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Abstract. We prove (nearly) tight bounds on the concrete PRF-security of two con-

structions of message-authentication codes (MACs):

(1) The truncated CBC-MAC construction, which operates as plain CBC-MAC (without
prefix-free encoding of messages), but only returns a subset of the output bits.

(2) The MAC derived from the sponge hash-function family by pre-pending a key to
the message, which is the de-facto standard method for SHA-3-based message au-
thentication.

The tight analysis of keyed sponges is our main result and we see this as an important
step in validating SHA-3-based authentication before its deployment. Still, our analysis
crucially relies on the one for truncated CBC as an intermediate step of independent
interest. Indeed, no previous security analysis of truncated CBC was known, whereas
only significantly weaker bounds have been proved for keyed sponges following different
approaches.

Our bounds are tight for the most relevant ranges of parameters, i.e., for messages of

length (roughly) ¢ < min{2"/*, 27} blocks, where n is the state size and r is the desired

output length; and for ¢ = £ queries. Our proofs rely on a novel application of Patarin’s

H-coefficient method to iterated MAC constructions.

Keywords. Message-authentication, sponges, CBC-MAC, H-coefficient method, con-
crete security.



1 Introduction

MESSAGE-AUTHENTICATION CODES. Message authentication codes (or MACs, for short) are central
components of secure communication protocols like TLS. Secure MACs are required to be unpre-
dictable, meaning that it is hard for an attacker to predict the MAC output (usually called the tag)
under a secret key on a message, even given the tags of a number of (different) messages.

Practical MAC constructions have been based on block ciphers — like cipher block chaining
(CBC) and its variants (first analyzed in [5]) — and on hash functions — typically, using HMAC [4].
Security analyses often show that MAC constructions achieve a property even stronger than un-
predictability, namely that of being a pseudorandom function (PRF) [23], i.e., the outputs under a
secret key are indistinguishable from random, except with a (small) distinguishing gap e.

CONTRIBUTIONS, IN A NUTSHELL. This paper studies the concrete PRF security of MAC construc-
tions (i.e., how small can e be?) by solving two technically connected open problems whose solutions
require techniques that are substantially different from those in previous MAC analyses: First, we
prove bounds for the concrete security of a variant of CBC-mode — truncated CBC — which remained
unanalyzed to date. Second, we show improved bounds for the security of MAC constructions based
on the sponge hash-function construction [12] which underlies the SHA-3 standard [1].

Our bounds are tight for messages whose length does not exceed (roughly) min{2", on/ 41 blocks,
where 7 is the output length of the constructions and n is the underlying block length — a constraint
satisfied in most envisioned application scenarios.® The following paragraphs will elaborate on our
contributions in detail.

CBC-MACS. The cipher block-chaining mode (or CBC, for short) is arguably the most natural
block-cipher based MAC. It has been standardized already three decades ago [16,29], and its security
was first analyzed by Bellare, Kilian, and Rogaway [5]. In its basic form, CBC is very simple:
Given a block cipher E with n-bit block size, an input M € {0,1}* is padded into n-bit blocks
M = M][1]...M[¢], and then for a key K, CBCx (M) outputs the value Yy resulting from the
following iterative computation

Yo < IV, Vi — Eg(Yia @ M[i]) (1)

where IV is an appropriate initialization value, e.g., IV = 0". Unfortunately, the basic CBC con-
struction is only secure for messages of equal length ¢, as proved in [5]. Otherwise, one can easily
mount an extension attack, i.e., obtaining CBCx (M) =Y, and CBCx (Y @IVOM’) = Y’ (for n-bit
values M, M') reveals us that CBCy (M | M) = Y’ without having to query M || M.

Three (variants of) solutions have been considered to prevent extension attacks: The first one
is to consider prefix-free encoding of messages [37]. The second, known as encrypted CBC, outputs
Eg/(CBCk(M)), under a key K’ independent from K. (This has been used in EMAC, developed
as part of the RACE project [40]). Also, combinations of these ideas have been used in other
constructions, like XCBC [13], TMAC [28], and OMAC [25]. The third solution, considered in this
paper, is to use truncation, i.e., to only output the first » < n bits of the output.

While the first two variants have been extensively analyzed [5,37,41,30,26,6,8,38,35,33], we are
not aware of any formal analysis of truncated CBC having ever been published, let alone a tight
one, even though truncation did appear in standards [16,29], mostly to increase flexibility.

HasH-FUNCTION MACS. It appears simpler to derive hash-based MACs: It is not hard to prove that
MACk (M) = H(K | M) is a secure MAC (and PRF) for an ideal hash function H : {0, 1}* — {0, 1}",

3 In particular, for 7 = 64, the restriction induced by 2" blocks still accommodates messages of length up to (and
beyond) 1.47 x 10® TB — around 10 times the predicted storage capacity of NSA’s “Utah Data Center”. For SHA-3,
we even have r > 224 and n = 1600.



i.e., which behaves as a random oracle [7]. Unfortunately, legacy hash functions like MD5, SHA-1,
and SHA-256 based on the Merkle-Damgard construction [18,32] are far from ideal. In particular,
they allow for extension attacks — given H(K | M) (and without knowing K and M), one can
compute H(K | M || M") for any M’. HMAC [4] was the first hash-function based MAC construction
preventing such extension attacks, and has been the object of several security analyses [3,27,19,22].

SPONGES. In sharp contrast with legacy hash functions, the sponge construction [12] was designed
with the goal of behaving as a random oracle (in the sense of indifferentiability [31]). The construc-
tion relies on an invertible permutation 7 on n-bit strings.? For a parameter b < n, it then pads
the message M into b-bit blocks M[1],..., M[/], and keeps a state S; | T}, where S; € {0,1}* and
T; € {0,1}"°, and outputs Sy[1..r] for some parameter® r < b after the following iteration:

So | To < 0™, Si|| Ty — m((Sica @ M[1]) [ Ti-1) -

A variant of KECCAK [11], using the sponge paradigm, was selected as the new hash function
standard SHA-3 [1] by NIST.

In view of the lack of extension attacks, it is suggested (e.g. in [12]) that sponge-based message-
authentication should simply occur by prepending the key to the message, with no need of using
the HMAC construction. This mode was analyzed in [9] and a similar bound can also be inferred
from the indifferentiability analysis of the sponge construction [12]. However, as we show below,
these bounds are far from tight and are substantially improved by our work.

OUR CONTRIBUTIONS, IN DETAIL. We present two technically related results:

Security of truncated CBC. We prove that no attacker making g queries of length at most
¢ < 2"* to TCBC using a random permutation can distinguish it from a random function, i.e.,
a function returning random outputs for each distinct message, except with distinguishing gap

-0+ 190) .

This in turn implies security when the random permutation is replaced by a secure block cipher
which is a good PRP. The first term matches the one from the best known analysis of prefix-free
CBC [6]. Moreover, we show that the second term is tight for ¢ > ¢, i.e., we exhibit a generic

distinguishing attack with advantage Q(Qgi ).
Security of sponge-based MAC. We prove that no attacker making qo queries of length at
most ¢ < 2% to the keyed Sponge construction using a random permutation m, and ¢, queries

to 7 itself, can distinguish it from a random function, except with distinguishing gap roughly

14 + qr +qr + 4
E(QC’%):O( gcldc +¢r)  dclac +4 )> ’

2n 2n—r

for sufficient key length. This model — where 7 is ideal — is the traditional model for studying
sponge-like constructions and their security against generic attacks. The previously best known
bound for sponge-based authentication in this model [9] was dominated by a term of much

larger magnitude O(¢2¢%/2"~"). We also show tightness of the second term for £ < ¢, via an

attack achieving distinguishing advantage 2 (%4 )

4 Naming consistency with the TCBC setting forces us to deviate from the usual naming in the literature on sponges,
where our parameters n, b, r are usually denoted b, r, d; respectively. Hopefully this does not cause any confusion.
5 The sponge paradigm also allows for output of 7 > b bits obtained by repeated application of 7, an option that
does not occur for any of the SHA-3 parameters, and that we will not consider for simplicity in the present paper.



We stress that the salient feature of these bounds is that the dependence on the length ¢ only affects
terms with denominator 2", or appears in linear terms £q/2"~" (where here and below, for sponges
g naturally represents g¢). This makes our bounds tight, as long as ¢ < min{2", on/ Y and ¢ =/
— which is a very common scenario. We leave the question of proving tightness of the remaining
terms (or, alternatively, of improving our bounds) as an open problem which we believe to be quite
challenging.

The truncated CBC result makes it evident that security requires either r fairly small (this is
the case when using AES with n = 128), or a restriction on the maximum number of queries ¢,
or the usage of a block cipher with larger block size n, such as Rijndacl.® A small r is acceptable
in settings where we use TCBC to obtain pseudorandom bits, or where it is used as a MAC, but
only security against few (< 2") verification queries is needed. Either way, this is by far not an
issue in the setting of sponges, where n is usually much larger than r. (For example, SHA-3-224
has r = 224, b = 1152 and n = 1600.) In fact, our results show that the parameters used in SHA-3
are more than generous for usage as a MAC, and setting e.g. » = 64 and n = 192 would already
imply comfortable levels of security against generic attacks.

Another interesting consequence of our results is that with respect to pseudorandomness (and
MAC) security, we are not constrained to any block length b < n when evaluating the sponge
construction — we could well XOR n-bit message blocks to the whole state. Indeed, our proof
considers this generalized variant that pads the message into n-bit blocks that are XORed to the
state during the absorption phase; this highlights the connection to the TCBC construction. Shorter
block lengths can then be enforced by the padding function setting some of the bits to be 0 (e.g.
the last n — b bits). Note that full, n-bit blocks were already used in the design of the sponge-based
MAC construction donkeySponge [10], and our result implicitly covers this construction as well.

OUR TECHNIQUES. The analysis of TCBC immediately appears harder than that of related con-
structions. Existing proofs are based on “Bad event analyses”: For example, for encrypted MAC
(as in EMAC), one defines the bad event that for two distinct query messages M, M’, CBC™ (M)
and CBC™(M’) collide, where CBC™ denotes (plain) CBC-MAC using a random permutation 7. It
is not hard to prove that as long as no such collision occurs, the outputs «/(CBC™(M)) are indis-
tinguishable from random for an independent permutation 7/, and the distinguishing advantage is
upper-bounded by the probability of such collisions.” This implies indistinguishability when 7 and
7" are replaced by Ex and E-, respectively, for a block cipher E and independent keys K and K'.
Similarly, for prefix-free CBC the bad event is that in the evaluation of CBC™ (M), the last internal
query to 7 is not fresh, i.e., it was already made within the same or an earlier evaluation of CBC™.

For TCBC, however, if we make a query M, resulting into output Y (consisting of the first r
bits of CBC™(M)), we cannot prevent the adversary from issuing a later query M’, with output
Y’ where M’ is a prefix of M. Previous machinery only tells us that CBC™ (M) and CBC™(M’)
are unlikely to collide, but this is insufficient to argue randomness and independence of Y and Y.
Moreover, the last query to 7 within the evaluation of CBC™(M’) cannot be fresh, as the same
query was made earlier within the evaluation of CBC™(M). One cannot swap the order of these
queries either, as the choice of M’ may well depend adaptively on Y.

To deal with this, our proof will crucially use Patarin’s H-coefficient technique [36], as recently
revisited by Chen and Steinberger [15]. In this framework, one fixes a (deterministic) adversary .4
and a compatible transcript (M1,Y1), ..., (Mg, Y,) (ie., Aindeed would ask such queries Mj, ..., M,

if fed with the corresponding answers Y7, ...,Y;) and then compares the probabilities that such a

Y

6 Also note that the domain of a block cipher can be extended using e.g. EME [24], or even better suited to preserving
tightness, recent beyond-birthday secure constructions by Shrimpton and Terashima [39].
7 This notwithstanding, proving bounds on the collision probability is far from trivial [6,38].



transcript would indeed occur with A in the real and in the ideal worlds, respectively. It is easy to
see that the latter ideal-world probability is exactly 2779, as all outputs of a random functions on
(distinct) inputs Mj, ..., M, are random.

However, the real world (where TCBC is evaluated), is far more complex. We are going to show
the probability that Pr[TCBC™(M;) = Y;] is at least (1 —¢)27"9, for some small ¢, as long as 7 is
uniformly distributed, conditioned on the following being true:

- For every message M;, the value Z; « CBC"(M;) is unique. (This is equivalent to stating that
the m-query leading to the value Z; in the evaluation of M; is unique.) Recall that the actual
output on input M; consists of the first r bits of Z;.

- For every message M;, and every message M; such that M; is a prefix of M;, the value Z; ; «
CBC™(M; | m) is unique, where m is the first n-bit block in M; after the end of M;.

It turns out that those conditions are satisfied also except with some small probability . The actual
indistinguishability bound happens to be € + § by the H-coefficient method, but determining both
values will be at the core of the proof, and far from trivial. While an upper bound on ¢ follows by
using techniques from [6,38], upper-bounding ¢ will require substantially new techniques.

Our security proof for sponges is very similar, and will essentially rely on the argument that
with good probability (roughly ¢g,q/2™), queries to m made in the evaluation of the sponge queries
and direct queries to m by the attacker are disjoint. However, while this is fairly simple to show
when the sponge construction is keyed by setting the initial value (Sp,Tp) to be an n-bit secret
key, proving the same statement when the key is input through several absorbing steps turns out
to be significantly more involved. We also give a security proof for this more complex setting using
techniques inspired by [15]. Although our analysis assumes that the (padded) keys and the actual
message occupy separate blocks, our results can be extended to the completely general case at the
cost of additional notational overhead.

COMPARISON WITH PREVIOUS RESULTS ON SPONGES. As already mentioned, the work [9] gives a
bound for PRF-security of the sponge construction in the random permutation model. Their bound
is dominated by a term which (with respect to our naming conventions) is roughly O(¢2¢?/2""),
significantly worse than the terms O(q(q + ¢)/2"") and O(£q?/2") from our analysis.

A recent paper by Chang et al. [14] also provides a security analysis of variants of sponge
constructions in the standard model. We note that (a simple twist of) their very elegant trick
reduces the security of the sponge construction with a random IV as the key (this is the construction
GSponge below) to the security of TCBC for a random permutation and the PRP security against
£q queries of a carefully crafted block cipher E™. The latter is built from the permutation 7 inside
the sponge construction as E.(X) = (0° | K) ® 7(X @ (0° | K)) for X € {0,1}" and K € {0,1}"?,
where b is the block length. This construction is essentially a low-entropy single-key version of the
Even-Mansour cipher [21,20], and one can apply the same analysis (with a lower-entropy key) in the
setting where the attacker makes g, queries to 7, this results in an additive term of O(£qq./2"?).
In contrast, our analysis only incurs into an extra term of O(¢qq./2").

MORE ON TRUNCATION. There is a folklore belief that given a secure MAC, truncating its output
may actually increase its security by hindering collision detection. This has never been verified
formally, and providing an answer is an interesting open question. Nonetheless, our £2(¢?/2"~") lower
bound does not contradict this belief, as we are applying truncation to a construction which (by
itself, without truncation) is not a secure MAC, as our attacks query for non-prefix free messages.

