
Noname manuscript No.
(will be inserted by the editor)

Refinement Checking on
Parametric Modal Transition Systems

Nikola Beneš · Jan Křet́ınský · Kim

G. Larsen · Mikael H. Møller · Salomon

Sickert · Jǐŕı Srba

the date of receipt and acceptance should be inserted later

Abstract Modal transition systems (MTS) is a well-studied specification formalism
of reactive systems supporting a step-wise refinement methodology. Despite its
many advantages, the formalism as well as its currently known extensions are
incapable of expressing some practically needed aspects in the refinement process
like exclusive, conditional and persistent choices. We introduce a new model called
parametric modal transition systems (PMTS) together with a general modal
refinement notion that overcomes many of the limitations. We investigate the
computational complexity of modal and thorough refinement checking on PMTS
and its subclasses and provide a direct encoding of the modal refinement problem
into quantified Boolean formulae, allowing us to employ state-of-the-art QBF
solvers for modal refinement checking. The experiments we report on show that the
feasibility of refinement checking is more influenced by the degree of nondeterminism
rather than by the syntactic restrictions on the types of formulae allowed in the
description of the PMTS.

1 Introduction

The specification formalism of Modal Transition Systems (MTS) [4, 42] grew out of
a series of attempts to achieve a flexible and easy-to-use compositional development
methodology for reactive systems. In fact, the formalism of MTS may be seen
as a fragment of a temporal logic [9, 22], while having a behavioural semantics
allowing for an easy composition with respect to process constructs.

Nikola Beneš
Faculty of Informatics, Masaryk University, Brno, Czech Republic

Jan Křet́ınský
IST, Austria

Kim G. Larsen · Mikael H. Møller · Jǐŕı Srba
Department of Computer Science, Aalborg University, Denmark

Salomon Sickert
Technical University Munich, Germany

2 Nikola Beneš et al.

In short, MTS are labelled transition systems equipped with two types of
transitions: must transitions which are mandatory for any implementation, and may

transitions which are optional for an implementation. Refinement of an MTS now
essentially consists of iteratively resolving the unsettled status of may transitions:
either by removing them or by turning them into must transitions.

It is well admitted (see e.g. [52]) that MTS and their extensions like disjunctive
MTS (DMTS) [43], 1-selecting MTS (1MTS) [29] and transition systems with
obligations (OTS) [12] provide strong support for a specification formalism allowing
for step-wise refinement process. Moreover, the MTS formalisms have applications
in other contexts, which include verification of product lines [33, 41], interface
theories [52, 54] and modal abstractions in program analysis [31, 34, 48].

Unfortunately, all of these formalisms lack the capability to express some in-
tuitive specification requirements like exclusive choice (either this option or that
option but not both at the same time), conditional choice (under certain conditions
an option is mandatory) and persistent choice (once we commit to some option,
the same choice must be taken also everywhere else). In this paper, we extend
considerably the expressiveness of MTS and its variants so that it can model
arbitrary Boolean conditions on transitions and also allows to instantiate persis-
tent transitions. Our model, called parametric modal transition systems (PMTS), is
equipped with a finite set of parameters that are fixed prior to the instantiation of
the transitions in the specification. The generalised notion of modal refinement is
designed to handle the parametric extension and it specialises to the well-studied
modal refinements on all the subclasses of our model like MTS, disjunctive MTS
and MTS with obligations.

To the best of our knowledge, this is the first sound attempt to introduce
persistence into a specification formalism based on modal transition systems.
A related work by Fecher and Schmidt on 1-selecting MTS [29] allows to model
exclusive-or and the authors briefly mention the desire to extend the formalism
with persistence. However, as in detail explained in the appendix of [10], their
definition does not capture the intended notion of persistence. Our formalism is in
several aspects semantically more general and handles persistence in a complete
and uniform manner.

Our contribution can be summarised as follows:

– In Section 2, we introduce the formalism of PMTS.
– Section 3 discusses several possible refinement notions and their relationship.
– In Section 4, we provide a comprehensive complexity characterisation of modal

refinement checking on a number of practically relevant subclasses of PMTS.
We show that the complexity ranges from P-completeness to ΠP

4 -completeness,
depending on the requested generality of the PMTS specifications on the
left-hand and right-hand sides.

– In Section 5, due to the high complexity of modal refinement in many cases,
we also focus on its practical complexity. We reduce modal refinement prob-
lems to satisfiability problems solvable directly by QBF solvers and perform
preliminary experiments indicating that our solution scales well in the number
of parameters.

Related work Over the years, many extensions of MTS have been proposed. While
MTS can only specify whether or not a particular transition is required, some

Refinement Checking on Parametric Modal Transition Systems 3

extensions equip MTS with more general abilities to describe what combinations

of transitions are possible. Disjunctive MTS (DMTS) [19, 43] can specify that at
least one of a given set of transitions is present. One selecting MTS [29] allow to
choose exactly one of them. Underspecified transition systems (UTS) [30] also allow
disjunctions on may transitions. Transition systems with obligations (OTS) [12] can
express positive Boolean combinations. The subclass of parameter-free PMTS we
study in this paper covers all Boolean combination of transitions. The same holds
for acceptance automata [50] and Boolean formulae with states [9], which both
express the requirement by listing all possible sets instead of a Boolean formula.
Parametric MTS (PMTS) introduced here add parameters on top of it, so that
we can also express persistent choices of transitions and relate possible choices in
different parts of a system. This way, one can model hardware dependencies of
transitions and systems with prices [15].

There are various other approaches to deal with component refinements. They
range from subtyping [44] over Java modelling language [35] to interface theories
close to MTS such as interface automata [2, 45]. Similarly to MTS, interface
automata are behavioural interfaces for components. However, their composition
works very differently. Furthermore, their notion of refinement is based on alter-
nating simulation [3], which has been proved in [40] strictly less expressive than
MTS refinement. The compositionality of the combination of MTS and interface
automata based on I/O automata [46] is further investigated in [51].

Further, alternatively to the design of correct software where an abstract verified
MTS is transformed into a concrete implementation, one can consider checking
correctness of software through abstracting a concrete implementation into a coarser
system. The use of MTS as abstractions has been advocated e.g. in [31]. While
usually overapproximations (or underapproximations) of systems are constructed
and thus only purely universal (or existential) properties can be checked, [31]
shows that using MTS one can check mixed formulae (arbitrarily combining
universal and existential properties) and, moreover, at the same cost as checking
universal properties using traditional conservative abstractions. This advantage
has been investigated also in the context of systems equivalent or closely related to
MTS [24, 26, 27, 32, 34, 47] but parameters have not been used in this context.

The MTS framework has been extended not only with respect to the expressive
power in the classical setting of automata, but also lifted to quantitative settings.
This includes probabilistic systems [23] as well as various timed systems [7, 15,
20, 25, 28, 36] with clear applications in the embedded systems design. The MTS
formalism can also be viewed as a fragment of mu-calculus that is “graphically
representable” [9, 21]. The graphical representability of a variant of alternating
simulation called covariant-contravariant simulation has been recently studied
in [1].

This article is an extended version of two conference papers [14, 38] with
complete proofs and closing the open problems mentioned in [14].

2 Parametric Modal Transition Systems

In this section we present the formalism of parametric modal transition systems
(PMTS), starting with a motivating example and continuing with the formal
definitions, followed by the general notion of modal refinement.

4 Nikola Beneš et al.

2.1 Motivation

Modal transition systems and their extensions described in the literature are
lacking the capability to express several specification requirements like exclusive,
conditional and persistent choices. We shall now discuss these limitations on an
example as a motivation for the introduction of parametric MTS formalism with
general Boolean conditions in specification requirements.

Consider a simple specification of a traffic light controller that can be at any
moment in one of the four predefined states: red , green, yellow or yellowRed . The
requirements of the specification are: when green is on the traffic light it may either
change to red or yellow and if it turned yellow it must go to red afterwards; when
red is on it may either turn to green or yellowRed , and if it turned yellowRed (as is
the case in some countries) it must go to green afterwards.

Figure 2.1a shows an obvious MTS specification (defined formally later on) of
the proposed specification. The transitions in the standard MTS formalism are
either of type may (optional transitions depicted as dashed lines) or must (required
transitions depicted as solid lines). In Figure 2.1c, Figure 2.1d and Figure 2.1e we
present three different implementations of the MTS specification where there are
no more optional transitions. The implementation I1 does not implement any may
transition as it is a valid possibility to satisfy the specification S1. Of course, in
our concrete example, this means that the light is constantly green and it is clearly
an undesirable behaviour that cannot be, however, easily avoided. The second
implementation I2 on the other hand implements all may transitions, again a legal
implementation in the MTS methodology but not a desirable implementation of
a traffic light as the next action is not always deterministically given. Finally, the
implementation I3 of S1 illustrates the third problem with the MTS specifications,
namely that the choices made in each turn are not persistent and the implementation
alternates between entering yellow or not. None of these problems can be avoided
when using the MTS formalism.

A more expressive formalism of disjunctive modal transition systems (DMTS)
can overcome some of the above mentioned problems. A possible DMTS specification
S2 is depicted in Figure 2.1b. Here the ready and stop transitions, as well as
ready and go ones, are disjunctive, meaning that it is still optional which one
is implemented but at least one of them must be present. Now the system I1
in Figure 2.1c is not a valid implementation of S2 any more. Nevertheless, the
undesirable implementations I2 and I3 are still possible and the modelling power
of DMTS is insufficient to eliminate them.

Inspired by the recent notion of transition systems with obligations [12], we can
model the traffic light using specification as a transition system with arbitrary1

obligation formulae. These formulae are Boolean propositions over the outgoing
transitions from each state, whose satisfying assignments yield the allowed com-
binations of outgoing transitions. A possible specification called S3 is given in
Figure 2.1f and it uses the operation of exclusive-or (which is defined via negation).
We will follow an agreement that whenever the obligation function for some node is
not listed in the system description then it is implicitly understood as requiring all
the available outgoing transitions to be present. Due to the use of exclusive-or in the
obligation function, the transition systems I1 and I2 are not valid implementations

1 In the transition systems with obligations only positive Boolean formulae are allowed.

Refinement Checking on Parametric Modal Transition Systems 5

green

red

yellow

yellowRed

go

stop

readygo

ready sto
p

(a) MTS specification S1

go

stop

readygo

ready sto
p

(b) DMTS specification S2

(c) Implementation I1

go

stop

readygo

ready sto
p

(d) Implementation I2

sto
p go

re
ad
y

stop

go

(e) Implementation I3

go

stop

readygo

ready sto
p

Obligation function:

Φ(green) = (stop, red)⊕ (ready , yellow)

Φ(red) = (go, green)⊕ (ready , yellowRed)

(f) Specification S3

go

stop

readygo

ready sto
p

Parameters: {reqYfromR, reqYfromG}
Obligation function:

Φ(green) = ((stop, red)⊕ (ready , yellow))

∧(reqYfromG ⇔ (ready , yellow))

Φ(red) = ((go, green)⊕ (ready , yellowRed))

∧(reqYfromR ⇔ (ready , yellowRed))

(g) PMTS specification S4

Fig. 2.1: Specifications and implementations of a traffic light controller

any more. Nevertheless, the implementation I3 in Figure 2.1e cannot be avoided in
this formalism either.

Finally, the problem with the alternating implementation I3 is that we cannot
enforce in any of the above mentioned formalisms a uniform (persistent) implemen-
tation of the same transitions in all its states. In order to overcome this problem, we
propose the so-called parametric MTS where we can, moreover, choose persistently
whether the transition to yellow is present or not via the use of parameters. The
PMTS specification with two parameters reqYfromR and reqYfromG is shown in
Figure 2.1g. Fixing a priori the (Boolean) values of the parameters makes the
choices permanent in the whole implementation, hence we eliminate also the last
problematic implementation I3.

6 Nikola Beneš et al.

2.2 Definition of Parametric Modal Transition Systems

We shall now formally capture the intuition behind parametric MTS introduced
above. First, we recall the standard propositional logic.

A Boolean formula over a set X of atomic propositions is given by the following
abstract syntax

ϕ ::= tt | x | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ

where x ranges over X. The set of all Boolean formulae over the set X is denoted
by B(X). Let µ ⊆ X be a truth assignment, i.e. a set of variables with value true,
then the satisfaction relation µ |= ϕ is given by µ |= tt, µ |= x iff x ∈ µ, and the
satisfaction of the remaining Boolean connectives is defined in the standard way. We
also use the standard derived operators like exclusive-or ϕ⊕ψ = (ϕ∧¬ψ)∨ (¬ϕ∧ψ),
implication ϕ⇒ ψ = ¬ϕ ∨ ψ and equivalence ϕ⇔ ψ = (¬ϕ ∨ ψ) ∧ (ϕ ∨ ¬ψ).

