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We present an efficient wavefront tracking algorithm for animating bodies
of water that interact with their environment. Our contributions include: a
novel wavefront tracking technique that enables dispersion, refraction, re-
flection, and diffraction in the same simulation; a unique multi-valued func-
tion interpolation method that enables our simulations to elegantly sidestep
the Nyquist limit; a dispersion approximation for efficiently amplifying the
number of simulated waves by several orders of magnitude; and additional
extensions that allow for time-dependent effects and interactive artistic edit-
ing of the resulting animation. Our contributions combine to give us mul-
titudes more wave details than similar algorithms, while maintaining high
frame rates and allowing close camera zooms.

Categories and Subject Descriptors: I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism—Animation; I.3.5 [Computer Graph-
ics]: Computational Geometry and Object Modeling—Physically based
modeling

Additional Key Words and Phrases: ocean simulation, wavefront tracking,
liquid animation, computational fluid dynamics

1. INTRODUCTION

Liquid simulation has been an important problem in computer
graphics for decades. While fully three-dimensional simulations
of the Navier-Stokes equations are essential for animating realis-
tic splashes and breaking waves, procedural models are still the
state of the art for animating large bodies of open water and creat-
ing highly detailed ocean textures. One of the primary reasons for
this practice is that procedural Fourier spectrum-based deep water
models [Mastin et al. 1987; Tessendorf 2004b] are far more effi-
cient than 3D simulations and can produce high-frequency details
without any Courant-Friedrichs-Lewy (CFL) limit.

Unfortunately, spectrum-based models rely on assumptions that
only apply in a handful of situations, so they are conspicuously un-
realistic in many important scenarios. Among other limitations, the
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Fig. 1: In the simplest case of constant amplitude and velocity, our method
exactly reduces to familiar spectrum-based wave simulation methods.
While our approach does not have the speed of a fast Fourier transform, our
dispersion approximation (§8.1) efficiently amplifies the amount of wave
detail beyond previous approaches.

spectrum-based models used in computer graphics are incapable of
interacting with their environment through reflection, diffraction,
and refraction. Consequently, the common practice is to approxi-
mate the correct behavior by compositing together spectrum-based
methods with 2D or 3D Eulerian techniques. Previous research has
proposed procedural models that account for some of these correct
wave interactions, but they sacrifice the efficient computation and
nearly limitless wave detail of spectrum-based techniques.

We present a new method capable of simulating waves that re-
fract, reflect, diffract, and disperse while simultaneously exhibiting
arbitrarily high resolution spatial details. Our algorithm is efficient,
and several of our animations run at interactive or near-interactive
frame rates. We categorize our method as a novel compromise be-
tween Eulerian and spectrum-based models; it combines general
environment interactions with highly detailed surfaces, and it is free
from time step restrictions and numerical damping.

Contributions

We first list two primary contributions which enhance the detail of
existing ocean animation techniques. We then list three secondary
contributions which offer additional improvements over the state of
the art.

Multi-valued function representation (§6, §7) Our first major
contribution is a novel technique that permits the reconstruction
of high-frequency wave functions from their low-frequency phase
and amplitude at arbitrary locations. This reformulation amounts
to a change of variables that is practically independent from the
Nyquist limit, and we take advantage of this fact with high-order
interpolation and a sparse mesh data structure.

Dispersion approximation (§8.1) Our second major contribu-
tion is a simplification that shares data between similar waves. The
approximation is exact in the common cases, converges under re-
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Fig. 2: Our algorithm efficiently creates water waves that reflect, refract, and diffract around objects. This figure shows how wave details are
preserved at both large and small scales.

finement, and effectively amplifies the amount of visible wave de-
tail with minimal computational overhead.

Wavefront behaviors (§5) Our wavefront tracking frame-
work integrates dispersion, refraction, reflection, and smooth ob-
ject diffraction. While these effects are commonplace in Eulerian
fluid simulations, no other procedural wave method in computer
graphics exhibits all of these effects simultaneously.

Time-dependence (§8.2) We introduce an amplitude blending
function and a physically-correct viscosity model to support ripples
and capillary waves.

Artist interface (§8.3) We describe an editing framework for
interactively fine-tuning a liquid surface animation.

Existing spectrum-based ocean animation methods in computer
graphics [Mastin et al. 1987; Tessendorf 2004b] animate rich water
surfaces and represent the state of the art in fluid simulation detail.
However, in practice these approaches are limited to periodic do-
mains, cannot interact with boundaries, and are restricted to deep
water scenarios. This paper generalizes spectrum-based methods to
handle varying water depth and physically correct interactions with
static obstacles, while preserving high levels of wave detail.

2. BACKGROUND

Before explaining our approach or the previous work in this field,
we will first provide the reader with the relevant background for
modeling simple surface water waves. All of the concepts in this
section are results from linearized water wave theory and are ex-
plained in more detail in fluid dynamics textbooks such as [Lamb
1895; Dean and Dalrymple 1991].

2.1 Linearized water waves

Airy wave theory [Airy 1841] is a linear model that approximates
the motion of surface waves on a body of water with a sum of sinu-
soidal functions:

η(~x, t) = η0 +

N∑
i=1

ai sin(ωi · (φi(~x)− t)) (1)

where η is the water height, η0 is an arbitrary constant offset, ai is
the amplitude of wave i, ωi is the angular frequency, t is the current
time, and φi is a carefully chosen phase function.

Dispersion. Each wave has an angular frequency ω, which de-
scribes how quickly it oscillates over time. For surface water waves,
the angular frequency is given by the dispersion relation:

ω =

√(
gk +

σ

ρ
k3
)

tanh(kh) (2)

where g is gravity, σ is the surface tension, ρ is the water density, h
is the water depth at a given location, and k is the wavenumber. The
wavenumber is inversely related to the wavelength λ by the relation
k=2π/λ. Each wave propagates through space at a rate given by
the phase speed c:

c =
ω

k
=

√(
g

k
+
σ

ρ
k

)
tanh(kh) (3)

Equation 3 describes many distinctive qualitative properties of wa-
ter waves. Because tanh(·)≈1 for large inputs, waves with large h
(deep water waves) or large k (capillary waves) travel at a speed al-
most independent of water depth; otherwise, the waves will speed
up or slow down as the water depth changes. The (g/k + σk/ρ)
term tends to infinity both as k→0 and as k→∞, with a global min-
imum at k=

√
gρ/σ. This means that both large and small wave-

lengths will travel quickly; in deep water, the slowest water waves
are in between the two extremes at λ≈1.7cm.

Phase function. The function φ in Equation 1 is chosen such
that the resulting waves respect the initial conditions and propa-
gate with phase speed c. This behavior is described by the eikonal
equation:

|∇φ| = 1

c
(4)

The gradient of φ indicates the wave travel direction, and the level
set φ=t indicates the location of the wavefront at time t. φ is also
called the travel time, because the difference in φ between two
points along a wave’s travel path is precisely the time it takes for
the wave to travel between them.

This method of choosing φ using the eikonal equation will yield
exact solutions to the Airy wave model for large wavenumbers,
but the error increases with the wavelength. This approach is com-
monly referred to as the “high-frequency approximation” in geo-
metric optics, and it is considered accurate while the wavelength is
smaller than the scales of boundary features and spatial variations
in phase speed [Runborg 2007].

Conservation laws. The energy density of a given wave is

D =
1

2

(
ρg + σk2

)
a2 (5)

Note thatD depends on amplitude. The energy per unit crest length

E =

∫
Ddl (6)

is equal to the energy density integrated over the length of the wave-
front. Energy propagates across the water surface at a rate given by
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the group speed:

cg =
dω

dk
(7)

which is generally different from any individual wave’s phase
speed. The energy flux cgE describes how energy is transported,
and it is conserved by surface water waves:

d

ds
(cgE) = 0 (8)

where s is a parameter along the direction of wave travel. In re-
gions where cg is constant, this equation reduces to the conserva-
tion of energy; amplitude decreases where wavefronts expand and
increases where they focus. Equation 8 more generally describes
the interplay between a and k, particularly wave shoaling: as waves
enter shallow water and slow down, the wavelength shortens and
the amplitude increases. In nature, waves may eventually become
unstable and tumble over themselves, dissipating energy in the pro-
cess. However, this wave breaking behavior is a non-linear phe-
nomenon which is not captured by the linear Airy wave model.