2 Preliminaries

Basic NOTATION. We denote [n] := {1,...,n}. Moreover, for a finite set S (e.g., S = {0,1}),
we let 8", ST and S* be the sets of sequences of elements of S of length n, of arbitrary (but



non-zero) length, and of arbitrary length, respectively (with € denoting the empty sequence). We
denote by S[i] the i-th element of S € S” for all i € [n]. Similarly, we denote by S[i... j], for every
1 < i < j < n, the sub-sequence consisting of S[i],S[i + 1],...,S[j], with the convention that
S[i...i] = S[i]. Moreover, we denote by S'||.S” the concatenation of two sequences in S$*, and also,
we let S | T be the usual prefix-of relation: S | T :< (35" € §*: S || S =T).

We also let Fcs(m,n) be the set of functions mapping m-bit strings to n-bit strings, and let

Perm(n) < Fcs(n,n) be the set of permutations on the set of n-bit strings. We use the shorthand
Fcs(#,n) to denote the set of functions from {0,1}* to {0,1}". Finally, we denote the event that an
adversary A, given access to an oracle O, outputs a value y, as A° = y.
PSEUDORANDOM FUNCTIONS AND PERMUTATIONS. We consider keyed functions F : {0,1}" x
{0,1}* — {0,1}" taking a x-bit key, arbitrary long messages M € {0,1}* as inputs, and returning
an r-bit output. In particular, we denote as Fx the map such that F(K,-) = Fx(-). We are going
to consider the security of F as a pseudorandom function (or PRF, for short) [23]. This is defined
via the following advantage measure, involving an adversary A, such that

Adv';rf(A) = ‘Pr [K 0,1} A = 1] — Pr [f & Fes(#,n) : A = 1” .

Similarly, a block cipher is a keyed function E : {0,1}* x {0,1}" — {0, 1}" such that Ex € Perm(n),
i.e., it is a permutation, for all k-bit K. The traditional security of E is that of being a pseudorandom
permutation (or PRP, for short), defined via the advantage measure

AdvEP(A) = ‘Pr [K E 0,1} AFx = 1] — Pr [7‘(‘ & Perm(n): A" = 1]’ )

Informally, we say that F is a PRF, or E is a PRP, if the corresponding advantage is “negligible”
for all “efficient” A’s.

We consider constructions C[7] : {0,1}* — {0,1}" invoking a permutation 7 € Perm(n) (we
sometimes write C™ instead of C[r]), and denote by C the resulting keyed function where the key is
a permutation 7w € Perm(n) (i.e., there are 2"! key values). Moreover, we can consider the natural
instantiation of 7 via a block cipher E, and denote by C[E] the function which, for key K and input
M, returns C[Ex|(M). Then, the following relates the prf advantages for C[E] and for C.

Proposition 1. For every adversary A with running time t and making q queries to its oracle,
where each query results in at most £ invocations of the underlying m when input to C[r|, there
erists an adversary B such that

AdvPT

2 (A) < AdVEP(B) + AdvET(A) ,

where the adversary B makes q - £ queries, and runs in time t + O(q A).

In other words, if we assume that E is a good PRP (for example, E is AES), then we can focus
on upper bounding the distinguishing advantage when C is instantiated with a randomly chosen
permutation, which is a truly information-theoretic problem.

PSEUDORANDOM FUNCTIONS IN THE IDEAL PERMUTATION MODEL. For our analysis of sponges
below, we are going to consider constructions F™ which make queries to a randomly chosen permu-
tation 7 < Perm(n) which can be evaluated by the adversary in both directions. For this case, we
use the following notation to express the PRF advantage of A:

AdvET (A4) = ’Pr [K 10,135, 7 & Perm(n) : AFR™T ! o 1] -

—Pr [f & Fes(m,n), & Perm(n) : AfmmTh 1] ‘ .

5
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Fig. 1. Truncated CBC. Representation of TCBC, ,aq4[7]. Here, M|[1],..., M[{] are n-bit blocks
resulting from applying the padding scheme pad to the input message M € {0, 1}*.

MACs AND UNPREDICTABILITY. It is appropriate to note that our actual target is that of a
message-authentication code (MAC). The requirement on a keyed function F : {0,1}" x {0,1}* —
{0,1}" to be a secure MAC is that of unpredictability under a chosen-message attack, i.e., an attacker
A, given adaptive access to Fx(-), cannot output a valid pair (M, 7) such that Fx (M) =7 and M
was not queried to Fx. We note that if Adv,'irf(A) < ¢ for any time t attacker A making ¢ + gy
queries, then no time t attacker making ¢ queries to Fx(:) can output such a valid pair (M, 1)

within ¢y attempts, except with probability at most & + gy /2".
3 Truncated CBC and its Security

This first part of the paper deals with the concrete security of truncated CBC, which we first review.

TRUNCATED CBC. We fix parameters 7 < n and a padding scheme pad : {0,1}* — ({0,1}")",
uniquely encoding arbitrary strings into non-empty sequences of n-bit blocks. We stress that we
are not requiring the padding to be prefix-free. The canonical padding scheme computes pad(M) by
appending a single 1-bit to M, and then sufficiently many 0’s to reach a length which is a multiple
of n. In particular, a message M is encoded into ¢ = [‘MTH] n-bit blocks.

We first introduce the CBC construction for padding scheme pad, based on m € Perm(n):

Construction CBC, ,,q4[7](M): /] M e{0,1}*

(1) Compute pad(M) = M[1]... M[¢] (for some ¢).
(2) Sp < IV. For all i € [{], compute S; «— m(M][i] D S;_1).
(3) Output Sy

Then, for any 7 € Perm(n), truncated CBC (or TCBC, for short) behaves as follows (also cf. Figure 1
for a pictorial representation) on input M € {0, 1}*,

TCBCpad,r[ﬂ'] (M) = (CBCpad [77] (M)) [1 ot T] ’

i.e., it outputs the first < n bits of CBCpaq[7]|(M).

SECURITY ANALYSIS. We prove the following theorem about the security of the TCBC construction
in the case where 7 is randomly sampled from Perm(n). By Proposition 1, this in particular implies
security when the permutation is instantiated with a block cipher which is a good PRP.

Theorem 1 (Security of TCBC). Let A be a prf-adversary making at most q queries, each of
length at most £ < 2™* n-bit blocks (after padding). Let TCBC = TCBC, paa[7] for a randomly
sampled permutation ™ € Perm(n). Then, for any t > 1,

2 2 4.2 t+1 pt+1
prf Lq - q 8ql 2qg 136£4% 2"
AdVTCBC ('A) < (6t + 17) 27 + on—r on—r 27 22n + ont ' (2)

The proof of Theorem 1 is found below in Section 4, where we also give high-level overviews of
the individual components of the proof. Here, we first discuss the bound and its tightness.



DiscuUssION OF THE BOUND. The above bound requires some discussion. First off, note that ¢ <
2(n=7)/2 for the above bound to be negligible. We stress in particular that under the constraints
¢ < 274 the first three terms are the crucial ones, with the remaining terms being high order
terms: Indeed, 2¢/2" is always negligible if the other terms are, and the second last term is for sure
negligible as long as ¢ < 2"/%. For the final term, note that ¢¢ < 234 for the previous terms to be
negligible, and the term becomes negligible for ¢ > 4.

We now show that this bound is essentially tight for the case where £ < 2" and ¢ > ¢. Indeed, we
show how to break TCBC with a g-query prf-adversary achieving distinguishing advantage roughly
2(q?/2"7"). The attack works regardless of the permutation 7 used to instantiate TCBC.

MATCHING ATTACK. For a parameter Q) and ¢ := [n/r], the attacker Ag ; proceeds as follows, given
access to an oracle O, which we assume without loss of generality takes inputs M € ({0,1}")".8

Adversary Ag:

1. Query random M; € {0,1}™ for all i € [Q] to O, obtaining output Y; € {0,1}".

2. For all i € [Q] and j € [t], query O(M; | Y; | 0"~ || 0"U=D), obtaining values Y; ;.

3. If there exist distinct ¢, € [Q] with Y;; = Yj; for all j € [t] then output 1, else
output 0.

Note that the attacker makes ¢ = (¢t + 1)@ queries. We are going to show that

prf 7“2(]2
Advicgc(A) = 2 <n22nr> ,

independently of how the permutation 7w used by TCBC is instantiated.

ANALYSIS. We first analyze what happens in the real world when O = TCBC™ for some permutation
m € Perm(n). Let COLL be the event that for some M; and M;, we have w(M;)[r +1...n] =
w(My)[r+1...n]. Note that since the messages are chosen uniformly at random and independently,
by the Birthday bound we have Pr[COLL] = £2(Q?/2"~"). Moreover, given COLL occurs due to
message M; and My, then by construction Y; ; = Yy ; for all j € [t]. Therefore,

Pr [ATCBC” = 1] > Pr[COLL] = 2(Q%/2"") .

However, if O = R for a truly random function R : {0,1}* — {0,1}" then, unless there is a collision
among the values M; (which occurs with probability O(Q?27")), all values Y; ;’s are independent
random 7-bit strings, and thus the probability that there are suitable ¢ and ¢’ is at most (again, by
the Birthday bound) Q%27 < Q%27 . Altogether, this gives us Pr [AR = 1] < 2Q%*27", for which
the advantage bound follows.

FORGING ATTACK. Note that it is very easy to turn the above attack into a forging attack. Indeed,
given access to TCBC™, once we have found appropriate collisions Y; ; = Yy ; for all j € [t], it is
very easy to create a forgery, since M; || Y; [ 0"~ 0™ and My | Yy | 0"~ | 0™ are also colliding —
we can forge a tag of the latter by learning the tag of the former.

4 Proof of Theorem 1

We will start with the high level overview of the proof of Theorem 1, which relies on Patarin’s H-
coefficient technique [36], for which we give a self-contained introduction. In particular, Section 4.1

8 Should we only be able to query TCBC via padded inputs, it is not hard to relabel messages in the attack to obtain
an equivalent attack.
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Fig. 2. (Reduced) message tree. Example of message tree for permutation 7 € Perm(n) and
four messages M1 = 0, My =00, M3 =011, and My = 1, where b = b" for b € {0,1}. The
gray vertices correspond to these four messages. Labels are represented in proximity of the vertices
and the edges they are assigned to (as a function of 7) and we let A(¢) = 0 = IV. The bozed labels
are omitted in the reduced message tree.

first introduces the notational framework allowing us to precisely describe interactions between A
and the given system — i.e., either TCBC|~] for a randomly chosen permutation & Perm(n) or a

truly random function f & Fcs(#,n). Then, Section 4.2 will review the H-coefficient method, and
how it will be applied to the concrete case of our proof. Finally, Section 4.3 will state the main
concrete bounds we prove and how they are combined into our main theorem.

SIMPLIFYING ASSUMPTION. Throughout the proof, we fix an adversary .A. We assume that (1) A is
deterministic, (2) it makes ezactly q queries, and (3) it never repeats the same query twice. All these
assumptions are without loss of generality for an information-theoretic indistinguishability analysis,
since an arbitrary (possibly randomized) adversary making at most ¢ queries can be transformed
into one satisfying these constraints and achieving advantage which is at least as large.

4.1 Message trees and transcripts

We start by introducing some graph-theoretic concepts — the message tree, and its reduced version
— which capture the inherent combinatorial structure of any ¢ messages Mji,..., M, queried by
the attacker, as well as the internal values computed while these messages are processed by TCBC.
Then, we will put these concepts to work to define transcripts describing the adversary’s interaction
with either of TCBC or a random function f.

We stress that our transcripts will release more information than what is actually seen by the
adversary A in its interaction: This information will be useful for us to make the proof simpler,
and it will not help substantially in distinguishing TCBC from random.

THE MESSAGE TREE. Let ¢ > 1, m € Perm(n), and let My,..., M, be arbitrary strings (which we
refer to as the messages), where M; is padded into n-bit blocks by the pad function. In particular, we
will identify M; with its padded version, i.e., assume that M; € ({0,1}")", without loss of generality.
These ¢ messages induce a labeled tree T™(My,...,M,) = (V,E,\,7y) — called the message tree,
and often simply denoted as T or T™, whenever parameters are clear from the context — which we
define as follows:



- The set V' of vertices of the tree is V := {M’ € ({0,1}")* : Ji e [¢] : M | M;}, where | is the
prefix-of partial ordering of strings. In particular, note that the empty string ¢ is a vertex.

- The set E <V x V of (directed) edges is E := {(M,M’) : 3Im € {0,1}" : M' = M | m}.

- We label vertices and edges recursively. Concretely, we define A : V' — {0,1}" and v : E —
{0,1}™. We start with A\(¢) = IV. Then, for every vertex M |m € V where M € V and m €
{0,1}", we set

AM |m) =x(NM)Dm) .
Moreover, we let v((M, M |m)) = A(M) @ m.

An example of a message tree is given in Figure 2. Note that the vertex labels A(M) are exactly
the values of CBC[7](M) while the edge labels correspond to the inputs on which 7 is invoked.
We also remark that the labeling of the edges is redundant given the vertex labels as from the
vertex-labels and V, it is possible to uniquely reconstruct the edge labels. However, defining the
edge labels explicitly will be convenient for the proof.

For convenience, we define for every vertex M € V' (where possibly M ¢ {M,..., M,}) the set
M of n-bit blocks m such that (M, M |m) € E and we let Dy = |[Mjy| be the out-degree of
vertex M. It is convenient to denote D; = Dy, and M; = My, for all i € [¢]. Note that

q
Y.Di<q. (3)
i=1

This is because every edge (M;, M; | m) can be uniquely mapped to the shortest messages M; such
that M; || m is a prefix of M;.

THE REDUCED MESSAGE TREE. We define an abridged version of the above tree, called the reduced
message tree, which will be used in the definition of transcripts below, and which we denote by
T" (M, ..., M,). The intuition is that in an interaction with TCBC[x], even given the reduced
message tree, the outputs obtained by the adversary will look random and independent of the tree
labels. This is far from simple to prove, and will be one of our main steps below.

To compute the reduced message tree, we first compute the whole message tree T™ (M, ..., M,) =
(V, E, \,y) with resulting labels A and 7, and we are going to check whether the following event has
occurred (this will correspond to a degenerate labeling case that we will show to be quite unlikely):

- There exists i € [¢] and M € V\{M;} such that A\(M;) = A\(M); or
- For some i € [¢q] and m € M;, there exists M € V\{M; | m} such that A\(M; ||m) = A\(M).

If so, then we let T = (V, E, L, 1), i.e., we set the tree to have the empty labeling function. Note
that this corresponds to the case where a label of an actual message in {M, ..., M}, or of one of
its sucessor vertices, collide with some other labels.

Otherwise, if the above event does not occur, we are going to selectively delete some labels from
(setting them to 1) to obtain a new vertex- and edge-labeled tree, which is the value taken by
Specifically,

- For all i € [q], we let A(M;) = L.
- For all i € [¢] and all m € M;, we let v(M;, M; | m) = L.