We can now proceed with the definition of parametric MTS.

Definition 2.1 A parametric MTS (PMTS) over an action alphabet Σ is a tuple
(S, T, P,Φ) where S is a set of states, T ⊆ S × Σ × S is a transition relation, P is
a finite set of parameters, and Φ : S → B((Σ × S) ∪ P) is an obligation function

over the atomic propositions containing outgoing transitions and parameters. We
implicitly assume that whenever (a, t) appears in Φ(s) then (s, a, t) ∈ T . By T (s) =
{(a, t) | (s, a, t) ∈ T} we denote the set of all outgoing transitions of s.

Note that we are not explicitly pointing to any initial state in a given PMTS.
In what follows, the initial states will be clear from the context. We also recall
the agreement that whenever the obligation function for some node is not listed in
the system description then it is implicitly understood as Φ(s) =

∧
T (s), with the

empty conjunction being tt.

We call a PMTS positive if, for all s ∈ S, any negation occurring in Φ(s) is
applied only to a parameter. A PMTS is called parameter-free if P = ∅. We can now
instantiate the previously studied specification formalisms as subclasses of PMTS.

Definition 2.2 A PMTS is called

– a transition system with obligations (OTS) if it is parameter-free and positive,
– a disjunctive modal transition system (DMTS) if it is an OTS and Φ(s) is in the

conjunctive normal form for all s ∈ S,
– a modal transition system (MTS) if it is a DMTS and Φ(s) is a conjunction of

positive literals (transitions) for all s ∈ S, and
– an implementation (or simply a labelled transition system) if it is an MTS and

Φ(s) =
∧
T (s) for all s ∈ S.

Note that positive PMTS, despite the absence of a general negation and the
impossibility to define for example exclusive-or, can still express useful requirements
like Φ(s) = p⇒ (a, t) ∧ ¬p⇒ (b, u) requiring in a state s a conditional presence of
certain transitions. Even more interestingly, we can enforce binding of actions in
different states, thus ensuring certain functionality. Take a simple two state-example:
Φ(s) = p⇒ (request , t) and Φ(t) = p⇒ (response, s).

Refinement Checking on Parametric Modal Transition Systems 7

2.3 Modal Refinement

A fundamental advantage of MTS-based formalisms is the presence of modal

refinement that allows for a step-wise system design (see e.g. [4]). We shall now
provide such a refinement notion for our general PMTS model so that it will
specialise to the well-studied refinement notions on its subclasses. In the definition,
the parameters are fixed first (persistence) followed by all valid choices modulo the
fixed parameters that now behave as constants.

First we set the following notation. Let (S, T, P,Φ) be a PMTS and µ ⊆ P be
a truth assignment for parameters. For s ∈ S, we denote by

Tranµ(s) = {E ⊆ T (s) | E ∪ µ |= Φ(s)}

the set of all admissible sets of transitions from s under the fixed truth values
of the parameters. For example, if µ = {reqYfromR} in the right-most speci-
fication in Figure 2.2 then Tranµ(green) = {{(stop, red)}} and Tranµ(red) =
{{(ready , yellowRed)}}.

We can now define the notion of modal refinement between PMTS.

Definition 2.3 (Modal Refinement) Let (S1, T1, P1,Φ1) and (S2, T2, P2,Φ2) be
two PMTSs. Let further µ ⊆ P1 and ν ⊆ P2. A binary relation R ⊆ S1 × S2 is
a modal refinement respecting µ and ν if for every (s, t) ∈ R holds

∀M ∈ Tranµ(s) : ∃N ∈ Tranν(t) : ∀(a, s′) ∈M : ∃(a, t′) ∈ N : (s′, t′) ∈ R ∧

∀(a, t′) ∈ N : ∃(a, s′) ∈M : (s′, t′) ∈ R .

We say that s modally refines t, denoted by s ≤m t, if for each µ ⊆ P1 there exists
ν ⊆ P2 and a modal refinement R respecting µ and ν such that (s, t) ∈ R.

Example 2.4 Consider the rightmost PMTS in Figure 2.2. It has two parameters
reqYfromG and reqYfromR whose values can be set independently and it can be
refined by the system in the middle of the figure having only one parameter reqY .
This single parameter simply binds the two original parameters to the same value.
The PMTS in the middle can be further refined into the implementations where
either yellow is always used in both cases, or never at all. Notice that there are in
principle infinitely many implementations of the system in the middle, however,
they are all bisimilar to either of the two implementations depicted on the left of
Figure 2.2.

In what follows, we shall investigate the complexity of positive subclasses of
PMTS. For this reason we prove the following lemma showing how the definition
of modal refinement can be simplified in this particular case.

We shall first realise that in positive PMTS and for any truth assignment µ,
Tranµ(s) is upward closed, meaning that if M ∈ Tranµ(s) and M ⊆M ′ ⊆ T (s) then
M ′ ∈ Tranµ(s).

Lemma 2.5 Consider Definition 2.3 where the right-hand side PMTS is positive. Now

the condition in Definition 2.3 can be equivalently rewritten as a conjunction of condi-

tions (2.1) and (2.2)

∀M ∈ Tranµ(s) : ∀(a, s′) ∈M : ∃(a, t′) ∈ T (t) : (s′, t′) ∈ R (2.1)

∀M ∈ Tranµ(s) : matcht(M) ∈ Tranν(t) (2.2)

8 Nikola Beneš et al.

go

stop

readygo

ready sto
p

Parameters: {reqYfromR, reqYfromG}

Obligation function:

Φ(green) = ((stop, red)⊕ (ready , yellow))

∧(reqYfromG ⇔ (ready , yellow))

Φ(red) = ((go, green)⊕ (ready , yellowRed))

∧(reqYfromR ⇔ (ready , yellowRed))

go

stop

readygo

ready sto
p

Parameters: {reqY }

Obligation function:

Φ(green) = ((stop, red)⊕ (ready , yellow))

∧(reqY ⇔ (ready , yellow))

Φ(red) = ((go, green)⊕ (ready , yellowRed))

∧(reqY ⇔ (ready , yellowRed))

go

stop

readygo

ready sto
p

≤m

≤
m

≤m

Fig. 2.2: Example of modal refinement

where matcht(M) denotes the set {(a, t′) ∈ T (t) | ∃(a, s′) ∈ M : (s′, t′) ∈ R}. If the

left-hand side PMTS is moreover positive too, Condition (2.1) is equivalent to

∀(a, s′) ∈ T (s) : ∃(a, t′) ∈ T (t) : (s′, t′) ∈ R . (2.3)

Proof We shall first argue that the condition of modal refinement is equivalent to
the conjunction of Conditions (2.4) and (2.5).

∀M ∈ Tranµ(s) : ∃N ∈ Tranν(t) : ∀(a, s′) ∈M : ∃(a, t′) ∈ N : (s′, t′) ∈ R (2.4)

∀M ∈ Tranµ(s) : ∃N ∈ Tranν(t) : ∀(a, t′) ∈ N : ∃(a, s′) ∈M : (s′, t′) ∈ R (2.5)

Let µ, ν, R, s and t be fixed. Definition 2.3 trivially implies both Conditions (2.4)
and (2.5). We now prove that (2.4) and (2.5) imply the condition in Definition 2.3.

Let M ∈ Tranµ(s) be arbitrary. There is some N1 ∈ Tranν(t) satisfying (2.4)
and some N2 ∈ Tranν(t) satisfying (2.5). Let now N ′1 = {(a, t′) ∈ N1 | ∃(a, s′) ∈
M : (s′, t′) ∈ R}. Consider N = N ′1 ∪ N2. Clearly, as Tranν(t) is upward closed,
N ∈ Tranν(t). Moreover, due to Condition (2.4) for every (a, s′) ∈M we have some
(a, t′) ∈ N1 such that (s′, t′) ∈ R. Clearly, (a, t′) ∈ N ′1 and thus also in N .

Now let (a, t′) ∈ N be arbitrary. If (a, t′) ∈ N2, due to Condition (2.5) we have
some (a, s′) ∈M such that (s′, t′) ∈ R. If (a, t′) 6∈ N2 then (a, t′) ∈ N ′1. The existence
of (a, s′) ∈M such that (s′, t′) ∈ R is then guaranteed by the definition of N ′1.

Let us now proceed with proving the claims of the lemma. Condition (2.4)
is trivially equivalent to (2.1) since Tranν(t) is upward closed. Condition (2.5)
is equivalent to (2.2). Indeed, (2.2) clearly implies (2.5) and we show that also
(2.5) implies (2.2). Let M be arbitrary. We then have some N satisfying (2.5).
Clearly, N ⊆ matcht(M). Since Tranν(t) is upward closed, N ∈ Tranν(t) implies
matcht(M) ∈ Tranν(t). Due to the upward closeness of both Tranµ(s) and Tranν(t)
in the case of a positive left-hand side, the equivalence of (2.1) and (2.3) follows. ut

Theorem 2.6 Modal refinement as defined on PMTS coincides with the standard

modal refinement notions on MTS, DMTS and OTS. On implementations it coincides

with bisimulation.

Refinement Checking on Parametric Modal Transition Systems 9

Proof The fact that Definition 2.3 coincides with modal refinement on OTS as
defined in [12] is a straightforward corollary of Lemma 2.5 and its proof. Indeed, the
two conditions given in [12] are exactly conditions (2.3) and (2.5). As the definition
of modal refinement on OTS coincides with modal refinement on DMTS (as shown
in [12]) and thus also on MTS, the proof is done.

However, for the reader’s convenience, we present a direct proof that Defini-
tion 2.3 coincides with modal refinement on MTS. Assume a parameter-free PMTS
(S, T, ∅,Φ) where Φ(s) is a conjunction of transitions for all s ∈ S, in other words it
is a standard MTS where the must transitions are listed in the conjunction and
the may transitions are simply present in the underlying transition system but not
necessarily a part of the conjunction. Observe that every transition (s, a, t) ∈ T is
contained in some M ∈ Tran∅(s). Further, each must transition (s, a, t) ∈ T is con-
tained in all M ∈ Tran∅(s). Therefore, the first conjunct in Definition 2.3 requires
that for all may transition from s there be a corresponding one from t with the
successors in the refinement relation. Similarly, the second conjunct now requires
that for all must transitions from t there be a corresponding must transition from s.
This is exactly the standard notion of modal refinement as introduced in [42]. ut

3 Thorough Refinement

While modal refinement is defined syntactically, there is also a corresponding notion
defined semantically, the so-called thorough refinement as studied e.g. in [5, 13, 16,
17]. From a semantical point of view, a state s of a PMTS may be seen to denote
the set of its implementations, i.e.

JsK := {i | i is an implementation and i ≤m s} .

We can now give the definition of a thorough refinement based on the set inclusion
of all possible implementations.

Definition 3.1 (Thorough Refinement) For PMTS states s and t, we say that
s thoroughly refines t, written s ≤t t, if JsK ⊆ JtK.

We discuss the relationship of the two refinements. Firstly, the modal refinement
is a sound approximation to the thorough refinement.

Proposition 3.2 Let s and t be PMTS states. If s ≤m t then s ≤t t.

Proof For any i ∈ JsK, we have i ≤m s and due to transitivity of ≤m, i ≤m s ≤m t

implies i ≤m t, hence i ∈ JtK. ut

The converse does not hold even for MTS as shown in the following classical
example [18] where s0 ≤t t0, but s0 6≤m t0.

s0 s1 s2
a a

t0

t1 t2

t′1

a
a

a

10 Nikola Beneš et al.

Let us now consider the subclass of deterministic PMTS. A PMTS (S, T, P,Φ)
is deterministic if for every (s, a, t), (s, a, t′) ∈ T we have t = t′. Provided that the
refined MTS is deterministic, the approximation of thorough refinement via a modal
refinement is now also complete [18]. This property holds even for parameter-free
PMTS, as formulated in the next proposition, and it is a useful observation as
deterministic systems often appear in practice [18] and checking modal refinement
is—as we shall see later—computationally easier than the thorough refinement.

Proposition 3.3 Let s0 be a PMTS state and t0 a deterministic parameter-free PMTS

state. If s0 ≤t t0 then s0 ≤m t0.

