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Abstract. We prove (nearly) tight bounds on the concrete PRF-security of two con-
structions of message-authentication codes (MACs):
(1) The truncated CBC-MAC construction, which operates as plain CBC-MAC (without

prefix-free encoding of messages), but only returns a subset of the output bits.
(2) The MAC derived from the sponge hash-function family by pre-pending a key to

the message, which is the de-facto standard method for SHA-3-based message au-
thentication.

The tight analysis of keyed sponges is our main result and we see this as an important
step in validating SHA-3-based authentication before its deployment. Still, our analysis
crucially relies on the one for truncated CBC as an intermediate step of independent
interest. Indeed, no previous security analysis of truncated CBC was known, whereas
only significantly weaker bounds have been proved for keyed sponges following different
approaches.
Our bounds are tight for the most relevant ranges of parameters, i.e., for messages of
length (roughly) ` ď mint2n{4, 2ru blocks, where n is the state size and r is the desired
output length; and for q ě ` queries. Our proofs rely on a novel application of Patarin’s
H-coefficient method to iterated MAC constructions.

Keywords. Message-authentication, sponges, CBC-MAC, H-coefficient method, con-
crete security.



1 Introduction

Message-authentication codes.Message authentication codes (or MACs, for short) are central
components of secure communication protocols like TLS. Secure MACs are required to be unpre-
dictable, meaning that it is hard for an attacker to predict the MAC output (usually called the tag)
under a secret key on a message, even given the tags of a number of (different) messages.

Practical MAC constructions have been based on block ciphers – like cipher block chaining
(CBC) and its variants (first analyzed in [5]) – and on hash functions – typically, using HMAC [4].
Security analyses often show that MAC constructions achieve a property even stronger than un-
predictability, namely that of being a pseudorandom function (PRF) [23], i.e., the outputs under a
secret key are indistinguishable from random, except with a (small) distinguishing gap ε.

Contributions, in a nutshell.This paper studies the concrete PRF security of MAC construc-
tions (i.e., how small can ε be?) by solving two technically connected open problems whose solutions
require techniques that are substantially different from those in previous MAC analyses: First, we
prove bounds for the concrete security of a variant of CBC-mode – truncated CBC – which remained
unanalyzed to date. Second, we show improved bounds for the security of MAC constructions based
on the sponge hash-function construction [12] which underlies the SHA-3 standard [1].

Our bounds are tight for messages whose length does not exceed (roughly) mint2r, 2n{4u blocks,
where r is the output length of the constructions and n is the underlying block length – a constraint
satisfied in most envisioned application scenarios.3 The following paragraphs will elaborate on our
contributions in detail.

CBC-MACs. The cipher block-chaining mode (or CBC, for short) is arguably the most natural
block-cipher based MAC. It has been standardized already three decades ago [16,29], and its security
was first analyzed by Bellare, Kilian, and Rogaway [5]. In its basic form, CBC is very simple:
Given a block cipher E with n-bit block size, an input M P t0, 1u˚ is padded into n-bit blocks
M “ M r1s . . .M r`s, and then for a key K, CBCKpMq outputs the value Y` resulting from the
following iterative computation

Y0 Ð IV , Yi Ð EKpYi´1 ‘M risq , (1)

where IV is an appropriate initialization value, e.g., IV “ 0n. Unfortunately, the basic CBC con-
struction is only secure for messages of equal length `, as proved in [5]. Otherwise, one can easily
mount an extension attack, i.e., obtaining CBCKpMq “ Y , and CBCKpY ‘ IV‘M 1q “ Y 1 (for n-bit
values M , M 1) reveals us that CBCKpM }M 1q “ Y 1 without having to query M }M 1.

Three (variants of) solutions have been considered to prevent extension attacks: The first one
is to consider prefix-free encoding of messages [37]. The second, known as encrypted CBC, outputs
EK1pCBCKpMqq, under a key K 1 independent from K. (This has been used in EMAC, developed
as part of the RACE project [40]). Also, combinations of these ideas have been used in other
constructions, like XCBC [13], TMAC [28], and OMAC [25]. The third solution, considered in this
paper, is to use truncation, i.e., to only output the first r ă n bits of the output.

While the first two variants have been extensively analyzed [5,37,41,30,26,6,8,38,35,33], we are
not aware of any formal analysis of truncated CBC having ever been published, let alone a tight
one, even though truncation did appear in standards [16,29], mostly to increase flexibility.

Hash-function MACs. It appears simpler to derive hash-based MACs: It is not hard to prove that
MACKpMq “ HpK }Mq is a secure MAC (and PRF) for an ideal hash function H : t0, 1u˚ Ñ t0, 1un,

3 In particular, for r “ 64, the restriction induced by 2r blocks still accommodates messages of length up to (and
beyond) 1.47ˆ108 TB – around 10 times the predicted storage capacity of NSA’s “Utah Data Center”. For SHA-3,
we even have r ě 224 and n “ 1600.
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i.e., which behaves as a random oracle [7]. Unfortunately, legacy hash functions like MD5, SHA-1,
and SHA-256 based on the Merkle-Damg̊ard construction [18,32] are far from ideal. In particular,
they allow for extension attacks – given HpK }Mq (and without knowing K and M), one can
compute HpK }M }M 1q for any M 1. HMAC [4] was the first hash-function based MAC construction
preventing such extension attacks, and has been the object of several security analyses [3,27,19,22].

Sponges. In sharp contrast with legacy hash functions, the sponge construction [12] was designed
with the goal of behaving as a random oracle (in the sense of indifferentiability [31]). The construc-
tion relies on an invertible permutation π on n-bit strings.4 For a parameter b ă n, it then pads
the message M into b-bit blocks M r1s, . . . ,M r`s, and keeps a state Si }Ti, where Si P t0, 1u

b and
Ti P t0, 1u

n´b, and outputs S`r1..rs for some parameter5 r ď b after the following iteration:

S0 }T0 Ð 0n , Si }Ti Ð πppSi´1 ‘M risq }Ti´1q .

A variant of KECCAK [11], using the sponge paradigm, was selected as the new hash function
standard SHA-3 [1] by NIST.

In view of the lack of extension attacks, it is suggested (e.g. in [12]) that sponge-based message-
authentication should simply occur by prepending the key to the message, with no need of using
the HMAC construction. This mode was analyzed in [9] and a similar bound can also be inferred
from the indifferentiability analysis of the sponge construction [12]. However, as we show below,
these bounds are far from tight and are substantially improved by our work.

Our contributions, in detail. We present two technically related results:

Security of truncated CBC. We prove that no attacker making q queries of length at most
` ă 2n{4 to TCBC using a random permutation can distinguish it from a random function, i.e.,
a function returning random outputs for each distinct message, except with distinguishing gap

εpqq “ O

ˆ

`q2

2n
`
qpq ` `q

2n´r

˙

.

This in turn implies security when the random permutation is replaced by a secure block cipher
which is a good PRP. The first term matches the one from the best known analysis of prefix-free
CBC [6]. Moreover, we show that the second term is tight for q ě `, i.e., we exhibit a generic

distinguishing attack with advantage Ωp q2

2n´r
q.

Security of sponge-based MAC. We prove that no attacker making qC queries of length at
most ` ă 2n{4 to the keyed Sponge construction using a random permutation π, and qπ queries
to π itself, can distinguish it from a random function, except with distinguishing gap roughly

εpqC , qπq “ O

ˆ

`qCpqC ` qπq

2n
`
qCpqC ` qπ ` `q

2n´r

˙

,

for sufficient key length. This model – where π is ideal – is the traditional model for studying
sponge-like constructions and their security against generic attacks. The previously best known
bound for sponge-based authentication in this model [9] was dominated by a term of much
larger magnitude Op`2q2C{2

n´rq. We also show tightness of the second term for ` ă qπ via an
attack achieving distinguishing advantage Ω

`

qC ¨qπ
2n´r

˘

.

4 Naming consistency with the TCBC setting forces us to deviate from the usual naming in the literature on sponges,
where our parameters n, b, r are usually denoted b, r, d; respectively. Hopefully this does not cause any confusion.

5 The sponge paradigm also allows for output of r ą b bits obtained by repeated application of π, an option that
does not occur for any of the SHA-3 parameters, and that we will not consider for simplicity in the present paper.
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We stress that the salient feature of these bounds is that the dependence on the length ` only affects
terms with denominator 2n, or appears in linear terms `q{2n´r (where here and below, for sponges
q naturally represents qC). This makes our bounds tight, as long as ` ď mint2r, 2n{4u and q ě `
– which is a very common scenario. We leave the question of proving tightness of the remaining
terms (or, alternatively, of improving our bounds) as an open problem which we believe to be quite
challenging.

The truncated CBC result makes it evident that security requires either r fairly small (this is
the case when using AES with n “ 128), or a restriction on the maximum number of queries q,
or the usage of a block cipher with larger block size n, such as Rijndael.6 A small r is acceptable
in settings where we use TCBC to obtain pseudorandom bits, or where it is used as a MAC, but
only security against few (ă 2r) verification queries is needed. Either way, this is by far not an
issue in the setting of sponges, where n is usually much larger than r. (For example, SHA-3-224
has r “ 224, b “ 1152 and n “ 1600.) In fact, our results show that the parameters used in SHA-3
are more than generous for usage as a MAC, and setting e.g. r “ 64 and n “ 192 would already
imply comfortable levels of security against generic attacks.

Another interesting consequence of our results is that with respect to pseudorandomness (and
MAC) security, we are not constrained to any block length b ă n when evaluating the sponge
construction – we could well XOR n-bit message blocks to the whole state. Indeed, our proof
considers this generalized variant that pads the message into n-bit blocks that are XORed to the
state during the absorption phase; this highlights the connection to the TCBC construction. Shorter
block lengths can then be enforced by the padding function setting some of the bits to be 0 (e.g.
the last n´ b bits). Note that full, n-bit blocks were already used in the design of the sponge-based
MAC construction donkeySponge [10], and our result implicitly covers this construction as well.

Our techniques. The analysis of TCBC immediately appears harder than that of related con-
structions. Existing proofs are based on “Bad event analyses”: For example, for encrypted MAC
(as in EMAC), one defines the bad event that for two distinct query messages M,M 1, CBCπpMq
and CBCπpM 1q collide, where CBCπ denotes (plain) CBC-MAC using a random permutation π. It
is not hard to prove that as long as no such collision occurs, the outputs π1pCBCπpMqq are indis-
tinguishable from random for an independent permutation π1, and the distinguishing advantage is
upper-bounded by the probability of such collisions.7 This implies indistinguishability when π and
π1 are replaced by EK and EK1 , respectively, for a block cipher E and independent keys K and K 1.
Similarly, for prefix-free CBC the bad event is that in the evaluation of CBCπpMq, the last internal
query to π is not fresh, i.e., it was already made within the same or an earlier evaluation of CBCπ.

For TCBC, however, if we make a query M , resulting into output Y (consisting of the first r
bits of CBCπpMq), we cannot prevent the adversary from issuing a later query M 1, with output
Y 1, where M 1 is a prefix of M . Previous machinery only tells us that CBCπpMq and CBCπpM 1q

are unlikely to collide, but this is insufficient to argue randomness and independence of Y and Y 1.
Moreover, the last query to π within the evaluation of CBCπpM 1q cannot be fresh, as the same
query was made earlier within the evaluation of CBCπpMq. One cannot swap the order of these
queries either, as the choice of M 1 may well depend adaptively on Y .

To deal with this, our proof will crucially use Patarin’s H-coefficient technique [36], as recently
revisited by Chen and Steinberger [15]. In this framework, one fixes a (deterministic) adversary A
and a compatible transcript pM1, Y1q, . . . , pMq, Yqq (i.e., A indeed would ask such queries M1, . . . ,Mq

if fed with the corresponding answers Y1, . . . , Yq) and then compares the probabilities that such a

6 Also note that the domain of a block cipher can be extended using e.g. EME [24], or even better suited to preserving
tightness, recent beyond-birthday secure constructions by Shrimpton and Terashima [39].

7 This notwithstanding, proving bounds on the collision probability is far from trivial [6,38].
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transcript would indeed occur with A in the real and in the ideal worlds, respectively. It is easy to
see that the latter ideal-world probability is exactly 2´rq, as all outputs of a random functions on
(distinct) inputs M1, . . . ,Mq are random.

However, the real world (where TCBC is evaluated), is far more complex. We are going to show
the probability that Pr rTCBCπpMiq “ Yis is at least p1 ´ εq2´rq, for some small ε, as long as π is
uniformly distributed, conditioned on the following being true:

- For every message Mi, the value Zi Ð CBCπpMiq is unique. (This is equivalent to stating that
the π-query leading to the value Zi in the evaluation of Mi is unique.) Recall that the actual
output on input Mi consists of the first r bits of Zi.

- For every message Mi, and every message Mj such that Mi is a prefix of Mj , the value Zi,j Ð
CBCπpMi }mq is unique, where m is the first n-bit block in Mj after the end of Mi.

It turns out that those conditions are satisfied also except with some small probability δ. The actual
indistinguishability bound happens to be ε` δ by the H-coefficient method, but determining both
values will be at the core of the proof, and far from trivial. While an upper bound on δ follows by
using techniques from [6,38], upper-bounding ε will require substantially new techniques.

Our security proof for sponges is very similar, and will essentially rely on the argument that
with good probability (roughly `qπq{2

n), queries to π made in the evaluation of the sponge queries
and direct queries to π by the attacker are disjoint. However, while this is fairly simple to show
when the sponge construction is keyed by setting the initial value pS0, T0q to be an n-bit secret
key, proving the same statement when the key is input through several absorbing steps turns out
to be significantly more involved. We also give a security proof for this more complex setting using
techniques inspired by [15]. Although our analysis assumes that the (padded) keys and the actual
message occupy separate blocks, our results can be extended to the completely general case at the
cost of additional notational overhead.

Comparison with previous results on sponges. As already mentioned, the work [9] gives a
bound for PRF-security of the sponge construction in the random permutation model. Their bound
is dominated by a term which (with respect to our naming conventions) is roughly Op`2q2{2n´rq,
significantly worse than the terms Opqpq ` `q{2n´rq and Op`q2{2nq from our analysis.

A recent paper by Chang et al. [14] also provides a security analysis of variants of sponge
constructions in the standard model. We note that (a simple twist of) their very elegant trick
reduces the security of the sponge construction with a random IV as the key (this is the construction
GSponge below) to the security of TCBC for a random permutation and the PRP security against
`q queries of a carefully crafted block cipher Eπ. The latter is built from the permutation π inside
the sponge construction as EπKpXq “ p0

b }Kq ‘ πpX ‘ p0b }Kqq for X P t0, 1un and K P t0, 1un´b,
where b is the block length. This construction is essentially a low-entropy single-key version of the
Even-Mansour cipher [21,20], and one can apply the same analysis (with a lower-entropy key) in the
setting where the attacker makes qπ queries to π, this results in an additive term of Op`qqπ{2

n´bq.
In contrast, our analysis only incurs into an extra term of Op`qqπ{2

nq.

More on truncation. There is a folklore belief that given a secure MAC, truncating its output
may actually increase its security by hindering collision detection. This has never been verified
formally, and providing an answer is an interesting open question. Nonetheless, ourΩpq2{2n´rq lower
bound does not contradict this belief, as we are applying truncation to a construction which (by
itself, without truncation) is not a secure MAC, as our attacks query for non-prefix free messages.

2 Preliminaries

Basic notation. We denote rns :“ t1, . . . , nu. Moreover, for a finite set S (e.g., S “ t0, 1u),
we let Sn, S` and S˚ be the sets of sequences of elements of S of length n, of arbitrary (but
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non-zero) length, and of arbitrary length, respectively (with ε denoting the empty sequence). We
denote by Sris the i-th element of S P Sn for all i P rns. Similarly, we denote by Sri . . . js, for every
1 ď i ď j ď n, the sub-sequence consisting of Sris, Sri ` 1s, . . . , Srjs, with the convention that
Sri . . . is “ Sris. Moreover, we denote by S }S1 the concatenation of two sequences in S˚, and also,
we let S � T be the usual prefix-of relation: S � T :ô pDS1 P S˚ : S }S1 “ T q.

