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Abstract
A crucial step in the early development of multicellular organisms involves the establish-

ment of spatial patterns of gene expression which later direct proliferating cells to take on

different cell fates. These patterns enable the cells to infer their global position within a tis-

sue or an organism by reading out local gene expression levels. The patterning system is

thus said to encode positional information, a concept that was formalized recently in the

framework of information theory. Here we introduce a toy model of patterning in one spatial

dimension, which can be seen as an extension of Wolpert’s paradigmatic “French Flag”

model, to patterning by several interacting, spatially coupled genes subject to intrinsic and

extrinsic noise. Our model, a variant of an Ising spin system, allows us to systematically

explore expression patterns that optimally encode positional information. We find that opti-

mal patterning systems use positional cues, as in the French Flag model, together with

gene-gene interactions to generate combinatorial codes for position which we call

“Counter” patterns. Counter patterns can also be stabilized against noise and variations in

system size or morphogen dosage by longer-range spatial interactions of the type invoked

in the Turing model. The simple setup proposed here qualitatively captures many of the

experimentally observed properties of biological patterning systems and allows them to be

studied in a single, theoretically consistent framework.

Introduction

Shape and size are global properties of organisms and of their constituent parts. Yet organisms
develop and grow by processes that are intrinsically local: cell division, fate commitment and
differentiation, migration, and death. To coordinate these processes appropriately, cells must
reproducibly activate different gene expression programs in a manner that is positionally speci-
fied, or patterned, within a tissue or a whole organism. Here we are interested in essential con-
ditions for pattern-forming systems to support rich and robust positional specification of cells.
Rather than focusing on any particular organism, we analyze a minimal tractable model that
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can qualitatively reproduce pattering features across a diverse range of biological examples. In
the process, we illustrate and formalize a number of concepts pertaining to developmental pat-
tern formation.
One possibility for cells to acquire their position-dependent fates is to establish a field of

developmental cues that the cells can “read out” to learn about their individual locations in an
organism and hence to appropriately coordinate their behaviors. Often, these cues are gradi-
ents of patterning molecules, calledmorphogens. A morphogen gradient is a chemical “coordi-
nate system” in which the organism’s body plan is drawn [1]; in this analogy, reproducibility of
developmental outcomes is limited by the reliability with which physical locations map into
morphogen concentrations [2]. A canonical embodiment of this idea is the French Flag model,
where a smooth spatial morphogen gradient activates downstream cell-fate-determining genes
at different thresholds, creating stripes in a previously unpatterned tissue [3, 4].
Patterning strategies need not rely on the existence of signals distributed throughout the

organism. Organism or tissue boundaries are intrinsically different from the bulk, and one can
envision local biophysical mechanisms that propagate information from the boundary into the
bulk to set up a global pattern. The Turing model is an example of this kind, where local rules are
expressed as a set of reaction-diffusionequations and the steady-state pattern is determined by
the boundary and initial conditions [5]. A Turing mechanism in concert with a globally acting
morphogen gradient has, for instance, been found to control vertebrate digit formation [6–9].
Changing focus from systems continuous in space, time, and concentration to discrete set-

ups, one can think of cellular-automata-like models that, starting with a defined initial state at
the boundary of a finite domain, propagate that state into the bulk, creating a discrete pattern
in a lattice of cells. Similarity to such a local, rule-basedmechanism can be found, for instance,
in developmental notch signaling [10, 11].
Ultimately, patterning dynamics, be it continuous or discrete, need not even lead to a well-

defined steady state; local transients (as opposed to instantaneous or average values) of patterning
cues couldmark the position,much like during signaling leading up to the aggregation ofDic-
tyostelium cells [12], or in the clock-and-wavefront model for the generation of somites [13–15].
While such models typically represent a gross simplification of reality, they do capture a

fundamental property of biological pattern formation: local patterning cues, either in station-
ary state or during a readout period, carry information about position relative to a global refer-
ence frame [16]. This property was introduced as “positional information” by Wolpert in his
landmark paper almost fifty years ago [3]. Despite intense study in the last decades [2, 17–24],
it has been difficult to come up with a formal definition of positional information and a corre-
spondingmeasure that would quantify the regulatory power of a patterning system by, in
essence, counting the maximal number of distinct cell fates that the system can reliably specify,
irrespective of mechanistic detail. This is because the mapping between position and local cue
values can be noisy or even ambiguous, and can be established by a diverse range of biophysical
mechanisms. Additionally, it would be attractive to build such a quantity on a strong theoreti-
cal foundation on one hand, while on the other ensure that it could be computed in various
models of patterning or be tractably estimated from data.
A candidate formalization of “positional information” that satisfies the above criteria, based

on application of information theoretic ideas, has recently been proposed [25, 26]. Positional
information can be seen as a genericmeasure of correlation, i.e., a mutual information [27],
between position and local patterning cue values (e.g., morphogen expression levels). It is also
closely related to information transmission through genetic regulatory networks that has been
a subject of recent theoretical [28–31] and data-driven investigations [32–35]. Looking at ante-
rior-posterior patterning in early Drosophila embryo, the four primary gap genes were esti-
mated to carry 4.2 ± 0.05 bits of positional information, sufficient for each nucleus to
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determine its location with roughly 1% relative precision and consistent with the measured
precision of downstream positional markers [25]. Furthermore, this patterning system exhib-
ited signatures suggesting that positional “gap gene code” might be optimally organized. This
suggests an interesting theoretical program: look for regulatory network architectures that
maximize encoded positional information [36–40] and compare these ab initio predictions to
Drosophila gap gene data.
Taking a step back from concrete systems that necessarily involve an overwhelming amount

of biological detail, there are a number of basic yet still unresolved questions about patterning
systems and positional information: How do optimal patterns (i.e., patterns that maximize
positional information) look like and what determines their shape? How are efficient pattern-
ing strategies different if patterning cues are distributed throughout the domain or are present
solely at domain boundaries? In systems where multiple outputs are simultaneously driven by
the same patterning cues, how should these outputs be coupled amongst themselves and across
space? Can reliable patterns emerge from very noisy patterning cues, that is, can the readout
network actually “create” positional information? And finally, what is the interplay between
positional information and various aspects of robustness—to noise, to systematic changes in
patterning cue levels, or to small variations in system size—that have been extensively dis-
cussed in particular biological systems [41–43]?
To address these questions as clearly as possible in a rigorous information-theoretic frame-

work, we follow the methodological approach taken by Wolpert in describing his French Flag
model.We start with the simplest toy model of patterning, where smoothly varying patterning
cues, e.g., morphogens, drive the expression of “binary genes” that only can have two states, ON
or OFF. Clearly, this is not an appropriate assumption for many real patterning systems that
rely on intermediate levels of gene expression. Conceptually, however, this assumption has
three major advantages: first, it will provide us with basic theoretical insights that generalize to
more complex setups; second, we will be able to easily visualize binary gene expression pat-
terns; and third, we will be able to count the number of distinguishable gene expression states.
The latter property is essential to gain an intuitive interpretation of positional information,
which is generally measured in an abstract “currency” of bits.
In the following, we start by introducing our minimal 1D model of patterning, which is

closely linked to Ising models in statistical physics, where magnetic spins (analogous to our
binary ON/OFF genes) respond to spatially inhomogeneousmagnetic field (analogous to our
smoothly varyingmorphogen profile). We briefly review the information-theoretic founda-
tions of positional information relevant to the proposedmodel.We then systematically explore
optimal patterns and how they depend on the shape of the input gradient, noise level, the
strength of gene-gene and spatial interactions, etc; as a result, we will be able to give a full
account of how these factors affect positional information within our model class.

