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Abstract
Smallest enclosing spheres of finite point sets are central to methods in topological data analysis.
Focusing on Bregman divergences to measure dissimilarity, we prove bounds on the location of
the center of a smallest enclosing sphere. These bounds depend on the range of radii for which
Bregman balls are convex.
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1 Introduction

Interpreting non-geometric data geometrically is a standard step in data analysis. Examples
are abundant, including images [8], medical records [17], text documents [9], and speech
samples [4]. The motivating reason for this reinterpretation of data is the availability
of standard mathematical tools for multi-dimensional point sets, such as cluster analysis,
nearest neighbor search, dimension reduction, data visualization etc. These tools rely on a
notion of dissimilarity between data points, and the Euclidean distance is often not ideal.
Keeping in mind that a point often represents a histogram describing the corresponding
non-geometric object, this is not surprising. A popular alternative to the Euclidean distance
is the Kullback–Leibler divergence, also known as the relative entropy [12], which is built
on information theoretic foundations and meaningfully compares probability distributions.
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There is experimental evidence for its efficacy, and this in spite of violating two of the
three axioms we require from a metric; see [9] for a comparison of measures used to cluster
text documents. The relative entropy belongs to the family of Bregman divergences [3].
Another member of this family is the Itakura-Saito divergence, which is classically used to
compare power spectra of speech patterns [10]. The extension of topological data analysis
methods from the Euclidean metric to Bregman divergences needs smallest enclosing spheres
to turn data into Bregman–Čech complexes, and smallest circumspheres to turn data into
Bregman–Delaunay complexes. We are therefore motivated to study these spheres in detail.

Notation and terminology. We introduce the most important concepts studied in this
paper before reviewing prior work and presenting our results. A function F : Ω→ R on an
open convex subset Ω ⊆ Rd is of Legendre type if

F is strictly convex,
F is differentiable,
the length of the gradient goes to infinity when we approach the boundary of Ω.

The combination of convexity and differentiability implies continuous differentiability; see [5,
Theorem 2.86]. The somewhat technical third condition guarantees that the conjugate of F
is also of Legendre type; see [18, page 259]. There will be no appearance of the conjugate
in this paper, but we will make use of a consequence of the conjugate being of Legendre
type proved in [7]. The Bregman divergence from x to y associated with F is the difference
between F and the best linear approximation of F at y, both evaluated at x:

DF (x‖y) = F (x)− [F (y) + 〈∇F (y), x− y〉]. (1)

The divergence is not necessarily symmetric. We therefore define two balls with given center
and radius, one by measuring the divergence from the center and the other to the center.
Specifically, the primal and dual Bregman balls with center x ∈ Ω and radius r ≥ 0 are

BF (x; r) = {y ∈ Ω | DF (x‖y) ≤ r}, (2)
B∗F (x; r) = {y ∈ Ω | DF (y‖x) ≤ r}. (3)

While the dual ball is necessarily convex, this is not true for the primal ball. Since we use F
throughout this paper, we will feel free to drop it from the notation. An enclosing sphere
of a set X ⊆ Ω is the boundary of a dual Bregman ball that contains all points of X. A
circumsphere of X is an enclosing sphere that passes through all points of X.

Prior work and results. The family of Bregman divergences is named after Lev Bregman
who studied convex programming problems in [3]. Each such divergence is based on a
Legendre type function; see Rockafellar [18]. A prominent member of the family is the
relative entropy, which is based on the Shannon entropy. Its introduction by Kullback and
Leibler [12] predates the work of Bregman. Boissonnat, Nielsen, and Nock pioneered the
study of Bregman divergences within the fields of computational and information geometry.
In [15, 16] they studied algorithms for fitting Bregman balls enclosing a set of points, and in
[1] they introduced Bregman–Voronoi diagrams. To get a useful dual structure, we need the
non-empty common intersections of primal Bregman balls with the corresponding Voronoi
domains be contractible, a property proved in [7]. This opened the door to constructing
filtrations of Bregman–Čech and Bregman–Delaunay complexes and to analyzing the data
with persistent homology, which is one of the key tools in topological data analysis.

