
ACM Reference Format
Bojsen-Hansen, M., Wojtan, C. 2016. Generalized Non-Refl ecting Boundaries for Fluid Re-Simulation.
ACM Trans. Graph. 35, 4, Article 96 (July 2016), 7 pages. DOI = 10.1145/2897824.2925963
http://doi.acm.org/10.1145/2897824.2925963.

Generalized Non-Reflecting Boundaries for Fluid Re-Simulation

Morten Bojsen-Hansen∗

IST Austria
Chris Wojtan∗

IST Austria

Abstract

When aiming to seamlessly integrate a fluid simulation into a
larger scenario (like an open ocean), careful attention must be
paid to boundary conditions. In particular, one must imple-
ment special “non-reflecting” boundary conditions, which dis-
sipate out-going waves as they exit the simulation. Unfortu-
nately, the state of the art in non-reflecting boundary conditions
(perfectly-matched layers, or PMLs) only permits trivially simple
inflow/outflow conditions, so there is no reliable way to inte-
grate a fluid simulation into a more complicated environment
like a stormy ocean or a turbulent river.

This paper introduces the first method for combining non-
reflecting boundary conditions based on PMLs with in-
flow/outflow boundary conditions that vary arbitrarily through-
out space and time. Our algorithm is a generalization of state-
of-the-art mean-flow boundary conditions in the computational
fluid dynamics literature, and it allows for seamless integration
of a fluid simulation into much more complicated environments.
Our method also opens the door for previously-unseen post-
process effects like retroactively changing the location of solid
obstacles, and locally increasing the visual detail of a pre-existing
simulation.

Keywords: fluid simulation, non-reflecting boundaries, per-
fectly matched layers, re-simulation, stay noided

Concepts: •Computing methodologies → Physical sim-
ulation; Modeling and simulation; Volumetric models;
•Mathematics of computing → Discretization; Partial dif-
ferential equations;

1 Introduction
Fluid simulations are indispensable for adding realism to large
dynamic environments like open oceans. However, careful at-
tention must be paid to boundary conditions if we wish to seam-
lessly integrate a fluid simulation into a larger scenario. Instead
of making waves spuriously reflect off of invisible walls at the
boundary of the simulation domain, we want outgoing waves to
quietly dissipate as they exit the simulation; we refer to this de-
sirable behavior as “non-reflecting” boundary conditions.

The state of the art in non-reflecting boundary conditions is
known as perfectly-matched layers or PMLs [Berenger 1994;
Söderström et al. 2010]. At a high level, PMLs work by lineariz-
ing the equations of motion, performing a Fourier transform to

∗(mortenbh|wojtan)@ist.ac.at
Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copy-
rights for third-party components of this work must be honored.
c 2016 Copyright held by the© owner/author(s).

SIGGRAPH ’16 Technical Paper, July 24-28, 2016, Anaheim, CA,
ISBN: 978-1-4503-4279-7/16/07
DOI: http://dx.doi.org/10.1145/2897824.2925963

Figure 1: Given an input fluid simulation (top left), our algorithm
can make local changes retroactively and seamlessly re-integrate
them into the original fluid simulation. Here, we locally edit solid
geometry (top right), add a cow splash (bottom left), or re-simulate
a specific region at a higher resolution (bottom right). Please see
our video.

identify outgoing waves, and exponentially damping the outgo-
ing waves in a thin layer near the boundary of the simulation.
Unfortunately, the state of the art in PMLs only permits trivially
simple inflow/outflow conditions, like a stationary pool of wa-
ter or a constantly translating stream (a steady-state mean flow).
The state of the art leaves us with no reliable method for integrat-
ing a fluid simulation into a non-trivial (i.e., visually interesting)
environment like a stormy ocean or a turbulent river.