T
T.

In other words, we remove the information necessary to recover the values A\(M;) for all i € [¢].”

In general, we are allowing labels of vertices to possibly collide with each other. The first check
however, potentially setting (A,y) = (L, L), ensures that no “bad collisions” have occurred, i.e., no
labels of actual messages (or their children vertices) collide with labels of other vertices, and this
will be instrumental below.

9 Note, however, that some information about these values can be deduced from the rest of the labels using the fact
that 7 is a permutation. As will implicitly see below, this information is irrelevant.



INTERACTIONS AND TRANSCRIPTS. We call a sequence of query/answer pairs (M, Y1),. .., (Mg, Y;)
valid if the adversary A asks indeed queries M, ..., M, when fed with answers Yi,...,Y, to its
queries. (Recall that the first query M; only depends on A, the second query only depends on .4
and the first answer Y7, etc..) In particular, a valid transcript has the form

7= ((M,Y1),...,(My,Y,), T" (My,...,M,)),

where (My, Y1), ..., (Mg, Y,)is A-valid, and 7 : {0,1}™ — {0, 1}" is a permutation. We differentiate
between the ways in which such valid transcripts are generated in the real and in the ideal worlds,
respectively, by defining corresponding distributions T,es and Tigeal Over the set of valid transcripts:

Real world. The transcript T,e, for the adversary A is obtained by sampling 7 & Perm(n), and
letting
Treal = ((M17Y1)7 ceey (Mq7 Y;]>7T7T(M17 v 7Ml1)) )

where we execute A, which asks queries My, ..., M, answered with Y; = TCBC[r]|(}M;) for
all i € [¢], and we let T" (Mq, ... ,M,) be the corresponding reduced message tree. Note that
because A is fixed, Tyea only depends on m, and thus we occasionally write T (7) for the
corresponding map.

Ideal world. The transcript Tiges for the adversary A is obtained similarly to the above, but here
we sample both a random permutation m and ¢ independent random values Y7,...,Y, € {0,1}"

Tideal = TideaI(Yb cee 7Yrqv7r) = ((Mla le)v C) (MQ7 Y;])vfﬂ—(Mla C) Mq)) )

where we execute A, which asks queries My, ..., M, answered with Y; for all i € [¢], and we let
T=T"(M,... , M,). We stress that here we are augmenting the ideal world with an additional
random permutation 7 which does not actually exists in the original prf distinguishing game
in order to make real- and ideal-world transcripts alike. Like the actual permutation m, the
resulting (reduced) message tree is completely independent of the randomness Yi,...,Y, used
to reply the adversary’s queries.

Note that the range of T,y is included in the range of Tigea by definition, and that the range of
Tideal 1s easily seen to contain all valid transcripts.

4.2 The “H-Coefficient Method”: Good and bad transcripts

We upper-bound the advantage A in distinguishing TCBC[x] for 7 < Perm(n) from a random
function in terms of the statistical distance of the transcripts, i.e.,

r 1
Aval'éBC('A) < SD(TreahTideal) = 52 ‘PI’ [Treal = T] — Pr [Tideal = T]’ s (4)

where the sum is over all valid transcripts. This is because a distinguisher for T,ey and Tigeal,
whose optimal advantage is exactly SD(T eal, Tideal), can always output the same decision bit as A,
ignoring any extra information provided by the transcript.

To this end, we are going to use Patarin’s H-coefficient method [36]. This just means that we
need to partition the set of possible transcripts into good transcripts GT and bad transcripts BT to
enable effective usage of the following lemma, whose proof is given for completeness in Appendix A.

Lemma 1 (The H-Coefficient Method [36]). Let §,c € [0,1] be such that:
(a) Pr [Tideal € BT] <.
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(b) For all T € GT,
Pr[Treal = 7]

—2>=1—c€.
Pr{Tideal = 7]

Then,
AdVPrr{:B(:(A) < SD(TrealyTideal) <e+d.

More verbally, we want a set of good transcripts GT such that with very high probability (i.e.,
1 — 0) a generated transcript in the ideal world is going to be in this set, and moreover, for each
such good transcript, the probabilities that it occurs in the real and in the ideal worlds are roughly
the same, i.e., at most a multiplicative factor 1 — ¢ apart.

TRANSCRIPT-DEPENDENT QUANTITIES. Concretely, a transcript 7 = ((My,Y1),..., (M, Y,),T =
(V,E,~,\)) will be defined as “good” if the associated reduced message tree is not “too degenerate”.
This requires introducing two relevant quantities. To this end, we first note that T defines a partial
permutation 7: Concretely, we define 7 such that 7(y(e)) = A(v) for every edge e with end-node v
such that y(e), A(v) # L, and 7(x) = L for all other inputs.

We will make use of the following quantities, which connect the outputs Yi,...,Y, with 7.

Definition 1. Let 7 = ((M1,Y1),...,(My,Y,), T = (V,E,~,\)) be a valid transcript with associ-
ated partial permutation . Then, we define:

- Ni(l)(T) is the number of x € {0,1}" with 7(x) # L and 7(z)[1...7] = Y;.
- NZ@) (1) is defined as

NP(r)i= {ze{0,1}" : 2[1...7] =YinJdee E,me M; i y(e) = z@ml}| .

)

Moreover, for a € {1,2}, let N(@) = 39 N@.

i=1""¢

Let us give some intuition on the above quantities. Note that 7 is defined on at most ¢ - £ values,
and the values 7(x), when first defined, is obtained by sampling a (nearly) uniform random n-bit

string. Thus the expectation of Ni(l) is roughly ¢¢/2", and in turn, NV should be roughly ¢2¢/2".

Also, note that Ni(z) is the number of n-bit strings z which are consistent with Y; in their first
r bits which have additionally the property that for some message block m € M;, z @ m is the
(non-1) label of an edge in the reduced message tree. Here, the intuition is that every edge label
~(e) in the partial tree is uniform (this won’t be quite true, but let us assume it is), and therefore
the expectation of Ni@) should be (roughly) D;q¢/2", and thus, the expectation of N 2) should also
be roughly q2€/27’, using >}, D; < q.
GOOD TRANSCRIPTS. We are now ready to state the definition of a good transcript. Informally,
what we require is that the actual values of N() and N® for the transcript 7 are not too far off
their (heuristic) expected values we mentioned above. Moreover, we also want that the reduced
message tree is not degenerate, i.e., even though we can’t see them, we want the guarantee that the
labels of the actual messages (and their successors) are unique — the failure to satisfy this would
be signalled by (\,v) = (L, 1) by the definition of the reduced message tree.

Definition 2 (Good Transcripts). Let 7 = (M, Y1),..., (M, Y,), T (My,...,M,) = (V,E,\,7))
be a valid transcript. We say that the transcript is good (and thus T € GT ) if the following properties
are true (fort =1 as in the theorem statement):

(1) (Ay) # (L D).
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(2) NU < 3¢ (qtl/2" + n).

(3) N@ < (2n +1)g? + (3t + 1)g%4/2" + 8¢¢* )27+,

We denote as GT the set of all good transcripts, and BT the set of all bad transcripts, i.e., transcripts
which can possibly occur (i.e., they are in the range of Tigea) and are not good. More specifically,
we denote by BT; the set of all bad transcripts that do not satisfy the i-th property in the definition
of a good transcript above, hence we have BT = U?:l BT;.

4.3 High-level lemmas and putting pieces together

BOUNDING THE RATIO. In Section 4.4 below, we are going to prove the following lemma.

Lemma 2. For all good transcripts T € GT,

Pr[Trea = 7] 51— N® + N©) N 2¢>
Pr [Tideal = 7'] - n=r n=r '

()

BOUNDING PROBABILITY OF BAD TRANSCRIPTS. We now upper-bound the probabilities that a
transcript sampled according to Tigea is bad via the following lemmas. The first is proved in
Appendix C, and the last two are proved in Appendix D.

Lemma 3 (Bad-Transcript Analysis for BT1). Pr[Tigeal € BT1] < 16£¢%/2" + 12804¢%/2?".
Lemma 4 (Bad-Transcript Analysis for BTy). For allt > 1,

Y t+1
Pr [N(l)(Tideal) = 3q (qtl/2" + n)] < 2% (q2")t '

Lemma 5 (Bad-Transcript Analysis for BT3). For allt > 1,

8a/l N/ t+1
Pr [N(2> (Tigeal) = (20 + 1) + (3t + 1)g24/2" + 8q2£4/2”+T] < 2% n 2nq4 Ll 2n)t

The proof of Lemma 3 above uses and extends techniques inherited from the work of [6] and in
particular their analysis of prefix-free CBC. The proof requires some extra work, since we are
considering non-prefix free messages.

One would expect that the proofs of Lemma 4 and 5 follow by application of a simple Chernoftf-
like argument. Unfortunately, more work is required: First off, the sampled values are not uniform,
but only close to uniform. But more importantly, Lemma 5 requires to prove a concentration bound
on a series of random variables (the edge labels) which are defined adaptively by an iterative process
when computing the reduced message tree. Our technique will essentially show that most of the
edge labels will exhibit a high degree of independence, and only a small number of them will be
defined by “recycled values” when generating the tree.

COMBINING PIECES. Therefore, we can apply Lemma 1 using ¢ and ¢ extracted from the above
lemmas. In particular,

N(l) N(2) 2 2 t 1)/ 2 2 254
o + +q<(6+)q+7nq+8q

on—r on—r on on—r 22n ’
and 2 4 2 t+1
5 — 2qg  8qf N 164q N 1280%q N 2(q'€) +
- 27 on—r on 922n ont

In particular, we simplify

> Tn-q> 8qf 2q¢ 1360%¢>  2¢'TletH!
27 + on—r on—r 27 22n + ont ’

e+ <(6t+17)
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4.4 Lower-bounding the probability ratio (Proof of Lemma 2)

Recall that we need to lower bound Pr [Tea) = 7] /Pr[Tigeal = 7] for some 7 = ((M1,Y7),...,(M,,Y,),T) €
GT, which we fix from now on. To start with, we define the set {2[7] of 7’s consistent with 7 in the
real world, i.e.,

Q7] = {mePerm(n) : Trea(mw) =71} .

Moreover, if 7 = ((M1,Y1),...,(Mqg,Yy),T), let §2[r] be the set of permutations 7 which are
consistent with the labels of the reduced message tree T (i.e., reducing T7 (M, ..., M) yields T),
however TCBC™(M;) does not need to equal Y; for all i. More formally,

Q7] :={rePerm(n) : T (M,...,M,) =T} .

Now, we define

ot
PO g

— Pr [W & Perm(n) : m € 2[7] ’7r € QI[T]] = Pr [7r & Qr]:me Q[T]] )

and this will be a convenient quantity to work with. In particular, p(7) is the probability that when
sampling a random permutation m which is consistent with the constraints on the reduced message
tree, we also have TCBC™(M;) = Y; for all i € [q].!Y The following claim will reduce computing the
probability ratio to computing p(7) for 7 € GT.

Claim. For all good transcripts 7 € GT,

Pr[Trea = 7]

PriTuea =7~ P17 )

Proof (Of Claim). We first note that Pr[Tigeal = 7] can be rewritten as the probability that a

randomly sampled permutation 7 < Perm (n) satisfies m € £2'[7], and independently Y71,...,Y, are
the selected outputs, i.e.,

Pr[Tideal = 7] = 2774 Pr [ < Perm(n) : me 2[r]] ,
whereas
Pr{Tiea = 7] = Pr [77 & Perm(n) : Treal[7] = T] = Pr [7r & Perm(n) i e .Q/[T]] (1),
and the claim follows by dividing both probabilities. ]

We are going to lower bound p(7) = (1 —¢)27"7 for ¢ as in the statement of the lemma, which
clearly implies the lemma by the above claim. It is easy to see that the ordering of the message-
output pairs (M1,Y7), ..., (My,Y,) is irrelevant, and we therefore assume without loss of generality
that the ordering is prefix-preserving, i.e., if M; | Mj, then ¢ < j.

We consider an iterative process where we start with 7 defined by T as above, and then set the
values of T(y(e;)) = AM(M;) for i = 1,...,q one after the other in this order. Moreover, when setting
AM;) =7 (y(e;)) <« Z;, for all m € M;, we do the following:

- We set v(M;, M; | m) — Z; ®m

10 Note that sampling such a 7 is not the same as sampling a random 7 which is consistent with 7. The latter may
allow for some permutations which are not possibly generating a message tree which can be reduced to T

13



- If we know the value A\(M; | m), we set T(Z; @ m) < A(M; | m).!!

Note that depending on the choice of the Z;’s, the resulting ™ may or may not be a partial per-
mutation, or we may overwrite values, etc. We will of course be only interested in sequences of
Z;’s which maintain the permutation property. In particular, we consider the random experiment
where we sample 7 < 2[r] (which is in particular consistent with the initial 7), and then set
Zi < 7(1(e;)). Then,

B(r) =Pr|n & 2lr] vield: Zill.orl=Yi| = Y Pr|n & @r]ivield: Zi— 2

Let £ = L(T, (M1,Y1),...,(M,,Y,))) be the set of possible sequences (21, . .., z,) of distinct g values
such that z[1...r] =Y for all i € [¢] and when assigning A\(M;) < z; for all i € [¢] in the above
process, at the end of the process the labels A(M;) = z; are unique (i.e., no other vertex has the
same label) and moreover, for all i € [¢] and all m € M;, we also have that A\(M; ||m) is a unique
label. (Note that since the transcript is good, and (A,~) # (L, L), these are exactly the sequences
which are possible, even though an exact match is really not necessary for a lower bound.) Below
we are going to show that |£] is sufficiently large, and hence not empty. For now, we observe the
following claim, which will allow us to lower bound p(7) via |L£|.

Claim. If £ # &, for all (z1,...,2) € L,

Pr[w«iﬁl[T]:Vie[q]:Zizzi]>ﬁ.

Proof (Of Claim). Fix (z1,...,24) € L, and define x; := 7(e;) for all i € [¢] as the label y(e;) we

encounter if we were to answer with the sequence (21, ..., 2,) in the iterative process. Then

z'] _ {me Q1] : Vie|q]: m(x;) = 2}
Z |£2[7]] '

Pr [7r<$4_(2’[7'] Vielq]: Z; =

We let E' € E be the set of edges (M, M | m) such that at the beginning of the process, A(M) or
A(M | m) (or possibly both) are not defined, and let D := E\E'. Clearly we have {ey,...,e,} € E’
and |D| + |E'| = |E]|.

Note that because 7 € GT and the definition of £, at the end of the process 7(z) is defined
for ezactly |D| + |E'| = |E| values. This is because 7 is good, and in particular this means that
all values 7(x) we set are for distinct x (this follows from the fact that (\,7v) # L), and there is
one such value being set for every edge in E’ (during the process) and for every edge in D (from
the beginning). Hence there are exactly (2" — |D| — |E’|)! ways to complete 7 into a permutation
7 € 2'[r]. Thus, this is exactly the number of permutations in 2'[7] with 7 (z;) = 2; for all i € [q].