Results

A minimal model for a pattern-forming system

We look for a model patterning system in which we can systematically explore the effects of
gene-gene interactions, spatial interactions, and noise. To keep the task conceptually clean and
computationally tractable, we sought for the simplest possible model: we focused on binary
(ON/OFF) patterning genes in the established framework of Ising-like spin models. These para-
digmatic systems of statistical physics areminimal, i.e., able to generate the relevant phenome-
nology while having the smallest number of parameters [44, 45]. Our use of such models does
not imply that all patterning genes should be viewed as binary (e.g., previous analysis suggests
otherwise for Drosophila gap genes [25]), or that patterning happens at thermal equilibrium.
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Nevertheless, conclusions obtained in the simple Ising model framework often do generalize
qualitatively to more complex systems and focus attention on important quantities. At the
same time, the Ising framework we introduce below can be seen as a direct extension of Wol-
pert’s originalmodel of binary genes responding to smoothmorphogen gradients.
We start with a discrete one-dimensional lattice of N sites, x = 1, . . .,N. At every site x, the

expression pattern is describedby a binary variable σ(x), with σ(x) = 1 denoting that the pat-
terning gene at location x is ON, and σ(x) = −1 denoting that the gene is OFF (see Fig 1A). Cen-
tral to our analysis is the fact that the patterning system is noisy, due to, e.g., intrinsic
stochasticity in gene regulation or extrinsic variability in system parameters. To capture the
probabilistic nature of the patterning outcomes, we think of the patterning system as generat-
ing different spatial patterns~s ¼ fsðxÞg with different probabilities, and in the Ising model
framework the probability of each pattern can be written as follows:

Qyð~sÞ ¼
1

Zy

e� Hyð~sÞ=Z : ð1Þ

Here, Z simply ensures that the distributionQ is normalized, η sets the intrinsic noise in the
system, and the “energy,” Hyð~sÞ, describes the effect of morphogens and gene-gene interac-
tions on the resulting gene expression pattern. This distribution over all spatial patterns,
Qyð~sÞ, is parameterized by θ, a set of parameters that we will explicitly identify for our pro-
posedmodel later. For the “energy” H, we write:

Hyð~sÞ ¼ �
XN

x¼1

hðmðxÞÞsðxÞ � J
XN� 1

x¼1

sðxÞsðx þ 1Þ : ð2Þ

Here, spatial interaction is modeled by coupling of nearest neighbor sites with a coupling
strength J. Positive J favor neighboring genes to have equal expression states, whereas negative
J favor neighboring genes to have opposing expression states. Biologically, positive J could be
realized by diffusion or active transport of gene products between neighboring cells or nuclei;
negative J, corresponding to repressive spatial interactions, could be mediated by cell-cell sig-
naling networks, e.g., the Delta-Notch pathway [46, 47].
The first term in Eq (2) contains the “bias,” h. The bias favors each individual gene to be either

ON, whenever h(x)> 0 at that gene’s location, or OFF, whenever h(x)< 0. This term depends
explicitly on the coordinate, x, and thus models the effect of a morphogen at each location.We
can gain biological realism and allow later extensions of the model to multiple patterning genes if
we assume that at every location there is a particular value of an abstract morphogen “signal,”
m(x), which determines the bias in a linear fashion, h(x) = n(m(x) − E). If the signal,m(x), is
interpreted as the logarithm of the morphogen concentration,m(x) = log(c(x)), there is an exact
mathematical relation between the probability that the patterning gene is ON, P(σ(x) = 1), and
the Hill-type thermodynamicmodel of regulation for the gene σ. Suppose that the gene σ is regu-
lated in a strongly cooperativemanner by ~n binding sites with equal affinities, ~K . Then

PðsðxÞ ¼ 1Þ ¼
½cðxÞ�~n

½cðxÞ�~n þ K ~n
; ð3Þ

and it is easy to show that the parameters n and E relating the bias h(x) to the morphogen signal
m(x) in our model correspond, up to a multiplicative factor, to ~n and log ð~KÞ in the thermody-
namic model of regulation. Furthermore, observedmorphogen concentration gradients that
commonly have an exponential profile, c(x) = c0 exp(−λx), map to linear morphogen signals,
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Fig 1. A schematic diagram of the model system. (A) At each lattice site, x = 1, . . ., N, we assume a morphogen signal m(x) (black), with extrinsic

Gaussian fluctuations of constant variance, var(m) = ν (black error bars). Indicated in gray is the corresponding exponential concentration gradient, c

(x), when m(x) is interpreted in the context of thermodynamic models of gene regulation (see text). The morphogen signal m(x) regulates a binary

patterning gene σ(x), whose expression state also depends on spatial interaction with strength J. Levels of gray denote the mean value hσ(x)i. Hence,

σ = +1 (white) and σ = −1 (black) mark positions where the gene expression state is deterministic, while levels of gray correspond to noise-induced

fluctuations in expression state, with σ = 0 (medium gray) marking positions at which the two expression states are equiprobable. (B) For two or more

genes per lattice site the model is extended with pairwise local interactions between genes at each lattice site. Spatial interactions are considered

only between the same genes at different lattice sites.

doi:10.1371/journal.pone.0163628.g001
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m(x) = −λx + log(c0), in our framework. Linearm(x) is thus our baseline profile, although we will
subsequently also define and explore more localizedmorphogen signals.
In our model, η controls intrinsic fluctuations in the system. For η! 0, the gene σ responds

deterministically to the morphogen and the expression state at neighboring locations; for
example, if there were no spatial interactions (J = 0), the gene would be ON whenever the local
morphogen signal exceeds the threshold,m(x)> E, and OFF otherwise, followingWolpert’s
original idea. In contrast, for η!1 the genes respond completely randomly, with equal prob-
ability of being ON or OFF, irrespective of the relevant signals. In addition to this intrinsic
noise, we also consider extrinsic noise [48]. To that end, we assume that there can be fluctua-
tions in the morphogen signal,m, that are additive and Gaussian with constant variance ν, i.e.,
var(m) = ν. This maps to fluctuations in morphogen concentration that are proportional to the
mean concentration, std(c) = νhci, a dependence that is biophysically plausible and has previ-
ously been discussed in the literature [48, 49].
An extension of the model from a single patterning gene to multiple genes is straightforward

(see Fig 1B). Let there be K distinct patterning genes, such that at each location σ(x)� {σα(x)},
for α = 1, . . ., K. To write down the functionHyð~σÞ and compute the probability of every pat-
tern, we simply reproduce the “bias” and spatial interaction terms for each one of the K genes
and sum them up in the energy function. Next, we add a qualitatively new term that couples
the K genes amongst themselves at every location x, which models activating (Jαγ> 0) or
repressive (Jαγ< 0) interactions between the genes α and γ (where α, γ 2 {1, . . ., K} and α 6¼ γ).
The complete energy function reads:

Hyð~σÞ ¼ �

XK

a¼1

XN

x¼1

haðmðxÞÞsaðxÞ�

�

XK

a¼1

Jaa

XN� 1

x¼1

saðxÞsaðx þ 1Þ�

�

XK

a;g¼1

a6¼g

Jag

X

x

saðxÞsgðxÞ:

ð4Þ

This model of K genes responding to a morphogen signal is thus fully specified by 3K +
K(K + 1)/2 interaction parameters θ = {nα, Eα, Jαα, Jαγ}, the intrinsic noise η, the extrinsic noise ν,
and the shape of the morphogen gradient,m(x). These parameters, together with Eqs (1 and 4),
fully specify the resulting distribution over gene expression patterns,Qyð~σÞ. Next, we formally
define positional information and discuss its computation and behavior within our model.