The bridge to the work in this paper is the observation that a collection of primal Bregman
balls of radius r have a non-empty common intersection iff their centers are contained in a
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dual Bregman ball of the same radius r. In this paper, we study the location of the center
of the smallest enclosing sphere of a finite set of points, and we follow [14] in calling this
center the Chernoff point of the set. It is easy to show that the Chernoff point belongs to
the convex hull of the finite set, which was first proven in [16]. For completeness, we present
a proof of this observation based on the widely used Bregman–Pythagoras Theorem; see e.g.
[1]. To improve on this insight, we distinguish between Bregman divergences with convex
and with nonconvex balls. The original contributions presented in this paper are:

for convex balls, we show that the Chernoff point of a simplex is contained in the convex
hull of the Chernoff points of its facets, which is generally a much smaller space of possible
locations;
for nonconvex balls, we prove a weaker result with heavier machinery.

To provide context for these results, we mention that this paper follows [6, 7] as third in a
series. The broader goal is to lay the theoretical foundations needed to expand the range
of applications in which topological tools can be meaningfully used. This line of research
established that Bregman divergences and the balls they induce are compatible with methods
from computational topology, and in particular with persistent homology. The initial steps
in this direction left however many important questions unanswered. In this undertaking,
the location of the Chernoff point of a set plays a crucial role. A limiting factor was the
general paucity of nontrivial bounds on its location.

The new bounds are useful, for example, in pruning redundant computations when
Chernoff points of many small and possibly overlapping point sets have to be computed
– a scenario that is typical for topological constructions. This contrasts the usual setting
in which the computation of the Chernoff point for a single and possibly large point set is
considered.

In summary, we believe that a deeper understanding of the often counterintuitive behavior
of Bregman divergences is needed to reach the full potential of the topological tools. This
paper contributes by demonstrating that ideas form combinatorial topology are useful in the
study of Chernoff points in particular and of Bregman divergences in general.

Outline. Section 2 proves basic properties of smallest enclosing spheres and smallest cir-
cumspheres. Section 3 introduces barycenter polytopes. Section 4 proves our main result in
the easier convex case. Section 5 extends the main result to the more difficult nonconvex case.
Section 6 shows that the nesting hierarchy proved in the nonconvex case is best possible.
Section 7 concludes this paper.

2 Smallest spheres

Growing primal Bregman balls from given points in Ω, we study the point at which these
balls meet first. Equivalently, we study the Chernoff point, which is the center of the smallest
enclosing sphere of the given points. In particular, we prove that the Chernoff point of a
simplex lies in the simplex, and that the center of the smallest circumsphere lies in the affine
hull of the simplex.

Bregman–Pythagoras. We use the following notation throughout this paper: letting A ⊆ Ω
be a closed convex subset and y ∈ Ω a point, we write yA for the point in A that minimizes
the Bregman divergence to y: yA = arg mina∈A D(a‖y). We will make use of an extension of
Pythagoras’ Theorem to Bregman divergences; see e.g. [1]. We give a proof for completeness.

SoCG 2018
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Figure 1 The gradient at a point of a level set of F forms a right angle with the level set.

I Proposition 1 (Bregman–Pythagoras). All points a of a closed convex set A ⊆ Ω satisfy
D(a‖y) ≥ D(a‖yA) +D(yA‖y), with equality if A is an affine subspace.

Proof. We first assume that F (y) = 0 and F has its minimum at y ∈ Ω. It follows that
∇F (y) = 0 and D(x‖y) = F (x) ≥ 0 for every x ∈ Ω. The sets of constant distance r to y
are therefore the level sets, F−1(r); see Figure 1. The point yA is where the lowest level set
touches A. The gradient of F at yA is normal to this level set. Hence,

F (a) ≥ F (a)− 〈∇F (yA), a− yA〉 = D(a‖yA) + F (yA) (4)

because the scalar product is necessarily non-negative. Substituting F (a) = D(a‖y) and
F (yA) = D(yA‖y), we get D(a‖y) ≥ D(a‖yA) + D(yA‖y), as claimed. If A is an affine
subspace of Rd, then the scalar product in (4) vanishes for all a ∈ A, which implies equality,
again as claimed.

If F does not satisfy the simplifying assumption, then we construct G : Ω→ R defined
by G(x) = F (x) − [F (y) + 〈∇F (y), x− y〉]. It is clear that G(y) = ∇G(y) = 0. For any
two points u, v ∈ Ω, we have DG(u‖v) = DF (u‖v), so we get the claimed inequality from
DG(a‖y) ≥ DG(a‖yA) +DG(yA‖y), which is implied by the above argument. J

Smallest enclosing sphere. Recall that an enclosing sphere of a set X ⊆ Ω is the boundary
of a dual Bregman ball that contains X. We are interested in the smallest such sphere in the
case in which X is a set of k + 1 ≤ d+ 1 points. We refer to such a set X as an (abstract)
k-simplex, and we write conv(X) for the corresponding geometric k-simplex.