We also let Fcspm,nq be the set of functions mapping m-bit strings to n-bit strings, and let
Permpnq Ď Fcspn, nq be the set of permutations on the set of n-bit strings. We use the shorthand
Fcsp˚, nq to denote the set of functions from t0, 1u˚ to t0, 1un. Finally, we denote the event that an
adversary A, given access to an oracle O, outputs a value y, as AO ñ y.

Pseudorandom functions and permutations. We consider keyed functions F : t0, 1uκ ˆ
t0, 1u˚ Ñ t0, 1ur taking a κ-bit key, arbitrary long messages M P t0, 1u˚ as inputs, and returning
an r-bit output. In particular, we denote as FK the map such that FpK, ¨q “ FKp¨q. We are going
to consider the security of F as a pseudorandom function (or PRF, for short) [23]. This is defined
via the following advantage measure, involving an adversary A, such that

AdvprfF pAq :“
ˇ

ˇ

ˇ
Pr

”

K
$
Ð t0, 1uκ : AFK ñ 1

ı

´ Pr
”

f
$
Ð Fcsp˚, nq : Af ñ 1

ıˇ

ˇ

ˇ
.

Similarly, a block cipher is a keyed function E : t0, 1uκˆt0, 1un Ñ t0, 1un such that EK P Permpnq,
i.e., it is a permutation, for all κ-bit K. The traditional security of E is that of being a pseudorandom
permutation (or PRP, for short), defined via the advantage measure

AdvprpE pAq “
ˇ

ˇ

ˇ
Pr

”

K
$
Ð t0, 1uκ : AEK ñ 1

ı

´ Pr
”

π
$
Ð Permpnq : Aπ ñ 1

ı
ˇ

ˇ

ˇ
.

Informally, we say that F is a PRF, or E is a PRP, if the corresponding advantage is “negligible”
for all “efficient” A’s.

We consider constructions Crπs : t0, 1u˚ Ñ t0, 1ur invoking a permutation π P Permpnq (we
sometimes write Cπ instead of Crπs), and denote by C the resulting keyed function where the key is
a permutation π P Permpnq (i.e., there are 2n! key values). Moreover, we can consider the natural
instantiation of π via a block cipher E, and denote by CrEs the function which, for key K and input
M , returns CrEKspMq. Then, the following relates the prf advantages for CrEs and for C.

Proposition 1. For every adversary A with running time t and making q queries to its oracle,
where each query results in at most ` invocations of the underlying π when input to Crπs, there
exists an adversary B such that

AdvprfCrEspAq ď AdvprpE pBq ` AdvprfC pAq ,

where the adversary B makes q ¨ ` queries, and runs in time t` Õpq ¨ `q.

In other words, if we assume that E is a good PRP (for example, E is AES), then we can focus
on upper bounding the distinguishing advantage when C is instantiated with a randomly chosen
permutation, which is a truly information-theoretic problem.

Pseudorandom functions in the ideal permutation model. For our analysis of sponges
below, we are going to consider constructions Fπ which make queries to a randomly chosen permu-

tation π
$
Ð Permpnq which can be evaluated by the adversary in both directions. For this case, we

use the following notation to express the PRF advantage of A:

AdvprfF,πpAq :“
ˇ

ˇ

ˇ
Pr

”

K
$
Ð t0, 1uκ, π

$
Ð Permpnq : AFπK ,π,π

´1
ñ 1

ı

´

´ Pr
”

f
$
Ð Fcspm,nq, π

$
Ð Permpnq : Af,π,π´1

ñ 1
ı ˇ

ˇ

ˇ
.
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0n ‘ π ‘ π ¨ ¨ ¨ ‘ π /
r

TCBCr,padrπspMq

M r1s M r2s M r`s

Fig. 1. Truncated CBC. Representation of TCBCr,padrπs. Here, M r1s, . . . ,M r`s are n-bit blocks
resulting from applying the padding scheme pad to the input message M P t0, 1u˚.

MACs and Unpredictability. It is appropriate to note that our actual target is that of a
message-authentication code (MAC). The requirement on a keyed function F : t0, 1uκ ˆ t0, 1u˚ Ñ
t0, 1ur to be a secure MAC is that of unpredictability under a chosen-message attack, i.e., an attacker
A, given adaptive access to FKp¨q, cannot output a valid pair pM, τq such that FKpMq “ τ and M

was not queried to FK . We note that if AdvprfF pAq ď ε for any time t attacker A making q ` qV
queries, then no time t attacker making q queries to FKp¨q can output such a valid pair pM, τq
within qV attempts, except with probability at most ε` qV {2

r.

3 Truncated CBC and its Security

This first part of the paper deals with the concrete security of truncated CBC, which we first review.

Truncated CBC. We fix parameters r ă n and a padding scheme pad : t0, 1u˚ Ñ pt0, 1unq`,
uniquely encoding arbitrary strings into non-empty sequences of n-bit blocks. We stress that we
are not requiring the padding to be prefix-free. The canonical padding scheme computes padpMq by
appending a single 1-bit to M , and then sufficiently many 0’s to reach a length which is a multiple
of n. In particular, a message M is encoded into ` “ r

|M |`1
n s n-bit blocks.

We first introduce the CBC construction for padding scheme pad, based on π P Permpnq:

Construction CBCr,padrπspMq: // M P t0, 1u˚

(1) Compute padpMq “M r1s . . .M r`s (for some `).
(2) S0 Ð IV. For all i P r`s, compute Si Ð πpM ris ‘ Si´1q.
(3) Output S`

Then, for any π P Permpnq, truncated CBC (or TCBC, for short) behaves as follows (also cf. Figure 1
for a pictorial representation) on input M P t0, 1u˚,

TCBCpad,rrπspMq “ pCBCpadrπspMqq r1 . . . rs ,

i.e., it outputs the first r ă n bits of CBCpadrπspMq.

Security analysis.We prove the following theorem about the security of the TCBC construction
in the case where π is randomly sampled from Permpnq. By Proposition 1, this in particular implies
security when the permutation is instantiated with a block cipher which is a good PRP.

Theorem 1 (Security of TCBC). Let A be a prf-adversary making at most q queries, each of
length at most ` ă 2n{4 n-bit blocks (after padding). Let TCBC “ TCBCr,padrπs for a randomly
sampled permutation π P Permpnq. Then, for any t ě 1,

AdvprfTCBCpAq ď p6t` 17q
`q2

2n
`

7n ¨ q2

2n´r
`

8q`

2n´r
`

2q

2n
`

136`4q2

22n
`

2qt`1`t`1

2nt
. (2)

The proof of Theorem 1 is found below in Section 4, where we also give high-level overviews of
the individual components of the proof. Here, we first discuss the bound and its tightness.
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Discussion of the bound. The above bound requires some discussion. First off, note that q ă
2pn´rq{2 for the above bound to be negligible. We stress in particular that under the constraints
` ă 2n{4, the first three terms are the crucial ones, with the remaining terms being high order
terms: Indeed, 2q{2n is always negligible if the other terms are, and the second last term is for sure
negligible as long as ` ă 2n{4. For the final term, note that q` ă 23n{4 for the previous terms to be
negligible, and the term becomes negligible for t ě 4.

We now show that this bound is essentially tight for the case where ` ă 2r and q ě `. Indeed, we
show how to break TCBC with a q-query prf-adversary achieving distinguishing advantage roughly
Ωpq2{2n´rq. The attack works regardless of the permutation π used to instantiate TCBC.

Matching attack.For a parameter Q and t :“ rn{rs, the attacker AQ,t proceeds as follows, given
access to an oracle O, which we assume without loss of generality takes inputs M P pt0, 1unq`.8

Adversary AQ,t:

1. Query random Mi P t0, 1u
n for all i P rQs to O, obtaining output Yi P t0, 1u

r.
2. For all i P rQs and j P rts, query OpMi }Yi } 0n´r } 0npj´1qq, obtaining values Yi,j .
3. If there exist distinct i, i1 P rQs with Yi,j “ Yi1,j for all j P rts then output 1, else

output 0.

Note that the attacker makes q “ pt` 1qQ queries. We are going to show that

AdvprfTCBCpAq ě Ω

ˆ

r2q2

n22n´r

˙

,

independently of how the permutation π used by TCBC is instantiated.

Analysis.We first analyze what happens in the real world when O “ TCBCπ for some permutation
π P Permpnq. Let COLL be the event that for some Mi and Mi1 , we have πpMiqrr ` 1 . . . ns “
πpMi1qrr`1 . . . ns. Note that since the messages are chosen uniformly at random and independently,
by the Birthday bound we have Pr rCOLLs “ ΩpQ2{2n´rq. Moreover, given COLL occurs due to
message Mi and Mi1 , then by construction Yi,j “ Yi1,j for all j P rts. Therefore,

Pr
”

ATCBCπ ñ 1
ı

ě Pr rCOLLs “ ΩpQ2{2n´rq .

However, if O “ R for a truly random function R : t0, 1u˚ Ñ t0, 1ur then, unless there is a collision
among the values Mi (which occurs with probability OpQ22´nq), all values Yi,j ’s are independent
random r-bit strings, and thus the probability that there are suitable i and i1 is at most (again, by
the Birthday bound) Q22´rt ď Q22´n. Altogether, this gives us Pr

“

AR ñ 1
‰

ď 2Q22´n, for which
the advantage bound follows.

Forging attack.Note that it is very easy to turn the above attack into a forging attack. Indeed,
given access to TCBCπ, once we have found appropriate collisions Yi,j “ Yi1,j for all j P rts, it is
very easy to create a forgery, since Mi }Yi } 0n´r } 0nt and Mi1 }Yi1 } 0n´r } 0nt are also colliding –
we can forge a tag of the latter by learning the tag of the former.

4 Proof of Theorem 1

We will start with the high level overview of the proof of Theorem 1, which relies on Patarin’s H-
coefficient technique [36], for which we give a self-contained introduction. In particular, Section 4.1

8 Should we only be able to query TCBC via padded inputs, it is not hard to relabel messages in the attack to obtain
an equivalent attack.
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ε
0

0

πp0q

0 }0

πp0‘ πp0qq

0‘
πp
0q

0 }1 πp1‘ πp0qq

0 }1 }1

πp1‘ πp1‘ πp0qqq

1
‘
π
p1
‘
π
p0
qq

1
‘
πp0q

0

1

πp1q

1

Fig. 2. (Reduced) message tree. Example of message tree for permutation π P Permpnq and
four messages M1 “ 0, M2 “ 0 }0, M3 “ 0 }1 }1, and M4 “ 1, where b “ bn for b P t0, 1u. The
gray vertices correspond to these four messages. Labels are represented in proximity of the vertices
and the edges they are assigned to (as a function of π) and we let λpεq “ 0 “ IV. The boxed labels
are omitted in the reduced message tree.

first introduces the notational framework allowing us to precisely describe interactions between A
and the given system – i.e., either TCBCrπs for a randomly chosen permutation π

$
Ð Permpnq or a

truly random function f
$
Ð Fcsp˚, nq. Then, Section 4.2 will review the H-coefficient method, and

how it will be applied to the concrete case of our proof. Finally, Section 4.3 will state the main
concrete bounds we prove and how they are combined into our main theorem.

Simplifying assumption.Throughout the proof, we fix an adversary A. We assume that (1) A is
deterministic, (2) it makes exactly q queries, and (3) it never repeats the same query twice. All these
assumptions are without loss of generality for an information-theoretic indistinguishability analysis,
since an arbitrary (possibly randomized) adversary making at most q queries can be transformed
into one satisfying these constraints and achieving advantage which is at least as large.

4.1 Message trees and transcripts

We start by introducing some graph-theoretic concepts – the message tree, and its reduced version
– which capture the inherent combinatorial structure of any q messages M1, . . . ,Mq queried by
the attacker, as well as the internal values computed while these messages are processed by TCBC.
Then, we will put these concepts to work to define transcripts describing the adversary’s interaction
with either of TCBC or a random function f .

We stress that our transcripts will release more information than what is actually seen by the
adversary A in its interaction: This information will be useful for us to make the proof simpler,
and it will not help substantially in distinguishing TCBC from random.

The message tree. Let q ě 1, π P Permpnq, and let M1, . . . ,Mq be arbitrary strings (which we
refer to as the messages), where Mi is padded into n-bit blocks by the pad function. In particular, we
will identify Mi with its padded version, i.e., assume that Mi P pt0, 1u

nq
`, without loss of generality.

These q messages induce a labeled tree T πpM1, . . . ,Mqq “ pV,E, λ, γq – called the message tree,
and often simply denoted as T or T π, whenever parameters are clear from the context – which we
define as follows:

8



- The set V of vertices of the tree is V :“
 

M 1 P pt0, 1unq˚ : Di P rqs : M 1 �Mi

(

, where | is the
prefix-of partial ordering of strings. In particular, note that the empty string ε is a vertex.

- The set E Ď V ˆ V of (directed) edges is E :“ tpM,M 1q : Dm P t0, 1un : M 1 “M }mu.
- We label vertices and edges recursively. Concretely, we define λ : V Ñ t0, 1un and γ : E Ñ

t0, 1un. We start with λpεq “ IV. Then, for every vertex M }m P V where M P V and m P

t0, 1un, we set
λpM }mq “ πpλpMq ‘mq .

Moreover, we let γppM,M }mqq “ λpMq ‘m.

An example of a message tree is given in Figure 2. Note that the vertex labels λpMq are exactly
the values of CBCrπspMq while the edge labels correspond to the inputs on which π is invoked.
We also remark that the labeling of the edges is redundant given the vertex labels as from the
vertex-labels and V , it is possible to uniquely reconstruct the edge labels. However, defining the
edge labels explicitly will be convenient for the proof.

For convenience, we define for every vertex M P V (where possibly M R tM1, . . . ,Mqu) the set
MM of n-bit blocks m such that pM,M }mq P E and we let DM “ |MM | be the out-degree of
vertex M . It is convenient to denote Di “ DMi and Mi “MMi for all i P rqs. Note that

q
ÿ

i“1

Di ă q . (3)

This is because every edge pMi,Mi }mq can be uniquely mapped to the shortest messages Mj such
that Mi }m is a prefix of Mj .

The reduced message tree.We define an abridged version of the above tree, called the reduced
message tree, which will be used in the definition of transcripts below, and which we denote by
T
π
pM1, . . . ,Mqq. The intuition is that in an interaction with TCBCrπs, even given the reduced

message tree, the outputs obtained by the adversary will look random and independent of the tree
labels. This is far from simple to prove, and will be one of our main steps below.

To compute the reduced message tree, we first compute the whole message tree T πpM1, . . . ,Mqq “

pV,E, λ, γq with resulting labels λ and γ, and we are going to check whether the following event has
occurred (this will correspond to a degenerate labeling case that we will show to be quite unlikely):

- There exists i P rqs and M P V ztMiu such that λpMiq “ λpMq; or
- For some i P rqs and m PMi, there exists M P V ztMi }mu such that λpMi }mq “ λpMq.

If so, then we let T “ pV,E,K,Kq, i.e., we set the tree to have the empty labeling function. Note
that this corresponds to the case where a label of an actual message in tM1, . . . ,Mqu, or of one of
its sucessor vertices, collide with some other labels.

Otherwise, if the above event does not occur, we are going to selectively delete some labels from
T (setting them to K) to obtain a new vertex- and edge-labeled tree, which is the value taken by
T . Specifically,

- For all i P rqs, we let λpMiq “ K.
- For all i P rqs and all m PMi, we let γpMi,Mi }mq “ K.

In other words, we remove the information necessary to recover the values λpMiq for all i P rqs.9

In general, we are allowing labels of vertices to possibly collide with each other. The first check
however, potentially setting pλ, γq “ pK,Kq, ensures that no “bad collisions” have occurred, i.e., no
labels of actual messages (or their children vertices) collide with labels of other vertices, and this
will be instrumental below.
9 Note, however, that some information about these values can be deduced from the rest of the labels using the fact

that π is a permutation. As will implicitly see below, this information is irrelevant.
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Interactions and transcripts.We call a sequence of query/answer pairs pM1, Y1q, . . . , pMq, Yqq
valid if the adversary A asks indeed queries M1, . . . ,Mq when fed with answers Y1, . . . , Yq to its
queries. (Recall that the first query M1 only depends on A, the second query only depends on A
and the first answer Y1, etc..) In particular, a valid transcript has the form

τ “ ppM1, Y1q, . . . , pMq, Yqq, T
π
pM1, . . . ,Mqqq ,

where pM1, Y1q, . . . , pMq, Yqq is A-valid, and π : t0, 1un Ñ t0, 1un is a permutation. We differentiate
between the ways in which such valid transcripts are generated in the real and in the ideal worlds,
respectively, by defining corresponding distributions Treal and Tideal over the set of valid transcripts:

Real world. The transcript Treal for the adversary A is obtained by sampling π
$
Ð Permpnq, and

letting

Treal “ ppM1, Y1q, . . . , pMq, Yqq, T
π
pM1, . . . ,Mqqq ,

where we execute A, which asks queries M1, . . . ,Mq answered with Yi “ TCBCrπspMiq for
all i P rqs, and we let T

π
pM1, . . . ,Mqq be the corresponding reduced message tree. Note that

because A is fixed, Treal only depends on π, and thus we occasionally write Trealpπq for the
corresponding map.

