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Abstract

This dissertation concerns the automatic verification of probabilistic systems and programs with

arrays by statistical and logical methods. Although statistical and logical methods are different

in nature, we show that they can be successfully combined for system analysis.

In the first part of the dissertation we present a new statistical algorithm for the verification

of probabilistic systems with respect to unbounded properties, including linear temporal logic.

Our algorithm often performs faster than the previous approaches, and at the same time requires

less information about the system. In addition, our method can be generalized to unbounded

quantitative properties such as mean-payoff bounds.

In the second part, we introduce two techniques for comparing probabilistic systems. Prob-

abilistic systems are typically compared using the notion of equivalence, which requires the

systems to have the equal probability of all behaviors. However, this notion is often too strict,

since probabilities are typically only empirically estimated, and any imprecision may break

the relation between processes. On the one hand, we propose to replace the Boolean notion of

equivalence by a quantitative distance of similarity. For this purpose, we introduce a statistical

framework for estimating distances between Markov chains based on their simulation runs,

and we investigate which distances can be approximated in our framework. On the other hand,

we propose to compare systems with respect to a new qualitative logic, which expresses that

behaviors occur with probability one or a positive probability. This qualitative analysis is robust

with respect to modeling errors and applicable to many domains.

In the last part, we present a new quantifier-free logic for integer arrays, which allows us to

express counting. Counting properties are prevalent in array-manipulating programs, however

they cannot be expressed in the quantified fragments of the theory of arrays. We present a

decision procedure for our logic, and provide several complexity results.
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Dejan Ničković. Parts of the above-mentioned publications also appear in Chapters 1, 2, and 8.



vii

Table of Contents
Abstract iv

Acknowledgments v

List of Publications vi

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Probabilistic Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Programs with Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Formal Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Preliminaries 14

2.1 Discrete Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Probabilistic Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Statistical Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Statistical Model Checking for Unbounded Temporal Properties 28

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Solution for Reachability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4 Solution for Linear Temporal Logic . . . . . . . . . . . . . . . . . . . . . . . 42

3.5 Solution for Mean Payoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.6 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.7 Theoretical Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 Linear Distances between Markov Chains 56

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59



viii

4.3 Framework for Linear Distances . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4 Inestimability: Total Variation Distance . . . . . . . . . . . . . . . . . . . . . 63

4.5 Estimability: Finite-Trace Distance . . . . . . . . . . . . . . . . . . . . . . . . 67

4.6 Other Distances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5 Qualitative Analysis of Probabilistic Systems 78

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.3 Games and Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.4 Combined Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.5 Qualitative Logics for Markov Decision Processes . . . . . . . . . . . . . . . . 91

5.6 Characterization of Qualitative Simulation . . . . . . . . . . . . . . . . . . . . 93

5.7 Counterexample Guided Abstraction Refinement for Combined Simulation . . 98

5.8 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6 Array Folds Logic 115

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.3 Syntax and Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.4 Motivating Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.5 Theoretical Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.6 Decision Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.7 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7 Formal Testing: A Brief Summary 141

7.1 Compositional Specifications for ioco Testing . . . . . . . . . . . . . . . . . . 141

7.2 Complete Composition Operators for ioco-Testing Theory . . . . . . . . . . . 142

7.3 Abstraction-driven Concolic Testing . . . . . . . . . . . . . . . . . . . . . . . 142

8 Conclusion 143

Bibliography 145



1

1 Introduction

1.1 Motivation

Software systems have become ubiquitous in modern society, with applications ranging from

mobile devices to kitchen appliances. We are also witnessing new aspects of our lives being

controlled by software, such as autonomous vehicles, smart homes, and wearable technology.

At the same time, the complexity of software is growing rapidly, with modern devices having

functionality that was difficult to imagine several decades ago.

The high complexity of software systems makes them more likely to contain errors. Thus, as

we become more dependent on software, there is an increasing pressure to ensure its correctness.

This motivates the field of formal methods, which is the science of reasoning about software

systems and proving their correctness. Formal methods are based on paradigms such as model

checking [9; 10], abstract interpretation [11; 12], and theorem proving [13], which leverage

mathematical techniques to analyze programs. Formal methods seek to establish a mathematical

proof that a program has a given property on every input, e.g. that the program never throws an

exception. This is in contrast to testing, which demonstrates how the program behaves only on

the tested inputs, thus cannot validate universal program properties.

Software systems often interact with the physical environment, such as hardware and sensors,

which affects their behavior. Consequently, the verification of such systems requires to model

physical aspects of the environment. This has motivated researchers to study formal methods

in the context of phenomena such as uncertainty, time, and continuous behavior. As a result,

formal methods have gone beyond the study of computer programs, and have been applied to

the analysis of diverse domains, such as cyber-physical systems [14], stochastic systems [15],
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games [16], and biological reaction networks [17].

The grand challenge of formal methods is to develop techniques that automatically verify

whether a system satisfies a correctness criterion. There is a great need for automated verification,

since systems are typically too complex to analyze their correctness manually. While many

verification approaches have been considered in the literature, the following three methods are

the most relevant to this thesis:

• Model checking is a verification method that aims to check whether a model satisfies a

property [9; 10]. The property typically describes the temporal behavior of the system, and

is specified in a modal logic such as linear temporal logic (LTL) [18]. Model checking has

been applied to the verification of various formalism, including probabilistic systems [15]

and games [16].

• In formal methods systems are usually compared using the notions of equivalence and

refinement [19; 20; 21]. Equivalence requires two systems to exhibit the same behaviors,

while refinement means that one system has at least as many behaviors as the other. On the

one hand, checking equivalence is useful when we wish to know whether one component

can be replaced by another component in a system without changing the overall behavior.

On the other hand, refinement allows us to certify that an implementation conforms to the

system specification.

• Symbolic methods aim to represent large or infinite state spaces by logic formulas. Among

many application, symbolic methods have been used for the efficient model checking of

large systems [22], to express program invariants [23; 24], and for symbolic executions of

programs [25; 26]. Symbolic methods have driven the research on logical theories and

their decision procedures [27; 28].

In this thesis, we consider the verification of two kinds of systems: probabilistic systems and

programs with arrays. Both kinds are of central interest to formal methods, motivated by the

abundance of their applications. Probabilistic behavior occurs naturally in a variety of domains,

such as engineering, economy, and biology. Also in software systems probability arises in the

form of randomization, or from the interaction with the physical environment in cyber-physical

systems. Similarly, arrays are one of the most fundamental data structures, therefore proving
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properties of program with arrays is of great importance to formal methods. The analyses of

probabilistic systems and programs with arrays are established topics, but this thesis contributes

new results to these fields.

At the first glance probabilistic systems and program with arrays seem to have nothing

in common. At closer look, however, one can notice that both types of systems extend more

classical models by unbounded behavior. Formal methods have often focused on the models

of computation that are bounded in some aspects. For instance, the classical model checking

algorithms reason about Kripke structures with a finite state space. Another example is program

analysis, which is often limited to programs with numeric data types only and cannot handle

data structures. Data structures, such as arrays, linked lists, and trees, are a convenient method

to store unbounded amount of data in a structured way. In theory, a single numeric variable is

enough to store any amount of data in a program, but data structures are much more natural for

this purpose. Thus, program without data structures in practice can store only limited amount

of data in their numeric variables. Probabilistic systems and programs with arrays extend these

classical models by unbounded behavior. Probabilistic systems include unbounded behavior in

the form of a probability distribution, which describes their state. Thus, the state space of (finite)

probabilistic systems is infinite. Program with arrays extend the classical model of programs by

making it possible to store unlimited amount of data in arrays.

In Sections 1.2 and 1.3 we introduce the verification techniques for probabilistic systems and

program with arrays that constitute the core part of this thesis. Apart from these two key topics,

this dissertation contains a briefly summary of the author’s work on formal testing. Section 1.4

gives an introduction to formal testing.

1.2 Probabilistic Systems

We consider the analysis of two types of probabilistic systems: Markov chains (MCs) and Markov

decision processes (MDPs). Markov chains are a popular formalism for modeling systems with

the Markov property, which means that the probability of making a transition from one state

to another depends only on the current state, rather than the states visited previously. Markov

decision processes extend Markov chains by admitting non-deterministic choices in addition to

probabilistic behavior. MCs and MDPs have been widely adopted as models for randomized
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abab · · ·
abac · · ·
abba · · ·

P(♦c) =?

black-box probabilistic system finite samples probability

Figure 1.1: Statistical model checking.

protocols, biological networks, task planning, as well as for other domains.

Statistical model checking The traditional approach to the analysis of probabilistic systems

is based on numerical algorithms. Numerical algorithms represent a verification problem as a

linear program, which is then solved by algebraic methods or iterativly approximated [29]. The

drawback of the numerical algorithms is that they require full and precise knowledge of the

probabilities in the system. In practice, however, the probability distribution is often unknown

or imprecise. For example, probabilities of failures of hardware components are typically only

estimated.

This problem motivates the approach of statistical model checking (SMC), where finite paths

are sampled from a probabilistic system and statistical estimation is applied to infer conclusion

about the system (see Figure 1.1). Thus, statistical model checking requires only to generate

simulations of the system from the initial configuration (the black-box setting), which is in

contrast with the numerical algorithms that require full knowledge of the system (the white-box

setting).

Statistical model checking provides results in the form of statistical guarantees. This means

that answers have a bounded precision (e.g. “the termination probability is in the range [0.8, 0.9]”)

and confidence (e.g. “the result is valid with 99% confidence.”). A characteristic feature of SMC

is that the number of samples required to infer the conclusion depends mostly on the desired

precision and confidence, rather that the size of the system. On the contrary, the numerical

algorithms provide a precise and certain solution, but the complexity of the procedure grows with

the size of the system. This feature makes SMC an appealing approach also when dealing with

systems that are fully known, but where the state space is intractable for the numerical methods.
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SMC for unbounded properties Most research in statistical model checking have focused on

the verification of properties with a bounded horizon, e.g. “a goal state is reached with probability

at least 0.5 in the first 1000 steps.” Bounded properties have a simple sampling procedure, since

it is enough to generate samples bounded by the given horizon. In contrast, SMC of unbounded

properties (e.g. “a goal state is reached with probability at least 0.5 in any number of steps”)

is more challenging, as it requires a stopping criterion for sample generation. In general, such

stopping criterion is impossible to obtain in a completely black-box setting, because we cannot

be certain whether a sample could still satisfy the property if extended sufficiently long. As a

consequence, all SMC algorithms for unbounded properties require additional knowledge of the

system. The previous SMC approaches require relatively detailed information, such as: (i) the

system’s topology [30], (ii) the second eigenvalue of the Markov chain [30], or (iii) both the size

of the Markov chain and the minimum transition probability [31]. Such detailed information

may be difficult to obtain, when little is known about the Markov chain.

In Chapter 3 we present a new SMC algorithm for Markov chains with respect to unbounded

reachability that provides strong guarantees in the form of confidence bounds. The main idea is

to monitor each simulation run on the fly, in order to detect with high probability if the system

reached a set of states, called a bottom strongly connected component, where the simulation

becomes trapped. Once a bottom strongly connected component is entered, the simulation run

can be terminated early. As a result, our simulation runs are often much shorter than required by

termination bounds that are computed a priori for a desired level of confidence on a large state

space. In comparison to the previous algorithms for SMC our method is not only faster in many

cases, but also requires less information about the system, namely, only the minimum transition

probability that occurs in the Markov chain.

The previous approaches to SMC can handle only the simplest forms of unbounded properties.

Typically, they are restricted to reachability properties or the “until” operator (without nesting)

which is only a slight generalization of reachability [30]. As a consequence, these approaches

cannot handle unbounded properties that are common in verification, but are more general than

reachability, such as recurrence (“a behavior repeats infinitely often”) or persistence (“eventually

a behavior always repeats”). Some researchers did consider richer logics for unbounded proper-

ties, however their approaches either require strong assumptions about the Markov chains (e.g.

ergodic Markov chains [32], Markov chains without loops [33]), or they provide weak guarantees
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M1

abab · · ·
abac · · ·
abba · · ·

M2

abcb · · ·
abab · · ·
abaa · · ·

DL(M1,M2) =?

black-box probabilistic systems finite samples distance between systems

Figure 1.2: Distances between Markov chains.

(e.g. only possible to check if the property holds with a positive probability [34]). Thus, none of

the previous SMC approaches can handle a rich temporal logic in a general setting.

We present two extensions to our algorithm that can handle complex unbounded properties in

a general setting. First, we present the first SMC algorithm for linear temporal logic (LTL). LTL

is a rich modal logic that is strictly more expressive than reachability, and which can express

recurrence and persistence properties. In addition, we generalize our method to unbounded

quantitative properties such as mean-payoff bounds. Intuitively, the mean payoff describes the

expected average reward per step when the running time goes to infinity. These extensions

leverage the fact that checking linear temporal logic as well as mean payoff can be reduced to

the analysis of bottom strongly connected components in Markov chains.

Equivalence and refinement of probabilistic systems Probabilistic systems are typically

compared using the quantitative notions of equivalence and refinement, which require the

systems to exhibit behaviors with the same probability. These notions, however, are often

too strict for probabilistic systems, where probabilities are empirically estimated and even the

smallest imprecision breaks the equivalence between systems. We provide two solutions to this

problems:

• in Chapter 4 we lift the Boolean notion of equivalence to the quantitative measure of

distance between systems,

• in Chapter 5 we investigate refinement of systems with respect to qualitative properties.



7

Distances between Markov chains In Chapter 4 we consider the problem of measuring a

distance between two Markov chains by observing only simulation runs, i.e. in the black-box

setting. A distance provides a quantitative measure of similarity between two Markov chains,

and can range from zero, which indicates full equivalence, to the maximum distance, meaning

that the systems are as different as possible. A measure of similarity can help us to choose the

component that fits best the desired behavior among several options. Distances are especially

useful in the black-box setting, where probabilities can only be approximated, and thus the

quantitative notion of equivalence, which requires equal probabilities, cannot be decided.

We investigate distances based on linear behavior, which are the most appropriate when

dealing with simulation runs. Among linear distances, we focus our attention on the total

variation distance and finite trace distance. The total variation distance is the maximum

difference in probabilities of the two systems among all events. In contrast, the finite trace

distance describes the difference in probabilities among all finite traces. In addition, we consider

several other distances given topologically, as well as by temporal logics and automata.

Our key idea is to introduce a framework for measuring distances between Markov chains

in a black-box setting. The input to the framework are Markov chains that can be simulated

on demand, and the result is a confidence interval for a given distance (see Figure 1.2). We

investigate which distances can be estimated in our framework, and we provide both negative and

positive results. The main negative result is that the total variation distance cannot be estimated.

Intuitively, this is caused by the non-robustness of the total variation distance, which means

that even the smallest difference between the Markov chains can maximize this distance. In

contrast, our main positive result is a method for estimating the finite trace distance; in addition

we provide methods for estimating several distances given topologically, by temporal logics, and

automata.

Qualitative analysis of probabilistic system In Chapter 5 we aim to compare probabilistic

systems with respect to qualitative properties. Qualitative properties express that desired be-

haviors of the system arise almost-surely (with probability one) or with a positive probability.

Qualitative analysis of systems is robust with respect to modeling errors, thus small imprecision

does not break refinement between processes. Moreover, there are many applications, where we

need to know whether the correct behavior arises with probability one. For instance, when ana-
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lyzing a randomized embedded scheduler, we are interested in whether every thread progresses

with probability one.

We consider qualitative analyses of Markov decision processes that are fully known, i.e. in

the white-box setting. Our key problem is to decide whether one MDP refines another MDP with

respect to qualitative properties. The notion of refinement is especially useful, when one MDP

is treated as a probabilistic specification, and the other as an implementation. To this end, we

describe a new logic QCTL∗ that can expresses qualitative properties of MDPs. Furthermore,

we introduce a relation between MDPs, called combined simulation, that captures refinement

with respect to QCTL∗. Finally, we present an algorithm with quadratic complexity to compute

combined simulation.

Markov decision processes are frequently used for modeling of concurrent probabilistic

systems, because non-determinism models context switching in a natural way. With this in

mind, we study the problem of computing the combined simulation for a concurrent system that

consists of multiple MDPs. The naive solution is to construct an explicit parallel composition

of the MDPs and then compute the simulation relation. This approach, however, does not scale

since parallel composition of two MDPs may result in a system of quadratic size. This is an

example of the state explosion problem in parallel systems, where the size of the state space may

grow exponentially in the number of components.