In this paper, we generalize the state-of-the-art in non-reflecting
boundary conditions and present several novel applications. Our
contributions are as follows:

• The first PML method with spatially and temporally varying
inflow/outflow boundary conditions

• The first derivation of the equations of motion of a pertur-
bation relative to an existing fluid simulation

• The ability to add, remove, and adjust solid boundary ob-
stacles retroactively in a fluid simulation

• The ability to locally re-simulate a fluid animation at a
higher resolution (with more visual detail) as a post-process

2 Previous Work

The literature on fluid simulation for computer animation is vast.
This discussion will focus primarily on our target problem of de-
veloping boundary conditions for fluid simulations, and on our

ACM Trans. Graph., Vol. 35, No. 4, Article 96, Publication Date: July 2016

http://dx.doi.org/10.1145/2897824.2925963
rodkin
Typewritten Text

rodkin
Typewritten Text

rodkin
Typewritten Text

rodkin
Typewritten Text

rodkin
Typewritten Text

rodkin
Typewritten Text

rodkin
Typewritten Text

rodkin
Typewritten Text

rodkin
Typewritten Text

rodkin
Typewritten Text

rodkin
Typewritten Text

rodkin
Typewritten Text

rodkin
Typewritten Text

rodkin
Typewritten Text

rodkin
Typewritten Text
This work is licensed under a Creative Commons Attribution International 4.0 License.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

target application of editing liquid simulations and efficiently re-
simulating simulations.

Boundary conditions for fluid simulations. The problem of
non-reflecting boundary conditions originated in computational
physics. Berenger [1994] proposed the first method based on
perfectly matched layers (PMLs) for the purpose of absorbing
electromagnetic waves. PMLs were applied to computational
fluid dynamics by Hu et al. [1996], starting with a linearized
version of the Euler equations. Researchers subsequently applied
PMLs to the non-linear Euler equations [Hu 2006] and Navier-
Stokes equations [Hagstrom et al. 2005; Hu et al. 2008].

Hu [2001] and Bécache et al. [2003] showed that PMLs are only
guaranteed to properly damp perturbations when the group and
phase velocities are in consistent directions. While this disagree-
ment between group and phase velocities never manifests for lin-
ear wave equations in a static reference frame, it becomes possi-
ble in the presence of a moving background flow, or with more
complicated wave dispersion relationships. Their proposed solu-
tion to this problem is to apply a coordinate transformation that
mathematically guarantees consistency of the group and phase
velocities for all wave numbers.

Hu et al. [2008] showed how to create steady state mean flow
PML boundary conditions for the Navier-Stokes equations. We
generalize their work by allowing mean flows which can vary in
time—an essential requirement for realistic computer graphics
applications.

Within the field of computer graphics, several researchers
proposed simple open boundary conditions for single-phase
flows [Stam 1999; Fedkiw et al. 2001], but the wave reflec-
tion problem persisted for liquid simulations until the prelimi-
nary work of Söderström and Museth [2009] and their thorough
follow-up work [Söderström et al. 2010] introduced PMLs for
computer animation.

Nielsen and Bridson [2011] re-simulated the surface layer of a
low resolution liquid at a higher resolution, using the low reso-
lution simulation as a boundary condition. These guide shapes
serve a similar purpose to our time-varying non-reflecting bound-
ary conditions, especially when we inherit our boundary condi-
tions from a lower-resolution simulation. However, their method
is not based on PMLs and cannot prevent spurious boundary re-
flections.

Editing liquid simulations. Our non-reflecting boundary condi-
tions allow a new method for locally editing a fluid animation.
While editing a physics simulation is still a challenging problem,
researchers in this area have developed several powerful editing
techniques already.

Guiding methods [McNamara et al. 2004; Shi and Yu 2005;
Thürey et al. 2006] allow more direct control than manipulating
initial conditions, which may alleviate the need for going through
a large number of iterations. Designing appropriate keyframes
can be quite laborious, however, especially if the end result must
look physically plausible.

Bhat et al. [2004] present a synthesis approach that allows edit-
ing of videos of flows exhibiting roughly stationary dynamics
such as waterfalls and rivers. Pighin et al. [2004] go in a dif-
ferent direction and parameterize an Eulerian fluid simulation
using advected radial basis functions. Simple edits may then be
performed by manipulating flow streamlines. More recently, Pan
et al. [2013] developed an interactive sketch-based approach to
editing FLIP simulations. User edits are localized in space and

time by encoding the edits as deformation fields that are then
back-advected and applied with a smooth falloff. The final result
is obtained by a guided offline simulation.

Raveendran et al. [2014] introduce a data-driven method for in-
stantly generating new liquid simulations as an interpolation of
the inputs using space-time blending. It does not allow arbitrary
user edits, however.