Proof In this proof, we use the notation T̂ (s) =
⋃

Tranµ(s). We now fix a valuation µ
of parameters and define a relation R that satisfies the condition of Definition 2.3.
The relation R is taken as the smallest relation such that (s0, t0) ∈ R and whenever
(s, t) ∈ R, (a, s′) ∈ T̂ (s) and (t, a, t′) ∈ T then also (s′, t′) ∈ R. Before we prove that
R satisfies the conditions, we make the claim that (s, t) ∈ R implies s ≤t t. Clearly,
this holds for (s0, t0). Suppose now that s ≤t t, (a, s′) ∈ T̂ (s), (t, a, t′) ∈ T and i′

is an arbitrary implementation of s′. Then there exists an implementation i ∈ JsK
such that i

a−→ i′. But as s ≤t t, i is also an implementation of t. Therefore, as t is
deterministic, i′ is an implementation of t′, thus s′ ≤t t

′. We can now check that R
satisfies the condition of Definition 2.3. Let (s, t) ∈ R and M ∈ Tranµ(s). Define
A := {a | ∃s′ : (a, s′) ∈M}. There is an implementation i with exactly transitions
under A. Moreover, according to the assumption it is also an implementation of t.
Hence N := {(a, t′) | (t, a, t′) ∈ T ∧ a ∈ A} is an element of Tran∅(t). The two
conjuncts then clearly hold by the construction of R. ut

However, the completeness fails if the refined system is deterministic but with
parameters.

Example 3.4 Consider a parameter-free PMTS, in fact in this case it is sufficient
to use only an MTS, ({s0, s1}, {(s0, a, s1)}, ∅, {s0 7→ tt, s1 7→ tt}) where we use the
standard MTS notation, and a deterministic PMTS ({t0, t1}, {(t0, a, t1)}, {p}, {t0 7→
a⇔ p, t 7→ tt}) below. Obviously Js0K = Jt0K contains the implementations with no
transitions or one step a-transitions. Although s0 ≤t t0, we do not have s0 ≤m t0
as we cannot match with any valuation of p.

s0 s1
a

t0 t1
a

Φ(t0) = a⇔ p

Corollary 3.5 There is a PMTS state s and a deterministic PMTS state t such that

s ≤t t but s 6≤m t.

In order to overcome the difficulties when modal and thorough refinement do
not coincide, the underapproximation of thorough refinement by modal refinement
has been complemented by an overapproximation using deterministic hull [18]
and parameter-free deterministic hull [38]. The property of the hull D is that
s ≤t t implies s ≤m D(t). The importance of using modal refinement instead of
the semantically more precise thorough refinement stems from their complexities.
While modal refinement on PMTS can be decided in polynomial space and for

Refinement Checking on Parametric Modal Transition Systems 11

Table 3.1: Thorough refinement complexity and its relation to modal refinement

MTS parameter-free PMTS PMTS

≤t ∈ EXPTIME NEXPTIME 2-EXPTIME
s ≤t t, t deterministic ≤m = ≤t ≤m = ≤t ≤m 6= ≤t

many subclasses even in polynomial time, deciding the thorough refinement is
EXPTIME-hard already for MTS [11]. The upper bounds are summarised in
Table 3.1.

Containment of the problem in EXPTIME for MTS was proven in [11] and for
DMTS in [19] with the full proof in [8], in NEXPTIME for parameter-free PMTS
in [38] with the full proof in [39]. Here we only focus on the general PMTS case.
First, we show how to transform PMTS to parameter-free PMTS and DMTS and
thus reduce our problems to the already solved one.

For a PMTS, we define a system where we can use any valuation of the
parameters.

Definition 3.6 For a PMTS M = (S, T, P,Φ) with a given state s ∈ S, we define
a parameter-free PMTS called de-parameterisation MB = ({sB} ∪ S × 2P , T ′, ∅,Φ′)
with a newly added state sB as

– T ′ = {(sB , a, (s, µ)) | (s, a, s) ∈ T, µ ⊆ P} ∪ {((s, µ), a, (s′, µ) | (s, a, s′) ∈ T},
– Φ′(sB) =

⊕
µ⊆P

Φ(s)[tt/p for p ∈ µ,ff/p for p /∈ µ, (s, µ)/s], and

– Φ′
(
(s, µ)

)
= Φ(s)[tt/p for p ∈ µ,ff/p for p /∈ µ, (s, µ)/s].

The de-parameterisation is a parameter-free PMTS having exactly all the
implementations of the PMTS and only one (trivial) valuation.

Proposition 3.7 Let s be a PMTS state. Then JsK = JsBK and s ≤m sB.

Proof For any parameter valuation µ we match it with ∅ and the modal refinement
is achieved in the copy with µ fixed in the second component. Clearly, any imple-
mentation of sB corresponds to a particular parameter valuation and thus also to
an implementation of s. ut

Remark 3.8 Notice that de-parameterisation only preserves the set of implementa-
tions but the de-parameterised system does not necessarily modally refine the origi-
nal system. Moreover, the price we have to pay is a blowup exponential in |P |. This
is, however, inevitable. Indeed, consider a PMTS ({s0, s1, s2}, {(s0, p, s1), (s1, p, s2) |
p ∈ P}, P, {s0, s1 7→

∧
p∈P (p, s)⇔ p, s2 7→ tt}). Then in every equivalent parameter-

free PMTS we need to remember the transitions of the first step so that we can
repeat exactly these in the following step. Since there are exponentially many
possibilities, the result follows.

Further, similarly to Boolean formulae with states in [9], we can transform
every parameter-free PMTS to a DMTS.

Definition 3.9 For a parameter-free PMTS M = (S, T, ∅,Φ), we define a DMTS
called de-negation MD = (S′, T ′, ∅,Φ′)

12 Nikola Beneš et al.

– S′ = {M ∈ Tran∅(s) | s ∈ S},
– Φ′(M) =

∧
(a,s′)∈M

∨
M ′∈Tran∅(s′)

(a,M ′),

and T ′ is minimal such that for each M ∈ S′ and each occurrence of (a,M ′) in
Φ(M), we have (M,a,M ′) ∈ T ′.

However, this DMTS needs to have more initial states in order to be equivalent
to the original parameter-free PMTS.

Lemma 3.10 For a state s of a parameter-free PMTS, JsK =
⋃
M∈Tran∅(s)

JMK (where

M are taken as states of the de-negation).

Note that both transformations are exponential. The first one in |P | and the
second one in the branching degree. Therefore, their composition is still only singly
exponential, yielding a state space where each state has two components: a valuation
of original parameters and Tran∅ of the original state under this valuation.

Theorem 3.11 Thorough refinement on PMTS is in 2-EXPTIME and EXPTIME-

hard.

Proof Recall that thorough refinement on DMTS is in EXPTIME [5, 13]. Further,
note that we have reduced the PMTS and parameter-free PMTS thorough refine-
ment problems to the one on DMTS with more initial states. However, this does not
pose a problem. Indeed, let s and t be states of a parameter-free PMTS. We want to
check whether s ≤t t. According to [8] where DMTS only have one initial state, we
only need to check whether for each M ∈ Tran∅(s) we have (M,Tran∅(t)) /∈ Avoid
(defined in [8]), which can clearly still be done in exponential time.

The hardness follows from the fact that thorough refinement checking on
ordinary MTS is already EXPTIME-hard [13]. ut

Due to this high complexity of the thorough refinement, we shall only deal
with the modal refinement from now on. Note that the original version of modal
refinement on PMTS [14] required, for s0 ≤m t0 to hold, that there exists a fixed

R ⊆ S1 × S2 such that for every µ ⊆ P1 there exists ν ⊆ P2 satisfying for each
(s, t) ∈ R

∀M ∈ Tranµ(s) : ∃N ∈ Tranν(t) : ∀(a, s′) ∈M : ∃(a, t′) ∈ N : (s′, t′) ∈ R ∧

∀(a, t′) ∈ N : ∃(a, s′) ∈M : (s′, t′) ∈ R .

Clearly, the original definition is stronger: For any two PMTS states, if s0 ≤m t0
holds according to [14] it also holds according to Definition 2.3. Indeed, the relation
for any sets of parameters can be chosen to be the fixed relation R. On the other
hand, the opposite does not hold, as illustrated by the following example.

Example 3.12 Consider the PMTS on the left with parameter set {p} and obligation
Φ(s0) = (a, s1), Φ(s1) = (b, s2)⇔ p, Φ(s2) = tt and the PMTS on the right with
parameter set {q} and obligation Φ(t0) =

(
(a, t1) ⇔ q

)
∧
(
(a, t′1) ⇔ ¬q

)
, Φ(t1) =

(a, t2), Φ(t2) = Φ(t′1) = tt. On the one hand, according to our definition s0 ≤m t0,
we intuitively agree this should be the case (and note they also have the same set
of implementations). On the other hand, the original definition does not allow to
conclude modal refinement between s0 and t0. The reason is that depending on

Refinement Checking on Parametric Modal Transition Systems 13

the value of p, s1 is put in the relation either with t1 (for p being true and thus
choosing q true, too) or with t′1 (for p being false and thus choosing q false, too). In
contrast to the original definition, our definition allows us to pick different relations
for different parameter valuations.

s0 s1 s2
a a

t0

t1 t2

t′1

a
a

a

We propose our modification of the definition since it is not only more intuitive,
but it also better approximates the thorough refinement and for all considered
fragments of PMTS has the same complexity as the original one. Note that the two
definitions coincide on parameter-free PMTS. Further, on MTS they coincide with
the classical definition [42] and on labelled transition systems with bisimulation.

4 Complexity of Modal Refinement Checking

We shall now investigate the complexity of refinement checking on PMTS and its
relevant subclasses. Without explicitly mentioning it, we assume that all considered
PMTS are now finite and the decision problems are hence well defined. The
complexity bounds include classes from the polynomial hierarchy (see e.g. [49])
where for example ΣP

0 = ΠP
0 = P, ΠP

1 = coNP and ΣP
1 = NP.

Let us also recall the QBF decision problems.

Definition 4.1 (QBFQn) Let Ap be a set of atomic propositions, partitioned into
n sets Ap =

⋃n
i=0Xi. Let φ ∈ B(Ap) be a Boolean formula over the set of atomic

propositions Ap and let Q ∈ {∀, ∃} be a quantifier where by convention ∀ = ∃ and
∃ = ∀. Then a formula of the form

QX1QX2QX3QX4 . . . Q̃Xnφ where Q̃ =

{
Q if n is odd

Q if n is even

is an instance of QBFQn if and only if it is true.

A formula is true means that if e.g. Q = ∃ then there is some partial valuation for
the atomic propositions in X1, such that for all partial valuations for the elements
of X2, there is another partial valuation for the propositions of X3 and so on up to
Xn, such that φ is satisfied by the union of all partial valuations. It is well known,
see e.g. [49], that these problems are complete for the polynomial hierarchy: for
each i ≥ 1, QBF∃i is ΣP

i -complete and QBF∀i is ΠP
i -complete.

4.1 Parameter-Free Systems

Since even the parameter-free systems have interesting expressive power and the
complexity of refinement on OTS has not been studied before, we first focus on
parameter-free systems. Moreover, the results of this subsection are then applied
to parametric systems in the next subsection. The results are summarised in

14 Nikola Beneš et al.

Table 4.1: Complexity of modal refinement checking of parameter-free systems

Boolean Positive pCNF pDNF MTS

Boolean ΠP
2 -compl. coNP-compl. coNP-compl. coNP-compl. coNP-compl.

Positive ΠP
2 -compl. coNP-compl. P-compl. coNP-compl. P-compl.

pCNF ΠP
2 -compl. coNP-compl. P-compl. coNP-compl. P-compl.

pDNF ΠP
2 -compl. P-compl. P-compl. P-compl. P-compl.

MTS ΠP
2 -compl. P-compl. P-compl. P-compl. P-compl.

Impl NP-compl. P-compl. P-compl. P-compl. P-compl.

Table 4.1. The rows in the table correspond to the restrictions on the left-hand
side PMTS while the columns correspond to the restrictions on the right-hand
side PMTS. Boolean denotes the general system with arbitrary negation. Positive
denotes the positive systems, in this case exactly OTS. We further use pCNF and
pDNF to denote positive systems with formulae in conjunctive and disjunctive
normal forms, respectively. In this case, pCNF coincides with DMTS. The special
case of satisfaction relation, where the refining system is an implementation is
denoted by Impl. We do not include Impl to the columns as it makes sense that an
implementation is refined only to an implementation and here modal refinement
corresponds to bisimilarity that is P-complete [6] (see also [53]). The P-hardness is
hence the obvious lower bound for all the problems mentioned in the table.

We start with the simplest NP-completeness result.

Proposition 4.2 Modal refinement between an implementation and a parameter-free

PMTS is NP-complete.

Proof The containment part is straightforward. First we guess the relation R. As s
is an implementation then the set Tran∅(s) is a singleton. We thus only need to
further guess N ∈ Tran∅(t) and then in polynomial time verify the two conjuncts
in Definition 2.3.