Wave behaviors. Water waves exhibit the following common
wave behaviors as they propagate through space:

Refraction: Different points on the wavefront may travel at differ-
ent phase speeds, causing the wave to bend.
Dispersion: Waves with different wavenumbers will travel at dif-
ferent speeds, following Equation 3.
Reflection: When a wavefront hits an obstacle, it will bounce off.
The incoming and outgoing angles are equal to each other.
Diffraction: When a wave grazes an obstacle, it bends around it.

2.2 Wavefront tracking

The main difficulty with using this theory to compute wave motion
is the numerical solution of the eikonal equation (Equation 4) for
φ. The extensive survey by Runborg [2007] reviews many meth-
ods used to solve this popular problem. Common techniques such
as finite difference methods and the fast marching method [Sethian
1999] can efficiently produce a viscosity solution to the problem,
but the most promising approach for our purposes is wavefront
tracking.

The idea behind wavefront tracking is intuitive. We begin with a
piecewise-linear curve representing a wavefront, and then we prop-
agate the curve through space by updating the position of each ver-
tex over time. The vertex locations are computed by integrating an
ordinary differential equation, in a process equivalent to ray tracing.

By tracing the path of the wavefront as it evolves and noting the
time it took for the front to arrive at each location, we can eas-
ily compute the travel time φ for each point in space. One of the
strengths of this technique is that it permits wavefronts to fold over
or intersect themselves, as they would in reality. In practice this
means that φ(~x) is a multi-valued function, because a wavefront
can cross a particular point in space any number of times. Once φ
is computed and stored, it can be interpolated at any point in space
and used to evaluate the wave height in Equation 1.

We stress that this multi-valued nature of the φ function is not
a numerical artifact or implementation choice. Spatial projections
of characteristic curves can intersect in general partial differential
equations, and multi-valued phase is a fundamental property of the
wave equation. Viscosity solutions to the eikonal equation (such as
the fast marching method) assume that φ is a single-valued function
and only compute the first crossing time. As a result, such methods

prevent wave superposition, caustics, and reflections, and thus are
not as flexible as wavefront tracking.

When ω is large, Equation 1 produces η with very high fre-
quencies, even though the parameters φ and a only exhibit low-
frequency behavior. (See Figure 3 for an illustration.) Wavefront
tracking avoids dealing with η directly, so it can theoretically elim-
inate the high resolution grids required by Eulerian methods. How-
ever, until now, no previous method has actually achieved this in
practice, as discussed in §3.3.

3. RELATED WORK

3.1 Ocean animation literature

One of the most convenient ways to solve Equation 1 is to assume
that the phase function φ (Equation 4) is a linear function of posi-
tion, thus reducing the solution to a closed form sum of constant-
velocity planar waves. This is the approach taken by “spectrum-
based” techniques common in computer graphics, and it can be
further sped up by fast summation methods [Mastin et al. 1987;
Tessendorf 2004b], and level-of-detail techniques [Hinsinger et al.
2002].

The main limitation of the constant velocity assumption is that
it prevents general interactions between waves and their environ-
ment, such as refraction, reflection, and diffraction. In addition, it
can only produce periodic waves that tile the fluid domain. Nev-
ertheless, the efficiency of this technique enables the most de-
tailed liquid simulations in computer graphics. The resulting waves
are often modified to include spray, foam, and complex wave
shapes [Fournier and Reeves 1986; Peachey 1986; O’Brien and
Hodgins 1995; Gonzato and Le Saëc 1997; Thuerey et al. 2007;
Thuerey et al. 2007]. Others use waves as boundary conditions,
guide shapes [Nielsen and Bridson 2011; SideFX 2013], or tex-
ture maps to approximate additional details in more general fluid
simulations [Chentanez and Müller 2010]. Researchers have also
customized waves with artistic data [Nielsen et al. 2013]. These ex-
tensions are important for increasing visual realism and can easily
be used with our model as well.

The works of Fournier and Reeves [1986] and Peachy [1986]
simulate more general wave behavior by allowing the phase speed
to vary. They numerically approximate Equation 4 by accumu-
lating phase changes along straight lines in a regular grid. This
approach is analogous to a fast marching solution of the eikonal
equation; it cannot handle multi-valued φ functions, reflections, or
large changes in direction. To remove such constraints, several re-
searchers turn to wavefront tracking [Ts’o and Barsky 1987; Gon-
zato and Le Saëc 1997; 2000; Gamito and Musgrave 2002], which
will be discussed in §3.3.

Yuksel et al. [2007] represents each wave crest with its own par-
ticle, allowing wave reflections and interaction with dynamic ob-
jects. However, it does not consider refraction or diffraction, and it
cannot efficiently represent wave trains or high spatial frequencies.
Keeler and Bridson [2014] introduce a boundary integral frame-
work for animating ocean waves. This method simulates deep wa-
ter waves interacting with obstacles, but the boundary integral is
relatively expensive to evaluate and visible detail is limited by the
resolution of the computational mesh.

The survey by Darles et al. [2011] provides a more thorough
discussion of ocean animation techniques.

3.2 Eulerian fluid simulation literature

Simulating the full Navier-Stokes equations [Foster and Fedkiw
2001] and reductions like the shallow water equations [Kass and
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Fig. 3: Even though the wave parameters φ and a change slowly, the resulting wave function η can have very high frequencies (a). Interpo-
lating discrete samples of η leads to aliasing (b), while interpolating φ and a first and then reconstructing η avoids this problem (c). This
example uses linear interpolation for illustrative purposes, while our algorithm uses smooth interpolation for higher quality results (§7).

Miller 1990] and iWave [Tessendorf 2004a] add even more ver-
satility to liquid animations. Solutions to the full fluid equations
will of course demonstrate the desired wave behaviors of refrac-
tion, dispersion, reflection, and diffraction (§2.1). The shallow wa-
ter assumption (tanh(kh) → kh) does not exhibit dispersion of
surface gravity waves, but it allows reflection, refraction, diffrac-
tion, and interesting rotational motions. Like our approach, models
based on linearized wave dynamics [Tessendorf 2004a] assume an
irrotational velocity field, but they allow all four of the desired wave
behaviors listed in §2.1.

While Eulerian discretizations exhibit many desirable proper-
ties that simple procedural models lack, they also have fundamen-
tal limitations. Most importantly, Eulerian approaches are bound
by Nyquist’s theorem: the simulation resolution limits the maxi-
mum wave detail. Adaptive techniques help by increasing resolu-
tion [Losasso et al. 2004; Ando et al. 2013], but they cannot com-
pete with methods specifically designed to capture high-frequency
waves. Eulerian models are also prone to time step limitations (the
CFL condition) which become more restrictive as spatial resolution
increases. They also require complex treatment of non-reflective
open water boundary conditions [Söderström et al. 2010], which
are trivial for Lagrangian methods like wavefront tracking. Lastly,
Eulerian discretizations often require artificial damping for stabil-
ity, or they exhibit numerical dissipation from implicit schemes or
iterated re-sampling operations. This lack of energy conservation
makes it surprisingly difficult for many Eulerian models to sim-
ulate waves traveling over long distances. We weigh the benefits
and drawbacks of our method against those of a popular Eulerian
method in §10.

3.3 Wavefront tracking literature

Previous wavefront tracking algorithms in computer graphics and
computational physics employ one of two methods:

(1) Store the entire wavefront at all time steps, recording the wave
parameters φ and a at each vertex. Connect each wavefront
vertex to its neighbors in space and time via quadrangulation.
Use this wavefront mesh directly for rendering by evaluating
each individual wave height ηi at the mesh vertices, linearly
interpolating ηi across quads, and summing up ηi wherever
quads overlap [Gonzato and Le Saëc 2000].