Efficient re-simulation. Subspace methods provide a way of
significantly reducing the degrees of freedom of the system by
leveraging previous simulation data. Recently, Kim and Delaney
[2013] addressed the inability of these methods to reproduce the
input simulations with a cubature approach. This allowed pa-
rameters such as buoyancy, vorticity confinement, and timesteps
to be varied and re-simulated efficiently. As with all model reduc-
tion methods, continuously changing boundary conditions such
as moving solid obstacles or liquid surfaces remain a challenge.

To the best of our knowledge, Srinivasan and Malkawi [2007]
provide the only existing method for automatic, localized fluid
re-simulation. Their application is indoor airflow visualization
for augmented reality. In a pre-computation step, airflow is
simulated for a limited number of room topologies (placement
and number of openings) using an Eulerian simulator. For each
change in boundary condition (e.g. adding a window) the user
extracts a small number of bounding boxes containing the most
significantly changed grid nodes. These bounding boxes are the
only areas re-simulated at runtime. Since bounding boxes are
determined by running a full simulation, pre-computation time
is quite significant, and also suffers from combinatorial explosion
as the number of rooms is increased.

3 Perfectly Matched Layers

In this section, we will review the concept of perfectly matched
layers (PMLs). We begin our derivation with the incompressible
Navier-Stokes equations in conservation form:

∂q
∂t
+∇ · F(q) = 0 (1)

q =
(

0
u

)
(2)

F(q) =
(

u
u⊗ u + 1

ρ
pI

)
(3)

Here, u denotes the usual three-dimensional velocity, ρ is density,
p is pressure, and I is a 3× 3 identity matrix. Notice that Equa-
tion (1) includes both the momentum equation and the zero-
divergence constraint. Our exposition neglects viscosity and ex-
ternal forces for clarity, but they can easily be be included as in
Söderström et al. [2010].

3.1 Basic PMLs

In the absence of any background flow, the perfectly matched
layer will aim to exponentially damp q toward zero in a thin
layer near the boundary. We apply the split variable approach
[Berenger 1994] to split q into separate vectors associated with
each spatial dimension q = q1 + q2 + q3. The equation for the
time evolution of q1 (q2 and q3 are analogous) is:

∂q1

∂t
+
∂F1(q)
∂x

= 0 (4)

96:2 • M. Bojsen-Hansen et al.

ACM Trans. Graph., Vol. 35, No. 4, Article 96, Publication Date: July 2016

rodkin
Typewritten Text

Figure 2: A simulation without (left) and with (right) perfectly
matched layers (PMLs) with time-varying inflow/outflow bound-
ary conditions. The simulation without PMLs exhibits interference
patterns from wave reflections. The background flow is visualized
in blue. For demonstration purposes this example does not include
visual blending.

where

F1 =

 ux
u2
x + p/ρ
uxuy
uxuz

 , F2 =

 uy
uxuy

u2
y + p/ρ
uyuz

 , F3 =

 uz
uxuz
uyuz

u2
z + p/ρ

(5)

Our notation uses numerical subscripts to denote quantities and
operators associated with split variables, while we use x, y, z sub-
scripts to denote a velocity component in a particular spatial di-
mension. Note that we recover Equation (1) when we sum the
split components defined by Equation (4).

We convert to the frequency domain by applying a Fourier trans-
form ∂/∂t → −iω and achieve a spatial stretching in the bound-
ary layer (following Söderström et al. [2010]) with the transfor-
mation

∂

∂x
→ 1

1 + iσ1/ω

∂

∂x
(6)

to get

−iωq̃1 +
1

1 + iσ1/ω

∂F̃1(q)
∂x

= 0 (7)

where the tilde notation indicates a quantity in the frequency
domain. Here, σ1(x) is a spatially varying transfer function that
depends only on x (not y or z). It will be used to damp waves
traveling in the x-direction by setting it to zero in the simula-
tion domain and ramping it up to a large positive value in the
boundary layer. We then multiply through by (1 + iσ1)/ω to get

−iωq̃1 + σ1q̃1 +
∂F̃1(q)
∂x

= 0 (8)

and finally transform back to the original domain with the inverse
Fourier transform −iω → ∂/∂t

∂q1

∂t
+ σ1q1 +

∂F1(q)
∂x

= 0 (9)

Numerically integrating this equation will exponentially damp
q1 towards zero in the boundary layer. Summing up each of the
split components at the end of each time step will recover q.