Positional information for genes with two possible expression states

We use a previously introduced information-theoretic definition of positional information [25,
26]. This definition is based on the observation that a cell can only “know” as much about its
location x as it can infer from local and generally noisy expression levels, σ(x), of patterning
genes. Again, σ(x) denotes the vector of all considered gene expression states at location x. Let
the distribution of σ at location x be P(σ|x). Positional information is then defined as the
mutual information between the location x and the local expression level σ:

Iðσ; xÞ ¼ S½PsðσÞ� � hS½PðσjxÞ�ix : ð5Þ
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The first term in Eq (5) is the entropy of the distribution of expression states across the lattice,
with PσðσÞ ¼

1

N

PN
x¼1

PðσjxÞ, which favors diverse use of expression states across the spatial
pattern. The second term is a penalty term that quantifies the average variability in gene
expression which is uncorrelated with position. Because it can induce confusion in the expres-
sion-positionmapping, this “noise entropy” can only reduce the information and is zero in a
noiseless system.
Considering a single patterning gene without noise, gene expression achieves maximum

positional information by partitioning allN locations into two equally sized sets, one where the
gene is OFF and one where the gene is ON. Without noise, the second term in Eq (5) vanishes
and the positional information is given by the entropy of expression states. For a balanced
assignment of expression states to positions we have Psðs ¼ þ1Þ ¼ Psðs ¼ � 1Þ ¼ 1

2
and thus

S[Pσ(σ)] = 1. Such a pattern is said to convey “one bit” of positional information, an amount
sufficient to reliably separate the anterior from the posterior, or odd from even rows of cells;
generally, one bit corresponds to the amount gained by an unambiguous answer to an opti-
mally posed yes/no question. In the case of multiple patterning genes, a combination of gene
expression states, e.g., {ON, OFF, ON, ON} or {+1, −1, +1, +1}, can be seen as a “codeword” for
some particular position. The capacity of this code, independently of how the gene expression
patterns are set up or read out, is again given by the first term in Eq (5). For four binary genes
this cannot exceed 4 bits; as in the case of a single gene, the bound is achieved when each of the
24 = 16 distinct gene expression combinations is used equally often across all locations x in the
tissue.
Mutual information is symmetric in its arguments, so that we can rewrite Eq (5) as

Iðσ; xÞ ¼ S½PxðxÞ� � hS½PðxjσÞ�iσ; ð6Þ

where S[Px(x)] = log2 N for cells that are uniformly distributed over coordinate x, as we assume
in our model. This way of writing positional information emphasizes that log2(N) bits is the
upper bound on the positional information in a patterning system, which would correspond to
an unambiguous identification of every location x based on the expression pattern σ. Positional
information is decreased from this bound by the second term in Eq (6) which measures the
uncertainty in position that remains even when one knows gene expression levels.
One can bemore explicit about the error in trying to estimate the position, x, given the expres-

sion levels σ. It can be shown that the expected error of any estimator x̂ for position is bounded
by positional information. To find that bound, we think of Px(x) as the prior distribution of an
estimator at position x. The best choice for an estimator of position is the expectation valueEðxÞ
estimated from a distribution encoding all and not more information about its position than the
estimator can access. Therefore, for any estimator it holds Eðx � x̂Þ2 � Eðx � EðxÞÞ2 ¼ varðxÞ.
Without further information the estimator has to rely on the prior distributionPx(x). For the uni-
form Px(x), the variance of x can be expressed by the entropy S[Px(x)]:

varðxÞ ¼
1

12
22S½PxðxÞ� � 1
� �

�
1

12
22hS½PðxjσÞ�iσ � 1
� �

: ð7Þ

The second inequality holds since the additional information about the expression state σ can
only decrease the entropy (S[Px(x)]� hS[P(x|σ)]iσ). We assume that P(x|σ) = P(σ|x)Px(x)/P(σ) is
the Bayesian inversion of the correct expression state of the system P(σ|x). From Eq 6 we can see
that hS[P(x|σ)]iσ = log2(N) − I(σ; x), so that we can finally write

Eðx � x̂Þ2 �
1

12
N22� 2Iðσ;xÞ � 1
� �

: ð8Þ
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This bound on the error can bemade vanishingly small if positional information approaches its
upper bound, I! log2 N bits. This relationship is analogous to the relationship between posi-
tional error and positional information for continuous systems [25, 26]. Importantly, when cells
need to make decisions appropriate to their position within an organism, they are also subject to
the estimation limits of Eq (8), irrespective of how complex the molecular readout mechanism
for σ is.
How is the pattern-forming processQyð~σÞ related to P(σ|x), which determines positional

information?While the pattern-forming processQ yields a global (joint) distribution over all
possible patterns, the positional information is local and thus is only concernedwith the
expression state at a given location x; thus, P(σ|x) is obtained by summing (marginalizing) the
joint distribution over gene expression states everywherebut at x:

PðσjxÞ ¼
X

σðx0Þ¼�1

x0 6¼x

Qyð~σÞ: ð9Þ

Therefore, we can use Eqs (1, 5 and 9) to compute positional information, I(σ;x), which we will
refer to as “PI” in the text, for any patterning system with parameters θ. Using standard
approaches from statistical physics (transfer matrices) these mathematical manipulations are
all doable exactly when the extrinsic noise, ν, is zero. When ν 6¼ 0, analytical techniques cou-
pled with tractableMonte Carlo sampling can be used to compute PI as a function of parame-
ters; see S2 Appendix for details.
Our framework clearly separates the pattern-forming process whose outcome is described

by Qyð~σÞ and that depends on mechanistic parameters θ, from the resulting pattern, which car-
ries a certain amount of positional information I(σ;x). Such a distinction is important and clari-
fies a number of conceptual issues with positional information. Consider, for example, the case
of a single, noiseless gene responding to a smoothly varyingmorphogen gradient. As explained
above, the maximal positional information achievable in this system is 1 bit. On the other
hand, one could argue that by changing the threshold at which the readout gene is activated,
the system can position the pattern boundary in any of N + 1 possible locations (including the
system boundaries), generatingN + 1 possible patterns: shouldn’t the information then be
I = log2(N + 1)� 1 bits? The apparent contradiction is that log2(N + 1) bits is not positional
information; rather, it is a measure of how many different joint patterns, ~σ , can be generated
by changing the parameters θ of the pattern forming system (in this case the readout thresh-
old), i.e., the mutual information Ið~σ ; yÞ, which is an intrinsic property of the pattern-forming
process,Q. This quantity certainly affects positional information, I(σ;x), yet it is not identical to
it. In particular, positional information can be different for each separate value of parameters θ.
As we will see in our toy model, one can find patterning systems that have a high positional
information while simultaneously having either a high or low value for Ið~σ ; yÞ, and vice versa.
The two information-theoretic quantities therefore describe independent aspects of the system,
and should not be confusedwith each other.

Optimal patterning with a single gene depends on noise level and

morphogen profile

We start by studying a system with one patterning gene, σ, on a lattice of N = 50 sites. We
choose a linearly decaying morphogen signal,m(x), which favors the ON state of the patterning
gene in the anterior and OFF state in the posterior. In absence of any noise and spatial interac-
tions, we have a clear expectation for the pattern that yields the maximally achievable PI of 1
bit: this will be a symmetric partition of the lattice into equally sized anterior (ON) and
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posterior (OFF) halves, with a single sharp boundary at x = N/2. In terms of the parameters of
our energy function, Eq (2), this corresponds to choosing E = J = 0, n = 1 and η, ν! 0.
How does the spatial interaction J affect the ability of a single gene σ to encode positional

information when noise is not zero? Fig 2 shows I(σ; x) as a function of the coupling strength J
at fixed levels of intrinsic (η) and extrinsic (ν) noise. In the absence of spatial interactions
(J = 0) the response of the gene σ is uncoordinated across positions and gets largely destroyed
by random fluctuations (Fig 2B(i)). Consequently, PI is low, in this case below 0.1 bits.
If spatial interaction is increased to positive values of J, PI increases steeply to a maximum.

The emergent pattern is qualitatively consistent with the expected optimal pattern: it contains
a single boundary that divides the lattice into anterior and posterior halves (Fig 2B(ii)). The
effects of noise on the patterning gene are restricted to the area around the boundary. There-
fore, the maximally achievable PI is determined by the accuracywith which the boundary is
positioned and depends on the noise level. For this optimal boundary pattern, additional
extrinsic noise, ν, diminishes PI only mildly.
The large increase in PI can be ascribed to the well-studied effect of spatial averaging [39,

50]. With increasing coupling strength J, different lattice sites do not respond independently
anymore but are spatially correlated. Consequently, fluctuations at individual lattice sites are
overcome by a concerted response to the input field integrated over a range, which greatly
sharpens the resulting pattern. As J is increased further, PI decreases again and eventually

Fig 2. Effect of spatial interactions on one patterning gene. (A) PI as a function of spatial interaction strength J with fixed intrinsic noise η = 2 and

two levels of extrinsic noise (legend). The arrow indicates the excess PI available to an optimally spatially coupled system, relative to an uncoupled

(J = 0) system. At nonzero extrinsic noise (ν = 0.1) PI is strongly suppressed at J < 0. (B) The average spatial pattern for three regions denoted in (A):