I Lemma 2 (Smallest Enclosing Sphere). The Chernoff point of any k-simplex X ⊆ Ω is
unique and contained in conv(X), for every 0 ≤ k ≤ d.

Proof. Let B∗(y; r) be a dual Bregman ball with smallest radius that contains all points
of X. Writing x0, x1, . . . , xk for the points in X, this implies D(xi‖y) ≤ r for all i, with
equality for at least one index i. To get a contradiction, we set A = conv(X) and assume
y 6∈ A. Using Proposition 1, we get D(xi‖y) ≥ D(xi‖yA) +D(yA‖y) for all 0 ≤ i ≤ k. Since
D(xi‖y) ≤ r and D(yA‖y) > 0, by assumption of y not being in A, this implies D(xi‖yA) < r

for all 0 ≤ i ≤ k. But this contradicts the minimality of B∗(y; r), and we get y ∈ A as
desired. The uniqueness of y follows from the strict convexity of F . J
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Smallest circumsphere. Recall that a circumsphere of X is the boundary of a dual Bregman
ball that passes through all points of X. There may or may not be any such ball whose
center is contained in Ω. To simplify the discussion, we restrict ourselves to a case in which
such centers are guaranteed to exist, namely when Ω = Rd and X is a set of k + 1 ≤ d+ 1
points in general position in Rd. Note that for k + 1 < d+ 1, the circumsphere is not unique,
and often the smallest one is of interest. Using Proposition 1, it is not difficult to prove that
the center of the smallest circumsphere of X is contained in the affine hull of X.

I Lemma 3 (Smallest Circumsphere). The center of the smallest circumsphere of any k-
simplex X ⊆ Rd is unique and contained in aff X, for every 0 ≤ k ≤ d.

Proof. Let B◦(y; r) be the ball bounded by a smallest circumsphere of X. Writing x0, x1, . . .

, xk for the points in X, this implies D(x0‖y) = D(x1‖y) = . . . = D(xk‖y) = r, and that
r is the smallest real number for which there is a point y ∈ Rd such that these equalities
are satisfied; see Figure 2. To get a contradiction, we set A = aff X and assume y 6∈ A.
Using Proposition 1 for affine subspaces, we get D(xi‖y) = D(xi‖yA) + D(yA‖y) for all
0 ≤ i ≤ k. Because D(yA‖y) > 0, by assumption of y not being in A, this implies
D(x0‖yA) = D(x1‖yA) = . . . = D(xk‖yA) < r, which contradicts the minimality of B◦(y; r).
We get uniqueness because there is only one point in A = aff X equally far from all the
xi. J

3 Barycenter polytopes

Given a simplex, we introduce the family of convex hulls of the face barycenters. The
motivation for the study of these polytopes is the sharpening of Lemma 2.

Nested sequence of polytopes. Let X = {x0, x1, . . . , xk} be a k-simplex in Rd. For every
subset J ⊆ {0, 1, . . . , k}, we write XJ ⊆ X for the corresponding face, j = |J | − 1 for the
dimension of XJ , and bJ = 1

j+1
∑

i∈J xi for the barycenter of XJ . For 0 ≤ j ≤ k, the j-th
barycenter polytope of X is

∆k
j (X) = conv {bJ | |J | = j + 1}. (5)

Note that ∆k
0 = ∆k

0(X) = conv(X). In three dimensions, ∆3
0 is a tetrahedron, ∆3

1 is an
octahedron, ∆3

2 is again a tetrahedron, and ∆3
3 is a point. It is not difficult to see that the

barycenter polytopes are nested.

I Lemma 4 (Nesting). The barycenter polytopes of any k-simplex satisfy ∆k
0 ⊇ ∆k

1 ⊇ . . . ⊇
∆k

k.

y

yA

x0
x1

x2

A

Figure 2 Assuming the center of the smallest circumsphere, y, does not lie in A = aff X leads to
a contradiction.

