
Generic Security of NMAC and HMAC with Input Whitening

Peter Gaži1, Krzysztof Pietrzak1, and Stefano Tessaro2

1 IST Austria
{peter.gazi,pietrzak}@ist.ac.at

2 UC Santa Barbara
tessaro@cs.ucsb.edu

Abstract. HMAC and its variant NMAC are the most popular approaches to deriving a MAC (and
more generally, a PRF) from a cryptographic hash function. Despite nearly two decades of research,
their exact security still remains far from understood in many different contexts. Indeed, recent works
have re-surfaced interest for generic attacks, i.e., attacks that treat the compression function of the
underlying hash function as a black box.
Generic security can be proved in a model where the underlying compression function is modeled as a
random function – yet, to date, the question of proving tight, non-trivial bounds on the generic security
of HMAC/NMAC even as a PRF remains a challenging open question.
In this paper, we ask the question of whether a small modification to HMAC and NMAC can allow us
to exactly characterize the security of the resulting constructions, while only incurring little penalty
with respect to efficiency. To this end, we present simple variants of NMAC and HMAC, for which we
prove tight bounds on the generic PRF security, expressed in terms of numbers of construction and
compression function queries necessary to break the construction. All of our constructions are obtained
via a (near) black-box modification of NMAC and HMAC, which can be interpreted as an initial step
of key-dependent message pre-processing.
While our focus is on PRF security, a further attractive feature of our new constructions is that they
clearly defeat all recent generic attacks against properties such as state recovery and universal forgery.
These exploit properties of the so-called “functional graph” which are not directly accessible in our new
constructions.
Keywords. message authentication codes, HMAC, generic attacks, provable security

1 Introduction

This paper presents new variants of the HMAC/NMAC constructions of message authentication codes which
enjoy provable security as a pseudorandom function (PRF) against generic distinguishing attacks, i.e., attacks
which treat the compression function of the underlying hash function as a black-box. In particular, we
prove concrete tight bounds in terms of the number of queries to the construction and to the compression
function necessary to distinguishing our construction from a random function. Our constructions are the
first HMAC/NMAC variants to enjoy such a tight analysis, and we see this as an important stepping stone
towards the understanding of the generic security of hash-based message authentication codes.

Hash-Based MACs.HMAC [3] is the most widely used approach to key a hash function H to obtain a PRF
or a MAC. It computes the output on message M and a key K as

HMAC(K,M) = H(K ⊕ opad ‖H(K ⊕ ipad ‖M)) ,

where opad 6= ipad are constants.3 Usually, H is a hash function like SHA-1, SHA-256 or MD5, in particular
following the Merkle-Damg̊ard paradigm [17,5]. That is, it extends a compression function f : {0, 1}c ×
{0, 1}b → {0, 1}c into a hash function MDf

IV by first padding M into b-bit blocks M [1], . . . ,M [`], and then
producing the output H(M) = S`, where

S0 ← IV , Si ← f(Si−1 ‖M [i]) for all i = 1, . . . , ` . (1)

3 Some details such as padding and arbitrary key length are addressed in Section 2.

starting with the c-bit initialization value IV. A cleaner yet slightly less practical variant of HMAC is NMAC,
which instead outputs

NMACKin,Kout(M) = MDf
Kout

(MDf
Kin

(M)) ,

where Kin,Kout ∈ {0, 1}c are key values.

Security of HMAC/NMAC. The security of both constructions has been studied extensively, both by
obtaining security proofs and proposing attacks. On the former side, NMAC and HMAC were proven to be
secure pseudorandom functions (PRFs) in the standard model [3], later also using weaker assumptions [2]
and via a tight bound in the uniform setting [8]. However, as argued in [8], this standard-model bound might
be overly pessimistic, covering also very unnatural constructions of the underlying compression function f
(for example the one used in their tightness proof). The authors hence argue for the need of an analysis of
the PRF security of HMAC in the so-called ideal compression function model where the compression function
is modelled as an ideal random function and the adversary is allowed to query it. This model was previously
used by Dodis et al. [7] to study indifferentiability of HMAC, which however only holds for certain key lengths.

This is also the model implicitly underlying many of the recently proposed attacks on hash-based
MACs [20,18,16,21,11,6,23]. These attacks are termed generic, meaning they can be mounted for any un-
derlying hash function as long as it follows the Merkle-Damg̊ard (MD) paradigm. The complexity of such a
generic attack is then expressed in the number of key-dependent queries to the construction (denoted qC)
as well as the number of queries to the underlying compression function (denoted qf). These two classes of
queries are also often referred to as online and offline, respectively.

All iterated MACs are subject to the long-known Preneel and van Oorschot’s attack [22] which implies a
forgery (and hence also distinguishing) attack against HMAC/NMAC making qC = 2c/2 construction queries
(consisting of constant-length messages) and no direct compression function queries (i.e, qf = 0). This
immediately raises two questions:

How does the security of HMAC and NMAC degrade (in terms of tolerable qC) by increasing (1) the
length ` of the messages and (2) the number qf of compression-function evaluations?

The first question has been partially addressed in [8]. Their result4 can be interpreted as giving tight bounds
on the PRF security of NMAC against an attacker making qC key-dependent construction queries (of length
at most ` < 2c/3 b-bit blocks) but no queries to the compression function. They show that both constructions
can only be distinguished from random function with advantage roughly ε(qC, `) ≈ `1+o(1)qC2/2c, improving
significantly on the bound ε(qC, `) ≈ `2qC

2/2c provable using standard folklore techniques. From our per-
spective, this bound can be read as a smooth trade-off: with increasing maximum allowed query length ` it
tells us how many queries qC can be tolerated for any acceptable upper bound on advantage.

Still, it is not clear how this trade-off changes when allowing extremely long messages (` > 2c/3) and/or
some queries to the compression function (qf > 0). Note that while huge ` can be prevented by standards, in
practical settings qf is very likely to be much higher than qC, as it represents cheap local (offline) computation
of the attacker. We therefore focus on capturing the trade-off between qC and qf for values of qC that
do not allow to mount the attack from [22]. However, as we argue below, getting such a tight trade-off
for NMAC/HMAC seems to be out of reach for now, we hence relax the problem by allowing for slight
modifications to the vanilla NMAC/HMAC construction.

Our Contributions. We ask the following question here, and answer it positively:

Can we devise variants of HMAC/NMAC whose security provably degrades gracefully with an increas-
ing number of compression function queries qf , possibly retaining security for qf being much larger
than 2c?

The main contribution of this paper is the introduction and analysis of a variant of NMAC (which
we then adapt to the HMAC setting, as described below) which uses additional key material to “whiten”

4 Here we refer to Theorem 2 in [8] that formally considers a related construction NI in the standard model. However,
its proof starts by a transition to the ideal-model analysis of a construction very closely related to NMAC, while
disallowing compression-function queries.

2

message blocks before being processed by the compression function. Concretely, our construction – termed
WNMAC (for “whitened NMAC”) uses an additional extra b-bit key Kw, and given a message M padded as
M [1], . . . ,M [`], operates as NMAC on input padded to blocks M ′[i] = M [i] ⊕Kb, i.e., every message block
is whitened with the same key (see also Fig. 1).

The rationale behind WNMAC is two-fold. First, from the security viewpoint, the justification comes from
the rich line of research on generic attacks on hash-based MACs. Most recent attacks [20,16,21,11] exploit
the so-called “functional graph” of the compression function f, i.e., the graph capturing the structure of f
when repeatedly invoked with its b-bit input fixed to some constant (say 0b). Since our whitening denies
the adversary the knowledge of b-bit inputs on which f is invoked during construction queries, intuitively it
seems to be the right way to foil such attacks. Moreover, a recent work by Sasaki and Wang [23] suggests
that keying every invocation of f is necessary in order to prevent suboptimal security against generic state
recovery attacks. WNMAC arguably provides the simplest and most natural such keying. Second, from the
practical perspective, WNMAC can be implemented on top of an existing implementation of NMAC, using it
as a black-box.

PRF-Security of WNMAC. Our main result shows that WNMAC is a secure PRF; more precisely, no
attacker making at most qC construction queries (for messages padded into at most ` blocks) and qf primitive
queries can distinguish WNMAC from a random function, except with distinguishing advantage

εWNMAC(qC, qf , `) ≤
qfqC
22c

+ 2 · `qCqf
2b+c

+
`qC

2

2c
·
(
d′(`) +

64`3

2c
+ 1

)
.

Here, d′(`) is the maximum, over all positive integers `′ ≤ `, of the number of positive divisors of `′, and
grows very slowly, i.e., d′(`) ≈ `1/ ln ln `. We also prove that this bound is essentially tight. Namely, we give an
attack that achieves advantage roughly qCqf/2

2c, showing the first term above to be necessary. Additionally,
we know from [8] that the third term is tight for ` ≤ 2c/3.

Note that in the case of qf = 0, the bound matches exactly the bound from [8]. Moreover, observe that
under the realistic assumption that ` < min{2c/3, 2b−c}, the bound simplifies to

εWNMAC(qC, qf , `) ≤ 3
qfqC
22c

+ (d′(`) + 2) · `qC
2

2c
.

Ignoring d′(`) for simplicity, we see that we can tolerate up to qC ≈ 2c/2/
√
` construction queries and

up to qf ≈ 21.5c primitive queries. This corresponds to the security threshold ranging from 2192 f-queries
for MD5 up to 2768 f-queries for SHA-512. The first term also clearly characterizes the complete trade-off
curve between qC < 2c/2/

√
` and qf for any reasonable upper bound on the message length and acceptable

distinguishing advantage.