(2) Create a regular grid that covers the spatial domain. When a
wavefront segment crosses a grid point, interpolate wave data
φ and a onto it. After wavefront propagation is complete, each
grid point might hold the data of several different waves. Eval-
uate the total wave height η at each grid point, and interpolate
η at render time [Ts’o and Barsky 1987; Bulant and Klimeš
1999; Gamito and Musgrave 2002].

Both of these options animate accurate and detailed wave trains,
but they also have drawbacks. They each sample and interpolate
the high frequency η function, so small wavelengths are impossi-
ble to represent without extremely dense sampling (Figure 3). Nei-
ther of these data structures are spatially adaptive, so they require
significant computation and memory even for mundane animations
(Figure 4), and the memory consumption additionally scales with
the total number of waves in the animation. Thus these methods are
practically limited to a small handful of wave trains, instead of the
hundreds of waves desired for a realistic animation. These short-
comings are often obscured with unphysical noise textures [Gon-
zato and Le Saëc 2000; Gamito and Musgrave 2002].

Various wave behaviors are achieved by modifying the trajec-
tory of wavefront vertices. Refraction is incorporated using Snell’s
law [Ts’o and Barsky 1987; Gonzato and Le Saëc 1997] or a more
accurate geometric optics approach [Gamito and Musgrave 2002].
Dispersion is a default behavior in all methods that results from
tracking more than a single wavefront, but tracking large numbers
of waves is often inefficient for the reasons mentioned above.

Reflection and diffraction behaviors are surprisingly absent from
most ocean animation techniques, with notable exceptions by Gon-
zato and Le Saëc. Their initial work [1997] does not claim to handle
reflection or diffraction, but we show in §5.1 how a method simi-
lar to their “aground” waves can actually model diffraction around
smooth objects. Their follow-up work [2000] explicitly models
reflection and diffraction, but they chose to damp out reflection
waves, and the diffraction model is only applicable to sharp cor-
ners. None of these methods simultaneously incorporate refraction,
dispersion, reflection, and diffraction in an environment with gen-
eral boundary shapes.

Fig. 4: Waves interact with obstacles and create interference patterns (left).
Storing the entire wavefront at all time steps can be impractical (middle).
Our method efficiently represents the same wavefront information with a
coarse triangle mesh (right), which reduces memory usage by a factor of 17
in this example.
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4. METHOD OVERVIEW

Our method builds upon previous wavefront tracking approaches to
efficiently simulate several orders of magnitude more waves while
evading the Nyquist limit on wavelength. In a precomputation step,
we first track the wavefronts (§5) in a manner that respects all of the
desired wave behaviors from §2.1, storing the wave parameters on
the vertices of a low-resolution adaptive triangle mesh (§6.1). In a
crucial preparatory routine, we also track how each set of sampled
wave parameters matches up with its neighbors (§6.2), and we use
this information to represent the multi-valued parameter functions
continuously within each triangle (§6.3).

During runtime, we adaptively sub-sample the triangle mesh in a
view-dependent manner. At each of these sub-sample locations, we
smoothly interpolate the wave parameters and compute the wave
displacements (§7). We also introduce a dispersion approximation
that efficiently magnifies the number of simulated waves, a physics-
based damping model to realistically model small-scale details, and
an artistic editing framework for post-process fine-tuning (§8).

5. WAVEFRONT PROPAGATION

The basics of our wavefront propagation algorithm are the same
as existing methods. We start with a piecewise linear curve repre-
senting our wavefront. Each wavefront vertex is assigned an initial
wavenumber ki, and each wavefront segment is assigned an initial
energy per unit crest length E=

∫
Ddl≈DL, where L is the length

of the segment.
Airy wave theory asserts that the angular frequency ω(k, h) is

constant for each wavefront, so k must vary with water depth h.
We introduce a fixed-point iteration scheme based on Equation 3 to
compute k for this purpose: We first initialize k to the most recent
wavenumber value, and then we iterate k := ω/c(k, h) until con-
vergence. In our experience this scheme always converges, and it
is reliably faster than Newton iteration. This new value of k is used
for computing a more accurate energy density and phase speed.

During each time step, we evaluate c at each vertex using Equa-
tion 3, and we choose the propagation direction according to Snell’s
law [Ts’o and Barsky 1987]. The direction and speed give us a
phase velocity vector ~c, and we advance each vertex with symplec-
tic Euler integration. We could replace Snell’s law and Euler inte-
gration with more accurate methods [Gamito and Musgrave 2002],
but we found that the simpler choices produce acceptable results.

The energy density is updated according to Equation 8. We first
use finite differences to approximate the group speed at wavefront
vertices,

cg(k, h) ≈ ω(k + ∆k, h)− ω(k, h)

∆k
(9)

with ∆k=10−6 (note that cg can be evaluated analytically as well).
We then interpolate cg to the wavefront segments and scale the new
energy density such that it satisfies cold

g D
oldLold = cnew

g DnewLnew,
the discrete version of Equation 8. Note that this simple equality
constraint preserves the energy flux of each wavefront segment up
to numerical precision; there are no mechanisms for numerical drift
or artificial dissipation of energy. The amplitude is then computed
by solving Equation 5:

a =

√(
Lold

Lnew

)(
cold
g

cnew
g

)(
2Dold

ρg + σk2

)
(10)

This scaling enforces the wave expansion, focusing, and shoaling
effects discussed in §2.1. As noted earlier, steep waves in nature
tend to dissipate energy through non-linear breaking, which is not

captured here. The linear theory also allows caustics to produce
unphysically large amplitudes when L→0. Instead of switching to
a more accurate but complex method, we approximate nonlinear
dissipation by removing energy from a wavefront segment until
a prescribed steepness threshold a/λ is met. We use 0.07 as the
maximum steepness based on the theory of breaking waves in deep
water [Dean and Dalrymple 1991].

We adaptively subdivide wavefront segments whenever their
lengths L are beyond a maximum length or the angle between
neighboring wavefront segments is too large, and we similarly col-
lapse edges that are below a minimum length and have a small angle
between neighboring segments. We conserve energy by evenly dis-
tributing theDL quantity from the original segment to the new ones
during subdivision, and by summing up DL values when collaps-
ing wavefront segments. We also delete any wavefront segments
whose amplitude is below a minimum threshold, and the wavefront
propagation ends when all segments are deleted or have left the
simulation domain.

5.1 Desired wave behaviors

The first two in our list of desired wave behaviors are already ac-
counted for: refraction happens whenever c changes based on h,
and dispersion occurs naturally when we simulate multiple wave-
fronts with different wavenumbers. Interactions with boundaries
(reflection and diffraction) require additional work.

The basic behavior of a reflecting wavefront vertex is identical
to ray tracing [Whitted 1980]. The vertex intersects the boundary
and then changes direction so that its angle of reflection about the
boundary normal is equal to the angle of incidence. We also invert
the amplitude of the reflected wavefront, based on the analytical
solution of the wave equation near a reflecting boundary. If a wave-
front vertex hits the boundary at a grazing angle (more than 82◦

with the boundary normal in our implementation), it will diffract
rather than reflect. Instead of bouncing off the object, the diffracted
vertex continues on a path tangent to the surface at speed c. We
note that this behavior is similar to the “aground” ray behavior of
[Gonzato and Le Saëc 1997], though they neither acknowledge it
as diffraction nor simultaneously handle reflection.

When one vertex of a wavefront segment reflects within a time
step and the other vertex does not, the two vertices are oriented in
opposite directions, the amplitudes are of opposite signs, and inter-
polating along the wave segment makes little sense. In reality there
would be a point somewhere between the two that lies exactly on
the boundary surface. To avoid these interpolation problems, we
find this boundary point with a bisection search along the segment,
create a new vertex there, and connect the oppositely-oriented end-
points to this boundary vertex. In the next time step, this bound-
ary vertex will either reflect (and probably soon be deleted with
an edge-collapse operation) or diffract and begin stretching out the
wavefront along the object boundary. This diffraction behavior is
only guaranteed to work for smooth boundaries, but we handle
sharp corners in practice by smoothing out the normal field along
the surface (by blurring a level set representation, for example).

