
Water Surface Wavelets

STEFAN JESCHKE, NVIDIA
TOMÁŠ SKŘIVAN, IST Austria
MATTHIAS MÜLLER-FISCHER, NVIDIA
NUTTAPONG CHENTANEZ, NVIDIA
MILES MACKLIN, NVIDIA
CHRIS WOJTAN, IST Austria

Fig. 1. A frame from a real-time wave animation with the simulation grid overlaid on top. We compute the wave motions at a resolution several orders of
magnitude finer than the simulation variables.

The current state of the art in real-time two-dimensional water wave simula-

tion requires developers to choose between efficient Fourier-based methods,

which lack interactions with moving obstacles, and finite-difference or finite

element methods, which handle environmental interactions but are signif-

icantly more expensive. This paper attempts to bridge this long-standing

gap between complexity and performance, by proposing a new wave simu-

lation method that can faithfully simulate wave interactions with moving

Authors’ addresses: Stefan Jeschke, NVIDIA, jeschke@stefan-jeschke.com; Tomáš

Skřivan, IST Austria, tomas.skrivan@ist.ac.at; Matthias Müller-Fischer, NVIDIA,

matthiasm@nvidia.com; Nuttapong Chentanez, NVIDIA, nchentanez@nvidia.com;

Miles Macklin, NVIDIA, mmacklin@nvidia.com; Chris Wojtan, IST Austria, wojtan@

ist.ac.at.

© 2018 Copyright held by the owner/author(s).

0730-0301/2018/8-ART94

https://doi.org/10.1145/3197517.3201336

obstacles in real time while simultaneously preserving minute details and

accommodating very large simulation domains.

Previous methods for simulating 2D water waves directly compute the

change in height of the water surface, a strategy which imposes limitations

based on the CFL condition (fast moving waves require small time steps) and

Nyquist’s limit (small wave details require closely-spaced simulation vari-

ables). This paper proposes a novel wavelet transformation that discretizes

the liquid motion in terms of amplitude-like functions that vary over space,
frequency, and direction, effectively generalizing Fourier-based methods to

handle local interactions. Because these new variables change much more

slowly over space than the original water height function, our change of

variables drastically reduces the limitations of the CFL condition and Nyquist

limit, allowing us to simulate highly detailed water waves at very large visual

resolutions. Our discretization is amenable to fast summation and easy to

parallelize. We also present basic extensions like pre-computed wave paths

and two-way solid fluid coupling. Finally, we argue that our discretization

provides a convenient set of variables for artistic manipulation, which we

illustrate with a novel wave-painting interface.

ACM Transactions on Graphics, Vol. 37, No. 4, Article 94. Publication date: August 2018.

https://doi.org/10.1145/3197517.3201336
rodkin
Typewritten Text
This work is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike International 4.0 License.

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

94:2 • Jeschke et al.

CCS Concepts: • Computing methodologies → Physical simulation;

Additional Key Words and Phrases: Water animation, real-time animation,

natural phenomena

ACM Reference Format:
Stefan Jeschke, Tomáš Skřivan, Matthias Müller-Fischer, Nuttapong Chen-

tanez, Miles Macklin, and Chris Wojtan. 2018. Water Surface Wavelets. ACM
Trans. Graph. 37, 4, Article 94 (August 2018), 13 pages. https://doi.org/10.
1145/3197517.3201336

1 INTRODUCTION
This paper concerns the efficient and physically plausible animation

and art-direction of water surface waves at large scales. Current

solutions to this problem invoke numerical solutions to partial dif-

ferential equations (like the shallow water equations or dispersive

wave equations), or analytical solutions based on Fourier transforms.

Numerical solutions excel at handling water interactions with mov-

ing obstacles, but they become expensive to compute when scaling

to very large simulation domains with small (high frequency) wave

details. Conversely, Fourier summation techniques excel at simulat-

ing very large domains with high-frequency details, but they cannot

easily incorporate complex environmental interactions like moving

boundaries and spatially-varying wind.

Our work proposes a novel transformation to speed up the com-

putation of water surface waves. Instead of discretizing the wave

height and momentum at each point on a grid (like previous finite-

difference methods), or discretizing wave amplitudes as a function

of frequency and direction (like previous Fourier-based methods),

we introduce a wavelet transformation that discretizes the wave

amplitudes as a function of space, frequency, and direction combined.
The variables resulting from this discretization change much more

slowly over space than the original water wave height function, so

we can represent the same amount of information with fewer vari-

ables. The new lower-frequency simulation is also less sensitive to

traditional frequency-based limitations like the CFL condition and

the Nyquist limit, which convert the maximum spatial frequency

into limitations on time step size and visual detail. As a consequence,

our discretization permits both high-resolution wave details (like

Fourier-based methods) as well as local wave interactions with mov-

ing obstacles.

We derive new equations for propagating these local frequency

dependent amplitudes through space; these equations result in sim-

ple 2D advection and diffusion operations that can be parallelized

easily on graphics hardware, giving us interactive frame rates. We

also present basic extensions to our simulator, like pre-computed

wave paths and two-way solid fluid coupling. Finally, we found

that this new representation provides a convenient artistic inter-

face for hand-tuning the motion of complicated ocean simulations,

and we show a prototype wave-painting interface for initializing

simulations or overriding the physics with scripted motions.

The contributions of our paper are:

• EulerianWavelet Transformation:Anew theoretical model

for water wave transport based on the theory of slowly mod-

ulated waves.

• Low-frequency simulation variables: Our discretization
relies on functions that vary more slowly over space than the

water height itself, so we can represent them on lower reso-

lution grids. This change of variables allows more efficient

computation and larger computational domains (Figure 1).

• Novel artistic control: In addition to determining the am-

plitude function using the physical equations of motion, we

also experiment with overwriting these wave amplitudes for

artistic effect. We show how our method can be used to pre-

compute wave scenes faster and more easily than previous

work, and we present an interactive painting interface for

designing spatially-varying ocean waves.

2 RELATED WORK
Since the early days of computer animation [Schachter 1980], the

main strategy for recovering the shape and motion of surface wa-

ter geometry has been to approximately solve the Navier-Stokes

equations. There are numerous ways to approximate these equa-

tions, and this discussion divides the techniques into analytical

“spectrum-based” approaches, direct numerical simulation of partial

differential equations, and hybrid approaches. We close this section

by discussing methods for art-directing wave simulations.

2.1 Spectrum-based approaches
Works in both physics and computer graphics employ numerous

theoretical assumptions to the Navier-Stokes equations in order to

reduce the complexity and make them analytically tractable. Some

common assumptions in computer graphics are deepwater, potential

flow, small amplitudes, and periodic boundary conditions. These

approaches take advantage of analytical solutions to the Navier-

Stokes equations on a 2D height field in order to express the motion

of the ocean in the form of sines and cosines, while sacrificing the

ability to simulate arbitrary fluid motion [Hinsinger et al. 2002;

Horvath 2015; Mastin et al. 1987; Tessendorf 2004b]. Jeschke &

Wojtan [2015] simulate the propagation of wavefronts throughout a

static environment, in order to extend spectrum-based approaches

to handle complex boundaries. However, the method is limited

to pre-computation, and does not allow interactions with moving

obstacles.

We call this technique of discretizing a Fourier-transform the

“spectrum-based” approach. These methods exhibit theoretically

unlimited visual detail, in the sense that they can animate arbitrarily

high frequency waves without impacting the method’s accuracy or

stability. Similarly, fast wave speeds are trivial to simulate, because

the motion is independent of the time step size. However, because

the derivation of these methods makes several assumptions about

the underlying flow, they tend to have limitations like the inability

to realistically interact with complex boundaries.

