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The majority of immune cells in Drosophila melanogaster are
plasmatocytes; they carry out similar functions to vertebrate
macrophages, influencing development as well as protecting
against infection and cancer. Plasmatocytes, sometimes
referred to with the broader term of hemocytes, migrate widely
during embryonic development and cycle in the larvae between
sessile and circulating positions. Here we discuss the
similarities of plasmatocyte developmental migration and its
functions to that of vertebrate macrophages, considering the
recent controversy regarding the functions of Drosophila
PDGF/VEGF related ligands. We also examine recent findings
on the significance of adhesion for plasmatocyte migration in
the embryo, as well as proliferation, trans-differentiation, and
tumor responses in the larva. We spotlight parallels throughout
to vertebrate immune responses.
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Introduction

Immune cells are essential for survival, as they eliminate
both foreign invaders and endogenous pathologies [1,2].
While vertebrates utilize a complex set of innate and
adaptive immune cells, Drosophila melanogaster relies on
an innate immune system consisting of only three cell
types, jointly called hemocytes, to play a broad range of
roles [3]. Plasmatocytes, the functional equivalent of
vertebrate macrophages, are 95% of all Drosophila im-
mune cells prior to infection and will be the focus of this
review. They influence development [4°,5,6] and physi-
ology [7] as well as defend against bacteria [8,9], fungi [8],
viruses [10], and cancer [11,12°°]. Plasmatocytes migrate
actively during embryonic development [13] and pupa-
tion [14], as well as during responses to wounds [15,16]. In
the larva, many of their positions are due to regulated
adhesion [17°°,18]. We have sought to avoid overlap with
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two recent excellent reviews [9,19]; here we focus on the
conservation between Drosophila plasmatocyte and ver-
tebrate macrophage migration in embryos, and examine
the adhesion involved in larval plasmatocyte physiology
and tumor responses. We highlight questions throughout
that we consider intriguing for further exploration.

Conservation of embryonic macrophage
migration paths and functions in Drosophila
and vertebrates

Much of the embryonic migration of Drosophila plasma-
tocytes occurs along paths where their function is re-
quired for further development. Plasmatocytes are
specified in the anterior mesoderm in the ventral side
of the head [20,21]; they then ingress [22] and split into
three main routes, two of which have at this time been
shown to have clear developmental relevance (Figure 1).
In route 1, plasmatocytes move over the yolk sac to the tip
of the germband (route 1a). They then invade the epi-
thelia of the extended germband [13,23,24°] on their way
to kidney-like organs called the renal tubules (route 1b);
plasmatocytes secrete collagen IV which facilitates BMP
signaling required for the proper positioning of these
organs [4°]. These plasmatocytes then migrate along
the posterior ventral nerve cord (vnc) (1c), eventually
joining the cells moving from their birthplace towards the
posterior along the vnc in route 2; all along the vnc,
plasmatocytes engulf apoptotic midline glia and facilitate
vnc condensation [5,6,25]. Route 3 along the forming
heart [16] has not yet been shown to have a developmen-
tal role but in any case serves to further disperse plas-
matocytes in preparation for larval immune functions.

These embryonic migration paths and their purposes
show similarities with those of vertebrate macrophages
formed during primitive hematopoiesis (see Table 1)
[26-28]. As in Drosophila, macrophages in zebrafish are
specified in the anterior ventral mesoderm. They then
move onto the yolk sac as in route 1 [29]; this step also
precedes their penetration of epithelial tissues [30], and
phagocytosis of apoptotic cells of the nervous system
[31]. The precursors of mouse macrophages are also born
in the anterior mesoderm and move onto the yolk sac;
there they form blood islands in which they mature [32]
before appearing in the head [33] and seeding the brain
where they develop into microglia [34]. Movement anal-
ogous to route 2 along the vnc is observed in zebrafish and
the chick, in which macrophages move into the spinal
cord from anterior to posterior after their population
of the head [29,35]. Mouse macrophages infiltrate the
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Figure 1