Other security properties.Additionally, we also analyze the security level WNMAC achieves with respect
to other security notions frequently considered in the attacks literature. By a series of reductions, we show
that, roughly speaking, εWNMAC also upper-bounds the adversary’s advantage for distinguishing-H and state
recovery. We believe that addressing these cryptanalytic notions also using the traditional toolbox of provable
security is important and see this paper as taking the first step on that path.

Lifting to HMAC. We then move our attention from NMAC to HMAC and propose two analogous modi-
fications to it. The first one, called WHMAC, is obtained from HMAC in the same way WNMAC is obtained
from NMAC: by whitening the padded message blocks with an independent key (see Fig. 5). The second
one, termed WHMAC+, additionally processes a fresh key K+ instead of the first block of the message (see
Fig. 6). Both variants can be implemented given only black-box access to HMAC, and we prove that they
maintain the same security level as WNMAC as long as the parameters b, c of f satisfy b� 2c (for WHMAC)
or b � c (for WHMAC+). Note that for existing hash functions, the former condition is satisfied for both
MD5 and SHA-1, while the latter holds also for SHA-256 and SHA-512.

The Dual Construction.Motivated by the most restrictive term qCqf/2
2c in εWNMAC, the final construc-

tion we propose in this paper is a “dual” version of WNMAC denoted DWNMAC, that differs in the final,
outer f-call. Instead of f(K2, s ‖ 0b−c) for a c-bit key K2 and a c-bit state s padded with zeroes, the outer

3

call in DWNMAC computes f(s,K2) for a longer, b-bit key. As expected, we prove that this tweak removes
the need for the qCqf/2

2c term and replaces it by the strictly favourable term qCqf/2
b+c, proving that the

zero-padding in the outer call of WNMAC was actually responsible for the “bottle-neck” term in its security
bound.

Our Techniques. In our information-theoretic analysis of WNMAC we employ the H-coefficient technique
by Patarin [19] as recently revisited by Chen and Steinberger [4], partially inheriting the notational framework
from the recent analysis of keyed sponges by Gaži, Pietrzak, and Tessaro [9]. On a high level, the heart of
our proof is a careful analysis of the probability that two sets intersect in the ideal experiment: (1) the set
of adversarial queries to f, and (2) the set of inputs on which f is invoked when answering the adversary’s
queries to WNMAC. Obtaining a bound on the probability of this event then allows us to exclude it and use
the result from [8] that considers qf = 0, properly adapted to the WNMAC setting.

Related Work. As mentioned above, the motivation for our work partially stems from the recent line of
work on generic attacks against iterated hash-based MACs [20,18,16,21,11,6,23]. While our security bound
for WNMAC does not exclude attacks of the complexity (in terms of numbers of queries and message lengths)
considered in these papers, the design of WNMAC was partially guided by the structure of these attacks and
seems to prevent them. We find in particular the work [23] to be a good justification for investigating the
security of WNMAC and related constructions. Iterated MAC that uses keying in every f-invocation was
already considered by An and Bellare [1], their construction NI was later subject to analysis [8] that we
adapt and reuse. One can see WNMAC as a conceptual simplification of NI where the key is simply used to
whiten the b-bit input to the compression function. Finally, our dual construction considered in Section 5
bears resemblance to the Sandwich MAC analyzed by Yasuda [24], we believe that our methods could be
easily adapted to cover this construction as well.

Perspective and open problems. We stress that the reader should not conclude from this work that
NMAC and HMAC are necessarily less secure than the constructions proposed in this paper, specifically
with respect to PRF security. In fact, we are not aware of any attacks showing a separation between the
PRF security of our constructions and that of the original NMAC/HMAC constructions, finding one is an
interesting open problem.

While obtaining a non-tight birthday-type bound for NMAC/HMAC is feasible (for most key-length
values, a bound follow directly from the indifferentiability analysis of [7]), proving tight bounds in terms of
compression function and construction queries on the generic PRF security of NMAC/HMAC is a challenging
open problem, on which little progress has been made. The main challenge is to understand how partial
information in form of f-queries can help the attacker to break security (i.e., distinguish) in settings with
qC � 2c/2/

√
`, when the attack from [8] does not apply. This will require in particular developing a better

understanding of the functional graph defined by queries to the function f. Some of its properties have
been indeed exploited in existing generic attacks, but proving security appears to require a much deeper
understanding: Most of the recent attacks, which are probably still not tight, do not come with rigorous
proofs but instead rely on conjectures on the structure of these graphs [11]. The difficulty of this question for
NMAC/HMAC is also well documented by the fact that even proving security of the whitened constructions
presented in this paper required some novel tricks and considerable effort.

Similarly, it remains equally challenging to prove that for the properties considered by the recent attacks
against HMAC/NMAC (such as distinguishing-H, state recovery or various types of forgeries), the security of
WNMAC/WHMAC is provably superior. Yet, we note that our construction invalidates direct application of
all existing attacks, and hence we feel confident conjecturing that its security is much higher.

Black-box instantiations. Throughout the paper we implicitly assume we can add a key to each b-bit
input block, even though we aim for a black-box instantiation. For many MD-based hash functions, such
fine-grained control of the input to the compression function is generally not possible via a black-box message
pre-processing. Concretely, the functions from the SHA-family with 512-bit blocks only allow to effectively
control (via alterations of the message) the first 447 bits of the last block, since the remaining 65 bits are
reserved for the 64-bit length, and an additional 1-bit. Our analysis can be easily modified to take this into
account. The resulting bound will change very little, and will result in the term `qCqf/2

b+c being replaced
by the term (` − 1 + 2d) · qC · qf/2b+c, where d is the length of the non-controllable part of the input (for

4

SHA-functions, d = 65). Note that since d� b−c, this will not affect the tightness of the bounds for concrete
parameters.

2 Preliminaries

Basic notation. We denote [n] := {1, . . . , n}. Moreover, for a finite set S (e.g., S = {0, 1}), we let Sn,
S+ and S∗ be the sets of sequences of elements of S of length n, of arbitrary (but non-zero) length, and of
arbitrary length, respectively (with ε denoting the empty sequence, as opposed to ε which is a small quantity).
As a shorthand, let {0, 1}b∗ denote

(
{0, 1}b

)∗
. We denote by S[i] the i-th element of S ∈ Sn for all i ∈ [n].

Similarly, we denote by S[i . . . j], for every 1 ≤ i ≤ j ≤ n, the sub-sequence consisting of S[i], S[i+1], . . . , S[j],
with the convention that S[i . . . i] = S[i]. Moreover, we denote by S ‖S′ the concatenation of two sequences
in S∗, and also, we let S | T be the usual prefix-of relation: S | T :⇔ (∃S′ ∈ S∗ : S ‖S′ = T).

For an integer n, d(n) = |{i ∈ N : i | n}| is the number of its positive divisors and

d′(n) := max
n′∈{1,...,n}

|{d ∈ N : d | n′}| ≈ n1/ ln lnn

is the maximum, over all positive integers n′ ≤ n, of the number of positive divisors of n′. More precisely,
we have ∀ε > 0 ∃n0 ∀n > n0 : d(n) < n(1+ε)/ ln lnn [12].

We also let F(D,R) be the set of all functions from D to R; and with a slight abuse of notation we
sometimes write F(m,n) (resp. F(∗, n)) to denote the set of functions mapping m-bit strings to n-bit strings

(resp. from {0, 1}∗ to {0, 1}n). We denote by x
$← X the act of sampling x uniformly at random from X .

Finally, we denote the event that an adversary A, given access to an oracle O, outputs a value y, as AO ⇒ y.
To emphasize the random experiment considered, we sometimes denote the probability of an event A in a
random experiment E by PE[A]. Finally, the min-entropy H∞(X) of a random variable X with range X is
defined as − log (maxx∈X PX(x)).

Pseudorandom functions. We consider keyed functions F : K × D → R taking a κ-bit key (i.e., K =
{0, 1}κ), a message M ∈ D as input, and returning an output from R. For a keyed function F under a key
k ∈ K we often write Fk(·) instead of F(k, ·). One often considers the security of F as a pseudorandom function
(or PRF, for short) [10]. This is defined via the following advantage measure, involving an adversary A:

AdvprfF (A) :=
∣∣∣P [K $← {0, 1}κ : AFK ⇒ 1

]
− P

[
f

$← F(D,R) : Af ⇒ 1
]∣∣∣ .

Informally, we say that F is a PRF if this advantage is “negligible” for all “efficient” adversaries A.

PRFs in the ideal compression function model. For our analysis below, we are going to consider
keyed constructions C[f] : {0, 1}κ × D → R which make queries to a randomly chosen compression function

f
$← F(c + b, c) which can also be evaluated by the adversary (we sometimes write Cf instead of C[f]). For

this case, we use the following notation to express the PRF advantage of A:

AdvprfC[f](A) :=
∣∣∣P [K $← {0, 1}κ, f $← F(c+ b, c) : ACf

K ,f ⇒ 1
]

− P
[
R

$← F(D,R), f
$← F(c+ b, c) : AR,f ⇒ 1

] ∣∣∣ .
We call A’s queries to its first oracle construction queries (or C-queries) and its queries to the second oracle
as primitive queries (or f-queries).

Note that the notion of PRF-security is identical to the notion of distinguishing-R, first defined in [14]
and often used in the cryptanalytic literature on hash-based MACs.