2.2 Numerical solutions to Partial Differential Equations
A great way to get around the limitations of spectrum-based meth-

ods is to directly simulate a two-dimensional version of the Navier-

Stokes equations using numerical algorithms. Some approaches

discretize simplified wave equations [Kass and Miller 1990; Thuerey

et al. 2010; Yang et al. 2016] or thin plate equations [Yu et al. 2012];

these simplified equations are easier to implement, but the resulting

behavior is fundamentally different from actual water waves. The

ACM Transactions on Graphics, Vol. 37, No. 4, Article 94. Publication date: August 2018.

https://doi.org/10.1145/3197517.3201336
https://doi.org/10.1145/3197517.3201336

Water Surface Wavelets • 94:3

work of Tessendorf [2004a; 2014], which discretizes a linearized

Bernoulli equation, exhibits more realistic wave dispersion but still

falls short of physically correct motion (as discussed in [Canabal

et al. 2016]). Some researchers have also introduced direct numerical

simulators based on the lattice Boltzmann method (LBM) [Geist et al.

2010], which requires a careful tuning of the LBM collision matrix

to yield realistic wave speeds. Convolution-based approaches [Lo-

viscach 2002; Ottosson 2011] aim to achieve the correct dispersion

relation, but they must cope with the practical difficulties of large

kernels occupying the entire simulation domain. Recently, Cana-

bal et al. [2016] overcame these difficulties with a combination of

pyramid filters and shadowed convolution operations.

Each of thesemethods tend to bemuchmore flexible than spectrum-

based methods, because they make minimal assumptions about the

environment. For example, spectrum-based methods have difficul-

ties with simulating obstacle interactions because their derivation

assumes periodic boundaries, while direct simulation approaches

have no such limitation. On the other hand, these methods must sim-

ulate wave propagation by iterating local kernel operations instead

of simply plugging a time parameter into a cosine function. All of

these methods discretize wave heights and momentum directly on

an Eulerian grid or mesh, and, as a consequence, the resolution of

the grid is directly tied to the amount of visible detail in the waves.

Nyquist’s theorem requires that the grid must be fine enough to

resolve the highest frequency in the heightfield; otherwise aliasing

and instability may occur. Similarly, the stability of an explicitly inte-

grated wave simulation is also intimately related to the grid spacing

by the CFL condition. This stability problem can be overcome by

implicit integration, at the expense of additional computation and a

more complex and less GPU-friendly implementation.

Fully three-dimensional techniques for liquid simulation are out-

side the scope of this work. We recommend that interested readers

consult the text by Bridson [2015].

2.3 Hybrid approaches
Our method combines the flexibility of numerical approaches with

the stability and visual detail of spectrum-based approaches, but

we are not the first to do so. Yuksel et al [2007] proposes wave

particles which represent a local wave crest and move with a pre-

determined wave speed c . We can view this approach as a local

spectrum-based method if we use many different particle sizes and

set c equal to the analytical phase speed. Taking this further, Jeschke
& Wojtan [2017] introduced wave packets which propagate at the

theoretical group speed and contain a small train of waves travel-

ing at the theoretical phase speed. These approaches inherit some

advantages of spectrum-based methods, like the numerical stabil-

ity and theoretically accurate wave speeds. At the same time, they

avoid the complications with spectrum-based waves by breaking

the global cosine waves into a train of shorter wave components

that are free to interact with obstacles. Our method provides similar

advantages, but it is Eulerian rather than Lagrangian (its degrees of

freedom are associated with regions of space rather than the wave

motion itself). Consequently, our method maps to GPU hardware

more easily, the computational complexity is constant as it does

not vary with a number of particles, and it trivially interfaces with

texture maps for easy artistic control.

2.4 Art-directing waves
Previous works have investigated liquid control by directly editing

keyframes [McNamara et al. 2004; Shi and Yu 2005], by sculpting

fluid interactively [Manteaux et al. 2016; Pan et al. 2013], by introduc-

ing guide forces on particles [Thuerey et al. 2009] ormeshes [Raveen-

dran et al. 2012], by composing together convenient flow primi-

tives [Chenney 2004], or by interpolating between simulations and

existing motions [Raveendran et al. 2014; Thuerey 2016]. Some

works enhance existing animations with additional waves on sur-

faces [Angst et al. 2008; Kim et al. 2013] or near boundaries [Jeschke

and Wojtan 2015, 2017]. Horvath et al. [Horvath 2015] explores the

control of ocean spectra in great detail, and Nielsen et al. [Nielsen

et al. 2013] investigates how to direct a spectrum-based method

based on a scripted height field. We are unaware of any prior meth-

ods that locally direct the amplitudes of directional water waves, as

we propose.

3 THEORY
We first explain the motivation for our new wavelet-based water

wave discretization in Section 3.1. Then, we derive a partial differ-

ential equation describing the evolution of these water wavelets in

Section 3.2. Finally, we discuss the validity of the derivation and

provide some interpretations for the method in Section 3.3.

3.1 Motivation
Current numerical methods for water wave simulation rely either

on discretizations of partial differential equations (PDEs), or on

spectrum-based methods. Methods based on discretized PDEs ap-

proximate some differential equation that describes how the wave

height η (x , t) evolves over time:

∂η (x , t)

∂t
= . . . (1)

where the right hand side is defined by the particular wave model

(shallow water equations, Bernoulli equation, etc.), and environ-

mental interactions are encoded in the PDE’s boundary conditions.

These discretizations sample η (x , t) over space with a grid spac-

ing equal to ∆x . In order to avoid aliasing and faithfully repro-

duce high-frequency details, The Nyquist-Shannon sampling theo-

rem [Shannon 1949] requires that ∆x is less than half of the shortest

wavelength in η (x , t). If η (x , t) contains interesting high-frequency
details, then the samples of η (x , t) must be very close together, and

thus ∆x must be very small. Practically, decreasing ∆x requires

either more samples or a smaller simulation domain, so the Nyquist

theorem effectively limits the visual detail that a simulator can pro-

duce. Highly detailed visuals can be obtained by decreasing ∆x at

the expense of vastly increased computation time and memory.

Spectrum-based methods for animating water waves [Tessendorf

2004b] remove these problems by avoiding a spatial discretization

altogether. They rely on linear wave theory [Johnson 1997], which

describes the wave height dynamics in terms of frequencies instead

ACM Transactions on Graphics, Vol. 37, No. 4, Article 94. Publication date: August 2018.

94:4 • Jeschke et al.

of partial derivatives:

ηc (x , t) =

∫
R2

A(k)ei(k ·x−ω(k)t) dk . (2)

Here,ηc (x , t) is a complex function that varies over two-dimensional

space and time, and we can get the wave height by taking its real

part, η(x , t) = Re ηc (x , t). The wavevector k is a two-dimensional

frequency function, the wavenumber k = |k | represents a scalar

frequency, and
ˆk = k/k is the wave direction. The exponential term

in this equation represents a traveling wave, and A(k) represents
its amplitude. The angular frequency

ω(k) =
√
дk + σk3 (3)

encodes the speed of each wave based on its wavenumber k , gravity
д, and surface tensionσ . Spectrum-basedmethods compute thewave

height by discretizing the integral over all of these two-dimensional

waves, instead of discretizing a differential equation. This solution

works perfectly for ideal situations with periodic domains, and

no boundaries or interacting obstacles. However, these spectrum-

based methods become impractical or impossible in less constrained

scenarios.

To summarize, PDE-based methods for animating water waves

excel in the simulation of low-frequency wavefunctions with com-

plicated environmental interactions, while spectrum-based methods

are ideal for simulating highly detailed wavefunctions undergoing

simple motion without any boundary interactions. In the following

section, we derive a hybrid discretization that relies on discretized

PDEs to simulate low frequency motion and uses spectrum-based

techniques for simulating the high frequencies. This strategy allows

us to simulate wavelengths far shorter than ∆x interacting with

complex environments, while eliminating the previously mentioned

problems associated with simulating highly detailed waves.

Our derivation relies on the Gabor wavelet transform, which

effectively transforms Equation 2 (with amplitudesA depending only

on k and independent of x and t) to a similar one with amplitudes

A depending on k , x , and t :

ηc (x , t) =

∫
R2
A(x ,k, t)ei(k ·x−ω(k)t) dk . (4)

Not only does this new spatially-varying amplitudeA(x ,k, t) allow
more local control over the simulation compared to A(k), but we
prove that A is guaranteed to have lower frequency content than

the wave height function η(x , t). We will take advantage of this fact

to forestall problems related to the Nyquist limit and create highly

efficient and detailed wave simulations.