Ideal world. The transcript Tideal for the adversary A is obtained similarly to the above, but here
we sample both a random permutation π and q independent random values Y1, . . . , Yq P t0, 1u

r

Tideal “ TidealpY1, . . . , Yq, πq “ ppM1, Y1q, . . . , pMq, Yqq, T
π
pM1, . . . ,Mqqq ,

where we execute A, which asks queries M1, . . . ,Mq answered with Yi for all i P rqs, and we let
T “ T

π
pM1, . . . ,Mqq. We stress that here we are augmenting the ideal world with an additional

random permutation π which does not actually exists in the original prf distinguishing game
in order to make real- and ideal-world transcripts alike. Like the actual permutation π, the
resulting (reduced) message tree is completely independent of the randomness Y1, . . . , Yq used
to reply the adversary’s queries.

Note that the range of Treal is included in the range of Tideal by definition, and that the range of
Tideal is easily seen to contain all valid transcripts.

4.2 The “H-Coefficient Method”: Good and bad transcripts

We upper-bound the advantage A in distinguishing TCBCrπs for π
$
Ð Permpnq from a random

function in terms of the statistical distance of the transcripts, i.e.,

AdvprfTCBCpAq ď SDpTreal,Tidealq “
1

2

ÿ

τ

|Pr rTreal “ τ s ´ Pr rTideal “ τ s| , (4)

where the sum is over all valid transcripts. This is because a distinguisher for Treal and Tideal,
whose optimal advantage is exactly SDpTreal,Tidealq, can always output the same decision bit as A,
ignoring any extra information provided by the transcript.

To this end, we are going to use Patarin’s H-coefficient method [36]. This just means that we
need to partition the set of possible transcripts into good transcripts GT and bad transcripts BT to
enable effective usage of the following lemma, whose proof is given for completeness in Appendix A.

Lemma 1 (The H-Coefficient Method [36]). Let δ, ε P r0, 1s be such that:

(a) Pr rTideal P BTs ď δ.
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(b) For all τ P GT,
Pr rTreal “ τ s

Pr rTideal “ τ s
ě 1´ ε .

Then,

AdvprfTCBCpAq ď SDpTreal,Tidealq ď ε` δ .

More verbally, we want a set of good transcripts GT such that with very high probability (i.e.,
1 ´ δ) a generated transcript in the ideal world is going to be in this set, and moreover, for each
such good transcript, the probabilities that it occurs in the real and in the ideal worlds are roughly
the same, i.e., at most a multiplicative factor 1´ ε apart.

Transcript-dependent quantities. Concretely, a transcript τ “ ppM1, Y1q, . . . , pMq, Yqq, T “
pV,E, γ, λqq will be defined as “good” if the associated reduced message tree is not “too degenerate”.
This requires introducing two relevant quantities. To this end, we first note that T defines a partial
permutation π: Concretely, we define π such that πpγpeqq “ λpvq for every edge e with end-node v
such that γpeq, λpvq ‰ K, and πpxq “ K for all other inputs.

We will make use of the following quantities, which connect the outputs Y1, . . . , Yq with T .

Definition 1. Let τ “ ppM1, Y1q, . . . , pMq, Yqq, T “ pV,E, γ, λqq be a valid transcript with associ-
ated partial permutation π. Then, we define:

- N
p1q
i pτq is the number of x P t0, 1un with πpxq ‰ K and πpxqr1 . . . rs “ Yi.

- N
p2q
i pτq is defined as

N
p2q
i pτq :“ |tz P t0, 1un : zr1 . . . rs “ Yi ^ De P E,m PMi : γpeq “ z ‘muu| .

Moreover, for a P t1, 2u, let N paq “
řq
i“1N

paq
i .

Let us give some intuition on the above quantities. Note that π is defined on at most q ¨ ` values,
and the values πpxq, when first defined, is obtained by sampling a (nearly) uniform random n-bit

string. Thus the expectation of N
p1q
i is roughly q`{2r, and in turn, N p1q should be roughly q2`{2r.

Also, note that N
p2q
i is the number of n-bit strings z which are consistent with Yi in their first

r bits which have additionally the property that for some message block m P Mi, z ‘ m is the
(non-K) label of an edge in the reduced message tree. Here, the intuition is that every edge label
γpeq in the partial tree is uniform (this won’t be quite true, but let us assume it is), and therefore

the expectation of N
p2q
i should be (roughly) Diq`{2

r, and thus, the expectation of N p2q should also
be roughly q2`{2r, using

ř

iDi ď q.

Good transcripts. We are now ready to state the definition of a good transcript. Informally,
what we require is that the actual values of N p1q and N p2q for the transcript τ are not too far off
their (heuristic) expected values we mentioned above. Moreover, we also want that the reduced
message tree is not degenerate, i.e., even though we can’t see them, we want the guarantee that the
labels of the actual messages (and their successors) are unique – the failure to satisfy this would
be signalled by pλ, γq “ pK,Kq by the definition of the reduced message tree.

Definition 2 (Good Transcripts). Let τ “ ppM1, Y1q, . . . , pMq, Yqq, T
π
pM1, . . . ,Mqq “ pV,E, λ, γqq

be a valid transcript. We say that the transcript is good (and thus τ P GT) if the following properties
are true (for t ě 1 as in the theorem statement):

(1) pλ, γq ‰ pK,Kq.
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(2) N p1q ď 3q pqt`{2r ` nq.
(3) N p2q ď p2n` 1qq2 ` p3t` 1qq2`{2r ` 8q2`4{2n`r.

We denote as GT the set of all good transcripts, and BT the set of all bad transcripts, i.e., transcripts
which can possibly occur (i.e., they are in the range of Tideal) and are not good. More specifically,
we denote by BTi the set of all bad transcripts that do not satisfy the i-th property in the definition
of a good transcript above, hence we have BT “

Ť3
i“1 BTi.

4.3 High-level lemmas and putting pieces together

Bounding the ratio. In Section 4.4 below, we are going to prove the following lemma.

Lemma 2. For all good transcripts τ P GT,

Pr rTreal “ τ s

Pr rTideal “ τ s
ě 1´

˜

N p1q `N p2q

2n´r
`

2q2

2n´r

¸

. (5)

Bounding probability of bad transcripts. We now upper-bound the probabilities that a
transcript sampled according to Tideal is bad via the following lemmas. The first is proved in
Appendix C, and the last two are proved in Appendix D.

Lemma 3 (Bad-Transcript Analysis for BT1). PrrTideal P BT1s ď 16`q2{2n ` 128`4q2{22n.

Lemma 4 (Bad-Transcript Analysis for BT2). For all t ě 1,

Pr
”

N p1qpTidealq ě 3q pqt`{2r ` nq
ı

ď
q

2n
`
pq ¨ `qt`1

2nt
.

Lemma 5 (Bad-Transcript Analysis for BT3). For all t ě 1,

Pr
”

N p2qpTidealq ě p2n` 1qq2 ` p3t` 1qq2`{2r ` 8q2`4{2n`r
ı

ď
q

2n
`

8q`

2n´r
`
pq ¨ `qt`1

2nt
.

The proof of Lemma 3 above uses and extends techniques inherited from the work of [6] and in
particular their analysis of prefix-free CBC. The proof requires some extra work, since we are
considering non-prefix free messages.

One would expect that the proofs of Lemma 4 and 5 follow by application of a simple Chernoff-
like argument. Unfortunately, more work is required: First off, the sampled values are not uniform,
but only close to uniform. But more importantly, Lemma 5 requires to prove a concentration bound
on a series of random variables (the edge labels) which are defined adaptively by an iterative process
when computing the reduced message tree. Our technique will essentially show that most of the
edge labels will exhibit a high degree of independence, and only a small number of them will be
defined by “recycled values” when generating the tree.

Combining pieces. Therefore, we can apply Lemma 1 using ε and δ extracted from the above
lemmas. In particular,

ε “
N p1q `N p2q

2n´r
`

2q2

2n´r
ď
p6t` 1q`q2

2n
`

7nq2

2n´r
`

8q2`4

22n
,

and

δ “
2q

2n
`

8q`

2n´r
`

16`q2

2n
`

128`4q2

22n
` 2

pq ¨ `qt`1

2nt
.

In particular, we simplify

ε` δ ď p6t` 17q
`q2

2n
`

7n ¨ q2

2n´r
`

8q`

2n´r
`

2q

2n
`

136`4q2

22n
`

2qt`1`t`1

2nt
.

12



4.4 Lower-bounding the probability ratio (Proof of Lemma 2)

Recall that we need to lower bound Pr rTreal “ τ s {Pr rTideal “ τ s for some τ “ ppM1, Y1q, . . . , pMq, Yqq, T q P
GT, which we fix from now on. To start with, we define the set Ωrτ s of π’s consistent with τ in the
real world, i.e.,

Ωrτ s “ tπ P Permpnq : Trealpπq “ τu .

Moreover, if τ “ ppM1, Y1q, . . . , pMq, Yqq, T q, let Ω1rτ s be the set of permutations π which are
consistent with the labels of the reduced message tree T (i.e., reducing T πpM1, . . . ,Mqq yields T ),
however TCBCπpMiq does not need to equal Yi for all i. More formally,

Ω1rτ s :“
 

π P Permpnq : T
π
pM1, . . . ,Mqq “ T

(

.

Now, we define

ppτq :“
|Ωrτ s|

|Ω1rτ s|
“ Pr

”

π
$
Ð Permpnq : π P Ωrτ s

ˇ

ˇπ P Ω1rτ s
ı

“ Pr
”

π
$
Ð Ω1rτ s : π P Ωrτ s

ı

,

and this will be a convenient quantity to work with. In particular, ppτq is the probability that when
sampling a random permutation π which is consistent with the constraints on the reduced message
tree, we also have TCBCπpMiq “ Yi for all i P rqs.10 The following claim will reduce computing the
probability ratio to computing ppτq for τ P GT.

Claim. For all good transcripts τ P GT,

Pr rTreal “ τ s

Pr rTideal “ τ s
“ 2r¨q ¨ ppτq . (6)

Proof (Of Claim). We first note that Pr rTideal “ τ s can be rewritten as the probability that a

randomly sampled permutation π
$
Ð Permpnq satisfies π P Ω1rτ s, and independently Y1, . . . , Yq are

the selected outputs, i.e.,

Pr rTideal “ τ s “ 2´r¨q ¨ Pr
”

π
$
Ð Permpnq : π P Ω1rτ s

ı

,

whereas

Pr rTreal “ τ s “ Pr
”

π
$
Ð Permpnq : Trealrπs “ τ

ı

“ Pr
”

π
$
Ð Permpnq : π P Ω1rτ s

ı

¨ ppτq ,

and the claim follows by dividing both probabilities. [\

We are going to lower bound ppτq ě p1´ εq2´rq for ε as in the statement of the lemma, which
clearly implies the lemma by the above claim. It is easy to see that the ordering of the message-
output pairs pM1, Y1q, . . . , pMq, Yqq is irrelevant, and we therefore assume without loss of generality
that the ordering is prefix-preserving, i.e., if Mi �Mj , then i ă j.

We consider an iterative process where we start with π defined by T as above, and then set the
values of πpγpeiqq “ λpMiq for i “ 1, . . . , q one after the other in this order. Moreover, when setting
λpMiq “ πpγpeiqq Ð Zi, for all m PMi, we do the following:

- We set γpMi,Mi }mq Ð Zi ‘m

10 Note that sampling such a π is not the same as sampling a random π which is consistent with π. The latter may
allow for some permutations which are not possibly generating a message tree which can be reduced to T .

13



- If we know the value λpMi }mq, we set πpZi ‘mq Ð λpMi }mq.
11

Note that depending on the choice of the Zi’s, the resulting π may or may not be a partial per-
mutation, or we may overwrite values, etc. We will of course be only interested in sequences of
Zi’s which maintain the permutation property. In particular, we consider the random experiment

where we sample π
$
Ð Ω1rτ s (which is in particular consistent with the initial π), and then set

Zi Ð πpγpeiqq. Then,

ppτq “ Pr
”

π
$
Ð Ω1rτ s : @i P rqs : Zir1 . . . rs “ Yi

ı

“
ÿ

pz1,...,zqq

zir1...rs“Yi

Pr
”

π
$
Ð Ω1rτ s : @i P rqs : Zi “ zi

ı

.

Let L “ LpT , pM1, Y1q, . . . , pMq, Yqqqq be the set of possible sequences pz1, . . . , zqq of distinct q values
such that zir1 . . . rs “ Yi for all i P rqs and when assigning λpMiq Ð zi for all i P rqs in the above
process, at the end of the process the labels λpMiq “ zi are unique (i.e., no other vertex has the
same label) and moreover, for all i P rqs and all m PMi, we also have that λpMi }mq is a unique
label. (Note that since the transcript is good, and pλ, γq ‰ pK,Kq, these are exactly the sequences
which are possible, even though an exact match is really not necessary for a lower bound.) Below
we are going to show that |L| is sufficiently large, and hence not empty. For now, we observe the
following claim, which will allow us to lower bound ppτq via |L|.

Claim. If L ‰ H, for all pz1, . . . , zqq P L,

Pr
”

π
$
Ð Ω1rτ s : @i P rqs : Zi “ zi

ı

ě
1

2nq
.

Proof (Of Claim). Fix pz1, . . . , zqq P L, and define xi :“ γpeiq for all i P rqs as the label γpeiq we
encounter if we were to answer with the sequence pz1, . . . , zqq in the iterative process. Then

Pr
”

π
$
Ð Ω1rτ s : @i P rqs : Zi “ zi

ı

“
|tπ P Ω1rτ s : @i P rqs : πpxiq “ ziu|

|Ω1rτ s|
.

We let E1 Ď E be the set of edges pM,M }mq such that at the beginning of the process, λpMq or
λpM }mq (or possibly both) are not defined, and let D :“ EzE1. Clearly we have te1, . . . , equ Ď E1

and |D| ` |E1| “ |E|.
Note that because τ P GT and the definition of L, at the end of the process πpxq is defined

for exactly |D| ` |E1| “ |E| values. This is because τ is good, and in particular this means that
all values πpxq we set are for distinct x (this follows from the fact that pλ, γq ‰ K), and there is
one such value being set for every edge in E1 (during the process) and for every edge in D (from
the beginning). Hence there are exactly p2n ´ |D| ´ |E1|q! ways to complete π into a permutation
π P Ω1rτ s. Thus, this is exactly the number of permutations in Ω1rτ s with πpxiq “ zi for all i P rqs.

On the other hand, the claim follows from the fact, which we show next, that the number of
permutations in Ω1rτ s satisfies

ˇ

ˇΩ1rτ s
ˇ

ˇ ď 2nqp2n ´ |D| ´ |E1|q! .