The hardness part is by a simple reduction from SAT. Let ϕ(x1, . . . , xn) be
a given Boolean formula (instance of SAT). We construct two parameter-free
PMTSs (S, T, ∅,Φ) and (S′, T ′, ∅,Φ′) such that (i) S = {s, s′}, T = (s, a, s′), Φ(s) =
(a, s′) and Φ(s′) = tt and (ii) S′ = {t, t1, . . . , tn}, T = {(t, a, ti) | 1 ≤ i ≤ n.},
Φ(t) = ϕ[(a, ti)/xi] and Φ(ti) = tt for all i, 1 ≤ i ≤ n. Clearly, ϕ is satisfiable if and
only if s ≤m t. ut

Next we show that modal refinement is ΠP
2 -complete. The following proposition

introduces a gadget used also later on in other hardness results. We will refer to it
as the ∗-construction.

Proposition 4.3 Modal refinement between two parameter-free PMTS is ΠP
2 -hard

even if the left-hand side is an MTS.

Proof The proof is by polynomial time reduction from the validity of the quan-
tified Boolean formula ψ ≡ ∀x1 . . .∀xn∃y1 . . .∃ym : ϕ(x1, . . . , xn, y1, . . . , ym) to the
refinement checking problem s ≤m t where s and t are given as follows.

Refinement Checking on Parametric Modal Transition Systems 15

s

s′

· · ·x1 x2 xn ∗

Φ(s) = (∗, s′)

t

t′ t1 t2 tm

· · ·

· · ·

x1 x2 xn ∗ ∗ ∗ ∗

Φ(t) = ϕ[(xi, t
′)/xi, (∗, ti)/yi]

Assume that ψ is true. Let M ∈ Tran∅(s) (clearly (∗, s′) ∈ M) and we want
to argue that there is N ∈ Tran∅(t) with (∗, t′) ∈ N such that for all (xi, s

′) ∈ M
there is (xi, t

′) ∈ N (clearly the states s′, t′ and ti are in modal refinement) and for
all (xi, t

′) ∈ N there is (xi, s
′) ∈M . Such an N can be found by simply including

(xi, t
′) whenever (xi, s

′) ∈ M and by adding also (∗, t′) into N . As ψ is true, we
include into N also all (∗, ti) whenever yi is set to true in ψ. Hence we get s ≤m t.

On the other hand if ψ is false then we pick M ∈ Tran∅(s) such that M

corresponds to the values of xi’s such that there are no values of y1, . . . , ym that
make ψ true. This means that there is no N ∈ Tran∅(t) that would contain exactly
those (xi, t

′) that correspond to (xi, s
′) in M . Hence, s 6≤m t. ut

Proposition 4.4 Modal refinement between two parameter-free PMTS is in ΠP
2 .

Proof We first note that the condition of Definition 2.3 can itself be verified in ΠP
2 .

Indeed, if we universally guess M and then existentially guess N , the rest of the
condition is verifiable in polynomial time.

We could therefore, in principle, guess the relation R and then verify that the
condition holds for all pairs (s, t) ∈ R. However, this would increase the complexity
bound to ΣP

3 . Instead, we initially include all (polynomially many) pairs into R

and for each pair check the condition. If it fails, we remove the pair and continue
until we reach the greatest fixed point. This standard method is usually known as
the coinductive computation of R.

However, a naive implementation of this idea would only prove that modal
refinement is in ∆P

3 as we have a polynomial algorithm with ΠP
2 oracle. To ac-

tually show the statement of the proposition, we describe a coNPNP algorithm,
i.e. an algorithm with universal branching that uses an NP oracle.

Suppose that we want to check if s ≤m t. The algorithm works as follows:

1. Set R := S × S′ (all pairs of states).
2. If R does not contain (s, t), reject.
3. Universally choose (s′, t′) ∈ R and M ∈ Tran(s′).
4. Using the NP-oracle, decide whether there exists N ∈ Tran(t′) such that the

refinement condition for (s′, t′) is satisfied.
5. If the result was false, remove (s′, t′) from R and go back to step 2. Otherwise,

accept.

It may be clearly seen that the algorithm accepts iff s ≤m t. ut

4.1.1 Positive Right-Hand Side.

We have now solved all the cases where the right-hand side is arbitrary. We now
look at the cases where the right-hand side is positive. In the proofs that follow

16 Nikola Beneš et al.

we shall use the alternative characterisation of refinement from Lemma 2.5. The
following proposition determines the subclasses on which modal refinement can be
decided in polynomial time.

Proposition 4.5 Modal refinement on parameter-free PMTS is in P, provided that

both sides are positive and either the left-hand side is in pDNF or the right-hand side

is in pCNF.

Proof Due to Lemma 2.5, the refinement is equivalent to the conjunction of (2.3)
and (2.2). Clearly, (2.3) can be checked in P. We show that Condition (2.2) can be
verified in P too. Recall that (2.2) says that

∀M ∈ Tranµ(s) : matcht(M) ∈ Tranν(t),

where matcht(M) = {(a, t′) ∈ T (t) | ∃(a, s′) ∈M : (s′, t′) ∈ R}.
First assume that the left-hand side is in pDNF. If for some M Condition (2.2)

is satisfied then it is also satisfied for all M ′ ⊇M , as Tranµ(s) is upwards closed.
It it thus sufficient to verify the condition for all minimal elements (wrt. inclusion)
of Tranµ(s). In this case these correspond to the clauses of Φ(s). Thus we get a
polynomial time algorithm as shown in Algorithm 1.

Algorithm 1: Test for Condition (2.2) of modal refinement (pDNF)

Input : states s and t such that Φ(s) is in positive DNF and Φ(t) is positive, relation R
Output : true if s, t satisfy the refinement condition, false otherwise
foreach clause (a1, s1) ∧ · · · ∧ (ak, sk) in Φ(s) do

N ← {(a, t′) ∈ T (t) | ∃i : ai = a ∧ (si, t
′) ∈ R};

if N 6∈ Tranν(t) then return false

return true;

Second, assume that the right-hand side is in pCNF. Note that Condition (2.2)
can be equivalently stated as

∀M : matcht(M) 6∈ Tranν(t)⇒M 6∈ Tranµ(s). (4.1)

As Φ(t) is in conjunctive normal form then N ∈ Tranν(t) is equivalent to saying
that N has nonempty intersection with each clause of Φ(t). We may thus enumerate
all maximal N 6∈ Tranν(t). Having a maximal N 6∈ Tranν(t), we can easily construct
M such that N = matcht(M). This leads to the polynomial time Algorithm 2.

Algorithm 2: Test for Condition (2.2) of modal refinement (pCNF)

Input : states s and t such that Φ(s) is positive and Φ(t) is in positive CNF, relation R
Output : true if s, t satisfy the refinement condition, false otherwise
foreach clause (a1, t1) ∨ · · · ∨ (ak, tk) in Φ(t) do

M ← T (s) \ {(a, s′) ∈ T (s) | ∃i : ai = a ∧ (s′, ti) ∈ R};
if M ∈ Tranµ(s) then return false

return true;

The statement of the proposition thus follows. ut

Refinement Checking on Parametric Modal Transition Systems 17

Proposition 4.6 Modal refinement on parameter-free PMTS is in coNP, if the right-

hand side is positive.

Proof Due to Lemma 2.5 we can solve the two refinement conditions separately.
Furthermore, both Condition (2.1) and (2.2) of Lemma 2.5 can be checked in coNP.
The computation of R is then done similarly to the algorithm described in the
proof of Proposition 4.4. ut

Proposition 4.7 Modal refinement on parameter-free systems is coNP-hard, even if

the left-hand side is in positive CNF and the right-hand side is in positive DNF.

Proof We reduce SAT into non-refinement. Let ϕ(x1, . . . , xn) be a formula in CNF.
We modify ϕ into an equivalent formula ϕ′ as follows: add new variables x̃1, . . . ,
x̃n, change all occurrences of ¬xi into x̃i for all i, and add new clauses (xi ∨ x̃i)
and (¬xi ∨ ¬x̃i).

Observe now that all clauses contain either all positive literals or all negative
literals. Let ψ+ denote a CNF formula that contains all positive clauses of ϕ′ and
ψ− denote a CNF formula that contains all negative clauses of ϕ′. As ϕ′ = ψ+∧ψ−
it is clear that ϕ′ is satisfiable if and only if (ψ+ ⇒ ¬ψ−) is not valid.

We now construct two parameter-free PMTSs (S, T, ∅,Φ) and (S′, T ′, ∅,Φ′) over
Σ = {x1, . . . , xn, x̃1, . . . , x̃n} as follows: (i) S = {s, s′}, T = {(s, xi, s′), (s, x̃i, s′) | 1 ≤
i ≤ n}, Φ(s) = ψ+[(xi, s

′)/xi, (x̃i, s
′)/x̃i] and Φ(s′) = tt, and (ii) S′ = {t, t′}, T ′ =

{(t, xi, t′), (t, x̃i, t) | 1 ≤ i ≤ n}, Φ(t) = ¬ψ−[(xi, t
′)/xi, (x̃i, t

′)/x̃i] and Φ(t′) = tt.
Note that by pushing the negation of ψ− inside, the formula Φ(t) can be written
as pDNF. It is easy to see that now s ≤m t if and only if (ψ+ ⇒ ¬ψ−) is valid.
Therefore, s 6≤m t if and only if ϕ is satisfiable. ut

Proposition 4.8 Modal refinement on parameter-free PMTS is coNP-hard, even if

the right-hand side is an MTS.

Proof We prove the hardness by a reduction from SAT to non-refinement. Let
ϕ(x1, . . . , xn) be a Boolean formula (instance of SAT). We construct two parameter-
free PMTSs (S, T, ∅,Φ) and (S′, T ′, ∅,Φ′) over Σ = {a, b} as follows:

1. S = {s, s1, . . . , sn}, T = {(s, a, si) | 1 ≤ i ≤ n}, Φ(s) = ϕ[(a, si)/xi], Φ(si) = tt

for all i.
2. S′ = {t}, T ′ = {(t, b, t)}, Φ′(t) = (b, t). (Clearly, this is an MTS.)

Let now ϕ be satisfiable and let M ∈ Tran∅(s) be arbitrary. Clearly, there can be
no match N ∈ Tran∅(t) and thus s 6≤m t.

Let now ϕ be unsatisfiable. This means that Tran∅(s) = ∅ and the refinement
condition trivially holds. Thus s ≤m t. ut

4.2 Systems with Parameters

In the sequel we investigate the complexity of refinement checking in the general
case of PMTS with parameters. The complexities are summarised in Table 4.2.
We start with an observation of how the results on parameter-free systems can be
applied to the parametric case.

18 Nikola Beneš et al.

Table 4.2: Complexity of modal refinement checking with parameters

Boolean positive pCNF pDNF

Boolean ΠP
4 -complete ΠP

3 -complete ΠP
3 -complete ΠP

3 -complete

positive ΠP
4 -complete ΠP

3 -complete ΠP
2 -complete ΠP

3 -complete

pCNF ΠP
4 -complete ΠP

3 -complete ΠP
2 -complete ΠP

3 -complete

pDNF ΠP
4 -complete ΠP

2 -complete ΠP
2 -complete ΠP

2 -complete

MTS ΣP
3 -complete NP-complete NP-complete NP-complete

Impl NP-complete NP-complete NP-complete NP-complete

Proposition 4.9 The complexity upper bounds from Table 4.1 carry over to Table 4.2,

as follows. If the modal refinement in the parameter-free case is in NP, coNP or

ΠP
2 , then the modal refinement with parameters is in ΠP

2 , ΠP
3 and ΠP

4 , respectively.

Moreover, if the left-hand side is an MTS, the complexity upper bounds shift from NP
and ΠP

2 to NP and ΣP
3 , respectively.

Proof In the first case, we first universally choose µ, we then existentially choose ν
and modify the formulae Φ(s) and Φ(t) by evaluating the parameters. This does not
change the normal form/positiveness of the formulae. We then perform the algorithm
for the parameter-free refinement. For the second case note that implementations
and MTS have no parameters and we may simply choose (existentially) ν and run
the algorithm for the parameter-free refinement. ut

We now focus on the respective lower bounds.

Proposition 4.10 Modal refinement between an implementation and a right-hand side

in positive CNF or in positive DNF is NP-hard.