(i) no spatial interaction; (ii) positive J stabilizes a pattern with a boundary against noise; (iii) negative J results in an alternating pattern. In region (iv)

indicated in (A) the strength of spatial interactions forces the pattern in a uniform all ON or all OFF state that carries 0 bits of positional information. (C)

Comparison between PI with (dotted line) and without (solid line) spatial interaction as a function of intrinsic noise, η. For the spatially coupled system

an optimal Jopt has been found separately for each value of intrinsic noise η. The corresponding values of Jopt, scaled by the respective noise levels η,

are plotted in the inset.

doi:10.1371/journal.pone.0163628.g002
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drops to zero because the lattice is forced into a spatially uniform (all ON or all OFF) configura-
tion. Fig 2C summarizes the benefit of positive spatial interactions. The solid curve is the PI
without spatial interactions plotted as a function of intrinsic noise η, whereas for the dashed
curve J has been optimized separately for each value of η. The values of the optimized J as a
function of η are shown in the inset. The spatially coupled system is therefore capable of retain-
ing PI above 0.5 bits for more than an order of magnitude higher internal noise relative to the
system without spatial interaction. In sum, positive spatial coupling J has the ability to stabilize
the near optimal pattern against effects of intrinsic and extrinsic noise.
A qualitatively different pattern is formed if J is decreased to negative values. Initially, for

small negative J, PI decreases almost to zero as negative spatial interaction disturbs the readout
of the morphogen signal. Beyond the minimum, PI increases again and the system generates a
pattern in which neighboring lattice sites alternate betweenON and OFF states (Fig 2B(iii)). This
is an alternative strategy for encoding PI: the system now distinguishes between even and odd
lattice positions instead of an anterior and a posterior segment.While in principle both patterns
can encode a full bit of PI, we will see that the alternating pattern is less robust against noise.
For the alternating pattern to form correctly it is necessary that the ON/OFF sequence is

faithfully propagated through the bulk and that the morphogen signal can reliably break the
symmetry between the two possible alternating patterns (if both patterns are equally likely, PI
goes to zero). The condition for robust propagation depends on intrinsic noise. Breaking the
symmetry is, on the other hand, highly susceptible to extrinsic noise, i.e., fluctuations in the
morphogen signal. Consider, for example, the case of the linear gradient, which exerts the
strongest bias at the anterior- and posterior-most sites. The ability to reliably break the symme-
try depends on the anterior site consistently experiencing a stronger bias towards ON than the
second site (which in an alternating pattern should be OFF), i.e., the mean difference in the
morphogen signal between the first two sites needs to be larger than the typical strength of
extrinsic fluctuations in the signal, hm(x = 1) −m(x = 2)i> ν, otherwisePI of the alternating
pattern will be severely impaired. A similar argument can be made for the influence of intrinsic
noise. Even if spatial interaction is strong enough to allow only strictly alternating patterns, it is
still possible that the entire pattern flips to its inverse due to intrinsic fluctuations. Again, the
ability of the system to select between the two possible patterns depends on the difference of
the mean values at neighboring lattice site compared to the intrinsic noise level.
How does the optimal strategy for a single patterning gene depend on the shape of the mor-

phogen signal? To investigate this, we consider a set of exponential shapes for the morphogen
signalm(x), parametrized by a a decay parameter, χ. For χ� 1, we recover the linear morpho-
gen signal discussed above, while for larger χ the morphogen signal is increasingly concen-
trated at the anterior, as shown in Fig 3A. Fig 3B shows PI carried by a system with one gene as
a function of χ and coupling strength J. Because localizedmorphogen signals can reliably break
the symmetry of an alternating pattern, high PI can be achieved with a combination of negative
J and large χ. In contrast, patterns that form a boundary (with J> 0) are efficient if the mor-
phogen signal extends throughout the system. Consistent with our first observation, a system-
atic survey in Fig 3C shows that small additions of extrinsic noise severely lower PI carried by
the alternating pattern while leaving the boundary pattern almost unaffected.
These observations can be summarized in a phase diagram, shown in Fig 3D. The diagram,

constructed for zero extrinsic noise (ν = 0), divides the plane spanned by intrinsic noise η and
morphogen shape parameter χ into a region where negative spatial interaction is optimal and a
region where positive spatial interaction is optimal. For very low intrinsic noise, the alternating
pattern generally outperforms the boundary pattern. As intrinsic noise increases, the optimal
patterning strategy depends on the form of the gradient: for a spatially extended gradient the
boundary pattern is optimal, whereas for a gradient concentrated at the boundary the alternating
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pattern is optimal. For sufficiently high intrinsic noise, the boundary pattern always outperforms
the alternating pattern, even for gradients concentrated at the boundary. Adding extrinsic noise
generally shifts the boundary in the phase diagram to favor positive spatial interactions.

Optimal patterning with multiple interacting genes can establish a stable

combinatorial code for position

Which patterns optimally encode positional information in systems with multiple patterning
genes? The French Flag model proposes a cascaded activation of the genes in response to the

Fig 3. Effect of gradient shape on PI carried by one patterning gene. (A) Morphogen signal profiles, mχ(x), for different shape parameters, χ,
interpolate between a linear profile and a profile strongly concentrated at the anterior boundary. (B) PI carried by one patterning gene as a function of

spatial interaction strength J and shape parameter χ. The intrinsic noise is set to η = 1.25, with zero extrinsic noise. (C) Same as (B), with extrinsic

noise added. While PI in the regime of positive spatial interactions is almost unchanged, PI for negative spatial interactions is greatly diminished. (D)

Phase diagram (at ν = 0) depicting for which values of intrinsic noise and gradient shape negative or positive coupling (and thus the resulting

boundary or alternating pattern) is optimal.

doi:10.1371/journal.pone.0163628.g003
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morphogen signal. For two binary genes this would lead to a pattern with three separate states
(the “Tricolore” of the French Flag) and a maximal PI of I(σ; x) = log2(3)� 1.59bits. In con-
trast, we know from the arguments made above that an optimal pattern with two binary genes
should have PI of 2 bits, at least with vanishing intrinsic and extrinsic noise. In such a pattern
all possible expression states would be realized and evenly distributed throughout the lattice.
For two binary genes, (σ1, σ2), there are four different possible states: (ON,ON), (ON,OFF),
(OFF,ON) and (OFF,OFF); note that one of the mixed states is missing in the French Flag,
which is why it has lower PI. We will refer to PI-maximizing binary patterns for K genes, where
all 2K states occur with equal probability in the pattern, as “Counter” patterns. A Counter pat-
tern is an example of a combinatorial code, where position can only be decodedproperly when
the readout mechanism has simultaneous and complete access to the local expression states of
all K genes.
We can ask two fundamental questions about Counter patterns. First, can such patterns be

generated in a model where genes interact locally in a pairwise fashion and are spatially cou-
pled, as assumed by Eq (4)? Second, Counter patterns are clearly optimal when noise is vanish-
ing; are they optimal also when noise is present? If not, what are the optimal patterns in that
case?
To investigate these questions we optimize the parameters of our model for two and three

genes to find patterns that maximize PI for different levels of noise. Specifically, we vary all
interactions in the system, both spatial (Jαα) and regulatory (Jαγ), as well as the parameters that
prescribe how each gene couples to the morphogen signal ({nα, Eα}). For the case of two (three)
patterning genes, this amounts to a total of 9 (15) parameters; we use stochastic optimization
to carry out PI maximization (see S2 Appendix for details). As with the single gene case, we
assume a linear morphogen signal,m(x). The only remaining dependence of our results is thus
on the strength of the intrinsic (η) and extrinsic (ν) noise.
When the noise level is low enough, we find that one of the genes always takes on strongly

negative spatial interaction, Jαα< 0, to generate an alternating pattern. This gene does not
interact with the others, and contributes one bit (in the low noise limit) to the total PI. There
can only be one such gene in the pattern, as any subsequent alternating gene (with the same or
opposite polarity) would be redundant with the first one and thus provide no further increase
in PI. As this strategy to increase PI by one bit is trivially available to any patterning system at
low noise and does not occur at high noise, we restricted our subsequent search only to cases
where spatial interactions are restricted to be positive, Jαα> 0, mimicking spatial averaging
induced by diffusion or active transport of patterning gene products.
Fig 4A shows the maximal PI carried by two binary genes as a function of intrinsic noise, η.