3.2 Derivation
The Gabor transform [Gabor 1946] of the water height ηc is

ζ (x ,k, t) =
1

(2π)2

∫
R2
ηc (y, t)e

−
|y−x |2

2s2 e−ik ·y dy (5)

where the first exponential term in the integrand is a Gaussian

centered at position x with standard deviation s , and the second

exponential term is a static wave with wavevectork . We can think of

Equation 5 as an inner product between ηc and a Gaussian wavelet,

so the number ζ (x ,k, t) tells how much the water height ηc behaves
like a wave with wave-vector k in the vicinity of point x .

We can also invert the Gabor transform:

η(x , t) = Re

∫
R2
ζ (x ,k, t)eik ·x dk, (6)

which reminds us of a Fourier transform with ζ acting like an am-

plitude that now depends on x and t as well as k . We introduce

the change of variables A(x ,k, t) = ζ (x ,k, t)eiω(k)t to obtain an

analogue to the dynamic wave evolution in Equation 2:

η(x , t) = Re

∫
R2
A(x ,k, t)ei(k ·x−ω(k)t) dk, (7)

now with A playing the role of an amplitude that varies over space
and time as well as wavevector. By plugging Equation 2 into Equa-

tion 5, we obtain an equation for the time evolution of A:

A(x ,k, t) =

∫
R2

Ã(l ,k)ei((l−k)·x−(ω(l)−ω(k))t) dl , (8)

Ã(l ,k) = A(l)s2e−
1

2
s2(l−k)2 . (9)

Although this equation completely prescribes the evolution of A,

its integral form makes it difficult to impose boundary conditions

and generally inconvenient to discretize. We prefer to work with a

differential equation instead, which we derive by taking the time

derivative of Equation 8 and expressing it in terms of its spatial

derivative. Linearizing the dispersion relationω(l) ≈ ω(k)+ω ′(k) ˆk ·
(l − k) gives us a first order partial differential equation for the

evolution of A:

∂A

∂t
(x ,k, t) = −ω ′(k)

(
ˆk · ∇x

)
A(x ,k, t), (10)

which tells us that our amplitude function A(x ,k, t) gets advected

in space in the direction
ˆk with speed ω ′(k). Note that this speed

corresponds exactly to the group speedwhich transports water wave

energy [Johnson 1997] and wave packets [Jeschke andWojtan 2017].

We provide a more detailed derivation of this equation in Appen-

dix A.

Equation 10 is subject to boundary conditions:

A(x ,k, t) = A
ambient

(x ,k, t) on transmitting boundary

A(x ,k, t) = A(x ,k
reflect

, t) on reflecting boundary (11)

where A
ambient

is an amplitude function defined outside of the

domain, and k
reflect

= k − 2(n · k)n is the wavevector reflected off

the boundary with a normal n. The reflecting boundary condition

is based on how a planar wave reflects of a straight boundary.

Equations 7 and 10 are the key ingredients we need to simulate wa-

ter waves. The actual interactive wave simulator advectsA through

space each time step using Equation 10, and the renderer then uses

Equation 7 to reconstruct the water surface where needed. In this

approach,A acts as the primary simulation variable, while η is used
afterwards for reconstruction and visualization. (A is updated by

the simulation, and then we compute η where needed by summing

together many different waves using A as their amplitude.)

We note that the Gabor transform in Equation 5 is only used for

the derivation, and there is no need to compute it. Similarly, the

size of the Gaussian s does not appear in Equations 7 and 10, so it

ACM Transactions on Graphics, Vol. 37, No. 4, Article 94. Publication date: August 2018.

Water Surface Wavelets • 94:5

is merely a theoretical construct that is useful for analysis but not

actually a parameter in our numerical method. We explain how we

discretize Equations 7 and 10 in Section 4.

3.3 Discussion
Accuracy of approximation. Equation 10 is a linearized approx-

imation to the true evolution, which is valid only when l is close
to k . Thankfully, the Gaussian term in Equation 9 forces Ã to be

small whenever l is far from k , so the errors in A caused by this

approximation are exponentially small.

Furthermore, the reflecting boundary condition is based on ge-

ometrical optics and is valid only when the wavelength and the

packet size (represented by the parameter s) are small compared to

the boundary curvature. A more accurate handling of high curva-

ture boundaries would require to take wave scattering effects into

account, which we leave as future work and note that our simple

reflecting boundary condition is sufficient for visual plausibility.

Low-frequencyA. We prove in Appendix B that the Fourier trans-

form of A is essentially a low-pass-filtered version of the Fourier

transform of η. In other words, we can reconstruct the wave height

function η using only low-frequency variables. This frequency shift

has important consequences in the eventual discretization of the

method, because the Nyquist limit prevents us from discretizing

the high-frequency η function directly without aliasing, while the

discretization of A is possible even with coarse grid resolutions.

Instead of the grid resolution imposing limits on the resolution of

visible water waves, our algorithm will impose limits on the resolu-

tion of the wave amplitudes, which are not visualized directly and

arguably more difficult to discriminate perceptually.

Phase Shifts. The Gabor transform allows us to discuss the water

height in terms of phase as well as local amplitudes. The phase

of each wavelet in Equation 7 is determined by k · x − ω(k)t . If
we translate the entire function in space by replacing η(x , t) with
η(x −y, t), then we gain a phase shift of −k ·y on the right hand side

of the equation; a small shift in space can lead to a large phase shift if

k is big. Consequently, although the amplitudesA are well-behaved

even on coarse grids, the phases are still sensitive to Nyquist’s limit

and require either low frequency waves (small k) or very many

samples of k for accurate reconstruction. Alternatively, if we do not

require particular interference patterns, then we can avoid aliasing

by adding a random initial phase shift to each wave [Cook 1986]:

η(x , t) = Re

∫
R2
A(x ,k, t)e

i
(
k ·x−ω(k)t+ξ (ˆk)

)
dk, (12)

where ξ is a random number for each wave direction that is fixed

throughout time.

Hybrid simulation. Section 3.1 motivates our method as a hybrid

between spectrum-based methods and PDE-based methods. This

hybrid nature becomes more explicit if we examine the effect of the

size of the Gaussian, s on our simulation variable A:

A(x ,k, t) → A(k) as s →∞ (13)

1

s2
A(x ,k, t) → ηc (x , t)e

−i(k ·x−ω(k)t)
as s → 0 (14)

When s approaches infinity and the Gaussian becomes a spatial

constant, our method transitions to a traditional spectrum-based

algorithm. On the other hand, when s goes to zero and the Gaussian
becomes a Dirac delta function, our method computes a function

similar to the water height, η. We never set s directly in our dis-

cretization, but it is essentially determined by the grid spacing, ∆x .
Thus, our method resembles a spectrum-based algorithm within a

single grid cell, and it resembles a PDE-based discretization as we

zoom out.

Relationship to Wave Packets. Although we used the Gabor trans-

form to derive our approach in Section 3.2, we can alternatively

derive this method from the water wave packets of Jeschke & Wo-

jtan [2017], as we do in Appendix C. We show that Equation 7

emerges as the limiting behavior of an infinite number of wave

packets, spanning all possible positions and wavevectors. From this

perspective, Jeschke & Wojtan [2017] introduced one particular La-
grangian discretization of our continuum theory, which samples a

small number of individual packets and tracks their propagation

through space. Equation 10 represents an alternative Eulerian refer-

ence frame, which tracks the changes in the wave packet content at

each point in space. We also note that, in Appendix C, the function

A appears as a smooth average of all nearby wave packet ampli-

tudes. This gives us further evidence that A is indeed a smooth

function that varies slowly over space.

4 DISCRETIZATION
Section 3.2 introduced a new amplitude functionA(x ,k, t), an equa-

tion for evolving it over time (Equation 10), and an equation for

computing the water wave height (Equation 7). The remainder of

this section explains how we discretize these ideas to efficiently

simulate water waves.