SoCG 2018
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Proof. Let J ⊆ {0, 1, . . . , k} and assume its cardinality satisfies j + 1 ≥ 2. We take the
average of the barycenters that correspond to J with one index removed:

1
j+1

∑
`∈J

bJ\{`} = 1
j+1

∑
`∈J

 1
j

∑
i∈J\{`}

xi

 = 1
j(j+1)

∑
`∈J

∑
i∈J\{`}

xi. (6)

Each point xi ∈ XJ appears j times in the double-sum, which implies that the above average
is equal to bJ . We thus proved that every vertex of the j-th barycenter polytope is a convex
combination of the vertices of the (j − 1)-th barycenter polytope. Hence, ∆k

j ⊆ ∆k
j−1 for

1 ≤ j ≤ k, as claimed. J

Face structure. It is instructive to take a closer look at ∆3
1, which is the first barycenter

polytope that is not a simplex. Being an octahedron, it has 8 faces of co-dimension one,
which we refer to as facets. Four of the facets are the 1-st barycenter polytopes of the
triangles bounding the tetrahedron, and the other four facets are homothetic copies of the
original four triangle. More generally, most barycenter polytopes have twice as many facets
as the defining simplex. Write #facets(∆k

j ) for the number of facets of ∆k
j .

I Lemma 5 (Number of Facets). Let k ≥ 1. The number of facets of the j-th barycenter
polytope of a k-simplex is

#facets(∆k
j ) =

{
k + 1 if j = 0, k − 1,

2k + 2 if 1 ≤ j ≤ k − 2. (7)

Proof. Index the coordinates of points in Rk+1 from 0 to k, and let ei be the unit vector in
the i-th coordinate direction. Identifying the k-simplex with the endpoints of these vectors,
we consider the (k + 1)-dimensional cube spanned by e0 to ek and note that this cube has
2k + 2 facets. For 0 ≤ j ≤ k − 1, we define the j-th slice of this cube as the intersection
with the k-plane of points

∑k
i=0 γiei satisfying

∑k
i=0 γi = j + 1. It is the convex hull of the

(j + 1)-fold sums of the unit vectors. Scaling the j-th slice by a factor 1
j+1 , we get the j-th

barycenter polytope of the k-simplex.
For j = 0, k − 1, the k-plane intersects half the facets of the cube, and for 1 ≤ j ≤ k − 2,

it intersects all facets of the cube. Each facet of the j-th slice, and after scaling of ∆k
j , is the

intersection of the k-plane with a facet of the cube, which implies the claimed number of
facets of the barycenter polytope. J

Observe that half the facets of the (k + 1)-cube share the origin, and the other half share
the point (1, 1, . . . , 1) as a vertex. After scaling, we call the slice of a facet that shares the
origin a far facet of the corresponding barycenter polytope, noting that it is a barycenter
polytope of a facet of the given k-simplex. Similarly after scaling, we call the slice of a
facet that shares (1, 1, . . . , 1) a near facet of the barycenter polytope, noting that it is the
homothetic copy of a barycenter polytope of a facet of the given k-simplex.

Central projection. For the purpose of the proof of Theorem 8, we subdivide the boundary
of ∆k

j and re-associate the pieces to get the boundary complex of the k-simplex, at least
topologically. Write b(X) for the barycenter of the k-simplex, and introduce the central
projection,

πk
j : ∂conv(X)→ ∂∆k

j , (8)
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Figure 3 Left: the map π2
0 is the identity on the boundary of the triangle. Right: the map π2

1
projects the vertices of conv(X) to the midpoints of the edges of ∆2

1. The structure of ∂conv(X) is
recovered by gluing the half-edges in pairs at the shared endpoints.

which we define by mapping x ∈ ∂conv(X) to the unique convex combination of x and b(X)
that belongs to the boundary of ∆k

j . Figure 3 shows the picture of the two maps in the plane.

In the general case, we subdivide ∂∆k
j along the image of the (k−2)-skeleton of ∂conv(X).

To convince ourselves that this is well defined, we note that ∂∆k
j is a (k − 1)-sphere for

every 0 ≤ j ≤ k − 1. Similarly, ∂conv(X) is a (k − 1)-sphere. The center of the projection,
b(X), lies in the interior of ∆k

j and also in the interior of conv(X), which implies that πk
j is

a homeomorphism. We therefore reach our goal by first glueing the facets of ∆k
j along their

shared faces – which amounts to forgetting the decomposition of the (k − 1)-sphere these
facets imply – and second cutting the (k − 1)-sphere along the image of the (k − 2)-skeleton
of ∂conv(X) – which effectively triangulates the (k − 1)-sphere with k + 1 (k − 1)-simplices.

4 Theorem in convex case

This section sharpens Lemma 2 by further limiting the region in which the center of the
smallest enclosing sphere can lie. Here we discuss the case in which all primal Bregman balls
are convex.