Characteristic examples of corresponding output patterns are shown in Fig 4B. As expected,
the optimal pattern at low noise is a Counter, realizing each of the four possible expression
states in an equally sized spatial fraction. A network schematic illustrating the optimized
parameters is depicted in Fig 4C. As noise increases, the values of optimal parameters undergo
an abrupt change and the optimal pattern changes from a Counter to a French Flag, encoding
only three states (region (ii)). At the boundary between the two regions there is a visible kink in
the PI curve. Continuations of the two coding strategies into the respective other noise regime
are depicted as dotted curves in Fig 4A. If the noise level is increased even further, the optimal
network changes its coding strategy again and generates a pattern in which both genes redun-
dantly form a boundary in the center (region (iii)).
What are the respective influences of spatial and local gene-gene interactions on the forma-

tion of patterns and encoding of positional information? To study this question, Fig 4D com-
pares the curve of Fig 4A with curves for PI carried by systems which are optimized without
spatial interactions (dashed curve) and without local interactions (dotted curve).Without local
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interaction between genes the maximally achievable PI is about 1.59 bits, corresponding to the
three-state French Flag pattern. This observation can be generalized: if a monotonous input
gradient acts on the target genes independently via a monotonous response function (e.g., a sig-
moid, as here), then each gene can form only a single transition or boundary. In that case, the
French Flag pattern indeed encodes the maximally achievable PI. If, however, the genes interact
with each other, their response functions receive multiple inputs and complex patterns are pos-
sible. For instance, the system generating the Counter pattern (Fig 4C(i)) has strong mutual
repression between the two genes, which switches the lower gene to the inverse of the upper
gene where the strength of the morphogen signal is low. Systems without spatial interactions,
in contrast, can and do carry as much PI as the fully interacting system when the noise is van-
ishing. As the noise level increases, however, the fully interacting system always outperforms
the system without spatial coupling, demonstrating the important role of spatial noise averag-
ing. At high noise, the optimal boundary pattern is identical for both genes, providing two
redundant read-outs of the morphogen signal. In this case, the local gene-gene interaction is

Fig 4. Positional information carried by two and three patterning genes with a linear morphogen signal. (A) PI as a function of intrinsic noise

level. For each noise level η, all parameters of the network have been optimized. The depicted regions (i)-(iii) indicate different numbers of states

encoded by the resulting patterns. At each boundary (non-optimal) continuations of the coding strategy in the neighboring region are depicted as

dotted curves. (B) Characteristic patterns of the different regions in (A). (C) Schematics of the network parameters for the different coding strategies.

Pointed arrows denote positive interaction, blunted arrows denote negative interaction. The thickness of the arrows indicates their strength. (D)

Comparison of PI carried by systems without spatial interactions and systems without local gene-gene interactions as a function of intrinsic noise. For

each noise level the parameters of each system have been optimized separately. (E) PI carried by three patterning genes as a function of intrinsic

noise. (F) Characteristic three-gene patterns for the different regions in (E).

doi:10.1371/journal.pone.0163628.g004
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positive and strong, providing further noise averaging (across the two readout genes), beyond
that due to spatial interactions.
Maximization of PI in a system with three genes corroborates our results for two genes.

Again, as intrinsic noise increases, the optimal strategy switches abruptly at particular noise
values, marking a transition to a code that specifies one less distinct expression state. Between
transitions, the number of distinct states that the network can generate is held constant, but
information nevertheless decreases smoothly as increasing noise leads to more ambiguity in
the mapping between position and gene expression state (Fig 4E). Three binary genes can gen-
erate a maximum of eight distinct expression states, which is achieved by a three gene Counter
pattern (Fig 4F(i)). Between the optimal Counter pattern and the fully “redundant” pattern
encoding two states, we find a variety of other strategies, including French Flag, that specify an
intermediate number of states (Fig 4F(ii)–4F(iv)). The Ising-model-based framework for
binary interacting genes is clearly sufficiently rich to generate this variety, including the theo-
retically optimal Counter. It is possible that even richer models, e.g., models allowing three-
way interactions between genes in addition to pairwise interactions, would lead to higher PI
values, possibly by beingmore robust to noise, or by allowing the Counter pattern to be easily
generated in systems with K> 3 genes.
These results are not changed significantly by the addition of extrinsic noise. Generally,

increasing extrinsic noise decreases the maximum achievable PI and can, analogously to intrin-
sic noise, lead to a change of the optimal patterning strategy. The effects of extrinsic noise can
be effectively attenuated by spatial interaction of the patterning genes. This raises the question
of how much positional information loss due to fluctuations in the input morphogen can be
avoided by a spatially interacting network of patterning genes.

Positional information of spatially interacting patterning genes can

exceed that of the morphogen signal

Can patterning genes encodemore positional information than the morphogen signal itself? In
other words, can a network generate PI starting with a noisy signal? Intuitively, both Turing
patterns and cellular automata would suggest that the answer to this question is affirmative. In
a Turing model at steady state, spatial locations are assignable to (at least) two expression
states, so that there is positional information where initially there was none. Similarly, consider
the simplest cellular automaton that proceeds along one discrete spatial dimension with a sim-
ple rule: “Read the value in the current position, increment the value by one, move one cell to the
right, write the value.” Such a cellular automaton would generate a separate cell fate (i.e., a
unique numerical value) in each position, providing maximal PI. In both cases, PI before pat-
terning appears to be zero, and after patterning has some nonzero value.
More careful thought reveals, however, that the PI was established by transforming informa-

tion that must have been present already at the beginning of the patterning process. Turing pat-
terning is a deterministicmechanism defined by a set of partial differential equations, whose
steady state solution therefore depends on the initial condition and the shape of the boundary.
While the mechanism will generically produce domains with a typical lengthscale separated by
sharp borders, the positions of the borders will shift with the initial and boundary conditions.
Specifying initial and boundary conditions, however, requires information: more bits for more
precise specification.Although the formal link between this information and the resulting PI
depends on the system, it is clear that an ensemble of Turing systems with arbitrary initial /
boundary conditions will not yield an ensemble of patterns with appreciable PI. This is even
more obvious in the cellular automaton example. To apply the proposed rule and generate the
pattern, one needs to specify the initial condition: the numerical value in the cell at position
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one. Suppose that there is N possible lattice positions. Specifying the initial value, θ0, for posi-
tion one then amounts to providing I0 = log2 N bits of information for the automaton to start
working. The PI of this initial pattern (with the first cell specified, and all others unspecified)
is low. After the automaton finishes, allN positions are uniquely specified, yielding PI of
I(σ; x) = log2 N bits. The automaton has therefore taken the initial information I0 and “spread
it over space” to generate PI of equal amount. If, however, the initial value is specifiedpoorly
(i.e., probabilistically, with close to uniform distribution), the resulting ensemble of patterns
will have very small PI.
These restrictions trace back to the Data Processing Inequality (DPI) [27], a central result in

information theory. If initial/boundaryconditions for a deterministic patterning process are
specifiedwith finite precision (e.g., they are noisy across repetitions of the same pattern genera-
tion), then the resulting patterns can again be seen as draws from the distributionQyð~σÞ,
where θ are now interpreted as the true boundary / initial conditions, which, however, enter
the patterning dynamics with some noise. This is much like the extrinsic noise that corrupts
the morphogen signal in our Ising-like model. In the case of the simple cellular automaton, it is
easy to convince oneself that the final PI must be equal to the initial information, I0. The corre-
sponding patterning can be seen as a Markov chain: y0 !