This can be seen by encoding π P Ω1rτ s as follows (given τ , and in particular the initial value of
π): We start with an empty list H of n-bit strings. We run the above process using π, and every
time we set a value λpMiq “ πpγpeiqq “ zi, we append zi to H. Note that since τ is good (and thus

11 Note that if for some m P Mi, we have λpMi }mq “ K, then pMi,mq “ ej for j ą i, and will be set later in the
process.
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the initial pλ, γq are not pK,Kq), the γpeiq’s are all distinct. Also, all derived values we set (again
because τ is good) will be on different input. Therefore, the q values z1, . . . , zq define the behavior of
π on |E1| values, while it was defined on |D| values already at the beginning of the process. Hence,
the encoding is completed by adding to H all πpxq (wrt the lexicographic ordering of the inputs x)
for all x such that no edge in the graph is labeled with x at the end of the iterative process. It is
not hard to see that this encoding is unique, and that there are at most 2nqp2n ´ |D| ´ |E1|q! such
sequences H. [\

To conclude, it is easy to verify that

ppτq ě
ÿ

pz1,...,zqqPL
Pr

”

π
$
Ð Ω1rτ s : @i P rqs : Zi “ zi

ı

ě
|L|
2nq

. (7)

The lower bound on |L|. Here, to lower bound |L|, we go through the above process, and
assuming z1, . . . , zi´1 have been fixed, we see how many ways we still have to fix zi satisfying the
invariant that it is still possible to reach sequence pz1, . . . , zqq P L. In particular, at every step, we
are going to exclude values zi with the following properties:

(1) zir1 . . . rs ‰ Yi
(2) There exists 1 ď j ă i such that zj “ zi.
(3) There exists M R tM1, . . . ,Mqu with λpMq “ zi.
(4) There exists 1 ď j ă i, m1 PMj , m PMi such that m‘ zi “ m1 ‘ zj .
(5) There exists a n-bit value m PMi and an edge e P E with tail node not in tM1, . . . ,Mqu such

that γpeq “ zi ‘m.

It is clear that we reach a sequence in L if we satisfy this invariant. In particular, note that (4)
and (5) are necessary for us to ensure that the edge labels leading to successor vertices of Mi are
fresh, which is necessary to ensure that the sequence is in L.

Now, for every i, note that due to condition (1) there are initially 2n´r possible values for zi,
i.e., all strings with the first r bits equal to Yi. However, we need to remove all strings satisfying
any of (2)-(5) above. These can be counted as follows:

(2) There are at most i ď q such values.
(3) In order for M to be such that λpMq “ zi, we need to have λpMqr1 . . . rs “ Yi, but we know

that there are at most N
p1q
i such vertices by definition.

(4) Note that for every j P ri ´ 1s, there are exactly Dj possible values m1 P Mj which can be
combined with a value m P Mi (there are Di of those) to get a possible “forbidden” value
zi “ zj ‘m‘m

1, and thus we need to exclude Di ¨
ři´1
j“1Dj ď q ¨Di possible values.

(5) This is exactly the definition of N
p2q
i .

Therefore, we can now lower bound |L| as

|L| ě
q
ź

i“1

p2n´r ´N
p1q
i ´N

p2q
i ´ q ´ q ¨Diq

“ 2q¨pn´rq ¨

q
ź

i“1

˜

1´
N
p1q
i `N

p2q
i ` q ` q ¨Di

2n´r

¸

ě 2q¨pn´rq ¨

˜

1´
N p1q `N p2q

2n´r
´

2q2

2n´r

¸

, (8)

where we used the fact that
ś

ip1´ xiq ě 1´
ř

i xi, and that
řq
i“1 q ¨Di ď q2.
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n´ r

Sponger,padrπspMq

Fig. 3. Sponge construction. Representation of Sponger,padbrπs used with a padding scheme padb
that enforces b-bit blocks.

5 Security Analysis of Sponge-Based MACs

Sponge-Based MAC.We first briefly review the usage of the sponge hash-function [12] as a MAC
via key-prepending. As in the TCBC case above, we fix parameters n, r and a padding scheme
pad : t0, 1u˚ Ñ pt0, 1unq`, uniquely encoding arbitrary strings into non-empty sequences of n-bit
blocks, not necessarily in a prefix-free fashion. Then, the construction Sponge “ Sponger,padrπs :
t0, 1uκ ˆ t0, 1u˚ Ñ t0, 1ur operates as follows on input M P t0, 1u˚ and key K P t0, 1uκ, for a
permutation π P Permpnq:

Construction Sponger,padrπsKpMq:

(1) Compute padpK }Mq “ Kr1s . . .KrwsM r1s . . .M r`s (for some ` and w).
(2) Then, starting with V0 :“ 0n, compute Vi “ πpKris ‘ Vi´1q for all i P rws and let

K 1 :“ Vt.
(3) Next, starting with S0 :“ K 1, compute Si “ πpM ris ‘ Si´1q for all i P r`s.
(4) Finally, output S`r1 . . . rs, i.e., the first r bits of S`.

Note that we are silently assuming (for simplicity) that the (padded) keys and the actual message
end up in different blocks, and hence our naming conventions. Our results can be extended to the
more general case, but we avoid the notational overhead in this version of the paper.

Different from the actual hash-function instantiations, the presented Sponge construction is
more general in that it allows for processing n-bit input blocks in the absorption phase. We can
retrieve the originals sponge construction and SHA-3 instantiations as special case — shorter blocks
can be enforced by the padding function pad, which we only require to be injective, but an added
benefit of our analysis is that it shows that such shorter blocks are not necessary. The construction
Sponger,padrπs using a customary padding padb that enforces b-bit blocks is depicted in Figure 3.

Finally, we also consider a variant of the construction – called GSponge – that takes an n-bit
key K and differs from Sponge in step (2) where it directly sets K 1 :“ K instead of absorbing
the key. The construction is similar to some other MAC designs such as donkeySponge [10] and
Pelican [17]. This natural variant will be simpler to analyze – and will be indeed analyzed first. The
bound for the Sponge construction will be derived from the one for GSponge via a high-level lemma
of independent interest proving the soundness of the key extraction method.

Security analysis of GSponge.We prove the following theorem about the GSponge construction.

Theorem 2 (Security of GSponge). Let A be a PRF-adversary in the ideal permutation model,
making at most qπ queries to π and at most qC queries of length at most ` ă 2n{4 blocks to the
construction (either GSponger,padrπs for a random n-bit key K or a random function). Then, for
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all t ě 1,

AdvprfGSponger,pad,π
pAq ď

p6t` 17q`q2C ` 7`qπqC ` 2qC
2n

`
6nq2C ` 8`qC ` qπqC

2n´r
`

`
136`4q2C

22n
`

2p`qCq
t`1

2nt
. (9)

We note that is in the case of TCBC, for sufficiently large t and for ` ă 2n{4, the first two terms
are the leading terms. We will prove below tightness of the bound when ` ă 2r and qπ ě `.

The proof is an adaptation of the proof strategy of Theorem 1 to the setting of sponges. Hence,
we start by observing that the current setting with GSponge is very similar to the setting considered
in Theorem 1 involving the TCBC construction, with two important differences:

- The processing of a message in GSponge starts from the key K, as opposed to using a fixed
initialization vector IV in TCBC.

- We now allow the adversary to also query the random permutation π that was secret before.
We will indeed show that as we start with a random IV, the probability that internal queries
and direct queries to π will not intersect, except with probability Op` ¨ qCqπ{2

nq

In Appendix F we describe the modifications that have to be applied to the proof of Theorem 1 in
order to account for these differences.

Tightness.One can trivially adapt the attack given in Section 3 to the setting of sponges, obtaining
a prf-adversary that asks qC construction queries and no π-queries, and achieves advantage at least
Ωpq2C{2

n´rq. Here we present a different generic attack on sponges that needs qC construction
queries and qπ queries to π, and achieves advantage roughly ΩpqCqπ{2

n´rq.
For simplicity, we again assume that the attacker can query the construction with unpadded

messages. For parameters Q1, Q2 and t :“ rn{rs, the attacker AQ1,Q2,t proceeds as follows, given
access to the construction oracle O (which is either GSpongerπs under a random key K or a random
function) and the permutation oracle πp¨q.

Adversary AQ1,Q2,t:

1. For all i P rQ1s query distinct random one-block messages Mi P t0, 1u
n to O, obtaining

output Yi P t0, 1u
r.

2. For all i P rQ1s and j P rts query Mi }Yi } 0n´r } 0npj´1q to O, obtaining output Yi,j P
t0, 1ur.

3. For all i P rQ2s, choose distinct random Bi,0 P 0r } t0, 1un´r and for each j P rts query
πp¨q to compute Bi,j “ πpBi,j´1q.

4. If there exist i P rQ1s, i
1 P rQ2s with Yi,j “ Bi1,jr1..rs for all j P rts then output 1, else

output 0.

The attacker AQ1,Q2,t makes qC “ pt` 1qQ1 construction queries and qπ “ tQ2 queries to π. As we
sketch in Appendix E, it achieves the advantage Ω

`

r2qCqπ{n
22n´r

˘

.
Just as in the case of TCBC in Section 3, the attack above can trivially be turned into a forging

attack. The same attack also works for the construction Sponge.

From GSponge to Sponge: Replacing the Uniform Key.Our final result proves the security of
the Sponge construction when using the customary padding padb, where the pκ “ w ¨bq-bit key K is
first split into w b-bit blocks as Kr1s ¨ ¨ ¨Krws, each of them is padded with n´b trailing zeroes and
absorbed by the construction, as depicted in Figure 3. The proof of the following theorem is given
in Appendix G, and relies on a detailed analysis of the key absorption mechanism which shows that
the behaviors of GSponge and Sponge are indistinguishable given enough key material.
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Theorem 3 (Security of Sponge). Let A be a PRF-adversary in the ideal permutation model,
making at most qπ queries to π and at most qC queries of length at most ` ă 2n{4 blocks to the
construction (either Sponger,padbrπs with the padding padb and a random pw ¨bq-bit key, or a random

function). Then, for all t ě 1, and q “ qπ ` `qC ă 2n´b, we have

AdvprfSponger,padb
,πpAq ď Atpqc, qπq `

wq

2n
`min

"

q

2
b´logp3nq´1

2
w
,

q

2bw
`

q2

2n´b

*

,

where At denotes the expression on the right-hand side of inequality (9). If w “ 1, one can replace
the whole min-term by q

2bw
.

We remark that our proof is highly non-trivial for the case where q2 ą 2n´b, where q “ qπ` qC ¨ ` is
the overall number of queries to π in the experiment, and requires an adaptation of combinatorial
techniques inspired by [15] to a slightly more general setting. Roughly, the extra term is obtained
by upper bounding the probability that all queries necessary for absorbing the actual sampled key
are contained among the q permutation queries made by the attacker or by the sponge construction
(after key absorption).

We note that the additional terms are smaller than Apqc, qπq when the key length is bw « 2n
and q ą 2pn´bq{2 or bw « n and q ă 2pn´bq{2. (Note that the latter case is in the same query regime
as the indifferentiability proof [12].) Also, in SHA-3, where e.g. we could have b “ 1152, the case
w “ 1 is largely sufficient, as security would hold as long as q ă 2b.
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A The H-Coefficient Method

In this section we prove the basic lemma underlying Patarin’s H-Coefficient method [36].

Lemma 1 (restated). Let δ, ε P r0, 1s be such that:

(a) Pr rTideal P BTs ď δ.
(b) For all τ P GT,

Pr rTreal “ τ s

Pr rTideal “ τ s
ě 1´ ε .

Then,
AdvprfTCBCpAq ď SDpTreal,Tidealq ď ε` δ .

Proof. Let T be the set of valid transcripts such that Pr rTideal “ τ s ě Pr rTreal “ τ s. Then,

SDpTreal,Tidealq “
ÿ

τPT
pPr rTideal “ τ s ´ Pr rTreal “ τ sq

by the fundamental properties of the statistical distance. Then, note that T can be partitioned into
two blocks T X BT and T X GT. On the one hand, we can use (a) to upper bound

ÿ

τPT XBT
pPr rTideal “ τ s ´ Pr rTreal “ τ sq ď

ÿ

τPT XBT
Pr rTideal “ τ s ď

ÿ

τPBT

Pr rTideal “ τ s ď δ .

On the other hand, (b) implies

ÿ

τPT XGT
pPr rTideal “ τ s ´ Pr rTreal “ τ sq ď ε ¨

ÿ

τPT XGT
Pr rTideal “ τ s ď ε .
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Therefore, SDpTreal,Tidealq ď ε` δ. Moreover, every adversary A can be turned into a distinguisher
A1 for Treal and Tideal, which looks at the first part of the transcript (i.e., the one containing the q
message-output pairs pM1, Y1q, . . . , pMq, Yqq), and outputs the corresponding decision bit A would
output (this bit is uniquely defined by the fact that A is deterministic). Then, we clearly have

AdvprfTCBCpAq “ Pr
“

A1pTrealq ñ 1
‰

´ Pr
“

A1pTidealq ñ 1
‰

ď SDpTreal,Tidealq ď ε` δ ,

as the statistical distance is the quantity corresponding to the advantage of the best A’. [\

B Chernoff bounds

Below, we are going to use the following standard variant of the Chernoff bound. See e.g. [34] for
a proof.

Theorem 4 (Chernoff bound). Let X1, . . . , XT be independent random variables with ErXis “ pi
and Xi P r0, 1s. Let X “

řT
i“1Xi and µ “

řT
i“1 pi “ ErXs. Then, for all δ ě 0,

- Pr rX ě p1` δqµs ď e´
δ2

2`δ
µ.

- Pr rX ď p1´ δqµs ď e´
δ2

2`δ
µ.

C Bad-Transcript Analysis: The Collision Events

To bound the probability of the ideal transcript being bad, in this section we start by bounding
Pr rTideal P BT1s. We take a combinatorial approach inspired by [6,22] and represent the computation
of TCBC on various inputs by directed graphs; the following useful notation closely follows [6].

Graph-Based Representation of TCBC.Let M “ pM1,M2q be two distinct messages that can
be parsed into n-bit blocks as Mi “ M1

i } ¨ ¨ ¨ }M
`i
i for some `1, `2 ď `, and let Λ :“ `1 ` `2. For

convenience, we use the notation M piq as a reference to the block M i
1 if i ď `1, otherwise it denotes

the block M i´`1
2 . For any fixed permutation π P Permpnq and a pair of such messages M we define

the structure graph12 GM
π , which is a directed graph pV,Eq where V Ď t0, . . . , Λu together with

a edge-labeling function L : E Ñ tM p1q, . . . ,M pΛqu. The structure graph GM
π “ G “ pV,E, Lq is

defined as follows: We set C0 “ 0n and for i “ 1, . . . , Λ we define

Ci “

"

πpCi´1 ‘Miq for i ‰ `1 ` 1
πpMiq for i “ `1 ` 1

From these values Ci we define the mapping r.sG : t0, . . . , Λu Ñ t0, . . . , Λu as risG “ mintj : Cj “
Ciu. It is convenient to also define a mapping r.s1G as ris1G “ 0 if i “ `1 and ris1G “ risG otherwise.
Now the structure graph GM

π “ G “ pV,E,Lq is given by

V “ trisG : 1 ď i ď Λu , E “ tpri´ 1s1G, risGq : 1 ď i ď Λu , Lppri´ 1s1G, risGqq “M piq .

Let GpMq “ tGM
π : π P Permpnqu denote the set of all structure graphs associated to the message

pair M. Note that sampling the permutation π uniformly at random also induces a probability
distribution on the set GpMq. For G “ pV,E,Lq P GpMq we denote with Gi “ pVi, Ei, Liq the
subgraph of G given by the i first edges, i.e., we let Vi “ tv P V : v ď iu, Ei “ tpu, vq P E :
u, v P Viu and Li is L with the domain restricted to Ei. We will refer to G P GpMq as consisting of
two paths, the “M1-path” which passes through the vertices 0, r1sG, . . . , r`1sG and the “M2-path”
0, r`1`1sG, . . . , r`1``2sG. We denote by V i

j pGq the i-th vertex on the Mj-path, hence for 1 ď i ď `1
we have V i

1 pGq “ risG, while for 1 ď i ď `2 we get V i
2 pGq “ ri` `1sG; and V 0

1 pGq “ V 0
2 pGq “ 0.

12 Note that the structure graph differs from the message tree considered before.
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Collisions. Suppose a structure graph G “ GM
π P GpMq is exposed edge by edge (i.e. in step i

the value risG is shown to us). We say that G has a collision is step i if the edge exposed in step i
points to a vertex which is already in the graph. With ColpGq we denote all collisions, i.e. all pairs
pi, jq where in step i there was a collision which hit the vertex computed in step j ă i:

ColpGq “ tpi, risGq : risG ‰ iu .

Induced Collisions and Accidents. We distinguish two types of collisions, induced collisions
and accidents. Informally, an induced collision in step i is a collision which is implied by the collisions
in the first i´ 1 steps, whereas an accident is a “surprising” collision.