3.2 Background Flows

By damping to q = 0 near the boundary, Equation (9) implies
that the simulation is located in the middle of a perfectly static
fluid. To allow for more interesting background motions, Hu et
al. [2008] damp towards a background flow q instead of towards

Figure 3: The background flow (left, blue) includes geometry out-
side of the simulated flow (middle, green). The upper boundary of
the new simulation is indicated by the wire rectangle on the right.
Nevertheless, new geometry (the bunny) flows in through the upper
boundary as the simulation progresses.

zero. They interpret q as the summation of the background flow
q and a perturbation flow q′:

q = q + q′ (10)

where q and q are solutions to Equation (1). Note, however,
that because the Navier-Stokes equations are non-linear, q′ will
generally not be a solution to Equation (1), making the problem
of solving for the motion of q′ substantially more complicated.

Hu [2006] simplifies this problem by assuming that the back-
ground flow is already in steady state, i.e., ∂q/∂t = 0,
which implies ∂q′

/
∂t = ∂q/∂t by Equation (10). Thus,

under the steady-state assumption, the dynamics of q′ are
just ∂q′

/
∂t +∇ · F(q) = 0. Applying the PML transformations

above gives us

∂q′1
∂t
+ σ1q′1 +

∂F1(q)
∂x

= 0 (11)

which is essentially the same as Equation (9), except it damps
q′ to zero near the boundaries instead of damping the entire q.
Intuitively, this drives q toward the background flow q near the
boundary of the simulation domain. This represents the state
of the art in non-reflecting boundary conditions, which we will
improve upon in the next section.

4 Time-varying Background Flows

While steady-state background flows are convenient for applica-
tions like the analysis of airfoils, they are extremely limiting for
computer graphics applications. The steady-state assumption is
simply insufficient if we wish to have our simulation live within
a more natural environment, like an undulating ocean or a tur-
bulent river. In this section we explain our main contribution of
achieving time-varying background flows with perfectly matched
layers.

We again divide our main simulation variable q into a back-
ground flow q and a perturbation q′, as in Equation (10), but
we remove the assumption that ∂q/∂t = 0. As a consequence,
we can no longer equate ∂q′

/
∂t to ∂q/∂t , and we cannot make

use of the previous derivation.

However, since both q and q are solutions to the Navier-Stokes
equations, we can write[

∂q
∂t
+∇ · F(q)

]
−
[
∂q
∂t
+∇ · F(q)

]
= 0 (12)

We then regroup the terms[
∂q
∂t
− ∂q
∂t

]
+ [∇ · F(q)−∇ · F(q)] = 0 (13)

96:3 • Generalized Non-Reflecting Boundaries for Fluid Re-Simulation

ACM Trans. Graph., Vol. 35, No. 4, Article 96, Publication Date: July 2016

Figure 4: Even when the background flow (left, blue) is very
lively, our algorithm is able to produce a perfectly static pool (right,
green).

and redistribute the linear derivatives.

∂ [q− q]
∂t

+∇ · [F(q)− F(q)] = 0 (14)

We next substitute the definition of q′ to derive the dynamics of
the perturbation.

∂q′

∂t
+∇ · [F(q)− F(q)] = 0 (15)

Note that, although the resulting equation is simple, we made
no assumptions in its derivation. In particular, we made no lin-
earizations, and q′ is not restricted to be a solution to the Navier-
Stokes equations. We then apply the same splitting and coordi-
nate transformations above to recover the PML-specific dynam-
ics.

∂q′1
∂t
+ σ1q′1 +

∂ [F1(q)− F1(q)]
∂x

= 0 (16)

Integrating this equation will again damp q′1 toward zero near the
boundaries, but it will also allow q to vary arbitrarily over space
and time. Intuitively, q will continually be damped towards q,
but now q is a moving target that is free to erratically splash up
and down or flow in and out of the domain.

Our derivation of Equation (16) is similar to the one of Hu
[2006]. Hu goes on to assume a pseudo mean flow that sat-
isfies steady-state Navier-Stokes, however, our application cru-
cially depends on having a time-varying background flow, which
may not be as obviously useful for CFD applications.