~y0 ! ~s, where θ0 is the “true” initial
condition, ~y0 is its corrupted version, which corresponds to the initial condition not being
specifiedwith perfect precision, and~s is, as before, the resulting pattern. In this case, DPI states
that Iðy0;~sÞ � Iðy0;

~y0Þ—the precision by which the initial state is specified limits the repro-
ducibility of the resulting pattern. Since in this example Iðy0;~sÞ ¼ Iðs; xÞ, PI is limited by the
specification of the initial state. The same type of argument applies generally, although the
bounds for more complex systems may be difficult to derive.
What limits does the Data Processing Inequality imply for our model system? First, unlike

the cellular automaton and the Turing mechanism examples above, our patterning takes place
at equilibrium, so that the dependence on initial conditions is lost. When spatial interactions in
our model are set to zero, the expression states at individual locations of the lattice become
independent of each other. The patterning can then be seen as a Markov chain, x!m! σ,
and DPI requires that I(σ; x)�I(m; x), i.e., that PI of the patterning genes must be smaller or
equal to PI of the morphogen signal. In this case, the network, no matter how complicated,
cannot provide more PI than the morphogen signal already has.
How does this picture change when we allow spatial interactions? Fig 5 compares PI carried

directly by the morphogen signal with PI carried by an optimized network of three patterning
genes responding to that morphogen signal. For steep gradients or high extrinsic noise, PI of
the patterning genes can indeed exceed PI in the morphogen signal itself, which appears to be
in violation of DPI.
To explain this observation,we turn to the theoretical question of whether a patterning net-

work downstream of the morphogen signal can contribute to encoding of PI beyond the infor-
mation already present in the signal. More specifically, given a morphogen signalm and
several patterning genes σ responding to it, is it possible that I(σ,m; x)> I(m; x)? Here,
I(σ,m; x) is PI jointly carried by the simultaneous state of both σ andm about position x. Joint
information can be split up as follows:

Iðσ;m; xÞ ¼ Iðm; xÞ þ Iðσ; xjmÞ ; ð10Þ

where the last term is the conditional mutual information

Iðσ; xjmÞ ¼ log
Pðσjm; xÞ
PðσjmÞ

� �� �

m;σ;x

: ð11Þ
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In this context, I(σ; x|m) is PI carried by the pattern σ additional to that in the morphogen sig-
nalm. It is zero if and only if P(σ|m, x) = P(σ|m). It is easy to see that this condition is met pre-
cisely when spatial interactions are zero. Then, σ(x) depends only on its local input,m(x), and
not directly on its location within the lattice. In other words, position, the morphogen signal,
and the patterning genes form a Markov (dependency) chain, x!m! σ. If, in contrast, pat-
terning genes are spatially coupled, σ(x) additionally depends on the state of σ at neighboring
lattice sites, which in turn respond also to their respective local morphogen signals. In that
case, position, the morphogen signal, and the patterning genes do not form a Markov chain
and DPI does not apply.
Our derivation and numerical results show that a spatially coupled network of genes down-

stream of the morphogen signal can extract PI in excess of that carried by the morphogen sig-
nal itself. Without spatial interactions, this is impossible in our setup, regardless of the
complexity of local gene-gene interactions. Note that spatial interactions do not necessarily
lead to an increase in PI, but can do so if optimally chosen, in the regime where they permit
spatial noise averaging.

Long-range interactions enable Turing-like pattern formation, and make

patterns robust to system size and morphogen signal variations

Is there a role for spatial interactions beyond noise averaging? To address this question, we
start by studying a seemingly unrelated problem of whether a Turing-like pattern generating
mechanism also exists in our discrete setup. After establishing that is indeed the case, we pro-
ceed to show that in an appropriate limit Turing-like pattern generating capability also confers
two biologically desired properties onto our system: the ability of the resulting patterns to auto-
matically scale with the system size, and robustness to systematic perturbations of the morpho-
gen signal, a special case of “canalization” that has been discussed in the biological literature
[51–54].
A distinguishing characteristic of Turing patterning is the emergence of patterns with an

intrinsic length scale, which is set by the diffusion ranges of the two reacting species of the
model. Until now, our model did not exhibit this property: spatial scale was either slaved to the
external morphogen signal, as in the French Flag model, giving rise to boundary patterns; or
the scale was one lattice spacing, as in the alternating pattern, where genes switched from ON to

Fig 5. Comparison of PI in input gradient and output pattern. PI in m (solid) and σ (dashed) are shown for three different input noise levels ((A)-

(C)) as a function of χ, parametrizing the gradient shape (cf. Fig 2A). The computation of Iðm; xÞ is described in S3 Appendix.

doi:10.1371/journal.pone.0163628.g005
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OFF at neighboring sites. Is it possible to generate patterns in which blocks of sites with a con-
trollable intrinsic length scale alternate betweenON and OFF states? To test if this behavior can
arise in our model, we introduce long range spatial interactions. In particular, we assume that
the spatial interaction strength between a gene α at lattice site i and at lattice site j decreases
exponentially with distance: Jaaði; jÞ ¼ ~J aa exp ð� ðji � jj � 1Þ=rÞ, as in Fig 6A. Here, ~J defines
the amplitude of the interaction, which can also be negative. The parameter r defines the inter-
action range, such that r! 0 leads to nearest-neighbor interactions and r!1 leads to a uni-
form, all-to-all coupling.
To find a Turing-like pattern, we considered two mutually repressing genes, one of which

interacts in a strong positive nearest-neighbor fashion, whereas the other has weak long range
repression (Fig 6B). The resulting patterns for several interaction ranges r are shown in Fig 6C.
The system is clearly able to generate a blockwise alternating pattern with a length scale that is
controlled by the interaction range, r. We emphasize that the only morphogen signal in this
case is a strong positive bias at the anterior boundary, experiencedby the first lattice site, pro-
vided to break the symmetry between the resulting pattern and its inverse. This explicitly dem-
onstrates that the block length scale is not inherited from the shape of the morphogen signal,
but is intrinsic to the interactions between the patterning genes. The same effect can be gener-
ated with a single gene, if we allow spatial interactions to change sign with distance (e.g., posi-
tive interaction at the nearest-neighbor range, and negative interaction with lattice sites at
greater distance).
Can we combine the ability of the Turing-like mechanism to generate intrinsic patterns

with the network architecture that yields high-PI Counter patterns? The Turing mechanism
has an attractive property which makes use of the morphogen signal only to break the symme-
try between two possible intrinsically stable patters that are inverses of each other; in all other
respects, the pattern is invariant, or robust, to changes in the morphogen signal magnitude or
shape. The notion that external signals simply serve to select one of the few stable patterns
(attractors) of the system, while the properties of the patterns are generated by intrinsic interac-
tions, is known as “canalization” in the biological literature, but also has a very long history in
neuroscience and statistical physics. Another feature of patterning that appears beneficial in a
biological context is the ability of the system to translate small variations in the overall system
size into proportional variations in the resulting gene expression pattern, i.e., to scale the pat-
tern system size. If the system exhibits such “scaling,” gene expression features, for instance
boundaries betweenON and OFF states, will occur at constant fractional coordinates in the sys-
tem, rather than at constant absolute coordinates. Here we test whether elements of Turing-
like patterning can provide “scaling” and “canalization” properties to our Counter networks.
Before proceeding,we give an intuitive account as to why negative long range spatial inter-

actions can be of benefit. A particular property of Counter patterns is their balanced use of ON
and OFF expression states. Upon perturbations to the morphogen signal or shifts in pattern
position because of system size changes, this balance will be broken. We are thus looking for a
modification to the energy function, Eq (2) (alternatively, Eq (4) for multiple genes), that
would penalize any deviation away from such balance. The simplest way to implement this is

to add a term of the form � ~Jð
XN

x¼1
sðxÞÞ2 (or equivalent term for multiple genes). The term

in parenthesis will be zero if the ON and OFF states are exactly balanced, and will be positive on
any deviations in balance.When ~J is chosen to be negative, such deviations are disfavored. If
one analytically expands the square and takes into account that σ 2 [−1, 1], one finds that the
term corresponds to a global, all-to-all (long range) negative interaction between any pair of
locations in the lattice. Crucially, such a term is an additive addition to an optimized Counter
network: because the optimized Counter exhibits the ON / OFF balance already, the new term
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doesn’t change the Counter state itself, but only makes states deviating from it less likely. Real-
istically, the strength and range of such interaction cannot be made infinite; the relevant ques-
tion is therefore whether canalization and scaling can be obtained with a ~J of finite magnitude
and range.
We took the optimized two-gene Counter network and equipped it with long range negative