Chernoff polytopes. As before, let X be a k-simplex in Ω. For each subset J ⊆ {0, 1, . . . , k},
we recall that XJ is the corresponding face of X, and we let B∗(dJ ;RJ) be the smallest
dual Bregman ball that contains XJ . Equivalently, RJ = R(XJ) is the minimum radius
r such that

⋂
i∈J B(xi; r) 6= ∅, and this intersection consists of a single point, namely the

Chernoff point dJ of XJ . In analogy with the barycenter polytope of the previous section,
we define the j-th Chernoff polytope of X as the convex hull of the Chernoff points of faces
of dimension j = |J | − 1:

∆j(X) = conv {dJ | |J | = j + 1} (9)

for 0 ≤ j ≤ k; see Figure 4 for an illustration. Note that ∆0(X) = conv(X), but for positive
indices j, ∆j = ∆j(X) is not necessarily the j-th barycenter polytope because the vertices
are not necessarily the barycenters of the faces.

Nesting. The Chernoff polytopes drawn in Figure 4 are nested, but that they retain this
property of the barycenter polytopes in general needs a proof.

I Theorem 6 (Nesting for Convex Balls). Let F : Ω → R be of Legendre type such that all
primal Bregman balls are convex, and let ∆0,∆1, . . . ,∆k be the Chernoff polytopes of a
k-simplex X ⊆ Ω. Then ∆0 ⊇ ∆1 ⊇ . . . ⊇ ∆k.

SoCG 2018
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Figure 4 The 1-st Chernoff polytopes of the tetrahedron is the pink octahedron whose vertices
lie on the edges of the outer tetrahedron, and the 2-nd Chernoff polytope is the blue tetrahedron
whose vertices lie on four of the triangles bounding the octahedron.

Proof. We prove ∆j−1 ⊇ ∆j by showing that the Chernoff point of every j-face of conv(X)
is contained in the convex hull of the Chernoff points of the (j − 1)-faces of this j-face.
Indeed, this implies that the vertices of ∆j lie in ∆j−1, and the claimed inclusion follows.
To formalize this idea, let 0 < j ≤ k, set J = {0, 1, . . . , j}, and consider J \ {`} for every
0 ≤ ` ≤ j. We prove that dJ belongs to the convex hull of the dJ\{`} in two steps.

For the first step, we write Sd(XJ) for the Chernoff subdivision of conv(XJ). We
obtain it from the barycentric subdivision by moving each barycenter to the location of the
corresponding Chernoff point. If all Chernoff points are different, the two subdivisions are
isomorphic, but it is possible that two or more barycenters map to the same Chernoff point,
in which case some of the simplices in the barycentric subdivision collapse to simplices of
smaller dimension. Since B(x0;RJ) contains the point dJ , it also contains all points dJ′ with
0 ∈ J ′ ⊆ J . Indeed, if the balls B(xi;RJ) with i ∈ J have a point in common, then so do
the balls with i ∈ J ′. By convexity, B(x0;RJ) contains all simplices in Sd(XJ) that share
x0. Similarly, B(x`;RJ) contains all simplices in Sd(XJ) that share x`, for each ` ∈ J . It
follows that the j + 1 balls cover the entire Chernoff subdivision of conv(X) and thus the
entire j-face:

conv(XJ) ⊆
j⋃

`=0
B(x`;RJ). (10)

For the second step, we write ΣJ for the convex hull of the points dJ\{`}, ` ∈ J . It is the
(j − 1)-st Chernoff polytope of XJ and necessarily contractible. Define C` = B(x`;RJ) ∩ΣJ ,
for each 0 ≤ ` ≤ j. By Lemma 2, the points dJ\{`} belong to conv(XJ), so ΣJ ⊆ conv(XJ),
and (10) implies that the sets C` cover ΣJ . But this does not yet imply that the (j + 1)-fold
intersection of the balls, which is the point dJ , belongs to the C` and therefore to ΣJ . To
prove this, we need the Nerve Theorem [2, 13], which applies to the sets C` because they are
convex. It implies that the nerve of the sets C` has the same homotopy type as ΣJ and is
therefore contractible. The j-fold intersections are all non-empty, as witnessed by the vertices
of ΣJ . Hence, the nerve contains the boundary complex of a j-simplex. Contractibility thus
implies that the nerve also contains the j-simplex. In other words, dJ ∈ C` for 0 ≤ ` ≤ j

and therefore dJ ∈ ΣJ . J

We note that Theorem 6 tightens Lemma 2 in the case of convex Bregman balls: the
center of the smallest enclosing sphere of a k-simplex is contained in the convex hull of the
centers of the smallest enclosing spheres of all (k − 1)-faces.
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5 Theorem in nonconvex case

We will see shortly that the assumption of convex Bregman balls can be relaxed. The proof
of the inclusions in the nonconvex case is the same as in the convex case, except that the
individual steps are more complicated. We begin with an auxiliary result.