The distinctive bending appearance of diffracting waves is a side
effect of the repeated stretching and subdivision of the wavefront
as the diffracting vertex curves along the boundary shape. Conve-
niently, this behavior is in line with the geometric theory of diffrac-
tion [Levy and Keller 1959], which states that the amplitude at the
original grazing point a0 is related to the amplitude at a point fur-
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Fig. 5: We simulated diffraction around circular boundaries of varying radii,
and the amplitudes decay exponentially along the path marked in red (left).
Our measured decay rate matches the theoretical dependence on boundary
curvature from Equation 11 (right).

ther along the boundary a(s) by the relation:

a(s) = a0

(
dσ0

dσ

) 1
2

exp

(
−
∫ s

0

α(r)dr

)
(11)

with α(r) ∝ k1/3κ2/3

Here, dσ0 represents the length of an infinitesimally small wave-
front segment at the grazing point and dσ is the total length of
that segment after it has stretched out due to diffraction. The ratio
dσ0/dσ basically characterizes the change in length of a wavefront
segment, and this exact square-root scaling law is already built into
our computation of amplitude in Equation 10 as a result of energy
conservation.

The exp(·) term on the right of Equation 11 states that the am-
plitude will exponentially decay at a rate related to the integrated
geodesic curvature κ of the boundary along the path of diffraction.
Intuitively, if the boundary has no curvature then there is no decay.
Similarly, if the boundary has constant curvature, then the diffract-
ing vertex will repeatedly pull away from its original trajectory and
cause the amplitude to shrink. This behavior is also handled nat-
urally by our method, because a diffracting vertex that repeatedly
stretches the wavefront will repeatedly cause segments to subdi-
vide. Each subdivision cuts the energy in half, so repeated subdivi-
sion leads to an exponential decay.

We test our results against the theoretical prediction in Fig-
ure 5, and we discuss this experiment in detail in Appendix A.
Our diffraction method is currently erroneously independent of
wavenumber k, and we leave this as an interesting direction for
future work.

6. RECORDING WAVEFRONT PARAMETERS

The previous section explained how we propagate the wavefront
across the liquid domain in a physically appropriate manner. As the
wavefront translates and deforms, we wish to store its simulation
variables for later use. For this purpose, we create a low-resolution
spatially-adaptive triangle mesh (~5000 triangles for the examples
in this paper) that covers our water domain. We add more mesh res-
olution near boundaries and slopes in the seabed, where the wave-
front will tend to curve the most. To actually create the triangle
meshes in our examples, we first generated a Poisson-disk sampled
point set with the disk radius varying with boundary distance, and
then we created a Delaunay triangulation of those points using the
Triangle software package [Shewchuk 1996].

6.1 Recording φ and a at mesh vertices

During propagation, we detect when a wavefront segment crosses
a triangle mesh vertex using continuous collision detection [Moore
and Wilhelms 1988], which amounts to the solution of a quadratic
equation. The endpoints of the wavefront segment during the time
steps immediately before and after intersecting each mesh vertex
form a quadrilateral, and we can use bilinear interpolation to trans-
fer information from the four endpoints onto the mesh vertex. Be-
cause a is normally stored on wavefront segments, we temporarily
average it onto the wavefront vertices for this interpolation process.

We choose to store the travel time φ and the amplitude a at a
mesh vertex for each intersection, and we also calculate and store
their derivatives as explained in Appendix B. One of the derivatives
depends on phase velocity, so we store ~c at each mesh vertex as
well.

Because each wavefront can cross a single location multiple
times, φ and a are multi-valued functions over space. When we
store wavefront variables at mesh vertices, we are sampling from
this multi-valued function: each vertex can have an entire list of dif-
ferent φ variables, one for each time the wavefront intersected that
position. From this information, we can easily evaluate Equation 1
at the vertices if we wish, and this per-vertex evaluation is precisely
what all previous wavefront tracking methods do. However, a naïve
per-vertex evaluation preserves the multi-valued function property
at vertices only. We require the ability to evaluate the multi-valued
function within a triangle in order to avoid the Nyquist limit (Fig-
ure 3).

We introduce a method for interpolating multi-valued functions
within a triangle using the following three-step process:

(1) Divide the multi-valued function into a set of continuous
single-valued functions (one for each wavefront that crossed
the triangle, if possible).

(2) Interpolate each single-valued function within the triangle.
(3) Treat each single-valued function as a separate wave in Equa-

tion 1.

The first step is trivial in the common case of a single wavefront
translating through space, but it is far from straightforward in the
presence of general reflections and refractions. For example, dif-
ferent wavefronts may intersect mesh vertices in different orders, a
single wavefront may intersect the same mesh vertex multiple times
during a sharp refraction, and wavefronts never intersect mesh ver-
tices that lie within a reflecting boundary.

We overcome these complications by first solving the simpler
problem of finding a single-valued function along a mesh edge be-
tween two mesh vertices. We then extend this idea to find a single-
valued function that interpolates corresponding function samples
across an entire triangle.

6.2 Single-valued functions along mesh edges

As stated above, a function sample (φ or a) is created when the
wavefront crosses over a mesh vertex. This wavefront can then
propagate from the original mesh vertex along one of its adjacent
mesh edges, and then eventually cross the mesh vertex at the other
end, creating a new function sample. Because we know that the
wavefront traversed directly along a mesh edge to connect two ver-
tices, we can safely assume that these two function samples are
related and can be interpolated. This would not be the case, for ex-
ample, if the two function samples were created by different wave-
fronts, or if the wavefront turned around and exited the triangle be-
fore re-entering sometime later. Our basic strategy here is to iden-
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Fig. 6: A top-down view of our wave chain computation as the wavefront
(blue) crosses a triangle edge (black). This example occurs over the course
of three time steps (left, middle, right). For details please refer to the text.

tify related function samples along mesh edges by paying attention
to the path of the propagated wavefront. In cases where this task
becomes too complicated, we will extrapolate the function samples
across edges in a way that avoids introducing artifacts.

A detailed wavefront may intersect a mesh edge at multiple
points at a given time, and it may cross at variable speeds. To
address these complications, we introduce the concept of a wave
chain, which represents a continuous section of wavefront geome-
try that has already crossed over a specific mesh edge (see Figure
6). Each mesh edge can have a number of associated chains, and
each chain is represented computationally by referencing the left-
most and rightmost wavefront vertices that have already crossed the
mesh edge. For each mesh edge, we create a new chain whenever
an isolated section of the wavefront crosses it, and we update these
chains as they evolve and grow over time. When some straggling
wavefront geometry finally crosses the middle of a mesh edge, the
two chains that were previously separated will merge (by replacing
them with a single new chain that spans the union of their wavefront
geometry). When a chain segment crosses a mesh edge endpoint,
we note exactly which φ and a samples were created (see the last
paragraph) and store a reference to them in the chain. Figure 6 il-
lustrates these ideas.

Once the chain has moved on and no longer intersects the edge,
we can confidently interpolate the two endpoint function samples
that were associated with the chain. For example, if two function
samples φA and φB were associated with a wave chain when it fin-
ished intersecting with the mesh edge e, then we can interpolate φA
and φB across e using linear or Hermite interpolation. We call this
new association between function values a complete edge. Some-
times a wave chain can finish intersecting an edge and only have
one associated function value, say φC . This behavior can occur, for
example, in the event of a wavefront reflection or if wavefront ge-
ometry is deleted due to low energy. In this case, we note that φC
has no other associated function sample along this edge, and we
call this incomplete association an incomplete edge. If the finished

Recorded φ data
Extrapolate φ
Recorded amplitude
Zero amplitude

Complete edge
Incomplete edge

+

+ + +

+ +

Fig. 7: Left: Different edge sets (§6.2) formed when a wavefront intersects
a triangle. Right: Output single-valued functions over the triangle (§6.3) for
each edge set. The fourth row is the only possible case without any incom-
plete edges; all other cases on the left column feature the wavefront as a sin-
gle connected component bound by two incomplete edges. The left column
can be straightforwardly extended to all possible scenarios by wrapping the
wavefront around the triangle further.

chain has no function samples associated with it, then we simply
discard it.