Proof The proof is by reduction from SAT. Let ϕ(x1, . . . , xn) be a formula in CNF
and let ϕ1, ϕ2, . . . , ϕk be the clauses of ϕ. We construct two PMTSs (S, T, P,Φ) and
(S′, T ′, P ′,Φ′) over the action alphabet Σ = {a1, . . . , ak} as follows: (i) S = {s, s′},
T = {(s, ai, s′) | 1 ≤ i ≤ k}, P = ∅, Φ(s) =

∧
1≤i≤k(ai, s

′) and Φ(s′) = tt and

(ii) S′ = {t} ∪ {ti | 1 ≤ i ≤ k}, T ′ = {(t, ai, ti) | 1 ≤ i ≤ k}, P ′ = {x1, . . . , xn},
Φ′(t) =

∧
1≤i≤k(ai, ti) and Φ′(ti) = ϕi for all 1 ≤ i ≤ k. Notice that each ϕi in

Φ′(ti) is in positive form as we negate only the parameters xi and every clause ϕi
is trivially in DNF. Now we easily get that s ≤m t if and only if ϕ is satisfiable. ut

Proposition 4.11 Modal refinement is ΣP
3 -hard even if the left-hand side is an MTS.

Proof The proof is done using the construction of the proof of Proposition 4.3 with
parameters added on the right-hand side.

We will make a reduction from the validity of the quantified Boolean formula
ψ ≡ ∃z1, . . . , zk∀x1 . . .∀xn∃y1 . . .∃ym : ϕ(z1, . . . , zk, x1, . . . , xn, y1, . . . , ym) to the re-
finement checking problem s ≤m t where s and t are given as follows. Moreover,
the right-hand side system has {z1, . . . , zk} as its set of parameters.

Refinement Checking on Parametric Modal Transition Systems 19

s

s′

· · ·x1 x2 xn ∗

Φ(s) = (∗, s′)

t

t′ t1 t2 tm

· · ·

· · ·

x1 x2 xn ∗ ∗ ∗ ∗

Φ(t) = ϕ[(xi, t
′)/xi, (∗, ti)/yi]

Assume that ψ is true. Then there exists a valuation ν on {z1, . . . , zk} such
that ∀x : ∃y : ϕ(x, y) is true. Using now the same argument as that in the proof of
Proposition 4.3, we get that s ≤m t.

On the other hand assume that ψ is false and let ν be an arbitrary valuation on
{z1, . . . , zk}. We then may again use the reasoning in the proof of Proposition 4.3
to get that s 6≤m t. ut

The following proof introduces a gadget used also later on in other hardness
results. We refer to it as CNF-binding. Further, we use the ∗-construction here.

Proposition 4.12 Modal refinement is ΠP
4 -hard even if the left-hand side is in positive

CNF.

Proof Consider a QBF∀4 instance, a formula ψ = ∀x∃y∀z∃w : ϕ(x, y, z, w) with ϕ

in CNF and x, y, z, w vectors of length n. We construct two systems s and t and
use the variables {x1, . . . , xn} as parameters for the left-hand side system s, and
{y1, . . . , yn} as parameters for the right-hand side system t.

s

s′

ti fi zi ∗

Φ(s) = (∗, s′) ∧ CNF-binding

t

t′ ui

ti fi zi ∗ ∗

Φ(t) = (∗, t′) ∧ ϕ[(ti, t
′)/xi, (fi, t′)/¬xi,

(zi, t
′)/zi, (∗, ui)/wi]

for all 1 ≤ i ≤ n

On the left we require Φ(s) = (∗, s′) ∧
∧

1≤i≤n

(
(xi ⇒ (ti, s

′)) ∧ (¬xi ⇒ (fi, s
′)
)

and call the latter conjunct CNF-binding. Thus the value of each parameter xi
is “saved” into transitions of the system. Note that although both ti and fi may
be present, a “minimal” implementation contains exactly one of them. On the
right-hand side the transitions look similar but we require Φ(t) = (∗, t) ∧ ϕ′ where
ϕ′ is created from ϕ by changing every positive literal xi into (ti, t

′), every negative
literal ¬xi into (fi, t

′), every zi into (zi, t
′), and every wi into (∗, ui).

We show that ψ is true iff s ≤m t. Assume first that ψ is true. Therefore, for every
choice of parameters xi there is a choice of parameters yi so that ∀z∃w : ϕ(x, y, z, w)
is true and, moreover, ti or fi is present on the left whenever xi or ¬xi is true,
respectively (and possibly even if it is false). We set exactly all these transitions ti
and fi on the right, too. Further, for every choice of transitions zi on the left there
are wi’s so that ϕ(x, y, z, w) holds. On the right, we implement a transition (zi, t

′)
for each zi set to true and (∗, ui) for each wi set to true. Now ϕ′ is satisfied as it
has only positive occurrences of (ti, t

′) and (fi, t
′) and hence the extra ti’s and fi’s

do not matter. Now for every implementation of s we obtained an implementation

20 Nikola Beneš et al.

of t. Moreover, their transitions match. Indeed, ti’s and fi’s were set the same as on
the left, similarly for zi’s. As for the ∗-transition, we use the same argumentation
as in the original ∗-construction. On the left, there is always one. On the right,
there can be more of them due to wi’s but at least one is also guaranteed by Φ(t).

Let now s ≤m t. Then for every choice of xi’s—and thus also for every choice
of exactly one transition of ti, fi for each i—there are yi’s so that every choice of
transitions zi can be matched on the right so that ϕ′ is true with some transitions
(∗, ui). Since choices of ti/fi correspond exactly to choices of xi it only remains to
set wi true for each transition (∗, ui) on the right, thus making ϕ true. ut

Based on the idea of CNF-binding, we also prove the following two propositions.

Proposition 4.13 Modal refinement is ΠP
2 -hard even if both sides are in positive CNF.

Proof Recall that positive means that there may be negations, but only lim-
ited to parameter literals. The proof is done by reduction from the validity of
∀x1, . . . , xn∃y1, . . . , ym : ϕ(x1, . . . , xn, y1, . . . , ym), where ϕ is in CNF. The idea is
that the left-hand side has only xi as parameters while the right-hand side has yi
as parameters. To ensure that the valuation of xi is the same on both sides, we
bind them through transitions.

Let Σ = {t1, . . . , tn, f1, . . . , fn} be the set of actions. The systems (S, T, P,Φ) and
(S′, T ′, P ′,Φ′) are built as follows: S = {s, s′}, T = {(s, ti, s′), (s, fi, s′) | 1 ≤ i ≤ n},
P = {x1, . . . , xn}, Φ(s) =

∧
1≤i≤n((xi ⇒ (ti, s

′)) ∧ (¬xi ⇒ (fi, s
′)) (note that this

may be written in positive CNF), Φ(s′) = tt; S′ = {t, t′}, T ′ = {(t, ti, t′), (t, fi, t′) |
1 ≤ i ≤ n}, P ′ = {y1, . . . , ym}, Φ′(t) = ϕ[(ti, t

′)/xi, (fi, t
′)/¬xi], Φ′(t′) = tt. We now

claim that ∀x∃y : ϕ holds if and only if s ≤m t. We show the two implications
separately.

Let first ∀x∃y : ϕ hold. Let µ ⊆ P be arbitrary. As this is a truth valuation on
the xi variables, we know that there exists a valuation on the yi variables such that
ϕ holds. Let ν ⊆ P ′ be such a valuation. Let further M ∈ Tranµ(s) be arbitrary.
Clearly, if xi ∈ µ then (ti, s

′) ∈M and if xi 6∈ µ then (fi, s
′) ∈M .

We set N = {(x, t′) | (x, s′) ∈ M}. Clearly, such N satisfies both conjuncts of
the refinement definition. We need to show that N ∈ Tranν(t). We thus need to
show that N satisfies all the clauses in Φ′(t) = ϕ[(ti, t

′)/xi, (fi, t
′)/¬xi].

We use the fact that ϕ holds, given the current valuation µ on xi and ν on yi.
Let (`1 ∨ `2 ∨ · · · ∨ `k) be an arbitrary clause of ϕ. Clearly, at least one literal was
satisfied. If that literal was yi or ¬yi then the same literal appears in the modified
clause of Φ′(t) and we are done. If that literal was xi then it has been changed
into (ti, t

′), but as xi ∈ µ, we have that (ti, t
′) ∈ N . Similarly, if that literal was ¬xi

then it has been changed into (fi, t
′), but as xi 6∈ µ, we have that (fi, t

′) ∈ N . Thus
s ≤m t.

For the other implication let ∃x∀y : ¬ϕ hold. We show that s 6≤m t. Let µ be
the valuation of xi such that ∃x∀y : ¬ϕ holds. Let ν be arbitrary. This corresponds
to a valuation on yi.

We now set M = {(ti, s′) | xi ∈ µ} ∪ {(fi, s′) | xi 6∈ µ}. Clearly, M ∈ Tranµ(s).
Let further N ∈ Tranν(t). (If Tranν(t) = ∅, we are done.)

We know that given the current x and y valuation, ϕ does not hold. This means
that there exists at least one clause of ϕ that is false. Let (`1 ∨ `2 ∨ · · · ∨ `k) be such
clause. All `j are false, given current valuation µ and ν. However, the modified

Refinement Checking on Parametric Modal Transition Systems 21

clause of Φ′(t) corresponding to this one is satisfied by N (valuation of (ti, t
′) and

(fi, f
′)) as N ∈ Tranν(t).

Therefore, for some i, either (ti, t
′) ∈ N while xi 6∈ µ or (fi, t

′) ∈ N while xi ∈ µ.
In both cases N does not satisfy the second conjunct part of the modal refinement
definition. Therefore s 6≤m t. ut

The next proposition again reuses the idea of CNF-binding in the very same
fashion as above. Moreover, it handles more actions, more precisely those that
appear as zi’s in Proposition 4.12. Thus, the proof is the same, omitting the
∗-construction. Therefore, we only provide the reduction without repeating the
formal arguments that it indeed works.

Proposition 4.14 Modal refinement is ΠP
3 -hard for the left-hand side in positive CNF

and the right-hand side in positive DNF.

Proof The proof is done by reduction from the validity of the quantified Boolean
formula ∀x1, . . . , xk∃y1, . . . , yl∀z1, . . . , zm : ϕ with ϕ in DNF.

Let the action alphabet be Σ = {t1, . . . , tk, f1, . . . , fk, z1, . . . , zm}.
The two systems (S, T, P,Φ) and (S′, T ′, P ′,Φ′) are built as follows: S = {s, s′},

T = {(s, ti, s′), (s, fi, s′) | 1 ≤ i ≤ k} ∪ {(s, zj , s′) | 1 ≤ j ≤ m}, P = {x1, . . . , xk},
Φ(s) =

∧
1≤i≤n((xi ⇒ (ti, s

′)) ∧ (¬xi ⇒ (fi, s
′)), Φ(s′) = tt; S′ = {t, t′}, T ′ =

{(t, ti, t′), (t, fi, t′) | 1 ≤ i ≤ k} ∪ {(t, zj , t′) | 1 ≤ j ≤ m}, P ′ = {y1, . . . , yk}, Φ′(t) =
ϕ[(ti, t

′)/xi, (fi, t
′)/¬xi, (zi, t′)/zi], Φ′(t′) = tt.

Now ∀x∃y∀z : ϕ(x, y, z) holds if and only if s ≤m t. ut

The following three propositions use a modification of the CNF-binding idea
called DNF-binding. Instead of (xi ⇒ (ti, s

′))∧ (¬xi ⇒ (fi, s
′)) we use (xi∧ (ti, s

′))∨
(¬xi ∧ (fi, s

′)) to bind parameters of the left-hand side system with transitions of
the right-hand side system. The binding works slightly differently, as with DNF
we are unable to make a conjunction of such formulae for all i. We thus employ
a new special action •. The left-hand side then first requires a •-transition into n
different states si, each requiring the above formula for its respective i.

Proposition 4.15 Modal refinement is ΠP
2 -hard even if left-hand side is in positive

DNF and right-hand side is in positive CNF.

Proof The proof is done by reduction from the validity of the quantified Boolean
formula ∀x1, . . . , xn∃y1, . . . , ym : ϕ(x1, . . . , xn, y1, . . . , ym), where ϕ is in CNF.

Let the action alphabet be Σ = {t1, . . . , tn, f1, . . . , fn, •}. The two systems
(S, T, P,Φ) and (S′, T ′, P ′,Φ′) are built as follows: S = {s, s′} ∪ {si | 1 ≤ i ≤ n},
T = {(s, •, si), (si, ti, s′), (si, fi, s′) | 1 ≤ i ≤ n}, P = {x1, . . . , xn}, Φ(s) =

∧
i(•, si),

Φ(si) = (xi ∧ (ti, s
′)) ∨ (¬xi ∧ (fi, s

′)), Φ(s′) = tt; S′ = {t, t′} ∪ {ui, vi | 1 ≤ i ≤
n}, T ′ = {(t, •, ui), (t, •, vi), (ui, ti, t′), (ui, fi, t′), (vi, fi, t′), (vi, ti, t′) | 1 ≤ i ≤ n},
P ′ = {y1, . . . , yn}, Φ′(t) = ϕ[(•, ui)/xi, (•, vi)/¬xi], Φ′(ui) = (ti, t

′), Φ′(vi) = (fi, t
′),

Φ′(t′) = tt.
Now ∀x∃y : ϕ(x, y) holds if and only if s ≤m t. The reasoning behind this fact

is similar to the proof of Proposition 4.13. ut

The proof of the next proposition is a slight alteration of previous proof where
the •-construction is performed in two steps.