Stage 12

e plasmatocyte
C engulfing plasmatocyte ¢

B apoptotic glial cell ¢ collagen IV

Stage 14

[] brain and ventral nerve cord
secreting plasmatocyte =

renal tubules

o
yolk sac
*  tip of the germ band

Current Opinion in Cell Biology

Plasmatocyte migration routes and their functional roles during embryonic development. Schematic of two embryos (early Stage 12 on the left and
Stage 14 on the right) showing that plasmatocytes specified in the head mesoderm migrate along three main routes during embryonic
development. One sub population migrates in Stage 12 over the yolk sac to the edge of the extended germband indicated by an asterisk (route
1a). They then penetrate the germband epithelium and cluster around the renal tubules where they secrete collagen IV which ensheathes the
tubules (route 1b). These and other plasmatocytes that have entered the germband continue along the posterior ventral nerve cord (vnc, route 1c
in left embryo, route 1 in right embryo). Another subpopulation migrates out from the head (route 2 in both embryos) along the anterior ventral
nerve cord. In both of these routes plasmatocytes engulf apoptotic midline glia. The third group of plasmatocytes migrates along the developing
heart also towards the posterior of the embryo (route 3 in both embryos). Arrows indicate the migration routes.

developing kidney interstitium and may stimulate
growth and ureteric bud branching [36]. Postnatally
mouse macrophages also facilitate the branching of the
mammary gland, a process requiring Bone morphogenet-
ic protein (BMP) signalling [37,38]. Macrophage remo-
deling, although not secretion, of collagen appears to be
involved [39]. Thus macrophages influence development
in both Drosophila and vertebrates and migrate develop-
mentally to many of the same tissues. This routing helps
populate different vertebrate tissues with the resident
macrophages that play later essential physiological and
immunological roles [40].

PDGF/VEGF ligands in Drosophila and
vertebrate macrophage migration
PDGF/VEGF-related ligands (Pvfs) have been thought
to mediate migration along all three embryonic routes in
Drosophila but this idea 1s now contested. The original
hypothesis rested on the findings that each path expresses
one of the 3 Pvfs [13,16] and that loss of function of the
ligands or their plasmatocyte expressed receptor, the
PDGF/VEGF-related Receptor, PVR, causes defects in
movement along each route [13,16,23,41]. However, in-
terpretation of these experiments is complicated; PVR
signaling is also required for plasmatocyte survival [23].
PVR activation of Mbc and Rac has been implicated in its
migratory function in another cell type [42,43], and sig-
naling through Akt/Tor, and MEkK/ERK in its role in
hemocyte survival [13,23,42,44,45]. Thus to definitively

demonstrate a migratory role for these ligands or their
receptor requires the migration defects caused by their
absence to remain when cell survival is restored. This has
been shown for PVR and Pvf2/3 in penetration of the
germband in route 1 [23,41]. In route 2 the importance of
PVR [16] is established but that of Pvfs is not yet clear.
One lab showed strong migratory defects after RNAI1 of
Pvf2 and 3, but did not assess effects on plasmatocyte
survival [16]. Another rescued survival and restored the
migratory defects seen in a deletion affecting the two
Pvfs, however this deletion causes only a reduction, not
the elimination, of Pvf2 expression [41]. A role in route
3 is likely as migration there fails in the absence of only
one Pvf [16]; eliminating two is required to see strong
survival defects [13,23]. Whether these Pvfs are acting as
chemoattractants is another open question. When Pvf2 is
over-expressed in areas the plasmatocytes normally cross,
it triggers plasmatocyte accumulation, which could be
caused by attraction or adhesion [13,16,25]. Pvfs have not
been used to redirect plasmatocytes to a new area, as was
demonstrated with another migratory cell type, border
cells [46]. Expression of Pvf2 or a dominant active (DA)
form of PVR in the plasmatocytes themselves should
block migration if a chemotactic response is required
for guidance. Each appeared not to, but the expression
was turned on only after much migration had already
commenced [41] and in a background in which the
endogenous protein was still present, albeit for Pvf2 at
reduced levels. Thus the potential migratory functions for
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Table 1