6.3 Single-valued functions within mesh triangles

Given the complete and incomplete edges, we wish to connect these
function-associations together so that we can interpolate our func-
tion anywhere within a triangle. The basic principle is the same as
when we connected function samples along mesh edges using wave
chains: we link together complete and incomplete edges if they
arose from the same wavefront. Specifically, if two pairs of edge
associations share identical φ and a samples at their common ver-
tex, we group them together. These grouped edges represent sets of
interpolatable data for each triangle. Most of these edge sets form
closed triangles (Figure 7, fourth row from the top) composed of
three complete edges. These closed triangles only share compati-
ble function samples with each other, and we can interpolate the
function anywhere within the triangle using techniques described
in §7.

All other sets of edges (in particular, sets ending with incomplete
edges, see Figure 7) will not form simple closed triangles, so we
treat them differently. We decompose the interpolation into several
separate basis functions: one for each vertex with a valid function
sample. Each basis function assigns the original φ and a data to the
valid vertex (red vertices in Figure 7) and assigns default data to
the other vertices: the default a data are a=0 and ∇a=0 (which
smoothly fades the wave out of existence), and the default φ data
are set to the recorded values if possible and extrapolated otherwise
(if the vertex data is missing from an incomplete edge). We can then
use the techniques in §7 to interpolate each basis function anywhere
within the triangle.

Once we have constructed our basis functions for all triangles,
it is possible to interpolate these wave parameters and use Equa-
tion 1 to treat each basis function as a separate wave. Because edge
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data is treated identically in neighboring triangles and amplitudes
smoothly fade to zero along incomplete edges, this scheme guaran-
tees that the final wave heights will be continuous over all space.
In addition, the default phase data are chosen to make φ consistent
wherever possible, and the default amplitude data give our basis
functions the compact support and delta function properties desir-
able in finite element analysis. These properties are important dur-
ing the final wave height summation (Equation 1), because they al-
low the interpolation of function samples even in the difficult cases
of rows 1, 2, 3, 5, etc. in Figure 7.

7. INTERPOLATING WAVE PARAMETERS

At this point in our algorithm, the precomputation phase has fin-
ished. We now have functions for φ and a constructed over a trian-
gle, and we can interpolate them and compute η wherever we wish.
A major benefit of this concept is that we can reconstruct high-
frequency waves even with a coarse triangle mesh (Figure 1 shows
an extreme example with only two triangles). However, we must
be careful when interpolating high frequency waves across mesh
edges, because they tend to highlight discontinuities between tri-
angles. To eliminate this problem, we considered higher-order C1

schemes. Our implementation uses the cubic side-vertex interpola-
tion scheme [Nielson 1979], which needs first derivatives but does
not require any information from neighboring triangles. For com-
pleteness, we supply the equations for the side-vertex method in
Appendix C.

We found that interpolating φ2 and then taking its square root
produces more realistic wave motions than interpolating φ itself,
as noted by Ursin [1982]. We give details in Appendix B, and we
compare different interpolation schemes in Figure 9.

7.1 Reconstruction

Once we know how to interpolate a and φ, we can reconstruct η
at a given point in space. We implement a level of detail approach
similar to Hinsinger et al. [2002] to decide which points are evalu-
ated: we first use GPU acceleration to create a pixel grid onto the
viewport and then project the pixel locations onto the coarse pla-
nar triangle mesh representing the water domain. At each of these
sample points, we use GPU acceleration to interpolate a and φ and
evaluate η using Equation 1. For additional non-linear effects, we
use the Biesel wave model described in [Fournier and Reeves 1986]
(a generalization of the deep water Gerstner wave model) to dis-
place the surface in both vertical and horizontal directions, instead
of only using η for height field displacements.

8. EXTENSIONS

8.1 Dispersion approximation

To display realistic dispersion behavior in our simulations,
we should animate hundreds of waves with slightly differing
wavenumbers. We can certainly do this already by propagating a
separate wavefront for each ki and then storing their φi and ai
functions, as described earlier. However, storing and interpolating
all of these variables will quickly become a computational burden.
We can conveniently remove this burden and speed up computa-
tion by several orders of magnitude if we assume that wavefronts
with similar wavenumbers have similar φi and ai functions. We
make the approximation that, for two waves with identical initial
conditions but slightly different wavenumbers, one wave’s φ and
a functions are a constant multiple of the other’s. This “dispersion
approximation” is exact for common cases like deep water, shallow

water, capillary waves, and flat sea beds, and the error converges to
zero with refinement. Appendix D analyzes the validity and errors
in more detail, and Figure 8 illustrates the visual differences.

We implement our dispersion approximation as a generalization
of Equation 1. Each wave i re-uses its tracked information to cal-
culate several similar waves ij:

η(~x, t) = η0 +

N∑
i=1

M∑
j=1

aij sin(ωij · (φij(~x)− t)) (12)

where M is the number of approximate waves that we will as-
sociate with wave i. The amplitude, wavenumber, frequency, and
phase of the new waves are represented by aij , kij , ωij , and φij .
Our dispersion approximation assumes φij=Cijφi and aij=Aijai
to get

η(~x, t) = η0 +

N∑
i=1

M∑
j=1

Aijai sin(ωij · (Cijφi(~x)− t)) (13)

where Aij=aij/ai is a constant ratio of amplitudes, and
Cij=c(ki)/c(kij) is the constant ratio of initial phase speeds, as
discussed in Appendix D. Setting Aij=1 and kij=ki reproduces
the original wave i.

Fig. 9: The choice of a C1 interpolant greatly affects the smoothness of the
reconstructed waves. Here we illustrate (from top to bottom) linear, cubic
Hermite, and side-vertex interpolation schemes for interpolating φ2. The
same mesh and phase function is used in all three examples.
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(a) 1 wavefront (b) 2 wavefronts (c) 4 wavefronts (d) 8 wavefronts (e) Ground truth

Fig. 8: This scenario causes waves to refract in a wavenumber-dependent manner toward the bottom of each image. Instead of simulating all
24 wavefront travel paths (e), our dispersion approximation simulates multiple waves along fewer independent travel paths. Images (a)–(d)
show how the interference pattern converges as we simulate more wavefronts.

8.2 Time-dependent amplitudes

The algorithm so far considers wave amplitudes as a function of
space, but not time. Let us say that some wavefront i represents
a set of waves rippling away from some initial disturbance in the
water surface. We assume that the disturbance occurs at time τi,
and it emits several dispersion waves ij. For some global time t,
the quantity t−φi(~x)− τi is negative before the wavefront crosses
point ~x and positive afterward. We modify this idea to accommo-
date all dispersion waves and define the time since wavefront arrival
Tij≡(t−Cijφi−τi).

Our method can simulate splash waves (waves in an initially
calm area that suddenly race outward from a disturbance) by mul-
tiplying aij by a time-dependent blending function B(Tij), which
is equal to zero while Tij<0 and then blends quickly up to 1 af-
terward. We cease the emission of splash waves by driving B(Tij)
back to zero after the wave source is removed. The decay rate can
in principle be chosen in order to conserve energy, but we leave it
as a user parameter. A rule of thumb for setting the splash wave
amplitudes and wavenumbers is that they should approximate the
Fourier transform of the shape and velocity profile of the initial dis-
turbance; a sinking ship creates larger wavelengths than a raindrop.

We also extend our model to allow viscous damping. Airy wave
theory is based on inviscid potential flow and exhibits no damping,
but Padrino et al. [2007] shows that re-deriving the theory based
on viscous potential flow produces similar wave motion with an
amplitude equal to

avisc
ij = aije

−νk2ijCijφi (14)

where aij is the undamped amplitude and ν is the kinematic vis-
cosity of water. Note that waves with large wavenumbers (capil-
lary waves in particular) decay quickly, while waves with small
wavenumbers are essentially undamped. Our accompanying video
shows some of these time-dependent amplitude effects.

8.3 Wave editing

An artist may prefer to interpret the results of our wavefront prop-
agation simply as a suggestion, and then fine-tune them in an in-
teractive editing session. We implemented an interactive painting
interface which uses various brushes to increase or decrease the
amplitude functions of each wave. We also implemented filters to
isolate groups of waves traveling in a specific direction or exhibit-
ing a specific range of wavelengths (Figure 10).