22 Nikola Beneš et al.

Proposition 4.16 Modal refinement is ΠP
2 -hard even if left-hand side is in positive

DNF and right-hand side is in positive DNF.

Proof The proof is done by reduction from the validity of the quantified Boolean
formula ∀x1, . . . , xn∃y1, . . . , ym : ϕ(x1, . . . , xn, y1, . . . , ym), where ϕ is in CNF. Let
ϕ1, . . . , ϕk denote the clauses of ϕ.

Let the action alphabet be Σ = {t1, . . . , tn, f1, . . . , fn, •}. The two systems
(S, T, P,Φ) and (S′, T ′, P ′,Φ′) are built as follows: S = {s, s′, s′′} ∪ {si | 1 ≤
i ≤ n}, T = {(s, •, s′)} ∪ {(s′, •, si), (si, ti, s′′), (si, fi, s′′) | 1 ≤ i ≤ n}, P =
{x1, . . . , xn}, Φ(s) = (•, s′), Φ(s′) =

∧
i(•, si), Φ(si) = (xi ∧ (ti, s

′′)) ∨ (¬xi ∧
(fi, s

′′)), Φ(s′′) = tt; S′ = {t, t′} ∪ {ui, vi | 1 ≤ i ≤ n} ∪ {wj | 1 ≤ j ≤ k},
T ′ = {(t, •, wj) | 1 ≤ j ≤ k} ∪ {(wj , •, ui), (wj , •, vi) | 1 ≤ i ≤ n, 1 ≤ j ≤
k} ∪ {(ui, ti, t′), (ui, fi, t′), (vi, fi, t′), (vi, ti, t′) | 1 ≤ i ≤ n}, P ′ = {y1, . . . , yn},
Φ′(t) =

∧
j wj , Φ′(wj) = ϕ′j where ϕ′j is created from ϕj by changing all posi-

tive literals xi into (•, ui) and all negative literals ¬xi into (•, vi). Φ′(ui) = (ti, t
′),

Φ′(vi) = (fi, t
′), Φ′(t′) = tt.

Now ∀x∃y : ϕ(x, y) holds if and only if s ≤m t. ut

The proof of the third proposition is a combination of DNF-binding (including
the •-construction) with the previously used ∗-construction.

Proposition 4.17 Modal refinement is ΠP
4 -hard even if the left-hand side is in positive

DNF.

Proof The proof is done by reduction from the validity of the quantified Boolean
formula ∀x∃y∀z∃w : ϕ(x, y, z, w) where x, y, z, w are all n-dimensional binary vectors
and ϕ is in CNF.

We let Σ = {t1, . . . , tn, f1, . . . , fn, z1, . . . , zn, ∗, •} and we create the two systems
(S, T, P,Φ), (S′, T ′, P ′,Φ′) over the action alphabet Σ as follows:

S = {s, s′} ∪ {si | 1 ≤ i ≤ n}, T = {(s, •, si), (si, ti, s′), (si, fi, s′), (s, zi, s′) |
1 ≤ i ≤ n} ∪ {(s, ∗, s′)}, P = {x1, . . . , xn}, Φ(s) = (∗, s′) ∧

∧
i(•, si), Φ(si) =

(xi ∧ (ti, s
′)) ∨ (¬xi ∧ (fi, s

′)) for all 1 ≤ i ≤ n, Φ(s′) = tt;
S′ = {t, t′} ∪ {ui, vi, wi | 1 ≤ i ≤ n}, T ′ = {(t, zi, t′), (t, •, ui), (t, •, vi), (t, ∗, wi),

(ui, ti, t
′), (ui, fi, t

′), (vi, ti, t
′), (vi, fi, t

′) | 1 ≤ i ≤ n} ∪ {(t, ∗, t′)}, P ′ = {y1, . . . , yn},
Φ′(t) = (∗, t′) ∧ ϕ[(•, ui)/xi, (•, vi)/¬xi, (zi, t′)/zi, (∗, wi)/wi], for all 1 ≤ i ≤ n:
Φ′(ui) = (ti, t

′), Φ′(vi) = (fi, t
′), Φ′(wi) = Φ′(t′) = tt.

It can be verified, using similar arguments as before, that s ≤m t if and only if
∀x∃y∀z∃w : ϕ(x, y, z, w). ut

The following proposition solves the only remaining case.

Proposition 4.18 Modal refinement is ΠP
3 -hard even if the right-hand side is in pos-

itive CNF.

Proof We prove the hardness by reduction from the validity of the QBF∀3 formula
∀x∃y∀z : ϕ(x, y, z) where x, y, z are vectors of size n. We construct two PMTSs
(S, T, P,Φ) and (S′, T ′, P ′,Φ′) as follows:

1. P = {x1, . . . , xn}, S = {s, s′, s1, . . . , sn},
T = {(s, ti, s′), (s, fi, s′), (s, ∗, si) | 1 ≤ i ≤ n} ∪ {(s, ∗, s′)},
Φ(s) = ¬ϕ[(ti, s

′)/yi, (∗, si)/zi] ∧
∧
i((ti, s

′)⇔ ¬(fi, s
′)) ∧ (∗, s′),

Φ(s′) = Φ(si) = tt for all i.

Refinement Checking on Parametric Modal Transition Systems 23

2. P ′ = {y1, . . . , yn}, S′ = {t, t′, u1, . . . , un, v1, . . . , vn},
T ′ = {(t, ∗, t′)} ∪ {(t, ti, t′), (t, fi, t′), (t, ti, ui), (t, fi, vi), (ui, b, t′), (vi, b, t′) | 1 ≤
i ≤ n}, Φ′(t) =

∨
i((ti, ui) ∨ (fi, vi)), Φ′(ui) = yi ⇒ (b, t′) for all i, Φ′(vi) =

¬yi ⇒ (b, t′) for all i, Φ′(t′) = tt.
(Clearly, this is in positive CNF. In fact, we only use disjunctions here.)

To make our first observation, we use the following notation: By s ≤µ,νm t we
denote the fact that there exists a modal refinement respecting µ and ν containing
(s, t). We now observe that for every choice of µ ⊆ P and ν ⊆ P ′, s′ ≤µ,νm ui iff
yi 6∈ ν. Similarly, s′ ≤µ,νm vi iff yi ∈ ν.

Assume now that ∀x∃y∀z : ϕ(x, y, z) is true. We want to show that s ≤m t.
Let µ ⊆ P be arbitrary. Let us fix the valuation x̂ of x given by µ. We know that
∃y∀z : ϕ(x̂, y, z) holds. Let us fix such valuation of y and call it ŷ. Let us further
choose ν = {yi | ŷi = tt}. Let now M ∈ Tranµ(s) be arbitrary. Clearly, (ti, s

′) ∈M
iff (fi, s

′) 6∈M . Furthermore M induces a valuation ỹ of y (via the choice of ti/fi)
and z̃ of z (via the choice of (∗, si)), such that ¬ϕ(x̂, ỹ, z̃) holds.

As we know that ∀z : ϕ(x̂, ŷ, z) holds, this means that ŷ and ỹ differ. Therefore,
there is at least one index j such that ŷj 6= ỹj and thus either yj ∈ ν and (fj , s

′) ∈M
or yj 6∈ ν and (tj , s

′) ∈M .
To show that s ≤m t, we use Lemma 2.5. Clearly, Condition (1) holds. We now

show that matcht(M) ∈ Tranν(t). Clearly, matcht(M) = {(∗, t′)}∪{(ti, t′) | (ti, s′) ∈
M}∪{(fi, t′) | (fi, s′) ∈M}∪{(ti, ui) | (ti, s′) ∈M and yi 6∈ ν}∪{(fi, vi) | (fi, s′) ∈M
and yi ∈ ν}. Due to our observation that ỹ and ŷ differ, at least one of (ti, ui)
or (fi, vi) is contained in matcht(M). Therefore, matcht(M) ∈ Tranν(t) and thus
s ≤m t.

Let us now assume that ∀x∃y∀z : ϕ(x, y, z) does not hold. We show that s 6≤m t.
Our assumption means that ∃x∀y∃z : ¬ϕ(x, y, z) holds. Let us fix such a valuation
x̂ of x and choose µ = {xi | x̂i = tt}. Let ν ⊆ P ′ be arbitrary and let us fix the
valuation ŷ of y represented by ν. Let us further fix a valuation ẑ of z such that
¬ϕ(x̂, ŷ, ẑ) = tt. Choose M = {(ti, s′) | ŷi = tt} ∪ {(fi, s′) | ŷi 6= tt} ∪ {(∗, si) | ẑi =
tt} ∪ {(∗, s′)}. Clearly, M ∈ Tranµ(s).

We now show that matcht(M) 6∈ Tranν(t). To be in Tranν(t) a set has to
contain at least one of (ti, ui) or (fi, vi). However, matcht(M) does not contain any
of these, as M contains (ti, s

′) iff yi ∈ ν and (fi, s
′) iff yi 6∈ ν. (See our observation

about s′ ≤µ,νm ui and s′ ≤µ,νm vi above.) Therefore, s 6≤m t. ut

Although the complexity may seem discouraging in many cases, there is an
important remark to make. The refinement checking may be exponential, but
only in the outdegree of each state and the number of parameters, while it is
polynomial in the number of states. As one may expect the outdegree and the
number of parameters to be much smaller than the number of states, this means
that the refinement checking may still be done in a rather efficient way. This claim
is furthermore supported by the existence of efficient SAT solvers that may be
employed to check the inner conditions in the modal refinement.

5 Modal Refinement Checking by Reduction to QBF

In this section, we show how to solve the modal refinement problem on parameter-
free PMTS and on general PMTS using QBF solvers. Although modal refinement

24 Nikola Beneš et al.

is computationally hard (ΠP
2 -complete on parameter-free PMTS and ΠP

4 -complete
on PMTS), by using QBF solvers we obtain a feasible method for modal refinement
checking, as documented by our preliminary experiments.

As mentioned, in order to decide whether modal refinement holds between
two states, a reduction to a quantified Boolean formula will be used. Recall the
definition of the problem QBFQn where Q ∈ {∃, ∀} given in Definition 4.1.

5.1 Construction for parameter-free PMTS

Due to the completeness of QBF problems and our result in Proposition 4.4, it
is possible to polynomially reduce modal refinement on parameter-free PMTS to
QBF∀2 . However, following the construction in Proposition 4.4, we have to perform
fixed-point iterations in order to compute the refinement relation, resulting in
numerous invocations of the external QBF solver. Additionally, this approach is
not applicable in the PMTS case. We shall instead provide a direct reduction of
modal refinement checking to QBF∃3 .

Let s ∈ S1 and t ∈ S2 be states of two arbitrary parameter-free PMTSs
M1 = (S1, T1, ∅,Φ1) and M2 = (S2, T2, ∅,Φ2). Furthermore let

Ap = (S1 × S2)︸ ︷︷ ︸
XR

] T1︸︷︷︸
XT1

] (S1 × T2)︸ ︷︷ ︸
XT2

be a set of atomic propositions. The intended meaning is that (u, v) ∈ XR is
assigned tt if and only if it is also contained in the modal refinement relation R,
while XT1

and XT2
encode transitions. A state from S1 is attached to the set T2,

because the variables used to encode N ∈ Tran(t) with t ∈ S2 must be unique for
different states of S1 in order to move the ∃ quantification over conjuncts in the
formula.

We now construct a formula Ψs,t ∈ B(Ap) satisfying

s ≤m t iff ∃XR∀XT1
∃XT2

Ψs,t ∈ QBF∃3 . (5.1)

To this end, we shall use a macro ψu,v capturing the condition which has to be
satisfied by any element (u, v) ∈ R. Furthermore, we ensure that (s, t) is assigned
tt by every satisfying assignment for the formula by placing it directly in the
conjunction:

Ψs,t = (s, t) ∧
∧

(u,v)∈XR

(
(u, v)⇒ ψu,v

)
. (5.2)

It remains to define the formula ψu,v that should guarantee that (u, v) ∈ R. We
start with the modal refinement condition as a blueprint:

∀M ∈ Tran(u) : ∃N ∈ Tran(v) : ∀(a, u′) ∈M : ∃(a, v′) ∈ N : (u′, v′) ∈ R ∧

∀(a, v′) ∈ N : ∃(a, u′) ∈M : (u′, v′) ∈ R .