Distinguishing-H.A further security notion defined in [14] is the so-called distinguishing-H security. Here,
the goal of the adversary is to distinguish the hash-based MAC construction CK [f] using its underlying
compression function f (say SHA-1) and a random key K, from the same construction CK [g] built on top of
an independent random compression function g. In the ideal compression function model, where we model

5

already the initial compression function f as ideal, this corresponds to distinguishing a pair of oracles (CK [f], f)
from (CK [f], g). Formally,

Advdist-HC (A) :=
∣∣∣P [K $← {0, 1}κ, f $← F(c+ b, c) : ACf

K ,f ⇒ 1
]

− P
[
K

$← {0, 1}κ, f, g $← F(c+ b, c) : ACf
K ,g ⇒ 1

] ∣∣∣ .
State recovery. An additional notion considered in the literature is security against state recovery. Since
the definition of this notion needs to be tailored for the concrete construction it is applied to, we postpone
the formal definition of security against state recovery to Section 3.10.

MACs and unpredictability. It is well known that a good PRF also yields a good message-authentication
code (MAC). A concrete security bound for unforgeability can be obtained from the PRF bound via a
standard argument.

Iterated MACs. For a keyed function f : {0, 1}c × {0, 1}b → {0, 1}c we denote with Cascf : {0, 1}c ×
{0, 1}b∗ → {0, 1}c the cascade construction (also known as Merkle-Damg̊ard) built from f as

Cascf(K,m1‖ . . . ‖m`) := y` where y0 := K and for i ≥ 1 : yi := f(yi−1,mi) ,

in particular Cascf(K, ε) := K.
The construction NMACf : ({0, 1}c)2 × {0, 1}b∗ → {0, 1}c is derived from Cascf by adding an additional,

independently keyed application of f at the end. It assumes that the domain sizes of f satisfy b ≥ c and the
output of the cascade is padded with zeroes before the last f-call. Formally,

NMACf((K1,K2),M) := f(K2,Casc
f(K1,M)‖0b−c) .

Note that practical MD-based hash functions take as input arbitrary-length bitstrings and then pad them
to a multiple of the block length, often including the message length in the so-called MD-strengthening.
This padding then also appears in NMAC (and HMAC) but here we take the customary shortcut and our
definition of NMAC above (resp. HMAC below) actually corresponds to the generalized constructions denoted
as GNMAC (resp. GHMAC) in [2] where this step is also justified in detail.

HMACf is a practice-oriented version of NMACf , where the two keys (K1,K2) are derived from a single
key K ∈ {0, 1}b by xor-ing it with two fixed b-bit strings ipad and opad. In addition, the keys are not given
through the key-input of the compression function f, but are prepended to the message instead. This allows
for the usage of existing implementations of hash functions that contain a hard-coded initialization vector
IV. Formally:

HMACf(K,m) := Cascf(IV,K2‖Cascf(IV,K1‖m)‖fpad)

where (K1,K2) := (K ⊕ ipad,K ⊕ opad)

and fpad is a fixed (b−c)-bit padding not affecting the security analysis. (Technically, [15] allows for arbitrary
length of the key K: a key shorter than b bits is padded with zeroes before applying the xor transformations,
a longer key is first hashed.)

3 The Whitened NMAC Construction

We now present our main construction called Whitened NMAC (or WNMAC for short). To that end, let us
first consider a modification of the cascade construction Casc called whitened cascade and denoted WCasc. For
a keyed function f : {0, 1}c×{0, 1}b → {0, 1}c we denote with WCascf : ({0, 1}c×{0, 1}b)×{0, 1}b∗ → {0, 1}c
the whitened cascade construction built from f as

WCascf((K1,Kw),m1‖ . . . ‖m`) := y`

where y0 := K1 and for i ≥ 1 : yi := f(yi−1,mi ⊕Kw) ,

6

f f fK1 f

⊕

m1

Kw ⊕

m2

Kw ⊕

m3

Kw ⊕

m`

Kw

fK2
WNMAC[f]K1,K2,Kw (m1‖ · · · ‖m`)

Fig. 1. The construction WNMAC[f]K1,K2,Kw .

in particular WCascf((K1,Kw), ε) := K1.
The construction WNMAC is derived from NMAC, the only difference being that the inner cascade Casc

is replaced by the whitened cascade WCasc. More precisely,

WNMACf((K1,K2,Kw),M) := f(K2,WCascf((K1,Kw),M)‖0b−c) .

For a graphical depiction of WNMAC, see Figure 1. We devote most of this section to the proof of the
following theorem that quantifies the PRF-security of WNMAC.

Theorem 1 (PRF-Security of WNMAC). Let A be an adversary making at most qf queries to the com-
pression function f and at most qC construction queries, each of length at most ` b-bit blocks. Let K =
(K1,K2,Kw) ∈ {0, 1}c × {0, 1}c × {0, 1}b be a tuple of random keys. Then we have

Advprf
WNMACf

K

(A) ≤ qfqC
22c

+ 2 · `qCqf
2b+c

+
`qC

2

2c
·
(
d′(`) +

64`3

2c
+ 1

)
. (2)

Note that as observed in Section 2, this also covers the so-called distinguishing-R security of WNMAC.
Moreover, our analysis also implies security bounds for distinguishing-H and state recovery, as we discuss
later.

3.1 Basic Notation, Message Trees and Repetition Patterns

Let us fix an adversary A. We assume that A is deterministic, it makes exactly qf queries to f and qC
construction queries, and it never repeats the same query twice. All these assumptions are without loss of
generality for an information-theoretic indistinguishability analysis, since an arbitrary (possibly randomized)
adversary making at most this many queries can be transformed into one satisfying the above constraints
and achieving advantage which is at least as large.

Let QC ⊆
(
{0, 1}b

)∗
be any non-empty set of messages (later this will represent the set of A’s C-

queries). Based on it, we now introduce the message tree and its labeled version, which capture the inherent
combinatorial structure of the messages QC , as well as the internal values computed while these messages
are processed by WCascf inside of WNMACf . The message tree T (QC) = (V,E) for QC is defined as follows:

– The vertex set is V :=
{
M ′ ∈

(
{0, 1}b

)∗
: ∃M ∈ QC : M ′ |M

}
, where | is the prefix-of partial ordering

of strings. In particular, note that the empty string ε is a vertex and that QC ⊆ V .
– The set E ⊆ V × V of (directed) edges is

E :=
{

(M,M ′) : ∃m ∈ {0, 1}b : M ′ = M ‖m
}
.

To simplify our exposition, we also define the following two mappings based on T (QC).

– The mapping π(v) : V \ {ε} → V returns the unique parent node of v ∈ V \ {ε}; i.e., the unique node u
such that (u, v) ∈ E.

7

ε

K1

0f(K1,0⊕Kw)

0 ‖0

f(λ(0),0⊕Kw)

0

0 ‖1 f(λ(0),1⊕Kw)

0 ‖1 ‖1

f(λ(0 ‖1),1⊕Kw)

1

1

0

1

f(K1,1⊕Kw)

1

Fig. 2. Labeled message tree. Example of a labeled message tree T f
K(QC) for four messages QC =

{0,0 ‖0,0 ‖1 ‖1,1}, where r = rb for r ∈ {0, 1}. The gray vertices correspond to these four messages. Next to
each vertex v and edge (u, v), we give the label λ(v) and the value µ(v), respectively.

– The mapping µ(v) : V \{ε} → {0, 1}b returns the unique message blockm ∈ {0, 1}b such that π(v) ‖µ(v) =
v (intuitively, this will be the message block that is processed when “arriving” in vertex v).

Alternatively, with a slight abuse of notation we will also refer to the vertices in V as v1, . . . , v|V | which
is an arbitrary ordering of them such that for all 1 ≤ i, j ≤ |V | it satisfies vi | vj ⇒ i ≤ j. Note that one
obtains such an ordering for example if one, intuitively speaking, processes the messages in QC block-wise
and labels the vertices by their “first appearance”: in particular v1 = ε is the tree root.

Additionally, for a mapping f : {0, 1}c × {0, 1}b → {0, 1}c and a key tuple K = (K1,K2,Kw) ∈ {0, 1}c ×
{0, 1}c × {0, 1}b we also consider an extended version of T (QC) which we call the labeled message tree and
denote T f

K(QC) = (V,E, λ), and which is defined as follows:

– The set of vertices V and edges E are defined exactly as for T (QC) above.
– The vertex-labeling function λ : V → {0, 1}c is defined iteratively: λ(ε) := K1 and for each non-root

vertex v ∈ V \ {ε} we put λ(v) := f(λ(π(v)), µ(v)⊕Kw).

An example of a labeled message tree is given in Figure 2. Note that each vertex label λ(v) is exactly
the output of the inner, whitened cascade WCascfK1,Kw

(v) in WNMACf
K (recall that v is actually a message

from {0, 1}b∗).
For any message tree T (QC) = (V,E), a repetition pattern is any equivalence relation ρ on V . For a

labeled message tree T f
K(QC) = (V,E, λ) we say that a repetition pattern ρ is induced by it if it satisfies

∀u, v ∈ V : λ(u) = λ(v)⇔ ρ(u, v) .

3.2 Interactions and Transcripts

Let QRC denote the set of qC pairs (x, r) such that x ∈ {0, 1}b∗ is a construction query and r ∈ {0, 1}c is a
potential response to it (what we mean by “potential” will be clear from below). Similarly let QRf denote
the set of qf pairs (x, r) such that x ∈ {0, 1}c × {0, 1}b is an f-query and r ∈ {0, 1}c is a potential response
to it. Let QC ⊆ {0, 1}b∗ and Qf ⊆ {0, 1}c × {0, 1}b denote the sets of first coordinates (i.e., the queries) in
QRC and QRf , respectively; we have |QC | = qC and |Qf | = qf .