Assume that after step i´1 we see that for some a ă i the a-th edge pra´1s1G, rasGq has the same
label (M paq “M piq) and the same starting point (pra´1s1G “ ri´1s1G) as the next (i-th) edge to be
exposed. Then we know that the endpoint of the i-th edge must also be rasG as ra´ 1sG “ ri´ 1sG
means Cra´1sG “ Cri´1sG , and as π must produce the same output on the same input, we also get

CrasG “ πpCra´1s1G ‘M
paqq “ πpCri´1s1G ‘M

piqq “ CrisG . More generally, it was shown in [6] that G
has an induced collision is step i if the edge added in step i (or, that would be added if it was not
already there) closes a cycle with alternating edge directions, moreover then the XOR of all labels
of all the edges of that cycle is 0n. (Note that the case of two parallel edges considered before form
exactly such a cycle of length two and also 0n “M piq ‘M paq as we saw that M piq “M paq.)

Formally, we define a function AltCyc which takes as input a partial structure graph Gi “
pVi, Ei, Liq, a vertex v and a label X as follows

AltCycpGi “ pVi, Ei, Liq, v,Xq “

$

’

’

’

’

&

’

’

’

’

%

j “ v2k if Dk ě 1, tv1, . . . , v2ku P Vi, te1, . . . , e2ku P Ei where
ei “ pvi, vi`1q for odd, and ei “ pvi, vi`1q for even i,
and v1 “ v,
and X ‘ Lippu1, v1qq ‘ . . . Lippu2k, v2kqq “ 0n.

K otherwise

Now the induced collisions are the collisions pi, jq where the i-th edge pri ´ 1s1G, jq can (and thus
must) be added to Gi´1 such that we close a cycle with alternating edge directions where the labels
on the cycle XOR to 0n, i.e.,

IndColpGq “ tpi, jq : 1 ď i ď m, j “ AltCycpGi´1, ri´ 1s1G,M
piqq and j ‰ Ku ,

and accidents are all the non-induced collisions: AccpGq :“ ColpGqzIndColpGq.
Let GapMq “ tG : G P GpMq, |AccpGq| “ aq denote all structure graphs with exactly a

accidents. For any predicate P on structure graphs, let φMrP s denote the set of all structure
graphs G having exactly one accident and satisfying the predicate P , i.e.,

φMrP s “
 

G P G1pMq : G satisfies P
(

.

As an example, consider the predicate P defined as V `1
1 p¨q “ V `2

2 p¨q, in that case we obtain φMrV
`1
1 “

V `2
2 s “

!

G P G1pMq : V `1
1 pGq “ V `2

2 pGq
)

.

Finally, following [6], for two messages M1,M2 P B
`
n we let FCPnpM1,M2q (the full collision

probability) be the probability, over π Ð Permpnq, that

CBCπpM2q P
 

CBCπpM 1q : pM 1 �M1 _M
1 �M2q ^M

1 ‰M2

(

.

Note that if M2 ffl M1 then our definition matches the definition of full collision probability in [6].
On the other hand, if M2 �M1 the original definition becomes void (the probability is equal to 1),
while our variant will prove to be useful also in this case.

We will make use of the following results proven in [6].
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Proposition 2. Let M “ pM1,M2q be a pair of messages such that Mi P B
`i
n and `i ď ` for both

i P t1, 2u.

(i) [6, Lemma 2] If M1 fflM2 and M2 fflM1 then we have

FCPnpM1,M2q ď
8`

2n
`

64`4

22n
.

(ii) [6, Lemma 8] For any structure graph H P GpMq we have

PrrG
$
Ð GpMq : G “ Hs ď p2n ´ 2`q´|AccpHq| .

(iii) [6, Lemma 9] We have

PrrG
$
Ð GpMq : |AccpGq| ě 2s ď

4p`1 ` `2q
4

22n
.

(iv) [6, Lemma 19] For any b P t1, 2u and r P r0, . . . , `bs we have

ˇ

ˇ

ˇ
φM

”

V r
b P tV

0
b , . . . , V

r´1
b , V r`1

b , . . . , V `
b u

ıˇ

ˇ

ˇ
ď `b .

We can now proceed to upper-bounding the probability PrrTideal P BT1s.

Lemma 3 (restated). PrrTideal P BT1s ď 16`q2{2n ` 128`4q2{22n.

Proof. We will denote by MsgQpτq “ tM1, . . . ,Mqu the set of all message queries present in the
transcript τ . By definition of BT1, we have Tideal P BT1 if T “ pV,E,K,Kq and this occurs only
if at least one of the following two events happens in the ideal experiment (in their description, λ
refers to the non-restricted labelling):

(1) There exists i P rqs and M P V ztMiu such that λpMiq “ λpMq.
(2) There exists i P rqs, m PMi, and M P V ztMi }mu such that λpMi }mq “ λpMq.

Let us denote these two events as B1 and B2 respectively, and let us first consider B1. Since every
vertex in T πpM1, . . . ,Mqq lies on some path from the root to some leaf (and all leaves belong to
MsgQpτq), by union bound we have

PrrB1s ď
ÿ

Mi

PrrDM P V ztMiu : CBCπpMiq “ CBCπpMqs ď
ÿ

Mi,Mj

FCPnpMj ,Miq (10)

summing over allMi P MsgQpτq, and allMj P MsgQpτq that correspond to leaves in T πpM1, . . . ,Mqq.
The probability is taken over the choice of a uniformly random permutation π.

If the message pair tMj ,Miu is prefix-free (i.e., Mi ffl Mj and Mj ffl Mi), then we can apply
statement (i) in Proposition 2 to conclude that FCPnpMj ,Miq ď 8`{2n ` 64`4{22n. Since Mj is a
leaf in T πpM1, . . . ,Mqq, clearly it cannot be a nontrivial prefix of Mi and hence the last case that
needs to be considered is if Mi � Mj . In this case the structure graph for tMj ,Miu consists of the
Mj-path and Mi does not introduce any additional vertices. Let us denote by `j and `i the lengths
of Mj and Mi, respectively; and let V i

1 and V i
2 denote the i-th vertex on the Mj-path and Mi-path,

respectively (starting from 0). Then we have V `i
1 “ V `i

2 , and the equality V `i
1 “ V i

1 for some i ‰ `i
can only occur if at least one accident happens. We know from Proposition 2 (iii) that two or more
accidents can only occur with probability at most 64`4{22n. For the case of exactly one accident,
Proposition 2 (iv) shows that there are at most ` structure graphs satisfying V `i

1 “ V i
1 for some
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i ‰ `i, and by Proposition 2 (ii) each of these graphs can occur with probability at most 2{2n as
long as ` ď 2n´2.

Putting it all together, the values FCPnpMj ,Miq in (10) are upper-bounded by 8`{2n`64`4{22n

for all pairs pMj ,Miq such that Mi fflMj , and by 2`{2n ` 64`4{22n for all pairs pMj ,Miq such that
Mi � Mj . We are summing over at most q2 pairs pMj ,Miq in total, hence from (10) we obtain
PrrB1s ď 8`q2{2n ` 64`4q2{22n.

While for upper-bounding PrrB1s we considered the probability that one of the vertices Mi will
obtain the same label as some other vertex in the message tree, for PrrB2s we need to consider the
same probability for child vertices Mi }m for some m P Mi. However, note that in the analysis
above, we did not use any property of the inspected vertices Mi beyond the fact that there are q of
them. Since by (3) there are at most q child vertices Mi }m for some i P rqs and m PMi, we can
apply the same analysis as above to conclude that also PrrB2s ď 8`q2{2n ` 64`4q2{22n. [\

D Bad-Transcript Analysis: The N piq quantities

We now turn to upper-bounding the probabilities Pr rTideal P BTis for i P t2, 3u, i.e., proving Lem-
mas 4 and 5. While the proofs may appear at first to be a simple application of usual conventional
Chernoff-like concentration techniques, they will require extra care due to the process of defining
the trees. In particular, we will have to tackle two main challenges:

- The vertex labels are outputs of a permutation, and not of a function.
- Multiple vertices M and M 1 can be assigned the same label λpMq and λpM 1q, however, whether

this is the case depends on the value of labels assigned earlier in the process of computing the
labels of the reduced message tree T

π
.

An alternative sampling process. As the common denominator between the proofs of Lemmas 4
and 5, it will be convenient to think of an alternative process to compute the transcript (and in
particular T πpM1, . . . ,Mqq, and its reduced version), parameterized by the value t ě 1 from the
theorem statement. This will allow us to use conventional Chernoff bounds for independent random
variables at the cost of considering t times more samples.

Process SimulateIdealTranscriptpA, tq:

1. We first sample independent r-bit strings Y1, . . . , Yq
2. The attacker A gives queries Mi, which are replied with Yi, for all i P rqs.
3. Then, we compute the message tree T “ pV,E, λ, γq by defining V and E with respect

to M1, . . . ,Mq, and setting the labels λ, γ as follows. We initially set λpεq Ð IV, and
set the labels γpeq of the edges leaving the root.

Then, for every vertex M ‰ ε (traversed in some prefix-preserving order, i.e., if
M1 � M2, then we visit M1 before M2) with parent vertex M 1 and e :“ pM 1,Mq,
sample t independent uniform n-bit strings UM,1, . . . , UM,t, and proceed as follows.

- If πpγpeqq ‰ K, we set λpMq Ð πpeq.
- Otherwise, we set λpMq “ πpγpeqq Ð UM,j for the smallest j such that UM,j was

not used earlier as a vertex label yet. If all values have been used, then we set a
bad flag to 1, and set πpγpeqq “ λpMq Ð UM,t.

- Also, for all m PMM , set the edge labels γppM,M }mqq Ð λpMq ‘m.

The resulting transcript T1idealrts is defined as ppM1, Y1q, . . . , pMq, Yqq, T q, where T is the
reduced version of the message tree T “ pV,E, λ, γq defined by the above process. More-
over, let pT1idealrts be the same as T1idealrts, except that the tree is not reduced.
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Let pTideal denote the ideal transcript with the non-reduced version of the message tree. The following
lemma shows that for sufficiently large parameter t ě 1, pTideal and pT1idealrts are very close in
statistical distance.

Lemma 6. For all t ě 1,

SDppTideal, pT
1
idealrtsq ď

pq ¨ `qt`1

2nt
. (11)

Proof. Let p be the probability that bad is set to 1 at some point during the generation of pT1idealrts.

Then, by a standard argument SDppTideal, pT
1
idealrtsq ď p, since as long as bad is not set to 1, the process

simulates the exact distribution as if we were using a random permutation. In every step i where
we set the output value of π, we can easily show (as the values UM,1, . . . , UM,t are independent)

that Pr rbad is set in Step is ď
´

q`
2n

¯t
, as π has been defined for at most i ď q` input values so far.

A bound on p follows by the union bound. [\

Proof of Lemma 4. Fix Y1, . . . , Yq. We are going to upper-bound the probability that N p1q ą B,
where

B :“ 3t ¨ q2 ¨ `{2r ` 2qn . (12)

Define rN p1q “
řq
i“1

rN
p1q
i as N

p1q
i “

řq
i“1N

p1q
i , however all values rN

p1q
i are defined with respect to

a transcript sampled from the alternative transcript distribution T1idealrts. Then, by Lemma 6,

Pr
”

N p1q ą B
ı

ď Pr
”

rN p1q ą B
ı

` SDppTideal, pT
1
idealrtsq ď Pr

”

rN p1q ą B
ı

`
pq`qt`1

2nt
.

For all i P rqs, define N̄i to be the number of UM,j ’s sampled in the process of generating T1idealrts
such that UM,jr1 . . . , rs “ Yi. (Independently of whether these values come to use or not.) Note
that we sample T :“ p|V | ´ 1q ¨ t ď pq`qt independent n-bit values in the process (i.e., t values for

every non-root vertex), and that clearly rN
p1q
i ď N̄i. We expect T {2r of these values to equal Yi.

Consider now the following two cases:

Case 1: T {2r ě n. Here, by applying the Chernoff bound (Theorem 4)

Pr
“

N̄i ě 3 ¨ T {2r ` 2n
‰

ď Pr
“

N̄i ě 3 ¨ T {2r
‰

ď e´T {2
r
ď e´n .

Case 2: T {2r ă n. Here, again by the Chernoff bound,

Pr
“

N̄i ě 2T {2r ` 2n
‰

ď Pr
“

N̄i ě T {2rp1` 2n2r{T q
‰

ď e
´ 4n222r

T2p2`2n2r{T q
T
2r ď e´n

because

4n222r

T 2p2` 2n2r{T q

T

2r
“

2n22r

T p1` n2r{T q
“

2n22r

T ` n2r
ě

2n22r

2n2r
“ n .

We can wrap up using the union bound: The probability that there exists some i P rqs such
that N i ą 3T {2r ` 2n is at most q ¨ e´n. Therefore, except with probability q ¨ e´n, rN ď N ď

3qT {2r ` 2qn ď 3tq2`{2r ` 2qn, as we wanted to show.
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Proof of Lemma 5. Recall that we are interested in studying the quantity

N p2q “

q
ÿ

i“1

N
p2q
i

for a given transcript τ sampled according to Tideal. In particular, we assume now that the first part
of the transcript pM1, Y1q, . . . , pMq, Yqq has been fixed arbitrarily, and we are computing the tree

T πpM1, . . . ,Mqq, for an independent permutation π
$
Ð Permpnq. For every edge e P E and every

i P rqs, define rNe,i to be the number of m PMi such that pγpeq ‘mqr1 . . . rs “ Yi, and we also let

rN “
ÿ

ePE

q
ÿ

i“1

rNe,i “
ÿ

ePE

rNe “

q
ÿ

i“1

rNi ,

where we have used the conventions rNe :“
řq
i“1

rNe,i and rNi :“
ř

ePE
rNe,i. Similarly, let rNe,i,m “ 1

if pγpeq ‘mqr1 . . . rs “ Yi, and 0 otherwise, and thus clearly rNe,i “
ř

mPMi
rNe,i,m.

We first observe that N
p2q
i ď rNi, and thus N p2q ď rN . This is because for every z P t0, 1un

such that zr1 . . . rs “ Yi and there exists m P Mi and e P E such that γpeq “ z ‘ m, we have
γpeq‘m “ z and thus pγpeq‘mqr1 . . . rs “ Yi, or in other words, rNe,i,m “ 1. Moreover, we are also
possibly overcounting, since the new random variables are defined with respect to the whole tree
T π, and not just its reduced version.

The splitting trick. In the following, we are going to show that rN (and hence N p2q) cannot be
too large. To this end, we will split every random variable rNe,i,m as

rNe,i,m “ rNJe,i,m `
rNKe,i,m ,

where rNJe,i is defined as rNe,i above, but only if the tail of the edge e was assigned as a label a fresh

permutation value, and is 0 otherwise.13 Conversely, rNKe,i,m is defined as rNe,i above, but only if the
tail node of e was re-assigned a previously used permutation value, or if the tail node is the root.
For b P tJ,Ku, we define analogously rNn

e,i,
rN b, rN b

e and rN b
i by only taking partial sums over the

corresponding rN b
e,i,m’s.

In the following, we are going to show, via two different analyses, that rNJ and rNK are not too
large, except with small probability. The two analyses use very different techniques.

Lemma 7. For all t ě 1, we have

Pr
”

rNJ ě 3t ¨ q2`{2r ` 2nq2
ı

ď
q

2n
`
pq`qt`1

2nt
.

Lemma 8. We have,

Pr
”

rNK ě q2 ` q2`{2r ` 8q2`4{2n`r
ı

ď
8q`

2n´r
.

Therefore, we conclude the proof of Lemma 5 by adding the two bounds.

13 Note that whether was the case is easy to identify by looking at Tπ.

26



Analysis of rNJ (Proof of Lemma 7). Let V 1 Ă V be the set of non-root inner vertices of T ,
and let E1 be the set of edges with their tail node in V 1. (These are all edges, except those leaving
the root.) Now, we consider the random experiment defining T1idealrts. There, for every j P rts and

e “ pM 1,M 1 }m1q, we are going to define similar random variables pNJe,i,j,m as rNJe,i,m, except that
pNJe,i,j,m is simply one whenever the j-th value UM 1,j (out of t of them) generated when visiting M 1

is such that pUM 1,j ‘m1 ‘mqr1 . . . rs “ Yi, regardless of whether λpM 1q is assigned UM 1,j or not.
Then, we let

pNJ “

q
ÿ

i“1

ÿ

mPMi

ÿ

ePE1

t
ÿ

j“1

pNJe,i,j,m .