4.1 Discretizing A
The amplitude A(x ,k, t) is a function in 4 + 1 dimensions: two in

space, two in wavevector, and one in time. We find it intuitive and

computationally convenient to represent the wavevector in polar

coordinatesk = (k cosθ ,k sinθ), where k is the magnitude ofk , and
θ is the angle made by k and the x-axis. We represent A on a four-

dimensional grid [xmin,xmax] × [ymin,ymax] × [0, 2π) × [kmin,kmax],

which spans two spatial coordinates x and y, the angular coordinate
θ , and the wavevector coordinate k . We store samples ofA on each

of the nodes in this 4D grid, indexed by the coordinates a,b,c . We

use the notation Aabc to represent the discrete amplitude sample

of the wave at grid node position xa = (xa ,ya), traveling at angle
θb , with wavenumber kc . Figure 2 illustrates the grid used for our

discretization.

We can now approximate A with a linear combination of basis

functions, in the style of the finite element method:

A(x ,k, t) =
∑
a,b,c

C(Aabc , t)ϕa (x)ϑb (θ)ψc (k). (15)

where ϕa (x) is a basis function in position, ϑc (θ) is a basis func-

tion in angle,ψc (k) is a basis function in wavenumber coordinates,

and C(Aabc , t) is a coefficient function weighting various values of

ACM Transactions on Graphics, Vol. 37, No. 4, Article 94. Publication date: August 2018.

94:6 • Jeschke et al.

θ

k

x

y

Fig. 2. A schematic of our 4D grid for discretizingA(x, y, θ, k). Each spatial
location (x, y) is equipped with a polar coordinate grid (k, θ). Coordinates
(xa, ya, θb, kc) are used to store the amplitude of a wavelet at position
(xa, ya), angle θb , and spatial frequency kc .

Aabc . For example, piecewise-linear basis functions in all dimen-

sions would set C(Aabc) = Aabc , giving us

A(x ,k, t) =
∑
a,b,c

Aabc (t)ϕa (x)ϑb (θ)ψc (k), (16)

in which the basis functions are simply hat functions that weight

the nearest values Aabc .

The only practical restriction on the basis functions is that our

reconstructed function should actually interpolate the discrete sam-

ples Aabc if we want operations like semi-Lagrangian advection to

work as expected; in other words, A(xa ,θb ,kc , t) = Aabc (t). The
spatial basis function ϕa (x) simply interpolates Aabc over space,

and we use standard piecewise-linear or piecewise-cubic basis func-

tions here. The angular weighting ϑb (θ) interpolates amplitudes

across different traveling directions, and we use piecewise cubic

basis functions here as well.

The wavenumber basisψc (k) has a special physical interpretation;
it symbolizes the spectrum of the waves represented by amplitude

Aabc . If we continue with our wave packet analogy, thenψc (k) de-
scribes the shape in frequency-space of the wave packet at position

x traveling in direction θ with representative wavenumber kc . Thus,
a piecwise-constant ψc (k) implies that the wave packet has a flat

spectrum, with all wavenumbers similar to kc having the exact same

amplitude; a piecewise-linearψc (k) gives the packet a bit more of a

localized wave packet-like shape with its peak at kc ; and a Gaussian
ψc (k) resembles the typical wave packet derivation. We are free to

assign any wave spectrum we wish to this function, and, since we

are modeling water waves in this paper, we found it appropriate

to use an actual ocean wave spectrum forψc (k). Our examples set

ψc (k) equal to the directional spectrum in Equation 32 of [Horvath

2015], normalized such that A(xa ,θb ,kc , t) = Aabc (t).
In practice, we found that we can use surprisingly coarse grids

for this discretization. Our simulations use ΘA = 16 samples for

the wavevector angle, θ ; finer discretizations did not increase the

simulation quality. We use even fewer samples for discretizing the

wavenumber, k ; we typically only need KA = 1 sample to get the

effects we desire, though we experiment with up toKA = 4 samples

in Section 8. As mentioned above,A varies slowly over space, so we

do not require much spatial resolution either. In our implementation

we allocate XA = 4096 grid cells for each spatial dimension, which

defines a grid cell spacing of approximately one meter.

Lastly, the simulations in this paper use real-valued A functions

as initial conditions. This function then stays real for all time ac-

cording to Equation 10, so our implementation does not bother to

store complex Aabc coefficients.

4.2 Discretizing Advection
Once we have discretized all of the wavevectors k , Equation 10

becomes a small number of independent scalar advection equations

in space—one for each sample of k . We numerically integrate each

of these equations in parallel using the unconditionally stable semi-

Lagrangian advection with slope-limited cubic spatial interpolation

proposed by Fedkiw et al. [Fedkiw et al. 2001]:

Aabc (t + ∆t) = Abc (xa − ∆tω
′(kc) ˆkb , t), (17)

whereAbc is the interpolation of the discretizedA with fixed angle

θb and wavenumber kc , ˆkb = (cosθb , sinθb) is the wave direction
determined by angle θb , and xa = (xa ,ya).
Whenever a semi-Lagrangian ray leaves the simulation domain,

we apply the relevant boundary condition from Equation 11 by

using a different value on the right hand side of Equation 17. For

transmitting boundaries, we assign a procedural A
ambient

function

describing the ambient ocean behavior. For reflecting boundaries,

we reflect the semi-Lagrangian ray off the boundary to get a new

position x
reflect

and new direction k
reflect

, and we update A with

the reflected function value A(x
reflect

,k
reflect

, t).

Amplitude Spreading. Amplitudes with different angle θb or wave-

number kc have either different travel direction or speed. Over time

these amplitudes separate from each other and a nice initial state

can turn into bunch of separated amplitude blobs as depicted on the

left part of Figure 3. This is a problem of discretizing Equation 10

with finitely many wavevectors and we deal with it by adding two

diffusion terms:

∂A

∂t
= −ω ′(k)

(
ˆk · ∇x

)
A + δ

(
ˆk · ∇

)
2

A + γ
∂2A

∂θ2
, (18)

where δ controls diffusion in the direction of travel (mimicking

how wave packets stretch out due to dispersion), and γ controls

diffusion in the travel angle (mimicking how wave packets spread

out tangentially as they radiate from a source). Other diffusive terms

are possible, but we found that the above two terms work really

well. Figure 3 illustrates the effect of our angular diffusion term.

We apply operator splitting to solve this advection-diffusion equa-

tion numerically: the advection is solved by semi-Lagrangian ad-

vection as described above, and the diffusion is discretized with

second order finite differencing in space and forward Euler in time.

In our examples, we set the diffusion parameters relative to the

advection speed ω ′, the spatial resolution ∆x , the wavenumber res-

olution ∆k and the angular resolution ∆θ : γ = 0.025ω ′(k)∆θ2/∆x
and δ = 10

−5∆x2∆k2 |ω ′′(k)|.

ACM Transactions on Graphics, Vol. 37, No. 4, Article 94. Publication date: August 2018.

Water Surface Wavelets • 94:7

Fig. 3. The effects of our diffusion term are most obvious in this isolated
scenario where waves radiate from a point. Without angular diffusion (left),
the wavefronts eventually separate. Adding angular diffusion (right) allows
the wavefronts to stay connected over time.

4.3 Height field evaluation
To calculate the actual water height we numerically evaluate the

integral in Equation 12. We evaluate the wavenumber in polar coor-

dinates

η(x , t) =

Re

∫
2π

0

∫ ∞
0

A(x ,k, t)ei(k ·x+ξ (
ˆk)−ω(k)t) k dk dθ (19)

and plug in the discretized form of A to get:

η(x , t) =∫
2π

0

∑
a,b,c

C(Aabc , t)ϕa (x)ϑb (θ)Ψc

(
ˆk · x + ξ (ˆk), t

)
dθ (20)

Ψc (p, t) =

∫ ∞
0

ψc (k) cos (kp − ω(k)t) k dk, (21)

Now we can see more explicitly how the basis function ψc (k) re-
lates to the spectrum associated with amplitude Aabc ; Equation 21

treatsψc (k) as the amplitude function for each wavelength k in the

heightfield evaluation.