To tackle the state explosion problem, we propose an assume-guarantee approach to comput-

ing the combined simulation. Roughly speaking, assume-guarantee is a style of reasoning about

concurrent systems, where some processes are replaced by their abstraction. The advantage

of the assume-guarantee approach is that the composition with an abstraction may be much

smaller than the direct composition of processes. We provide an assume-guarantee algorithm

for checking the combined simulation, which follows the approach of counterexample-guided

abstraction refinement (CEGAR) [35]. In our algorithm an abstraction is iterativly refined until

the simulation can be established or a valid counterexample to the simulation is found. We

illustrate on several well-known examples that our assume-guarantee algorithm can outperform

the naive approach.

Interestingly, we established our results by showing a tight link between two-player games

and MDPs. We show that for the sake of qualitative analysis, an MDP can be interpreted as

a game between the probability and the scheduler, which resolves the non-determinism. As a
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consequence, our results on refinement and assume-guarantee analysis of MDPs are lifted to

games.

1.3 Programs with Arrays

Arrays are prevalent in programs, for instance every C and Java program uses an array to pass

command-line arguments. Many popular data structures, such as hash tables and trees, are

implemented on top of arrays. The importance of arrays has motivated researchers to develop

logics that can express array properties. Such logics can be used both in the Floyd–Hoare style

to specify program invariants in order to prove program safety [23], and in symbolic execution in

order to test programs [25; 36]. Logics for arrays extend other theories by array variables, as well

as by array read and write operations. An example of a decidable extension is the quantifier-free

Presburger arithmetic with arrays.

Expressing non-trivial properties of arrays, such as sortedness, requires universal quantifi-

cation over array indexes. Unfortunately, many quantified theories of arrays are undecidable,

e.g. quantified Presburger arithmetic with arrays. To sidestep the undecidability of the general

theories of arrays, researchers have focused on restricted forms of universal quantification [24;

37; 38; 39]. Logics with restricted quantification can express many practical properties of arrays,

e.g. sortedness or that all array elements belong to a bounded range. However, an important class

of properties, namely counting over arrays, cannot be expressed in the previous decidable logics

for arrays. Counting properties, such as “there are equally many zeros and ones in the array” and

“the length of fields in an IP packet is correct” occur frequently in programs, and thus pose an

interesting verification problem.

In Chapter 6 we present array folds logic (AFL), a new quantifier-free logic that can express

counting properties of arrays. Our logic is motivated by the observation that many counting

properties follow the fold pattern, which is a concept well-known from functional languages.

Roughly speaking, folding works by iterating over an array and evaluating a function on every

element using the values computed from the previous elements. We introduce this concept into

AFL in the form of the fold term, which folds a function over an array. We consider a special type

of functions, which utilize counters to accumulate values while traversing an array. In essence,

the fold term replaces universal quantification as a method to express universal properties of
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zeros = 0; ones = 0;

for(i=0;i<size(a);i++) {

if(a[i]==0) zeros++;

if(a[i]==1) ones++;

}

assert(zeros == ones);

(a) C language.

folda

(
i=0
c0=0
c1=0

)(
e=0⇒ c0++
e=1⇒ c1++

e6=0∧e6=1⇒ skip

)
=
(
|a|
z
o

)
∧ z = o

(b) Array folds logic.

Figure 1.3: Program that requires equal number of zeros and ones in an array, and its AFL

representation.

arrays.

Figure 1.3 illustrates the idea of AFL. The program in Figure 1.3a uses the variables zeros

and ones to count the number of zeros and ones in an array, and the assertion at the last line

requires these counts to match. Figure 1.3b shows how this constraint can be expressed as an

AFL formula. The fold term in the formula uses two counters: c0 and c1 to count the number of

zeros and ones, respectively. The expression
(

i=0
c0=0
c1=0

)
specifies the initial values for folding: that

folding starts at the beginning of the array and the counters are initialized to zero. The expression

in the following bracket specifies the fold function, which is consecutively applied to every array

element. The variable e in the fold function denotes the value of the element being inspected.

The top two branches of the fold function specify that if the element value equals zero or one,

then the respective counter is incremented. In case the element has a different value, the bottom

branch orders the function to skip. The fold term returns the vector of three values: the length

of the array |a|, the final value of c0 in the variable z, and the final value of c1 in the variable o.

The last part of the AFL formula requires the variables z and o to be equal.

We provide several interesting results about the complexity of AFL. We have proved that

AFL has the small model property, meaning that if a formula is satisfiable, then it has a model

that can be encoded using space polynomial in the size of the formula. Based on this result,

we prove that the satisfaction problem of AFL is PSPACE-complete. We also show that with

a natural restriction the complexity decreases to NP. Finally, we prove that several natural

extensions of AFL lead to undecidability.

Apart from the complexity analysis, we present a decision procedure for AFL, which
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translates an AFL formula to a quantifier-free Presburger formula. This type of Presburger

formulas can be handled by efficient solvers, which makes our decision procedure practical.

In addition, we provide a method for generating a satisfying assignment for AFL formulas.

We demonstrate on practical examples that our decision procedure can solve a broad range of

problems in symbolic testing and program verification. The example in Figure 1.3 illustrates

another feature of AFL, namely the ability to concisely summarize loops with internal branching

that perform counting. To the best of our knowledge, this class of loops cannot be handled by

the previous approaches to loop summarization.

1.4 Formal Testing

In Chapter 7 we shortly summarize the author’s work on formal testing. This section provides an

introduction to the work discussed in that chapter.

Testing — to quote Dijkstra — can only show the presence of bugs, but not their absence.

Despite this limitation, testing remains the preferred method for quality assurance in software

engineering. Testing remains popular because it scales to very large systems, and it is relatively

easy to setup. In addition, testing can find bugs directly in the executable, rather than the

program specification like verification methods. Another advantage of testing is that it produces

only sound bug reports, which is convenient for debugging. On the contrary, many verification

techniques produce false alarms. Finally, testing can be easily applied to data-driven applications,

such as signal processing, while formal methods have been mostly studied in the context of small

control-driven applications, such as device drivers.

Formal testing is an approach to program analysis that combines testing and formal methods.

The goal of formal testing is to combine the best of both worlds: the high coverage offered

by verification, and the scalability of testing. Methods that combine both approaches can

outperform both verification tools at proving correctness, and testing tools at finding bugs [40;

41; 42]. By augmenting testing with formal methods we can achieve better guarantees and target

corner cases that manually-created test cases often miss. Furthermore, formal methods can

improve the testing process by providing the methods to analyze and shape test specifications.
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Model-based testing Model-based testing is an approach to formal testing that checks whether

an implementation, given as a black box, conforms to a formal specification. The specification

describes the desired behavior of the system, and is derived from the system’s requirements.

The specification is used to automatically generate test cases that can discriminate whether the

implementation conforms to the specification. Our work [6; 7] on model-based testing revolves

around the ioco framework, where specification are transitions systems with input and output

actions [43].

Software engineering often deals with systems that consists of multiple components. Such

systems require integration testing, i.e. checking that components work correctly when combined

into a system. Integration testing can be a laborious task and, even worse, is often repeated

each time a component is modified. In Chapter 7 we discuss our work on compositional

properties of the ioco theory. Compositional properties make it possible to decrease the amount

of integration testing by reusing testing information that we have already gained by testing the

individual components, and the previous versions of the system. For this purpose, we study the

compositional operators, which allow us to identify the part of the system that is affect by the

changes to the components. Consequently, we can avoid the integration testing of the entire

systems when a single component is modified, and instead retest only the affected part.

Abstraction-driven concolic testing The quality of software tests is typically measured by a

coverage criterion. Roughly speaking, a coverage criterion is a collection of program elements

that we wish to reach. For example, the goal of the branch coverage is to execute as many

program branches as possible. Test coverage is measured by the ratio of the exercised elements to

the total number of elements. Certification bodies require a test suite that achieves high coverage

test as an evidence of software quality, e.g. the DO-178C standard in avionics.

Concolic testing is a popular method for test case generation [36]. This method is essentially

symbolic execution augmented by concrete execution, such that symbolic expressions that fall

outside of a decidable theory are simplified by concrete values. Concolic testing suffers from the

path explosion problem, so it often fails to reach coverage goals that are deep in the program.

Several heuristics for path exploration have been proposed that try to maximize the coverage

of concolic testing [44; 45; 46], e.g., randomly picking program branches to explore, driving

exploration toward uncovered branches that are closest to the last explored branch, etc. These
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heuristics, however, are limited by their local view of the program semantics, i.e. they are only

aware of the (in)feasibility of the paths seen so far.

In contrast to testing, software model checkers compute program abstractions that contain all

feasible program paths [47]. Due to abstraction, not all paths contained in the abstraction are

guaranteed to be feasible, therefore abstract model checking is not directly useful for generating

test suites. In Chapter 7 we present a new algorithm to guide concolic testing by a model

checker [8]. The algorithm iterativly combines concolic testing and model checking, such

that concolic testing is guided by a program abstraction and the abstraction is refined for the

remaining test goals.
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2 Preliminaries

In this chapter we recall some basic concepts of formal methods that are used in this thesis.

Section 2.1 covers discrete systems, such as automata and games, as well as modal logics for

expressing their properties. Section 2.2 recalls basic concepts of probability theory and Markov

processes. Finally, Section 2.3 explains techniques of statistical inference.

2.1 Discrete Systems

2.1.1 Finite and Infinite Words

Let Ap denote a non-empty finite set of atomic propositions. Given a finite set S we denote

by S∗ (respectively Sω) the set of finite (resp. infinite) sequences of elements from S, and let

S+ = S∗ \ {ε}, where ε is the empty string.

An ω-word is an infinite sequence w = A0A1 · · · ∈ (2Ap)ω. The i-th letter of w is denoted by

w[i], i.e. w[i] = Ai, and we write wi for the suffix w[i]w[i+1] · · · . A word w is a finite sequence

of symbols w ∈ (2Ap)∗. We define w[i] and wi for words in a similar way as for ω-words.

2.1.2 Linear Temporal Logic

Linear temporal logic (LTL) is a modal logic for expressing temporal behaviors of system [48].

The formulas of LTL are given by the following syntax in the positive normal form [10]:

ϕ ::= ap | ¬ap | ϕ ∨ ϕ | ϕ ∧ ϕ |,ϕ | ϕUϕ | ϕWϕ

for ap ∈ Ap.
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The semantics of LTL is defined with respect to an ω-word w ∈ (2Ap)ω:

w |= ap iff a ∈ w[0]

w |= ¬ap iff a 6∈ w[0]

w |= ϕ1 ∨ ϕ2 iff w |= ϕ1 or w |= ϕ2

w |= ϕ1 ∧ ϕ2 iff w |= ϕ1 and w |= ϕ2

w |= ,ϕ iff w1 |= ϕ

w |= ϕ1 Uϕ2 iff ∃ j ∈ N : (wj |= ϕ2 and ∀ 0 ≤ i < j : wi |= ϕ1)

w |= ϕ1Wϕ2 iff ϕ1 Uϕ2 or ∀j ∈ N : wj |= ϕ1.

We write L(ϕ) for the the set of ω-words that satisfy the formula ϕ:

L(ϕ) = {w ∈ (2Ap)ω | w |= ϕ}.

We use the following shorthands for LTL formulas:

true ≡ q ∨ ¬q for some q ∈ Ap

false ≡ q ∧ ¬q for some q ∈ Ap

♦ϕ ≡ true U ϕ

�ϕ ≡ ϕW false.

2.1.3 Deterministic Rabin Automata

A deterministic Rabin automaton is a model of computation that accepts infinite strings of

symbols, i.e. ω-words. This type of automata is important for LTL model checking, since

for every LTL formula ϕ, one can construct a deterministic Rabin automaton that accepts all

ω-words that satisfy ϕ.

Definition 2.1 (Deterministic Rabin automaton). A deterministic Rabin automaton (DRA) is a

tuple A = (Q, γ, qo, Acc), where

• Q is a finite set of states,

• γ : Q× 2Ap → Q is a transition function,

• qo ∈ Q is an initial state,

• Acc ⊆ 2Q × 2Q is an acceptance condition.
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An ω-word w induces in a DRA A an infinite sequence of states A(w) = s0s1 · · · ∈ Qω,

such that s0 = qo and γ(si, w[i]) = si+1 for i ≥ 0. We write Inf(w) for the set of states that

occur infinitely often in A(w). Word w is accepted, if there exists a pair (E,F ) ∈ Acc, such

that E ∩ Inf(w) = ∅ and F ∩ Inf(w) 6= ∅. The language L(A) of A is the set of all words

accepted by A. The class of languages accepted by DRAs is known as ω-regular languages. The

following is a well-known result [10]:

Lemma 2.1. For every LTL formula ϕ, a DRA Aϕ can be effectively constructed such that

L(Aϕ) = L(ϕ).

2.1.4 Two-Player Games

Games are useful for modeling systems with several agents, who may have conflicting objectives.

In this thesis we consider games with two players.

Definition 2.2 (Two-player game). A two-player game is a tuple G = (S,A,Av, δ, L, s0), where

• S is a finite set of states,

• A is a finite set of actions,

• Av : S → 2A \ ∅ is an action-available function that assigns to every state s ∈ S the set

Av(s) of actions available in s,

• δ : S × A→ 2S \ ∅ is a non-deterministic transition function that given a state s ∈ S and

an action a ∈ Av(s) gives the set δ(s, a) of successors of s given action a,

• L : S → 2Ap is a labeling function,

• s0 ∈ S is an initial state.

Plays A two-player game is played for infinitely many rounds as follows: the game starts in

the initial state, and in every round Player 1 chooses an available action from the current state

and then Player 2 chooses a successor state, and the game proceeds to the successor state for the

next round. Formally, a play in a two-player game is an infinite sequence ρ = s0a0s1a1s2a2 · · ·

of states and actions such for all i ≥ 0 we have that ai ∈ Av(si) and si+1 ∈ δ(si, ai). We denote

by Ω the set of all plays.
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Turn-based games A two-player game G is turn-based if in every state either Player 1 or

Player 2 can make choices. Formally, for all s ∈ S we have either (i) |Av(s)| = 1 (then we refer

to s as a Player-2 state), or (ii) for all a ∈ Av(s) we have |δ(s, a)| = 1 (then we refer to s as a

Player-1 state).

Strategies Strategies are recipes that describe how to extend finite prefixes of plays. Formally,

a strategy for Player 1 is a function σ : (S × A)∗ × S → A, which given a finite history

w · s ∈ (S × A)∗ × S of the game gives an action from Av(s) to be played next. We write Σ for

the set of all Player-1 strategies. A strategy for Player 2 is a function θ : (S × A)+ → S, which

given a finite history w · s · a of a play selects a successor state from the set δ(s, a). We write Θ

for the set of all Player-2 strategies. Memoryless strategies are independent of the history, but

depend only on the current state for Player 1 (resp. the current state and action for Player 2) and

hence can be represented as functions S → A for Player 1 (resp. as functions S × A→ S for

Player 2).

Outcomes Given a strategy σ for Player 1 and θ for Player 2 the outcome is a unique play,

denoted as Play(s, σ, θ) = s0a0s1a1 · · · , which is defined as follows: (i) s0 = s, and (ii) for all

i ≥ 0 we have ai = σ(s0a0 . . . si) and si+1 = θ(s0a0 . . . siai). Given a state s ∈ S we denote by

Plays(s, σ) (resp. Plays(s, θ)) the set of possible plays given σ (resp. θ), i.e.,
⋃
θ′∈Θ Play(s, σ, θ′)

(resp.
⋃
σ′∈Σ Play(s, σ′, θ)).

2.1.5 Alternating-time Temporal Logic

We consider alternating-time temporal logic (ATL∗) [16] as a logic to specify properties for

two-player games. ATL∗ is a generalization of linear temporal logic introduced in Section 2.1.2.

ATL∗ allows us to specify whether players collaborate to achieve an objective (〈〈1, 2〉〉 quantifier),

collaborate to avoid the objective (〈〈∅〉〉), or play against each other (〈〈1〉〉 and 〈〈2〉〉 quantifiers).