4.1 An Addendum for Liquid Surfaces

Equation (16) naturally damps differences in the velocity field
near the boundary, but it will not remove differences in the liq-
uid surface geometry. In order to drive the entire physical state
toward the time-varying background flow, we may also add a
small damping term to the free surface geometry. In the case of
a level set [Osher and Fedkiw 2006], which is what we used in
all of our experiments, this can be expressed

Dφ

Dt
+ γ
(
φ− φ

)
= 0 (17)

where γ is a transfer function similar to σ that ramps upward
in the boundary layer, φ is the level set function representing the
geometry of the liquid surface, φ is the level set of the background
flow and D/Dt is the material derivative. In our examples, we
found that the free-surface advection combined with the copying
operation described below was accurate enough to safely set γ =
0, but we document this concept for completeness. We did not
experiment with other surface trackers such as triangle meshes
or particles.

This damping operation removes continuous deformations of the
liquid surface geometry, but it cannot change topology, like when

Algorithm 1 Pseudocode for our one time step of our algorithm.
1: while sub-cycling do
2: Compute sub-cycle time step size ∆tsub

3: Advect q′ with step size ∆tsub

4: Damp q′ with step size ∆tsub (Equation (18))
5: end while
6: Add Body Force
7: Pressure Projection
8: Extrapolate q
9: Advect Level Set

an inflowing velocity field brings entirely new surface geometry
through the boundary. In such cases, we must explicitly add the
new geometric components to our surface tracker. We do this by
copying all liquid geometry from the background flow within a
layer with width dependent on a CFL condition (usually 3 cells)
beyond the simulation boundary, and we extrapolate the veloc-
ity from these regions as well. This way, the liquid surface ad-
vection algorithm naturally carries new geometry components
in through the boundaries of the simulation. See Figure 3 for a
proof of concept.

5 Implementation Details

We implemented our method as a set of plug-ins for Houdini
[Side Effects Software 2016]. The source code for these plug-
ins as well as an example Houdini scene file is included in the
supplementary material.

Our implementation updates q′ by time-splitting. We analytically
integrate the middle (damping) term of Equation (16):

q′ ← q′e−σ1∆t (18)

The rightmost term of Equation (16) encodes advection, the pres-
sure projection, and the pressure update. Like most solvers in
computer graphics, we apply time splitting and numerically inte-
grate each term separately. Whenever our solver needs to eval-
uate an element of q, we sum up each of the split components
with q = (q′1 + q′2 + q′3) + (q1 + q2 + q3).

The order of our time splitting almost exactly follows Söderström
et al. [2010], including the advection, the pressure projection,
and the addition of conservative body forces like gravity. Be-
cause the explicit advection algorithm proposed by Söderström
et al. [2010] is conditionally stable, we perform multiple sub-
cycles of the advection and damping routines with the maxi-
mum stable time step based on the CFL condition [Bridson 2008].
We track the liquid free-surface using Houdini’s particle level set
method [Osher and Fedkiw 2006]. Pseudocode for one simula-
tion time step can be seen in Algorithm 1.

To achieve good damping performance for the PMLs, it is im-
portant to pick good parameters. Söderström et al. [2010] per-
formed a rather thorough experimental study of the effect of dif-
ferent choices for σ(x), σmax and PML width. Although our set-
ting is slightly different from theirs, we found that basing our
parameters on their findings worked well in practice.

In our examples, we set each PML’s width to 8% of the simulation
domain, and we use the transfer function σ(x) = σmax(x/L)3,
where x is the distance from the end of the simulation domain,
L is the width of the PML and σmax = 77. We set the geometry
blending coefficient γ to 0.

The PML’s exponential damping in the boundary layer is essential
for efficiently removing perturbations, but the change is a bit too

96:4 • M. Bojsen-Hansen et al.

ACM Trans. Graph., Vol. 35, No. 4, Article 96, Publication Date: July 2016

Figure 5: Our simulation (bottom, green) successfully reproduces
the background flow (top, blue) when there are no perturbations.

sudden for the purpose of compositing a new simulation into an
existing one as in Figure 1. For this visual transition, we remove
the PML geometry and linearly blend the surface geometry in the
outer 6− 12% of the simulation domain as a post-process.

During each time step, we fetch part of the background flow q
from disk. To make the computational complexity independent
of the size of the background simulation, we modified Open-
VDB [Museth 2013] to support sparse out-of-core grids.