On the other hand, the claim follows from the fact, which we show next, that the number of
permutations in 2'[7] satisfies

|2'[r]] < 22" - |D| - |E'|)!.

This can be seen by encoding m € (2'[7] as follows (given 7, and in particular the initial value of
7): We start with an empty list 4 of n-bit strings. We run the above process using 7, and every
time we set a value A\(M;) = 7(y(e;)) = zi, we append z; to H. Note that since 7 is good (and thus

"1 Note that if for some m € M;, we have A(M; | m) = L, then (M;,m) = ¢; for j > i, and will be set later in the
process.
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the initial (A, ) are not (L, 1)), the y(e;)’s are all distinct. Also, all derived values we set (again
because 7 is good) will be on different input. Therefore, the ¢ values 21, ..., z4 define the behavior of
7 on |E’| values, while it was defined on |D| values already at the beginning of the process. Hence,
the encoding is completed by adding to H all 7(x) (wrt the lexicographic ordering of the inputs x)
for all  such that no edge in the graph is labeled with x at the end of the iterative process. It is
not hard to see that this encoding is unique, and that there are at most 2"4(2" — |D| — |E’|)! such
sequences H. ]

To conclude, it is easy to verify that

p(r) = Z Pr [77 E Q) :Vielq): Zi = zi] > — . (7)
(21,2 )EL

THE LOWER BOUND ON |L]|. Here, to lower bound |L|, we go through the above process, and
assuming z1,..., 2;—1 have been fixed, we see how many ways we still have to fix z; satisfying the
invariant that it is still possible to reach sequence (z1,..., z4) € L. In particular, at every step, we
are going to exclude values z; with the following properties:

(1) z[l...71] #Y;

(2) There ex1sts 1 < j <isuch that z; = 2.

(3) There exists M ¢ {My,..., My} with A\(M) = z;.

(4) There exists 1 < j <14, m’' € M;, m e M; such that m@® z; = m’' @ z;.

(5) There exists a n-bit value m € M; and an edge e € E with tail node not in {Mj, ..., M,} such
that y(e) = z; ®m.

It is clear that we reach a sequence in L if we satisfy this invariant. In particular, note that (4)
and (5) are necessary for us to ensure that the edge labels leading to successor vertices of M; are
fresh, which is necessary to ensure that the sequence is in L.

Now, for every i, note that due to condition (1) there are initially 2"~" possible values for z;,
i.e., all strings with the first r bits equal to Y;. However, we need to remove all strings satisfying
any of (2)-(5) above. These can be counted as follows:

(2) There are at most ¢ < g such values.
(3) In order for M to be such that A(M) = z;, we need to have A(M)[1...r] =Y, but we know

that there are at most Ni(l) such vertices by definition.

(4) Note that for every j € [i — 1], there are exactly D; possible values m’ € M, which can be
combined with a value m € M; (there are D; of those) to get a possible “forbidden” value
zi = zj @m@m/, and thus we need to exclude D - Z;_:11 Dj; < q- D; possible values.

(5) This is exactly the definition of NZ-(Q).
Therefore, we can now lower bound || as

q

/= Tfe =N =N —q—q-D))
i=1
q ) 2 . D:
_ gu(n—r) H( Ny T+ N +aq+g Dz)
a1 on—r
N 4 NG g
> 2‘1'(”_7") 1= _
< on—r on—r ’ (8)
where we used the fact that [[,(1 — z;) >1— >}, ;, and that >,/ ;¢ - D; <
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Fig. 3. Sponge construction. Representation of Sponger,padb [7] used with a padding scheme pad,
that enforces b-bit blocks.

5 Security Analysis of Sponge-Based M ACs

SPONGE-BASED MAC. We first briefly review the usage of the sponge hash-function [12] as a MAC
via key-prepending. As in the TCBC case above, we fix parameters n,r and a padding scheme
pad : {0,1}* — ({0,1}™)", uniquely encoding arbitrary strings into non-empty sequences of n-bit
blocks, not necessarily in a prefix-free fashion. Then, the construction Sponge = Sponge, ,.q4[7] :
{0,1}" x {0,1}* — {0,1}" operates as follows on input M € {0,1}* and key K € {0,1}", for a
permutation 7 € Perm(n):

Construction Sponge, ,4[7]x (M):

(1) Compute pad(K | M) = K[1]... K[w] M[1]...M[¢] (for some ¢ and w).

(2) Then, starting with V := 0", compute V; = w(K|[i] @ V;—1) for all i € [w] and let
K =V,

(3) Next, starting with Sp := K’, compute S; = w(M[i] @ S;—1) for all i € [¢].

(4) Finally, output Sy[1...7], i.e., the first = bits of Sj.

Note that we are silently assuming (for simplicity) that the (padded) keys and the actual message
end up in different blocks, and hence our naming conventions. Our results can be extended to the
more general case, but we avoid the notational overhead in this version of the paper.

Different from the actual hash-function instantiations, the presented Sponge construction is
more general in that it allows for processing n-bit input blocks in the absorption phase. We can
retrieve the originals sponge construction and SHA-3 instantiations as special case — shorter blocks
can be enforced by the padding function pad, which we only require to be injective, but an added
benefit of our analysis is that it shows that such shorter blocks are not necessary. The construction
Sponge,. q[ 7] using a customary padding pad, that enforces b-bit blocks is depicted in Figure 3.

Finally, we also consider a variant of the construction — called GSponge — that takes an n-bit
key K and differs from Sponge in step (2) where it directly sets K’ := K instead of absorbing
the key. The construction is similar to some other MAC designs such as donkeySponge [10] and
Pelican [17]. This natural variant will be simpler to analyze — and will be indeed analyzed first. The
bound for the Sponge construction will be derived from the one for GSponge via a high-level lemma
of independent interest proving the soundness of the key extraction method.

SECURITY ANALYSIS OF GSponge. We prove the following theorem about the GSponge construction.

Theorem 2 (Security of GSponge). Let A be a PRF-adversary in the ideal permutation model,
making at most qp queries to w and at most qo queries of length at most £ < 27/4 blocks to the
construction (either GSponge, ;4[] for a random n-bit key K or a random function). Then, for
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allt =1,

2 2
orf (6t + 17)lqz + Tlgrqc + 2gc  6ngg + 8lqc + qrqc
AdVGSponger,pad77r( )< on + on—r +

13601¢%  2(¢go)ttt
+ 22n 2nt (9)

We note that is in the case of TCBC, for sufficiently large ¢ and for £ < 2/, the first two terms
are the leading terms. We will prove below tightness of the bound when ¢ < 2" and ¢, > /.

The proof is an adaptation of the proof strategy of Theorem 1 to the setting of sponges. Hence,
we start by observing that the current setting with GSponge is very similar to the setting considered
in Theorem 1 involving the TCBC construction, with two important differences:

- The processing of a message in GSponge starts from the key K, as opposed to using a fixed
initialization vector IV in TCBC.

- We now allow the adversary to also query the random permutation 7 that was secret before.
We will indeed show that as we start with a random IV, the probability that internal queries
and direct queries to 7 will not intersect, except with probability O(¢ - goq./2™)

In Appendix F we describe the modifications that have to be applied to the proof of Theorem 1 in
order to account for these differences.

TIGHTNESS. One can trivially adapt the attack given in Section 3 to the setting of sponges, obtaining
a prf-adversary that asks g¢ construction queries and no m-queries, and achieves advantage at least
Q(qg/Q"*T). Here we present a different generic attack on sponges that needs q¢o construction
queries and ¢, queries to 7, and achieves advantage roughly 2(qcqr/2"7").

For simplicity, we again assume that the attacker can query the construction with unpadded
messages. For parameters Q1,Q2 and ¢ := [n/r], the attacker Ag, g, proceeds as follows, given
access to the construction oracle O (which is either GSponge[7] under a random key K or a random
function) and the permutation oracle 7(-).

Adversary Ag, Q.

1. For all i € [@Q1] query distinct random one-block messages M; € {0,1}" to O, obtaining
output Y; € {0,1}".

2. For all i € [Q1] and j € [t] query M; | Y; | 0"~ [ 0"~D to O, obtaining output V; ; €
{0,1}".

3. For all i € [Q2], choose distinct random B; o € 0" || {0,1}"" and for each j € [t] query
7(+) to compute B; ; = 7(B; j—1).

4. If there exist i € [Q1], i’ € [Q2] with Y; j = By ;[1..r] for all j € [t] then output 1, else
output 0.

The attacker Ag, g,+ makes gc = (t + 1)Q1 construction queries and g, = tQ)2 queries to 7. As we
sketch in Appendix E, it achieves the advantage {2 (7"2ch7T /n22”*T).

Just as in the case of TCBC in Section 3, the attack above can trivially be turned into a forging
attack. The same attack also works for the construction Sponge.

FroM GSponge TO Sponge: REPLACING THE UNIFORM KEY. Our final result proves the security of
the Sponge construction when using the customary padding pad;, where the (k = w-b)-bit key K is
first split into w b-bit blocks as K[1]--- K[w], each of them is padded with n—b trailing zeroes and
absorbed by the construction, as depicted in Figure 3. The proof of the following theorem is given
in Appendix G, and relies on a detailed analysis of the key absorption mechanism which shows that
the behaviors of GSponge and Sponge are indistinguishable given enough key material.
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Theorem 3 (Security of Sponge). Let A be a PRF-adversary in the ideal permutation model,
making at most g, queries to ™ and at most qc queries of length at most ¢ < 2™* blocks to the
construction (either Sponge,. paq, [7] with the padding pad, and a random (w-b)-bit key, or a random

function). Then, for allt =1, and q¢ = ¢ + Lgc < 2"~°, we have

prf
AdVSponge

2
wq . q q q
(A)gAt(QCaqﬂ)+27,L+mln{m’ 2bw+2n—b} ’

r,padb77T

where A; denotes the expression on the right-hand side of inequality (9). If w = 1, one can replace

the whole min-term by 5.

We remark that our proof is highly non-trivial for the case where ¢ > 2"~° where q = ¢ +qc - £ is
the overall number of queries to 7 in the experiment, and requires an adaptation of combinatorial
techniques inspired by [15] to a slightly more general setting. Roughly, the extra term is obtained
by upper bounding the probability that all queries necessary for absorbing the actual sampled key
are contained among the ¢ permutation queries made by the attacker or by the sponge construction
(after key absorption).

We note that the additional terms are smaller than A(q., ¢-) when the key length is bw ~ 2n
and ¢ > 2("=9/2 or bw ~ n and ¢ < 2770/, (Note that the latter case is in the same query regime
as the indifferentiability proof [12].) Also, in SHA-3, where e.g. we could have b = 1152, the case
w = 1 is largely sufficient, as security would hold as long as ¢ < 2°.
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A The H-Coefficient Method

In this section we prove the basic lemma underlying Patarin’s H-Coefficient method [36].

Lemma 1 (restated). Let §,¢ € [0,1] be such that:

(a) Pr [Tideal S BT] < 9.
(b) For all T € GT,

Pr [Treal = T]
——>1—c.
Pr(Tideal = 7] ©

Then,
AdvPE L (A) < SD(Treat, Tideal) <€+ 0.

Proof. Let T be the set of valid transcripts such that Pr[Tigeal = 7] = Pr [T eal = 7]. Then,

SD(TreaIa Tideal) = Z (PI’ [Tideal = T] —Pr [Treal = T])
T€T

by the fundamental properties of the statistical distance. Then, note that 7 can be partitioned into
two blocks 7 n BT and 7 n GT. On the one hand, we can use (a) to upper bound

D (Pr{Tidea = 7] = Pr[Trear = 7)) < > Pr{Tigear = 7] < >, Pr[Tigeal = 7] < 6.
TeT NBT TeTNBT TeBT

On the other hand, (b) implies

Z (PI’ [Tideal = T] — Pr [Treal = 7']) <e- Z Pr [Tideal _ 7_] <e.
T€T NGT reTAGT
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Therefore, SD(Teal, Tideal) < € + 0. Moreover, every adversary A can be turned into a distinguisher
A’ for Tyea and Tigear, which looks at the first part of the transcript (i.e., the one containing the ¢
message-output pairs (My,Y1),. .., (My,Y;)), and outputs the corresponding decision bit A would
output (this bit is uniquely defined by the fact that A is deterministic). Then, we clearly have

AdVPrr(f:Bc<v4) = Pr [A/(Treal) = 1] —Pr [A/(Tideal) = 1] < SD(Treal, Tideal) <€ +0,
as the statistical distance is the quantity corresponding to the advantage of the best A’. ]

B Chernoff bounds

Below, we are going to use the following standard variant of the Chernoff bound. See e.g. [34] for
a proof.

Theorem 4 (Chernoff bound). Let X1, ..., X be independent random variables with E[ X;] = p;
and X; € [0,1]. Let X = Zszl X; and p = ZiT:lpi = E[X]. Then, for all § = 0,

2

CPr[X > (14 0] < e 2
2

=
CPr[X < (1—0)u] < e 2t

C Bad-Transcript Analysis: The Collision Events

To bound the probability of the ideal transcript being bad, in this section we start by bounding
Pr[Tideal € BT1]. We take a combinatorial approach inspired by [6,22] and represent the computation
of TCBC on various inputs by directed graphs; the following useful notation closely follows [6].

GRAPH-BASED REPRESENTATION OF TCBC. Let M = (M, M) be two distinct messages that can
be parsed into n-bit blocks as M; = M} | - | Mf" for some 1,05 < £, and let A := £; + 5. For
convenience, we use the notation M(® as a reference to the block Mf if ¢ < £1, otherwise it denotes
the block Méle. For any fixed permutation 7 € Perm(n) and a pair of such messages M we define
the structure graph'?> GM, which is a directed graph (V, E) where V < {0,..., A} together with
a edge-labeling function L : E — {M® ... M@}, The structure graph GM = G = (V, E, L) is
defined as follows: We set Cyp = 0™ and for i = 1,..., A we define

O — W(Ci_l@Mi) fori# 61 +1
L w (M) fori=1/¢;+1

From these values C; we define the mapping [.]¢ : {0,..., 4} — {0,..., 4} as [i]g = min{j : C; =
C;}. Tt is convenient to also define a mapping [.]; as [i]p = 0 if ¢ = ¢; and [i];; = [i]¢ otherwise.
Now the structure graph GM = G = (V, E, L) is given by

V={lile:1<i<d}, E={(i-lalile):1<i<A}, L(([i—1glile) = M.

Let G(M) = {GM: 7 e Perm(n)} denote the set of all structure graphs associated to the message
pair M. Note that sampling the permutation 7 uniformly at random also induces a probability
distribution on the set G(M). For G = (V,E,L) € G(M) we denote with G; = (V;, E;, L;) the
subgraph of G given by the 7 first edges, i.e., we let V; = {v e V : v < i}, E; = {(u,v) € E :
u,v € V;} and L; is L with the domain restricted to E;. We will refer to G € G(M) as consisting of
two paths, the “M;j-path” which passes through the vertices 0, [1]¢,. .., [(1]¢ and the “Ma-path”
0,[41+1]a, ..., [¢1+l2]c. We denote by VJZ(G) the i-th vertex on the M;-path, hence for 1 < i < 4,
we have V{(G) = [i]g, while for 1 < i < fo we get VJ(G) = [i + l1]c; and VX(G) = VR (G) = 0.