While it is straightforward to locally adjust a and globally rescale
φ and k of each wave, we do not recommend locally modifying φ.
The wave speed is related to the gradient of φ (Equation 4), so local
changes to φ may influence the motion in counterintuitive ways.

In particular, adding critical points to φ will force waves to travel
backwards. It may be possible to solve this problem with a gradient-
domain painting technique [McCann and Pollard 2008] extended to
multi-valued functions.

We can also change the wave function profile by locally adjust-
ing Biesel or Gerstner wave parameters or blending together artist-
defined wave functions in place of the sin(·) function in Equa-
tions 1 and 13. We store all manual changes to parameters onto
our coarse triangle mesh, but we could allow even finer control by
creating a separate, high-resolution parameter adjustment map.

9. ALGORITHM SUMMARY

To review, the algorithm first propagates a discretized wavefront
curve through a 2D domain, as outlined in Algorithm 1. During this
propagation phase, we advance the wavefront with numerical inte-
gration (§5), store wave parameters at the vertices of a coarse tri-
angle mesh (§6.1), and compute the connectivity information nec-
essary to interpolate functions across each mesh triangle (§6.3).

During runtime, the level-of-detail (LOD) system selects dense
sampling points in a view-dependent manner (§7.1), and we inter-
polate φ and a at these locations (§7) and evaluate wave heights. We
also evaluate additional wave heights using our dispersion approx-
imation (§8.1) and optionally add time-dependence to their ampli-
tudes (§8.2). We are then free to add additional effects (we displace
each wave horizontally using the Biesel model, as in [Fournier and

Fig. 10: Here we use our painting interface to fine-tune an existing wave
simulation. The upper right half of the image amplifies waves reflecting off
the stone, while the bottom left image emphasizes waves traveling in the
opposite direction. Please see our supplemental video for a more thorough
demonstration of the editing interface.

ACM Transactions on Graphics, Vol. 34, No. 3, Article , Publication date: April 2015.



10 • S. Jeschke and C. Wojtan

Algorithm 1: Precomputation
input : Set of polylines representing wavefronts

Coarse planar triangle meshM covering fluid domain
output: Interpolatable set of φ and a samples stored onM
foreach wavefront Wi do

φi := 0;
while Wi exists do

Advance Wi using numerical integration; // §5
φi += ∆t;
Update a and other propagation variables;
if Wi crosses vertex v inM during this timestep then

Store φi, ai, and their derivatives on v; // §6.1
if Wi crosses edge e inM during this timestep then

Update edge chains associated with e; // §6.2
if edge chain β finished during this timestep then

Add β to edge sets; // §6.2
Create new triangle basis functions for φ and a
where appropriate; // §6.3

Subdivide, merge, or delete appropriate Wi segments;

Reeves 1986]) and then render the scene. All of these steps are ex-
ecuted in parallel on the GPU. The runtime algorithm is outlined in
Algorithm 2.

10. RESULTS

Boundless ocean. In deep water, our method reduces to a sum-
mation of periodic sine waves with constant amplitude and phase
speed. This behavior is identical to spectrum-based methods and
specifically reduces to that of [Hinsinger et al. 2002]. Our method
does not benefit from FFT optimization, but it is trivially par-
allelized and ideal for GPU implementation. Figure 1 illustrates
this idea by animating a detailed ocean with a mesh made of
only two giant triangles. The example was produced by propagat-
ing 36 wavefronts (sampling a circle in 10◦ increments) with 400
dispersion-approximation waves each, for a total of 14,400 waves.

Island. Figure 2 illustrates many desirable wave behaviors, in-
cluding refraction over a sandbar and the sloping sea floor, diffrac-
tion as the waves curve around the island, reflection as waves
bounce off the rocky coast, and dispersion as many waves travel
with different speeds. This single scenario illustrates several inter-
esting wave regimes: deep water behavior occurs far from the is-
land while shallow water behavior occurs closer to the coast; the
sea is noisy in the open ocean while it is peaceful in a shadowed
bay; regular wave patterns occur near simple geometry, while more
complicated geometry and changing sea depth cause chaotic wave
interference. Our approach allows for a seamless transition between
all of these distinct behaviors.

Pond & puddle. Our accompanying video shows a large dis-
turbance similar to a rock plunging into a pond and a small splash
similar to a raindrop in a puddle. Both examples exhibit time-
dependent amplitudes (§8.2), but the effects vary naturally depend-
ing on scale. The pond splash has little damping, and the long wave-
lengths outrun the shorter ones. The puddle splash has stronger
damping, and it exhibits anomalous dispersion in which surface
tension causes the shorter wavelengths to outrun the larger ones
(Figure 9). These effects are exactly in line with theoretical predic-
tions.

Algorithm 2: Runtime
input : Interpolatable set of φ and a samples

stored on triangle meshM
output: Animation of detailed water waves

while Animating do
Create a level-of-detail grid G on the screen;
Project G ontoM;
foreach Triangle T inM do

foreach grid point p in G inside T do
η := 0;
foreach set of φi and ai functions in T do

Interpolate φi and ai at p;
foreach dispersion approximation wave Wij

do
Evaluate the height ηij of wave Wij ;
η += ηij ;

Add post-process effects like spray, foam, or displacement;
Render the scene;

Wave editing. We can modify the output of our algorithm us-
ing a simple painting interface (Figure 10). The user increases or
decreases wave amplitudes by interactively painting onto the wa-
ter with brushes of various shapes and sizes, specifically targeting
waves traveling in different directions with a velocity filter.

10.1 Performance

The cost of our precomputation (Algorithm 1) scales with the num-
ber of wavefront segments that are propagated, multiplied by the
number of simulation time steps that each segment exists. The costs
of recording φ and a samples and creating triangle basis func-
tions (§6) is negligible in comparison. We implemented basic adap-
tive time-stepping to speed up these computations, but many fur-
ther strategies could be implemented if more efficiency is desired.
In particular, the precomputation can be perfectly parallelized by
tracking each wavefront independently and combining the results
afterward. Precomputation for the Island scene was trivially sped
up from 30 minutes to 9 minutes by tracking wavefronts in parallel
across 6 processors. With a slightly more aggressive adaptive time
stepping strategy, we were able to further reduce this time down
to 5 minutes with visually indistinguishable results. A more princi-
pled or asynchronous adaptive approach could conceivably reduce
our precomputation time further. More practically, we can generate
a quick preview by pre-computing only a few representative wave-
fronts at first and then adding more detail later if necessary.

The runtime performance (Algorithm 2) is dominated by the total
number of wave evaluations,O(HNM). Here,H is the number of
evaluated wave heights based on the number of points in the level-
of-detail grid, N is the number of propagated wavefronts, and M
is the number of additional dispersion approximation waves. The
number of interpolations is O(HN), and the amount of memory
passed to the GPU is O(V N), where V is the number of trian-
gle mesh vertices. It is important to sum the contributions from
all waves at a grid point if we want a detailed animation, but we
can still reduce the number of interpolations and data accesses by
lowering V (coarser triangle mesh), N (fewer pre-computed wave-
fronts), or H (resolution of the displayed height-field). Our disper-
sion approximation helps here by maintaining many wave details
while reducing V and N . We also adaptively reduce N by deleting

ACM Transactions on Graphics, Vol. 34, No. 3, Article , Publication date: April 2015.