As M and N are subsets of T1(u) and T2(v), respectively, and are finite, the inner
quantifiers can be expanded causing only a polynomial growth of the formula size.
Further, Tran sets are replaced by the original definition and the outer quantifiers

Refinement Checking on Parametric Modal Transition Systems 25

are moved in front of Ψs,t. As the state obligations are defined over a different
set of atomic propositions (Φ(v) ∈ B((Σ × S) ∪ P) 6⊆ B(Ap)), a family of mapping
functions πx is introduced where x is either a state from S1 or a pair of states from
S1 × S2.

πx : B(Σ × S)→ B(Ap)

tt 7→ tt

(a, v) 7→ (x, a, v) for a ∈ Σ, v ∈ S
¬ϕ 7→ ¬ πx(ϕ)

ϕ1 ∧ ϕ2 7→ πx(ϕ1) ∧ πx(ϕ2)

ϕ1 ∨ ϕ2 7→ πx(ϕ1) ∨ πx(ϕ2)

(5.3)

Applying these steps to the blueprint yields the following result:

ψu,v = πu (Φ1 (u))⇒ πu,v (Φ2 (v)) ∧ ϕu,v (5.4)

ϕu,v =
∧

u∗∈XT1

u∗=(u,a,u′)

(
u∗ ⇒

∨
v∗∈XT2

v∗=(u,v,a,v′)

(
v∗ ∧

(
u′, v′

)))

∧
∧

v∗∈XT2

v∗=(u,v,a,v′)

(
v∗ ⇒

∨
u∗∈XT1

u∗=(u,a,u′)

(
u∗ ∧

(
u′, v′

)))
.

(5.5)

Theorem 5.1 For states s, t of a parameter-free PMTS, we have

s ≤m t iff ∃XR∀XT1
∃XT2

Ψs,t ∈ QBF∃3 .

Before proving the soundness and the correctness of the construction for
parameter-free PMTS, a lemma is introduced to simplify this proof.

Lemma 5.2 Let (u, v) ∈ S1 × S2 be a pair of states. Let AXR
, AXT1

and AXT2

be partial valuations for the respective sets of atomic propositions that appear in the

indices. Furthermore let R ⊆ S1 × S2, M ∈ Tran∅(u) and N ∈ Tran∅(v) such that

AXR
= R, AXT1

⊇ πu (M) and AXT2
⊇ πu,v (N). Then AXR

∪AXT1
∪AXT2

|= ϕu,v
if and only if

R ∪M ∪N |= ∀(a, s′) ∈M : ∃(a, t′) ∈ N : (s′, t′) ∈ R

∧ ∀(a, t′) ∈ N : ∃(a, s′) ∈M : (s′, t′) ∈ R .

Proof We assume the conditions of the lemma, the set AX = AXR
∪ AXT1

∪ AXT2

and AR = R ∪M ∪N . Additionally, we only consider one half of the conjunction,
as the other one is proven analogously.

AR |= ∀(a, s′) ∈M : ∃(a, t′) ∈ N : (s′, t′) ∈ R

iff AR |=
∧

(a,s′)∈T1(s)

(
(a, s′) ∈M ⇒

∨
(a,t′)∈T2(t)

(
(a, t′) ∈ N ∧

(
(s′, t′) ∈ R

)))
iff AX |=

∧
s∗∈XT1

s∗=(s,a,s′)

(
s∗ ⇒

∨
t∗∈XT2

t∗=(s,t,a,t′)

(
t∗ ∧

(
s′, t′

)))

26 Nikola Beneš et al.

As M and N are finite sets, ∀ and ∃ quantifiers may simply be expanded. In
the second step, we apply πx and substitute ∈ with atomic propositions. ut

Soundness and Completeness of Theorem 5.1 For soundness, assume s ≤m t with the
modal refinement relation R. As the partial valuation for XR, we set AXR

= R.
Furthermore let AXT1

⊆ XT1
be an arbitrary assignment. We now construct an

assignment AXT2
, such that

A = AXR
∪ AXT1

∪ AXT2
|= Ψs,t

holds. Without adding anything to AXT2
, clearly A |= (s, t) and A |= (u, v)⇒ ψu,v

for all (u, v) ∈ XR ∩R hold.
Let now (u, v) ∈ R be an arbitrary pair of states. If A 6|= πu (Φ(u)), then

A |= ψu,v and A |= (u, v) ⇒ ψu,v. Hence we assume now A |= πu (Φ(u)). Since
(u, v) ∈ R, there exists for all M ∈ Tran∅(u) a set N , such that the condition holds,
which is included in the assignment AXT2

⊇ πu,v (N). This can safely be done due
to the prefixing and with Lemma 5.2 we get A |= ϕu,v and A |= (u, v)⇒ ψu,v.

As a valuation A can be constructed for a fixed modal refinement relation,
such that for all subsets of XT1

it satisfies the formula, ∃XR∀XT1
∃XT2

Ψs,t ∈ QBF∃3
holds.

For completeness, we now assume

∃XR∀XT1
∃XT2

Ψs,t ∈ QBF∃3 .

Then there exists a partial valuation AXR
⊆ A for XR, which satisfies Ψs,t. R is

simply constructed by setting R = AXR
. Clearly (s, t) ∈ R. Let now (u, v) ∈ R be an

arbitrary pair of states. As (5.4) is satisfied for this pair, either Φ(u) is unsatisfiable
and there simply exists no M ∈ Tran∅(s) or for the chosen M = π−1

u (AXT1
) exists

a N = π−1
u,v(AXT2

). By Lemma 5.2 the modal refinement condition holds for this
arbitrary pair. Hence R is a modal refinement relation.

Finally, we show that the reduction indeed takes only polynomial time. For this
observe that (5.5) is in O(|T1(u)||T2(v)|). Therefore (5.4) is in O(|T1(u)||T2(v)|+
|Φ1(u)|+ |Φ2(v)|). Leading to a total formula size of

O
(
|S1||S2|

(
|T1||T2|+ |Φ1|+ |Φ2|

))
.

5.2 Construction for PMTS

We now reduce the modal refinement on PMTS to QBF∀4 , which corresponds
directly to the complexity result for this problem proved in the present article.
Nevertheless, due to the first existential quantification in ∀∃∀∃ alternation sequence,
we can still guess the refinement relation using the QBF solver rather than to do
the lengthy fixed-point computation.

In the PMTS case, we have to find for all parameter valuations for the system
of s a valuation for the system of t, such that there exists a modal refinement relation
containing (s, t). We simply choose universally a valuation for the parameters of the
left system (the underlying system of s) and then existentially for the right system
(the underlying system of t). Prior to checking modal refinement, the valuations

Refinement Checking on Parametric Modal Transition Systems 27

are fixed, so the PMTS becomes a parameter-free PMTS. This is accomplished by
extending Ap with P1 and P2 and adding the necessary quantifiers to the formula.
Thus we obtain the following:

Theorem 5.3 For states s, t of a PMTS, we have

s ≤m t iff ∀P1∃P2∃XR∀XT1
∃XT2

Ψs,t ∈ QBF∀4 .

5.3 Experimental Results

We now show how our method performs in practice by implementing the reduction
and linking it to the QBF solver Quantor2. In order to evaluate whether our
solution scales, we generated several random samples of MTS and parametric
MTS with a different number of parameters ranging from 0 to 20 (as displayed
in Table 5.1 in parentheses). The systems use two different actions and the edges
were generated randomly so that they create a tree with some additional “noise”
edges to reach the specified number of outgoing transitions. In order to simulate
a step-wise refinement, we took these randomly generated systems and performed
a few randomised operations, such as insertion and removal of actions, states and
transitions, as well as changes to the transition labels or to the obligation function
of a state. Table 5.1 is split according to the instances where the modal refinement
(after a few randomised changes were performed) remained satisfied and where it
became unsatisfied. The degree of the random graph is the number of outgoing
transitions from each state. Given the fixed two-letter action alphabet, the higher
the degree the more nondeterminism is present in the generated systems.

The entries in the tables are average running times in seconds with around
90% of the time used by the external QBF solver. The standard deviation in our
experiments ranged from 10 to 60%, a few exceptions are noted with a footnote.
The reason why the refinement checking takes occasionally significantly more time
is likely due to the fact that the generated graphs are hard instances for the QBF
solver (for the chosen heuristic). The experiments were performed on an Intel Core
i7 (2.7 Ghz) with 16 GB RAM using Java 1.8.

On the one hand, we can observe that the number of parameters does not
generally play any major role in the running time, excluding some rare cases. The
running times on PMTS with 20 parameters are close to parameter-free PMTS.
Therefore, the greatest theoretical complexity threat—the number of parameters
requiring in general a search through exponentially many combinations—seems to
be in practice eliminated by the use of QBF solvers.

On the other hand, observe that the running time is affected by the level
of nondeterminism (degree). This effect is more emphasised as the number of
parameters increases. However, the level of nondeterminism in many applications
is often quite low [18], hence this dependency does not pose a serious problem in
practice.

The method is implemented within the tool MoTraS [37], which is equipped
with a graphical as well as a command-line interface. More information on the
tool and the data used to perform this experimental evaluation can be found at
https://www7.in.tum.de/~kretinsk/motras.html.

2 http://fmv.jku.at/quantor/

https://www7.in.tum.de/~kretinsk/motras.html
http://fmv.jku.at/quantor/

28 Nikola Beneš et al.

Table 5.1: Experimental results: degree is the number of outgoing transitions and
the size of the problem is the number of states

degree 2 (satisfied) 50 100 150 200 250 300

MTS 0.17 0.36 0.82 1.44 2.31 3.4
PMTS (0) 0.08 0.34 0.79 1.45 2.42 3.23
PMTS (1) 0.08 0.39 0.93 1.69 2.70 3.82
PMTS (5) 0.09 0.42 0.92 1.79 2.79 3.91
PMTS (20) 0.09 0.57 1.11 4.53 32.38 3 37.85 4

degree 2 (unsatisfied) 50 100 150 200 250 300

MTS 0.09 0.36 0.81 1.50 2.34 3.21
PMTS (0) 0.08 0.36 0.78 1.51 2.38 3.43
PMTS (1) 0.09 0.39 0.82 1.62 2.71 3.74
PMTS (5) 0.09 0.39 0.89 1.66 2.83 3.80
PMTS (20) 0.09 0.42 0.97 2.01 2.93 4.32

degree 3 (satisfied) 50 100 150 200 250 300

MTS 0.31 0.94 2.22 4.03 6.59 9.48
PMTS (0) 0.20 0.91 2.23 4.00 6.65 9.56
PMTS (1) 0.27 1.04 2.73 4.60 7.79 11.61
PMTS (5) 0.24 1.10 2.73 5.05 8.21 12.19
PMTS (20) 0.34 1.34 3.06 6.34 11.21 227.55 5

degree 3 (unsatisfied) 50 100 150 200 250 300

MTS 0.20 0.82 2.13 3.79 6.36 8.85
PMTS (0) 0.21 0.87 2.17 4.05 6.59 8.85
PMTS (1) 0.26 0.99 2.48 4.55 7.46 10.99
PMTS (5) 0.28 1.13 2.83 4.96 8.42 11.63
PMTS (20) 0.28 1.11 3.22 5.83 8.98 12.69

degree 5 (satisfied) 50 100 150 200 250 300

MTS 0.79 2.89 6.69 12.88 19.79 30.27
PMTS (0) 0.89 3.54 8.64 16.83 26.29 38.27
PMTS (1) 2.24 8.86 22.02 41.94 81.86 113.59
PMTS (5) 3.32 8.64 16.91 38.17 58.31 95.79
PMTS (20) 1.42 7.59 21.69 80.29 6 61.84 116.24

degree 5 (unsatisfied) 50 100 150 200 250 300

MTS 0.72 2.81 6.50 12.45 19.45 29.58
PMTS (0) 0.83 4.23 8.51 14.89 25.33 37.79
PMTS (1) 1.79 9.25 29.66 56.53 69.69 83.31
PMTS (5) 2.89 7.60 20.14 42.45 64.86 89.23
PMTS (20) 1.21 6.87 20.75 40.51 47.54 97.75

3 Standard deviation: 40.29
4 Standard deviation: 47.56
5 Standard deviation: 197.36
6 Standard deviation: 96.79

Refinement Checking on Parametric Modal Transition Systems 29

6 Conclusion

We have introduced an extension of modal transition systems called PMTS for
parametric systems. The formalism is general enough to capture several features
missing in the other extensions, while at the same time it offers an easy to understand
semantics and a natural notion of modal refinement that specialises to the well-
known refinements already studied on the subclasses of PMTS. We provided
a comprehensive overview of complexity of refinement checking on PMTS and its
subclasses, showed a direct encoding of the problem into QBF and discussed its
applicability on preliminary experiments with random graphs. The conclusion we
can draw is that the refinement checking scales well with the growing number
of parameters but it is more sensitive to the degree of nondeterminism. A more
thorough experimental evaluation on larger case studies is left as future work.