We call the pair of sets (QRC ,QRf) valid if the adversary A would indeed ask these queries throughout
the experiment, assuming that each of her queries would be replied by the respective response in QRC or
QRf (note that once a deterministic A is fixed, this determines whether a given pair (QRC ,QRf) is valid).

We then define a valid transcript to be of the form

τ =
(
QRC ,QRf ,K = (K1,K2,Kw), T f

K(QC)
)
,

8

where (QRC ,QRf) is valid, f : {0, 1}c × {0, 1}b → {0, 1}c is a function and K = (K1,K2,Kw) ∈ {0, 1}c ×
{0, 1}c × {0, 1}b is a key tuple.

We differentiate between the ways in which such valid transcripts are generated in the real and in the
ideal worlds (or experiments), respectively, by defining corresponding distributions Treal and Tideal over the
set of valid transcripts:

Real world. The transcript Treal for the adversary A is obtained by sampling f
$← F(c + b, c) and K =

(K1,K2,Kw)← {0, 1}c × {0, 1}c × {0, 1}b, and letting Treal denote(
QRC = {(Mi, Yi)}qCi=1 ,QRf = {(Xi, Ri)}qfi=1 ,K = (K1,K2,Kw), T f

K(QC)
)
,

where we execute A, which asks construction queries M1, . . . ,MqC answered with Yi := WNMAC[f]K(Mi)
for all i ∈ [qC]; and f-queries X1, . . . , Xqf answered with Ri := f(Xi) for all i ∈ [qf] (note that the C-
queries and f-queries may in general be interleaved adaptively, depending on A). Finally, we let T f

K(QC)
be the labeled message tree corresponding to QC , f and K.

Ideal world. The transcript Tideal for the adversary A is obtained similarly to the above, but here, together

with the random function f
$← F(c+b, c) and the key tuple K = (K1,K2,Kw)← {0, 1}c×{0, 1}c×{0, 1}b,

we also sample qC independent random values Y1, . . . , YqC ∈ {0, 1}r. Then we let Tideal denote(
QRC = {(Mi, Yi)}qCi=1 ,QRf = {(Xi, Ri)}qfi=1 ,K = (K1,K2,Kw), T f

K(QC)
)
,

where we execute A, answer each its C-query Mi with Yi for all i ∈ [qC] and each its f-query Xi with
Ri := f(Xi) for all i ∈ [qf]. Then we let T f

K(QC) be the labeled message tree corresponding to QC , f and
K.

Later we refer to the above two random experiments as real and ideal, respectively. Note that the range of
Treal is included in the range of Tideal by definition, and that the range of Tideal is easily seen to contain all
valid transcripts.

3.3 The H-Coefficient Method

We upper-bound the advantage A in distinguishing WNMAC[f]K for f
$← F(c+ b, c) from a random function

in terms of the statistical distance of the transcripts, i.e.,

AdvprfWNMAC(A) ≤ SD(Treal,Tideal) =
1

2

∑
τ

|P [Treal = τ]− P [Tideal = τ]| , (3)

where the sum is over all valid transcripts. This is because an adversary for Treal and Tideal, whose optimal
advantage is exactly SD(Treal,Tideal), can always output the same decision bit as A, ignoring any extra
information provided by the transcript.

We are going to use Patarin’s H-coefficient method [19], as recently revisited in [4]. This means that we
need to partition the set of valid transcripts into good transcripts GT and bad transcripts BT and then apply
the following lemma, whose proof is given for completeness in Appendix A.

Lemma 1 (The H-Coefficient Method [19]). Let δ, ε ∈ [0, 1] be such that:

(a) P [Tideal ∈ BT] ≤ δ.
(b) For all τ ∈ GT,

P [Treal = τ]

P [Tideal = τ]
≥ 1− ε .

Then,
AdvprfWNMAC(A) ≤ SD(Treal,Tideal) ≤ ε+ δ .

More verbally, we want a set of good transcripts GT such that with very high probability (i.e., 1 − δ) a
generated transcript in the ideal world is going to be in this set, and moreover, for each such good transcript,
the probabilities that it occurs in the real and in the ideal worlds are roughly the same, i.e., at most a
multiplicative factor 1− ε apart.

9

3.4 Good and Bad Transcripts

Given a valid transcript τ we define the sets Lin,Lout ⊆ {0, 1}c × {0, 1}b as

Lin := {(λ(π(v)), µ(v)⊕Kw) : v ∈ V \ {ε}}
Lout :=

{(
K2, λ(v) ‖ 0b−c

)
: v ∈ QC

}
,

and let L = Lin ∪ Lout. Intuitively, L represents the set of inputs on which f is evaluated while processing
A’s construction queries in the real experiment. This set is also well-defined in the ideal experiment by the
above equations, and in both experiments it is determined by the transcript. We refer to Lin as the set of
inner f-invocations, i.e., those invocations of f that were required to evaluate the inner, whitened cascade
WCascf in WNMAC; and similarly, Lout denotes the outer invocations.

If there is an intersection between the adversary’s f-queries and the inputs in Lin (resp. Lout), we call
this an inner (resp., outer) C-f-collision. We then denote by C-f-collin (resp., C-f-collout) the event that any
inner (resp., outer) C-f-collision occurs. Formally,

C-f-collin :⇔ (Qf ∩ Lin 6= ∅) and C-f-collout :⇔ (Qf ∩ Lout 6= ∅)

and let C-f-coll := C-f-collin ∪ C-f-collout. Furthermore, if the vertex labels λ(M) collide for two messages
M,M ′ ∈ QC , we call this a C-collision and denote such an event by

C-coll :⇔ (∃M,M ′ ∈ QC : λ(M) = λ(M ′)) .

Definition 1 (Good Transcripts). Let

τ =
(
QRC ,QRf ,K = (K1,K2,Kw), T f

K(QC) = (V,E, λ)
)

be a valid transcript. We say that the transcript is good (and thus τ ∈ GT) if the following properties are
true:

(1) The event C-f-collout has not occurred.
(2) The event C-coll has not occurred.
(3) For any v ∈ V we have λ(v) 6= K2.

We denote as GT the set of all good transcripts, and BT the set of all bad transcripts, i.e., transcripts which
can possibly occur (i.e., they are in the range of Tideal) and are not good. More specifically, we denote by
BTi the set of all bad transcripts that do not satisfy the i-th property in the definition of a good transcript
above, hence we have BT =

⋃3
i=1 BTi.

3.5 Probability of a C-f-collision

In this section we upper-bound the probability of C-f-coll by considering inner and outer C-f-collisions
separately.

Lemma 2. We have Pideal[C-f-collin] ≤ `qCqf/2b+c.

Proof. We start by modifying the ideal experiment to obtain an experiment denoted ideal′ and the corre-
sponding transcript distribution Tideal′ . The experiment ideal′ is given in Figure 3. Clearly, ideal′ differs from
the ideal experiment only in the way the vertex labeling function λ(·) is determined.

We now argue that Pideal[C-f-collin] = Pideal′ [C-f-collin]. To see this, consider an intermediate experiment
ideal′′ that is defined exactly as ideal except that it uses a separate ideal compression function g to generate
the vertex labels of the tree contained in the transcript, where g is completely independent of f queried by
the adversary (i.e., the adversary queries f and the transcript contains QRf and T g

K(QC)). It is now clear

that Pideal[C-f-collin] = Pideal′′ [C-f-collin] since as long as no inner C-f-collision happens, the experiments are
identical.

10

1. The adversary asks its C-queries and f-queries and these are answered by independent
random values. Once the qC queries in QC are fixed, they also determine the message tree T (QC)
and mappings µ and π as defined in Section 3.1 (the labeling λ is so far undefined).

2. Sample a repetition pattern ρ. The equivalence relation ρ is determined indirectly by first itera-
tively defining a mapping ρ̂ : V → [|V |]. Recall the vertex ordering v1, . . . , v|V | defined in Section 3.1.
First, set ρ̂(v1) := 1. Then, for i taking values 2, . . . , |V |, determine ρ̂(vi) as follows. If there exists
j ∈ [i− 1] such that µ(vj) = µ(vi) and ρ̂(π(vj)) = ρ̂(π(vi)) then let ρ̂(vi) := ρ̂(vj) for the minimal
such j. Otherwise let z := maxj∈[i−1]{ρ̂(vj)} and sample ρ̂(vi) as

ρ̂(vi) :=


1 with probability 2−c

...
...

z with probability 2−c

z + 1 with probability 1− z · 2−c.

Finally, for all i, j ∈ [|V |] let ρ(vi, vj) :⇔ (ρ̂(vi) = ρ̂(vj)).
3. Sample a vertex labeling λ(·) according to ρ. Namely, sample |ρ| distinct uniformly random

values s1, . . . , s|ρ| ∈ {0, 1}c where |ρ| is the number of equivalence classes of ρ, and let λ(vi) := sρ̂(vi)
for all i ∈ [|V |]. Also let K1 := λ(ε).

4. Sample random keys (K2,Kw) ∈ {0, 1}c × {0, 1}b.

Fig. 3. The random experiment ideal′ for the proofs of Lemmas 2 and 3.

The remaining equality Pideal′′ [C-f-collin] = Pideal′ [C-f-collin] follows from the definition of ideal′. It is easy
to see that the distribution of vertex labels sampled in steps 2 and 3 of ideal′ and by labeling the tree T g

K(QC)
in ideal′′ are the same. In both cases, repeated inputs to the compression function lead to consistent outputs,
while fresh inputs lead to independent random outputs. The two experiments only differ in the order of
sampling: ideal′′ first samples g and then performs the labeling, while ideal′ starts by sampling the repetition
pattern, and then chooses the actual labels correspondingly. The same distribution of vertex labels in these
two experiments then implies the same probability of C-f-collin occurring.