Summary of Drosophila plasmatocyte embryonic migration routes, factors, functions and conservation with those of vertebrate macrophages

Drosophila Drosophila route Drosophila Drosophila experiments Drosophila functional Vertebrate route Vertebrate receptors Vertebrate
plasmatocyte description ligands and and caveats relevance conservation involved functional
route receptors conservation
1a Over the yolk PVR PVR null mutant still moves None yet identified. Zebrafish and mouse VEGFR-2 needed for
sac to edge independent up to edge of germband [13]. macrophage macrophage
of posterior precursors move over precursors to move
germband yolk sac [29,32,33]. onto yolk sac blood
islands in mouse
[47,48].
1b Penetration PVR PVR null mutant rescued for cell Collagen IV secretion Kidney infiltration by CSF1R needed for Remodeling of
between Pvf2 survival shows no movement to facilitate BMP macrophages seen in epithelial penetration collagen involved in
posterior germ (Pvf3) into germ band [23]. Pvf2/3A signaling needed for mouse [36]. in zebrafish (Fig. 9E,F mammary gland
band epithelia on shows no movement into germ renal tubule Epithelial penetration in [30]). development seen
the way to the band. Phenotype rescued just development [4]. seen in zebrafish [30]. in mouse [39].
renal tubules. by Pvf2 expression [41].
1c Along the PVR Pvf2 and 3 RNAi knockdown Engulfment of Zebrafish Apoptotic neural
posterior ventral Pvf2&3? show migration defects along apoptotic midline glia macrophages appear cells engulfed in
nerve cord (vnc) vnc, cell survival not assessed [5,6], vnc in posterior nerve zebrafish [31].
[16]. Pvf2/3A mutant defects condensation. cord (Fig. 8S in [29]).
restored upon rescue of cell
survival [41]. Yet A mutant is not
a complete null: reduces Pvf2,
truncates Pvf3.
2 Along the PVR PVR null mutant rescued for cell Engulfment of Zebrafish (Fig. 9E,F, CSF1R (Fig. 9E,F in Apoptotic neural
anterior vnc Pvf2&3? survival shows little movement apoptotic midline glia in [30]), chick. [30,35]). cells engulfed in
along anterior vnc [16]. Pvf [5,6], vnc zebrafish [31].
experiments and caveats same condensation.
as above [41].
3 Along the PVR PVR null mutant rescued for cell None yet identified.
forming heart Pvf2 survival shows little movement

along forming heart [16]. Pvf2
transposon insert mutant and
RNAi showed defects [16]. Cell
survival not assessed but lacking
one Pvf does not cause strong
survival defects [13,23].

Each row corresponds to a route taken by Drosophila plasmatocytes during their embryonic migration. For each route, successive columns indicate the signals and receptors currently known to be
required for the indicated migration and then the experiments underlying that conclusion and their caveats. A question mark indicates that the corresponding molecule has been contradictorily identified
both as a plasmatocyte migratory cue and as solely a survival factor, as discussed in the caveat column. Further columns illustrate the potential conservation of the Drosophila plasmatocyte routes with
those of vertebrate macrophages and the vertebrate receptor required for the vertebrate route indicated. The final column delineates the potential conservation of a functional role with vertebrates.
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Pvfs are to facilitate invasion in route 1, mediate adhesion
or guidance on several routes, or all of the above.

Even if the Pvfs do guide migration, many questions
remain. Movement along the first step (1a) of route 1 up to
the germband can occur even in the absence of PVR [13],
implying the existence of another migratory cue for this
step. Each of the three main routes that the plasmatocytes
split into contains Pvfs [13,16], thus how the cells decide
which path to follow is unclear. Finally, along all three
paths, consecutive waves of plasmatocytes move towards
one source of Pvf, but then move beyond it to another.
Thus, if Pvf guides movement during normal develop-
ment, mechanisms must exist within the migrating he-
mocyte streams to create a gradient from the successive
concentrations of Pvf expression, as in the zebrafish
lateral line [47,48]. Alternatively, contact with the leading
hemocyte could induce tissues to downregulate Pvfs or
upregulate sequestering receptors [49] so that the leading
hemocyte would receive greater signal from targets fur-
ther ahead. This would require, however, that subsequent
hemocytes follow cues not from their surroundings but
from other hemocytes.