Then, by Lemma 6, for BJ :“ 3t ¨ q2`{2r ` 2nq2,

Pr
”

rNJ ě BJ
ı

ď Pr
”

pNJ ě BJ
ı

`
pq`qt`1

2nt
. (13)

In particular, this is true if we only consider rNJ in the experiment where T1idealrts is sampled, and

the inequality holds, because pNJ can not be smaller then rNJ.

For every M 1 P V 1, i P rqs, j P rts, and m PMi, we now introduce the shorthand

pNJM 1,i,j,m “
ÿ

m1PMM 1

pNJpM 1,M 1 }m1q,i,j,m ,

i.e., the number of edges e outgoing from M 1 for which pUM 1,j ‘m
1 ‘mqr1 . . . rs “ Yi for the j-th

value UM 1,j generated when visiting M 1. Then,

pNJ “

q
ÿ

i“1

ÿ

mPMi

pNJi,m

where

pNJi,m “
t
ÿ

j“1

ÿ

M 1PV 1

pNJM 1,i,j,m .

In particular, pNJi,m is the sum of T :“ t ¨ |V 1| independent random variables, where we note that

Er pNJM 1,i,j,m “ 1s “ DM 1{2r, and pNJM 1,i,j,m P r0, DM 1s. Thus, by linearity, its expected value is

µm,i “ Er pNJi,ms “ t ¨ |E1|{2r ď tq`{2r.

To apply the Chernoff bound, it is worth it to scale the random variables pNJi,m, dividing them
by D to make them into r0, 1s-values, where D :“ maxM 1PV 1 DM 1 . Note that D ď q. That is, define
pLJM 1,i,j,m :“ pNJM 1,i,j,m{D and pLJi,m “

řt
j“1

ř

M 1PV 1
pLJM 1,i,j,m. Clearly, ErpLJi,ms “ µi,m{D.

To conclude, we are going to show that this probability is smaller than e´n ď 2´n. Therefore, by

the union bound, it follows that the probability that Pr
”

pNJ ě BJ
ı

is bounded by q ¨ 2´n, as there

are at most q pairs i P rqs,m PMi. Together with (13), this implies Lemma 7.
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Case 1: µi,m “ t|E1|{2r ď q ¨ n.

Pr
”

pNJi,m ě BJ{q
ı

ď Pr
”

pNJi,m ą 3µi,m ` 2nq
ı

ď Pr
”

pNJi,m ą µi,m ` 2nq
ı

“ Pr

„

pLJi,m ą
µi,m
D

`
2nq

D



“ Pr

„

pLJi,m ą
µi,m
D

ˆ

1`
2nq

µi,m

˙

ď e´∆

where, using D ď q and µi,m ď q ¨ n,

∆ “

ˆ

2n ¨ q

µi,m

˙2 1

2`
´

2n¨q
µi,m

¯ ¨
µi,m
D

“
4n2 ¨ q2

2µi,m ` 2n ¨ q
¨

1

D
ě
n2 ¨ q

n ¨ q
“ n .

Case 2. µi,m ą q ¨ n. Here, we compute

Pr
”

pNJi,m ě BJ{q
ı

ď Pr
”

pNJi,m ą 3µi,m ` 2nq
ı

ď Pr
”

pNJi,m ą 3µi,m

ı

“ Pr
”

pLJi,m ą 3µi,m{D
ı

“ Pr
”

pLJi,m ą
µi,m
D
p1` 2q

ı

ď e´∆
1

,

where, using again D ď q,

∆1 “
4

4
µi,m{D ě q ¨ n{D ě n .

Analysis of rNK (Proof of Lemma 8). First, let E1 Ď E be the set of edges which are not
outgoing from the root. Then, we are going to split rNK

rNK “
ÿ

ePEzE1

q
ÿ

i“1

rNKe,i `
ÿ

ePE1

q
ÿ

i“1

rNKe,i ď q2 `
ÿ

ePE1

q
ÿ

i“1

rNKe,i ,

as there are at most q edges in EzE1. We are going to bound the sum by using Markov inequality.

Therefore, we start by computing the expectation µ :“
ř

ePE1
řq
i“1 E

”

rNKe,i

ı

.

Assume now without loss of generality that T π and its labels are defined iteratively by traversing
it in some order preserving the prefix-of order. We focus now on computing, for a particular e and
i, the value Er rNKe,is. To this end, define rNKM 1,e,m,i for every M 1 ď e (which means that M 1 was
traversed before reaching edge e) and every m P Mi: It equals one if pγpeq ‘ mqr1 . . . rs “ Yi,
λpMq “ λpM 1q, where M is the tail node of e, and M 1 was the first node to be set to this label.
Otherwise, rNKM 1,e,m,i is 0. Then, we clearly have

rNKe,i “
ÿ

mPMi

ÿ

M 1ďe

rNKM 1,e,m,i “
ÿ

mPMi

rNKe,i,m ,

where
rNKe,i,m “

ÿ

M 1ďe

rNKM 1,e,m,i ,
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is a binary variable taking the value one if and only if pγpeq‘mqr1 . . . rs “ Yi and there exists some
M 1 ď e such that λpM 1q “ λpMq.

Therefore, once again by linearity, it is enough to compute Er rNKe,m,is “ Pr
”

rNKe,m,i “ 1
ı

for all e.

Note that if this is the case, this means that there exists some message Mi (whose corresponding
node was traversed before getting to e and M), such that λpMq collides with one of the internal
values in the computation of CBCpMiq, or in other words (using the language of [6]), this would
imply a full collision in computing CBCpMq and CBCpMiq: Formally, a full collision means that
CBCpMq collides with one of the other state values generated in the computation of CBCpMiq and
CBCpMq, also cf. Appendix C above for a definition, and the associated full collision probability
FCPnpMi,Mq. Therefore,

Er rNKe,m,is “ Pr
”

rNKe,m,i “ 1
ı

ď
ÿ

MiăM

FCPnpMi,Mq ď
8q`

2n
`

64q`4

22n
.

Note that [6] only gives bounds for FCPnpMi,Mq when Mi is not a prefix of M , but the bound
trivially extends, since if Mi is a prefix of M , then a full collision implies a full collision for M and
any other non-prefix message M 1. Thus, to conclude, we observe that

µ “

q
ÿ

i“1

ÿ

mPMi

ÿ

ePE1

Er rNKe,m,is ď
8q3`2

2n
`

64q3`5

22n
,

where we have used the fact that
řq
i“1Di ď q. Thus, by Markov’s inequality,

Pr

«

ÿ

ePE1

q
ÿ

i“1

rNKe,i ě q2`{2r ` 8q2`4{2n`r

ff

ď
8q`

2n´r
.

This concludes the proof of Lemma 8.

Remark. In the above proof, one would expect that Er rNKe,m,is is much smaller (perhaps even by
a multiplicative factor 2r). In fact, we are essentially assuming that as soon as collision occur,
then this collision implies rNKe,m,i “ 1. While this may not always be the case, it is very hard to
argue about the distribution of CBCpMq conditioned on the computation CBCpMiq and CBCpMq
provoking a full collision. In particular, one can build examples showing that it is not uniform, and
in general, very badly understood.

E Tightness of bound for GSponge – Missing Analysis

For the analysis, in the real world we consider the event COLL that for some i P rQ1s and i1 P rQ2s

we have πpK 1 ‘Miqrr ` 1 . . . ns “ Bi1,0rr ` 1 . . . ns and observe that PrrCOLLs ě ΩpQ1Q2{2
n´rq

(assuming Q1 ! 2n´r). Again, if COLL occurs due to some indices i and i1 then by construction
Yi,j “ Bi1,j for all j P rts and A outputs 1. Therefore,

Pr
”

AGSpongerπs,π,π´1
ñ 1

ı

ě Pr rCOLLs “ ΩpQ1Q2{2
n´rq .

However, if O “ R for a truly random function R : t0, 1u˚ Ñ t0, 1ur, all values Yi,j ’s are independent
random r-bit strings, since the messages Mi are distinct. Hence, by union bound, suitable i and i1

exist with probability at most

Pr
”

AR,π,π´1
ñ 1

ı

ď Q1Q22
´rt ď Q1Q22

´n .
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F Proof of Theorem 2 (sketch)

In this Appendix, we discuss the changes that are necessary to adapt the proof approach we used
to analyze truncated CBC to the setting of sponges-based MACs.

The transcripts.First, since the adversary is now allowed to query π, we will also include its π-
queries and the respective answers in the transcript. Hence, if pAi, Biq for i P t1, . . . , qπu represents
the π-queries asked by A and the respective responses (i.e., for each i we have πpAiq “ Bi and A
either asked a forward π-query Ai or a backward π-query Bi) then the transcript in both the real
and ideal world will also contain the list pA1, B1q, . . . , pAqπ , Bqπq.

Moreover, we also modify the definitions of the full and reduced message tree. The full message
tree changes in one aspect: the label of the root vertex λpεq will be set to the key K “ K 1

instead of the initialization vector IV, while the rest of the tree labeling is computed from this
root label identically as in the proof of Theorem 1 and the same process is applied to obtain its
reduced version. Since the full and reduced message trees now depend on K, we will denote them

as T π,KpM1, . . . ,MqC q and T
π,K
pM1, . . . ,MqC q, respectively.

Finally, we add one additional bit into the transcript, carrying the information whether an
overlap has occurred between the π-queries asked directly by the adversary, and the π-queries that
were needed to compute the labelling of the (full) message tree. Formally, we define PiHit as

pPiHit “ 1q :ô pDM P V : λpMq P tB1, . . . , Bqπuq ,

where λ denotes the non-reduced labelling function. Since the bit PiHit is determined by giving
a labelled message tree T and a list of π-queries tpAi, Biqu

qπ
i“1, we sometimes use the notation

PiHitpT, tpAi, Biqu
qπ
i“1q to give these explicitly.

Hence, both the real and the ideal transcript will have the form

τ “ ppA1, B1q, . . . , pAqπ , Bqπq, pM1, Y1q, . . . , pMqC , YqC q, T
π,K
pM1, . . . ,MqC q,PiHitq , (14)

where the pairs pMi, Yiq represent the adversary’s construction queries, just like before. The real-
world (resp. ideal-world) experiment generating the real-world transcript Treal (resp. the ideal-world
transcript Tideal) is defined as follows:

Real world. The transcript Treal for the adversary A is obtained by sampling π uniformly at
random from the set of permutations on t0, 1un and a uniform key K Ð t0, 1un, and letting

Treal “ ppA1, B1q, . . . , pAqπ , Bqπq, pM1, Y1q, . . . , pMqC , YqC q, T
π,K
pM1, . . . ,MqC q,PiHitq , (15)

where we execute A, which adaptively asks construction queries M1, . . . ,MqC answered with
Yi “ GSpongerπsKpMiq for all i P rqCs, and qπ π-queries that result in input-output pairs

pA1, B1q, . . . , pAqπ , Bqπq, and then we compute T “ T
π,K
pM1, . . . ,Mqq and use its non-reduced

version T π,KpM1, . . . ,Mqq and tpAi, Biqu
qπ
i“1 to determine PiHit. This time Treal only depends

on π and K, hence we sometimes write Trealpπ,Kq for the corresponding map.
Ideal world. The transcript Tideal for the adversary A is obtained similarly to the above, but here

we sample both a random permutation π and qC independent random values Y1, . . . , YqC P t0, 1u
r

and we let

Tideal “ ppA1, B1q, . . . , pAqπ , Bqπq, pM1, Y1q, . . . , pMq, Yqq, T
π,K
pM1, . . . ,MqC q,PiHitq ,

where we execute A, which adaptively asks construction queries M1, . . . ,Mq answered with Yi
for all i P rqs, and qπ π-queries that result in input-output pairs pA1, B1q, . . . , pAqπ , Bqπq, and

then we compute T “ T
π,K
pM1, . . . ,Mqq for some independent, randomly chosen K; and use

its non-reduced version T π,KpM1, . . . ,Mqq and tpAi, Biqu
qπ
i“1 to determine PiHit.
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The proof again proceeds using the H-coefficient method (cf. Lemma 1), hence we need to define
good and bad transcripts. A transcript (14) is good if it fulfills the requirements (1) - (3) from
Definition 2 (with the natural substitution of qC instead of q) and also the following additional
requirement:

(4) We have PiHit “ 0.

We again denote the sets of good and bad transcripts by GT and BT respectively, this time we have
BT “

Ť4
i“1 BTi.

Bounding bad transcripts. We have:

PrrTideal P BTs “ PrrTideal P

4
ď

i“1

BTis

“ PrrTideal P BT4s `

3
ÿ

i“1

PrrTideal P BTi | Tideal R BT4s

“ PrrPiHit “ 1s `
3
ÿ

i“1

PrrTideal P BTi | PiHit “ 0s .

The probability PrrPiHit “ 1s can be bounded easily.

Lemma 9. In the ideal world we have PrrPiHit “ 1s ď `qπqC{2
n.

Proof. For each M P V and i P t1, . . . , qπu let PiHitM,i denote the event that λpMq “ Bi for the
non-reduced labelling λ. By definition of GSpongerπsK we know that there exists a permutation ρ
independent of K such that λpMq “ ρpKq, namely ρ corresponds to the evaluation of the sponge
on a fixed input M , from the initial state K. Since the key K is chosen uniformly at random and
independently of the view of the adversary, the value λpMq will also be uniformly random and
independent of the adversarial π-queries. Hence PrrPiHitM,is “ 2´n and by union bound over all
pM, iq we have PrrPiHit “ 1s ď `qπqC{2

n. [\

Next we need to upper-bound the probabilities PrrTideal P BTi | PiHit “ 0s for i P t1, . . . , 3u.

Lemma 10. We have:

1. PrrTideal P BT1 | PiHit “ 0s ď 16`q2C{2
n ` 128`4q2C{2

2n ` 2`qCqπ{2
n.

2. For any parameter t ě 1 defining BT2,

PrrTideal P BT2 | PiHit “ 0s ď
qC
2n
`
pqC ¨ `q

t`1

2nt
`

2`qCqπ
2n

.

3. For any parameter t ě 1 defining BT3,

PrrTideal P BT3 | PiHit “ 0s ď
qC
2n
`

8`qC
2n´r

`
pqC ¨ `q

t`1

2nt
`

2`qCqπ
2n

.

Proof (sketch). The bounds can be established from Lemmas 3–5 in a generic way. Namely, since
we are conditioning on PiHit “ 0 we know that there will be no overlap between the π-queries asked
by the adversary and those that are needed to label the full message tree T . Second, to get closer
to the TCBC setting, we consider the key K to be fixed and only average over its choice in the
end. This means that the argument can follow the same path as in the case with the all-zero initial
state and no adversarial π-queries, with a small difference: now, whenever π is lazy-sampled at a
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fresh point, instead of returning a uniform element from the set of all 2n ´ i unused values, it will
instead sample from the smaller set of 2n´ qπ´ i values, since the query-answer pairs asked by the
adversary also have to be avoided to maintain PiHit “ 0. The statistical distance between the old
and new distribution at every such sampling is hence upper-bounded by

qπ
2n ´ i

ă
qπ

2n ´ qC
ă

2qπ
2n

,

assuming qC ď 2n´1 as otherwise the bounds are trivial. As π is always invoked at most `qC times
during the labeling of T , the probability of a bad transcript ocurring in our setting differs from the
probability of its ocurrence in the settings considered in Lemmas 3–5 by at most 2`qCqπ{2

n. [\

Lower-bounding the probability ratio. It now remains to bound the ratio

Pr rTreal “ τ s {Pr rTideal “ τ s

for all good transcripts τ . Towards this, we proceed as in Section 4.4, describing the necessary
modifications along the way.

We start by observing that since the padding function padp¨q only outputs non-empty strings,
we have Mi ‰ ε for all i P rqCs. Hence, by the construction of the reduced message tree T , we
have λpεq ‰ K and therefore λpεq “ K for every good transcript. Each good transcript τ hence
determines the key K and we will sometimes refer to this key by writing Kpτq. Now, similarly as
before we can define

Ωrτ s “ tπ : Trealpπ,Kpτqq “ τu

and

Ω1rτ s :“
!

π : T
π,Kpτq

pM1, . . . ,MqC q “ T pτq
)

X tπ : @i P rqπs : πpAiq “ BiuX

X

!