Finally, we upper-bound the probability Pideal′ [C-f-collin]. Conditioned on the repetition pattern ρ taking
some fixed value rp, in step 2, we have

Pideal′ [C-f-collin | ρ = rp] ≤
∑

v∈V \{ε}

Pideal′ [(λ(π(v)), µ(v)⊕Kw) ∈ Qf | ρ = rp]

=
∑

v∈V \{ε}

Pideal′
[
(sρ̂(π(v)), µ(v)⊕Kw) ∈ Qf | ρ = rp

]
=

∑
v∈V \{ε}

qf/2
b+c ≤ `qCqf/2b+c

because the random variables si and Kw sampled in steps 3 and 4 are uniformly distributed and independent
of Qf . Since this bound holds conditioned on ρ being any fixed repetition pattern rp, it remains valid also
without conditioning on it, hence concluding the proof. ut

We proceed by upper-bounding the probability of an outer C-f-collision.

Lemma 3. We have

Pideal[C-f-collout] ≤
`qCqf
2b+c

+
qCqf
22c

.

Proof. Let us again consider the experiments ideal′ and ideal′′ defined in the proof of Lemma 2. We start by
the simple observation that for any event A we have

Pideal [A] = Pideal [A ∧ C-f-collin] + Pideal [A ∧ ¬C-f-collin]

≤ `qCqf
2b+c

+ Pideal′′ [A ∧ ¬C-f-collin] ≤
`qCqf
2b+c

+ Pideal′′ [A] , (4)

11

which follows from Lemma 2 and the observation that ideal and ideal′′ only differ if C-f-collin occurs.
Applying (4) to the event C-f-collout as A, it remains to bound the probability Pideal′′ [C-f-collout]; for this

we observe that Pideal′′ [C-f-collout] = Pideal′ [C-f-collout] similarly as before: the repetition pattern ρ sampled
in step 2 of ideal′ has the same distribution as the repetition pattern induced by the tree T g

K(QC) in ideal′′,
and this together with the sampling performed in step 3 results in the same distribution of vertex labels in
ideal′′ and ideal′ and hence also in the same probability of C-f-collout in both experiments.

Finally, to upper-bound the probability Pideal′ [C-f-collout], again conditioned on the repetition pattern ρ
sampled in step 2 taking some fixed value rp, we have

Pideal′ [C-f-collout | ρ = rp] ≤
∑
v∈QC

Pideal′
[
(K2, λ(v) ‖ 0b−c) ∈ Qf | ρ = rp

]
≤
∑
v∈QC

Pideal′
[
(K2, sρ̂(v) ‖ 0b−c) ∈ Qf | ρ = rp

]
=
∑
v∈QC

qf/2
2c ≤ qCqf/22c

because the random variables si and K2 sampled in steps 3 and 4 are uniformly distributed and independent
of Qf . Since this bound holds conditioned on ρ being any fixed repetition pattern rp, it remains valid also
without conditioning on it. ut

3.6 Probability of Repeated Outer Invocations

In this section we analyze the probability that any of the outer f -invocations in the ideal experiment will
not be fresh, in particular we upper-bound both P[Tideal ∈ BT2] and P[Tideal ∈ BT3].

Lemma 4. We have

Pideal [C-coll] ≤ `qCqf
2b+c

+
`qC

2

2c
·
(
d′(`) +

64`3

2c

)
.

Proof. Applying (4) to the event C-coll, we have Pideal [C-coll] ≤ `qCqf/2b+c+Pideal′′ [C-coll]. Since the queries
QC in the experiment ideal′′ are chosen non-adaptively (with respect to the keys K1, Kw and the function
g used to later compute the tree labeling), we can obtain via a union bound that

Pideal′′ [C-coll] ≤ qC2 · max
M1 6=M2

|M1|,|M2|≤`b

Pg,K1,Kw

[
WCascgK1,Kw

(M1) = WCascgK1,Kw
(M2)

]
.

Moreover, we have

max
M1 6=M2

|M1|,|M2|≤`b

Pg,K1,Kw

[
WCascgK1,Kw

(M1) = WCascgK1,Kw
(M2)

]
= max

M1 6=M2

|M1|,|M2|≤`b

∑
K1∈{0,1}c

Kw∈{0,1}b

1

2c+b
· Pg

[
WCascgK1,Kw

(M1) = WCascgK1,Kw
(M2)

]

≤
∑

K1∈{0,1}c

Kw∈{0,1}b

1

2c+b
· max

M1 6=M2

|M1,|M2|≤`b

Pg
[
WCascgK1,Kw

(M1) = WCascgK1,Kw
(M2)

]

=
∑

K1∈{0,1}c

Kw∈{0,1}b

1

2c+b
· max

M1 6=M2

|M1,|M2|≤`b

Pg
[
CascgK1

(M1⊕Kw) = CascgK1
(M2⊕Kw)

]

=
∑

K1∈{0,1}c

Kw∈{0,1}b

1

2c+b
· max

M1 6=M2

|M1,|M2|≤`b

Pg
[
CascgK1

(M1) = CascgK1
(M2)

]
︸ ︷︷ ︸

CascColl(`)

,

12

where the notation Mi⊕Kw denotes XOR-ing the key Kw to each of the blocks of Mi.

The last maximization term above was already studied in the context of the construction NI2 in [8],
where it was denoted as CColl(`), but we will refer to it as CascColl(`) to avoid confusion with the event
C-coll considered here. It was shown in [8] that

CascColl(`) ≤ ` · d′(`)
2c

+
64`4

22c
. (5)

We give an overview of the approach used in [8] to obtain this bound in Appendix B.

Putting all the above bounds together concludes the proof of Lemma 4. ut

Lemma 5. We have

Pideal [∃v ∈ V : λ(v) = K2] ≤ `qC
2c

.

Proof. As is clear from the description of the ideal experiment, the key K2 is chosen uniformly at random
and independently of the rest of the experiment, in particular of the labels λ(v). The lemma hence follows
by a simple union bound over all `qC vertices v ∈ V . ut

3.7 Good Transcripts and Putting Pieces Together

Let us consider a good transcript τ . First, since τ 6∈ BT1, there is no overlap between the outer f-invocations
and the f-queries issued by the adversary. Second, since τ 6∈ BT2, there is also no repetition between the outer
f -invocations themselves. Finally, since τ 6∈ BT3, there is also no overlap between the outer f-invocations
and the inner f-invocations (all the outer invocations contain K2 as their first component). Altogether, this
means that each outer f-invocation in real is fresh and hence its outcome can be seen as freshly uniformly
sampled (since f is an ideal random function). Therefore, the distribution of these outcomes will be the same
as in ideal, where they correspond to the independent random values Yi. Hence, for all τ ∈ GT, we have

P [Treal = τ]

P [Tideal = τ]
= 1 .

Plugging this into Lemma 1, together with the bounds from Lemmas 3, 4 and 5, we obtain

AdvprfWNMAC(A) ≤
3∑
i=1

P [Tideal ∈ BTi]

≤ qfqC
22c

+ 2 · `qCqf
2b+c

+
`qC

2

2c
·
(
d′(`) +

64`3

2c

)
+
`qC
2c

≤ qfqC
22c

+ 2 · `qCqf
2b+c

+
`qC

2

2c
·
(
d′(`) +

64`3

2c
+ 1

)
,

which concludes the proof of Theorem 1. ut

3.8 Tightness

We now argue that the qCqf/2
2c term in our bound on the security of WNMAC as given in (2) is tight,

by giving a matching attack (up to a linear factor O(c)). For most practical parameters, this will be the
dominating term in (2), and thus for those parameters Theorem 1 gives a tight bound. For simpler exposition,
here we only describe an attack for the case where qC = Θ(c) is very small, we provide the description and
analysis of the general attack in Appendix C.

13

The qC = Θ(c) case.We must define an adversary AO,f who can distinguish the case where the first oracle O
implements a random function R from the case where it implements WNMACf((K1,K2,Kw), ·) with random
keys K1,K2,Kw using the random function f : {0, 1}b+c → {0, 1}c which is given as the second oracle.

AO,f first picks t := qf/2
c keys K̃1, . . . , K̃t arbitrarily, and then uses its qf function queries to learn the

outputs
Zi = {f(K̃i, x‖0b−c) : x ∈ {0, 1}c}

for all the keys. When throwing 2c balls randomly into 2c bins, we expect a 1 − 1/e ≈ 0.63 fraction of
the bins to be non-empty (and the value is strongly concentrated around this expectation). We can think

of evaluating the random function f(K̃i, ·‖0b−c) : {0, 1}c → {0, 1}c as throwing 2c balls (the inputs) to
random bins (the outputs), and thus have |Zi| ≈ 0.63 · 2c. Then AO,f queries O on Θ(c) random inputs,
let Qc denote the corresponding outputs. Now AO,f outputs 1 if and only if for some i we have Qc ⊂ Zi.
If O(·) = WNMACf((K1,K2,Kw), ·) = f(K2,WCascf((K1,Kw), ·)‖0b−c) and moreover K2 = K̃i for some i –

which happens with probability t/2c – then all the outputs of O(·) are in the range of f(K̃i, .‖0b−c) and thus
AO,f outputs 1.