The syntax of ATL∗ is given in the positive normal form by defining the set of path formu-

las (ϕ) and state formulas (ψ) according to the following grammar:

state formulas: ψ ::= ap | ¬ap | ψ ∨ ψ | ψ ∧ ψ | PQ(ϕ)

path formulas: ϕ ::= ψ | ϕ ∨ ϕ | ϕ ∧ ϕ |,ϕ | ϕUϕ | ϕWϕ,
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where ap ∈ Ap is an atomic proposition and PQ is a path quantifier. The path quantifiers PQ

are as follows:

ATL∗ path quantifiers: 〈〈1〉〉, 〈〈2〉〉, 〈〈1, 2〉〉, and 〈〈∅〉〉.

Given a play ρ = s0a0s1a1 · · · we denote by ρ[i] the i-th state of ρ, i.e. ρ[i] = si and we

write ρi for the suffix starting at the i-th state element of the play ρ, i.e., ρi = siaisi+1ai+1 · · · .

The semantics of path formulas is defined inductively as follows:

ρ |= ψ iff ρ[0] |= ψ

ρ |= ϕ1 ∨ ϕ2 iff ρ |= ϕ1 or ρ |= ϕ2

ρ |= ϕ1 ∧ ϕ2 iff ρ |= ϕ1 and ρ |= ϕ2

ρ |= ,ϕ iff ρ1 |= ϕ

ρ |= ϕ1 Uϕ2 iff ∃j ∈ N : (ρj |= ϕ2 and ∀0 ≤ i < j : ρi |= ϕ1)

ρ |= ϕ1Wϕ2 iff ρ |= ϕ1 Uϕ2 or ∀j ∈ N : ρj |= ϕ1.

Given a path formula ϕ and game G, we denote by JϕKG the set of plays ρ in G such that ρ |= ϕ.

We omit the G lower script when the game is clear from context. The semantics of state formulas

for ATL∗ is defined as follows:

s |= ap iff ap ∈ L(s)

s |= ¬ap iff ap 6∈ L(s)

s |= ψ1 ∨ ψ2 iff s |= ψ1 or s |= ψ2

s |= ψ1 ∧ ψ2 iff s |= ψ1 and s |= ψ2

s |= 〈〈1〉〉(ϕ) iff ∃σ ∈ Σ,∀θ ∈ Θ : Play(s, σ, θ) ∈ JϕK

s |= 〈〈2〉〉(ϕ) iff ∃θ ∈ Θ,∀σ ∈ Σ : Play(s, σ, θ) ∈ JϕK

s |= 〈〈1, 2〉〉(ϕ) iff ∃σ ∈ Σ,∃θ ∈ Θ : Play(s, σ, θ) ∈ JϕK

s |= 〈〈∅〉〉(ϕ) iff ∀σ ∈ Σ,∀θ ∈ Θ : Play(s, σ, θ) ∈ JϕK,

where s ∈ S and ap ∈ Ap. Given an ATL∗ state formula ψ and a two-player game G, we denote

by JψKG = {s ∈ S | s |= ψ} the set of states that satisfy the formula ψ. We omit the G lower

script when the game is clear from context.
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2.2 Probabilistic Systems

2.2.1 Probability Space and Random Variables

We recall the basic notions from the probability theory. Given a set O of outcomes, a σ-algebra

is a set of subsets of O that contains the empty set, and is closed under complement and finite

union.

Definition 2.3 (σ-algebra). A σ-algebra of a non-empty set O is a set F ⊆ 2O such that:

• ∅ ∈ F ,

• if E ∈ F , then O \ E ∈ F ,

• if E1, E2, · · · ∈ F , then
⋃
i≥1 Ei ∈ F .

A probability space is a σ-algebra equipped with a probability measure P.

Definition 2.4 (Probability space). A probability space is a triple (O,F ,P), where

• F is a σ-algebra of O,

• P : F → [0, 1] is a probability measure, such that (i) P(O) = 1, and (ii) if E1, E2, · · · are

disjoint, then P(
⋃
i≤1 Ei) =

∑
i≤n P(Ei).

The elements of F are called events and are said to be measurable.

Random variables and cumulative distribution function A random variable is a function

X : O → R that is measurable, i.e. for every x ∈ R the set {y ∈ O | X(y) ≤ x} belongs to F .

A random variable is called discrete, if it admits countably many values, and is called continuous

otherwise. A random variable is called Bernoulli if it admits only two possible outcomes: 0 and

1. The expected value E(X), or mean, of a random variable X is defined as:

E(X) =


∑

x xP({y ∈ O | X(y) = x}) if X is discrete∫
OX dP if X is continuous.

The cumulative distribution function (CDF) of a random variableX is a function FX : R→ [0, 1]

defined by

FX(x) = P({y ∈ O | X(y) ≤ x}).
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Independence and conditional probability Given two events E and E ′, we write P(E , E ′) for

P(E ∩ E ′). We say that events E and E ′ are independent if P(E , E ′) = P(E)P(E ′). Two random

variables X and Y are independent if for every sets A and B it holds that the events A ∈ X and

B ∈ Y are independent. Assuming that P(E ′) > 0, the conditional probability of E given E ′ is

defined as:

P(E | E ′) =
P(E , E ′)
P(E ′)

.

2.2.2 Markov Chains

Markov chains are random processes that are “memoryless,” which means that the probability of

going from state to another depends only on the current state. We consider Markov chains that

are called discrete-time Markov chains in the literature [10].

Definition 2.5 (Markov chain). A Markov chain (MC) is a tupleM = (S,P, L, µ), where

• S is a finite set of states,

• P : S × S → [0, 1] is a transition probability matrix, such that for every s ∈ S it holds∑
s′∈S P(s, s′) = 1,

• L : S → 2Ap is a labeling function,

• µ : S → [0, 1] is an initial distribution, such that
∑

s′∈S µ(s, s′) = 1.

A run of M is an infinite sequence ρ = s0s1 · · · ∈ Sω of states, such that for all i ≥ 0,

P(si, si+1) > 0; we let ρ[i] denote the state si. We denote by RunsM the set of all runs ofM. A

path π inM is a finite prefix of a run ofM. We denote the empty path by λ and concatenation

of paths π1 and π2 by π1 · π2. Each path π inM determines the set of runs Cone(π) consisting

of all runs that start with π:

Cone(s0s1 · · · sn) = {ρ ∈ RunsM | ∀0 ≤ i ≤ n : si = ρ[i]}.

ToM we assign the probability space (RunsM,F ,PM), where F is the smallest σ-algebra that

contains all cones Cone(π), and PM is the unique probability measure such that

PM(Cone(s0s1 · · · sn)) = µ(s0)
n∏
i=1

P(si−1, si).
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where the empty product equals 1. Further, we write Ps,M for the probability measure, where

µ(s) = 1 and µ(s′) = 0 for s′ 6= s. We omit the subscript M from PM and Ps,M if the

Markov chain is clear from the context. The support of the probability distribution P(s) is

Supp(P(s)) = {s′ ∈ S | P(s, s′) > 0}.

We extend the labeling notation so that for a path π ∈ Sk, the projected sequence L(π) is

the word w ∈ Σk, where w[i] = L(π[i]). We overload the notation and for a path π write P(π)

meaning P(Cone(π)), and for a (ω)-word w, we write P(w) meaning P(L−1(w)).

Bottom strongly connected components A Markov chain M has an underlying directed

graph, where the states ofM are vertices, and there is an edge from state s to s′ if and only if

Pr(s, s′) > 0. We use the standard notions of graphs to the underlying graphs of Markov chains.

A non-empty set C ⊆ S of states is strongly connected if for every s, s′ ∈ C there is a path

from s to s′. A set of states C ⊆ S is a bottom strongly connected component (BSCC) ofM, if

(i) C is strongly connected, and (ii) for each s ∈ C and s′ ∈ S \ C there is no edge from s to

s′. The set of all sets that are strongly connected inM is denoted by SC; similarly the set of all

BSCCs inM is denoted by BSCC.

Note that with probability 1, the set of states that appear infinitely many times on a run forms

a BSCC.

Lemma 2.2. For a finite Markov chainM:

P({ρ ∈ RunsM | Inf(ρ) ∩ BSCC}) = 1.

2.2.3 Markov Reward Models and Mean Payoff

We consider Markov chain with states labeled by a reward function. Rewards are useful for

modeling performance of probabilistic systems.

Definition 2.6 (Markov reward model). A Markov reward model (MRM) is a tuple (M, r),

whereM is a Markov chain with state space S, and r : S → [0, 1] is a reward function.

Mean payoff (also called long-run average reward) is the average reward per step that we

expect to observe, when a Markov runs for a time that goes to infinity. Mean payoff is a good

measure of long-time average performance of probabilistic system.
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Definition 2.7 (Mean payoff). The mean payoff for a state s ∈ S

MP(s) = lim
n→∞

E

(
1

n

n∑
i=1

r(Si,s)

)
,

where Si,s is a random variable that returns the i-th state on a run that starts in the state s.

The mean payoff value always exists [29].

2.2.4 Markov Decision Processes

Markov decision processes are an extension of Markov chains, which admit non-deterministic

behavior.

Definition 2.8 (Markov decision process). A Markov decision process (MDP) is a tupleM =

(S, (S1, SP ), A,Av, δ1,P, L, s0), where

• S is a finite set of states with a partition of S into Player-1 states S1 and probabilistic

states SP ,

• A is a finite set of actions,

• Av : S1 → 2A \ ∅ is an action-available function that assigns to every Player-1 state the

non-empty set Av(s) of actions available in s,

• δ1 : S1 × A→ S is a deterministic transition function that given a Player-1 state and an

action gives the next state,

• P : SP × S → [0, 1] is a probabilistic transition function, such that given a probabilistic

state s ∈ SP it holds
∑

s′∈S P(s, s′) = 1,

• L : S → 2Ap is a labeling function,

• s0 ∈ S is an initial state.

For technical convenience, we define MDPs with initial states rather than initial distributions

as in Markov chains.
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11
2
-player interpretation Strategies for Player 1 and plays in MDPs are defined as for games.

Once a strategy σ ∈ Σ for Player 1 is fixed, the outcome of the MDP is a random walk for which

the probabilities of events are uniquely defined, where an event E ⊆ Ω is a measurable set of

plays [49]. For an MDPM, state s ∈ S and event E ⊆ Ω, we write Pσs,M(E) for the probability

that a play belongs to E if the game starts from the state s and Player 1 follows strategy σ. We

omit the subscriptM if the MDP is clear from the context.

2.2.5 Probabilistic Computation Tree Logic

In the previous sections, we have seen logics LTL and ATL∗ for discrete systems. We now

turn our attention to probabilistic computation tree logic pCTL∗ [50; 51; 52] which describes

behavior of probabilistic systems. The syntax of pCTL∗ is:

state formulas: ψ ::= ap | ψ ∧ ψ | ¬ψ | PI(ϕ)

path formulas: ϕ ::= ψ | ϕ ∧ ϕ |,ϕ | ϕUϕ,

where ap ∈ Ap and I ≤ [0, 1] is an interval with rational bounds.

The semantics of pCTL∗ path formulas with respect to a play of an MDPM is defined as

follows:

ρ |= ψ iff ρ[0] |= ψ

ρ |= ϕ1 ∧ ϕ2 iff ρ |= ϕ1 and ρ |= ϕ2

ρ |= ,ϕ iff ρ1 |= ϕ

ρ |= ϕ1 Uϕ2 iff ∃j ∈ N : (ρj |= ϕ2 and ∀0 ≤ i < j : ρi |= ϕ1)

Given a path formula ϕ and an MDPM, we denote by JϕKM (or simply JϕK if the MDP is clear

from the context) the set of plays ρ inM such that ρ |= ϕ. The semantics of state formulas is as

follows:

s |= ap iff ap ∈ L(s)

s |= ψ1 ∧ ψ2 iff s |= ψ1 and s |= ψ2

s |= ¬ϕ iff not s |= ϕ

s |= PI(ϕ) iff ∀σ ∈ Σ : Pσs (JϕK) ∈ I .
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2.3 Statistical Inference

Statistical inference allows us to reason about probabilistic systems, such as Markov chains, by

repeatedly observing their behavior. Statistical problems can be phrased in a qualitative setting

(as hypothesis testing) or in quantitative setting (as confidence intervals). In hypothesis testing

we ask whether the probability of an event is below or above a user-specified threshold. In

contrast, a confidence interval gives us a value range that captures the probability of the event

with high confidence.

2.3.1 Hypothesis Testing

Let X be a random variable, and suppose we are interested whether the expected value E(X)

is larger or smaller than some threshold p. We formulate this question as a hypothesis testing

problem, where we decide between the null hypothesis H0 and the alternative hypothesis H1:

H0 : E(X) ≥ p+ ε H1 : E(X) < p− ε. (2.1)

The indifference region ε ≥ 0 describes the interval [p − ε, p + ε) were both hypothesis are

acceptable.

Test strength Two types of errors are used to evaluate precision of a solution. A type I error is

the probability of accepting H1 when H0 holds. Similarly, a type II error is the probability of

choosing H0 when H1 holds. The test strength (α, β) is a pair of values that bound the maximum

probabilities of making type I and type II errors, respectively. In general, it is not possible to

obtain low values of α and β at the same time when the indifference region ε is zero, since the

probability E(X) may be arbitrary close to the threshold from either side, making type I or II

error very likely.

Sequential probability ratio test The sequential probability ratio test (SPRT) is a popular

statistical procedure for hypothesis testing [53; 54]. In the SPRT the number of samples is not

fixed, but sampling continues until the observations give strong evidence in favor of H0 or H1.

The SPRT gives no guarantee on the maximal number of samples; in practice, however, it often

terminates quickly.
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The SPRT works as follows. Suppose X is Bernoulli random variable, i.e. only values 0 and

1 are possible. After observing samples x = x1, . . . , xn from X the following ratio is computed:

P(x|p1)

P(x|p0)
=

n∏
i=1

P(X = xi | E(X) = p1)

P(X = xi | E(X) = p0)
=

pdn1 (1− p1)n−dn

pdn0 (1− p0)n−dn
,

where dn =
∑n

i=1 xi, p0 = p+ ε, and p1 = p− ε. The decision rule for accepting a hypothesis

is:

accept H0 if
P(x|p1)

P(x|p0)
≤ B accept H1 if

P(x|p1)

P(x|p0)
≥ A. (2.2)

Finding the values of A,B such the test has the required strength is a difficult task. In practice,

values A = (1− β)/α and B = β/(1− α) are used, since they result in a test whose strength is

close to (α, β) [54].

2.3.2 Confidence Intervals

The goal of confidence interval estimation is to provide an interval that captures the expected

value E(X) with high probability. Given observations x1, . . . , xn from X and a confidence level

α, we wish to construct an interval [a, b] that captures the expected value with probability at least

1− α:

P(a ≤ E(X) ≤ b) ≥ 1− α.

Often, we are given a bound on the difference b− a, and wish to generate enough samples to

construct an interval of the given size and confidence.

Normal-based estimation We present a simple method for constructing a confidence interval

that is based on the central-limit theorem [55]. The interval constructed by this method is not

guaranteed to be correct, however the precision of the interval increases with the number of

samples. In practice, this method gives good results for large number of samples.

Suppose we have observed values x1, . . . , xn from X . We define the following two estima-

tors:

X̄n =
1

n

n∑
i=1

xi S2
n =

1

n

n∑
i=1

(xi − X̄n)2.

The 1− α confidence interval for E(X) is then

[X̄n − Φ(α/2)Sn, X̄n − Φ(α/2)Sn],
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where Φ is the CDF of the standard normal distribution:

Φ(x) =
1√
2π

∫ x

−∞
e
−t2
2 dt.
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3 Statistical Model Checking for

Unbounded Temporal Properties

3.1 Introduction

Traditional numerical algorithms for the verification of Markov chains may be computationally

intense or inapplicable, when facing a large state space or limited knowledge of the chain. To

this end, statistical algorithms are used as a powerful alternative. Statistical model checking

(SMC) typically refers to approaches where (i) finite paths of the Markov chain are sampled a

finite number of times, (ii) the property of interest is verified for each sampled path (e.g. state r

is reached), and (iii) hypothesis testing or statistical estimation is used to infer conclusions (e.g.

state r is reached with probability at most 0.5) and give statistical guarantees (e.g. the conclusion

is valid with 99% confidence). SMC approaches differ in (a) the class of properties they can

verify (e.g. bounded or unbounded properties), (b) the strength of statistical guarantees they

provide (e.g. confidence bounds, only asymptotic convergence of the method towards the correct

value, or none), and (c) the amount of information they require about the Markov chain (e.g.

the topology of the graph). In this chapter, we provide an algorithm for SMC of unbounded

properties, with confidence bounds, in the setting where only the minimum transition probability

of the chain is known. Such an algorithm is particularly desirable in scenarios when the system

is not known (“black box”), but also when it is too large to construct or fit into memory.