A fixed point lemma. To generalize Theorem 6 to the nonconvex case, we employ a classic
result in topology proved in 1929 by Knaster, Kuratowski, and Mazurkiewicz [11]. It can be
used to prove the Brouwer Fixed Point Theorem, which states that every continuous function
from the n-dimensional closed ball to itself has a fixed point.

I Proposition 7 (Fixed Point). Let X be a k-simplex with vertices x0 to xk, and let C0 to Ck

be closed sets such that the union of any subcollection of the sets contains the face spanned
the corresponding subcollection of vertices. Then

⋂k
i=0 Ci 6= ∅.

Take for example Ci equal to the closed star of vertex xi in the barycentric subdivision
of conv(X). The conditions in the proposition are satisfied, and the stars have indeed a
non-empty common intersection, namely the barycenter of X. It is important to note that
the lemma is topological and therefore also holds for homeomorphically deformed k-simplices.

Interrupted hierarchy. Now suppose that there is a threshold such that all primal Bregman
balls with radius at most this threshold are convex, but this is not guaranteed for balls
with radius larger than the threshold. An example is the Itakura–Saito divergence [10]
defined on the standard simplex whose balls are convex provided the radius does not exceed
ln 2 − 1

2 = 0.193 . . . [6]. How does this weaken the hierarchy in Theorem 6? To state our
claim, we define Rj = max|J|=j+1 RJ , noting that r ≥ Rj iff all (j + 1)-fold intersections of
the B(xi; r) are non-empty.

I Theorem 8 (Nesting for Nonconvex Balls). Let F : Ω→ R be of Legendre type such that all
primal Bregman balls of radius r ≤ Rj are convex, and let ∆0,∆1, . . . ,∆k be the Chernoff
polytopes of a k-simplex X ⊆ Ω. Then ∆0 ⊇ ∆1 ⊇ . . . ⊇ ∆j ⊇ ∆j+1,∆j+2, . . . ,∆k.

Proof. To prove the inclusions ∆0 ⊇ ∆1 ⊇ . . . ⊇ ∆j , it suffices to consider balls of radius
Rj or smaller. These are convex, by assumption, so the inclusions are implied by Theorem
6. To prove ∆j ⊇ ∆i, for j < i ≤ k, we show that for every i-face, the Chernoff point is
contained in the j-th Chernoff polytope. It suffices to consider i = k. In the first step of the
proof, we generalize (10) to

conv(XJ) ⊆
⋃
`∈J

B(x`;RJ) (11)

for every J ⊆ {0, 1, . . . , k} also in the nonconvex case. We use induction over the dimension.
To simplify the notation, assume J = {0, 1, . . . , j} and let H = HJ be the j-dimensional
plane spanned by XJ . By inductive assumption, we have (11) for all J \ {`}, 0 ≤ ` ≤ j. By
definition of RJ , the j + 1 balls B(x`;RJ) have a non-empty common intersection, namely
the point dJ . By Lemma 2, also the j-dimensional slices of the balls defined by H have
the point dJ in common. It follows that the nerve of the sliced balls is a j-simplex, which
is contractible. Since F is of Legendre type, so is its restriction to the j-plane, F |H . As
proved in [7], this implies that all intersections of the sliced balls are contractible. By the
Nerve Theorem [2, 13], the union of the sliced balls is contractible as well. But this union
covers the (j − 1)-dimensional boundary of conv(XJ), so it must also cover conv(XJ) to be
contractible. Hence (11) follows, and in particular conv(X) ⊆

⋃k
`=0 B(x`;Rk).
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For the second step, recall that ∆j = ∆j(X) is the j-th Chernoff polytope of X. Define
C` = B(x`;Rk) ∩ ∆j , for 0 ≤ ` ≤ k. Since ∆j ⊆ conv(X), the balls B(x`;Rk) cover
∆j . By the Nerve Theorem, the nerve of the sets C` has the same homotopy type as ∆j

and is therefore contractible. To apply Proposition 7 to ∆j , we first interpret ∆j as the
homeomorphic image of a k-simplex. Assuming ∆j is k-dimensional, we decompose its
boundary by central projection of the boundary of conv(X), in which we use any point
in the interior of ∆j as center; see Figures 3 and 4 for illustrations. It is possible that
the dimension of ∆j is less than k, namely when some j-faces of conv(X) have coincident
Chernoff points. We can perturb the coincident Chernoff points slightly and continue the
proof with the perturbed ∆j , which is now k-dimensional. In either case, we denote the
topological k-simplex by ∆̃j .