Acknowledgements We would like to thank to Sebastian Bauer for suggesting the traffic
light example and for allowing us to use his figure environments. The research leading to
the results in this article has received funding from the European Union Seventh Framework
Programme (FP7/2007-2013) under Grant Agreement nr. 318490 (SENSATION) and Grant
Agreement nr. 601148 (CASSTING), from the Sino-Danish Basic Research Center IDEA4CPS
funded by the Danish National Research Foundation and the National Science Foundation
China. The research was further funded in part by the European Research Council (ERC)
under the grant agreement 267989 (QUAREM), by the Austrian Science Fund (FWF) project
S11402-N23 (RiSE) and by the Czech Science Foundation grant No. P202/12/G061. Nikola
Beneš has been supported by the MEYS project No. CZ.1.07/2.3.00/30.0009 Employment of
Newly Graduated Doctors of Science for Scientific Excellence.

References

1. Aceto, L., Fábregas, I., de Frutos-Escrig, D., Ingólfsdóttir, A., Palomino,
M.: Graphical representation of covariant-contravariant modal formulae. In:
EXPRESS, pp. 1–15 (2011)

2. de Alfaro, L., Henzinger, T.A.: Interface automata. In: ESEC / SIGSOFT
FSE, pp. 109–120 (2001)

3. Alur, R., Henzinger, T.A., Kupferman, O., Vardi, M.Y.: Alternating refinement
relations. In: CONCUR, pp. 163–178 (1998)

4. Antonik, A., Huth, M., Larsen, K.G., Nyman, U., Wasowski, A.: 20 years of
modal and mixed specifications. Bulletin of the EATCS no. 95 pp. 94–129
(2008)

5. Antonik, A., Huth, M., Larsen, K.G., Nyman, U., Wasowski, A.: Complexity
of decision problems for mixed and modal specifications. In: Proceedings of
the 11th International Conference on Foundations of Software Science and
Computation Structures (FOSSACS’08), LNCS, vol. 4962, pp. 112–126 (2008)

6. Balcazar, J.L., Gabarró, J., Santha, M.: Deciding bisimilarity is P-complete.
Formal aspects of computing 4(6 A), 638–648 (1992)

7. Bauer, S.S., Fahrenberg, U., Juhl, L., Larsen, K.G., Legay, A., Thrane, C.R.:
Quantitative refinement for weighted modal transition systems. In: MFCS,
LNCS, vol. 6907, pp. 60–71. Springer (2011)

8. Beneš, N., Černá, I., Křet́ınský, J.: Disjunctive modal transition systems and
generalized LTL model checking. Technical report FIMU-RS-2010-12, Faculty
of Informatics, Masaryk University, Brno (2010)

30 Nikola Beneš et al.

9. Beneš, N., Delahaye, B., Fahrenberg, U., Křet́ınský, J., Legay, A.: Hennessy-
Milner logic with greatest fixed points as a complete behavioural specification
theory. In: P.R. D’Argenio, H.C. Melgratti (eds.) CONCUR, Lecture Notes in

Computer Science, vol. 8052, pp. 76–90. Springer (2013)
10. Beneš, N., Křet́ınský, J., Larsen, K.G., Møller, M.H., Srba, J.: Parametric

modal transition systems. Technical report FIMU-RS-2011-03, Faculty of
Informatics, Masaryk University, Brno (2011)

11. Beneš, N., Křet́ınský, J., Larsen, K.G., Srba, J.: EXPTIME-completeness of
thorough refinement on modal transition systems. Inf. Comput. 218, 54–68
(2012)

12. Beneš, N., Křet́ınský, J.: Process algebra for modal transition systemses. In:
L. Matyska, M. Kozubek, T. Vojnar, P. Zemćık, D. Antos (eds.) MEMICS,
OASICS, vol. 16, pp. 9–18. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
Germany (2010)

13. Beneš, N., Křet́ınský, J., Larsen, K., Srba, J.: EXPTIME-completeness of thor-
ough refinement on modal transition systems. Information and Computation
218, 54–68 (2012)

14. Beneš, N., Křet́ınský, J., Larsen, K.G., Møller, M.H., Srba, J.: Parametric
modal transition systems. In: ATVA, pp. 275–289 (2011)

15. Beneš, N., Křet́ınský, J., Larsen, K.G., Møller, M.H., Srba, J.: Dual-priced
modal transition systems with time durations. In: LPAR, pp. 122–137 (2012)

16. Beneš, N., Křet́ınský, J., Larsen, K.G., Srba, J.: Checking thorough refinement
on modal transition systems is EXPTIME-complete. In: Theoretical Aspects of
Computing - ICTAC 2009, 6th International Colloquium. Proceedings, LNCS,
vol. 5684. Springer (2009)

17. Beneš, N., Křet́ınský, J., Larsen, K.G., Srba, J.: On determinism in modal
transition systems. Theoretical Computer Science 410(41), 4026–4043 (2009)

18. Beneš, N., Křet́ınský, J., Larsen, K.G., Srba, J.: On determinism in modal
transition systems. Theor. Comput. Sci. 410(41), 4026–4043 (2009)

19. Beneš, N., Černá, I., Křet́ınský, J.: Modal transition systems: Composition and
LTL model checking. In: ATVA, pp. 228–242 (2011)

20. Bertrand, N., Legay, A., Pinchinat, S., Raclet, J.B.: Modal event-clock speci-
fications for timed component-based design. Sci. Comput. Program. 77(12),
1212–1234 (2012). DOI 10.1016/j.scico.2011.01.007

21. Boudol, G., Larsen, K.G.: Graphical versus logical specifications. In: CAAP,
pp. 57–71 (1990)

22. Boudol, G., Larsen, K.G.: Graphical versus logical specifications. Theor.
Comput. Sci. 106(1), 3–20 (1992)

23. Caillaud, B., Delahaye, B., Larsen, K.G., Legay, A., Pedersen, M.L., Wasowski,
A.: Compositional design methodology with constraint markov chains. In:
QEST, pp. 123–132 (2010)

24. Campetelli, A., Gruler, A., Leucker, M., Thoma, D.: Don’t Know for multi-
valued systems. In: ATVA, pp. 289–305 (2009)

25. Čerāns, K., Godskesen, J.C., Larsen, K.G.: Timed modal specification - theory
and tools. In: CAV, pp. 253–267 (1993)

26. Dams, D., Gerth, R., Grumberg, O.: Abstract interpretation of reactive systems.
ACM Trans. Program. Lang. Syst. 19(2), 253–291 (1997)

27. Dams, D., Namjoshi, K.S.: The existence of finite abstractions for branching
time model checking. In: LICS, pp. 335–344 (2004)

Refinement Checking on Parametric Modal Transition Systems 31

28. David, A., Larsen, K.G., Legay, A., Nyman, U., Wasowski, A.: ECDAR: An
environment for compositional design and analysis of real time systems. In:
ATVA, pp. 365–370 (2010)

29. Fecher, H., Schmidt, H.: Comparing disjunctive modal transition systems with
an one-selecting variant. J. of Logic and Alg. Program. 77(1-2), 20–39 (2008)

30. Fecher, H., Steffen, M.: Characteristic mu-calculus formulas for underspecified
transition systems. ENTCS 128(2), 103–116 (2005)

31. Godefroid, P., Huth, M., Jagadeesan, R.: Abstraction-based model checking
using modal transition systems. In: Proc. CONCUR’01, LNCS, vol. 2154, pp.
426–440. Springer (2001)

32. Godefroid, P., Nori, A.V., Rajamani, S.K., Tetali, S.: Compositional may-must
program analysis: unleashing the power of alternation. In: POPL, pp. 43–56
(2010)

33. Gruler, A., Leucker, M., Scheidemann, K.D.: Modeling and model checking
software product lines. In: G. Barthe, F.S. de Boer (eds.) FMOODS, Lecture

Notes in Computer Science, vol. 5051, pp. 113–131. Springer (2008)
34. Huth, M., Jagadeesan, R., Schmidt, D.A.: Modal transition systems: A founda-

tion for three-valued program analysis. In: Proc. of ESOP’01, LNCS, vol. 2028,
pp. 155–169. Springer (2001)

35. Jacobs, B., Poll, E.: A logic for the java modeling language JML. In: FASE,
pp. 284–299 (2001)

36. Juhl, L., Larsen, K.G., Srba, J.: Modal transition systems with weight intervals.
J. Log. Algebr. Program. 81(4), 408–421 (2012)

37. Křet́ınský, J., Sickert, S.: MoTraS: A tool for modal transition systems and
their extensions. In: D.V. Hung, M. Ogawa (eds.) ATVA, Lecture Notes in

Computer Science, vol. 8172, pp. 487–491. Springer (2013). Tool accessible at
https://www7.in.tum.de/~kretinsk/motras.html

38. Křet́ınský, J., Sickert, S.: On refinements of Boolean and parametric modal
transition systems. In: Z. Liu, J. Woodcock, H. Zhu (eds.) ICTAC, Lecture

Notes in Computer Science, vol. 8049, pp. 213–230. Springer (2013)
39. Křet́ınský, J., Sickert, S.: On refinements of Boolean and parametric modal

transition systems. CoRR abs/1304.5278 (2013)
40. Larsen, K.G., Nyman, U., Wasowski, A.: Modal I/O automata for interface

and product line theories. In: ESOP, pp. 64–79 (2007)
41. Larsen, K.G., Nyman, U., Wasowski, A.: On modal refinement and consistency.

In: Proc. of CONCUR’07, LNCS, vol. 4703, pp. 105–119. Springer (2007)
42. Larsen, K.G., Thomsen, B.: A modal process logic. In: LICS, pp. 203–210.

IEEE Computer Society (1988)
43. Larsen, K.G., Xinxin, L.: Equation solving using modal transition systems. In:

LICS, pp. 108–117. IEEE Computer Society (1990)
44. Liskov, B., Wing, J.M.: A behavioral notion of subtyping. ACM Trans. Program.

Lang. Syst. 16(6), 1811–1841 (1994)
45. Lüttgen, G., Vogler, W.: Modal interface automata. Logical Methods in

Computer Science 9(3) (2013). DOI 10.2168/LMCS-9(3:4)2013. URL http:

//dx.doi.org/10.2168/LMCS-9(3:4)2013

46. Lynch, N.: I/O automata: A model for discrete event systems. In: 22nd
Annual Conference on Information Sciences and Systems, pp. 29–38. Princeton
University (1988)

https://www7.in.tum.de/~kretinsk/motras.html
http://dx.doi.org/10.2168/LMCS-9(3:4)2013
http://dx.doi.org/10.2168/LMCS-9(3:4)2013

32 Nikola Beneš et al.

47. Namjoshi, K.S.: Abstraction for branching time properties. In: CAV, pp.
288–300 (2003)

48. Nanz, S., Nielson, F., Nielson, H.R.: Modal abstractions of concurrent behaviour.
In: Proc. of SAS’08, LNCS, vol. 5079, pp. 159–173. Springer (2008)

49. Papadimitriou, C.H.: Computational complexity. Addison-Wesley Publishing
Co., Inc., Reading, MA, USA (1994)

50. Raclet, J.B.: Quotient de spécifications pour la réutilisation de composants.
Ph.D. thesis, Université de Rennes I (2007). (In French)

51. Raclet, J.B., Badouel, E., Benveniste, A., B.Caillaud, Legay, A., Passerone, R.:
A modal interface theory for component-based design. Fundamenta Informati-
cae 108(1-2), 119–149 (2011)

52. Raclet, J.B., Badouel, E., Benveniste, A., Caillaud, B., Passerone, R.: Why are
modalities good for interface theories? In: ACSD, pp. 119–127. IEEE (2009)

53. Sawa, Z., Jančar, P.: Behavioural equivalences on finite-state systems are
PTIME-hard. Computing and informatics 24(5), 513–528 (2005)

54. Uchitel, S., Chechik, M.: Merging partial behavioural models. In: Proc. of
FSE’04, pp. 43–52. ACM (2004)

	Introduction
	Parametric Modal Transition Systems
	Thorough Refinement
	Complexity of Modal Refinement Checking
	Modal Refinement Checking by Reduction to QBF
	Conclusion