The closest vertebrate orthologs of Drosophila PVF are
Vascular Endothelial Growth Factor (VEGF) and Platelet
derived growth factor (PDGF). These can guide the
migration of macrophages during development and of
monocytes, the precursors of macrophages, during physi-
ological responses. VEGF Receptor 2 (VEGFR-2) is
needed for macrophage precursors to appear in blood
islands in mice [50]; this is thought to be due to a defect
in their migration as VEGFR-2-mutant cells can differ-
entiate properly iz vitro [51]. A role for PDGFRp in
migration of macrophage precursors to blood islands or
from the yolk sac has not been assessed, but it is not
required for the developmental migration of hematopoe-
tic stem cells from the fetal liver [52]. Purified VEGF can
guide human monocytes across endothelial monolayers
[53]; both VEGF and PDGF can direct monocyte che-
motaxis 7z vitro [54-56]. The next closest ortholog of
Drosophila PVR, after PDGFR and VEGFR, is the Colo-
ny Stimulating Factor 1 Receptor (CSF1R), which is
involved in monocyte/macrophage precursor chemotaxis
[57]. Interestingly, in zebrafish the invasion of macro-
phages from the yolk sac into the brain, retina and
epidermis depends on CSFIR, which starts to be
expressed in pre-macrophages maturing in the yolk sac
[30]. Thus as evolution proceeded, the migratory func-
tions of Drosophila PVR may have been split between
VEGFR, PDGFR, and CSF1R [58] during development

and immunological responses.

Modulation of adhesion during the Drosophila
plasmatocyte life cycle

Integrin adhesion plays an essential and dynamic
role in facilitating and influencing the migration of

plasmatocytes in the embryo. Integrin affinity is regu-
lated by the G'TPase Rapl [59], as in vertebrates in
which both of these proteins are required for the
movement of neutrophils and monocytes between
endothelial cells out of the vasculature [60]. Drosophila
plasmatocytes also penetrate a tissue barrier as they
move into the germband along route 1b and analo-
gously require a-Integrin, Inflated, as well as Dizzy, a
GEF for Rapl [24°] for this step. Modulation of this
adhesion appears to be crucial as the GTPase Rhol,,
which regulates Rapl localization and thus Integrin
affinity, is essential for this process. Plasmatocytes
could use Integrins to bind the germband’s epithelial
cells and change their junctional properties to permit
penetration, as vertebrate monocytes do while exiting
blood vessels [61]. Alternatively, Integrins could facil-
itate homotypic adhesion since plasmatocytes migrate
in chains during germband entry, contacting the rear
of the cell ahead [24°]; indeed strong plasmatocyte B-
Integrin dependent clustering can be induced at later
stages by over expressing Dizzy or Rap1DA [59]. In
contrast, at these later stages, overlap that arises
normally between lamellipods leads to repulsion, fa-
cilitating the dispersal and movement of hemocytes
[62°,63°°]. The contacting lamellipods form an adhe-
sion that leads to the coordinated reorganization of the
colliding cytoskeletal networks and a build up of
accumulated tension [63°°]; its release seems to propel
repulsion. Integrins could be involved in this event, as
in its absence the cells maintain contact longer and
move more slowly away from one another [64]. Thus
plasmatocytes seek contact at early stages and are
repelled by it at later ones; this change could be
due to a temporal shift in plasmatocyte signaling
pathways downstream of Integrins.