π : PiHit
´

T π,KpτqpM1, . . . ,MqC q, tpAi, Biqu
qπ
i“1

¯

“ 0
)

where T pτq denotes the reduced message tree given in the transcript τ . Intuitively, Ω1 contains all
permutations π that are consistent with the transcript τ on all its parts except possibly the outputs
Y1, . . . , YqC (note that we have PiHit “ 0 in τ since τ P GT).

We again denote by ppτq the ratio

ppτq :“
|Ωrτ s|

|Ω1rτ s|
“ Pr

”

π
$
Ð Permpnq : π P Ωrτ s

ˇ

ˇπ P Ω1rτ s
ı

“ Pr
”

π
$
Ð Ω1rτ s : π P Ωrτ s

ı

and observe that
Pr rTreal “ τ s

Pr rTideal “ τ s
“ 2r¨qC ¨ ppτq ,

remains satisfied since this time we have

Pr rTreal “ τ s “ Pr
”

K
$
Ð t0, 1un : K “ Kpτq

ı

¨ Pr
”

π
$
Ð Permpnq : Trealpπ,Kpτqq “ τ

ı

“ 2´n ¨ Pr
”

π
$
Ð Permpnq : π P Ω1rτ s

ı

¨ Pr
”

π
$
Ð Permpnq : π P Ωrτ s

ˇ

ˇπ P Ω1rτ s
ı

and
Pr rTideal “ τ s “ 2´n ¨ 2´r¨qC ¨ Pr

”

π
$
Ð Permpnq : π P Ω1rτ s

ı

,

where the first two factors in the latter equation capture the (independent, uniformly random)
choice of the key K and the outputs Yi, respectively.
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To lower-bound ppτq, we will again use the fact that

ppτq “
ÿ

pz1,...,zqq:zir1...rs“Yi

Pr
”

π
$
Ð Ω1rτ s : @i P rqCs : Zi “ zi

ı

and consider the same process for setting labels λpMiq, γpMi,Mi }mq and extending the partial
permutation π as in the proof of Theorem 1. We also consider the set L of all tuples pz1, . . . , zqC q
of qC distinct values such that:

- zir1..rs “ Yi for all i P rqCs,
- when assigning λpMiq Ð zi for all i P rqs in the above process, at the end of the process all the

labels λpMiq “ zi are unique within the set of all vertex labels; for all i P rqs and all m P Mi

the labels λpMi }mq are unique in the same sense; and PiHit “ 0.

The lower bound on ppτq is then obtained by giving a lower bound on:

- the probability that any particular tuple from L appears as the labels for vertices pM1, . . . ,MqC q

when π is chosen at random from Ω1rτ s; and
- the size of the set L.

For the former, one can again for any pz1, . . . , zqC q P L establish the bound

Pr
”

π
$
Ð Ω1rτ s : @i P rqCs : πpγpeiqq “ zi

ı

ě
1

2nqC

using an analogous argument as in the case considered for Theorem 1. Namely, we again have

Pr
”

π
$
Ð Ω1rτ s : @i P rqCs : πpγpeiqq “ zi

ı

“
|tπ P Ω1rτ s : @i P rqCs : πpxiq “ ziu|

|Ω1rτ s|

and it remains to bound the numbers of permutations in the sets in both the numerator and the
denominator. Here we additionally (in contrast to the proof of Theorem 1) have to take into account
that the permutations we are counting are always defined on additional qπ points to comply with
the π-queries listed in τ . However, this affects both counts equally and hence cancels out.

To lower-bound |L|, we will again be choosing the values zi one by one and for every i give a
lower bound on the number of admissible values zi. Namely, we will exclude a candidate value for zi
if it satisfies any of the properties (1)–(5) given on page 15 or the additional properties (6)–(7)
defined as follows:

(6) There exists an adversarial π-query pAj , Bjq such that zi “ Bj .
(7) There exists an adversarial π-query pAj , Bjq and an m PMi such that zi ‘m “ Aj .

The numbers of excluded values due to conditions (1)–(5) are estimated in the same way as in
the proof of Theorem 1, while for conditions (6)–(7) we need to exclude additional at most qπ and
Diqπ values, respectively. Redoing the computation (8), we arrive at

|L| ě 2qC ¨pn´rq ¨

˜

1´
N p1q `N p2q

2n´r
´

2q2C
2n´r

´
2qπqC
2n´r

¸

.

Putting pieces together. The above gives us

Pr rTreal “ τ s

Pr rTideal “ τ s
ě 1´

N p1q `N p2q

2n´r
´

2q2C
2n´r

´
2qπqC
2n´r

and by plugging this into Lemma 1 together with the results of Lemma 9 and Lemma 10, we obtain

AdvprfGSponger,pad,π
pAq ď

p6t` 17q`q2C ` 7`qπqC ` 2qC
2n

`
6nq2C ` 8`qC ` qπqC

2n´r
`

136`4q2C
22n

`
2p`qCq

t`1

2nt

for any parameter t ě 1. [\
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G Proof of Theorem 3

In Theorem 2 we proved the PRF security of the GSponge construction, here we will explain how
to extend the proof to the case where the key K 1 is not uniform, but generated from w short b-bit
keys Kr1s, . . . ,Krws as illustrated in Figure 3, i.e,

set V0 :“ 0n then compute Vi “ πppKris } 0n´bq ‘ Vi´1q for i “ 1, . . . , w and set K 1 :“ Vw. (16)

For this we define the transcript T1real for Sponge in almost the same way as we defined the transcript
Treal for GSponge (cf eq.(15) and the paragraphs above and below it), but where instead of sampling
a random n-bit string K and then setting Yi “ GSpongerπsKpMiq, we now sample a key K “

pKr1s, . . . ,Krwsq that consists of a w-tuple of random b-bit strings, and compute K 1 from K and π
as in (16). Note that we do not include the inputs/outputs of the w extra invocation of π required
to compute K 1 into the transcript T1real, so the transcripts for Sponge and GSponge are defined over
the same domain. By the lemma below, these transcripts are also statistically close:

Lemma 11. The statistical distance of the real transcript Treal for GSponge as defined in (15) and
T1real for Sponge as defined above is (below q “ qπ``qC denotes an upper bound on the total number
of invocations of π in the attack on Sponge)

SDpT1real,Trealq ď
q

2bw
`
wq

2n
`

q2

2n´b

If w “ 1, one can remove the q2{2n´b term above. Assuming q ď 2n´b we can remove this term at
the cost of increasing the first

SDpT1real,Trealq ď
q

2
b´logp3nq´1

2
w
`
wq

2n

Before we prove this lemma, we observe that together with Theorem 2, this implies Theorem 3. We
have

AdvprfSponger,padb
,πpAq ď SDpT1real,Tidealq ď SDpT1real,Trealq ` SDpTreal,Tidealq

and we can bound the last two terms with the bounds from Lemma 11 and Theorem 2, respectively.
Note that we didn’t state the q ď 2n´b condition from Lemma 11 in the theorem because if this
condition is not satisfied, the theorem is void anyway.

Proof (of Lemma 11). Below we define a way of sampling a joint distribution pT, auxq. There are
two distinguished values K1,K2 in the support of aux, and we will sometimes write aux “ K for
aux P tK1,K2u. The distribution pT, auxq will satisfy the following three conditions:

(1) SDpT,Trealq “ 0, so the marginal distribution T is the same as real GSponge transcripts.
(2) For any τ˚ we have

Prrpτ, αq Ð pT, auxq : pτ “ τ˚q ^ paux ‰ Kqs ď PrrT1real : pτ “ τ˚qs . (17)

(3) The probability that the auxiliary information is K is at most

Prrpτ, αq Ð pT, auxq : aux “ Ks ď q2{2n´b ` q{2bw ` wq{2n ,

or alternatively

Prrpτ, αq Ð pT, auxq : aux “ Ks ď q{2
b´logp3nq´1

2
w ` wq{2n .

Note that the three points above imply the Lemma with

SDpTreal,T
1
realq “ SDpT,T1realq ď Prrpτ, αq Ð pT, auxq : aux “ Ks

where the last equality above follows as for any random variables X,Y and any event E we have
that if for all v in the domain PrrX “ v ^ Es ď PrrY “ vs then SDpX,Y q ď Prr Es.
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Sampling pT, auxq. The augmented transcript distribution pT, auxq is defined as follows. We first
sample a transcript Treal and set T “ Treal (note that this already implies condition (1) above).

We now define how to sample the second part aux of the distribution. Note that to sample
T “ Treal, we have sampled a uniformly random key K 1 P t0, 1un and a random permutation π.
It will be convenient to think of π being ”lazy” sampled, so at this point we only have a partially
defined permutation π̄ that is defined on at most qπ ` `qC inputs.

We now sample a key K “ Kr1s, . . . ,Krws consisting of w random b-bit blocks. Next, we
check if the partially defined π allows to compute the key: Starting with V0 :“ 0n, compute Vi “
πppKris } 0n´bq ‘ Vi´1q for all i “ 1, 2, . . . until either i “ w or we get an input on which π is not
yet defined. If i “ w, i.e., we have computed the key, we set aux “ K1 (the reason is that now
almost certainly Vw ‰ K 1, and thus we we have a transcript which we cannot make look as if it
was generated by Sponge).

Proving Condition (2). Intuitively, if in the process just described we stopped at i ă w, then the
next Vi will be the output of π on a ”fresh” input, and thus close to uniform. At this point, we
define the Vi`1, . . . , Vw´1 uniformly at random and set Vw “ K 1. If any of the Vi`1, . . . , Vw is not
”fresh” in the sense that it appears anywhere else in the transcript, we set aux “ K2. Otherwise,
we set aux to contain the input/output pairs of the w queries to π made while computing K 1 (note
that this implicitly also defines the key K “ Kr1s, . . . ,Krws).

To prove condition (2) we now also augment the transcripts of GSponge to get a distribution
pT1real, aux

1q, where aux1 contains the w queries made to π while computing K 1. To prove (2) we’ll
show that for any transcript pτ˚, α˚q in the support of pT1real, aux

1q we have

Prrpτ, αq Ð pT, auxq : pτ˚, α˚q “ pτ, αqs ď Prrpτ, αq Ð pT1real, aux
1q : pτ˚, α˚q “ pτ, αqs . (18)

With this, (17) follows by taking the sum over all α˚ on both sides of the above equation.
Note that we only must consider transcripts pτ˚, α˚q where during the computation of K 1 from

K we made a “fresh” query (otherwise aux “ K, but aux1 is never K, so it’s not in the support
of pT1real, aux

1q). Consider any such fixed transcript pτ˚, α˚q, and assume we sample pT1real, aux
1q or

pT, auxq such that we immediately abort as soon as we’re inconsistent with pτ˚, α˚q, and we sample
the “fresh” outputs Vi`1, . . . , Vw´1 at the very end. Here, the sampling of pT1real, aux

1q and pT, auxq
is identical (and thus has the same probability of being consistent with pτ˚, α˚q) up to the point
where we must sample the Vi`1, . . . , Vw´1. In pT, auxq these are sampled uniformly at random,
whereas when sampling pT1real, aux

1q, this values are implicitly defined as we sample the outputs
of π on the fresh inputs Vj “ πppKrjs}0n´bq ‘ Vj´1 for j “ i ` 1, . . . , w ´ 1. The probability of
sampling consistently in the latter case is at least as high as sampling the Vj ’s uniformly, as now
the sampling space is smaller (because π is already defined on some outputs, and these can now be
excluded), this proves condition (2).

Proving Condition (3). It remains to upper bound the probability that aux P tK1,K2u to prove
condition (3). For K2 we get the following simple claim

Claim. Let q “ qπ ` `qC be an upper bound on the total number of invocations of π. Then

Prraux “ K2s ď
wq

2n

Proof. The probability that any particular of the uniformly sampled Vi’s “hits” any of the at most
q values on which π is already defined is q{2n. As we sample at most w of them, we get the claimed
bound by the union bound. [\

The bound on the probability of aux “ K1 is a bit more tedious, and we outsourced it to Lemma 12
below. Note that the above claim with Lemma 12 prove condition (3). [\
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Lemma 12. Let q “ qπ ` `qC , then

Prraux “ K1s ď
q2

2n´b
`

q

2bw
(19)

if w “ 1 (i.e., the key is just one b-bit block) then we can ignore the q2

2n´b
term above. If q ď 2n´b

we can ignore this term, at the prize of increasing the 2nd

Prraux “ K1s ď 2´n `
q ¨ nw

2bw
“ 2´n `

q

2
b´logp3nq´1

2
w
. (20)

Proof (of Lemma 12). Consider the sampling of pT, auxq right after we sampled the key K “

pKr1s, . . . ,Krwsq. We will say that K is fixed if we can compute K 1 “ Vw without having to define
π on new points (i.e., with V0 :“ 0n, we can compute Vi “ πppKris } 0n´bq‘Vi´1q for i “ 1, . . . , w).
Let #K denote the number of fixed keys, note that with this we can express the probability of
aux “ K1 as

Prraux “ K1s “
#K

# of keys
“

#K

2bw
.

So it remains to bound #K. Below, we will first define an event γ0 (think of γ0 as a boolean variable
where γ0 “ 0 which means the condition holds, and γ0 “ 1 means it failed), where conditioned on
γ0 holding, the number of fixed keys #K can be upper bounded with q. We’ll show that γ0 fails
with probability at most q2{2n´b, which then gives us the bound in (19).

Unfortunately, the q2{2n´b term is quite large, in particular, it would dominate our bounds for
Sponge. To get rid of this term, we generalise the event γ0 to γm for any m P N. For γ3n´1 we can
show that it fails with only extremely small probability ă 2´n, and conditioned on γ3n´1 we can
still upper bound the number of fixed keys #K with qnw (as opposed to q under γ0). This will then
give us the bound (20).

The event γ0. The event γ0 fails if during the experiment (during which we made at most q
invocations to π) we made a forward or backward query, where the output collided with some
previous value on the last n ´ b bits. Concretely, γ0 “ 1 if at some point we made either a fresh
forward query X and got the output Y Ð πpXq where π was already defined on some pX 1, Y 1q
satisfying Y rb ` 1 . . . ns “ Y 1rb ` 1 . . . ns, or an inverse query Y and got the output X Ð π´1pY q
where some pX 1, Y 1q satisfies Xrb ` 1 . . . ns “ X 1rb ` 1 . . . ns. The probability of γ0 failing can be
bounded by a standard birthday bound

Prrγ0 “ 1s ď q2{2n´b . (21)

Moreover, we claim that

Prraux “ K1 | γ0 “ 0s ď #K{2bw ď q{2bw . (22)

We postpone the proof of (22), and note that now using that

Prraux “ K1s “ Prraux “ K1 ^ γm “ 1s ` Prraux “ K1 ^ γm “ 0s

ď Prrγm “ 1s ` Prraux “ K1 | γm “ 0s (23)

implies the first bound (19) in the statement of the claim.
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The event γm. For m P N`, the event γm fails if we made m ` 1 or more forward queries (or
m ` 1 backward queries) that collide on the last n ´ b bits. More precisely, γm “ 1 if during the
experiment the permutation π was invoked on m ` 1 forward queries X0 . . . Xm which resulted in
answers Yi Ð πpXiq that all had the same last n´ b bits, similarly for backward queries. We claim
the following:

Claim.

Prrγ3n´1 “ 1s ď 2´n . (24)

Proof (of Claim). This follows by a Chernoff bound: Assume we made a forward query Y0 Ð πpX0q

(backwards queries are proven similarly) to π. Subsequently, we make at most q other forward
queries, and for any of those queries, the probability that their output collides with Y0 on the last
n´ b bits is 1{2n´b.14 The expected number of such collisions µ is thus ď q{2n´b ď 1 (as we assume
q ď 2n´b). Using Theorem 4 with δ “ 3n´ 1 and µ ď 1,

Prr# of collisions ě 3ns ď e´p3n´1q
2{p3n`1q ď 2´2n .

The above bounds the probability of a particular query being ”hit” by 3n´ 1 or more subsequent
queries. Taking the union bound over all q ď 2n´b ă 2n such queries proves (24) as 2´2n2n “ 2´n.