To use the above formulas, we first pre-compute the function

Ψc (p, t) at the beginning of each time step by evaluating it at a

number of discrete sample points pi and store it in a 1D texture,

which we call a “profile buffer”. This pre-computation allows us to

turn this costly integral evaluation into a simple texture lookup for

the rest of the time step. After the pre-computation, we can evaluate

the water height at any point in space by approximating the one-

dimensional integral in Equation 20 with a summation over several

sampled angles. To create our examples, we sum over Kη = 400

wavenumbers for the pre-computation in Equation 21, and we store

the resulting function Ψc in a 1D texture of size N = 4096. We sum

over Θη = 120 angles to evaluate η at each point in space. Note

that the number of directions and wavenumbers for discretizing A

compared to η are largely independent. We chose these parameters

empirically based on the quality of our results, and we list them in

Table 1.

Our examples also extend the water height field to mimic tro-

choidal Gerstner waves [Tessendorf 2004b] by computing horizontal

displacements in addition to the vertical ones in the profile buffer

Ψc (p, t). We then include these horizontal displacements in the final

summation of η.

Table 1. Parameters used to create the examples in our paper.

Variable Value Description

KA 1 No. of k samples for discretizing A

Kη 400 No. of k samples for integrating η
ΘA 16 No. of θ samples for discretizing A

Θη 120 No. of θ samples for integrating η
XA 4096

2
No. of spatial grid samples for discretizing A

N 4096 No. of 1D texture samples in profile buffer

The pre-computation of the profile buffer in Equation 21 is largely

responsible for the performance of our method. For comparison,

the evaluating η at all points in space using the naive 2D integral in

Equation 19 costs O(KηΘηX
2

A
) operations, where X 2

A
is the total

number of spatial locations where η is computed. Our speedup

using the profile buffer reduces this computation by two orders

of magnitude to O(Kη + ΘηX
2

A
). Distributing this computation

overG GPU cores reduces the cost further to O(Kη + ΘηX
2

A
/G). In

practice, the introduction of the profile buffer in our implementation

raised the frame rate from 1.8 to 275 – a speed-up factor of 233 for

evaluating η.

5 ALGORITHM SUMMARY
This section gives an overview of the steps necessary to implement

our algorithm. Our project webpage
1
also provides example code for

a straightforward (CPU-only) implementation of the algorithm as

well as an executable file which demonstrates our GPU-optimized

implementation.

The main goal of our algorithm is to update the amplitudes A

(Equation 10) and use them to visualize the water height η (Equa-
tion 7). We note that almost all of the physics simulation happens

in the computation of the amplitudes, and that A is never directly

visualized. On the other hand, the comptuation of η is relatively light
(thanks to the pre-computed profile buffer), and its visualization

is almost entirely responsible for the apparent detail in the wave

simulation. To take advantage of this disparity, we compute A on

coarse grids, and we compute η on a viewer-dependent adaptively-

refined detailed mesh. Specifically, our GPU-optimized version uses

hardware tesselation [Nießner et al. 2016] to compute an adaptive

triangle mesh with vertex positions determined by η, and it com-

putes the surface normals in a pixel shader using the analytic spatial

derivatives of η.
We divide our algorithm into a function TimeStep that does

some pre-computation work once every time step, and a func-

tion WaterHeight that needs to be computed on-demand for each

node of the finely-sampled grid and each pixel. TimeStep mainly

solves the evolution equation 18 by splitting it into two parts:

AdvectionStep, which computes the semi-Lagrangian advection in

1
http://visualcomputing.ist.ac.at/publications/2018/WSW/

ACM Transactions on Graphics, Vol. 37, No. 4, Article 94. Publication date: August 2018.

http://visualcomputing.ist.ac.at/publications/2018/WSW/

94:8 • Jeschke et al.

Section 4.2, and WavevectorDiffusion, which computes the ampli-

tude spreading. It finishes with the function PrecomputeProfile-
Buffers which precomputes the one dimensional water wave pro-

file buffers Ψc (p, t) which are used for water height evaluation (Sec-

tion 4.3). The WaterHeight function numerically evaluates Equa-

tion 20 with a weighted sum of 1D wave profiles at different angles,

as in Section 4.3. Please see Algorithm 1 for pseudocode.

Algorithm 1 Pseudocode for the algorithms used in our paper

1: function TimeStep(t)
2: AdvectionStep(t)

3: WavevectorDiffusion(t)

4: Ψ← PrecomputeProfileBuffers(t)

5: end function

6: functionWaterHeight(x ,t)
7: η← 0

8: for b ← 1,Θη do
9: θb ←

2π
Θη

b

10:
ˆk ← (cosθb , sinθb)

11: p← ˆk · x + rand(b)
12: for c ← 1,Kη do
13: η← η +A(x ,kc ˆk) * Ψc (p, t)
14: end for
15: end for
16: end function

6 EXTENSIONS
Once we have our basic water wave solver in place, we can extend it

in some interesting ways. This section introduces dissipation, a strat-

egy for pre-computing the wave physics for rapid wave playback,

and a method for interacting with water waves using solid-fluid

coupling.

6.1 Dissipation
In nature, wave energy is lost due to viscosity, splashes and so on.

In order to reproduce this behaviour, we add the same dissipation

term as Jeschke et al. [2017] to Equation 18:

∂A

∂t
= · · · − 2νk2A −

1

2

ν

(
ω(k)

2ν

) 1

2

kA (22)

The first term models dissipation due to water viscosity ν (10−6m/s),
which affects mostly waves with small wavelengths. The second

term accounts for surface contamination such as oil, dirt or algae

and it affects larger waves as well.

6.2 Pre-computing wave motions
The method of Jeschke &Wojtan [2015] computes steady-state wave

motions by pre-computing the paths of multiple wavefronts, storing

the phase functions on an adaptive triangle mesh, and proposing a

phase interpolation scheme to recover the final waves at runtime.

We can produce similar results with our simulator by computing

Fig. 4. The wave amplitudes A in this animation were pre-calculated by a
wind-driven simulation, but the wave heights η are computed at runtime.
Notice the boundary effects where waves reflect and diffract, as well as the
shadowing effect where the island blocks the wind.

wave motion until the amplitudes reach a steady state, and then

storing the A functions as static textures. We can then interpolate

these A textures at any point in space and use them to efficiently

compute wave heights at run-time. This pre-computation ofA leads

to a considerable speed-up over running the full simulation (4.7×

speedup from ≈ 60fps to ≈ 280fps in this example). Our method is

arguably more efficient than Lagrangian wavefront tracking (though

themethods have very different numerical parameters and the errors

behave differently), and the run-time behavior is more convenient

and load-balanced for graphics hardware than an adaptive triangle

mesh.

Figure 4 shows an example scene that was pre-computed using

this technique. To make this result, we modeled wind effects by

adding a source term S(x ,k, t) to Equation 18. Local wind effects

like this are difficult for wavefront tracking methods which require

the explicit creation of coherent wavefronts as initial conditions, but

they are easy for our Eulerian method. However, unlike [Jeschke

and Wojtan 2015] our simulator does not yet handle shallow water

effects due to a spatially varying dispersion relation ω, and our

jittered sampling strategy makes it difficult to precisely control the

wavefront phases.

6.3 Solid-Fluid Coupling
We implemented some elementary coupling between our fluid sim-

ulator and rigid bodies. We do this coupling by adding forces to the

rigid body from the fluid, and adding waves to the fluid from the

rigid body each time step.

To make the waves influence the rigid bodies, we compute a buoy-

ancy force by approximating the shape of the submerged volume of

the rigid body as a cylinder with volume V = πr2(η − r − h), where
r is the radius of the body and h is the height of its center of mass.

The buoyancy force is then −ρVд, where ρ is the density of the fluid
and д is the gravity vector. We integrate this force using backward

Euler integration to ensure numerical stability.

To addwaves to the rigid body simulation, we calculate the change

in energy of the rigid body caused by the water ∆ERB, where the
rigid body’s energy ERB is equal tomv2/2+mдh, with body massm,

velocity magnitude v , and gravity magnitude д. Linear wave theory

ACM Transactions on Graphics, Vol. 37, No. 4, Article 94. Publication date: August 2018.