Water Wave Animation via Wavefront Parameter Interpolation • 11

Animation H V W M W×M Memory Precomputation Runtime
Pond (see video) 1280× 720 504 1 53 53 57kB 6 sec S 64 frames/sec
Puddle (see video and Figure 9) 1280× 720 28404 16 9 144 28MB 5 min S 14 frames/sec
Ocean (Figure 1) 1280× 4320 4 36 400 14400 5kB 30 sec S 0.91 frames/sec
Editing (Figure 10) 1280× 1440 26259 1 15 15 19MB 1 min S 25 frames/sec
Interactive Island (see video) 640× 1440 6004 18 12 216 57MB 30 min S / 5 min P 10 frames/sec
High Detail Island (Figure 2) 1280× 2880 6004 18 200 3600 57MB 30 min S / 5 min P 0.21 frames/sec

Table I. : Performance details for our animations. H , V , W , and M represent the number of evaluated wave heights, triangle mesh vertices,
tracked wavefronts, and dispersion-approximation waves per wavefront, respectively. W×M represents the total number of waves in the
simulation, and “Memory” lists the memory required to store the multi-valued parameter functions. The “Precomputation” column denotes
the time required to track waves in serial with ‘S’, and the time to track waves in a parallel batch across 6 processors with more aggressive
adaptive time-stepping is denoted with a ‘P’. Runtimes include high-quality adaptive rendering time; simplified rendering on a fixed grid
speeds up runtimes significantly, as illustrated in §10.2.

wavefronts with low energy during precomputation, and we could
potentially reduce the number of wave height evaluations M far
away from the camera using the low-pass filtering procedure of
[Hinsinger et al. 2002]. We were able to preview all of our examples
at real-time rates (more than 60 frames per second), and then add
additional details (by increasing H and M ) for the final animation.
We list details in Table I.

10.2 Comparison to an Eulerian method

It is difficult to directly compare our method with an Eulerian dis-
cretization, due to the completely different behavior of numerical
parameters. Nevertheless, we found it informative to compare our
method to the iWave simulation algorithm [Tessendorf 2004a], an
Eulerian scheme known for its ability to recreate the four desired
phenomena of refraction, dispersion, reflection, and diffraction. We
ran simulations using both methods for similar water wave scenar-
ios, and the experiments help to highlight the strengths and weak-
nesses of each approach. iWave has several numerical parameters
such as artificial damping, time step size, and simulation resolu-
tion. We followed the parameter suggestions in [Tessendorf 2004a]
where they were provided, and we tuned the remaining parameters
to optimize simulation quality. This comparison uses a 20482 res-
olution, a timestep size of 0.001, and a damping parameter of 0.1,
and it executes three simulation timesteps per frame of animation.
For simulations using our method, we only tracked a few wave-
fronts on the coarse triangle meshes in Figure 11, and we used 100
dispersion waves. The small number of wavefronts decreases our
precomputation cost at the expense of less detail, while an overly
coarse triangle mesh has no practical performance benefit and is
primarily used to highlight artifacts caused by our approach.

We attempted to set up two scenarios identically for both meth-
ods, but this is not straightforward and there are some differences
in the initial conditions. Both simulations in Figure 12 feature a
dispersive wavefront propagating from the left and then interacting
with the environment. The wavefronts in our method were initial-
ized with random wavelengths ranging from 1/2048 to 1/128 of
the domain width. iWave is initialized by an oscillating step func-
tion whose Fourier transform should feature all wavelengths up to
the minimum defined by the grid cell size (1/2048 of the domain
width). GPU acceleration was used for both methods. Please see
our additional supplemental video for motion comparisons between
the methods.

Reflections and diffractions. The top of Figure 12 simulates a
series of waves reflecting and diffracting in an obstacle-dominated
environment with constant depth. The iWave simulation clearly

displays dispersion, reflects off the boundaries, and shows natu-
ral wavelength-dependent diffraction patterns. Although we tuned
parameters to minimize numerical damping, the waves clearly lose
energy as they travel long distances; decreasing the damping pa-
rameter any further causes the simulation to blow up. iWave re-
quires customized non-reflecting boundary conditions by progres-
sively damping near outer boundaries, but this was not a practical
problem other than several cells of wasted resolution. [Tessendorf
2004b] states that the accuracy of the reflection method is unclear,
and we only noticed such reflection inaccuracies (manifesting as a
wavelength-biased numerical damping at the boundary) in a few
rare situations. As an Eulerian method on a regular grid, iWave
is well-suited for parallelism on the GPU, especially for the rect-
angular domains in this example. While iWave requires minimal
precomputation in principle, steady-state scenarios like this one do
require a significant amount of simulation time for waves to prop-
agate all the way through the scene; the iWave simulation required
3 minutes and 15 seconds of pre-simulation to fill the domain with
waves. For the simple 2D rendering in Figure 12 (10002 pixels),
iWave ran at 162 frames per second. For the higher-quality adap-
tive 3D rendering of the same scene in our accompanying video
(piecewise-bicubic interpolation of wave heights onto an adaptive
1280× 2880 height-field), iWave ran at 11 frames per second.

For comparison, the simulation generated by our method used
a single tracked wavefront and a triangle mesh with 2188 ver-
tices. Our method exhibits more visible wave details than iWave
and exhibits perfect energy conservation (until small waves are
removed for efficiency reasons). It also reflects all wave frequen-

(a) Our reflection mesh; 3781 trian-
gles, 2188 vertices

(b) Our refraction mesh; 1022 trian-
gles, 531 vertices

Fig. 11: Triangle meshes used by our method for the comparisons in §10.2.
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(a) iWave reflection simulation (b) Our reflection simulation

(c) iWave refraction simulation (d) Our refraction simulation

Fig. 12: We compare our method to iWave for scenarios which isolate reflec-
tion and diffraction (top) and refraction (bottom). To highlight differences,
we show a 2D top-down view here. 3D fly-through animations can be found
in our additional supplemental video.

cies equally by construction. Our method does not diffract waves
as accurately as iWave, because our diffraction algorithm is cur-
rently independent of wavelength. This example also shows the vi-
sual artifacts that can result from a coarse triangle mesh. The steep
change in amplitude caused by this double-slit scenario is inter-
polated across very coarse triangles, which smears out the ampli-
tude gradient in a mesh-dependent manner. A finer mesh, additional
wavefronts from slightly different angles, a more natural environ-
ment, or some damping would alleviate this problem. While our
method parallelizes well on the GPU, load-balancing is more vari-
able than a simple Eulerian method; complex regions with more
overlapping waves require more interpolations, while simpler areas
require fewer. Our simulation required 25 seconds of precomputa-
tion, the 2D rendering ran at 107 frames per second, and the 3D
rendering ran at 8 frames per second.

Refraction. The bottom of Figure 12 simulates a series of
waves refracting over an underwater bump. iWave clearly displays
dispersion and refraction behaviors as expected, and the balance be-
tween damping and stability is still a problem for waves traveling
over long distances. iWave shows how a steep change in water depth
can spawn both reflected and refracted waves. The iWave simula-
tion required 3 minutes and 15 seconds of pre-simulation to fill the
domain with waves, the 2D rendering ran at 160 frames per second,
and the high-quality 3D rendering ran at 11 frames per second.

Our method used three tracked wavefronts and a triangle mesh
with 531 vertices for this example. Our resulting simulations ex-
hibit longer lasting waves and sharper details, but it does not both
reflect and refract waves when it crosses the shallow area. This is
because we must explicitly spawn reflected waves when they hit
obstacles; refraction is the default behavior. Mesh-dependent arti-

facts are not visible despite the coarse triangle mesh, because there
are no unnaturally steep changes in amplitude. Our simulation re-
quired 14 seconds of precomputation, the 2D rendering ran at 124
frames per second, and the 3D rendering ran at 8 frames per second.

Comparison performance notes. Both methods had similar
runtimes for these chosen examples. Again, it is hard to directly
compare the methods due to incompatible numerical parameters,
but we found that the number of height-field evaluations at runtime
was the bottleneck for both methods. In each of our experiments,
both methods gained an order of magnitude speedup from 3D to 2D
by using a simpler shader and rendering fewer height-field samples
(reducingH). Both our method and iWave can sacrifice visual qual-
ity for speed by using fewer samples in the displayed heightfield,
using simple linear interpolation of wave heights, or directly ren-
dering wave heights on the simulation grid/mesh. Another thing to
note is that larger simulation resolutions will eventually slow down
an Eulerian method by requiring even more simulation time steps
per frame of animation, while our method can be evaluated at any
point in time, independent of mesh resolution.