spatial interactions, as shown in Fig 7D.We first tested whether this addition confers the scaling
property to our Counter network. To this end, we consider a morphogen signalm(x) which
spans its dynamic range over a default system size of N = 60 lattice sites. We model variations of
the system size without scaling of the gradient by cutting the system and the gradient short by
10 lattice sites or extending it by 10 lattice sites at constant value of the morphogen signal in the
posterior (Fig 7A). The corresponding gene expression patterns of the two-gene Counter net-
work are depicted in Fig 7B. Without new long range spatial interactions, variations in system
size do not result in the scaling of the pattern, as expected; instead, boundaries are fixed to their
absolute positions. In contrast, when we add negative long-range interactions to each gene in
our network, the pattern scales approximately, as shown in Fig 7C. Specifically, the central
boundary is preservedwith large precision, while the boundaries at 1/4 and 3/4 shift marginally.
Next, we examine the robustness to systematic perturbations in the morphogen signal in

detail.We introduce an additive offset � to the morphogen signal, ~mðxÞ ¼ mðxÞ þ �, and ask
about the resulting gene expression patterns with or without negative long-range spatial interac-
tions. Note that additive perturbations in the morphogen signal map, in the thermodynamic
model of gene regulation, to multiplicative perturbations in the morphogen concentration, c(x).
Such perturbations can be interpreted as variations in the morphogen dosage, and robustness to
such perturbations has been a focus of several experimental studies. Fig 7E demonstrates that
strong long-range spatial interactions indeed successfullymake the pattern robust to (large)
changes in �, while in the absence of such interactions the patterns experience large shifts with �.

Fig 6. Long range spatial interactions can generate Turing-like patterns with an intrinsic length scale. (A) Spatial interaction strength of the

first gene, J11ði; jÞ ¼ ~J11expð� ðji � jj � 1Þ=rÞ, as a function of distance |i − j| between lattice sites for different interaction ranges, r. (B) Schematic

diagram of interactions in an extended model of patterning that permits long-range interactions. Interaction strength is indicated by the thickness of

the arrows. Two genes in the model interact with a strong locally repressive interaction. The first gene has weak long range repressive spatial

interactions; the second gene has strong nearest-neighbor positive interactions. (C) Patterns generated by the two genes for three different

interaction ranges, r. The expression state of the first gene is pinned to ON at the anterior boundary by a strong morphogen signal, which is zero

anywhere else. The length scale of the resulting pattern depends on the interaction range, r, of the first gene.

doi:10.1371/journal.pone.0163628.g006
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Fig 7. Long-range interactions can stabilize Counter patterns against variations in system size and morphogen signal. (A) Morphogen

signal for three different system sizes, N = 50, 60, 70. Posterior boundary of the system is depicted as a dashed line. We consider how a two-gene

Counter network, optimized for N = 60, changes upon variations in system size. (B) Resulting patterns for a Counter network for three system sizes

depicted in (A). The pattern does not scale with the system size; instead, boundaries form at the same absolute location. (C) Resulting patterns for

the same network as in (B) with additional negative long range interactions. Pattern shifts with system size are largely suppressed. (D) Spatial

interaction strength as a function of distance. Nearest neighbors are interacting positively, while sites further away are coupled negatively with

exponentially decaying strength of maximal amplitude ~J. (E) We perturb the morphogen signal with a uniform perturbation �, ~mðxÞ ¼ mðxÞ þ �.

Example patterns generated by the optimal Counter two-gene network, at different strengths of long range interactions, ~J, and different morphogen

signal perturbation magnitudes, �. At � = 0, irrespective of ~J, the system generates the optimal pattern. When |�| increases, the patterns shift

(providing less PI) with weak ~J, but when ~J is strong, the pattern is robust to such perturbations. (F) To quantify the robustness to � perturbations, we

compute the overlap, S, of the resulting pattern with the optimal Counter pattern. The overlap is shown as a function of � and ~J; for strong negative ~J,

the overlap is high irrespective of the perturbation strength, �. (G) Susceptibility to small perturbations � as a function of ~J shows transition into a

robust regime, χm! 0, as ~J increases in magnitude.

doi:10.1371/journal.pone.0163628.g007
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To quantify the stability of the pattern, we compute the overlap, Sð�Þ ¼ 1

N h~σi�¼0 � h~σi�, as
a function of the perturbation strength. An overlap of 1 means that under the perturbation
the resulting pattern is identical—therefore fully robust—to the (Counter) pattern without
perturbation; an overlap 0 means that on average half the expression states are inverted,
while an overlap of -1 indicates that the perturbedpattern is the exact inverse of the unper-
turbed one. Mapping out the overlap as a function of perturbation strength, �, and the long
range interaction magnitude, ~J , in Fig 7E, we see that with sufficient, but still finite, ~J , the pat-
terns can be made almost completely robust to large morphogen signal perturbations. A simi-
lar differential analysis in Fig 7F shows how the susceptibility of the gene expression pattern
to small morphogen signal perturbations vanishes as the strength of the long range interac-
tions increases.
In sum, we have shown that “canalization” and “scaling” in our toy model system can be

provided by the addition of long range negative spatial interactions. Curiously, these interac-
tions can be added to a previously optimized Counter network without any need to change the
optimized parameters, because they do not affect the energy or the identity of the Counter pat-
tern ground state. As in the Turing model, these interactions stabilize the ground state. Unlike
the Turing model, however, the Counter pattern itself is generated solely by a joint action of a
French Flag-like morphogen signal readout and local gene-gene interactions.
Should the long-range negative interactions that confer robustness also follow from an

information optimization principle? Recalling our introductory remarks, robustness to, e.g.,
morphogen dosage � could be measured directly as a low value of information Ið�;~σÞ, implying
that changes in � would not affect the expression patterns. The question is whether to gain
robustness one needs to explicitly maximize PI while jointly minimizing Ið�;~σÞ, or whether it
is sufficient to maximize PI only and get robustness as an automatic consequence. Due to the
numerical complexity of the problem we did not perform such a large scale joint optimization
here, but at non-zero intrinsic or extrinsic noise long-range interactions will stabilize the
Counter pattern and thus maintain high PI beyond what could be achieved by local interac-
tions alone. In the PI-maximization framework which we are proposing here, it thus seems
that maximization of PI alone will also yield robustness, so long as the noise statistics under
which the optimization is carried out contain the kinds of perturbations to which the system
should be robust. As a conjecture, we suggest that, were we capable of carrying out large-scale
optimization numerically, we would find optimal solutions with long-range negative couplings
that yield canalization if our extrinsic noise also consisted of correlated additive fluctuations
(that mimic the overall additive � shifts in the morphogen signal considered above).

Discussion

We introduced a tractable toy model of patterning that extendsWolpert’s French Flag model,
in which several two-state genes respond to a morphogen signal based on a fixed set of thresh-
olds. Our extension allows these genes to cross-regulate each other, to interact spatially (e.g.,
due to diffusion or cell-cell signaling), and to include the effects of both intrinsic noise (e.g.,
due to stochasticity in gene expression) and extrinsic noise (e.g., due to variability in the mor-
phogen signal). A physics equivalent of our model is a set of coupled 1D Ising chains respond-
ing to inhomogeneous external field and this link to statistical physics allows us to perform
most of our computations exactly. In this well-defined setup we ask which patterns of gene
expression encode the maximal amount of positional information; our enquiry is set in an opti-
mization framework, where for each choice of noise magnitude and morphogen signal profile
we look for the optimal pattern of gene-gene and spatial interactions, and examine the resulting
spatial patterns of gene expression.
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We find that with vanishing noise magnitude, the optimal gene expression pattern is the so-
called Counter, where each of the 2K binary patterns that can be realized by K genes appears
equally often along the spatial coordinate; this combinatorial code for position is, on informa-
tion-theoretic grounds, the best achievable solution, independently of the patterning model.
The Counter pattern can be realized if each patterning gene can be activated at a different
threshold, and if the local gene-gene interactions can be adjusted; the optimal interactions are
predominantly repressive. Increasing the noise quickly perturbs the Counter pattern, until the
optimal pattern switches from Counter to French-Flag-like set of stripes, and finally, to a set of
redundant genes that are all activated at the same threshold. Addition of short-range positive
spatial interactions of intermediate strength makes the optimal patterns substantially more sta-
ble against increasing noise; qualitatively, this effect is analogous to noise averaging due to dif-
fusive coupling in continuous systems. Strong short-range negative interactions generate an
alternating pattern of gene expression which robustly separates odd from even rows of cells, a
strategy that can yield one additional bit of PI when noise is low.
Qualitatively new effects emerge if the spatial interactions can be long-ranged.We observe