6 Evaluation

We made a small collection of examples to show the robustness
of our algorithm. We first verify that our solver can compute
the correct behavior even when the correct motion q deviates far
from the background flow q. Figure 4 shows that we can recre-
ate a completely static pool even if the background flow is very
lively. We do this by effectively deleting a falling sphere from
the background flow, and simulating the result as if the origi-
nal splash never took place (q′ = −q). Note how our resulting
motion is independent of the background flow, which would not
have been possible if we assumed the perturbation q′ was small
or if we linearized the Navier-Stokes equations about q.

In the other extreme, if we do not make any perturbations at all
(q′ = 0), then our method reproduces the background flow q.
Figure 5 shows that our method reproduces the expected motion
in the absence of perturbations, and it does not drift away from
the original simulation.

Figure 3 shows how our method advects new surface geome-
try into the simulation when dictated by the background flow.
This behavior is important for merging simulations together, like
when droplets spray into the simulation domain from somewhere
outside.

7 Applications

Our method can create a simulation that appears to be part of a
much larger fluid domain. Figure 2 (right) shows how we can use
boundary conditions from a gently sloshing pool to create a new
simulation set in the middle of a larger simulation. We first notice
that ocean waves roll in and out through the domain boundary;
this behavior is impossible with previous approaches. Next, we
see that even though our simulation creates a large splash, the

waves are absorbed by the boundaries. If we do not use our PMLs
Figure 2 (left), we see obvious wave reflection artifacts.

Next, we can retroactively change parts of an existing simulation
without re-running the entire simulation. We begin with a com-
plicated beach flow that was computed previously. In the top
right of Figure 1, we create a small simulation domain around
a solid obstacle that we wish to change, using the pre-computed
simulation in the top left of Figure 1 as the background flow q.
We completely remove the obstacle, locally creating a new flow.
The combination of non-reflecting boundaries and our novel
time-varying background flow allow us to seamlessly merge this
simulation together with the larger one. We also perform a simi-
lar process in the bottom left of Figure 1, by re-simulating a new
splash into the beach simulation as a post-process.

Our method can also retroactively increase the resolution of a
portion of a simulation, allowing users to “zoom in” as a post-
process. In the bottom right of Figure 1, we create a higher res-
olution simulation domain where we wish to add more detail to
the beach simulation. We then use a lower-resolution flow as the
q in our boundary conditions, and we run the new simulation in
a small subset of this domain at a much higher resolution. Again,
our method allows the two simulations to be seamlessly blended
together at the simulation boundaries.

Although we view our method as a working prototype and have
not optimized it for performance, we list performance figures
in Table 1. We believe that the low-resolution examples simu-
late q significantly faster than q′ because q′ has substantial I/O
overhead when reading the boundary conditions from the pre-
computed q. As we localize the flows at higher resolutions, how-
ever, the q′ simulations are much faster than the original q, al-
lowing many post-processing passes once an initial simulation is
computed.

8 Discussion

This work represents a significant generalization of the state of
the art in non-reflecting boundary conditions for fluid simula-
tion. Our method opens the door for novel post-process simu-
lation editing and enhancement, and we presented prototypes
for retroactively editing solid geometry and increasing simula-
tion resolution.

The theory behind perfectly matched layers guarantees exponen-
tial damping of waves in the boundary layer for linear partial dif-
ferential equations. However, not much is known about guaran-
tees (if any exist) for non-linear equations like ours. The method
seems to work exceptionally well in practice, but further theoret-
ical development on this topic should be conducted. We observe
that PMLs for the Navier-Stokes equations are dramatically more
efficient than the naïve approach of damping the velocity field
near the boundary, because they require a far smaller damping
region and thus less memory and overall computation time.

Hu [2001] and Bécache et al. [2003] showed that theoretical
guarantees on PMLs are only valid when the flow’s group and
phase velocities are in the same direction. We observed this prob-
lem for the scalar wave equation but never for Navier-Stokes. We
suspect this is due to the natural frequency dispersion of surface
water waves and numerical diffusion in our Navier-Stokes solver.
As a result of our observations, we found it unnecessary to imple-
ment any of the corrections in the literature for 3D free-surface
flows.