Recall that the facets of ∆j are classified as near and far facets of the k + 1 points in
X. Each facet of ∆̃j consists of a far facet and pieces of k near facets of ∆j . To describe
this in the necessary amount of detail, we denote the facets of ∆̃j by Φ0,Φ1, . . . ,Φk and
the facets of X by X` = X \ {`} for 0 ≤ ` ≤ k. The indexing is chosen so that Φ` consists
of the far facet of x` – which is contained in conv(X`) – together with pieces of the near
facets of the vertices xi ∈ X`. The far facet of x` is covered by the balls B(xi;Rk), for i 6= `,
as a consequence of (11). Furthermore, the near facet of x` is covered by B(x`;Rk) simply
because B(x`;Rj) ⊆ B(x`;Rk), and the former ball is convex and contains the relevant
vertices of ∆j . It follows that Φ` is covered by the balls B(xi;Rk), for i 6= `. Hence, ∆̃j

and the sets C` satisfy the assumptions of Proposition 7. The proposition thus implies that
the common intersection of the C` is non-empty. This intersection can only be the Chernoff
point of X, which we therefore conclude lies inside ∆j , as required. J

In particular, if the balls remain convex until radius Rk−1, then Theorem 6 still holds.
Without any assumption on convexity, we do not claim anything beyond ∆0 containing all
points dJ , J ⊆ {0, 1, . . . , k}, which is Lemma 2.

6 No improvement

We finally show that Theorem 8 is best possible, in the sense that the hierarchy of inclusions
cannot be extended beyond ∆j+1. To this end, we construct a function of Legendre type,
F : Rd → R, and a d-simplex, X ⊆ Rd, such that

for radius r ≤ Rj , the primal Bregman balls centered at the points of X are convex,
there is at least one (j + 2)-face of X whose Chernoff point is not contained in ∆j+1.

It will suffice to consider the case j + 2 = d. We begin with the construction in d = 2
dimensions, when j = 0 and Rj = 0, so the first condition is automatically satisfied. With an
eye on the generalization to higher dimensions, we will nevertheless make sure that the balls
with small but positive radius are convex. We first simplify the task by requiring that F be
convex but not necessarily differentiable and not necessarily strictly convex. Appropriate
small bump functions are used to eventually turn the convex function into a Legendre type
function.

Two-dimensional construction. Let ∆2
0 = conv(X) with X = {x0, x1, x2} be an equilateral

triangle with edges of length
√

2 and center at the origin in R2. The first barycenter polytope
is ∆2

1 = conv(Y ) with Y = {y0, y1, y2} and yi = 1
2 (xi+1 + xi+2), where we take indices

modulo 3. Calculating the Euclidean inradii of ∆2
1 and ∆2

0, we choose a radius strictly
between them, 1/

√
24 < % < 1/

√
6, and we let D(%) be the (Euclidean) disk with this radius

and center at the origin. As illustrated in Figure 5, D(%) is neither contained in ∆2
1 nor
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x2

y1 y0

x0 x1y2

z0

Figure 5 In the nonconvex case, we can arrange that the Chernoff point of X lies outside the
triangle spanned by the Chernoff points of the edges of X.

does it contain ∆2
1. We finally construct F : R2 → R by mapping a ∈ R2 to F (a) = ‖a‖2 if

a ∈ R2 \D(%), and to F (a) = %2 if a ∈ D(%). The graph of F is a paraboloid with a flattened
bottom. Recall that BF (xi; r) can be constructed by vertically projecting all points of the
graph that are visible from the point (xi, ‖xi‖2 − r) ∈ R2 × R. Writing Di(

√
r) for the disk

with center xi and squared radius r, the primal Bregman ball satisfies

BF (xi; r) =


Di(
√
r) if r ≤ (

√
2/3− %)2,

Di(
√
r) \D(%) if (

√
2/3− %)2 ≤ r ≤ 2/3− %2,

Di(
√
r) ∪D(%) if 2/3− %2 < r.

