Pk = qk;

Pr4+1 < Q415 P42 < G425+ 3 Pe < Qe
Pe+1 > Qe415Pe+2 > G425 iPn > Gn;

i.e, the firstk coordinates are ties, theris the sole contributor to the coordinates 1

to ¢, and for the rest of the coordinatess the sole contributor. Below we will use the
expressionnfinitesimal changéo mean change smaller thgn= ming ;< |p; — ¢l
(noten > 0). Consider the planél with first & coordinates constant (given by =
P1 = q1;%2 = P2 = qa2;-- Tk = pr = qr). We intersect the plan& with conv(Y")
and we obtain a polytope. First we consider the case whemdg are not a corner of
the polytope and then we consider wheandq are corners of the polytope.

1. Case 1:pis not a corner of the polytopH N conv(Y'). We draw a line inlI with
p as midpoint such that the line is containedim conv(Y"). This ensures that the
coordinated to k£ remain fixed along the line.
(a) If any one of coordinates frorh + 1 to ¢ changes along the line, then by
infinitesimal change of along the line, we ensure thatmoves along a line.
(b) Otherwise coordinatels + 1 to ¢ remain constant; and we moyealong the
line in a direction such that at least one of the remaining dioates (say))
decreases, and decreasjnge have one of the following three cases:
i. we go down tag; and then we have one more tie and we are fine by induc-
tive hypothesis;
ii. we hit a face of the polytopél N conv(Y') and then we change direction
of the line (while staying in the hit face) and continue;
iii. we hit a corner of the polytop& N conv(Y') and therp becomes a corner
which will be handled in Case 3.



2. Case 2:q is not a corner of the polytopH N conv(Y'). By symmetric analysis to
Case 1 either we are done@becomes a corner of the polytofien conv(Y).

3. Case 3:p and g are corners of the polytop& N conv(Y'). If IT is supported by
Y, then bothp, ¢ € Y’ and we are done. Otherwigé is not supported by, and
now we move along lines withandq as midpoints and slide the plaig In other
words we movep andg alone lines and move such that the ties remain the same.
We also ensure infinitesimal changes along the line so tleatdhtributor of each
coordinate is the same as original. Let

pA)=p+A-v; qlp) =g+ p- w;

be the lines where andw are directions. By ties for < i < k we have\ - v; =
1 - w;. Then for infinitesimal change the pointmoves as follows:

(A p) = f(p(A), a(p)))
=1+ A-v,p2+ A vz, P+ AU, Qe R Wet1, Gn L Wh)
=P+ A v,p2+ A vePeF AU Qo A e, G A O wy)

It follows thatz moves along the ling + A - z where forl < i < /we havez; = v;
and for/ < i < n we havez; = 51_11 - w;; note thatw; > 0 since the plane slides.
Sincex moves along a line it cannot be an extreme point.

This completes the proof. Also note that in the special caservthere is no tie at all
then we do not need to consider Case 3 as ffiea R™ and thusgp andq are corners
of conv(Y") and hence irt”.

Analysis. Given a set ofn points, the constructiony yield at mostm? - 2" points.
The argument is as follows: consider a pginand then we consider dltdimensional
coordinates planes through There are(Z) possiblek-dimensional coordinate plane
throughp, and summing over alt we get that there are at maxt coordinate planes
that we consider through The interesection of a coordinate plane thropghith the
convex hull ofm points gives at most new corner points, and this claim is as proved
follows: the new corner points can be constructed as theoshad the convex hull
on the plane, and since the convex hull hagorner points the claim follows. Thus it
follows that the construction yield at masf - 2™ new points, and thus we have at most
m +m?-2" < 2-m? . 2" points. If the setS hasm points, applying the construction
iteratively forn times we obtain the desired sgtthat has at most?" - gn’+n points.
Since convex hull of a set dfpoints inn dimension can be constructeddf(™) time,

it follows that the se®s’ can be constructed im©(™2") . 20(n*) time. O

Proof (Theorem 5 (Sketch))Ve will show the undecidability for the quantitative uni-
versality problem for nondeterministic mean-payoff auséban It will follow that the
quantitative language inclusion and quantitative langusguivalence problem are un-
decidable for both nondeterministic and alternating aattanThe quantitative uni-
versality for nondeterministic automata can be reducedhéoquantitative emptiness
as well as the quantitative universality problem for alsgimg mean-payoff automata.
Hence to complete the proof we derive the undecidability udrditative universality
for nondeterministic mean-payoff automata from the recesilts of [9].



The results of [9] show that in two-playblind imperfect-information mean-payoff
games whether there is a player 1 blind-strategych that against all player 2 strate-
giesT the mean-payoffvalu® (o, 7) of the play giverv andr is greater thaw is unde-
cidable. The resultis a reduction from the halting probléiao-counter machines, and
we observe that the reduction has the following propertytticeshold values = 0, if
the two-counter machine halts then player 1 has a blindegjydo ensure payoff greater
thanv, and otherwise against every blind-strategy for playetdygr 2 can ensure that
the payoff for player 1 is at most = 0. Thus from the above observation about the
reduction of [9] it follows that in two-player blind impergeinformation mean-payoff
games, given a threshoid the decision problem whether

Jo. inf P(o,7) > v

whereo ranges over player 1 blind-strategies, andver player 2 strategies, is unde-
cidable and dually the following decision problem whether

Vo. sup P(o,7) > v

is also undecidable. The universality problem for nondeieistic mean-payoff au-
tomata is equivalent to two-player blind imperfect infotina mean-payoff games
where the choice of words represents the blind-strategieplayer 1 and resolving
nondeterminism corresponds to strategies of player 2lltviis that for nondetermin-
istic mean-payoff automatd, given a threshold, the decision problem whether

for all wordsw. L (w) > v

is undecidable. O

C Proofs of Section 6

Proof (of Theorem 6)\\Ve prove the two assertions.

1. The results of [4] shows that there exists determiniseampayoff automatd
and A, such thatsum(A;, A2) cannot be expressed by alternating mean-payoff
automata. Hence the result follows.

2. We now show that there exist quantitative languages ssjirie by nondetermin-
istic mean-payoff automata that cannot be expressed by -pegoff automaton
expressions. Consider the language of finitely manya’s, i.e., for an infinite
word w we haveL r(w) = 1 if w contains finitely many:’s, and L » (w) = 0 oth-
erwise. It is easy to see that the nondeterministic meawfpaytomaton (shown
in Fig. 2) defined p.

We now show thaf. z is not expressible by a mean-payoff automaton expression.
Towards contradiction, assume that the expresBiatefines the languager, and

let A be the synchronized product of the deterministic autometaiwing in £
(assumedA g hasn states). Consider a reachable bottom strongly connected co
ponentV of the underlying graph ofl z, and letC' be ab-cycle inV/. We construct



Fig. 2. A nondeterministic limit-average automaton.

an infinite wordw with infinitely manya’s as follows: (i) start with a prefixw,
of length at most: to reachC, (ii) loop k times through the b-cycl€ (initially
k = 1), (ii7) read an &’ and then a finite word of length at mostto reachC
again (this is possible sineé is in a bottom s.c.c.), and proceed to stef) with
increased value of.
The cycleC corresponds to a cycle in each automatorEpfand since the value
of k is increasing unboundedly, the valuewfin each automaton of is given
by the average of the weights along thieicycle after readingv,. Therefore, the
value ofw and the value ofv;b* coincide in each deterministic automatonfof
As a consequence, their value coincidefinitself. This is a contradiction since
LF(’LU) = 0 while LF(wlbw) =1.

O