In our implementation, highly complex solid obstacles that inter-
sected the boundary layer would occasionally prevent perturba-

96:5 • Generalized Non-Reflecting Boundaries for Fluid Re-Simulation

ACM Trans. Graph., Vol. 35, No. 4, Article 96, Publication Date: July 2016

Example Resolution Run Time

Figure 3 q 100× 100× 100 25m 33s
Figure 3 q′ 100× 50× 100 45m 03s
Figure 4 q 133× 53× 33 10m 28s
Figure 4 q′ 133× 53× 33 21m 43s
Figure 5 q 50× 50× 50 6m 32s
Figure 5 q′ 50× 50× 50 11m 23s
Figure 2 (left) without PML 53× 32× 60 4m
Figure 2 (right) with PML 53× 32× 60 4m
Figure 1 (top left) q 453× 100× 307 15h
Figure 1 (top right) q′ 227× 67× 153 3h 47m
Figure 1 (bottom left) q′ 133× 107× 133 47m 17s
Figure 1 (bottom right) q′ 227× 67× 153 3h 30m

Table 1: Performance figures for the examples in our video. The
background flow and perturbation flow (the new simulation) are
indicated by q and q′, respectively.

tions from quickly damping out. Less complex solid obstacle ge-
ometry, however, posed no difficulties (as exhibited by Figure 1).
We have yet to conclude whether this is a general theoretical
problem or one specific to our implementation.

Our current implementation assumes that the background flow
q is a solution to the Navier-Stokes equations discretized by our
split-variable solver. We would like to remove this restriction in
the future by allowing q to be an arbitrary vector field (i.e. from a
different fluid solver, or even from an unphysical artist-designed
flow). We believe that this can be made possible by adding source
terms to the equation of motion and applying the appropriate
PML transforms.

The fact that advection is split over three equations prevents an
easy extension to semi-Lagragian methods and also to FLIP. This
is true even for a non-split variable approach as presented in Hu
[2006]. We see it as a very fruitful avenue of future work to inves-
tigate how our method could be reconciled with such methods.

A property of our method is that it tends to preserve artifacts
present in the input unless they are perturbed. Figure 5 exhibits
small bumps in the input animation due to our use of a particle
level set. Similarly, the input simulation in Figure 1 contains
subtle "tendril"-like artifacts, which we suspect are caused by the
wave generation algorithm linearly blending the fluid velocity
field with a procedural vector field.

We imagine several extensions to our methods for retroactively
improving a simulation. For example, we hope to combine our
approach with an adaptively re-sizing simulation domain, allow-
ing us to locally halt the simulation where the perturbation flow
has damped out, and to adaptively expand the simulation do-
main where interesting new flows persist.

Acknowledgements

We thank David Hahn, Stefan Jeschke and Rok Grah for help
proofreading our paper, the IST Austria Visual Computing group
for helpful feedback throughout the project, and the anonymous
reviewers for useful comments on our work. Finally, we thank
Side Effects Software for Houdini licences.

This project has received funding from the Euro-
pean Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation pro-
gramme under grant agreement No 638176.

References

BÉCACHE, E., FAUQUEUX, S., and JOLY, P. 2003. Stability of
Perfectly Matched Layers, Group Velocities and Anisotropic
Waves. In J. Comput. Phys. 188.2, pp. 399–433. ISSN: 0021-
9991.

BERENGER, J.-P. 1994. A Perfectly Matched Layer for the Ab-
sorption of Electromagnetic Waves. In J. Comput. Phys. 114.2,
pp. 185–200. ISSN: 0021-9991.

BHAT, K. S., SEITZ, S. M., HODGINS, J. K., and KHOSLA, P. K. 2004.
Flow-based Video Synthesis and Editing. In ACM Transactions
on Graphics (SIGGRAPH) 23.3, pp. 360–363.

BRIDSON, R. 2008. Fluid simulation for computer graphics. CRC
Press.

FEDKIW, R., STAM, J., and JENSEN, H. W. 2001. Visual simulation
of smoke. In Proceedings of the 28th annual conference on Com-
puter graphics and interactive techniques. ACM, pp. 15–22.

HAGSTROM, T., GOODRICH, J., NAZAROV, I., and DODSON, C.
2005. High-order methods and boundary conditions for sim-
ulating subsonic flows. In Proceedings of the 11th AIAA/CEAS
Aeroacoustics Conference.

HU, F. Q. 2001. A Stable, Perfectly Matched Layer for Linearized
Euler Equations in Unsplit Physical Variables. In J. Comput.
Phys. 173.2, pp. 455–480. ISSN: 0021-9991.