(12)

The Bregman ball is convex in the first case, and it is nonconvex in the second case. To give
the final touch, we observe that the gradient of F is bounded away from zero everywhere
outside D(%). We can therefore change F so its graph over D(%) is an upside-down cone
with apex z0 ∈ intD(%) \∆2

1, and we can do this without violating convexity and without
changing F outside this disk. We can turn F into a differentiable and strictly convex function
by substituting slightly curved arcs for the generating lines of the cone and by rounding off
the sharp corners at the apex and the circle at which the cone meets the paraboloid. With
these modifications, we get z0 as the Chernoff point of X, which by construction lies outside
∆2

1.

Higher dimensions. The 2-dimensional construction generalizes in a straightforward way
to d ≥ 2 dimensions. The only nontrivial step is to prove that % > 0 can be chosen so that
the Euclidean ball D(%) neither contains ∆d

d−1 nor is contained in it, and that a ball centered
at xi and touching D(%) in a single point contains the near facet of ∆d

d−2. With such a
%, we can generalize the 2-dimensional construction so that the Chernoff point of X lies
outside ∆d

d−1. We now prove that such a % exists. Let ∆d
0 = conv(X) be a regular d-simplex

with edges of length
√

2 and center at the origin in Rd. We need formulas for the Euclidean
circumradius and height of ∆d

0, and the Euclidean inradius of ∆d
d−1. It is convenient to

derive them for the standard d-simplex, which is the convex hull of the endpoints of the d+ 1
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unit coordinate vectors of Rd+1. We get the circumradius as the Euclidean distance between
the vertices and the center at ( 1

d+1 ,
1

d+1 , . . . ,
1

d+1 ):

Rd =
√(

d
d+1

)2
+ d

(
1

d+1

)2
=
√

d(d+1)
(d+1)2 =

√
d

d+1 . (13)

This radius is d/(d + 1) times the height of the standard simplex, which implies that the
height is Hd = (d + 1)Rd/d =

√
(d+ 1)/d. To compute the inradius of ∆d

d−1, we observe
that the Euclidean distance of the center of ∆d

0 from a facet is Hd/(d+ 1). Similarly, the
Euclidean distance between parallel facets of ∆d

d−1 and ∆d
0 is Hd/d. It follows that the

inradius is

Id =
[

1
d
− 1
d+ 1

]
Hd = 1

d(d+ 1)Hd. (14)

Consider the Euclidean ball with center xi and radius Rd − Id. By construction, it touches
the (d− 1)-st barycenter polytope of X at the center of one of its facets, which implies that
it does not contain any of its vertices. Nevertheless, the ball contains the barycenters of
the (d− 2)-faces of ∆d

d incident to xi and therefore the entire near facet of ∆d
d−2, as we now

prove. Since ∆d
d−2 is a regular simplex, the distance between its barycenter and its vertices

is Rd−2.

I Lemma 9. Rd − Id > Rd−2.

Proof. Using (13) and (14), we simplify the expression for the difference on the left-hand
side of the claimed inequality:

Rd − Id =
√

d
d+1 −

1
d(d+ 1)

√
d+1

d =
√
d+ 1(d− 1)√

d3
. (15)

Dividing the claimed inequality by Rd−2 =
√

(d− 2)/(d− 1) and squaring, we get

[
Rd − Id

Rd−2

]2
=
[√

d+ 1(d− 1)
√
d− 1√

d3
√
d− 2

]2

= d4 − 2d3 + 2d− 1
d4 − 2d3 > 1. (16)

The claimed inequality follows. J

Finally note that the inradius of ∆d
d−1 is less than that of ∆d

0: Id < Jd. We can therefore
choose Id < % < min{Jd, Rd −Rd−2}, which is large enough so that D(%) is not contained in
∆d

d−1, and it is small enough so that D(%) does not contain ∆d
d−1 and a touching Euclidean

ball with center xi contains the near facet of ∆d
d−2.

7 Discussion

The contributions of this paper are geometric constraints on the location of the centers
of smallest enclosing spheres for data in which dissimilarities are measured with Bregman
divergences. The main tools used in their proofs are topological: the Nerve Theorem of Borsuk
[2] and Leray [13] and the Fixed Point Lemma of Knaster, Kuratowski, and Mazurkiewicz [11].
Besides being of independent interest, the results are relevant to topological data analysis.
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