Most of the previous efforts in SMC have focused on the analysis of properties with bounded

horizon [56; 57; 58; 59; 17; 60; 61]. For bounded properties (e.g. state r is reached with proba-

bility at most 0.5 in the first 1000 steps) statistical guarantees can be obtained in a completely

black-box setting, where execution runs of the Markov chain can be observed, but no other
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LTL, mean payoff × here [31](LTL)

♦,U × here —”— [30] e.g. [34]

bounded e.g. [56]

no info pmin |S|, pmin λ topology

Table 3.1: SMC approaches to Markov chain verification, organised by (i) the class of verifiable

properties, and (ii) by the required information about the Markov chain, where pmin is the

minimum transition probability, |S| is the number of states, and λ is the second largest eigenvalue

of the chain.

information about the chain is available. Unbounded properties (e.g. state r is reached with

probability at most 0.5 in any number of steps) are significantly more difficult, as a stopping

criterion is needed when generating a potentially infinite execution run, and some information

about the Markov chain is necessary for providing statistical guarantees (for an overview, see

Table 3.1). On the one hand, some approaches require the knowledge of the full topology in

order to preprocess the Markov chain. On the other hand, when the topology is not accessible,

there are approaches where the correctness of the statistics relies on information ranging from

the second eigenvalue λ of the Markov chain, to the knowledge of both the number |S| of states

and the minimum transition probability pmin.

Our contribution is a new SMC algorithm for full linear temporal logic (LTL), as well as for

unbounded quantitative properties (mean payoff), which provides strong statistical guarantees

(see Chapter 2 for LTL and mean payoff). Our algorithm uses less information about the Markov

chain than previous algorithms that provide confidence bounds for unbounded properties—we

need to know only the minimum transition probability pmin of the chain, and not the number

of states nor the topology. Yet, experimentally, our algorithm performs in many cases better

than these previous approaches (see Section 5). Our main idea is to monitor each execution run

on the fly in order to build statistical hypotheses about the structure of the Markov chain. In

particular, if from observing the current prefix of an execution run we can stipulate that with

high probability a bottom strongly connected component (BSCC) of the chain has been entered,

then we can terminate the current execution run (see Section 2.2.2 for the definition of BSCCs).

The information obtained from execution prefixes allows us to terminate executions as soon as

the property is decided with the required confidence, which is usually much earlier than any
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bounds that can be computed a priori. As far as we know, this is the first SMC algorithm that

uses information obtained from execution prefixes.

Finding pmin is a light assumption in many realistic scenarios and often does not depend on

the size of the chain – e.g. bounds on the rates for reaction kinetics in chemical reaction systems

are typically known; alternatively, from a PRISM [62] language model they can be easily inferred

without constructing the respective state space.

We illustrate our key idea on the following example.

Example 3.1. Consider the property of reaching state r in the Markov chain depicted in Fig-

ure 3.1. While the execution runs reaching r satisfy the property and can be stopped without

ever entering any vi, the finite execution paths without r, such as stuttutuut, are inconclusive.

In other words, observing this path does not rule out the existence of a transition from, e.g., u to

r, which, if existing, would eventually be taken with probability 1. This transition could have

arbitrarily low probability, rendering its detection arbitrarily unlikely, yet its presence would

change the probability of satisfying the property from 0.5 to 1. However, knowing that if there

exists such a transition leaving the set, its transition probability is at least pmin = 0.01, we can

estimate the probability that the system is stuck in the set {t, u} of states. Indeed, if existing, the

exit transition was missed at least four times, no matter whether it exits t or u. Consequently, the

probability that there is no such transition and {t, u} is a BSCC is at least 1− (1− pmin)
4.

This means that, in order to get 99% confidence that {t, u} is a BSCC, we only need to see

both t and u around 500 times1 on a run. This is in stark contrast to a priori bounds that provide

the same level of confidence, such as the (1/pmin)
|S| = 100O(m) runs required by [31], which is

infeasible for large m. In contrast, our method’s performance is independent of m.

Monitoring execution prefixes allows us to design an SMC algorithm for complex unbounded

properties such as full LTL. More precisely, we present a new SMC algorithm for LTL over

Markov chains, specified as the following hypothesis testing problem (see Section 2.3.1):

Input:

• we can sample finite runs of arbitrary length from an unknown finite-state discrete-time

Markov chainM according to the initial distribution2,

11− (1− pmin)
500 = 1− 0.99500 ≈ 0.993

2We have a black-box system in the sense of [57], different from e.g. [56] or [63], where simulations can be run

from any state.
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Figure 3.1: A Markov chain.

• we are given a lower bound pmin > 0 on the transition probabilities inM,

• an LTL formula ϕ,

• a threshold probability p,

• an indifference region ε > 0,

• two error bounds α, β > 0.

Output:

• if P[ϕ] ≥ p+ ε, return YES with probability at least 1− α, and

• if P[ϕ] ≤ p− ε, return NO with probability at least 1− β.

In addition, we present the first SMC algorithm for computing the mean payoff of Markov chains

whose states are labelled with rewards.

Our idea of inferring the structure of the Markov chain on the fly, while generating execution

runs, allows for their early termination. In Section 3.6 we will see that for many chains arising in

practice, such as the concurrent probabilistic protocols from the PRISM benchmark suite [64],

the BSCCs are reached quickly and, even more importantly, can be small even for very large

systems. Consequently, many execution runs can be stopped quickly. Moreover, the number

of execution runs necessary for a required precision and confidence is independent of the size

of the state space, therefore this number can be small even for highly confident results (a good

analogy is that of the opinion polls: the precision and confidence of opinion polls is regulated by

the sample size and is independent of the size of the population). It is therefore not surprising

that, experimentally, in most cases from the benchmark suite, our method outperforms previous
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methods (often even the numerical methods) despite requiring much less knowledge of the

Markov chain, and despite providing strong guarantees in the form of confidence bounds. In

Section 3.7, we also provide theoretical bounds on the running time of our algorithm for classes

of Markov chains on which it performs particularly well.

Outline The chapter is organised as follows. In Section 3.2 we review the related work. In

Section 3.3 we describe our SMC method for unbounded reachability. Sections 3.4 and 3.5

present extensions to linear temporal logic and mean payoff, respectively. Section 3.6 describes

experimental evaluation of our method. Finally, in Section 3.7 we give a theoretical bound on

the expected running time of our algorithms.

3.2 Related Work

Most of the effort in statistical model checking methods has focused on the analysis of properties

with bounded horizon, e.g., [56; 57; 58; 59; 60; 61]. These are properties whose satisfaction on

a run can be decided based on its prefix of a fixed length. The unbounded properties are often

investigated under the name “unbounded until” [34; 30], which is only a slight generalisation of

reachability.

SMC of unbounded properties was first considered in [65]. It was suggested to try longer

and longer simulations, but no bounds when to stop this process were given. The first solution

was proposed in [33]. A simulation is to be stopped whenever we reach a point from which

the goal state r cannot be reached at all. To this end, another set of simulations is run from

such potential point to determine if there is any path to r. In order to avoid infinite simulations

here, the simulations are stopped in each step with some “termination probability” pterm. This

transforms the hypothesis testing task to one where simulations are almost surely finite. It was

observed in [59] that this transformation works only on Markov chains that do not contain loops.

In [32] the probability of unbounded property is approximated by a bounded variant that is

sufficiently long. The correctness of this approach requires the second eigenvalue to be computed,

which is as hard as the verification problem itself. A completely different approach is taken in

[63]. Using coupling methods one can estimate the stationary distribution. However, the method

is limited to ergodic Markov chains. In such a case all states of the system will be reached almost
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surely (and infinitely often).

Notably, in [30] two approaches are described. The first approach proposes to terminate

sampled paths at every step with some probability pterm. In order to guarantee the asymptotic

convergence of this method the second eigenvalue λ of the chain must be known, similar to [32].

It should be noted that their method provides only asymptotic guarantees as the width of the

confidence interval converges to zero. The second approach of [30] requires the knowledge of

the chain’s topology, which is used to transform the chain so that all potentially infinite paths are

eliminated.

In [34] another transformation is performed, again requiring knowledge of the topology. This

transformation assigns equal probability to all transitions leaving from a state, which effectively

reduces checking of an unbounded until to a bounded variant. This method can only be used to

check whether a property holds with a positive probability, but does not allow one to estimate

the probability.

The (pre)processing of the state space required by the topology-aware methods, as well as by

traditional numerical methods for Markov chain analysis, is a major practical hurdle for large (or

unknown) state spaces. In [31] a priori bounds for the length of execution runs are calculated

from the minimum transition probability and the number of states. However, without taking

execution information into account, these bounds are exponential in the number of states and

highly impractical, as illustrated in the example above.

There are also extensions of SMC to timed systems [66]. Our approach is also related to [67;

68], where the product of a non-deterministic system and Büchi automaton is explored for

accepting lassos. We are not aware of any method for detecting BSCCs by observing a single

run, employing no directed search of the state space.

To the best of our knowledge, we present the first SMC algorithm that provides confidence

bounds for unbounded qualitative properties with access to only the minimum probability of the

chain pmin, and the first SMC algorithm for quantitative properties.

3.3 Solution for Reachability

A fundamental problem in Markov chain verification is computing the probability that a certain

set of goal states is reached. For the rest of the chapter, letM = (S,P, L, µ) be a Markov chain



35

and G ⊆ S be the set of the goal states inM. We write

pmin = min({P(s, s′) > 0 | s, s′ ∈ S})

to denote the smallest positive transition probability inM. We denote the event “eventually a

state in G is reached” in an LTL-like notation as

♦G = {ρ ∈ Runs | ∃i ≥ 0 : L(ρ[i]) ∈ G}.

Our goal is to estimate the probability P(♦G) by a statistical algorithm. Since no bound on the

number of steps for reaching G is given, the major difficulty for any statistical approach is to

decide how long each sampled path should be. We can stop extending the path either when we

reach G, or when no more new states can be reached anyways. The latter happens if and only if

we are in a BSCC and we have seen all of its states.

In this section, we first show how to monitor each simulation run on the fly, in order to detect

quickly if a BSCC has been entered with high probability. Then, we show how to use hypothesis

testing in order to estimate P(♦G).

3.3.1 BSCC Detection

Error bound on a single candidate We start with an example illustrating how to measure the

probability of reaching a BSCC from one path observation.

Example 3.2. Recall Example 3.1 and Figure 3.1. Now, consider an execution path stuttutu.

Intuitively, does {t, u} look like a good “candidate” for being a BSCC ofM? We visited both t

and u three times; we have taken a transition from each t and u at least twice without leaving

{t, u}. By the same reasoning as in Example 3.1, we could have missed some outgoing transition

with probability at most (1− pmin)
2. The structure of the system that can be deduced from this

path is in Figure 3.2 and is correct with probability at least 1− (1− pmin)
2.

Now we formalise our intuition. Given a finite or infinite sequence ρ = s0s1 · · · , the support

of ρ is the set Supp(ρ) = {s0, s1, . . .}. Further, the graph of ρ is given by vertices Supp(ρ) and

edges {(si, si+1) | i = 0, 1, . . .}.

Definition 3.1 (Candidate). If a path π has a suffix κ such that Supp(κ) is a BSCC of the graph

of π, we call Supp(κ) the candidate of π. Moreover, for k ∈ N, we call it a k-candidate (of π) if
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s t u

Figure 3.2: The graph of a path stuttutu.

each s ∈ Supp(κ) has at least k occurrences in κ and the last element of κ has at least k + 1

occurrences. A k-candidate of a run ρ is a k-candidate of some prefix of ρ.

Note that for each path there is at most one candidate. Therefore, we write K(π) to denote

the candidate of π if there is one, and K(π) = ⊥, otherwise. Observe that each K(π) 6= ⊥ is

strongly connected inM.

Example 3.3. Consider a path π = stuttutu, then K(π) = {t, u}. Observe that {t} is not a

candidate as it is not maximal. Further, K(π) is a 2-candidate (and as such also a 1-candidate),

but not a 3-candidate. Intuitively, the reason is that we only took a transition from u (to the

candidate) twice, cf. Example 3.2.

Intuitively, the higher the k the more it looks as if the k-candidate is indeed a BSCC.

Denoting by Candk(K) the random predicate of K being a k-candidate on a run, the probability

of “unluckily” detecting any specific non-BSCC set of states K as a k-candidate, can be bounded

as follows.

Lemma 3.1. For every K ⊆ S such that K /∈ BSCC, and every s ∈ K, k ∈ N,

Ps[Candk(K)] ≤ (1− pmin)
k.

Proof. Since K is not a BSCC, there is a state t ∈ K with a transition to t′ /∈ K. The set of

states K becomes a k-candidate of a run starting from s, only if t is visited at least k times by

the path and was never followed by t′ (indeed, even if t is the last state in the path, by definition

of a k-candidate, there are also at least k previous occurrences of t in the path). Further, since

the transition from t to t′ has probability at least pmin, the probability of not taking the transition

k times is at most (1− pmin)
k.

Example 3.4. We illustrate how candidates “evolve over time” along a run. Consider a run

ρ = s0s0s1s0 · · · of the Markov chain in Figure 3.3. The empty and one-letter prefix do
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not have the candidate defined, s0s0 has a candidate {s0}, then again K(s0s0s1) = ⊥, and

K(s0s0s1s0) = {s0, s1}. One can observe that subsequent candidates are either disjoint or

contain some of the previous candidates. Consequently, there are at most 2|S| − 1 candidates on

every run, which is in our setting an unknown bound.

s0 s1 s2 · · · sn−1 sn
0.5 0.5 0.5 0.5 0.5

0.5 0.5 0.5
0.5 1

Figure 3.3: A family (for n ∈ N) of Markov chains with large eigenvalues.

Error bound on multiple candidates While we have bounded the probability of detecting

any specific non-BSCC set K as a k-candidate, we need to bound the overall error for detecting

a candidate that is not a BSCC. Since there can be many false candidates on a run before the real

BSCC (e.g. Figure 3.3), we need to bound the error of reporting any of them.

In the following, we first formalise the process of discovering candidates along the run.

Second, we bound the error that any of the non-BSCC candidates becomes a k-candidate. Third,

we bound the overall error of not detecting the real BSCC by increasing k every time a different

candidate is found.

We start with discovering the sequence of candidates on a run. For a run ρ = s0s1 · · · ,

consider the sequence of random variables defined by K(s0 . . . sj) for j ≥ 0, and let (Ki)i≥1 be

the subsequence without undefined elements and with no repetition of consecutive elements. For

example, for a run ρ = s0s1s1s1s0s1s2s2 · · · , we have K1 = {s1}, K2 = {s0, s1}, K3 = {s2},

etc. Let Kj be the last element of this sequence, called the final candidate. Additionally, we

define K` = Kj for all ` > j. We describe the lifetime of a candidate. Given a non-final

Ki, we write ρ = αiβibiγidiδi so that Supp(αi) ∩ Ki = ∅, Supp(βibiγi) = Ki, di /∈ Ki,

and K(αiβi) 6= Ki, K(αiβibi) = Ki. Intuitively, we start exploring Ki in βi; Ki becomes a

candidate in bi, the birthday of the ith candidate; it remains to be a candidate until di, the death

of the ith candidate. For example, for the run ρ = s0s1s1s1s0s1s2s2 · · · and i = 1, α1 = s0,

β1 = s1, b1 = s1, γ1 = s1, d1 = s0, δ1 = s1s2s2ρ[8]ρ[9] · · · . Note that the final candidate is

almost surely a BSCC ofM and would thus have γj infinite.
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Now, we proceed to bounding errors for each candidate. Since there is an unknown number

of candidates on a run, we will need a slightly stronger definition. First, observe that Candk(Ki)

iff Ki is a k-candidate of βibiγi. We say Ki is a strong k-candidate, written SCandk(Ki), if it

is a k-candidate of biγi. Intuitively, it becomes a k-candidate even not counting the discovery

phase. As a result, even if we already assume there exists an ith candidate, its strong k-candidacy

gives the guarantees on being a BSCC as above in Lemma 3.1.