Water Surface Wavelets • 94:9

Fig. 5. The barrels receive buoyancy forces and impose new waves at the
same time.

tells us that water wave energy in deep water is proportional to the

squared amplitude:

E
fluid
(k) =

1

2

ρд (A(k))2 (23)

and we use our localized amplitudes to confine the wave energy to

a region of space:

E
fluid
(x ,k, t) ≈

1

2

ρд (A(x ,k, t))2 . (24)

To approximately conserve energy, we must set ∆E
fluid
= −∆ERB.

Assuming this change in energy is distributed equally among all

wavevectors, we can then compute the new amplitudes A at the

location of the rigid body xRB:

Anew(xRB,k, t) ≈

√
2

ρд

(
E
fluid
(xRB,k, t) −

∆ERB
KAΘA

)
, (25)

where the product KAΘA is the number of discrete wavevectors in

our discretization.

To summarize, our rigid body coupling is executed each time step

by adding buoyancy forces to each body, calculating the change in

energy of the body, and then converting that change in energy into

waves at the location of the rigid body. Figure 5 uses this technique

in an example with numerous floating boxes. This heuristic coupling

strategy works well for displaying basic solid-fluid interactions, and

we leave a more careful treatment for future work.

7 ARTISTIC CONTROL
The method we have presented so far focused on an efficient approx-

imation for the physical motion of water waves. However, we can

selectively replace various steps in our algorithm with user-defined

procedures, in order to add artistic effects at the expense of physical

realism.

7.1 Selecting the basis functionψ (k)
The basis functionψ (k) controls the wave spectrum which is visu-

alized in the final results. The spectrum can either be determined

by physics or tuned by hand to create more stylized results. Fig-

ure 6 shows how changing this function affects the visualized wave

heights. Regardless of the chosen spectrum, the waves will travel at

the correct phase speed due to the dispersion relation in Equation 21.

log k

lo
g
ψ

log k

lo
g
ψ

Phillips spectrum User-defined spectrum

Fig. 6. The effect of varying the wavenumber basis function ψ (k): We pro-
duce different wave styles by settingψ to a standard Phillips spectrum (left)
and a user-defined spectrum (right).

7.2 Manually overriding A
Instead of using physical equations to compute the amplitude tex-

tures A, we can explicitly create or modify them with procedural

functions, or with a novel amplitude-painting interface. In our video,

we show that we can procedurally create reflection effects by arti-

ficially amplifying waves traveling perpendicular to an obstacle’s

surface, with an amplification factor based on distance to the obsta-

cle. We can also use a painting interface, as shown in Figure 7.

We note that hand-tuning these amplitudes will be physically

incorrect in the sense that the group speeds are set to zero instead

of determined by the dispersion relation. However, the phase speeds

are still physically correct due to the dispersion relation in Equa-

tion 21. The result is that the waves themselves travel at the correct

speed, but the wave groups do not. We found this indirect physical

inaccuracy a bit more difficult to perceive, and so we believe that

such an amplitude override technique might be a useful artistic tool.

8 RESULTS
We show numerous results created by our method in our supple-

mental videos. To illustrate the large scale and interactive nature of

Fig. 7. Overriding A with a real-time wave-painting interface to make
waves process along an∞-shaped path.

ACM Transactions on Graphics, Vol. 37, No. 4, Article 94. Publication date: August 2018.

94:10 • Jeschke et al.

Table 2. Performance breakdown for a single frame of animation.

Algorithm Component Timing % of Total

Updating A 8.54ms 51%

Computing η 4.16ms 25%

Miscellaneous rendering and

unrelated overhead

3.97ms 24%

our results, we show a vast 4km × 4km sea interacting with islands,

floating barrels, actively moving boats, and a user-controlled jet-ski.

Both the simulation and the heightfield evaluation are computed in

parallel on the GPU in each time step. We provide a supplemental

document that describes relevant implementation details for both

parts. Our laptop with a NVIDIAGeforce GTX 1070 GPU achieves an

average frame rate of 60fps with the parameters in Table 1, and this

paper includes an interactive demo of our method which recreates

this example. Table 2 displays the timing breakdown for an average

frame of this animation; note that the timing for the computation of

η depends on the number of pixels occupied by by waves and may

vary slightly.

Varying these parameters has different effects on the visual results

and performance of our method, and we explore each of them in our

supplementary video. The number of A samples in our simulation

depends linearly on the resolution of our 4D XA ×XA ×ΘA ×KA
simulation grid, so doubling the resolution of any dimension will

roughly increase the memory and the runtime by a factor of 2.

Increasing the spatial resolution XA will allow the wavefronts to

exhibit a higher curvature, allowing more detailed interactions with

highly curved boundaries. Figure 8 shows the effect of XA on the

simulation quality. Increasing the angular resolution ΘA allows a

more precise behavior in each direction. Increasing the wavenumber

resolution KA allows more detailed dispersion of wave groups

(different amplitude groups travel at different speeds). We show an

example with KA = 4 simulated wave groups in Figure 9 and in

our video, which shows more accurate wave group dispersion but

roughly quadruples the run time (drops the frame rate from 70fps

to 20fps).

Note that none of these resolution parameters affect the reso-

lution of the waves themselves; they only affect the resolution of

the wave groups, and thus induce higher-order indirect effects like

curvature and speed of the wave groups, instead of affecting more

visible cues like the frequency or speed of the wave crests. Instead,

the frequency of the waves is controlled by the resolution of the

heightfield evaluation, η(x , t), and the relative speed of the waves is
fixed by the dispersion relation ω.
For discretizing A we chose a spatial resolution of XA = 4096

for each dimension because it maps well to the GPU and allows

an exceptionally large simulation domain. Many of the up-close

interactions in our video have an effective resolution of approxi-

mately 10
2
grid cells on the screen at a time. We chose ΘA = 16

wave directions for the simulation because it maps well to the GPU,

and because fewer samples showed some directional bias artifacts

when visualizing the A function directly. We could not tell much

difference if we increase the angular resolution to 32. We chose only

KA = 1 − 4 wavenumber samples because we did not think the

Fig. 8. A detailed simulation (top) and one with the spatial resolution XA
reduced by 4× in each dimension (bottom). ReducingXA does not affect the
resolution of the waves themselves, but it affects the resolution of the wave
groups. At this low resolution, reflected and diffracted waves cannot resolve
the detailed boundaries properly, and wavefront curvature is reduced.

accurate simulation of wave group dispersion was necessary for

visual effects.

The resolution of η (Equation 20), however, has a direct effect

on the visual results. Reducing the number of spatial samples will

reduce the highest visible frequency, using only a small number

of θ samples will introduce lattice-like artifacts caused by waves

appearing as perfectly aligned, and using only a few k samples will

remove visual frequencies from the final wave visualization.

Section 4.2 introduces an ad-hoc parameter for the angular am-

plitude diffusion. Large diffusion rates cause the amplitudes to blur

all directions together quickly, making the waves more isotropic;

small diffusion rates cause the wave packets to separate from each

other, as illustrated in Figure 3. The effects of this parameter are

more evident near circular wave sources, where amplitudes are still

large and exhibit higher curvature. The amplitudes naturally drop

off further away from sources like this, making diffusion effects

difficult to notice.

The performance of our method comes from a few sources. First,

the fact thatA is low resolution allows us to discretize it on a coarse

grid, so we don’t need an expensive simulation of A to get detailed

visual results. We can exploit this coarse grid by either using a

huge simulation domain (as in the above example), or by using very

few degrees of freedom to make the simulation faster. Next, the

pre-computed profile buffer Ψ saves us two orders of magnitude

ACM Transactions on Graphics, Vol. 37, No. 4, Article 94. Publication date: August 2018.