that our discrete, Ising-model-basedmodel exhibits Turing-like patterns whose spatial scale is
set by the range of the repressive interactions. Surprisingly, we find that the energy function,
optimized to yield Counter patterns with high positional information, can be modified by the
addition of strong long-range repressive interactions. This modification does not perturb the
Counter pattern, but makes it robust to changes in the morphogen dosage and to changes in
system size by producing patterns that approximately scale with system size.
Taken together, our analysis allows us to identify elements—the basic building blocks—of

positional information: adjustable thresholds as in the French Flag model to differentially drive
gene activation; local repressive interactions to generate combinatorial codes for position;
short-range positive spatial couplings to enable noise averaging and stabilize the patterns; and
long-range negative spatial couplings to provide scaling and robustness via canalization. The
optimal patterning system thus combines elements from both the French Flag model with the
elements inherent to the Turing mechanism. Furthermore, these elements need not be identi-
fied and combined by hand, but emerge from a single information-theoretic optimization prin-
ciple, and their contribution towards encoding of positional information can be individually
quantified.
The explicit purpose of this work has been to provide conceptual clarity and computational

tractability rather than a detailedmodel of any particular patterning system. In order to achieve
our goals, we had to sacrifice several crucial aspects of biological realism. First, real patterning
does not happen at equilibrium, but is rather a driven dynamical process evolving from some
initial state. Second, as the real patterning mechanisms are dynamic and might involve multiple
timescales, noise mitigationmechanisms beyond spatial averaging, e.g., temporal averaging,
should be available. Third, the assumption that expression states of patterning genes are binary
might be poor. For example, in the gap gene system inDrosophila, intermediate levels of expres-
sion are of crucial importance [25]. On the other hand, regulatory circuits where individual
genes have strong positive self-interactions and thus exhibit bistability could be well captured by
our model. Fourth, the Ising framework assumes a particular (Boltzmann) distribution over
expression states and thus leaves no degree of freedom to describe intrinsic stochasticity beyond
its magnitude; in contrast, gene expression noise in real regulatory networks has a complicated
relation to the mean expression [55]. Furthermore, because our model is a statistical physics
model at equilibrium, interactions between the genes are necessarily symmetric, which does not
need to be the case in realistic gene regulatory networks. Last but not least, we here follow previ-
ous models of embryonic development in that we consider patterns along a single (one-dimen-
sional) axis of the embryo, assuming independence from the patterns along the other axes
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[2, 16]. An interesting direction of future research would be to study patterns with high posi-
tional information in more than one dimension and in different geometries.
Despite these approximations, our model qualitatively recapitulates many aspects of the

optimal patterning solutions that have been reported previously in more realistic setups, where
the required computations are substantially more complicated [36–40, 50]. This is in line with
our previous observations that many mechanistic details that define the pattern-forming sys-
temQ do not matter so long as the system has the ability to access patterns that achieve high
positional information (which can be found by optimization). Pattern-forming processes can
be complicated and can include spatial interactions between nearby cells or even long-range or
global interactions. Ultimately, however, these systems generate patterns whose power is quan-
tified by a local quantity, the positional information I, which is sufficient to summarize the lim-
its to readout error. For optimal solutions to the patterning problem, this locality of positional
code is crucial: there are many possible pattern-forming systems, but only in a restricted subset
do we expect high information about global position to be available locally.

Supporting Information

S1 Appendix. Error bound on an estimator of position.A lower bound on the error of a posi-
tional estimator with limited positional information is derived.
(PDF)

S2 Appendix. Computation of positional information in an Ising model.The effect of noise
in the input field on an Ising model is approximated. Furthermore, methods to compute posi-
tional information in an Ising model by transfer matrices and Monte Carlo sampling are out-
lined.
(PDF)

S3 Appendix. Computation of positional information in a discretemorphogen field.The
positional information in a discrete morphogen field with Gaussian noise is computed.
(PDF)

Acknowledgments

The authors would like to thank Thomas Sokolowski and Filipe Tostevin for helpful discus-
sions. This research was supported by the German Excellence Initiative via the program
“Nanosystems Initiative Munich”, the German Research Foundation via the SFB 1032 “Nanoa-
gents for Spatiotemporal Control of Molecular and Cellular Reactions” and by the Austrian
Science Fund (FWF P 28844).

Author Contributions

Conceived and designed the experiments:GTUG.

Performed the experiments:PH.

Analyzed the data: PH.

Wrote the paper:PH UGGT.

References
1. Driever W, Nüsslein-Volhard C. The bicoid protein determines position in the Drosophila embryo in a

concentration-dependent manner. Cell. 1988; 54(1):95–104. doi: 10.1016/0092-8674(88)90183-3

PMID: 3383245

Enhancing Positional Information by Spatial and Gene Regulatory Interactions

PLOS ONE | DOI:10.1371/journal.pone.0163628 September 27, 2016 22 / 25

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0163628.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0163628.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0163628.s003
http://dx.doi.org/10.1016/0092-8674(88)90183-3
http://www.ncbi.nlm.nih.gov/pubmed/3383245


2. Gregor T, Tank D, Wieschaus E, Bialek W. Probing the limits to positional information. Cell. 2007; 130

(1):153–164. doi: 10.1016/j.cell.2007.05.025 PMID: 17632062

3. Wolpert L. Positional information and the spatial pattern of cellular differentiation. J Theor Biol. 1969;

25(1):1–47. doi: 10.1016/S0022-5193(69)80016-0 PMID: 4390734

4. Dahmann C, Oates AC, Brand M. Boundary formation and maintenance in tissue development. Nat

Rev Genet. 2011; 12(1):43–55. doi: 10.1038/nrg2902 PMID: 21164524

5. Turing AM. The chemical basis of morphogenesis. Phil Trans R Soc B. 1952; 237(641):37–72. doi: 10.

1098/rstb.1952.0012

6. Drossopoulou G, Lewis KE, Sanz-Ezquerro JJ, Nikbakht N, McMahon AP, Hofmann C, et al. A model

for anteroposterior patterning of the vertebrate limb based on sequential long-and short-range Shh sig-

nalling and Bmp signalling. Development. 2000; 127(7):1337–1348. PMID: 10704381

7. Tickle C. Making digit patterns in the vertebrate limb. Nat Rev Mol Cell Biol. 2006; 7(1):45–53. doi: 10.

1038/nrm1830 PMID: 16493412

8. Sheth R, Marcon L, Bastida MF, Junco M, Quintana L, Dahn R, et al. Hox genes regulate digit pattern-

ing by controlling the wavelength of a Turing-type mechanism. Science. 2012; 338(6113):1476–1480.

doi: 10.1126/science.1226804 PMID: 23239739

9. Raspopovic J, Marcon L, Russo L, Sharpe J. Digit patterning is controlled by a Bmp-Sox9-Wnt Turing

network modulated by morphogen gradients. Science. 2014; 345(6196):566–570. doi: 10.1126/

science.1252960 PMID: 25082703

10. Bray SJ. Notch signalling: a simple pathway becomes complex. Nat Rev Mol Cell Biol. 2006; 7(9):678–

689. doi: 10.1038/nrm2009 PMID: 16921404

11. Hamada H, Watanabe M, Lau HE, Nishida T, Hasegawa T, Parichy DM, et al. Involvement of Delta/

Notch signaling in zebrafish adult pigment stripe patterning. Development. 2014; 141(2):318–324. doi:

10.1242/dev.099804 PMID: 24306107

12. Gregor T, Fujimoto K, Masaki N, Sawai S. The onset of collective behavior in social amoebae. Science.

2010; 328(5981):1021–1025. doi: 10.1126/science.1183415 PMID: 20413456

13. Cooke J, Zeeman EC. A clock and wavefront model for control of the number of repeated structures

during animal morphogenesis. J Theor Biol. 1976; 58(2):455–476. doi: 10.1016/S0022-5193(76)

80131-2 PMID: 940335

14. Palmeirim I, Henrique D, Ish-Horowicz D, Pourquié O. Avian hairy gene expression identifies a molec-
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