Embryonic plasmatocytes persist into the larval stage, but
in this period active migration plays a more limited role
than adhesion. During all larval stages, plasmatocytes
circulate passively in the lymph that bathes the internal
organs and are then recruited to tissue surfaces and wound
sites by adhesion [65,66]. In the early larvae, plasmato-
cytes also home based on cues provided by neurons to
segmentally repeated pockets between muscles and the
epidermis where they attach to the internal surface of the
body wall [17°°,67] (Figure 2). Localization in these
pockets permits these sessile plasmatocytes to undergo
a faster rate of division, receive survival signals, and trans-
differentiate. Their presence at these locations requires
Eater, a hemocyte specific EGF-like repeat receptor
[68°]. These sites maintain their attractive capacities over
time because plasmatocytes return after mechanical dis-
ruption displaces them [17°°]. Yet this localization is also
dynamic; at later larval stages these plasmatocytes under-
go exchanges between the body wall pockets [17°°].
Trans-differentiation of a few plasmatocytes into crystal
cells occurs in a Notch-dependent manner even in the
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Figure 2
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Larval hemocytes exist in sessile patches and in circulation. (a) Schematic showing hemocyte distribution in a 3rd instar larva. Hemocytes
colonize segmentally repeated epidermal-muscular pockets found along the side of the embryo (indicated in one segment by the red box) and
attach to the internal body wall from early larval stages. At later stages hemocytes are also found in association with the dorsal vessel (indicated
in one segment by a purple bracket). Sessile hemocytes undergo exchanges between the pockets on the body wall (shown with bi-directional
arrows) and during immune challenges return to circulation. Cartoons depicted below correspond to the boxed region in the larva and
demonstrate different sessile hemocyte behaviors. (b) Sessile hemocytes in the epidermal-muscular pockets cluster around the oenocytes and
associate with cells of the peripheral nervous system (PNS), which are essential for their trophic survival. Hemocyte association with the sessile
compartment requires the plasmatocyte specific EGF-like repeat receptor, Eater. Hemocytes also exchange between sessile patches and the
circulation. (c) Plasmatocytes attached to the sessile patches undergo proliferation. (d) Plasmatocytes attached to the sessile compartment can

trans-differentiate into crystal cells in a Notch dependent manner.

absence of the wounds and parasites that the crystal cells
serve to melanize [69-71]. These crystal cells remain in
the pockets as long as plasmatocytes express Eater and
are also located there [68°]. Immune challenge leads to
the return to circulation of plasmatocytes and crystal cells
[72,73]; if the infecting agent is a parasite, these released
sessile plasmatocytes also transdifferentiate into lamello-
cytes which wrap around the invaders [72].

What molecular mechanisms trigger the alterations in
adhesion underlying their dynamic cycling between
pockets in the normal larva or their mobilization in the
infected one is an open question. Expression in plasma-
tocytes of two genes, either of which should disrupt Wg
signaling, releases sessile plasmatocytes [74]. Constitu-
tive Toll signaling in the fat body can also lead to
disruption of the plasmatocyte pattern [73]. These results
argue that unknown external signals heralding the pres-
ence of infection can decrease adhesive strength directly
in sessile hemocytes or in the muscles or epidermis they

bind to. As Eater also binds to bacteria to permit their
phagocytosis [75,76], plasmatocytes that are triggered to
leave and then encounter bacteria might be temporarily
precluded from rebinding to the pockets. Whether plas-
matocytes returning after exposure to pathogens can shift
the proliferation or differentiation rate of the sessile ones
and thus act analogously to macrophages and dendritic
cells presenting antigen to T cells in lymph nodes is an
intriguing area to explore [77]. In any case, larval plas-
matocyte adhesion in these pockets is required for their
expansion and responses to infection, behaviors also
observed in vertebrate tissue resident macrophages which
they have been proposed to be analogous to [27,33,78,79].