Lemma 3.2. For every i, k ∈ N, we have

P(SCandk(Ki) | Ki /∈ BSCC) ≤ (1− pmin)
k .

Proof.

P(SCandk(Ki) | Ki /∈ BSCC)

=
P(SCandk(Ki), Ki /∈ BSCC)

P(Ki /∈ BSCC)

=
1

P(Ki /∈ BSCC)

∑
C∈SC\BSCC

s∈C

P(SCandk(C), Ki = C, bi = s)

=
1

P(Ki /∈ BSCC)

∑
C∈SC\BSCC

s∈C

P(Ki = C, bi = s)Ps(Candk(C)) (by Markov property)

≤ 1

P(Ki /∈ BSCC)

∑
C∈SC\BSCC

s∈C

P(Ki = C, bi = s)(1− pmin)
k (by Lemma 3.1)

= (1− pmin)
k . (since P(Ki /∈ BSCC) =

∑
C∈SC\BSCC

s∈C
P(Ki = C, bi = s))

Since the number of candidates can only be bounded with some knowledge of the state

space, e.g. its size, we assume no bounds and provide a method to bound the error even for an

unbounded number of candidates on a run.

Lemma 3.3. For (ki)
∞
i=1 ∈ NN, let Err be the set of runs such that for some i ∈ N, we have

SCandki(Ki) despite Ki /∈ BSCC. Then

P(Err) <
∞∑
i=1

(1− pmin)
ki .
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Proof.

P(Err) = P

[
∞⋃
i=1

(
SCandki(Ki) ∩Ki /∈ BSCC

))

≤
∞∑
i=1

P(SCandki(Ki) ∩Ki /∈ BSCC) (by the union bound)

=
∞∑
i=1

P(SCandki(Ki) | Ki /∈ BSCC) · P(Ki /∈ BSCC)

≤
∞∑
i=1

P(SCandki(Ki) | Ki /∈ BSCC)

=
∞∑
i=1

(1− pmin)
ki . (by Lemma 3.2)

Algorithm for BSCC detection In Algorithm 3.1 we present a procedure for deciding whether

a BSCC inferred from a path π is indeed a BSCC with confidence greater than 1− δ. We use

notation SCANDki(K, π) to denote the function deciding whether K is a strong ki-candidate on

π. The overall error bound is obtained by setting ki = i−log δ
− log(1−pmin)

.

Algorithm 3.1 REACHEDBSCC

Input: path π = s0s1 · · · sn, pmin, δ ∈ (0, 1]

Output: Yes iff K(π) ∈ BSCC

C ← ⊥, i← 0

for j = 0 to n do

if K(s0 · · · sj) 6= ⊥ and K(s0 · · · sj) 6= C then

C ← K(s0 · · · sj)

i← i+ 1

ki ← i−log δ
− log(1−pmin)

if i ≥ 1 and SCANDki(K(π), π) then return Yes

else return No

Theorem 3.1. For every δ > 0, Algorithm 3.1 is correct with error probability at most δ.
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Proof. Since M is finite, the Algorithm 3.1 terminates almost surely. The probability to return an

incorrect result can be bounded by returning incorrect result for one of the non-final candidates,

which by Lemma 3.3 is as follows:

∞∑
i=1

(1− pmin)
ki =

∞∑
i=1

(1− pmin)
−i+log δ

log(1−pmin) =
∞∑
i=1

2−i+log δ =
∞∑
i=1

δ/2i = δ.

Sampling algorithm We have shown how to detect a BSCC of a single path with desired

confidence. In Algorithm 3.2, we show how to use our BSCC detection method to decide whether

a given path reaches the set G with confidence 1− δ. The function NextState(π) randomly picks

a state according to the initial distribution µ if the path is empty (π = λ); otherwise, if ` is the

last state of π, it randomly chooses its successor according to P(`, ·). The algorithm returns Yes

when π reaches a state in G, and No when for some i, the ith candidate is a strong ki-candidate.

In the latter case, with probability at least 1− δ, π has reached a BSCC not containing G. Hence,

with probability at most δ, the algorithm returns No for a path that could reach a goal.

Algorithm 3.2 SINGLEPATHREACH

Input: goal states G ofM, pmin, δ ∈ (0, 1]

Output: Yes iff a run reaches G

π ← λ

repeat

s← NextState(π)

π ← π · s

if s ∈ G then return Yes . We have provably reached G

until REACHEDBSCC(π, pmin, δ)

return No . By Theorem 3.1, P(K(π) ∈ BSCC) ≥ 1− δ

3.3.2 Hypothesis Testing With Bounded Error

In the following, we show how to estimate the probability of reaching a set of goal states, by

combining the BSCC detection and hypothesis testing. More specifically, we sample many paths

of a Markov chain, decide for each whether it reaches the goal states (Algorithm 3.2), and then
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use hypothesis testing to estimate the event probability. The hypothesis testing is adapted to the

fact that testing reachability on a single path may report false negatives.

Let Xδ
♦ be a Bernoulli random variable, such that Xδ

♦ = 1 if and only if

SINGLEPATHREACH(G, pmin, δ) = Yes,

describing the outcome of Algorithm 3.2. The following theorem establishes that Xδ
♦ estimates

P(♦G) with a bias bounded by δ.

Theorem 3.2. For every δ > 0, we have P(♦G)− δ ≤ E(Xδ
♦) ≤ P(♦G).

Proof. Since the event ♦G is necessary for Xδ
♦ = 1, we have P(♦G | Xδ

♦ = 1) = 1. It follows

that E(Xδ
♦) = P(Xδ

♦ = 1) = P(♦G,Xδ
♦ = 1) ≤ P(♦G), hence the upper bound. As for the

lower bound:

E(Xδ
♦) = P(Xδ

♦ = 1) = P(♦G,Xδ
♦ = 1) ♦G is necessary for Xδ

♦ = 1

= P(♦G)− P(♦G,Xδ
♦ = 0)

≥ P(♦G)− δ. by Theorem 3.1

In order to conclude on the value P(♦G), the standard statistical model checking approach

via hypothesis testing (see Section 2.3.1) decides between the hypothesis

H0 : P(♦G) ≥ p+ ε H1 : P(♦G) < p− ε.

where ε is a desired indifference region. As we do not have precise observations on each path,

we reduce this problem to a hypothesis testing on the variable Xδ
♦ with a narrower indifference

region:

H ′0 : E(Xδ
♦) ≥ p+ (ε− δ) H ′1 : E(Xδ

♦) < p− ε,

for some δ < ε.

We define the reduction simply as follows. Given a statistical test T ′ for H ′0, H
′
1 we define a

test T that accepts H0 if T ′ accepts H ′0, and H1 otherwise. The following lemma shows that T

has the same strength as T ′.

Lemma 3.4. Suppose the test T ′ decides between H ′0 and H ′1 with strength (α, β). Then the test

T decides between H0 with H1 with strength (α, β).
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Proof. Consider type I error of T . Assume that H0 holds, which means P(♦G) ≥ p + ε. By

Theorem 3.2 it follows that P(Xδ
♦ = 1) ≥ P(♦G) − δ ≥ p + (ε − δ), thus H ′0 also holds. By

assumption the test T ′ accepts H ′1 with probability at most α, thus, by the reduction, T also

accepts H1 with probability ≤ α. The proof for type II error is analogous.

Lemma 3.4 gives us the following algorithm to decide between H0 and H1. We generate

samples x0, x1, · · · , xn ∼ Xδ
♦ from SINGLEPATHREACH(G, pmin, δ), and apply a statistical test

to decide between H ′0 and H ′1. Finally, we accept H0 if H ′0 was accepted by the test, and H1

otherwise.

3.4 Solution for Linear Temporal Logic

We show how our method extends to properties expressible by LTL (see Section 2.1.2), in the

same manner, to all ω-regular properties. Given a Markov chainM = (S,P, L, µ) and an LTL

formula ϕ, we are interested in the measure

PM(ϕ) = PM({ρ ∈ Runs | L(ρ) |= ϕ}),

where L is naturally extended to runs by L(ρ)[i] = L(ρ[i]) for all i.

The probability of PM(ϕ) can be reduced to reachability probability in the product ofM

and a deterministic Rabin automaton (cf. Section 2.1.3). Recall that for every LTL formula ϕ, a

DRA Aϕ can be effectively constructed that accepts the same same language as ϕ. The product

of a MC and DRA is defined in the following way.

Definition 3.2 (Product of a MC and DRA). The product of a Markov chainM = (S,P, L, µ)

and deterministic Rabin automaton A = (Q, γ, qo, Acc) is the Markov chainM⊗A = (S ×

Q,P′, L, µ′), where

• P′((s, q), (s′, q′)) =

P(s, s′) if q′ = γ(q, L(s′))

0 otherwise,

• L′((s, q)) = L(s),

• µ′((s, q)) =

µ(s) if q = γ(qo, L(s))

0 othewise.
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Note thatM⊗A has the same smallest transition probability pmin asM.

The crux of LTL probabilistic model checking relies on the fact that the probability of

satisfying an LTL property ϕ in a Markov chain M equals the probability of reaching an

accepting BSCC in the Markov chainM⊗Aϕ. Formally, a BSCC C ofM⊗Aϕ is accepting if

for some (E,F ) ∈ Acc we have C ∩ (S ×E) = ∅ and C ∩ (S × F ) 6= ∅. Let AccBSCC denote

the union of all accepting BSCCs inM⊗Aϕ. Then we obtain the following fact [10]:

Lemma 3.5. For every Markov chainM and LTL formula ϕ, we have

PM(ϕ) = PM⊗Aϕ(♦AccBSCC).

Sampling algorithm Algorithm 3.3 simulates a path of the Markov chain and augments it with

states of the DRA, to obtain a path inM⊗Aϕ. The process continues until the augmented path

reaches a BSCC of the product. Finally, the algorithm checks whether the BSCC is accepting.

Since the input used is a Rabin automaton, the method applies to all ω-regular properties.

Algorithm 3.3 SINGLEPATHLTL

Input: DRA A = (Q, 2Ap, γ, qo, Acc), pmin, δ ∈ (0, 1]

Output: Yes iff the final candidate is an accepting BSCC

q ← qo, π ← λ

repeat

s← NextState(π)

q ← γ(q, L(s))

π ← π · (s, q)

until REACHEDBSCC(π, pmin, δ) . P(K(π) ∈ BSCC) ≥ 1− δ

return ∃(E,F ) ∈ Acc : K(π) ∩ (S × E) = ∅ ∧K(π) ∩ (S × F ) 6= ∅

3.4.1 Hypothesis testing with bounded error

Let Xδ
ϕ be a Bernoulli random variable, such that Xδ

ϕ = 1 if and only if

SINGLEPATHLTL(Aϕ, pmin, δ) = Yes

Since the BSCC must be reached and fully explored to classify it correctly, the error of the

algorithm can now be both-sided.
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Theorem 3.3. For every δ > 0, P(ϕ)− δ ≤ E(Xδ
ϕ) ≤ P(ϕ) + δ.

Further, like in Section 3.3.2, we can reduce the hypothesis testing problem for

H0 : P(ϕ) ≥ p+ ε and H1 : P(ϕ) ≤ p− ε

for any δ < ε to the following hypothesis testing problem on the observable Xδ
ϕ

H ′0 : E(Xδ
ϕ) ≥ p+ (ε− δ) and H ′1 : E(Xδ

ϕ) ≤ p− (ε− δ) .

3.5 Solution for Mean Payoff

We show that our method extends also to quantitative properties, such as mean payoff. For the

definition of Markov reward model and mean payoff see Section 2.2.3.

LetM be a Markov reward model with reward function r : S → [0, 1] and MP(s) be the

mean payoff for the state s. All states in the same BSCC have equal mean payoff, and this value

can be computed from the reward function r and transition probabilities in the BSCC. In general,

for every state s the mean-payoff can be computed as

MP(s) =
∑

C∈BSCC

Ps(♦C) ·MPC ,

where MPC is the mean payoff of runs ending in C. We have already shown how our method

estimates P(♦C). Now we show how it extends to estimating transition probabilities in BSCCs

and thus the mean payoff.

Single path analysis First, we focus on a single path π that has reached a BSCC C = K(π)

and show how to estimate the transition probabilities P(s, s′) for each s, s′ ∈ C. Let Xs,s′ be the

random variable denoting the event that NextState(s) = s′. Xs,s′ is a Bernoulli variable with

parameter P(s, s′), so we use the obvious estimator P̂(s, s′) = #ss′(π)/#s(π), where #α(π)

is the number of occurrences of α in π. If π is long enough so that #s(π) is large enough, the

estimation is guaranteed to have desired precision ξ with desired confidence (1− δs,s′). Indeed,

using Höffding’s inequality [55], we obtain

P(P̂(s, s′)−P(s, s′)| > ξ) ≤ δs,s′ = 2e−2#s(π)·ξ2 . (3.1)
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Hence, we can extend the path π with candidate C until it is long enough so that we have a

1 − δC confidence that all the transition probabilities in C are in the ξ-neighbourhood of our

estimates, by ensuring that
∑

s,s′∈C δs,s′ < δC . These estimated transition probabilities P̂ induce

an estimated mean payoff M̂PC . The following theorem relates the estimated and exact mean

payoff.

Theorem 3.4. Let C be a BSCC in a Markov chainM with rewards in the range [0, 1], MPC be

the mean payoff of C, and M̂PC be the estimated mean payoff of C. Then

|M̂PC −MPC | ≤ ζ :=

(
1 +

ξ

pmin

)2·|C|

− 1 . (3.2)

Proof. Consider a Markov chain C with a reward function r : S → [0, 1], such that C is a single

BSCC. The discounted sum MDλ for a state s of C is defined as:

MDλ(s) := lim
n→∞

E
(∑n

i=1 r(Si,s)λ
i∑n

i=1 λ
i

)
,

where λ > 0 is a discount factor and Si,s is a random variable that returns the i-th state on a run

that starts in the state s. We say that a Markov chain Ĉ is ξ-close to C if

1. Ĉ is over the same states as C,

2. ∀s, s′ ∈ C : |PC(s, s′)−PĈ(s, s′)| ≤ ξ,

3. ∀s, s′ ∈ C : PC(s, s′) > 0 ⇐⇒ PĈ(s, s′) > 0.

We write M̂D
λ

for the discounted sum computed for Ĉ. By [69](Theorem 4) it holds that for

every discount factor 0 < λ < 1, every MC Ĉ that is ξ-close to C, and every state s:

|M̂D
λ
(s)−MDλ(s)| ≤

(
1 +

ξ

pmin

)2·|C|

− 1 , (3.3)

where pmin is the minimum transition probability inM. By [70] we know that the discounted

sum converges to mean payoff:

lim
λ→1

MDλ(s) = MPC lim
λ→1

M̂D
λ
(s) = M̂PC ,

where MPC and M̂PC are the mean payoff for C and Ĉ, respectively. We obtain the result by

taking the limit λ→ 1 in (3.3).

Note that by Taylor’s expansion, for small ξ, we have ζ ≈ 2|C|ξ.
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Algorithm 3.4 SINGLEPATHMP
Input: reward function r, pmin, ζ, δ ∈ (0, 1],

Output: M̂PC such that |M̂PC −MPC | < ζ where C is the BSCC of the generated run

π ← λ

repeat

π ← π .NextState(π)

if K(π) 6= ⊥ then

ξ = pmin((1 + ζ)1/2|K(π)| − 1) . By Equation (3.2)

k ← ln(2|K(π)|2)−ln(δ/2)
2ξ2

. By Equation (3.1)

until REACHEDBSCC(π, pmin, δ/2) and SCANDk(K(π), π)

return M̂PK(π) computed from P̂ and r

Sampling algorithm Algorithm 3.4 extends Algorithm 3.2 as follows. It divides the confidence

parameters δ into δBSCC (used as in Algorithm 3.2 to detect the BSCC) and δC (the total

confidence for the estimates on transition probabilities). For simplicity, we set δBSCC = δC =

δ/2. First, we compute the bound ξ required for ζ-precision (by (3.2)). Subsequently, we

compute the required strength k of the candidate guaranteeing δC-confidence on P̂ (from (3.1)).