On the other hand, if O(·) is a random function, then every single query will miss the set Zi with constant
probability 0.37. Using this, we get by a Chernoff bound (and the union bound over all t keys) that

P[∃i : Qc ⊂ Zi] ≤
t

2Θ(qC)
.

Summing up we get for qC = Θ(c) and t = qf/2
c

AdvprfWNMAC(AqC,t) ≥
∣∣∣∣ t2c − t

2Θ(qC)

∣∣∣∣ ≥ t

2c−1
≥ qf

22c−1
=

qfqC
22c ·Θ(c)

which matches our term qfqC/2
2c from the lower bound up to a Θ(c) factor.

3.9 Distinguishing-H Security of WNMAC

The above results also imply a bound on the distinguishing-H security of WNMAC. To capture this, we first
introduce the notion of distinguishing-C, which corresponds to PRF-security with the restriction that the
distinguisher only uses construction queries.

Definition 2 (Distinguishing-C). Let C[f] : {0, 1}κ×D → R be a keyed construction making queries to a

randomly chosen compression function f
$← F(c + b, c). The distinguishing-C advantage of an adversary A

is defined as

Advdist-CC[f] (A) :=
∣∣∣P [K $← {0, 1}κ, f $← F(c+ b, c) : ACf

K ⇒ 1
]
− P

[
R

$← F(D,R) : AR ⇒ 1
] ∣∣∣ .

The notion of distinguishing-C is useful for bridging distinguishing-H and PRF-security, as the following
simple lemma shows.

Lemma 6. For every adversary A asking qC and qf construction and primitive queries, respectively, there
exists an adversary A′ asking qC queries to its single oracle such that

Advdist-HC (A) ≤ AdvprfC[f](A) + Advdist-CC[f] (A′)

and

AdvprfC[f](A) ≤ Advdist-HC (A) + Advdist-CC[f] (A′) .

Proof (sketch). Both statements follow from the triangle inequality for distinguishing advantage and from
the observation that having access to an additional oracle that is independent from the rest of the experiment
and is the same in both distinguished experiments cannot increase the advantage of the adversary. ut

14

1. The adversary asks its C-queries. For each of them, only the repetition pattern for the state
values belonging to this query is sampled (as in the experiment ideal′ in Figure 3) and the query
is answered with a fresh random value, unless the outer f-invocation happens on a repeated value,
in which case the query is answered consistently. After answering all queries, we have a complete
repetition pattern ρ for all state values.

2. Let A output its guess (M, s).
3. Sample a vertex labeling λ(·) according to ρ, let K1 := λ(ε).
4. Sample random keys (K2,Kw) ∈ {0, 1}c × {0, 1}b.

Fig. 4. The random experiment E ′ for the proof of Theorem 3.

One can readily obtain a bound on the distinguishing-C security of WNMAC using Theorem 1 with qf = 0.

Lemma 7 (Distinguishing-C Security of WNMAC). Let A be an adversary making at most qC construc-
tion queries, each of length at most ` b-bit blocks. Let K = (K1,K2,Kw) ∈ {0, 1}c × {0, 1}c × {0, 1}b be a
tuple of random keys. Then we have

Advdist-CWNMACK
(A) ≤ `qC

2

2c
·
(
d′(`) +

64`3

2c
+ 1

)
.

By combining Theorem 1 and Lemmas 6 and 7, we get the following theorem.

Theorem 2 (Distinguishing-H Security of WNMAC). Let A be an adversary making at most qf queries
to the compression function and at most qC construction queries, each of length at most ` b-bit blocks. Let
K = (K1,K2,Kw) ∈ {0, 1}c × {0, 1}c × {0, 1}b be a tuple of random keys. Then we have

Advdist-HWNMACK
(A) ≤ qfqC

22c
+ 2 · `qCqf

2b+c
+ 2 · `qC

2

2c
·
(
d′(`) +

64`3

2c
+ 1

)
.

3.10 State Recovery for WNMAC

We now formally define the notion of security against state recovery for WNMAC. We consider the strong
notion where the goal of the adversary is to output a pair (M, s) such that the state s occurs at any point
during the evaluation of WCasc on M . Formally, we define AdvsrWNMAC[f](A) to be

P
[
K

$← K, f $← F ,AWNMACf
K ,f ⇒ (M, s) : ∃M ′ ∈ {0, 1}b∗ s.t. M ′ |M ∧WCascfK1,Kw

(M ′) = s
]

where K = {0, 1}c × {0, 1}c × {0, 1}b, K = (K1,K2,Kw) and F := F(c+ b, c).

Theorem 3 (State-Recovery Security of WNMAC). Let A be an adversary making at most qf queries
to the compression function and at most qC construction queries, each of length at most ` b-bit blocks. Let
K = (K1,K2,Kw) ∈ {0, 1}c × {0, 1}c × {0, 1}b be a tuple of random keys. Then we have

AdvsrWNMACf
K

(A) ≤ qfqC
22c

+ 2 · `qCqf
2b+c

+ 2 · `qC
2

2c
·
(
d′(`) +

64`3

2c
+ 2

)
.

Proof (sketch). First, we replace the compression function oracle f by an independent random function g
completely unrelated to WNMACf . The error introduced by this is upper-bounded by Theorem 2 and now,
compression-function queries are useless to the adversary, hence we can disregard them.

Let us denote by E the experiment where A interacts with WNMACf (without direct access to f). Consider
an alternative experiment E ′ given in Figure 4. As long as the key K2 chosen in step 4 does not hit any of
the internal states that occurred during the query evaluation, the experiment E ′ is identical to E . Moreover,
since K2 is chosen independently at random, such a hit can only occur with probability at most `qC/2

c.
Since the vertex labels are only sampled after the adversary makes its guess for the state, the probability
that the guess will be correct is at most `/2c. ut

15

f f ff(IV,K ⊕ ipad) f

⊕

m1

Kw ⊕

m2

Kw ⊕

m3

Kw ⊕

m`

Kw

ff(IV,K ⊕ opad) WHMAC[f]K,Kw (m1‖ · · · ‖m`)

Fig. 5. The construction WHMAC[f]K,Kw .

f f ff(IV,K ⊕ ipad) f

K+

⊕

m2

Kw ⊕

m3

Kw ⊕

m`

Kw

ff(IV,K ⊕ opad) WHMAC+[f]K,Kw,K+(m1‖ · · · ‖m`)

Fig. 6. The construction WHMAC+[f]K,Kw,K+ .

4 Whitening HMAC

HMAC is a “practice-oriented” variant of NMAC, see Section 2 for its definition. In this section we consider
a “whitened” variant WHMAC of HMAC which is derived from HMAC in the same way as WNMAC was
derived from NMAC, i.e., by XORing a random key Kw to every message block. We also consider a variant
WHMAC+ where the first message block is a fresh key K+ ∈ {0, 1}b. More precisely,

WHMACK,Kw [f](m) := f
(
K ′2,WCascfK′1,Kw

(m)‖fpad
)

where

K ′1 := f(IV,K ⊕ ipad) and K ′2 := f(IV,K ⊕ opad) (6)

and fpad is some fixed padding; and

WHMAC+
K,Kw,K+ [f](m) := f

(
K ′2,WCascfK′1,Kw

(m)‖fpad
)
,

where this time

Z := f(IV,K ⊕ ipad) and K ′1 := f(Z,K+) and K ′2 := f(IV,K ⊕ opad)

and fpad is again some padding. For graphical representations of WHMAC and WHMAC+ see Figures 5
and 6, respectively. Note that both variants, WHMAC and WHMAC+, can be implemented given just black-
box access to an implementation of HMAC.

The theorem below relates the security of WHMAC and WHMAC+ to the security of WNMAC.

Theorem 4 (Relating Security of WHMAC to WNMAC). Consider any xxx ∈ {prf, dist-H, sr}. Assume
that for every adversary A making at most qf queries to the compression function f and at most qC construc-
tion queries, each of length at most ` b-bit blocks, we have

AdvxxxWNMACK1,K2,Kw [f](A) ≤ ε ,

16

where here and below, K1,K2 ∈ {0, 1}c and K,Kw,K
+ ∈ {0, 1}b are uniformly random keys. Then for every

such adversary A we have

AdvxxxWHMACK,Kw [f](A) ≤ ε+ 2−
b−2c

2 (7)

and
AdvxxxWHMAC+

K,Kw,K+ [f](A) ≤ ε+ 2 · 2−
b−c
2 + 2−c . (8)

Proof. Intuitively, for WHMAC one can think of f as an extractor which extracts keys K ′1,K
′
2 from K, and

the bound then readily follows by the leftover hash lemma. For WNMAC+ one can roughly think of K ′1 and
K ′2 as being extracted from independent keys K+ and K, respectively. For the latter it is thus sufficient that
b (which is the length, and thus also the entropy of the uniform K and K+) is sufficiently larger than c (the
length of K ′1,K

′
2), whereas for the former we need b to be sufficiently larger than 2c. The details of both

proofs follow.
In order to prove the bound (7) it is sufficient to show that the statistical distance between the transcripts

(as seen by the adversary) when interacting with WNMAC or WHMAC is at most 2−
b−2c

2 . As the only
difference between WNMAC and WHMAC is that we replace the uniform keys K1,K2 with keys K ′1,K

′
2

derived according to (6), to bound the distance between the transcripts, it is sufficient to bound the distance
between the random and derived keys. As K ′1,K

′
2 are not independent of f, it is important to bound the

distance when given f, concretely, we must show that

SD ((K ′1,K
′
2, f) , (K1,K2, f)) ≤ 2−

b−2c
2 .