2 Note that the structure graph differs from the message tree considered before.
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COLLISIONS. Suppose a structure graph G = GM € G(M) is exposed edge by edge (i.e. in step i
the value [i]g is shown to us). We say that G has a collision is step i if the edge exposed in step 4
points to a vertex which is already in the graph. With Col(G) we denote all collisions, i.e. all pairs
(7,7) where in step ¢ there was a collision which hit the vertex computed in step j < i:

Col(G) = {(i, [i]c) : [i]e # i} -

INDUCED COLLISIONS AND ACCIDENTS. We distinguish two types of collisions, induced collisions
and accidents. Informally, an induced collision in step i is a collision which is implied by the collisions
in the first ¢ — 1 steps, whereas an accident is a “surprising” collision.

Assume that after step i —1 we see that for some a < i the a-th edge ([a—1], [a]c) has the same
label (M(®) = M®) and the same starting point (([a— 1] = [i — 1]%;) as the next (i-th) edge to be
exposed. Then we know that the endpoint of the i-th edge must also be [a]g as [a — 1]g = [i — 1]@
means Cjq_1}, = C[i_1],, and as 7 must produce the same output on the same input, we also get
Clale = W(C[afl]’c DM@ = W(C[i,l]rc ®MO) = Cli]- More generally, it was shown in [6] that G
has an induced collision is step 7 if the edge added in step ¢ (or, that would be added if it was not
already there) closes a cycle with alternating edge directions, moreover then the XOR of all labels
of all the edges of that cycle is 0". (Note that the case of two parallel edges considered before form
exactly such a cycle of length two and also 0" = M® @ M@ as we saw that M@ = M(“).)

Formally, we define a function AltCyc which takes as input a partial structure graph G; =
(Vi, E;, L;), a vertex v and a label X as follows

Jj =wvo if 3k = 1,{v1,..., v} € Vi, {e1,...,e2r} € E; where
e; = (vi,vi+1) for odd, and e; = (v;, vi4+1) for even i,
AltCyc(G; = (V;, Ei, L), v, X) = and v; = v,
and X (—D Li((ul, 1)1)) (—D N Li(('LLQk,’UQk)) = On
L otherwise

Now the induced collisions are the collisions (4, j) where the i-th edge ([¢ — 1]f;, j) can (and thus
must) be added to Gj_1 such that we close a cycle with alternating edge directions where the labels
on the cycle XOR to 07, i.e.,

IndCol(G) = {(4,7) : 1 <i <m,j = AltCyc(Gi_1, [i — 1]l5, MD) and j # L},

and accidents are all the non-induced collisions: Acc(G) := Col(G)\IndCol(G).

Let G*(M) = {G : G € G(M),|Acc(G)| = a) denote all structure graphs with exactly a
accidents. For any predicate P on structure graphs, let ¢a[P] denote the set of all structure
graphs GG having exactly one accident and satisfying the predicate P, i.e.,

pm[P] = {G e G (M): G satisfies P} .
As an example, consider the predicate P defined as Vfl () = V;Q (+), in that case we obtain ¢ [Vfl =
vt = {Gegim): V@) = V(G-

Finally, following [6], for two messages My, My € B, we let FCP,(My, M2) (the full collision
probability) be the probability, over m < Perm(n), that

CBC™(Ma) € {CBC™(M') : (M’ | My v M' | My) A M’ # My} .

Note that if My t M; then our definition matches the definition of full collision probability in [6].
On the other hand, if My | M; the original definition becomes void (the probability is equal to 1),
while our variant will prove to be useful also in this case.

We will make use of the following results proven in [6].
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Proposition 2. Let M = (My, Ms) be a pair of messages such that M; € B% and £; < ¢ for both
ie{l1,2}.

(i) [6, Lemma 2] If My f Mz and My f M, then we have

8¢ 640
FCP, (M1, M>) < — + —— .
( 1 2) on + 22n

(ii) [6, Lemma 8] For any structure graph H € G(M) we have
PrG & G(M): G = H] < (2" — 2¢)~ /Al
(iii) [6, Lemma 9] We have

4(61 + 62)4

Pr[G & GM): |Acc(G)| = 2] < 92n

(iv) [6, Lemma 19] For any be {1,2} and r € [0,...,{y] we have
’¢M [Vg" e VO, vyttt .,Vb’f}” <.
We can now proceed to upper-bounding the probability Pr[Tigea € BT1].

Lemma 3 (restated). Pr[Tigeas € BT1] < 16/4¢%/2™ + 128¢%¢2/22".

Proof. We will denote by MsgQ(7) = {Mj,..., M;} the set of all message queries present in the
transcript 7. By definition of BTy, we have Tigea € BTy if T = (V, E, L, 1) and this occurs only
if at least one of the following two events happens in the ideal experiment (in their description, A
refers to the non-restricted labelling):

(1) There exists i € [¢q] and M € V\{M;} such that A\(M;) = A\(M).
(2) There exists i € [g], m € M;, and M € V\{M; | m} such that A\(M; || m) = A(M).

Let us denote these two events as 1 and Bs respectively, and let us first consider ;. Since every
vertex in T™(My, ..., My) lies on some path from the root to some leaf (and all leaves belong to
MsgQ(7)), by union bound we have

Pr(Bi] < Y Pr[AM e V\{M;}: CBC™(M;) = CBC™(M)] < > FCP,(M;, M;) (10)
M; M;,M;

summing over all M; € MsgQ(7), and all M; € MsgQ(7) that correspond to leaves in T7 (M, ..., My).
The probability is taken over the choice of a uniformly random permutation 7.

If the message pair {Mj, M;} is prefix-free (i.e., M; y M; and M; / M;), then we can apply
statement (i) in Proposition 2 to conclude that FCP,,(M;, M;) < 8¢/2" + 64¢1/22". Since M; is a
leaf in T™(M;, ..., M,), clearly it cannot be a nontrivial prefix of M; and hence the last case that
needs to be considered is if M; | M;. In this case the structure graph for {M;, M;} consists of the
Mj-path and M; does not introduce any additional vertices. Let us denote by ¢; and ¢; the lengths
of M; and M;, respectively; and let Vf and V2i denote the i-th vertex on the Mj-path and M;-path,
respectively (starting from 0). Then we have Vlzi = V;i, and the equality Vlgi = V] for some i # {;
can only occur if at least one accident happens. We know from Proposition 2 (iii) that two or more
accidents can only occur with probability at most 64¢%/22". For the case of exactly one accident,
Proposition 2 (iv) shows that there are at most ¢ structure graphs satisfying Vf" = V{ for some
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i # £;, and by Proposition 2 (ii) each of these graphs can occur with probability at most 2/2" as
long as ¢ < 2" 2.

Putting it all together, the values FCP,,(M;, M;) in (10) are upper-bounded by 8¢/2" + 6444 /22"
for all pairs (M;, M;) such that M; | M;, and by 2£/2" + 64¢/2?" for all pairs (M;, M;) such that
M; | Mj. We are summing over at most ¢* pairs (M;, M;) in total, hence from (10) we obtain
Pr[B1] < 80q?/2™ + 6442 /2%,

While for upper-bounding Pr[B;] we considered the probability that one of the vertices M; will
obtain the same label as some other vertex in the message tree, for Pr[Bz2] we need to consider the
same probability for child vertices M; | m for some m € M;. However, note that in the analysis
above, we did not use any property of the inspected vertices M; beyond the fact that there are g of
them. Since by (3) there are at most ¢ child vertices M; | m for some i € [¢] and m € M;, we can
apply the same analysis as above to conclude that also Pr[By] < 8¢¢?/2" + 64¢4¢? /22", O

D Bad-Transcript Analysis: The N® quantities

We now turn to upper-bounding the probabilities Pr[Tigeal € BT;] for i € {2,3}, i.e., proving Lem-
mas 4 and 5. While the proofs may appear at first to be a simple application of usual conventional
Chernoff-like concentration techniques, they will require extra care due to the process of defining
the trees. In particular, we will have to tackle two main challenges:

- The vertex labels are outputs of a permutation, and not of a function.

- Multiple vertices M and M’ can be assigned the same label A\(M) and A(M’), however, whether
this is the case depends on the value of labels assigned earlier in the process of computing the
labels of the reduced message tree T

An alternative sampling process. Asthe common denominator between the proofs of Lemmas 4
and 5, it will be convenient to think of an alternative process to compute the transcript (and in
particular 77 (M, ..., M,), and its reduced version), parameterized by the value t > 1 from the
theorem statement. This will allow us to use conventional Chernoff bounds for independent random
variables at the cost of considering ¢ times more samples.

Process Simulateldeal Transcript(.A, t):

1. We first sample independent r-bit strings Yi,...,Y,

2. The attacker A gives queries M;, which are replied with Y;, for all i € [g].

3. Then, we compute the message tree T' = (V, E, \,y) by defining V' and E with respect
to My,..., My, and setting the labels A, v as follows. We initially set A(¢) < IV, and
set the labels y(e) of the edges leaving the root.

Then, for every vertex M # ¢ (traversed in some prefix-preserving order, i.e., if
M | My, then we visit M; before Ms) with parent vertex M’ and e := (M', M),
sample ¢ independent uniform n-bit strings Uas1, ..., U, and proceed as follows.

- If w(vy(e)) # L, we set A(M) < m(e).

- Otherwise, we set A(M) = m(y(e)) < Unr,; for the smallest j such that Ups; was
not used earlier as a vertex label yet. If all values have been used, then we set a
bad flag to 1, and set m(y(e)) = MM ) — Upsy.

- Also, for all m € My, set the edge labels v((M, M | m)) < A(M) @ m.

The resulting transcript T/, [t] is defined as ((M1,Y1),..., (M, Y,),T), where T is the

reduced version of the message tree 7' = (V,E, \,~) defined by the above process. More-
over, let T!, _[t] be the same as T!,__ [t], except that the tree is not reduced.

ideal ideal
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Let 'T'idea| denote the ideal transcript with the non-reduced version of the message tree. The following
lemma shows that for sufficiently large parameter ¢ > 1, Tigea and Ti’deal[t] are very close in
statistical distance.

Lemma 6. Forallt > 1,
(q . g)t+1

SD(Tideals Tigeallt]) < ont

(11)

Proof. Let p be the probability that bad is set to 1 at some point during the generation of T/ [t].

ideal
Then, by a standard argument SD(Tideal; Tiqeq[t]) < p, since as long as bad is not set to 1, the process
simulates the exact distribution as if we were using a random permutation. In every step ¢ where

we set the output value of m, we can easily show (as the values Ups1,...,Un s are independent)
¢

that Pr[bad is set in Step i] < <§—f) , as 7 has been defined for at most ¢ < ¢/ input values so far.

A bound on p follows by the union bound. O

Proof of Lemma 4. Fix Y7,...,Y,. We are going to upper-bound the probability that NO > B,
where

B:=3t-¢* £/2" +2qn . (12)

Define N = g Kfi(l) as Nl.(l) =37, Ni(l), however all values N are defined with respect to

)

a transcript sampled from the alternative transcript distribution T, [¢]. Then, by Lemma 6,

(qg)t—i-l
ont ’

Pr [N“) > B] < Pr [1\7(1> > B] + SD(Tideats Thaea[t]) < Pr [1\70) > B] +

For all i € [q], define NN; to be the number of Upy ;’s sampled in the process of generating T/, [¢]
such that Upr;[1...,7] = Y;. (Independently of whether these values come to use or not.) Note
that we sample T := (|V| — 1) - t < (¢f)t independent n-bit values in the process (i.e., ¢t values for
every non-root vertex), and that clearly Ni(l) < N;. We expect T/2" of these values to equal Y;.

Consider now the following two cases:

Case 1: T/2" = n. Here, by applying the Chernoff bound (Theorem 4)
Pr[N; >3-T/2" +2n] <Pr[N; >3 -T/2"| <e 7% <e.

Case 2: T/2" < n. Here, again by the Chernoff bound,

An292T T
T

Pr{N; = 2T/2" + 2n] < Pr[N; = T/2"(1 + 2n2"/T)| < e T2C+2n2/D) ¥ L ™"

because
A 2n%2" 202"
T2(2 4 2n27/T) 27

- > -
T(1+n2"/T) T +n2r ~ 2n2r

We can wrap up using the union bound: The probability that there exists some i € [¢] such
that N; > 3T/2" + 2n is at most ¢ - e~". Therefore, except with probability ¢ -e™™, N < N <
3¢T /2" + 2qn < 3tq?(/2" + 2qn, as we wanted to show.
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Proof of Lemma 5. Recall that we are interested in studying the quantity
q
N® =N NP
(2
i=1

for a given transcript 7 sampled according to Tigeal- In particular, we assume now that the first part
of the transcript (My,Y1),. .., (My,Y,) has been fixed arbitrarily, and we are computing the tree
T™(M,...,M,), for an independent permutation 7 & Perm(n). For every edge e € FE and every
i € [q], define Ne,i to be the number of m € M; such that (y(e) ®m)[1...7r] =Y;, and we also let

q q
N:ZZNE:i:ZNe:ZNi’
el

ecE =1 i=1

where we have used the conventions Ne = Z?=1 Ne,i and ]TQ =D eE Neﬁ-. Similarly, let Ne,i,m =1
if (y(e) ®m)[1...7] =Y;, and 0 otherwise, and thus clearly Ne; = >, vq, Neiym-

We first observe that Ni(Q) < Kfi, and thus N® < N. This is because for every z € {0,1}"
such that z[1...7] = Y; and there exists m € M; and e € E such that y(e) = z @ m, we have
v(e)®m = z and thus (y(e)@m)[1...7r] =Y;, or in other words, Nelm = 1. Moreover, we are also
possibly overcounting, since the new random variables are defined with respect to the whole tree
T™ and not just its reduced version.

The splitting trick. In the following, we are going to show that N (and hence N®) cannot be
too large. To this end, we will split every random variable N, as

Nevivm = Ne—,r'l,m + NeJ,_z,m ?

where N eT ; is defined as N@i above, but only if the tail of the edge e was assigned as a label a fresh
permutation value, and is 0 otherwise.'® Conversely, N jlm is defined as ]\Nfe,i above, but only if the
tail node of e was re-assigned a previously used permutation value, or if the tail node is the root.
For b € {T, L1}, we define analogously Ng. N b N? and Nib by only taking partial sums over the
Na2

corresponding N

)
e,i,m S.

In the following, we are going to show, via two different analyses, that NT and Nt are not too

large, except with small probability. The two analyses use very different techniques.