HU, F. Q. 2006. On the construction of PML absorbing boundary
condition for the non-linear Euler equations. In AIAA paper
798, p. 2006.

HU, F. Q., LI, X., and LIN, D. 2008. Absorbing boundary condi-
tions for nonlinear Euler and Navier–Stokes equations based
on the perfectly matched layer technique. In Journal of Com-
putational Physics 227.9, pp. 4398–4424.

HU, F., HUSSAINI, M., and MANTHEY, J. 1996. Low-Dissipation
and Low-Dispersion Runge-Kutta Schemes for Computational
Acoustics. In J. Comput. Phys. 124.1, pp. 177–191. ISSN: 0021-
9991.

KIM, T. and DELANEY, J. 2013. Subspace fluid re-simulation. In
ACM Transactions on Graphics (SIGGRAPH) 32.4, 62:1–62:9.

MCNAMARA, A., TREUILLE, A., POPOVIĆ, Z., and STAM, J. 2004.
Fluid Control Using the Adjoint Method. In ACM Transactions
on Graphics (SIGGRAPH) 23.3, pp. 449–456.

MUSETH, K. 2013. VDB: High-Resolution Sparse Volumes With
Dynamic Topology. In ACM Transactions on Graphics (to ap-
pear) 32.3.

NIELSEN, M. B. and BRIDSON, R. 2011. Guide Shapes for High
Resolution Naturalistic Liquid Simulation. In ACM Transac-
tions on Graphics (SIGGRAPH) 30.4, 83:1–83:8.

OSHER, S. and FEDKIW, R. 2006. Level set methods and dynamic
implicit surfaces. Vol. 153. Springer Science & Business Media.

PAN, Z., HUANG, J., TONG, Y., ZHENG, C., and BAO, H. 2013. In-
teractive Localized Liquid Motion Editing. In ACM Transactions
on Graphics (SIGGRAPH Asia) 32.6.

96:6 • M. Bojsen-Hansen et al.

ACM Trans. Graph., Vol. 35, No. 4, Article 96, Publication Date: July 2016

PIGHIN, F., COHEN, J. M., and SHAH, M. 2004. Modeling and edit-
ing flows using advected radial basis functions. In Proceedings
of the ACM SIGGRAPH/Eurographics Symposium on Computer
Animation (SCA), pp. 223–232.

RAVEENDRAN, K., WOJTAN, C., THÜREY, N., and TURK, G. 2014.
Blending Liquids. In ACM Transactions on Graphics (SIG-
GRAPH) 33.4, 137:1–137:10.

SHI, L. and YU, Y. 2005. Taming Liquids for Rapidly Changing Tar-
gets. In Proceedings of the ACM SIGGRAPH/Eurographics Sym-
posium on Computer Animation (SCA), pp. 229–236.

SIDE EFFECTS SOFTWARE. 2016. Houdini. http://sidefx.com.

SÖDERSTRÖM, A., KARLSSON, M., and MUSETH, K. 2010. A PML-
based Nonreflective Boundary for Free Surface Fluid Anima-
tion. In ACM Transactions on Graphics (TOG) 29.5, 136:1–
136:17.

SÖDERSTRÖM, A. and MUSETH, K. 2009. Non-reflective Bound-
ary Conditions for Incompressible Free Surface Fluids. In SIG-
GRAPH 2009: Talks. SIGGRAPH ’09. New Orleans, Louisiana:
ACM, 4:1–4:1. ISBN: 978-1-60558-834-6.

SRINIVASAN, R. and MALKAWI, A. 2007. Adaptive Localization
Method: An Approach to Real Time Airflow Simulation and Im-
mersive Visualization. In Proceedings of the International Con-
ference on Computer Graphics and Vision (GraphiCon).

STAM, J. 1999. Stable fluids. In Proceedings of the 26th annual
conference on Computer graphics and interactive techniques.
ACM Press/Addison-Wesley Publishing Co., pp. 121–128.

THÜREY, N., KEISER, R., RUEDE, U., and PAULY, M. 2006.
Detail-Preserving Fluid Control. In Proceedings of the ACM
SIGGRAPH/Eurographics Symposium on Computer Animation
(SCA), pp. 7–12.

96:7 • Generalized Non-Reflecting Boundaries for Fluid Re-Simulation

ACM Trans. Graph., Vol. 35, No. 4, Article 96, Publication Date: July 2016