[\

It remains to prove that conditioned on γ3n´1 “ 0, the number of fixed keys can be bounded as

Prraux “ K1 | γ3n´1 “ 0s ď
#K

2bw
ď
q2wp2

bw
2 ¨ p3n´ 1q

w
2 q

2bw
ď

q

2
pb´logp3nqw

2
´1

. (25)

Before proving this, note that plugging in the bounds (25) and (24) to (23) implies statement (20)
of the claim.

Bounding #T assuming γm “ 0. It remains to prove (22) and (25). For this we build a tree from
the partially defined π which will capture the possible computations ofK 1 fromK “ pKr1s, . . . ,Krwsq
as follows:

- The root of the tree is v and we assign the label 0n to it (we will write v1 to denote the label of
v and e1 to denote the label of an edge e).

- For every k1 P t0, 1u
b on which πppk1}0

n´bq ‘ vq is defined, we add a node vk1 with label
v1k1 “ πppk1}0

n´bq ‘ vq and a directed edge ek1 “ pv, vk1q with label e1k1 “ pk1}0
n´b ‘ vq.

- We continue to build this tree level by level. Assume we build level i ă w (the root is level 0,
and we just described how to build the nodes on level 1).

The nodes on level i are named vk1,...,ki (each kj P t0, 1u
b), consider any such node. If there

exists ki`1 P t0, 1u
b s.t. πppki`1}0

n´bq ‘ v1k1,...,kiq is defined, then add a node vk1,...,ki,ki`1
with

label πppki`1}0
n´bq ‘ v1k1,...,ki`1

q and connect vk1,...,ki and vk1,...,ki`1
with an edge ek1,...,ki`1

with

label pki`1}0
n´bq ‘ v1k1,...,ki`1

.

Note that the computation of a key K 1 from a fixed key pKr1s, . . . ,Krwsq corresponds to a path
from the root to the node vKr1s,...,Krws, and the label of this node is K 1. So, every leave of this tree
at the last level w correspond to a fixed key.

14 This is not exactly true, as π is a permutation not a random function, but this doesn’t matter as it will finally
bound the probability in the right direction.
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The collapsed Tree Graph Gπ. Consider the tree we just defined, then we denote with Gπ the
(directed, loop-free) graph we get when merging all nodes with the same label in the same layer of
the tree.

The γ0 Case. To prove (22), we will show that #K ď q if γ0 “ 0. This follows from the following
two claims:

Claim. If Gπ is a tree (i.e., we haven’t collapsed any labels), then there are at most q fixed keys.

Proof (of Claim). In Gπ every node at level w (recall that there are at most q nodes in total)
corresponds to exactly one fixed key, as in a tree there can be only one path from any node to the
root. [\

Claim. If γ0 “ 0 then Gπ is a tree.

Proof (of Claim). It will be convenient to assume that the very first query made by the adversary
was a forward query 0n to π. Assume Gπ is not a tree, we must show that then γ0 “ 1. As Gπ
is not a tree, there is at least one vertex v˚ with in-degree two. Let v0 and v1 be the two nodes
that point to v˚, then v10rb ` 1 . . . ns “ v11rb ` 1 . . . ns.15 If both outputs v10, v

1
1 resulted originally

from forward queries to π then by definition γ0 “ 1 and we’re done. So, assume that at least one
of them, say v10, resulted from an inverse query. Let v2 be a parent of v0 and e0 the edge v2 Ñ v0.
Note that e10 Ð π´1pv10q is the label of e0, and that v12rb` 1 . . . ns “ e10rb` 1 . . . ns (as the label of a
vertex and any edge leaving it are always identical on the last n ´ b bits). We consider 3 possible
cases:

- If v2 is the root, then we made an inverse query whose output ended with 0n´b, and thus we
have a collision with the very first forward query and thus γ0 “ 1 (recall that we assumed the
first query is the forward query 0n).

- If v12 was the output of a forward query, then this forward query collides on the last n´ b bits
with the inverse query on input v10 (as explained above) and thus γ0 “ 1.

- If v2 is the output of an inverse query, we repeat the above argument with v2 taking the role of
v0.

In the first two cases above we have γ0 “ 1, in the last case we walked down one layer in in Gπ,
and we can do this at most w times before hitting the root (and thus land in the first case), so
ultimately γ0 “ 1 will hold. [\

The γm Case. We just bounded #K assuming γ0, we will now show a bound for #K assuming
only the weaker condition γm for some m ą 0 holds.

Recall that with any fixed key pKr1s, . . . ,Krwsq we can associate a path of length w from the
root v to vKr1s,...,Krws in Gπ, and each edge in Gπ corresponds to a query (either a forward or a
backward query) that was made to π. We define the signature s P t0, 1uw of K as follows: For
j P t1 . . . nu, srjs “ 0 if the query corresponding to the j-th edge on the path was a forward query,
and srjs “ 1 otherwise.

With Gsπ we denote the subgraph of Gπ where we delete every edge e at level i if this edge
corresponds to a forward query but sris “ 1 or to a backward query but sris “ 0. Note that any
path corresponding to a fixed key K with signature s in Gπ is also contained in Gsπ. Thus, to upper
bound #K it suffices to upper bound the number of paths in each Gsπ separately, which we do in
the following claim.

15 This holds as for some x, y P t0, 1ub we have v10 ‘ px}0
n´b
q “ v11 ‘ py}0

n´b
q.
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Claim. If γm “ 0, then for any signature s, any node u (with label u1) at level w in Gsπ, the number
of paths from the root to u (or equivalently, the number of fixed keys with signature s that result
in a key Vw “ u1 using the rule (16)) is at most

2
bw
2 m

w
2 .

Proof (of Claim). We will assume that m ă 2b as otherwise the claim is trivial (as the bound is
larger than the total number of paths in Gπ which is at most 2bw).

As a warm-up, consider the case where the signature is s “ 0w, i.e., all forward queries. As
γm “ 0, we never had a m ` 1-wise collision in forward queries, which implies that the in-degree
of any node in Gsπ is at most m. So, the single node u at level w is connected to at most m nodes
at level w ´ 1, each node in level w ´ 1 is connected to at most m nodes at level w ´ 2, etc. With
every level the number of paths increases by a factor m, and thus when we reach the root (at level

0) we have at most mw ď 2
bw
2 m

w
2 paths.

Let |s| denote the Hamming weight (i.e., the number of 1’s) of s. Now consider any s where
|s| ď w{2. We can make the above argument, that going from level i down to i ´ 1 increases the
number of paths by a factor at most m for any level i where sris “ 0. For the remaining |s| steps
we can’t say anything, except the trivial fact that the outdegree of any node is bounded by 2b, and
thus going from level i down to level i ´ 1 increases the number of paths by a factor at most 2b

even if sris “ 1. The total number of paths is thus at most

2b|s|mw´|s| ď 2
bw
2 m

w
2

where we used that |s| ď w{2 and m ď 2b.
For the remaining cases where |s| ą w{2, can do a similar argument, but now we upper bound

the number of paths in the other direction, starting at the root going towards u. By definition,
γm “ 0 implies that for any i P rns with sris “ 1, the nodes in Gsπ at level i´ 1 have out-degree at
most m (as otherwise we had at least m ` 1 collisions on inverse queries, and thus γm “ 1). By a
counting argument as before, the number of paths from the root to u can be now upper bounded
by

2bpw´|s|qm|s| ď 2
bw
2 m

w
2

where we used that |s| ą w{2 and m ď 2b. [\

As there are at most q nodes in Gπ (and thus also in Gsπ for any s), and 2w possible signatures,
using the above claim we get for m “ 3n´ 1

#K

2bw
ď
q ¨ 2w ¨ 2

bw
2 p3n´ 1q

w
2

2bw
ď

q

2
b´logp3nq´1

2
w
.

This proves (25). [\

H Standard-model Bounds

We give standard-model security statements for keyed sponges and for TCBC. In particular, our
result for keyed sponges is a direct corollary of the one for TCBC.

H.1 Truncated CBC

We start with standard-model security of TCBC when instantiated with a block cipher which is a
secure pseudorandom permutation (PRP).
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Block ciphers and PRPs. Recall that a block cipher is a keyed function E : t0, 1uκ ˆ t0, 1un Ñ
t0, 1un such that EK P Permpnq, i.e., it is a permutation, for all κ-bit K. The traditional security
of E is that of being a pseudorandom permutation (or PRP, for short), defined via the advantage
measure

AdvprpE pAq “
ˇ

ˇ

ˇ
Pr

”

K
$
Ð t0, 1uκ : AEK ñ 1

ı

´ Pr
”

π
$
Ð Permpnq : Aπ ñ 1

ı
ˇ

ˇ

ˇ
.

Informally, we say that F is a PRF, or E is a PRP, if the corresponding advantage is “negligible”
for all “efficient” A’s.

Security of Truncated CBC. The following theorem uses Theorem 1 to show that truncated
CBC is a PRF whenever the underlying block cipher E is a PRP. In particular, we denote as
TCBCr,padrEs the keyed function which on key K and input M outputs TCBCEK

r,padpMq.

Theorem 5 (Standard-model security of TCBC). Let E : t0, 1uκˆt0, 1un Ñ t0, 1un be a block
cipher, and let pad : t0, 1u˚ Ñ pt0, 1unq` be a padding scheme. Let A be a prf-adversary making at
most q queries, each of length at most ` ă 2n{4 n-bit blocks (after padding). Then, there exists a
prp-adversary B such that for any t ě 1,

AdvprfTCBCr,padrEs
pAq ď q ¨ ` ¨ AdvprpE pBq `Bpq, `, n, r, tq ,

where B has TimepBq “ TimepAq ` Opq ¨ `q and makes at most q ¨ ` permutation queries, and
Bpq, `, n, r, tq is the term on the right-hand-side of Theorem 1.

Proof (Sketch). The adversary B, given oracle access to a permutation τ P Permpnq, simulates the
interaction of A with TCBCrτ s using the permutation τ , and terminates by outputting A’s output.
Then, this clearly implies by the triangle inequality that

AdvprfTCBCr,padrEs
pAq ď AdvprpE pBq ` AdvprfTCBCr,padrπs

pAq ,

where TCBCr,padrπs is TCBC instantiated with a randomly sampled permutation π
$
Ð Permpnq.

Theorem 1 directly bounds the second term as Bpq, `, n, r, tq. [\

H.2 Sponges

In this section, we combine our result on truncated CBC above with the very elegant approach
of Chang et al. [14]. The following discussion refers to the GSponge construction from Section 5.
(Recall that GSponge sets the n-bit initialization value to equal the secret key K.)

XOR PRP Security. The following security notion was considered in [14]. For an (unkeyed)
permutation π P Permpnq, we consider the keyed permutation πr : t0, 1un´r ˆ t0, 1un Ñ t0, 1un

such that

πrKpMq “ p0
r }Kq ‘ πpM ‘ p0r }Kqq . (26)

It is convenient to denote this as a security property for a permutation π, and in particular we
define the pr,‘q-prp advantage as

Advpr,‘q-prpπ pAq “ Advprpπr pAq .

Informally, we say that π is pr,‘q-prp-secure if Adv
pr,‘q´prp
π pAq is “negligible” for all efficient ad-

versaries A.

40



Security of GSponge. We apply Theorem 5 to prove standard-model security of GSponge. To
this end, let pad : t0, 1u˚ Ñ pt0, 1unq` be a padding scheme. Then, for an n-bit string K, we
define padK : t0, 1u˚ Ñ pt0, 1unq as the new padding scheme which first computes padpMq “
M r1s . . .M r`s, and then replaces the first block M r1s by M r1s ‘K. Then, it is easy to verify that
for all keys K “ K0 }K1 (where K0 P t0, 1u

r and K1 P t0, 1u
n´r) and messages M , we have

GSpongeπr,padpK,Mq “ TCBC
πrK1
r,pad

ĂK0

pMq , (27)

where rK0 :“ K0 } 0n´r.

Therefore, security follows directly as a corollary.

Theorem 6 (Standard-model security of GSponge). Let π P Permpnq and pad : t0, 1u˚ Ñ
pt0, 1unq` a padding scheme. Let A be a prf-adversary making at most q queries, each of length at
most ` ă 2n{4 n-bit blocks (after padding). Then, there exists an p‘, rq-prp-adversary B such that
for any t ě 1,

AdvprfGSponger,padrπs
pAq ď Advpr,‘q-prpπ pBq `Bpq, `, n, r, tq ,

where B has TimepBq “ TimepAq ` Opq ¨ `q and makes at most q ¨ ` permutation queries, and
Bpq, `, n, r, tq is the term on the right-hand-side of Theorem 1.

Proof (Sketch). The adversary B, given oracle access to a permutation τ P Permpnq, first samples

K0
$
Ð t0, 1ur, and then simulates the interaction of A with TCBCr,pad

ĂK0
rτ s using the permutation

τ , and terminates by outputting A’s output. Then, this implies by the triangle inequality that

AdvprfGSpongeπr,pad
pAq ď q ¨ ` ¨ AdvprpE pBq ` EK0

„

AdvprfTCBCr,pad
ĂK0
rπspAq



,

where TCBCr,pad
ĂK0
rπs is TCBC instantiated with a randomly sampled permutation π

$
Ð Permpnq,

and the expectation is over the random choice of K0
$
Ð t0, 1ur. Theorem 1 directly bounds the

second term as Bpq, `, n, r, tq for any choice of K0. [\

Relation to Theorem 2.We remark that Theorem 6 cannot be used to obtain the same bound as
Theorem 2 in a generic way. On the one hand, it is true that in the ideal permutation model (where
π is sampled randomly and the adversary can evaluate π and π´1 directly) we can unconditionally
show that (using a variation of the security proof of the Even-Mansour cipher [21])

Advpr,‘q-prpπ pAq ď O
´qc ¨ qπ

2n´r

¯

, (28)

for any adversary A making qc permutation queries and qπ queries directly to π or π´1, and thus
in Theorem 6 (where qc “ q ¨ `) this would give a term of `qc¨qπ

2n´r
, whereas the corresponding term in

Theorem 2 is of the order of Op` ¨ q ¨ qπ{2
nq.

The security of Sponge. For black-box keying, where the key is pre-pended to the message,
it is much harder to provide a clean standard-model security analysis. Similar to the lifting of
NMAC bounds to HMAC [3], this can be done via an ad-hoc combinatorial assumption stating
that the permutation π produces an n-bit key with distribution computationally close to uniform
after absorbing a sufficient number of b-bit random key strings.
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I Detailed comparison with [2]

The recent work of Andreeva et al. [2] also gives a comprehensive analysis of keyed sponges. We
summarize their contribution in the language of our paper, noting that despite a superficial sim-
ilarities, the two papers address two complementary technical issues. In particular, [2] does not
address the issue of tight bounds unlike our work.

The comparison with [2] is best summarized in the context of Theorem 6 above. The first
main contribution of this paper with respect to the work of Chang et al. [14] is to improve the
information-theoretic term to Bpq, `, n, r, tq in Theorem 6. In previous works, including [2], this
term is of the order of Opq2c `

2{2n´rq, which is much larger than what we obtain here, which is of
the order of Opq2c {2

n´rq when ` ď 2r. We see this as our main technical contribution.

In contrast, [2] targets the first term Adv
pr,‘q-prp
π pBq, and shows that the query complexity of B

can be reduced from q` to a quantity µ called the multiplicity. The latter is a function of the input-
output pairs tpui, viqu corresponding to the at most q ¨ ` evaluations of π within the q construction
queries. The quantity µ is defined by adding µu and µv, where µu is the maximal number of pairs
pui, viq such that uir1 . . . rs “ a (taken over all r-bit strings a), and symmetrically, µb is the maximal
number of pairs pui, viq such that vir1 . . . rs “ b, taken over all r-bit strings b. We note that this
quantitatively more precise statement can also be applied to our theorem above, while preserving
our improved terms Bpq, `, n, r, tq, and thus both works are complementary. We also note that in
the worst case µ can be of the order q ¨ ` (for example, it is not too hard to force all inputs ui’s to
have their first r bits equal 0).

To conclude, we observe that ideal-model bounds are then obtained by using the above bound

on Adv
pr,‘q-prp
π pBq from (28), which now result in an extra term Opµqπ{2

n´rq. This should be
compared with the additional term involving qπ and qC we obtain via Theorem 2, which is of the
order OppqCqπ``qπq{2

n´rq (again, assuming ` ă 2r). The term from [2] is hence larger in the worst
case where µ “ q ¨ ` and is superior to ours only when µ ď mint`, qCu.
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