We will use the leftover hash lemma [13] which states that for any random variable X ∈ {0, 1}m with min-
entropy at least H∞(X) ≥ k and a hash function h : {0, 1}m → {0, 1}` chosen from a family of pairwise
independent hash functions we have (with U` being uniform over {0, 1}`)

SD ((h(X), h) , (U`, h)) ≤ 2
`−H∞(X)

2 ≤ 2
`−k
2 .

Since f : {0, 1}b+c → {0, 1}c is uniformly random, also the function

f ′(K) = (f(IV,K ⊕ ipad), f(IV,K ⊕ opad))

is uniformly random, and thus also pairwise independent. Using H∞(K) = H∞(K⊕ipad) = b and (K ′1,K
′
2) =

f ′(K) we thus get

SD ((K ′1,K
′
2, f
′) , (K1,K2, f

′)) = SD ((K ′1,K
′
2, f) , (K1,K2, f)) ≤ 2−

b−2c
2

as required. The first equality above holds as f defines all of f ′ and vice versa.
To establish the bound (8), consider now the keys K ′1,K

′
2 derived according to (4). We will again upper

bound the statistical distance of the derived and the random keys, proving

SD ((K ′1,K
′
2, f) , (K1,K2, f)) ≤ 2 · 2−

b−c
2 + 2−c .

Instead of K ′1, consider a key K ′′1 which is computed as K ′′1 = f(z,K+) for some fixed z 6= IV. By the leftover
hash lemma we get

SD ((K ′′1 , f(z, .)) , (K1, f(z, .))) ≤ 2−
b−c
2

SD ((K ′2, f(IV, .)) , (K2, f(IV, .))) ≤ 2−
b−c
2 .

Noting that f(z, .) and f(IV, .) are independent random functions, and K and K+ are also independent, we
can apply the triangle inequality for statistical distance to obtain

SD((K ′′1 ,K
′
2, f) , (K1,K2, f)) ≤ 2 · 2−

b−c
2 .

If we replace K ′′1 = f(z,K+) with K ′1 = f(Z,K+) above we get an extra 2−c term which accounts for the
probability that Z = IV. ut

17

f f fK1 f

⊕

m1

Kw ⊕

m2

Kw ⊕

m3

Kw ⊕

m`

Kw

f

K2

DWNMAC[f]K1,K2,Kw (m1‖ · · · ‖m`)

Fig. 7. The construction DWNMAC[f]K1,K2,Kw .

5 The Dual WNMAC Construction

Looking at the security bounds for WNMAC given in Section 3 from a distance, it seems that under reasonable
assumptions the most restrictive term in the bounds is qfqC/2

2c. Intuitively speaking, the reason for this
term is the outer f-call in WNMAC that only takes 2c bits of actual inputs and adds b− c padding zeroes.

In an attempt to overcome this limitation, we propose a variant of the WNMAC construction that we
call Dual WNMAC (DWNMAC). We prove the PRF-security of DWNMAC that goes beyond the restrictive
term qfqC/2

2c and our proof again extends also to distinguishing-H and state-recovery security. The price
we pay for this improvement is a slight increase in the key length and the fact that DWNMAC cannot be
implemented using only black-box access to NMAC. Similarly, if we apply the same modification to WHMAC,
the resulting construction can no longer be implemented using black-box access to HMAC.

The construction DWNMAC is derived from WNMAC, the only difference being that the outer f-call is
performed on the c-bit state and a b-bit key K2. More precisely, for a key tuple (K1,K2,Kw) ∈ {0, 1}c ×
{0, 1}b × {0, 1}b and a message M ∈ {0, 1}b∗, we define

DWNMACf((K1,K2,Kw),M) := f(WCascfK1,Kw
(M),K2) .

For a graphical depiction of DWNMAC, see Figure 7. Note that DWNMAC is slightly similar to what we
would obtain by whitening from the Sandwich MAC construction [24].

We now summarize the security of DWNMAC.

Theorem 5 (Security of DWNMAC). Let A be an adversary making at most qf queries to the compression
function f and at most qC construction queries, each of length at most ` b-bit blocks. Let K = (K1,K2,Kw) ∈
{0, 1}c × {0, 1}b × {0, 1}b be a tuple of random keys. Then we have

AdvxxxDWNMACf
K

(A) ≤ 3 · `qCqf
2b+c

+ 2 · `qC
2

2c
·
(
d′(`) +

64`3

2c
+ 2

)
for all xxx ∈ {prf, dist-H, sr}.

Proof (sketch). The proofs are analogous to the proofs for WNMAC given in Section 3, with the main
modification needed in Lemma 3 where the probability of an outer C-f-collision can be upper-bounded by
qCqf/2

b+c. Roughly speaking, this is because the outer call in DWNMAC does not contain the 0b−c padding
and instead processes b+ c bits of input that are hard to predict for the attacker. ut

Acknowledgments We thank the anonymous reviewers for their helpful comments. Gaži and Pietrzak’s
work was partly funded by the European Research Council under an ERC Starting Grant (259668-PSPC).
Tessaro’s research was partially supported by NSF grant CNS-1423566 and by the Glen and Susanne Culler
Chair.

18

References

1. Jee Hea An and Mihir Bellare. Constructing VIL-MACs from FIL-MACs: Message authentication under weakened
assumptions. In Michael J. Wiener, editor, CRYPTO’99, volume 1666 of LNCS, pages 252–269, Santa Barbara,
CA, USA, August 15–19, 1999. Springer, Heidelberg, Germany.

2. Mihir Bellare. New proofs for NMAC and HMAC: Security without collision-resistance. In Cynthia Dwork,
editor, CRYPTO 2006, volume 4117 of LNCS, pages 602–619, Santa Barbara, CA, USA, August 20–24, 2006.
Springer, Heidelberg, Germany.

3. Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying hash functions for message authentication. In Neal
Koblitz, editor, CRYPTO’96, volume 1109 of LNCS, pages 1–15, Santa Barbara, CA, USA, August 18–22, 1996.
Springer, Heidelberg, Germany.

4. Shan Chen and John P. Steinberger. Tight security bounds for key-alternating ciphers. In Phong Q. Nguyen and
Elisabeth Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 327–350, Copenhagen, Denmark,
May 11–15, 2014. Springer, Heidelberg, Germany.

5. Ivan Damg̊ard. A design principle for hash functions. In Gilles Brassard, editor, CRYPTO’89, volume 435 of
LNCS, pages 416–427, Santa Barbara, CA, USA, August 20–24, 1990. Springer, Heidelberg, Germany.

6. Itai Dinur and Gaëtan Leurent. Improved generic attacks against hash-based MACs and HAIFA. In Juan A. Garay
and Rosario Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of LNCS, pages 149–168, Santa Barbara, CA,
USA, August 17–21, 2014. Springer, Heidelberg, Germany.

7. Yevgeniy Dodis, Thomas Ristenpart, John P. Steinberger, and Stefano Tessaro. To hash or not to hash again?
(in)differentiability results for h2 and HMAC. In Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012,
volume 7417 of LNCS, pages 348–366, Santa Barbara, CA, USA, August 19–23, 2012. Springer, Heidelberg,
Germany.

8. Peter Gaži, Krzysztof Pietrzak, and Michal Rybár. The exact PRF-security of NMAC and HMAC. In Juan A.
Garay and Rosario Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of LNCS, pages 113–130, Santa
Barbara, CA, USA, August 17–21, 2014. Springer, Heidelberg, Germany.

9. Peter Gaži, Krzysztof Pietrzak, and Stefano Tessaro. The exact PRF security of truncation: Tight bounds for
keyed sponges and truncated CBC. In Rosario Gennaro and Matthew J. B. Robshaw, editors, CRYPTO 2015,
Part I, volume 9215 of LNCS, pages 368–387, Santa Barbara, CA, USA, August 16–20, 2015. Springer, Heidelberg,
Germany.

10. Oded Goldreich, Shafi Goldwasser, and Silvio Micali. On the cryptographic applications of random functions.
In G. R. Blakley and David Chaum, editors, CRYPTO’84, volume 196 of LNCS, pages 276–288, Santa Barbara,
CA, USA, August 19–23, 1984. Springer, Heidelberg, Germany.

11. Jian Guo, Thomas Peyrin, Yu Sasaki, and Lei Wang. Updates on generic attacks against HMAC and NMAC.
In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of LNCS, pages 131–148,
Santa Barbara, CA, USA, August 17–21, 2014. Springer, Heidelberg, Germany.

12. G. H. Hardy and Edward M. Wright. An Introduction to the Theory of Numbers (sixth edition). Oxford University
Press, USA, 2008.

13. Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudorandom generator from any
one-way function. SIAM Journal on Computing, 28(4):1364–1396, 1999.

14. Jongsung Kim, Alex Biryukov, Bart Preneel, and Seokhie Hong. On the security of HMAC and NMAC based on
HAVAL, MD4, MD5, SHA-0 and SHA-1 (extended abstract). In Roberto De Prisco and Moti Yung, editors, SCN
06, volume 4116 of LNCS, pages 242–256, Maiori, Italy, September 6–8, 2006. Springer, Heidelberg, Germany.

15. Hugo Krawczyk, Mihir Bellare, and Ran Canetti. HMAC: Keyed-hashing for message authentication. IETF
Internet Request for Comments 2104, February 1997.

16. Gaëtan Leurent, Thomas Peyrin, and Lei Wang. New generic attacks against hash-based MACs. In Kazue Sako
and Palash Sarkar, editors, ASIACRYPT 2013, Part II, volume 8270 of LNCS, pages 1–20, Bengalore, India,
December 1–5, 2013. Springer, Heidelberg, Germany.