Lemma 7. For allt = 1, we have

q | (g0)*
on gnt

Pr []VT > 3t ¢%0/2" + 2nq2] <
Lemma 8. We have,

N ¢
Pr [Nl >+ /2 + 8q2€4/2”+’“] <

= on—r -
Therefore, we conclude the proof of Lemma 5 by adding the two bounds.

3 Note that whether was the case is easy to identify by looking at T".
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Analysis of NT (Proof of Lemma 7). Let V/ < V be the set of non-root inner vertices of T,
and let E' be the set of edges with their tail node in V’. (These are all edges, except those leaving
the root.) Now, we consider the random experiment defining T/, [t ] There, for every j € [t] and

e = (M',M'||m’), we are going to define similar random variables NeT ijm 88 Ne i.m» except that
N, eT i.jm 18 simply one whenever the j-th value Upp ; (out of t of them) generated when visiting M’

is such that (Upp; @ m' @ m)[1...r] =Y, regardless of whether A\(M’) is assigned Uy ; or not.
Then, we let

S0 1) I

i=1meM; eeE’ j=1

Then, by Lemma 6, for BT := 3t - ¢2¢/2" + 2ng?,

(qﬂ)“‘l
2nt

Pr [NT > BT] < Pr [NT > BT] + (13)

In particular, this is true if we only consider N7 in the experiment where T/ eai[t] is sampled, and
the inequality holds, because N can not be smaller then NT.

For every M' e V', i € [q], j € [t], and m € M;, we now introduce the shorthand

~

_ T
Nitigm = 20 Nowar jmyigan -

m/eM M’

i.e., the number of edges e outgoing from M’ for which (Upp; @ m' @m)[1...r] =Y; for the j-th
Value Unr,; generated when visiting M’. Then,

Yy

i=1meM;

where

t
T T
w=20 2 Nirigm -
j=1M'eV’
In particular, ﬁsz is the sum of T := ¢ - |[V’'| independent random variables, where we note that
E[Nl\—l;[’mj,m = 1] = DM’/2T7 and N,
fimi = E[N;,,] =t |E'[/2" < tql/2".
To apply the Chernoff bound, it is worth it to scale the random variables ]/\\7 T m» dividing them

by D to make them into [0, 1] values, where D := max ey Dy Note that D < q. That is, define

LTM/y.,]jm.— NA},”m/D andL ZJ L wrer L]TW”m Clearly, E[LT | = ptim/D.

€ [0,Dpyr]. Thus, by linearity, its expected value is

T
y2,7,T1

To conclude, we are going to show that this probability is smaller than e < 27". Therefore, by
the union bound, it follows that the probability that Pr [Kf T> BT] is bounded by ¢-27", as there
are at most ¢ pairs i € [¢|, m € M,. Together with (13), this implies Lemma 7.
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Case 1: p;m = t|E'|/2" < ¢-n.
Pr [Nsz > BT/q] < Pr 7]?7;” > 3fbim + 2nq]

< Pr ]VJm > fim + 2nq]

[~ Migm | 2ng

[~ Him 2nq —A
=Pr|L] =% <1 + )] <e

L L D Him

where, using D < g and p;m < q-n,

A 2n - q\? 1 Mim _ An?-g® 1 n’eg
Mim 2+(m> D 2“i,m+2n’q D/n‘q

=n.

i,m

Case 2. [ ; > q-n. Here, we compute

Pr [N:m > BT/q] < Pr Nle > 3ptim + 2nq]

< Pr ]Qfle > 3Mi,m]

= Pr IA)le > S,ui,m/D]

—pr|L], > ‘%m(l + 2)] <e

where, using again D < g,
4
A = Zui’m/D >q-n/D=n.

Analysis of N1 (Proof of Lemma 8). First, let £ < E be the set of edges which are not
outgoing from the root. Then, we are going to split N+

q q q

LD NN CEDIDN LD ID NS

eeE\E' 1=1 eeE’ i=1 eeE’ i=1

as there are at most ¢ edges in F\E’. We are going to bound the sum by using Markov inequality.

Therefore, we start by computing the expectation p:= 3 _p >7 | E [Kf jz]
Assume now without loss of generality that T™ and its labels are defined iteratively by traversing
it in some order preserving the prefix-of order. We focus now on computing, for a particular e and
i, the value E[N, eLZ] To this end, define Ny, , ; for every M’ < e (which means that M’ was
traversed before reaching edge e) and every m € M;: It equals one if (y(e) ®@m)[l...r] = Y;

A(M) = M(M'), where M is the tail node of e, and M’ was the first node to be set to this label.
Otherwise, N ]\5, e.m.i 18 0. Then, we clearly have

Tl Na _ AL
Ne,i - Z Z NM’,e,m,i - Z Ne,i,m )
meM; M'<e meM;
where

ATL _ Nas
Ne,i,m - Z NM’,e,m,i7

M'<e
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is a binary variable taking the value one if and only if (y(e)@m)[1...r] = Y; and there exists some
M’ < e such that A(M') = \(M).
Therefore, once again by linearity, it is enough to compute E[Kf jml] = Pr [Kf L

emi = 1] for all e.
Note that if this is the case, this means that there exists some message M; (whose corresponding
node was traversed before getting to e and M), such that A(M) collides with one of the internal
values in the computation of CBC(M;), or in other words (using the language of [6]), this would
imply a full collision in computing CBC(M) and CBC(M;): Formally, a full collision means that
CBC(M) collides with one of the other state values generated in the computation of CBC(M;) and
CBC(M), also cf. Appendix C above for a definition, and the associated full collision probability

FCP,,(M;, M). Therefore,

4
E[N. .]=Pr [NL , = 1] < ), FCPu(M;, M) < S 6436 :
M;<M 2n 2 !

Note that [6] only gives bounds for FCP,,(M;, M) when M; is not a prefix of M, but the bound
trivially extends, since if M; is a prefix of M, then a full collision implies a full collision for M and
any other non-prefix message M’. Thus, to conclude, we observe that

q 392 395
~ 8q°/ 64q°/
1
n=2y 2 2 BNl < 5+ e
i=1meM; eeE’

where we have used the fact that >,/ D; < ¢. Thus, by Markov’s inequality,

8ql

q
AT-L
Pri Y Y INS = P/2m +8¢°¢4 )2 | < ot

eeE i=1

This concludes the proof of Lemma 8.

Remark. In the above proof, one would expect that E[ﬁjml] is much smaller (perhaps even by
a multiplicative factor 2"). In fact, we are essentially assuming that as soon as collision occur,
then this collision implies Nelml = 1. While this may not always be the case, it is very hard to
argue about the distribution of CBC(M) conditioned on the computation CBC(M;) and CBC(M)
provoking a full collision. In particular, one can build examples showing that it is not uniform, and

in general, very badly understood.

E Tightness of bound for GSponge — Missing Analysis

For the analysis, in the real world we consider the event COLL that for some i € [Q1] and i’ € [Q2]
we have (K’ @ M;)[r +1...n] = Byg[r + 1...n] and observe that Pr{COLL] > 2(Q1Q2/2""")
(assuming @1 « 2"7"). Again, if COLL occurs due to some indices ¢ and i’ then by construction
Y;; = By j for all j € [t] and A outputs 1. Therefore,

Pr [ AGSPeneelrlmm ™ . 1| > Pr[COLL] = £2(Q1Q2/2"")
However, if O = R for a truly random function R : {0, 1}* — {0,1}", all values Y; ;’s are independent

random 7-bit strings, since the messages M; are distinct. Hence, by union bound, suitable 7 and ¢/
exist with probability at most

Pr |:_AR,7F,7T71 - 1] < Q1Q22—rt < Q1Q22_n )
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F Proof of Theorem 2 (sketch)

In this Appendix, we discuss the changes that are necessary to adapt the proof approach we used
to analyze truncated CBC to the setting of sponges-based MACs.

THE TRANSCRIPTS. First, since the adversary is now allowed to query 7w, we will also include its n-
queries and the respective answers in the transcript. Hence, if (A;, B;) for i € {1,..., ¢, } represents
the m-queries asked by A and the respective responses (i.e., for each i we have 7w(A;) = B; and A
either asked a forward m-query A; or a backward m-query B;) then the transcript in both the real
and ideal world will also contain the list (A;, B1), ..., (Aq,, By, )-

Moreover, we also modify the definitions of the full and reduced message tree. The full message
tree changes in one aspect: the label of the root vertex A(e) will be set to the key K = K’
instead of the initialization vector IV, while the rest of the tree labeling is computed from this
root label identically as in the proof of Theorem 1 and the same process is applied to obtain its
reduced version. Since the full and reduced message trees now depend on K, we will denote them
as T™K (M, ..., M,.) and TW’K(Ml, ..., My.), respectively.

Finally, we add one additional bit into the transcript, carrying the information whether an
overlap has occurred between the m-queries asked directly by the adversary, and the w-queries that
were needed to compute the labelling of the (full) message tree. Formally, we define PiHit as

(PiHit=1): = (AM e V: N(M) e {By,...,Bg.}) .

where A denotes the non-reduced labelling function. Since the bit PiHit is determined by giving
a labelled message tree T' and a list of m-queries {(4;, B;)}/",, we sometimes use the notation
PiHit(T, {(A;, B;)}{7,) to give these explicitly.

Hence, both the real and the ideal transcript will have the form

=, K Oy
T = ((AlvBl)a ceey (A(Iﬂ"B(br)7 (Ml,Yl), sy (MQC’YQC)vT (Mlv s 7MfIc)7 P'H't) ) (14)

where the pairs (M;,Y;) represent the adversary’s construction queries, just like before. The real-
world (resp. ideal-world) experiment generating the real-world transcript T s (resp. the ideal-world
transcript Tigeal) is defined as follows:

Real world. The transcript T s for the adversary A is obtained by sampling 7 uniformly at
random from the set of permutations on {0,1}" and a uniform key K « {0,1}", and letting

=, K A
Treal = ((Al,Bl), ey (Aqﬂ,Bqﬂ,), (Ml,Yl), ceey (MqC,YZIC),Tﬂ— (Ml, N ,ch>, PIHIt) 5 (15)

where we execute A, which adaptively asks construction queries My, ..., M, answered with
Y; = GSponge[r]x(M;) for all i € [qc], and gr m-queries that result in input-output pairs
(A1,B1),..., (A4, By, ), and then we compute T = TW’K(Ml, ..., M) and use its non-reduced
version T™K (M, ..., M,) and {(A;, B;)}¥", to determine PiHit. This time T,ea only depends
on m and K, hence we sometimes write T ea (7, K) for the corresponding map.

Ideal world. The transcript Tiges for the adversary A is obtained similarly to the above, but here
we sample both a random permutation 7 and ¢¢ independent random values Y7, ..., Y, € {0,1}"
and we let

K -
Tideal = (A1, B1), ..., (Aq, By), (M1, Y1), ..., (Mg, Yy), T (My, ..., M), PiHit) ,

where we execute A, which adaptively asks construction queries My, ..., M, answered with Y;
for all ¢ € [¢], and ¢, m-queries that result in input-output pairs (A, B1),..., (Aq,, By, ), and
then we compute T = W’K(Ml, ..., M,) for some independent, randomly chosen K; and use
its non-reduced version T™5 (M, ..., M,) and {(A;, B;)}{", to determine PiHit.
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The proof again proceeds using the H-coefficient method (cf. Lemma 1), hence we need to define
good and bad transcripts. A transcript (14) is good if it fulfills the requirements (1) - (3) from
Definition 2 (with the natural substitution of g¢ instead of ¢) and also the following additional
requirement:

(4) We have PiHit = 0.

We again denote the sets of good and bad transcripts by GT and BT respectively, this time we have
BT = (J._,BT..
BOUNDING BAD TRANSCRIPTS. We have:

4
Pr[Tideal € BT] = Pr[Tigear € | | BT
=1
3
= Pr[Tideal € BT4] + Z Pr[Tideal € BT; | Tideal ¢ BT4]
i—1
3
= Pr[PiHit = 1] + Z Pr[T;dea| e BT; ’ PiHit = O] .
i—1

The probability Pr[PiHit = 1] can be bounded easily.
Lemma 9. In the ideal world we have Pr[PiHit = 1] < fqrqc/2".

Proof. For each M € V and i € {1,...,qx} let PiHitys,; denote the event that \(M) = B; for the
non-reduced labelling A. By definition of GSponge[r]x we know that there exists a permutation p
independent of K such that A(M) = p(K), namely p corresponds to the evaluation of the sponge
on a fixed input M, from the initial state K. Since the key K is chosen uniformly at random and
independently of the view of the adversary, the value A(M) will also be uniformly random and
independent of the adversarial m-queries. Hence Pr[PiHitys;] = 27" and by union bound over all
(M, i) we have Pr[PiHit = 1] < {grqc/2". O

Next we need to upper-bound the probabilities Pr[Tigeal € BT; | PiHit = 0] for i € {1,...,3}.

Lemma 10. We have:

1. Pr[Tigea € BT1 | PiHit = 0] < 16£¢2/2™ + 1280%¢2 /2?" + 20qcqr /2"
2. For any parameter t = 1 defining BT,

go (g0 O™ 2lg0gs

Pr[Tideal € BT2 ’ PiHit = 0] S on ant 2n

3. For any parameter t = 1 defining BT3,

t+1
Pr[Tigeal € BT5 | Pibit = 0] < 4% + ii(icr ((JOQ' 4 2&;2(1“ .
Proof (sketch). The bounds can be established from Lemmas 3-5 in a generic way. Namely, since
we are conditioning on PiHit = 0 we know that there will be no overlap between the w-queries asked
by the adversary and those that are needed to label the full message tree T'. Second, to get closer
to the TCBC setting, we consider the key K to be fixed and only average over its choice in the
end. This means that the argument can follow the same path as in the case with the all-zero initial
state and no adversarial m-queries, with a small difference: now, whenever 7 is lazy-sampled at a
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fresh point, instead of returning a uniform element from the set of all 2" — ¢ unused values, it will
instead sample from the smaller set of 2" — ¢, — ¢ values, since the query-answer pairs asked by the
adversary also have to be avoided to maintain PiHit = 0. The statistical distance between the old
and new distribution at every such sampling is hence upper-bounded by

dr dr 2qx

< < —
i 2 —qo  2n

assuming go < 2”1 as otherwise the bounds are trivial. As 7 is always invoked at most fgc times
during the labeling of T', the probability of a bad transcript ocurring in our setting differs from the
probability of its ocurrence in the settings considered in Lemmas 3-5 by at most 2{qcq,/2". ]

LOWER-BOUNDING THE PROBABILITY RATIO. It now remains to bound the ratio
Pr [Treal = T] /Pr [Tideal = 7-]

for all good transcripts 7. Towards this, we proceed as in Section 4.4, describing the necessary
modifications along the way.