Plasmatocyte tumor responses initiated by
adhesion

Circulating plasmatocytes are captured by adhesion to
larval tumors where they can block or promote aberrant
cell growth, depending on the tumor type (Figure 3).
Tumors induced in salivary glands solely by oncogenic
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Figure 3

*’ plasmatocyte #

w recently divided plasmatocyte *

\ lamellocyte

RasV12 mediated
tumor

Eiger
o 4

Lamellocyte
recruitment

Eiger /
09
LX)

Tumor encapsulation

Tumor

Plasmatocyte recruitment/ adhesion

Polarity gene mutation
mediated tumor

Pvi-1 dependent
plasmatocyte
proliferation

Tumor inhibition

\ ‘ non-invasive tumor cell

‘ invasively migrating tumor cell

Lo © celldeath

Y

Polarity gene mutation
and RasV12 mediated tumor

Eiger
s

Eiger mediated
switch of tumor
response

Tumor invasive
migration

Current Opinion in Cell Biology

Tumor associated hemocytes can lead to tumor promotion and invasion or tumor regression. Schematic depiction of Drosophila hemocyte and
tumor interactions. Plasmatocytes are recruited to adhere to tumors of all genetic types. The further responses of both cell types depend on the
genetic makeup of the tumor, as indicated below. In tumors induced in salivary glands by Ras’'2, lamellocytes and crystal cells are recruited to
the tumor, leading to its encapsulation. In tumors induced in imaginal discs by mutations in the polarity genes, scribble and/or discs large,
plasmatocyte derived Eiger causes tumor cells to upregulate Pvf1, leading to further plasmatocyte proliferation. Plasmatocyte Eiger also triggers
tumor inhibition in combination with factors from the fat body. Eiger is a transmembrane protein; it may act through direct contact with tumor cells
or be secreted after cleavage. In imaginal disc tumors deficient for scribble but overexpressing Ras"'?, plasmatocyte derived Eiger mediates a

switch in tumor response from in situ residence to invasive migration.

Ras¥'? are bound by plasmatocytes, lamellocytes, and
crystal cells. These immune cells encapsulate and melanize
the transformed tissues, isolating it as they do with wasp
eggs [80]. Tumors elicited in imaginal discs by mutations in
the polarity genes, scribble, discs large ot lethal giant larvae
[81], lead to the adhesion of plasmatocytes at areas where
the basement membrane is disrupted [11]. These plasma-
tocytes inhibit tumor growth by producing Eiger, the only
identified member in Drosophila of the Tumor Necrosis
Factor (T'NF) a superfamily [11,12°°]. Plasmatocyte Eiger
leads toa positive feedback loop of tumor control; itinduces
tumor cells to die and to express Pvfl which results in
plasmatocyte proliferation through PVR signalling [12°°].

Finally, if the tumors induced by polarity gene mutations in
imaginal discs also express Ras" '%, plasmatocytes are again
captured from the circulation by adhesion, but lead to a
different response. Eiger produced by these plasmatocytes
causes not tumor death, but rather overgrowth and invasive
migration [82,83°]. 'This final case shows similarities to
vertebrates, in which tumor associated macrophages pro-
mote tumor functions through TNFa as well as pro inflam-
matory cytokines [84]. There are likely to be common
signals, perhaps a disrupted basement membrane, through
which all Drosophila tumors induce plasmatocyte adhesion.
Yet there must also be distinct tumor signaling pathways
that lead to the specific plasmatocyte responses to different

Current Opinion in Cell Biology 2015, 36:71-79
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tumor types and divergent tumor responses to plasmatocyte
produced Eiger.

Conclusions

Due to the relative ease of genetic manipulation and
imaging in Drosophila, its immune system serves as an
excellent system to study how cellular migration occurs
within diverse 7z vivo environments. While migration
plays the major role in bringing plasmatocytes to locations
where they play essential developmental roles in the
embryo, during larval life adhesion predominates and
must be dynamically regulated to permit both normal
proliferation and infectious responses. Plasmatocyte
binding to tumors can lead to their inhibition or promote
their invasion, depending on the genetic state of the
tumor. In many of these steps similarities are evident
to vertebrate macrophages and monocytes. The molecu-
lar mechanisms governing the movements, adhesion, and
functions of the Drosophila immune system likely repre-
sent ancient programs upon which evolution has elabo-
rated to permit the complex repertoire of immune cell
behavior seen in vertebrates. Identifying new aspects of
these mechanisms and their relevance for vertebrate
immunology will occupy many exciting years ahead.
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