Water Surface Wavelets • 94:11

Fig. 9. Using a single wavenumber KA = 1 (top) results in a uniform
distribution of small and large waves in this boat wake. By contrast, when
using four wavenumbers KA = 4 (bottom) we can notice how larger waves
on the right move ahead of smaller ones on the left.

in computation by reducing a 2D integral to a 1D integral with a

texture lookup. Lastly, both the simulation and the wave height

evaluation are embarrassingly parallel operations spread out among

many points in space, so they greatly benefit from GPU acceleration.

9 DISCUSSION
This paper proposes a novel wavelet-based discretization for ani-

mating water waves. As it is based on linear wave theory, it can

only approximate the correct behavior for waves with small am-

plitudes and is incapable of capturing any non-linear effects. The

main dynamical equation, Equation 10 or 18, is a linear differential

equation in A . Our method handles non-heightfield displacement

effects like Biesel and Gerstner waves, but there is no direct way for

it to handle complex non-linear phenomena like breaking waves or

topology changes like splashes.

This approach de-couples the resolution of the visualized waves

from the resolution of the simulation. Through a novel Gabor trans-

formation, we are able to keep the simulation resolution much lower

than the resolution of the heightfield which is ultimately visualized.

Thus, this approach can animate very high frequency waves without

the typical complications relating to excessive computation, aliasing,

or simulation stability.

Compared to Eulerian height field-based simulations, our method

stores 4096
2
(spatial resolution) ∗16 (wave vector resolution) samples

for our 4 km by 4 km scene. A height field storing the same number of

samples would have a grid cell spacing of 25 cm, even ignoring that it

needs to store 2 values per grid cell. Following the Nyquist theorem,

the smallest possible wavelength would be 0.5 m. By comparison,

we animate wavelengths down to 2 cm.

Compared to wave packets [Jeschke and Wojtan 2017], neighbor-

ing overlapping wave packets cause massive pixel overdraw during

rendering, which significantly reduces performance and there is no

easy way to fix this problem. To illustrate the performance differ-

ence, a single boat wake takes from 2 up to 6 Mill wave packets, and

it renders at 2 to 0.5 FPS respectively. By contrast, our method simu-

lates and renders 1000 boat wakes at 60 FPS on the same hardware,

and it naturally offers constant computational cost, i.e., it does not

depend on the number of waves being simulated. However, the boat

wake of wave packets is physically more accurate as phases of indi-

vidual waves are explicitly controlled. As a guideline, wave packets

should be used if control over wave phase (for perfectly circular

ripples for example) is crucial and the number of packets is not too

high. Surface wavelets are clearly the better choice for interactive

water simulations even at medium scales where plausibility is more

important than physical accuracy.

Our method can efficiently simulate the aggregate motion of

high-frequency water waves, even with a low resolution simulation.

However, as discussed in Section 3.3, low-resolution simulations

give up the ability to precisely control the phase of each wave. Con-

sequently, it is difficult to simulate phenomena that depend upon

coherent phases, like the perfect circular wavefronts emitted from

raindrops, without increasing the simulation resolution. Similarly,

many familiar wake patterns that depend on constructive interfer-

ence between coherent phases [Jeschke and Wojtan 2017; Thomson

1891] are impractical to replicate with our method. At low resolu-

tions, our proposed jittered phases are better suited for noisy wave

sources like chaotic splashes, wind, and large floating objects. We

hope future research can remove this connection between wave

phase coherence and simulation resolution.

Our current implementation uses the deep water dispersion rela-

tion. In the future, we would like to extend this work to handle a

more general depth-dependent dispersion relation, which should

create additional refractive effects near shallow water.

Overall, we believe that our approach of simulating spatially-

dependent amplitudes presents an interesting twist on water wave

simulation. This new direction introduces unique challenges, like

increased dimensionality and an interesting link between phase

and resolution. At the same time, it makes significant progress on

outstanding problems in the field of physics-based animation: it

introduces novel methods for artistic control, it permits extremely

large simulation domains, and it enables interactive animations with

fine spatial resolutions.

ACKNOWLEDGMENTS
We wish to thank the anonymous reviewers and the members of the

Visual Computing Group at IST Austria for their valuable feedback.

The 3Dmodels used in our examples were created by Reiner Prokein.

This research was supported by the Scientific Service Units (SSU)

of IST Austria through resources provided by Scientific Comput-

ing. This project has received funding from the European Research

ACM Transactions on Graphics, Vol. 37, No. 4, Article 94. Publication date: August 2018.

94:12 • Jeschke et al.

Council (ERC) under the European Union’s Horizon 2020 research

and innovation programme under grant agreements No 638176 and

Marie Skłodowska-Curie Grant Agreement No. 665385.

REFERENCES
Roland Angst, Nils Thuerey, Mario Botsch, andMarkus Gross. 2008. Robust and efficient

wave simulations on deforming meshes. In Computer Graphics Forum, Vol. 27. Wiley

Online Library, 1895–1900.

Robert Bridson. 2015. Fluid simulation for computer graphics. CRC Press.

José A. Canabal, David Miraut, Nils Thuerey, Theodore Kim, Javier Portilla, and

Miguel A. Otaduy. 2016. Dispersion Kernels for Water Wave Simulation. ACM Trans.
Graph. 35, 6, Article 202 (Nov. 2016), 10 pages.

Stephen Chenney. 2004. Flow tiles. In Proceedings of the 2004 ACM SIG-
GRAPH/Eurographics symposium on Computer animation. Eurographics Association,
233–242.

Robert L. Cook. 1986. Stochastic Sampling in Computer Graphics. ACM Trans. Graph.
5, 1 (Jan. 1986), 51–72.

Ronald Fedkiw, Jos Stam, and Henrik Wann Jensen. 2001. Visual Simulation of Smoke.

In Proceedings of SIGGRAPH 2001 (Computer Graphics Proceedings, Annual Conference
Series), Eugene Fiume (Ed.). ACM, 15–22.

Dennis Gabor. 1946. Theory of communication. Part 1: The analysis of information.

Journal of the Institution of Electrical Engineers-Part III: Radio and Communication
Engineering 93, 26 (1946), 429–441.

Robert Geist, Christopher Corsi, Jerry Tessendorf, and James Westall. 2010. Lattice-

boltzmann water waves. In Advances in visual Computing. Springer, 74–85.
Damien Hinsinger, Fabrice Neyret, and Marie-Paule Cani. 2002. Interactive animation

of ocean waves. In Proc. ACM SIGGRAPH/Eurographics Symp. on Comput. Anim.
161–166.

Christopher J Horvath. 2015. Empirical directional wave spectra for computer graphics.

In Proceedings of the 2015 Symposium on Digital Production. ACM, 29–39.

Stefan Jeschke and ChrisWojtan. 2015. WaterWaveAnimation viaWavefront Parameter

Interpolation. ACM Trans. Graph. 34, 3, Article 27 (May 2015), 14 pages.

Stefan Jeschke and Chris Wojtan. 2017. Water Wave Packets. ACM Trans. Graph. 36, 4,
Article 103 (2017), 12 pages.

R.S. Johnson. 1997. A modern introduction to the mathematical theory of water waves.
Vol. 19. Cambridge university press.

M. Kass and G. Miller. 1990. Rapid, stable fluid dynamics for computer graphics. In

Computer Graphics, Vol. 24. 49–57.
Theodore Kim, Jerry Tessendorf, and Nils Thuerey. 2013. Closest Point Turbulence for

Liquid Surfaces. ACM Trans. Graph. 32, 2, Article 15 (April 2013), 13 pages.
Jörn Loviscach. 2002. A convolution-based algorithm for animated water waves. In

Eurographics, Vol. 2. 381–389.
Pierre-Luc Manteaux, Ulysse Vimont, Chris Wojtan, Damien Rohmer, and Marie-Paule

Cani. 2016. Space-time sculpting of liquid animation. In Proceedings of the 9th
International Conference on Motion in Games. ACM, 61–71.

Gary A Mastin, Peter A Watterberg, and John F Mareda. 1987. Fourier synthesis of

ocean scenes. Computer Graphics and Applications, IEEE 7, 3 (1987), 16–23.

A. McNamara, A. Treuille, Z. Popović, and J. Stam. 2004. Fluid control using the adjoint

method. In ACM Trans. Graph., Vol. 23. ACM, 449–456.