We start by observing that since the padding function pad(-) only outputs non-empty strings,
we have M; # ¢ for all i € [gc]. Hence, by the construction of the reduced message tree T, we
have A(e) # L and therefore A\(¢) = K for every good transcript. Each good transcript 7 hence
determines the key K and we will sometimes refer to this key by writing K (7). Now, similarly as
before we can define

Q] =A{rm : Treal(m, K(7)) =7}

and
=, K (T eal .
'[r] = {w T 0, M) :T(T)} AT s Vie[gn] s m(A;) = Bi}
o {m o PiHit (T™KO (M, M), (A3 Bi) K, ) = 0}
where T(7) denotes the reduced message tree given in the transcript 7. Intuitively, £2' contains all

permutations 7 that are consistent with the transcript 7 on all its parts except possibly the outputs
Yi,..., Y, (note that we have PiHit = 0 in 7 since 7 € GT).

We’ ag;in denote by p(7) the ratio
p(T) := ||g/[[:]]|| = Pr [7r & Perm(n) : 7 e Q7] |7 e _Q'[T]] =Pr |:7T E Q) :me Q[T]]
and observe that Pr [T = 7] -
Pl = © )

remains satisfied since this time we have
Pr[Treat = 7] = Pr [ K & (0,1} : K = K(7)| - Pr | & Perm(n) : Treai(m, K (7)) = 7]
=2""-Pr [7r & Perm(n) i e .Q/[T]] - Pr [7‘(‘ & Perm(n) : 7 € Q7] |7e Q’[T]]

and
Pr(Tideat = 7] =27"-2779¢ . Pr [W & Perm(n) : me Q/[T]] )

where the first two factors in the latter equation capture the (independent, uniformly random)
choice of the key K and the outputs Y;, respectively.
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To lower-bound p(7), we will again use the fact that

B(r) = 3 Pr|m < (7] vie [ao] : Zi = =]
(21,..:2¢):23[1..7]=Y5
and consider the same process for setting labels A(M;), v(M;, M; | m) and extending the partial
permutation 7 as in the proof of Theorem 1. We also consider the set £ of all tuples (21, ..., 2q.)
of go distinct values such that:
- zi[l.r] =Y, for all i € [g¢],
- when assigning A(M;) < z; for all i € [¢] in the above process, at the end of the process all the
labels A(M;) = z; are unique within the set of all vertex labels; for all i € [¢] and all m € M;
the labels A(M; | m) are unique in the same sense; and PiHit = 0.

The lower bound on p(7) is then obtained by giving a lower bound on:

- the probability that any particular tuple from £ appears as the labels for vertices (M, ..., My.)
when 7 is chosen at random from 2'[7]; and
- the size of the set L.

For the former, one can again for any (21, ..., z4,) € L establish the bound
1
s .
Pr [71' < '[7] Vi€ [qgo] : m(v(e;)) = zi] > T

using an analogous argument as in the case considered for Theorem 1. Namely, we again have

~ Hme 1] : Vie[qo] : m(x;) = 2}

|27 ]|
and it remains to bound the numbers of permutations in the sets in both the numerator and the
denominator. Here we additionally (in contrast to the proof of Theorem 1) have to take into account
that the permutations we are counting are always defined on additional ¢, points to comply with
the m-queries listed in 7. However, this affects both counts equally and hence cancels out.

To lower-bound |£|, we will again be choosing the values z; one by one and for every i give a
lower bound on the number of admissible values z;. Namely, we will exclude a candidate value for z;
if it satisfies any of the properties (1)—(5) given on page 15 or the additional properties (6)—(7)
defined as follows:

Pr [77 E Q] Vieqo] : m(v(er)) = zi]

(6) There exists an adversarial m-query (A;, B;) such that z; = B;.

(7) There exists an adversarial m-query (A4;, B;) and an m € M; such that z; ®m = A;.

The numbers of excluded values due to conditions (1)—(5) are estimated in the same way as in
the proof of Theorem 1, while for conditions (6)—(7) we need to exclude additional at most ¢, and
D;q, values, respectively. Redoing the computation (8), we arrive at

NO + N _ 242, _ 2¢rqc
on—r on—r on—r :

L] = 200 (=) (1 _

PUTTING PIECES TOGETHER. The above gives us
Pr [Treal = 7—] - N® + N@®) QQ% 2q-qc

m = on—r o on—r on—r

and by plugging this into Lemma 1 together with the results of Lemma 9 and Lemma 10, we obtain

AdvP' (A) < (6t + 17)€q% + g qc + 2qc 6nq(2) + 8%q¢ + qrqc 136€4qé 2(Lgo)ttt
VGSpongeT’pad ,T = on + on—r + 22n + ont
for any parameter ¢t > 1. O
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G Proof of Theorem 3

In Theorem 2 we proved the PRF security of the GSponge construction, here we will explain how
to extend the proof to the case where the key K’ is not uniform, but generated from w short b-bit
keys K[1],..., K[w] as illustrated in Figure 3, i.e,

set Vo := 0" then compute V; = 7((K[i] | 0" ®) @ V;_y) for i = 1,...,w and set K’ := V,,. (16)

For this we define the transcript T/, for Sponge in almost the same way as we defined the transcript

Treal for GSponge (cf eq.(15) and the paragraphs above and below it), but where instead of sampling
a random n-bit string K and then setting Y; = GSponge[r]x(M;), we now sample a key K =
(K[1],..., K[w]) that consists of a w-tuple of random b-bit strings, and compute K’ from K and 7
as in (16). Note that we do not include the inputs/outputs of the w extra invocation of 7 required
to compute K’ into the transcript T/_,,, so the transcripts for Sponge and GSponge are defined over
the same domain. By the lemma below, these transcripts are also statistically close:

Lemma 11. The statistical distance of the real transcript Tea for GSponge as defined in (15) and
T/, for Sponge as defined above is (below q = qr +{qc denotes an upper bound on the total number
of invocations of ™ in the attack on Sponge)

w
SD(TiealvTreaO < i + 7(] + q

If w =1, one can remove the ¢*/2" term above. Assuming q < 2"~° we can remove this term at
the cost of increasing the first
/ q wq
SD(Treals Treal) < m on
Before we prove this lemma, we observe that together with Theorem 2, this implies Theorem 3. We

have

AdvP

Sponge n(A) < SD( ,reala Tideal) < SD( ,reala Treal) + SD(TreaI’TideaI)

T,pady, ?
and we can bound the last two terms with the bounds from Lemma 11 and Theorem 2, respectively.
Note that we didn’t state the ¢ < 2" condition from Lemma 11 in the theorem because if this
condition is not satisfied, the theorem is void anyway.

Proof (of Lemma 11). Below we define a way of sampling a joint distribution (T, aux). There are
two distinguished values 11, 1o in the support of aux, and we will sometimes write aux = | for
aux € {11, Lo}. The distribution (T, aux) will satisfy the following three conditions:

(1) SD(T, Tyeal) = 0, so the marginal distribution T is the same as real GSponge transcripts.
(2) For any 7* we have

Pr(7,a) « (T,aux) : (1 =7%) A (aux# L) <Pr[Tl, : (r=7]. (17)

real

(3) The probability that the auxiliary information is L is at most
Pr[(r,0) < (T,aux) : aux = L] < ¢?/2" 7" + q/2%% + wq/2" ,

or alternatively

b—log(3n)—1

Pri(r,a) < (T,aux) : aux= 1] <gq/27 2z “+wgq/2".
Note that the three points above imply the Lemma with
SD(Treal, Thea)) = SD(T, Tles) < Pr[(7,) « (T,aux) : aux = 1]

real real

where the last equality above follows as for any random variables X,Y and any event E we have
that if for all v in the domain Pr[X = v A E] < Pr[Y = v] then SD(X,Y) < Pr[—E].
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Sampling (T,aux). The augmented transcript distribution (T,aux) is defined as follows. We first
sample a transcript Tiea and set T = T, e (note that this already implies condition (1) above).

We now define how to sample the second part aux of the distribution. Note that to sample
T = Tyeal, we have sampled a uniformly random key K’ € {0,1}" and a random permutation .
It will be convenient to think of 7w being ”lazy” sampled, so at this point we only have a partially
defined permutation 7 that is defined on at most g, + £g¢ inputs.

We now sample a key K = K|[1],..., K[w] consisting of w random b-bit blocks. Next, we
check if the partially defined 7 allows to compute the key: Starting with Vy := 0", compute V; =
T((K[i] | 0"=*) @ V;_1) for all i = 1,2, ... until either i = w or we get an input on which 7 is not
yet defined. If i = w, i.e., we have computed the key, we set aux = 1 (the reason is that now
almost certainly V,, # K’, and thus we we have a transcript which we cannot make look as if it
was generated by Sponge).

Proving Condition (2). Intuitively, if in the process just described we stopped at i < w, then the
next V; will be the output of T on a ”fresh” input, and thus close to uniform. At this point, we
define the V;,1,...,V,_1 uniformly at random and set V,, = K'. If any of the V;,1,...,V, is not
”fresh” in the sense that it appears anywhere else in the transcript, we set aux = 1s. Otherwise,
we set aux to contain the input/output pairs of the w queries to T made while computing K’ (note
that this implicitly also defines the key K = K[1],..., K[w]).

To prove condition (2) we now also augment the transcripts of GSponge to get a distribution
(TVea-aux’), where aux’ contains the w queries made to m while computing K’. To prove (2) we’ll
show that for any transcript (7%, o*) in the support of (T/,;,aux’) we have

Pr(7,a) < (T,aux) : (7%,a*) = (1,a)] < Pr[(r,q) « (T,,,aux) : (7%,a*) = (1,a)] . (18)

real»

With this, (17) follows by taking the sum over all a* on both sides of the above equation.

Note that we only must consider transcripts (7*, *) where during the computation of K’ from
K we made a “fresh” query (otherwise aux = L, but aux’ is never L, so it’s not in the support
of (T!.,,aux)). Consider any such fixed transcript (7*,a*), and assume we sample (T/_,;,aux’) or
(T, aux) such that we immediately abort as soon as we're inconsistent with (7%, «*), and we sample
the “fresh” outputs Vij1,...,Viy—1 at the very end. Here, the sampling of (T/_,,,aux’) and (T, aux)
is identical (and thus has the same probability of being consistent with (7%, a*)) up to the point
where we must sample the Vii1,...,V,—1. In (T,aux) these are sampled uniformly at random,
whereas when sampling (T/_,,,aux’), this values are implicitly defined as we sample the outputs
of 7 on the fresh inputs V; = 7((K[j]|0" ) @ V,_; for j = i+ 1,...,w — 1. The probability of
sampling consistently in the latter case is at least as high as sampling the V;’s uniformly, as now
the sampling space is smaller (because 7 is already defined on some outputs, and these can now be

excluded), this proves condition (2).

Proving Condition (8). It remains to upper bound the probability that aux € {L1;, 1o} to prove
condition (3). For Lo we get the following simple claim

Claim. Let ¢ = qr + £gc be an upper bound on the total number of invocations of 7. Then

wq

on

Proof. The probability that any particular of the uniformly sampled V;’s “hits” any of the at most

q values on which 7 is already defined is ¢/2". As we sample at most w of them, we get the claimed
bound by the union bound. O

Prlaux = 15] <

The bound on the probability of aux = L is a bit more tedious, and we outsourced it to Lemma 12
below. Note that the above claim with Lemma 12 prove condition (3). O
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Lemma 12. Let ¢ = qr + {qc, then

2
q q
anb + 2bw (19)

Prlaux = 11] <

if w=1 (ie., the key is just one b-bit block) then we can ignore the 232_,, term above. If ¢ < 270
we can ignore this term, at the prize of increasing the 2nd

-nw
¢ on q

2bw 2b—log(23n)—1w *

Prlaux = 11] <27 +

(20)

Proof (of Lemma 12). Consider the sampling of (T,aux) right after we sampled the key K =
(K[1],...,K[w]). We will say that K is fized if we can compute K’ = V,, without having to define
7 on new points (i.e., with V5 := 0", we can compute V; = 7((K[i][| 0" )@ V;_1) fori = 1,...,w).
Let #K denote the number of fixed keys, note that with this we can express the probability of
aux = 14 as
#K #K
Prlaux = 14] = Fofkeys  2h

So it remains to bound # K. Below, we will first define an event v (think of vy as a boolean variable
where 9 = 0 which means the condition holds, and 79 = 1 means it failed), where conditioned on
~0 holding, the number of fixed keys #K can be upper bounded with q. We’ll show that vy fails
with probability at most ¢2/2"~°, which then gives us the bound in (19).

Unfortunately, the ¢2/2"~° term is quite large, in particular, it would dominate our bounds for
Sponge. To get rid of this term, we generalise the event 7y to vy, for any m € N. For 73,1 we can
show that it fails with only extremely small probability < 27", and conditioned on ~v3,_1 we can
still upper bound the number of fixed keys #K with gn™ (as opposed to ¢ under ~p). This will then
give us the bound (20).

The event 9. The event ~g fails if during the experiment (during which we made at most ¢
invocations to 7) we made a forward or backward query, where the output collided with some
previous value on the last n — b bits. Concretely, 79 = 1 if at some point we made either a fresh
forward query X and got the output Y <« 7(X) where T was already defined on some (X', Y”)
satisfying Y[b+1...n] = Y/[b+ 1...n], or an inverse query Y and got the output X « 7 (V)
where some (X', Y”) satisfies X[b+ 1...n] = X'[b+ 1...n]. The probability of v failing can be
bounded by a standard birthday bound

Pryo = 1] < ¢*/2" . (21)
Moreover, we claim that
Prlaux = L | 70 = 0] < #K/2 < ¢/2" . (22)
We postpone the proof of (22), and note that now using that

Prlaux = L] = Prlaux = L1 A v, = 1] + Prlaux = L1 A v, = 0]

Pr
Pr[ym = 1] + Prlaux = L | 7y, = 0] (23)

N

implies the first bound (19) in the statement of the claim.
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The event 7y,. For m € Nt the event ~,, fails if we made m + 1 or more forward queries (or
m + 1 backward queries) that collide on the last n — b bits. More precisely, v, = 1 if during the
experiment the permutation 7 was invoked on m + 1 forward queries X ... X,, which resulted in
answers Y; <« 7(X;) that all had the same last n — b bits, similarly for backward queries. We claim
the following:

Claim.
Pr[’)/3n_1 = 1] <27 (24)

Proof (of Claim). This follows by a Chernoff bound: Assume we made a forward query Yy « 7(Xy)
(backwards queries are proven similarly) to 7. Subsequently, we make at most g other forward
queries, and for any of those queries, the probability that their output collides with Yy on the last
n —b bits is 1/2"%.14 The expected number of such collisions p is thus < ¢/2"7? < 1 (as we assume
q < 2"7?). Using Theorem 4 with § = 3n — 1 and pu < 1,

Pr[# of collisions > 3n] < e~ (Bn=1)?/Gn+1) < g=2n

The above bounds the probability of a particular query being ”hit” by 3n — 1 or more subsequent
queries. Taking the union bound over all ¢ < 2"7% < 2" such queries proves (24) as 27272" = 27",

O
It remains to prove that conditioned on 73,1 = 0, the number of fixed keys can be bounded as
bw w
K 29272 - (3n—1)2
Pr[aux =14 | Y3n—1 = 0] < #* < a ( ’ ( n )2) < q (25)

= gbw 2bw = 2(b—logz(3n)w,1 ’
Before proving this, note that plugging in the bounds (25) and (24) to (23) implies statement (20)
of the claim.