The path is prolonged until the candidate is strong enough; in such a case M̂PC is ζ-approximated

with 1 − δC confidence. If the candidate of the path changes, all values are computed from

scratch for the new candidate.

Theorem 3.5. For every δ > 0, the Algorithm 3.4 terminates correctly with probability at least

1− δ.

Proof. From (3.1), by the union bound, we are guaranteed that the probability that none of

the estimates P̂s,s′ is outside of the ζ-neighbourhood doesn’t exceed the sum of all respective

estimation errors, that is, δC =
∑

s,s′∈C δs,s′ . Next, from (3.2) and from the fact that C is subject

to Theorem 3.1 with confidence δBSCC ,

P (|MPC(r)− M̂PC(r)| > ζ) =

=P (C ∈ BSCC)P (|MP(r)− M̂P(r)| > ζ | C ∈ BSCC)+

P (C /∈ BSCC)P (|MP(r)− M̂P(r)| > ζ | C /∈ BSCC)

≤1 · δC + δBSCC · 1 = δC + δBSCC ≤ δ.
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3.5.1 Hypothesis testing with bounded error

Let random variableXζ,δ
MP denote the value SINGLEPATHMP(r, pmin, ζ, δ). The following theorem

establishes relation between the mean-payoff MP and the expected value of Xζ,δ
MP.

Theorem 3.6. For every δ, ζ > 0, MP− ζ − δ ≤ E(Xζ,δ
MP) ≤ MP + ζ + δ.

Proof. Let us write Xζ,δ
MP as an expression of random variables Y,W,Z

Xζ,δ
MP = Y (1−W ) +WZ,

where (i) W is a Bernoulli random variable, such that W = 0 iff the algorithm correctly detected

the BSCC and estimated transition probabilities within bounds, (ii) Y is the value computed by

the algorithm if W = 0, and the real mean payoff MP when W = 1, and (iii) Z is any random

variable with the range [0, 1]. The interpretation is as follows: when W = 0 we observe the result

Y , which has bounded error ζ , and when W = 1 we observe arbitrary Z. We note that Y,W,Z

are not necessarily independent. By Theorem 3.5 E(W ) ≤ δ and by linearity of expectation:

E(Xζ,δ
MP) = E(Y ) − E(YW ) + E(WZ). For the upper bound, observe that E(Y ) ≤ MP + ζ,

E(YW ) is non-negative and E(WZ) ≤ δ. As for the lower bound, note that E(Y ) ≥ MP− ζ,

E(YW ) ≤ δ and E(WZ) is non-negative.

As a consequence of Theorem 3.6, if we establish that with (1− α) confidence Xζ,δ
MP belongs

to the interval [a, b], then we can conclude with (1 − α) confidence that MP belongs to the

interval [a− ζ − δ, b+ ζ + δ]. Standard statistical methods can be applied to find the confidence

bound for Xζ,δ
MP; for instance the method presented in Section 2.3.2.

3.6 Experimental Evaluation

We implemented our algorithms in the probabilistic model checker PRISM [62], and evaluated

them on the DTMC examples from the PRISM benchmark suite [64]. The benchmarks model

communication and security protocols, distributed algorithms, and fault-tolerant systems. To

demonstrate how our method performs depending on the topology of Markov chains, we also
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performed experiments on the generic DTMCs shown in Figure 3.3 and Figure 3.4, as well as on

two CTMCs from the literature that have large BSCCs: “tandem” [71] and “gridworld” [58].

s u1t1 · · · uN BSCC· · ·tNBSCC
0.50.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

Figure 3.4: A Markov chain with two transient parts consisting of N strongly connected

singletons, leading to BSCCs with the ring topology of M states.

All benchmarks are parametrised by one or more values, which influence their size and

complexity, e.g. the number of modelled components. We have made minor modifications to

the benchmarks that could not be handled directly by the SMC component of PRISM, by adding

self-loops to deadlock states and fixing one initial state instead of multiple.

Experiments were done on a Linux 64-bit machine running an AMD Opteron 6134 CPU

with a time limit of 15 minutes and a memory limit of 5GB. To increase performance of our

tool, we check whether a candidate has been found every 1000 steps; this optimization does not

violate correctness of our analysis.

Reachability The experimental results for unbounded reachability are shown in Tables 3.2

and 3.3. The PRISM benchmarks were checked against their standard properties, when available.

We directly compare our method to another topology-agnostic method of [30] (SimTermination),

where at every step the sampled path is terminated with probability pterm. The approach of

[31] with a priori bounds is not included, since it times out even on the smallest benchmarks.

In addition, we performed experiments on two methods that are topology-aware: sampling

with reachability analysis of [30] (SimAnalysis) and the numerical model-checking algorithm of

PRISM (MC).

The table shows the size of every example, its minimum probability, the number of BSCCs,

and the size of the largest BSCC. Column “time” reports the total wall time for the respective

algorithm, and “analysis” shows the time for symbolic reachability analysis in the SimAnalysis

method. Highlights show the best result among the topology-agnostic methods. All statistical

methods were used with the SPRT test for choosing between the hypothesis (see Section 2.3.1),

and their results were averaged over five runs.
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Example BSCC SimAdaptive SimTermination[30] SimAnalysis[30] MC

name size pmin no., max. size time time time analysis time

bluetooth(4) 149K 7.8 · 10−3 3K, 1 2.6s 16.4s 83.2s 80.4s 78.2s

bluetooth(7) 569K 7.8 · 10−3 5.8K, 1 3.8s 50.2s 284.4s 281.1s 261.2s

bluetooth(10) >569K 7.8 · 10−3 >5.8K, 1 5.0s 109.2s TO - TO

brp(500,500) 4.5M 0.01 1.5K, 1 7.6s 13.8s 35.6s 30.7s 103.0s

brp(2K,2K) 40M 0.01 4.5K, 1 20.4s 17.2s 824.4s 789.9s TO

brp(10K,10K) >40M 0.01 >4.5K, 1 89.2s 15.8s TO - TO

crowds(6,15) 7.3M 0.066 >3K, 1 3.6s 253.2s 2.0s 0.7s 19.4s

crowds(7,20) 17M 0.05 >3K, 1 4.0s 283.8s 2.6s 1.1s 347.8s

crowds(8,20) 68M 0.05 >3K, 1 5.6s 340.0s 4.0s 1.9s TO

eql(15,10) 616G 0.5 1, 1 16.2s TO 151.8s 145.1s 110.4s

eql(20,15) 1279T 0.5 1, 1 28.8s TO 762.6s 745.4s 606.6s

eql(20,20) 1719T 0.5 1, 1 31.4s TO TO - TO

herman(17) 129M 7.6 · 10−6 1, 34 23.0s 33.6s 21.6s 0.1s 1.2s

herman(19) 1162M 1.9 · 10−6 1, 38 96.8s 134.0s 86.2s 0.1s 1.2s

herman(21) 10G 4.7 · 10−7 1, 42 570.0s TO 505.2s 0.1s 1.4s

Table 3.2: Experimental results for unbounded reachability; part 1/2. Simulation parameters:

α = β = ε = 0.01, δ = 0.001, pterm = 0.0001. TO means time-out, and MO means memory-

out. Our approach is denoted by SimAdaptive here. Highlights show the best result the among

topology-agnostic methods.

Finding the optimal termination probability pterm for the SimTermination method is a non-

trivial task. If the probability is too high, the method might never reach the target states, thus give

an incorrect result, and if the value is too low, then it might sample unnecessarily long traces that

never reach the target. For instance, to ensure a correct answer on the Markov chain in Figure

3.3, pterm has to decrease exponentially with the number of states. By experimenting we found

that the probability pterm = 0.0001 is low enough to ensure correct results.

On most examples our method scales better than the SimTermination method. Our method

performs well even on examples with large BSCCs, such as “tandem” and “gridworld,” due

to early termination when a goal state is reached. For instance, on the “gridworld” example,

most BSCCs do not contain a goal state, thus have to be fully explored, however the probability

of reaching such BSCC is low, and as a consequence full BSCC exploration rarely occurs.

The SimTermination method performs well when the target states are unreachable or can be
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Example BSCC SimAdaptive SimTermination[30] SimAnalysis[30] MC

name size pmin no., max. size time time time analysis time

leader(6,6) 280K 2.1 · 10−5 1, 1 5.0s 5.4s 536.6s 530.3s 491.4s

leader(6,8) >280K 3.8 · 10−6 1, 1 23.0s 26.0s MO - MO

leader(6,11) >280K 5.6 · 10−7 1, 1 153.0s 174.8s MO - MO

nand(50,3) 11M 0.02 51, 1 7.0s 231.2s 36.2s 31.0s 272.0s

nand(60,4) 29M 0.02 61, 1 6.0s 275.2s 60.2s 56.3s TO

nand(70,5) 67M 0.02 71, 1 6.8s 370.2s 148.2s 144.2s TO

tandem(500) >1.7M 2.4 · 10−5 1, >501K 2.4s 6.4s 4.6s 3.0s 3.4s

tandem(1K) 1.7M 9.9 · 10−5 1, 501K 2.6s 19.2s 17.0s 12.7s 13.0s

tandem(2K) >1.7M 4.9 · 10−5 1, >501K 3.4s 72.4s 62.4s 59.8s 59.4s

gridworld(300) 162M 1 · 10−3 598, 89K 8.2s 81.6s MO - MO

gridworld(400) 384M 1 · 10−3 798, 160K 8.4s 100.6s MO - MO

gridworld(500) 750M 1 · 10−3 998, 250K 5.8s 109.4s MO - MO

Fig.3.3(16) 37 0.5 1, 1 58.6s TO 23.4s 0.4s 2.0s

Fig.3.3(18) 39 0.5 1, 1 TO TO 74.8.0s 1.8s 2.0s

Fig.3.3(20) 41 0.5 1, 1 TO TO 513.6s 11.3s 2.0s

Fig.3.4(1K,5) 4022 0.5 2, 5 7.8s 218.2s 3.2s 0.5s 1.2s

Fig.3.4(1K,50) 4202 0.5 2, 50 12.4s 211.8s 3.6s 0.7s 1.0s

Fig.3.4(1K,500) 6002 0.5 2, 500, 431.0s 218.6s 3.6s 1.0s 1.2s

Fig.3.4(10K,5) 40K 0.5 2, 5 52.2s TO 42.2s 25.4s 25.6s

Fig.3.4(100K,5) 400K 0.5 2, 5 604.2s 5.4s TO - TO

Table 3.3: Experimental results for unbounded reachability; part 2/2. Simulation parameters are

as in Table 3.2.

reached by short paths. When long paths are necessary to reach the target, the probability that an

individual path reaches the target is small, hence many samples are necessary to estimate the real

probability with high confidence.

Moreover, it turns out that our method compares well even with methods that have access

to the topology of the system. In many cases, the running time of the numerical algorithm

MC increases dramatically with the size of the system, while remaining almost constant in our

method. The bottleneck of the SimAnalysis algorithm is the reachability analysis of states that

cannot reach the target, which in practice can be as difficult as numerical model checking.

LTL and mean payoff In the second experiment, we compared our algorithm for checking

LTL properties and estimating the mean payoff with the numerical methods of PRISM; the results
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are shown in Table 3.4 and 3.5. We compare against PRISM, since we are not aware of any

SMC-based or topology-agnostic approach for mean payoff, or full LTL. For mean payoff, we

computed 95%-confidence bound of size 0.22 with parameters δ = 0.011, ζ = 0.08, and for

LTL we used the same parameters as for reachability. We report results only on a single model

of each type, where either method did not time out. In general our method scales better when

BSCCs are fairly small and are discovered quickly.

Example LTL

name property SimAdaptive time MC time

bluetooth(10) �♦ 8.0s TO

brp(10K,10K) ♦� 90.0s TO

crowds(8,20) ♦� 9.0s TO

eql(20,20) �♦ 7.0s MO

herman(21) �♦ TO 2.0s

leader(6,5) �♦ 277.0s 117.0s

nand(70,5) �♦ 4.0s TO

tandem(2K) �♦ TO 221.0s

gridworld(100) �♦→ ♦� TO 110.4s

Fig.3.3(20) �♦→ �♦ TO

Fig.3.4(100K,5) �♦ 348.0s TO

Fig.3.4(1K,500) �♦ 827.0s 2.0s

Table 3.4: Experiment results for LTL. The following simulation parameters were used: α =

β = ε = 0.01, δ = 0.001.

3.7 Theoretical Bounds

As demonstrated by the experimental results, our method is fast on systems that are (i) shal-

low, and (ii) with small BSCCs. In such systems, the BSCC is reached quickly and the candidate

is built-up quickly. Further, recall that the BSCC is reported when a k-candidate is found, and

that k is increased with each candidate along the path. Hence, when there are many strongly

connected sets, and thus many candidates, the BSCC is detected by a k-candidate for a large k.

However, since k grows linearly in the number of candidates, the most important and limiting

factor is the size of BSCCs.
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Example Mean payoff

name SimAdaptive time MC time

bluetooth(10) 3.0s TO

brp(10K,10K) 6.6s TO

crowds(8,20) 2.0s TO

eql(20,20) 2.6s TO

herman(21) MO 3.0s

leader(6,6) 48.5 576.0

nand(70,5) 2.0s 294.0s

tandem(500) TO 191.0s

gridworld(50) TO 58.1s

Fig.3.3(20) TO 1.8s

Fig.3.4(100K,5) 79.6s TO

Fig.3.4(1K,500) TO 2.0s

Table 3.5: Experimental results for mean-payoff properties. For mean-payoff we computed a

95%-confidence interval of size 0.22 with δ = 0.011, ζ = 0.08.

Theoretical bound We state the dependency on the depth of the system and BSCC sizes

formally. We pick δ = ε
2

and let

sim =
− log β

1−α log 1−β
α

log p−ε+δ
p+ε−δ log 1−p−ε+δ

1−p+ε−δ
and ki =

i− log δ

− log(1− pmin)

denote the a priori upper bound on the number of simulations necessary for the SPRT and the

strength of candidates as in Algorithm 3.2, respectively.

Theorem 3.7. Let R denote the expected number of steps before reaching a BSCC and B the

maximum size of a BSCC. Further, let

T = max
C∈BSCC;s,s′∈C

E(time to reach s′ from s).

In particular, T ∈ O(B/pBmin). Then the expected running time of Algorithms 3.2 and 3.3 is at

most

O(sim · kR+B ·B · T ) .

Proof. We show that the expected running time of each simulation is at most kR+B ·B ·T . Since

the expected number of states visited is bounded by R +B, the expected number of candidates
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on a run is less than 2(R +B)− 1. Since ki grows linearly in i it is sufficient to prove that the

expected time to visit each state of a BSCC once (when starting in BSCC) is at most B · T . We

order the states of a BSCC as s1, . . . , sb, then the time is at most
∑b

i=1 T , where b ≤ B. This

yields the result since R ∈ O(kR+B ·B · T ).

It remains to prove that T ≤ B/pBmin. Let s be a state of a BSCC of size at most B. Then,

for any state s′ from the same BSCC, the shortest path from s to s′ has length at most B and

probability at least pBmin. Consequently, if starting at s, we haven’t reached s′ after B steps with

probability at most 1− pBmin, and we are instead in some state s′′ 6= s′, from which, again, the

probability to reach s′ within B steps at least pBmin. Hence, the expected time to reach s′ from s is

at most
∞∑
i=1

B · i(1− pBmin)
i−1pBmin,

where i indicates the number of times a sequence of B steps is observed. The series can be

summed by differentiating a geometric series. As a result, we obtain a bound B/pB.

Systems that have large deep BSCCs require longer time to reach for the required level of

confidence. However, such systems are often difficult to handle also for other methods agnostic

of the topology. For instance, correctness of [30] on the example in Figure 3.3 relies on the

termination probability pterm being at most 1 − λ, which is less than 2−n here. Larger values

lead to incorrect results and smaller values to paths of exponential length. Nevertheless, our

procedure usually runs faster than the bound suggest.