17. Ralph C. Merkle. One way hash functions and DES. In Gilles Brassard, editor, CRYPTO’89, volume 435 of
LNCS, pages 428–446, Santa Barbara, CA, USA, August 20–24, 1990. Springer, Heidelberg, Germany.

18. Yusuke Naito, Yu Sasaki, Lei Wang, and Kan Yasuda. Generic state-recovery and forgery attacks on ChopMD-
MAC and on NMAC/HMAC. In Kazuo Sakiyama and Masayuki Terada, editors, IWSEC 13, volume 8231 of
LNCS, pages 83–98, Okinawa, Japan, 2013. Springer, Heidelberg, Germany.

19. Jacques Patarin. The “coefficients H” technique (invited talk). In Roberto Maria Avanzi, Liam Keliher, and
Francesco Sica, editors, SAC 2008, volume 5381 of LNCS, pages 328–345, Sackville, New Brunswick, Canada,
August 14–15, 2009. Springer, Heidelberg, Germany.

19

20. Thomas Peyrin, Yu Sasaki, and Lei Wang. Generic related-key attacks for HMAC. In Xiaoyun Wang and Kazue
Sako, editors, ASIACRYPT 2012, volume 7658 of LNCS, pages 580–597, Beijing, China, December 2–6, 2012.
Springer, Heidelberg, Germany.

21. Thomas Peyrin and Lei Wang. Generic universal forgery attack on iterative hash-based MACs. In Phong Q.
Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 147–164, Copenhagen,
Denmark, May 11–15, 2014. Springer, Heidelberg, Germany.

22. Bart Preneel and Paul C. van Oorschot. MDx-MAC and building fast MACs from hash functions. In Don
Coppersmith, editor, CRYPTO’95, volume 963 of LNCS, pages 1–14, Santa Barbara, CA, USA, August 27–31,
1995. Springer, Heidelberg, Germany.

23. Yu Sasaki and Lei Wang. Generic attacks on strengthened HMAC: n-bit secure HMAC requires key in all blocks.
In Michel Abdalla and Roberto De Prisco, editors, SCN 14, volume 8642 of LNCS, pages 324–339, Amalfi, Italy,
September 3–5, 2014. Springer, Heidelberg, Germany.

24. Kan Yasuda. “sandwich” is indeed secure: How to authenticate a message with just one hashing. In Josef Pieprzyk,
Hossein Ghodosi, and Ed Dawson, editors, ACISP 07, volume 4586 of LNCS, pages 355–369, Townsville, Australia,
July 2–4, 2007. Springer, Heidelberg, Germany.

A The H-Coefficient Method

In this section we prove the basic lemma underlying Patarin’s H-Coefficient method [19].

Lemma 1 (restated). Let δ, ε ∈ [0, 1] be such that:

(a) P [Tideal ∈ BT] ≤ δ.
(b) For all τ ∈ GT,

P [Treal = τ]

P [Tideal = τ]
≥ 1− ε .

Then,

AdvprfWNMAC(A) ≤ SD(Treal,Tideal) ≤ ε+ δ .

Proof. Let T be the set of valid transcripts such that P [Tideal = τ] ≥ P [Treal = τ]. Then,

SD(Treal,Tideal) =
∑
τ∈T

(P [Tideal = τ]− P [Treal = τ])

by the fundamental properties of the statistical distance. Then, note that T can be partitioned into two
blocks T ∩ BT and T ∩ GT. On the one hand, we can use (a) to upper bound∑

τ∈T ∩BT

(P [Tideal = τ]− P [Treal = τ]) ≤
∑

τ∈T ∩BT

P [Tideal = τ] ≤
∑
τ∈BT

P [Tideal = τ] ≤ δ .

On the other hand, (b) implies∑
τ∈T ∩GT

(P [Tideal = τ]− P [Treal = τ]) ≤ ε ·
∑

τ∈T ∩GT

P [Tideal = τ] ≤ ε .

Therefore, SD(Treal,Tideal) ≤ ε + δ. Moreover, every adversary A can be turned into a distinguisher A′ for
Treal and Tideal, which looks at the first part of the transcript (i.e., the one containing the q message-output
pairs (M1, Y1), . . . , (Mq, Yq)), and outputs the corresponding decision bit A would output (this bit is uniquely
defined by the fact that A is deterministic). Then, we clearly have

AdvprfWNMAC(A) = P [A′(Treal)⇒ 1]− P [A′(Tideal)⇒ 1] ≤ SD(Treal,Tideal) ≤ ε+ δ ,

as the statistical distance is the quantity corresponding to the advantage of the best A’. ut

20

B Probability of a Cascade Collision

Here we briefly summarize the technique used in [8] to upper-bound the quantity CascColl considered in the
proof of Lemma 4. For further details, we refer the reader to [8].

Intuitively, the problem of upper-bounding the probability P [CascColl] is reduced to a combinatorial
counting problem. The objects counted are so-called “structure graphs” that represent the structure of inter-
mediate values obtained when labeling the message tree corresponding to QC using a random compression
function f.5 On a high level, these structure graphs differ from our labeled message trees by merging the
vertices that end up having the same label (and hence resulting in a directed acyclic graph that does not
necessarily have to be a tree). It is shown in [8, Lemma 2] that the probability (over the randomness of
f) of a fixed structure graph occurring can be upper-bounded using the number of so-called f-collisions in
this graph. Then, loosely speaking, [8, Lemma 3] shows that structure graphs containing two or more such
f-collisions are too unlikely to matter, while [8, Lemma 4] performs the actual counting and gives an upper
bound on the number of distinct structure graphs that contain at most one such f-collision. Overall, this
results in the desired bound (5).

C Description of the General Attack

Here we describe how to generalize the attack from Section 3.8 to the case when qC is large, concretely, for
a given qC we let 0 ≤ α ≤ 1 be such that

qC = 2α·c ·Θ(c)

and further we set
t = qf/2

c(1−α)

Note that for α = 0 we get the parameters of the previous attack. AO,f first picks some (arbitrary) subset

X ⊂ {0, 1}c of size |X | = 2c(1−α), and t (arbitrary) keys K̃1, . . . , K̃t, and then uses its qf function queries to
learn the outputs of f on those keys:

Zi = {f(K̃i, x‖0b−c) : x ∈ X}

We now let AO,f query O on qC random inputs and let Qc denote the outputs. In the previous attack we
simply let AO,f output 1 if Qc ⊂ Zi for some i, as this could only happen (except with extremely tiny

probability) if O implemented WNMAC where the key K2 for the outer invocation was K̃i.
Now we have to be a bit more careful, as Zi contains just a (possibly very small) fraction of the outputs

of f(K̃i, ·‖0b−c), and thus Qc will not be a subset of Zi even if Kc = K̃i. Instead we will look at the size of
the intersection

Ii = Qc ∩ Zi .

If O(·) implements a random function, then Qc is a set of qc = 2α·c · Θ(c) random values from {0, 1}c,
and and Zi is a random subset of size 2(1−α)c.6 Let Us denote a random subset of {0, 1}c of size s. As
|Qc| · |Zi| = 2c · Θ(c) we have for some constant γi (this constant is small, and its exact value depends on
|Qc| and |Zi|)

E[|Qc| · |Zi|] = E[|U|Qc|| · U|Zi||] = γi · c

Now consider the case where the first oracle is

O(·) = WNMACf((K1,K2,Kw), ·) = f(K2,WCascf((K1,Kw), ·)‖0b−c)
5 We note that in [8] the initial state is fixed to a c-bit all-zero string 0 instead of the value K1 considered in our

Lemma 4, but it is easy to verify that since K1 is already fixed at that point, this does not introduce any difference.
6 The sets Qc and Zi can be slightly smaller than 2(1−α)c and 2α·cΘ(c), respectively, due to collisions. But this can

be ignored as even in the extreme case where α is 0 or 1, this will affect the size of the set only by a factor 1/e.

21

and K2 = K̃i for some i. We claim that in this case the intersection will be roughly twice as large:

E[|Qc| · |Zi|] = E[|U|Qc||U|Zi||] ≈ 2 · γi · c . (9)

The reason is that now we can have collisions on either the inputs to f(K2 = K̃i, ·), or on the outputs, thus
doubling our chances to see a collision.

The strategy of AO,f is now to check, for all i = 1, . . . , t, if |Qc ∩ Zi| is much bigger than it should be
assuming O is a random function, say

|Qc ∩ Zi| ≥ 1.5 · γi

and output 1 if this is the case. In the case where O(.) is WNMAC and K2 = K̃i for some i, we’ll almost
certainly output 1. If O(.) is a random function, we expect to pass the above check (and thus get a false
positive) with probability only 2−Θ(c) for every key (this again follows by the Chernoff bound), and thus by
a union bound with probability t/2Θ(c) overall. If the hidden constant in the previous Θ too small to make
t/2Θ(c) small (< 1/2 is sufficient), we can let the adversary save up some of its qf queries (at the prize of a

slightly smaller t) for extra queries used to get additional outputs for keys K̃i where the above check passes,
in order to make the probability of a false positive extremely small.

Summing up we get an advantage of roughly (recall that qC = 2α·c ·Θ(c) and t = qf/2
c(1−α))

AdvprfWNMAC(AqC,t) ≈
t

2c
=

qf
2c(1−α)2c

=
qf

2−cα22c
=

qfqC
22c ·Θ(c)

which again matches our term qfqC/2
2c from the lower bound up to a factor O(c).

22

	Generic Security of NMAC and HMAC with Input Whitening