BOUNDING #7T' ASSUMING 7, = 0. It remains to prove (22) and (25). For this we build a tree from
the partially defined 7 which will capture the possible computations of K’ from K = (K[1],..., K[w])
as follows:

- The root of the tree is v and we assign the label 0™ to it (we will write v’ to denote the label of
v and €’ to denote the label of an edge e).

- For every k1 € {0,1}* on which 7((k1|0"?) @ v) is defined, we add a node v;, with label
v, = 7((k1]0"?) @ v) and a directed edge ex, = (v, vy, ) with label €, = (k1|0n=b @ ).

- We continue to build this tree level by level. Assume we build level ¢ < w (the root is level 0,
and we just described how to build the nodes on level 1).
The nodes on level i are named vy, _x, (each k; € {0,1}%), consider any such node. If there
exists ki1 € {0,1}° s.t. T((kiy1]|0"70) @ vy, g,) is defined, then add a node v, _k, k;,, With
label 7((k;11]0"7?) @”;ﬂ,...,kiﬂ) and connect v, and vy, with
label (ki1[0"~") @ vy,

IS

ki With an edge eg,; | g,

Note that the computation of a key K’ from a fixed key (K[1],..., K[w]) corresponds to a path
from the root to the node vgy,.. k[w], @and the label of this node is K'. So, every leave of this tree
at the last level w correspond to a fixed key.

14 This is not exactly true, as m is a permutation not a random function, but this doesn’t matter as it will finally
bound the probability in the right direction.
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The collapsed Tree Graph Gz. Consider the tree we just defined, then we denote with G% the
(directed, loop-free) graph we get when merging all nodes with the same label in the same layer of
the tree.

The 9 Case. To prove (22), we will show that #K < ¢ if 9 = 0. This follows from the following
two claims:

Claim. If Gz is a tree (i.e., we haven’t collapsed any labels), then there are at most ¢ fixed keys.

Proof (of Claim). In G# every node at level w (recall that there are at most ¢ nodes in total)
corresponds to exactly one fixed key, as in a tree there can be only one path from any node to the
root. O

Claim. If g = 0 then G5 is a tree.

Proof (of Claim). It will be convenient to assume that the very first query made by the adversary
was a forward query 0" to 7. Assume Gy is not a tree, we must show that then v = 1. As Gz
is not a tree, there is at least one vertex v* with in-degree two. Let vy and v; be the two nodes
that point to v*, then vj[b + 1...n] = v{[b + 1...n].15 If both outputs vj), v} resulted originally
from forward queries to 7 then by definition 79 = 1 and we’re done. So, assume that at least one
of them, say v(), resulted from an inverse query. Let vy be a parent of vy and ey the edge va — wy.
Note that e} < 7 1(v}) is the label of ey, and that v[b+1...n] = ej[b+1...n] (as the label of a
vertex and any edge leaving it are always identical on the last n — b bits). We consider 3 possible
cases:

- If vy is the root, then we made an inverse query whose output ended with 0"~°, and thus we
have a collision with the very first forward query and thus 79 = 1 (recall that we assumed the
first query is the forward query 0™).

- If v}, was the output of a forward query, then this forward query collides on the last n — b bits
with the inverse query on input v, (as explained above) and thus vy = 1.

- If v is the output of an inverse query, we repeat the above argument with v taking the role of
(U

In the first two cases above we have 7y = 1, in the last case we walked down one layer in in Gz,
and we can do this at most w times before hitting the root (and thus land in the first case), so
ultimately vo = 1 will hold. O

The v, Case. We just bounded #K assuming 7y, we will now show a bound for #K assuming
only the weaker condition ~,, for some m > 0 holds.

Recall that with any fixed key (K[1],..., K[w]) we can associate a path of length w from the
root v to vk, K[w] in Gz, and each edge in Gz corresponds to a query (either a forward or a
backward query) that was made to 7. We define the signature s € {0,1}* of K as follows: For
je{l...n}, s[j] = 0 if the query corresponding to the j-th edge on the path was a forward query,
and s[j] = 1 otherwise.

With GZ we denote the subgraph of Gz where we delete every edge e at level 7 if this edge
corresponds to a forward query but s[i] = 1 or to a backward query but s[i] = 0. Note that any
path corresponding to a fixed key K with signature s in G is also contained in GZ. Thus, to upper
bound #K it suffices to upper bound the number of paths in each GZ separately, which we do in
the following claim.

!5 This holds as for some x,y € {0,1}® we have vy @ (z|0" ) = v} ® (y[0"7?).
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Claim. If ~,, = 0, then for any signature s, any node u (with label «’) at level w in G, the number
of paths from the root to u (or equivalently, the number of fixed keys with signature s that result
in a key Vi, = «’ using the rule (16)) is at most

bw

22m

wlg

Proof (of Claim). We will assume that m < 2° as otherwise the claim is trivial (as the bound is
larger than the total number of paths in G which is at most 2°%).

As a warm-up, consider the case where the signature is s = 0%, i.e., all forward queries. As
Ym = 0, we never had a m + 1-wise collision in forward queries, which implies that the in-degree
of any node in G% is at most m. So, the single node v at level w is connected to at most m nodes
at level w — 1, each node in level w — 1 is connected to at most m nodes at level w — 2, etc. With
every level the number of paths increases by a factor m, and thus when we reach the root (at level

0) we have at most m" < 2% m% paths.

Let |s| denote the Hamming weight (i.e., the number of 1’s) of s. Now consider any s where
|s] < w/2. We can make the above argument, that going from level i down to ¢ — 1 increases the
number of paths by a factor at most m for any level ¢ where s[i] = 0. For the remaining |s| steps
we can’t say anything, except the trivial fact that the outdegree of any node is bounded by 2°, and
thus going from level i down to level i — 1 increases the number of paths by a factor at most 2°
even if s[i] = 1. The total number of paths is thus at most

blslppw=Isl < 2% m%
where we used that |s| < w/2 and m < 2°.

For the remaining cases where |s| > w/2, can do a similar argument, but now we upper bound
the number of paths in the other direction, starting at the root going towards u. By definition,
¥m = 0 implies that for any i € [n] with s[i] = 1, the nodes in GZ at level i — 1 have out-degree at
most m (as otherwise we had at least m + 1 collisions on inverse queries, and thus ~,, = 1). By a

counting argument as before, the number of paths from the root to u can be now upper bounded
by

w
2

9b(w—Is)lsl < 9%,

where we used that |s| > w/2 and m < 2°. O

As there are at most ¢ nodes in G (and thus also in G% for any s), and 2" possible signatures,
using the above claim we get for m = 3n — 1

#K _q-2°-2% (30— 1)¥ q

S S

2bw 2bw blog(Bn)—1,, *

This proves (25). O

H Standard-model Bounds

We give standard-model security statements for keyed sponges and for TCBC. In particular, our
result for keyed sponges is a direct corollary of the one for TCBC.

H.1 Truncated CBC

We start with standard-model security of TCBC when instantiated with a block cipher which is a
secure pseudorandom permutation (PRP).
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BLocCK CIPHERS AND PRPs. Recall that a block cipher is a keyed function E : {0,1}" x {0,1}" —
{0,1}™ such that Ex € Perm(n), i.e., it is a permutation, for all k-bit K. The traditional security
of E is that of being a pseudorandom permutation (or PRP, for short), defined via the advantage
measure

AdvEP(A) = ’Pr [K E 40,1} AFx = 1] — Pr |:7T & Perm(n): A" = 1]’ .

Informally, we say that F is a PRF, or E is a PRP, if the corresponding advantage is “negligible”
for all “efficient” A’s.

SECURITY OF TRUNCATED CBC. The following theorem uses Theorem 1 to show that truncated
CBC is a PRF whenever the underlying block cipher E is a PRP. In particular, we denote as

TCBC, pad|E] the keyed function which on key K and input M outputs TCBCEI;ad(M).

Theorem 5 (Standard-model security of TCBC). Let E: {0,1}" x {0,1}" — {0,1}" be a block
cipher, and let pad : {0,1}* — ({0,1}")* be a padding scheme. Let A be a prf-adversary making at
most q queries, each of length at most £ < 2"* n-bit blocks (after padding). Then, there ezists a
prp-adversary B such that for any t = 1,

rf r
Adv.ﬁ.CBCnpad[E] (A) < g-£-AdvE®(B) + B(q,t,n,r,t),

where B has Time(B) = Time(A) + O(q - £) and makes at most q - { permutation queries, and
B(q,t,n,r,t) is the term on the right-hand-side of Theorem 1.

Proof (Sketch). The adversary B, given oracle access to a permutation 7 € Perm(n), simulates the
interaction of A with TCBC[7] using the permutation 7, and terminates by outputting .4’s output.
Then, this clearly implies by the triangle inequality that

AdvPT

r rf
TCBC, puqlE] (A) < Advg®(B) + AdVPI’CBCT,pad[n] (A),

where TCBC, paq[7] is TCBC instantiated with a randomly sampled permutation = & Perm(n).
Theorem 1 directly bounds the second term as B(q, ¢, n,r,t). O

H.2 Sponges

In this section, we combine our result on truncated CBC above with the very elegant approach
of Chang et al. [14]. The following discussion refers to the GSponge construction from Section 5.
(Recall that GSponge sets the n-bit initialization value to equal the secret key K.)

XOR PRP SecurIiTY. The following security notion was considered in [14]. For an (unkeyed)
permutation m € Perm(n), we consider the keyed permutation 7" : {0,1}"" x {0,1}" — {0,1}"
such that

(M) = (0" | K) @n(M @ (0" | K)) - (26)

It is convenient to denote this as a security property for a permutation 7, and in particular we
define the (r,®)-prp advantage as

Adv@)PP(A) = AdVPP(A) .

Informally, we say that 7 is (r,@®)-prp-secure if Advgrr’@)_prp(A) is “negligible” for all efficient ad-
versaries A.
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SECURITY OF GSponge. We apply Theorem 5 to prove standard-model security of GSponge. To
this end, let pad : {0,1}* — ({0,1}")* be a padding scheme. Then, for an n-bit string K, we
define pady : {0,1}* — ({0,1}") as the new padding scheme which first computes pad(M) =
M][1]...MJ£], and then replaces the first block M[1] by M[1]@® K. Then, it is easy to verify that
for all keys K = Ko | K1 (where Ky € {0,1}" and K; € {0,1}"") and messages M, we have

GSponge™ (K, M) = TCBC X', (M), (27)

T,pad r,pad %,

where Ko := Ko | 0"
Therefore, security follows directly as a corollary.

Theorem 6 (Standard-model security of GSponge). Let m € Perm(n) and pad : {0,1}* —
({0, 1Y")* a padding scheme. Let A be a prf-adversary making at most q queries, each of length at
most £ < 2% n-bit blocks (after padding). Then, there exists an (®,r)-prp-adversary B such that
foranyt>=1,
£ -
AdVErSpongenpad [7] ("4) < Advgrn@) prp(B) + B(Qv ﬁ, n,r, t) )

where B has Time(B) = Time(A) + O(q - £) and makes at most q - { permutation queries, and
B(q,t,n,r,t) is the term on the right-hand-side of Theorem 1.

Proof (Sketch). The adversary B, given oracle access to a permutation 7 € Perm(n), first samples

Ko < {0,1}", and then simulates the interaction of A with TCBC, pad. [7] using the permutation
0

7, and terminates by outputting A’s output. Then, this implies by the triangle inequality that

AdvPT

f
GSponger g (A) < 4 £+ ANVET(B) + B, [Ad‘@rcscr,pad,? ) (A) ] ’

r,pad

where TCBC, pad. [7] is TCBC instantiated with a randomly sampled permutation 7 & Perm (n),
0

and the expectation is over the random choice of Ky < {0,1}". Theorem 1 directly bounds the
second term as B(q, ¥, n,r,t) for any choice of Kj. )

RELATION TO THEOREM 2. We remark that Theorem 6 cannot be used to obtain the same bound as
Theorem 2 in a generic way. On the one hand, it is true that in the ideal permutation model (where
7 is sampled randomly and the adversary can evaluate 7 and 7! directly) we can unconditionally
show that (using a variation of the security proof of the Even-Mansour cipher [21])

AdvE @ PR(4) < 0 (%0 (2%)

for any adversary .4 making ¢. permutation queries and ¢, queries directly to 7 or 77!, and thus
in Theorem 6 (where g. = ¢ - ¢) this would give a term of gqﬁ;qf , whereas the corresponding term in
Theorem 2 is of the order of O(¢ - q - ¢./2").

THE SECURITY OF Sponge. For black-box keying, where the key is pre-pended to the message,
it is much harder to provide a clean standard-model security analysis. Similar to the lifting of
NMAC bounds to HMAC [3], this can be done via an ad-hoc combinatorial assumption stating
that the permutation 7 produces an n-bit key with distribution computationally close to uniform
after absorbing a sufficient number of b-bit random key strings.
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I Detailed comparison with [2]

The recent work of Andreeva et al. [2] also gives a comprehensive analysis of keyed sponges. We
summarize their contribution in the language of our paper, noting that despite a superficial sim-
ilarities, the two papers address two complementary technical issues. In particular, [2] does not
address the issue of tight bounds unlike our work.

The comparison with [2] is best summarized in the context of Theorem 6 above. The first
main contribution of this paper with respect to the work of Chang et al. [14] is to improve the
information-theoretic term to B(q,¢,n,r,t) in Theorem 6. In previous works, including [2], this
term is of the order of O(g2¢2/2"~"), which is much larger than what we obtain here, which is of
the order of O(g2/2"~") when ¢ < 2". We see this as our main technical contribution.

In contrast, [2] targets the first term Advgf’@)_prp(lg), and shows that the query complexity of B
can be reduced from gf to a quantity u called the multiplicity. The latter is a function of the input-
output pairs {(u;, v;)} corresponding to the at most ¢ - ¢ evaluations of 7 within the ¢ construction
queries. The quantity u is defined by adding u, and pu,, where p, is the maximal number of pairs
(us, v;) such that u;[1...7] = a (taken over all r-bit strings a), and symmetrically, j is the maximal
number of pairs (u;,v;) such that v;[1...r] = b, taken over all r-bit strings b. We note that this
quantitatively more precise statement can also be applied to our theorem above, while preserving
our improved terms B(q,¢,n,r,t), and thus both works are complementary. We also note that in
the worst case p can be of the order ¢ - ¢ (for example, it is not too hard to force all inputs u;’s to
have their first r bits equal 0).

To conclude, we observe that ideal-model bounds are then obtained by using the above bound
on Advﬁr’”@)‘p'p(zs) from (28), which now result in an extra term O(ugr/2"~"). This should be
compared with the additional term involving ¢, and gc we obtain via Theorem 2, which is of the
order O((qoqr +4qx)/2"") (again, assuming ¢ < 2"). The term from [2] is hence larger in the worst
case where i = ¢ - ¢ and is superior to ours only when p < min{/, q¢}.
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