Theoretical vs. empirical running time We now compare the theoretical upper bound on

running time given in Theorem 3.7 to empirical data. We omit the number of simulation runs

(term sim in the theorem), and report only the logarithm of the average simulation length. Figures

3.5, 3.6 and 3.7 present the comparison for different topologies of Markov chains. In Figure 3.5

we present the comparison for the worst-case Markov chain, which requires the longest paths

to discover the BSCCs as a k-candidate. This Markov chain is like the one in Figure 3.3, but

where the last state has a single outgoing transition to the initial state. Figure 3.6 suggests that

the theoretical bound can be a good predictor of running time with respect to the depth of the

system, however, Figure 3.7 shows that it is very conservative with respect to the size of BSCCs.
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Figure 3.5: Average length of simulations for a Markov chain like in Figure 3.3, but where the

last state has a single outgoing transition to the initial state.
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Figure 3.6: Average length of simulations for the MC in Figure 3.4, where M = 5 and N varies.
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4 Linear Distances between Markov

Chains

4.1 Introduction

Behavior of processes is traditionally compared using various notions of equivalence, such as

trace equivalence, bisimulation, etc. However, the concept of equivalence is often too coarse for

quantitative systems, such as Markov chains. For instance, probabilities of failures of particular

hardware components are typically only empirically estimated and the slightest imprecision

in the estimate may result in breaking the equivalence between processes. Moreover, if the

(possibly black-box) processes are indeed different we would like to measure how much they

differ. This has led to lifting the Boolean idea of behavioral equivalence to a finer, quantitative

notion of behavioral distance between processes. The distance between processes s and t is

typically formalized as supp∈C |p(s)− p(t)| where C is a class of properties of interest and p(s)

is a quantitative value of the property p in process s [72]. This notion has been introduced in [72]

for Markov chains and further developed in various settings, such as Markov decision processes

[73], quantitative transition systems [74], or concurrent games [75].

Several kinds of distances have been investigated for Markov chains. On the one hand,

branching distances, e.g. [76; 72; 77; 78; 79; 80; 81; 82], lift the equivalence given by the

probabilistic bisimulation of Larsen and Skou [20]. On the other hand, there are linear distances,

in particular the total variation distance [83; 84] and trace distances [85; 86]. Linear distances

are particularly appropriate when (i) we are interested in linear-time properties, and (ii) we want

to estimate the distance based only on simulation runs from the initial distribution of the system,

i.e. in a black-box setting. (Recall that for branching distances, the underlying probabilistic
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bisimulation corresponds to testing equivalence where not only runs from the initial distribution

can be observed, but it is also possible to dump the current state of the system, and later restart

the simulation from this state [20].)

In this chapter, we introduce a simple framework for linear distances between Markov chains,

using the formula above, where p(s) is the probability of satisfying p when starting a simulation

run in state s (when p is seen as a language of ω-words it is the probability to generate a trace

belonging to p). We consider several classes C of languages of interest, characterized from

several points of view, e.g. topologically, by linear-time logics, or by automata, thus rendering

our framework versatile.

We investigate when a given distance can be estimated in a black-box setting, i.e. only

from simulations. One of the main difficulties is that the class C typically includes properties

with arbitrarily long horizon or even infinite-horizon properties, whereas every simulation

run is necessarily finite. Note that we do not employ any simplifications such as imposed

fixed horizon or discounting, typically used for obtaining efficient algorithms, e.g., [72; 77;

80], and the undiscounted setting is fundamentally more complex [78]. Since even simpler tasks

are impossible for unbounded horizon in the black-box setting without any further knowledge, we

assume we only know a lower bound on the minimum transition probability pmin. The knowledge

of pmin has been already justified in Chapter 3.

Our contribution are the following:

• We introduce a systematic linear-distance framework and illustrate it with several examples,

including distances previously investigated in the literature.

• The main technical contributions are (i) a negative result stating that the total variation

distance cannot be estimated by simulating the systems, and (ii) a positive result that the

trace distance can be estimated.

• These results are further exploited to provide both negative and positive results for each

of the settings where the language class is given topologically, by LTL (linear temporal

logic) fragments, and by automata. We also show that the negative result on the total

variation distance can be turned into a positive result if the transition probabilities have

finite precision.



59

Outline In Section 4.2 we review the related work. We introduce our framework and illustrate

it with examples in Section 4.3. We define our problem formally in Section 4.3.2. In Sections 4.4

and 4.5 we provide the proofs of our technically principal negative and positive result, respectively.

Section 4.6 extends the results in the settings of topology, logics and automata, and discusses

general conditions for estimability.

4.2 Related Work

There are two main linear distances considered for Markov chains: the total variation distance

and trace distance. Several algorithms have been proposed for both of them in the case when

the Markov chains are known (the white-box setting). We are not aware of any work where the

distances are estimated only from simulating the systems (the black-box setting).

Firstly, for the total variation distance in the white-box setting, [83] shows that deciding

whether it equals one can be done in polynomial time, but computing it is NP-hard and not

known to be decidable, however, it can be approximated; [84] considers this distance more

generally for semi-Markov processes, provides a different approximation algorithm, and shows

it coincides with distances based on (i) metric temporal logic, and (ii) timed automata languages.

Secondly, the trace distance is based on the notion of trace equivalence, which can be decided

in polynomial time [87] (however, trace refinement of Markov decision processes is already

undecidable [88]). Several variants of trace distance are considered in [85] where it is taken as a

limit of finite-trace distances, possibly using discounting or averaging. In [86] the finite-trace

distance is shown to coincide with distances based on (i) LTL, and (ii) LTL without the U

operator, i.e., only using the , operator and Boolean connectives. This distances is also shown

to be NP-hard and not known to be decidable, similarly to the total variation distance. Finally, an

approximation algorithm is shown (again in the white-box setting), where the over-approximates

are branching-time distances, showing an interesting connection between the branching and

linear distances.

In [89] the distinguishability problem is considered, i.e. given two Markov chains whether

there is a monitor that reads a single sample and with high probability decides which chain

produced the sequence. This is indeed possible when the total variation distance between the

chains equals one, and [89] shows how to construct such monitors. In contrast, our negative
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results shows that it is not possible to decide with high probability whether the total variation

distance equals one when the two Markov are black-box.

Linear distances have been proposed also for quantitative transition systems, e.g. [75].

Moreover, there are other useful distances based on different fundaments; for instance, the

Skorokhod distance [90; 91; 92] measures the discrete differences between systems while

allowing for timing distortion; Kullback-Leibler divergence [85] is useful from the information-

theoretic point of view. Finally, distances have been also studied with respect to applications in

linear-time model checking [93; 86].

4.3 Framework for Linear Distances

In this section we introduce our framework for linear distances. For i ∈ {1, 2}, let Mi =

(S,Pi, L, µi) denote a Markov chain and (Runs,F ,Pi) the induced probability space (see Sec-

tion 2.2 for definitions). To avoid clutter, the chains are defined over the same state space with

the same labelling, which can be w.l.o.g. achieved by their disjoint union. The measurable space

of ω-languages is given by the set (2Ap)ω equipped with a σ-algebra F(2Ap) generated by the

set of cones {w(2Ap)ω | w ∈ (2Ap)∗}. This ensures, for every measurable ω-language X , that

L−1(X) is measurable in every Markov chain.

Since single runs of Markov chains typically have measure 0, we introduce linear distances

using measurable sets of runs:

Definition 4.1 (L-distance). For a class L ⊆ F of measurable ω-languages, the L-distance DL

is defined by

DL(M1,M2) = sup
X∈L
|P1(X)− P2(X)|.

Note that every DL is a pseudo-metric, i.e. it is symmetric, it satisfies the triangle inequality,

and the distance between identical Markov chains is 0. However, two different Markov chains

can have distance 0, for instance, when they induce the same probability space.
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4.3.1 Examples of Linear Distances

The definition of L-distances can be instantiated either (i) by a direct topological description

of L, or indirectly (ii) by a class A of automata inducing the class of recognized languages

L = {L(A) | A ∈ A}, or (iii) by a set of formulae L of a linear-time logic inducing the

languages of models L = {L(ϕ) | ϕ ∈ L} where L(ϕ) denotes the language of ω-words

satisfying the formula ϕ.

We now discuss several particularly interesting instantiations:

Total variation One extreme choice is to consider all measurable languages, resulting in the

total variation distance DTV(M1,M2) = supX∈F(2Ap) |P1(X)− P2(X)|.

Trace distances The other extreme choices are to consider (i) only the generators of F(2Ap),

i.e. the cones {w(2Ap)ω | w ∈ (2Ap)∗}, resulting in the finite-trace distance DFT(M1,M2) =

supw∈(2Ap)+ |P1(w) − P2(w)|; or (ii) only the elementary events, i.e. (2Ap)ω, resulting in the

infinite-trace distance DIT(M1,M2) = supw∈(2Ap)ω |P1(w)− P2(w)|.

Topological distances There are many possible choices for L between the two extremes above,

such as clopen sets ∆1, which are finite unions of cones (being both closed and open), open sets

2Ap1 , which are infinite unions of cones, closed sets Π1, or classes higher in the Borel hierarchy

such as the class of ω-regular languages (within ∆3), or languages given by thresholds for a

long-run average reward (within 2Ap3 ).

Automata distances The class of ω-regular languages can also be given in terms of automata,

for instance by the class of all deterministic Rabin automata (DRA). Similarly, the closed sets

Π1 correspond to the class of deterministic Büchi automata with all states final. Further, we can

restrict the class of all DRA to those of size at most k for a fixed k ∈ N, denoting the resulting

distance by DDRA≤k.

Logical distances The class of ω-regular languages can also be given in terms of logic, by

the monadic second-order logic (with order). Further useful choices include first-order logic

with order, corresponding to the star-free languages and to linear temporal logic (LTL), or its

fragments such as LTL with only , or only ♦ and � operators etc.
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Finite-trace equivalence The introduced distances can also be considered in the discrete

setting, resulting in various notions of equivalence. For instance, the finite-trace equivalence EFT

can be derived from the finite-trace distance by the following discretization:

EFT(M1,M2) =

0 if DFT(M1,M2) = 0

1 otherwise, i.e., DFT(M1,M2) > 0.

4.3.2 Problem Statement

Linear distances can be very useful when we want to compare a black-box system with another

system, e.g. a white-box specification or a black-box previous version of the system. Indeed,

in such a setting we can typically obtain simulation runs of the system and we must establish

a relation between the systems based on these runs only. This is in contrast with branching

distances where either both systems are assumed white-box or there are strong requirements on

the testing abilities, such as dumping the current state of the system, arbitrary many restarts from

there, and nesting this branching arbitrarily. Therefore, we focus on the setting where we can

obtain only finite prefixes of runs and we use statistics to (i) deduce information on the whole

infinite runs, and (ii) estimate the distance of the systems.

Definition 4.2 (Estimability). A distance function DL is called estimable, if there exists an

almost-surely terminating algorithm that given

• any desired finite number of sampled simulation run from Markov chainsM1 andM2 of

any desired finite length,

• lower bound pmin > 0 on the minimum (non-zero) transition probability,

• confidence α ∈ (0, 1),

• interval width δ ∈ (0, 1),

computes an interval I such that |I| ≤ δ and

P[DL(M1,M2) ∈ I] ≥ 1− α.

A distance function is called inestimable, if there does not exists an algorithm in the above sense.
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4.4 Inestimability: Total Variation Distance

We show that for the total variation distance DTV there exists no “statistical” algorithm (in the

above sense) which is correct for all inputs (M1,M2, α, δ). Our argument consists of two steps:

1. We construct two chains such that DTV(M1,M2) = 1, namely the two Markov chains

shown in Figure 4.1 (similar to [85]): one with τ = 0 and the other with small τ > 0.

2. We show that any potentially correct algorithm will give with high probability an incorrect

output for some choice of τ, α, δ.

a b

0.5 + τ

0.5− τ

0.5− τ 0.5 + τ

Figure 4.1: A Markov chain with labelling displayed in states.

4.4.1 Maximizing Event

We start by showing that even an arbitrarily small difference in transition probabilities between

two Markov chains may result in total variation distance of 1. Consider the two Markov chains as

in Figure 4.1, whereM1 has τ = 0, andM2 has τ > 0. We assume that the initial distribution

for each chain is its stationary distribution. In this setting, every simulation step is like an

independent trial with probability 0.5− τ (resp. 0.5 + τ ) of seeing a (resp. b).

Let Xn (resp. Yn) denote the number of b symbols in a random path of length n sampled

fromM1 (resp.M2). By the central limit theorem the distributions of Xn and Yn are converging

to the normal distribution when n→∞:

Xn ≈ N (0.5n, 0.52n) Yn ≈ N ((0.5 + τ)n, n(0.25− τ 2)).

For n ∈ N let the event En mean “there is at most cn = (0.5 + τ/2)n symbols b in the path

prefix of length n.” The probabilities of the event En in the two Markov chains are:

PM1(En) = PM1(Xn ≤ cn) = Φ(τ
√
n) PM1(En) = PM1(Yn ≤ cn) = Φ(

−0.5τ
√
n√

0.25− τ 2
),

where Φ is the CDF of the standard normal distribution. For n → ∞ the probability of En in

M1 andM2 converges to 1 and 0, respectively, so the total variation distance converges to 1.
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4.4.2 Negative Result for the Total Variation Distance

Now we show that there is no statistical procedure for estimating total variation distance that

would almost-surely terminate. From the second part of the proof, it also follows that there is no

statistical algorithm even for fixed α and δ.

Theorem 4.1. For any δ < 1 and α < 1
2
, there is no algorithm for computing a 1−α confidence

interval of size δ for the total variation distance that almost-surely terminates.

Proof. Let us writeM(τ) for a Markov chain in Figure 4.1 with the parameter τ and the initial

distribution being stationary.

For α < 1
2

we define the following decision problem Bα:

• The input to Bα is a single path fromM(τ) of arbitrary length, where τ is unknown,

• The task of Bα is to output answer

Yes with probability ≥ 1− α if DTV(M(0),M(τ))) = 1

No with probability ≥ 1 − α if DTV(M(0),M(τ)) = 0. Note that DTV(M(0),M(τ))

can equal only 0 or 1.

The remaining part of proof is done in two parts. In the first part, we show that there is no

algorithm that solves Bα and almost-surely terminates. In the second part we reduce the problem

Bα to computing a confidence interval for the total variation distance.

Part I. Suppose the opposite of the claim: that for some α < 1
2

there is an algorithm which

solves Bα and almost-surely terminates. We represent the algorithm for solving Bα as a deter-

ministic Turing machine TM, which works as follows:

1. The input tape of TM contains a (single) randomly sampled run ofM(τ),

2. TM reads a part of the run from the tape and eventually returns Yes/No answer.

The input to the TM is random, therefore we can assign a probability distribution to the

computations of TM. To this end, we represent the answer of TM by the random variable

X : Runs 7→ {Yes, No}, and we use the random variable Y : Runs 7→ N ∪ {∞} to represent
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the number of path symbols TM reads before terminating, where∞ means that TM does not

terminate.

Suppose we run TM on the Markov chainM(0). We write P1 for the probability measure of

TM on this input. The total variation distance between the two Markov chainsM(0) is 0, so

with probability ≥ 1− α TM returns answer No, i.e. P1(X = No) ≥ 1− α.

By assumption TM almost-surely terminates on every input, so P1(Y ∈ N) = 1. Let q be the

following quantile:

q = min{c ∈ N : P1(Y ≤ c) ≥ 0.5 + α}.

Claim. q ∈ N (see below for the proof).

It follows that:

P1(X = No ∧ Y ≤ q) = 1− P1(X = Yes ∨ Y > q) ≥ 1− P1(X = Yes)− P1(Y > q) ≥ 0.5.

(4.1)

The Turing machine TM is deterministic, so if it terminates after reading prefix π of some

run ρ, then it terminates after reading prefix π of any run. As a consequence, the event Y ≤ q

can be represented as a union of ` cones where ` ≤ |2Ap|q = 2q since 2Ap = {a, b} inM:

{ρ : Y (ρ) ≤ q} =
⋃̀
i=1

Cone(πi),

where all πi ∈ (2Ap)q are distinct. The event X = No ∧ Y ≤ q is a refinement of the event

Y ≤ q, so it may also be represented as

{ρ : X = No ∧ Y (ρ) ≤ q} =
m⋃
i=1

Cone(πi), (4.2)

where m ≤ ` ≤ 2q. Since every path inM(0) of length q has probability 0.5q, we get by (4.2)

P1(X = No ∧ Y (ρ) ≤ q) = P1(
m⋃
i=1

Cone(πi)) =
m∑
i=1

P1(πi) = m0.5q.