11. DISCUSSION

While this work represents several significant advances in ocean
animation, there is still work to be done. The method is currently
limited to static obstacles and pre-computed wave paths; it is not yet
able to accurately handle moving boundaries or interactive changes
in wave direction. The precomputation phase of our algorithm can
also be viewed as a limitation when compared to other methods,
though we are able to reduce this drawback using parallelization
and adaptive ODE integration.

Our approach successfully reconstructs the high-frequency η
function by sampling the φ and a functions instead of η directly. To
avoid under-sampling these functions, we maintain a finer triangle
mesh resolution near curved obstacles and sharp changes in water
depth, where we expect sharper geometric curvature of the wave-
fronts and thus larger derivatives of φ. Higher-order interpolation
methods almost eliminate these errors, even with coarse meshes.
In contrast to Eulerian methods, re-meshing our triangle mesh is
not analogous to changing simulation resolution; it is more like re-
sampling a function at different locations. Higher mesh resolution
resolves finer variations in the phase function, but it will not change
the overall behavior of wave paths, shapes, wavelengths, or the tim-
ing of simulation events.

The underlying linearized wave model prevents any overturning
waves or rotational flows, just like previous procedural wave mod-
els. While the eikonal high-frequency approximation only guaran-
tees accuracy for wavelengths smaller than the scale of variations in
the environment, we found it difficult to detect visual artifacts (like
wavelength-dependent diffraction) even for large wavelengths.

On the positive side, our algorithm is capable of generating mul-
titudes of ocean waves that interact with their environment and ex-
hibit high-resolution details at efficient frame rates. Our method is
easily parallelizable and maps well to GPU hardware. While the
approach is not as versatile as fully 3D Navier-Stokes simulations,
it is virtually independent of the Nyquist and CFL restrictions that
plague other water simulation techniques. In fact, our method is
unconditionally stable at runtime, and it does not exhibit any nu-
merical damping. Our technique also handles non-reflecting bound-
ary conditions by default, and it has the unique feature that visible
wave detail is independent of simulation complexity. Unlike Eule-
rian grid methods, the analytical wave nature of our method allows
us to use Gerstner or Biesel wave profiles to model detailed tan-
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gential wave motions. We see our method as a generalized version
of traditional spectrum-based ocean simulation techniques, which
are currently the state of the art in the simulation of detailed ocean
textures and large bodies of water.
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APPENDIX

A. DIFFRACTION EXPERIMENT

As mentioned in §5.1, in the special case of constant wavenumber
k and boundary curvature κ, Equation 11 states that α is constant.
The integral in Equation 11 then reduces to the quantity−sα. Thus,
diffractions around perfect circles should decay exponentially with
the geodesic distance along the boundary, and we can measure the
constant decay rate by computing the change in the logarithm of
amplitude α = −d(log(a))/ds. We know that α ∝ κ2/3, so α−3/2
is proportional to the radius of curvature of the circle, 1/κ.
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Fig. 13: The geometric setup for the side-vertex interpolation scheme.

We ran several simulations in which waves diffract around cir-
cles of varying radii, and we plotted the α−3/2 values as a func-
tion of boundary curvature in Figure 5. The geometric theory of
diffraction predicts that these two quantities must be linearly re-
lated, and indeed linear regression analysis yields an excellent fit
of R2 = 0.9721.

B. DERIVATIVES AND INTERPOLATION

As described in §6.1, our interpolation scheme requires first deriva-
tives at each triangle mesh vertex, which are calculated during the
wave propagation in our precomputation phase. The first derivative
of φ can be computed from the eikonal equation:

∇φ = ~c/c2 (15)

where ~c is the phase velocity vector. The first derivative of ampli-
tude can be computed using the gradient of bilinear interpolation of
the wavefront segments. Second derivatives of φ can be evaluated
similarly if necessary for higher-order interpolation.

Ursin [1982] shows that φ2 can be interpolated more accurately
than φ. As an intuitive example, a circular wavefront with con-
stant phase speed will produce the cone φ=

√
x2 + y2/c, which

is not polynomial and exhibits a singularity in the first derivative.
However, squaring it gives φ2=(x2 + y2)/c2, which can be recon-
structed exactly with a quadratic interpolation scheme. To adapt
this idea to our model, we compute φ as usual during the wavefront
propagation. Then, at runtime, we set Φ=φ2, interpolate Φ instead
of φ, and then finally use φ=

√
Φ when needed.

For high-order interpolation of Φ, its derivatives can be com-
puted in terms of the already-known derivatives of φ:

∇Φ = 2φ∇φ (16)

C. SIDE-VERTEX INTERPOLATION SCHEME

This section lists the equations required to implement the side-
vertex interpolation scheme [Nielson 1979], as mentioned in §7.
Please refer to Figure 13 for an illustration of the geometric setup.

Input: Triangle with vertices Vi and per-vertex values F (Vi),
partial derivatives Fx(Vi), Fy(Vi), as well as a position (x, y) in-
side the triangle with barycentric coordinates (b1, b2, b3).

Output: C1 smoothly interpolated function value D[F ] at the
given position (x, y).

D[F ] =
b22b

2
3D1[F ] + b21b

2
3D2[F ] + b21b

2
2D3[F ]

b22b
2
3 + b21b

2
3 + b21b

2
2

(17)

with

Di[F ] = Bi[F ] + Pi[F ] (18)
i = 1, 2, 3; i 6= j 6= k 6= i

where

Bi[F ] =h(1− bi)F (Si)

− bi(1− bi)
[
bj
∂F

∂ek
(Si) + bk

∂F

∂ej
(Si)

]
(19)

Pi[F ] =h(bi)F (Vi) + b2i

[
bj
∂F

∂ek
(Vi) + bk

∂F

∂ej
(Vi)

]
(20)

h(t) = t2(3− 2t) (21)

∂F

∂ej
(Vi) = (xk − xi)Fx(Vi) + (yk − yi)Fy(Vi) (22)

∂F

∂ej
(Si) = (xk − xi)Fx(Si) + (yk − yi)Fy(Si) (23)

Along each triangle edge, the function value F (Si) is com-
puted using Hermite interpolation from the vertices. The tangential
derivative is computed as the directional derivative of this Hermite
function along the edge. The normal derivative along the edge is
computed by interpolating the normal derivatives from the vertices
using a Hermite spline with zero second derivatives. The tangential
and normal derivatives are then converted to the partial derivatives
in cartesian coordinates Fx and Fy . Please see the original paper
by Nielson [1979] for more details.

D. DISPERSION APPROXIMATION ERROR

As discussed in §8.1, we aim to compute φij and aij of a new
wave ij that is nearly identical to wave i except for its wavenum-
ber kij 6=ki. Equation 4 can solved for φ by integrating along the
wavefront travel path P:

φi =

∫
P

ds

c(ki)
(24)

We wish to express φij in terms of φi:

φij =

∫
P

ds

c(kij)

=

∫
P

c(ki)

c(kij)

ds

c(ki)

=
c(ki)

c(kij)

∫
P

ds

c(ki)
,

(
Assuming

c(ki)

c(kij)
is constant

)
=

c(ki)

c(kij)
φi (25)

Thus we can avoid numerical integration of φij altogether if we
approximate c(ki)/c(kij) as constant. For simplicity, we choose to
set Cij=c(ki)/c(kij) based on the initial phase speeds.

The most obvious visual artifact of this approximation is that
wave ij must follow the same path as wave i, so the waves can-
not separate due to wavelength-dependent refraction. However, the
approximation is exact in the common regimes of deep water, cap-
illary waves, and constant depth (which do not experience refrac-
tion), as well as for gravity waves in shallow water (where refrac-
tion is independent of wavelength). However, while Cij is indeed
constant within these regimes, the value of Cij will vary from one
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regime to another. Thus, the approximation is less accurate when
waves transition between regimes. The error clearly converges to
zero as kij→ki, so smaller deviations from ki will have fewer arti-
facts.

The error in assuming aij=Aijai is coupled to the φij error, but
the analysis is more difficult (because a depends on bothD and cg).
We found that amplitude variations are not as obvious as changes
in wave direction, and we did not perceive any visual artifacts from
this amplitude approximation.
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