Michael B Nielsen, Andreas Söderström, and Robert Bridson. 2013. Synthesizing waves

from animated height fields. ACM Trans. Graph. 32, 1 (2013), 2.
M. Nießner, B. Keinert, M. Fisher, M. Stamminger, C. Loop, and H. Schäfer. 2016. Real-

Time Rendering Techniques with Hardware Tessellation. Computer Graphics Forum
35, 1 (2016), 113–137.

Björn Ottosson. 2011. Real-time Interactive Water Waves. Master’s thesis. KTH, Sweden.

Zherong Pan, Jin Huang, Yiying Tong, Changxi Zheng, and Hujun Bao. 2013. Interactive

localized liquid motion editing. ACM Transactions on Graphics (TOG) 32, 6 (2013),
184.

K. Raveendran, N. Thuerey, C. Wojtan, and G. Turk. 2012. Controlling Liquids Using

Meshes. In Eurographics/ACM SIGGRAPH Symposium on Computer Animation. 255–
264.

Karthik Raveendran, Chris Wojtan, Nils Thuerey, and Greg Turk. 2014. Blending liquids.

ACM Transactions on Graphics (TOG) 33, 4 (2014), 137.
Bruce Schachter. 1980. Long crested wave models. Computer Graphics and Image

Processing 12, 2 (1980), 187–201.

Claude Elwood Shannon. 1949. Communication in the presence of noise. Proceedings
of the IRE 37, 1 (1949), 10–21.

Lin Shi and Yizhou Yu. 2005. Taming liquids for rapidly changing targets. In Proceedings
of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation. ACM,

229–236.

Jerry Tessendorf. 2004a. Interactive water surfaces. Game Programming Gems 4 (2004),
265–274.

Jerry Tessendorf. 2004b. Simulating ocean water. ACM SIGGRAPH Courses (2004).
Jerry Tessendorf. 2014. eWave: Using an Exponential Solver on the iWave Problem. .

Technical Note.

William “Lord Kelvin” Thomson. 1891. Popular lectures and addresses. Vol. 3. Macmillan

London. 481–8 pages.

Nils Thuerey. 2016. Interpolations of Smoke and Liquid Simulations. ACM Transactions
on Graphics (TOG) 36, 1 (2016), 3.

N. Thuerey, R. Keiser, M. Pauly, and U. Rüde. 2009. Detail-preserving fluid control.

Graphical Models 71, 6 (2009), 221–228.
N. Thuerey, C. Wojtan, M. Gross, and G. Turk. 2010. A multiscale approach to mesh-

based surface tension flows. ACM Trans. Graph. 29, 4 (2010), 48.
Sheng Yang, Xiaowei He, Huamin Wang, Sheng Li, Guoping Wang, Enhua Wu, and

Kun Zhou. 2016. Enriching SPH simulation by approximate capillary waves. In

Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation.
Eurographics Association, 29–36.

Jihun Yu, Chris Wojtan, Greg Turk, and Chee Yap. 2012. Explicit Mesh Surfaces for

Particle Based Fluids. EUROGRAPHICS 2012 30 (2012), 41–48.
CemYuksel, DonaldH. House, and JohnKeyser. 2007. Wave particles. In Proc. SIGGRAPH.

99.

A AMPLITUDE DYNAMICS
Here we provide a more detailed derivation of the amplitude evolu-

tion Equation 10. As we mentioned in Section 3.2, the evolution of

A is fully determined by the integral Equation 8 which we use to

derive the amplitude evolution.

The first step is to linearize the dispersion relation ω(l) in Equa-

tion 8 around the point k , i.e. ω(l) ≈ ω(k) + ω ′(k) ˆk · (l − k). Equa-
tion 8 becomes:

A(x ,k, t) =

∫
R2

Ã(l ,k)e
i
(
(l−k)·x−ω′(k) ˆk ·(l−k)t

)
dl . (26)

Taking derivatives in time and space yields:

∂A

∂t
=

− iω ′(k) ˆk ·

∫
R2
(l − k) Ã(l ,k)e

i
(
(l−k)·x−ω′(k) ˆk ·(l−k)t

)
dl , (27)

∇xA = i

∫
R2
(l − k) Ã(l ,k)e

i
(
(l−k)·x−ω′(k) ˆk ·(l−k)t

)
dl . (28)

We see that the time change of A is just a −ω ′(k) ˆk multiple of the

spatial gradient ofA. Therefore we obtained the evolution equation:

∂A

∂t
= −ω ′(k) ˆk · ∇xA. (29)

B A IS LOWER FREQUENCY THAN η

One important point of our method is thatA varies on much bigger

length scales then η. This length scale is determined by the Gaussian

width s in the Gabor transform of η, Equation 5. Rewriting the Gabor
transform as a convolution of a function with Gaussian shows that

A indeed varies on the length scales s , instead of a smaller length

scale determined by η.
First, express A by combining Equation 5 and

A(x ,k, t) = ζ (x ,k, t)eiω(k)t :

A(x ,k, t) =
1

(2π)2

∫
R2
ηc (y, t)e

−
|y−x |2

2s2 e−i(k ·y+ω(k)t) dy. (30)

Observe that the above integral is nothing but convolution between

a function and Gaussian of width s:

A(x ,k, t) =
1

(2π)2

(
ηc (y, t)e

−i(k ·y+ω(k)t) ∗y e
−
|y |2

2s2

)
(x) (31)

ACM Transactions on Graphics, Vol. 37, No. 4, Article 94. Publication date: August 2018.

Water Surface Wavelets • 94:13

Since the result of convolution is always as smooth as any of the

two functions then the amplitude A has to be at least as smooth as

the Gaussian. If s is much larger than the length scales in η, then
the frequencies in A are much lower than those of η.

C CONTINUUM LIMIT OF WATER WAVE PACKETS
Jeschke & Wojtan [2017] introduce “water wave packets” as a La-

grangian primitive for surface water wave simulation. Under this

model, the water height η can be computed as the sum of multiple

wave packets:

η(x , t) =
∑
j
âj ϕ

(
x −y j

)
e−i(k j ·x−ω(kj)t)

(32)

where each packet in the summation consists of a scalar amplitude-

like weight âj , a Gaussian envelope function ϕ centered at the

packet’s position y j , and a wave with representative wavevector k j .
If we consider an infinite number of wave packets, spanning all pos-

sible packet positions y and all possible representative wavevectors

k , then we can express this sum as the following integral:

η(x , t) =

∫
R2

∫
R2

â (y,k, t)ϕ (x −y) e−i(k ·x−ω(k)t) dy dk . (33)

We then note that the integral over y is just a convolution:

η(x , t) =

∫
R2

(∫
R2

â (y,k, t)ϕ (x −y) dy

)
e−i(k ·x−ω(k)t) dk (34)

=

∫
R2
(â ∗ ϕ) (x ,k, t) e−i(k ·x−ω(k)t) dk . (35)

Now if we assume that (â ∗ ϕ) = A, then we arrive exactly at our

Equation 7:

η(x , t) =

∫
R2
A (x ,k, t) e−i(k ·x−ω(k)t) dk . (36)

ACM Transactions on Graphics, Vol. 37, No. 4, Article 94. Publication date: August 2018.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Spectrum-based approaches
	2.2 Numerical solutions to Partial Differential Equations
	2.3 Hybrid approaches
	2.4 Art-directing waves

	3 Theory
	3.1 Motivation
	3.2 Derivation
	3.3 Discussion

	4 Discretization
	4.1 Discretizing A
	4.2 Discretizing Advection
	4.3 Height field evaluation

	5 Algorithm summary
	6 Extensions
	6.1 Dissipation
	6.2 Pre-computing wave motions
	6.3 Solid-Fluid Coupling

	7 Artistic Control
	7.1 Selecting the basis function (k)
	7.2 Manually overriding A

	8 Results
	9 Discussion
	Acknowledgments
	References
	A Amplitude Dynamics
	B A is lower frequency than
	C Continuum Limit of Water Wave Packets