Then by (4.1) it follows that m ≥ 2q−1.

Now, we run TM on the Markov chainM(ε) where ε = 0.5− α
1
q 2

1−q
q if q > 0 and ε = 0.25

in the degenerated case of q = 0.

Claim. ε > 0 (see below for the proof).



66

Let us write P2 for the probability measure of TM on the inputM(ε). The distance between

M(0) andM(ε) is 1, since ε > 0. As a consequence, TM should return answer Yes on this input

with probability ≥ 1− α, or equivalently answer No with probability < α. We show, however,

that the probability of No is ≥ α:

P2(X = No ∧ Y ≤ q) =
m∑
i=1

P2(πi) by (4.2)

=
m∑
i=1

(0.5 + ε)ui(0.5− ε)q−ui ui is number of b’s in πi

≥
m∑
i=1

(0.5− ε)q = m(0.5− ε)q

≥ 2q−1(0.5− ε)q = α. by m ≥ 2q−1..

We obtain a contradiction, thus the assumed machine TM does not exist.

Part II. Suppose for a contradiction that for some α < 1
2
, δ < 1 there exists an algorithm

Algα,δ that solves the problem defined in the theorem and almost-surely terminates. Then then

this algorithm can solve the problem Bα in the following way:

1. Use Algα,δ to compute a confidence interval I for the total variation distance betweenM(0)

andM(τ). Algorithm Algα,δ can sample any number of paths fromM(0). Observe that

inM(τ) probability of seeing states a and b remains constant over time. Thus, sampling

multiple paths from M(τ) by Algα,δ can be replaced by sampling a single path from

M(τ).

2. Output Yes if 1 ∈ I , No if 0 ∈ I .

We have shown that for any α < 1
2

the problem Bα cannot by solved by an algorithm that

almost-surely terminates. As a consequence, the algorithm Algα,δ cannot exist.

Proofs for the claims We now prove claims that were used in the proof Theorem 4.1. First,

we show that q as defined in the proof is finite.

Claim. q ∈ N.
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Proof. Suppose for contradiction that q =∞, then

∀c ∈ N : P1(Y ≤ c) < 0.5 + α (4.3)

From the standard results in probability theory we obtain

lim
c→∞−

P1(Y ≤ c) = P1(Y ∈ N). (4.4)

From the assumption that the algorithm terminates almost surely we get that the RHS of (4.4)

equals 1, while the LHS must be ≤ 0.5 + α < 1 by (4.3), which is a contradiction.

Second, we show that ε as defined in the proof of Theorem 4.1 is positive.

Claim. ε > 0.

Proof. For q = 0 this is trivial. Otherwise, observe that the term α
1
q 2

1−q
q is monotonically

increasing in α. Thus,

α
1
q 2

1−q
q < 0.5

1
q 2

1−q
q = 0.5,

which implies that ε > 0.

4.5 Estimability: Finite-Trace Distance

In Section 4.5.1 we show how to estimate the distance given by traces of a fixed length. In

Section 4.5.2 we show how to reduce the problem of computing the finite-trace distance DFT

(where traces of arbitrary lengths are considered) to computing a constant number of fixed-length

distances.

4.5.1 Estimates for Fixed Length

Given two Markov chainsM1 andM2 we wish to estimate the finite-trace distance for fixed

length k ∈ N

Dk
FT = sup

w∈2Apk
|P1(w)− P2(w)|.

There is m = |2Ap|k words in (2Ap)k (we enumerate them as w1, · · · , wm), so the traces of length

k follow a multinomial distribution, i.e. for i = 1, 2
∑m

j=1,Pi(wj) = 1.
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Condidence intervals We present a statistical procedure that estimates Dk
FT with arbitrary

precision. For j ≤ |2Ap|k we call a contrast ∆j the difference in probabilities of trace wj

betweenM1 andM2: ∆j = |P1(wj) − P2(wj)|. The distance Dk
FT is the maximum over all

such contrasts Dk
FT = maxj≤m ∆j . We use the statistical procedure of [94] to simultaneously

estimate all contrasts. We sample random paths from both Markov chains, and let nji denote

the number of observations of trace wj in a Markov chainMi. We write ni =
∑

j≤m n
j
i for the

sum of all observations inMi. The estimator of Pi(wj) is p̃ji =
nji
ni

, and the estimator of ∆j is

∆̃j = |p̃j1 − p̃
j
2|.

Theorem 4.2 ([94]). As n1, n2 →∞ the probability approaches 1− α that simultaneously for

all contrasts

|∆j − ∆̃j| ≤ SjM where Sj =

√
p̃j1 − (p̃j1)2

n1

+
p̃j2 − (p̃j2)2

n2

,

and M is the square root of the 1−α
100

percentile of the χ2 distribution with |2Ap|k degrees of

freedom.

The procedure for estimating Dk
FT works as follows. For ε, α > 0 we sample paths fromM1

andM2 until, by Theorem 4.2, with probability 1 − α for all contrasts |∆j − ∆̃j| ≤ ε. Then

with probability 1− α it holds that |Dk
FT −maxj≤m ∆̃j| ≤ ε.

4.5.2 Estimates for Unbounded Length

Intuitively, the longer the path, the less probable it is, and the less distance it can cause. However,

this is only true if along the path probabilistic choices are made repeatedly.

Definition 4.3 (Branching and deterministic state). In a Markov chain M, a state s ∈ S is

k-deterministic, if there exists a word w of length k, such that Ps(w) = 1. Otherwise, s is

k-branching. A state s ∈ S is deterministic, if it is k-deterministic for all k ∈ N.

Lemma 4.1. If s ∈ S is k-branching, it is also (k+ 1)-branching. Dually, if it is k-deterministic,

it is also (k − 1)-deterministic.

Proof. The lemma follows trivially from the definition: if there exist two different words

w,w′ ∈ (2Ap)k such that Ps(w) > 0 and Ps(w′) > 0, they can be always extended to different

words wa,w′a′ ∈ (2Ap)k+1 with positive probability.
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Example 4.1. Every state is trivially 1-deterministic. In Figure 4.4, the leftmost state is 3-

deterministic and 4-branching. The states of the Markov chain in Figure 4.2 are deterministic.

a a0.5

0.5

1

Figure 4.2: A Markov chains with deterministic states.

Lemma 4.2. Consider a state s in a Markov chainM with n states. If state s is n2-deterministic,

then it is deterministic.

Before proceeding to the proof, notice that even though it may seem that every branching

state must be n + 1 branching, this is not the case in general. Observe the counterexample in

Fig. 4.3. The leftmost state is 6-deterministic (only the word aaabaa can be generated), while

n = 4.

a a a b
1 1 1

0.5
0.5

Figure 4.3: Markov chain with 4 states. The leftmost state is 6-deterministic, but not determinis-

tic.

Proof. Consider state s that is n2-deterministic and assume for contradiction that s is not

deterministic. Let N > n2 be the smallest number such that s is N -branching, and thus not

(N − 1)-branching. Then there exist two paths π = s1, s2, . . . , sN and π′ = s1, s
′
2, . . . , s

′
N

such that s1 = s and for i = 1, 2, . . . , N − 1, we have L(si) = L(s′i) and L(sN) 6= L(s′N).

Looking at a sequence of pairs (s1, s1), (s2, s
′
2), . . . , (sN−1, s

′
N−1), since there are at most n2

possible pairs of states over S, by the pigeon-hole principle at least two pairs will be repeating

in the observed sequence, say (si, s
′
i) = (sj, s

′
j), where i < j. But then the paths π′′ =

s1, s2, . . . , si, sj+1, . . . , sN and π′′′ = s1, s2, . . . , si, sj+1, . . . , sN have M < N states and they

witness that s1 is M -branching, which by Lemma 4.1 is in contradiction with s being (N − 1)-

deterministic.
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Lemma 4.3. If a state s ∈ S is k-branching, then any word of length k starting from s has

probability at most (1− pk−1
min ), i.e., ∀w ∈ (2Ap)k : Ps(w) ≤ 1− pk−1

min .

To illustrate this, observe the Markov chain in Fig. 4.4 with leftmost initial state.

a a a b1− pmin pmin pmin pmin

1− pmin 1− pmin 1− pmin

pmin

Figure 4.4: Markov chain with the leftmost initial state, s.t. P(a) = P(aa) = P(aaa) = 1,

P(aaab) = p3
min, P(aaaa) = 1− p3

min.

Proof. Let w ∈ (2Ap)k. Since s is k-branching, there exists a word w′ ∈ (2Ap)k such that

w′ 6= w and Ps(w′) > 0. Hence there exists at least one path with k − 1 transitions, producing

the trace w′, and thus Ps(w′) ≥ pk−1
min . Finally, Ps(w) ≤ 1− Ps(w′) ≤ 1− pk−1

min .

We show that, for estimating the finite trace distance with the required precision ε, it suffices

to infer probabilities of the words up to some finite length k, which depends on ε. The idea is

that paths that become deterministic before step k do not change their probability afterwards,

while all other paths together have the probability bounded by ε.

Lemma 4.4. Let s be a n2-deterministic state in a Markov chainM with n states. Then there

are words u, z, such that |z|+ |u| ≤ n, |u| ≥ 1, and Ps(zuω) = 1.

Proof. Consider any run ρ = s1s2 · · · , where s1 = s. Let t be the first state on ρ that occurs

twice, i.e. j is the smallest index such that

∃i : i < j ∧ si = sj = t.

Here si, sj are the first and second occurrence of t on ρ, respectively. It holds that j ≤ n + 1,

because otherwise some other state would occur twice earlier than t.

Let u, z be the following words z = L(s1 · · · si−1) and u = L(si . . . sj−1). Clearly |z|+ |u| ≤

n and |u| ≥ 1. The word u can be repeated any number of times from state si = sj = t. By

Lemma 4.2, state s is∞-deterministic and thus t as well. Hence uω has the probability one from

the state t. As a consequence Ps(zuω) = 1.
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We denote the k-prefix of w by w ↓ k = A0 · · ·Ak and similarly for prefixes of words. We

write pref(w) for the set of all prefixes of w:

pref(w) = {w | ∃k ∈ N : w = w ↓ k}.

Definition 4.4. A word w ∈ (2Ap)+ is called k-ultimately periodic in a Markov chain M if

P(w) > 0 and there exists a word u such that w ∈ pref((2Ap)kuω) and 1 ≤ |u| ≤ n, where n is

the number of states inM.

Intuitively, for sufficiently long word w and large ε, if P(w) > ε and w is k-ultimately

periodic, then it enters within k steps a BSCC, which is bisimilar to a cycle (all transition

probabilities are 1). One can also prove that this is the only way for a ω-word to achieve a

probability greater than ε.

For a word w we write Bk(w) for the set of paths that are labelled by w, have a positive

probability and where all states up to step k are n2-branching:

Bk(w) = {π = s1 · · · s|w| ∈ L−1(w) | P(π) > 0 ∧ ∀i ≤ min(k, |w|) : si is n2-branching}.

In a similar way, we write Dk(w) for the set of paths that enter a (n2-)deterministic state before

step k

Dk(w) = {π = s1 · · · s|w| ∈ L−1(w) | P(π) > 0 ∧ ∃i ≤ min(k, |v|) : si is n2-deterministic}.

For any k, we can partition paths labeled by w into Bk-paths and Dk-paths:

P(w) =
∑

π∈L−1(w)

P(π) =
∑

π∈Bk(w)

P(π) +
∑

π∈Dk(w)

P(π). (4.5)

Now we show that the probability of Bk-paths diminishes exponentially with length k:

Lemma 4.5. Consider a Markov chain M with n states. For every k ∈ N and word w, if

|w| > k then ∑
π∈Bk(w)

P(π) ≤ (1− pn2

min)
b k
n2
c.

Proof. Through the proof let c = n2 and w ↑ n denote the suffix of w of length n. We show∑
s1···s|w|∈Bk(w)

P(s1 · · · s|w|)
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≤
∑

s1···sk∈Bk(w)

P(s1 · · · sk) s1···sk=s1···s|w|↓k

=
∑

s1···sk−c∈
Bk(w↓k−c)

P(s1 · · · sk−c)

 ∑
sk−c···sk∈
Bc(w↑c+1)

Psk−c(sk−c · · · sk)

 split w into w ↓ k − c
and w ↑ (c+ 1)

≤
∑

s1···sk−c∈
Bk(w↓(k−c))

P(s1 · · · sk−c) · Psk−c(w ↑ c+ 1) Bc(x)⊆L−1(x)

≤
∑

s1···sk−c∈
Bk(w↓k−c)

P(s1 · · · sk−c)(1− pcmin)
by Lemma 4.3, since
sk−c is c-branching,

and thus (c+ 1)-branching

≤
∑

s1···sk−2c∈
Bk(w↓k−2c)

P(s1 · · · sk−2c)(1− pcmin)
2

by Lemma 4.3, since
s|w|−2c is c-branching,

and thus (c+ 1)-branching

≤
∑

s1···sk−b kc cc
∈

Bk(w↓k−b k
c
cc)

P(s1 · · · sk)(1− pcmin)
b k
c
c by repeatedly

applying Lemma 4.3

≤ (1− pcmin)
b k
c
c.

Lemma 4.6. Let w be a word in a Markov chainM with n states. For every ε > 0, if P(w) > ε

and |w| > k then w is k-ultimately periodic inM, where k = n2d log ε

log(1−pn2min)
e+ n.

Proof. Assume that |w| > k. We split paths labelled by w into Bk−n(w) and Dk−n(w) as in

(4.5):

P(w) =
∑

s1···s|w|∈L−1(w)

P(s1 · · · s|w|) =
∑

s1···s|w|∈
Bk−n(w)

P(s1 · · · s|w|) +
∑

s1···s|w|∈
Dk−n(w)

P(s1 · · · s|w|). (4.6)

By Lemma 4.5 we get ∑
s1···s|w|∈Bk−n(w)

P(s1 · · · s|w|) ≤ ε. (4.7)

Now, from the assumption P(w) > ε, (4.6) and (4.7), it follows that∑
s1···s|w|∈Dk−n(w)

P(s1 · · · s|w|) > 0.

This implies that there is a path π = s1 · · · s|w| ∈ Dk−n(w). By the definition of Dk−n(w), π has

a n2-deterministic state before step k − n, and w.l.o.g. let sk−n be that state. By Lemma 4.4,
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every positive word from state sk−n is a prefix of zuω for some words z, u such that |z|+ |u| ≤ n.

Therefore w ∈ pref(yzuω), where y = L(s1 · · · sk−n), i.e. w is |k|-ultimately periodic.

Lemma 4.7. Consider a Markov chainM with n states. Let w be a k-ultimately periodic word

inM, and x be a prefix of w such that |x| > k + n. Then

P(x)− P(w) ≤ (1− pn2

min)
b k−n
n2
c.

Proof. Let c = n2. We split P(x) and P(w) in the following way:

P(x) =

SB1︷ ︸︸ ︷∑
s1···s|x|∈Bk−n(x)

P(s1 · · · s|x|) +

SD1︷ ︸︸ ︷∑
s1···s|x|∈Dk−n(x)

P(s1 · · · s|x|) (4.8)

P(w) =
∑

s1···s|w|∈Bk−n(w)

P(s1 · · · s|w|)︸ ︷︷ ︸
SB2

+
∑

s1···s|w|∈Dk−n(w)

P(s1 · · · s|w|)︸ ︷︷ ︸
SD2

. (4.9)

By Lemma 4.5 we get

SB1 ≤ (1− pcmin)
b k−n

c
c (4.10)

SB2 ≤ (1− pcmin)
b k−n

c
c. (4.11)

We now prove that the deterministic paths for w and x have the same probability

SD1 = SD2. (4.12)

Consider any path π = s1 · · · s|x| ∈ Dk−n(x). By definition path π enters a n2-deterministic

state before step k − n. W.l.o.g let sk−n be that n2-deterministic state. By Lemma 4.4 there are

words z, u such that

Psk−n(zuω) = 1,

and |u| ≥ 1, |z|+ |u| ≤ n. Thus the word labelling π has the form

x = L(π) ∈ pref(yzuω),

where y = L(s1 · · · sk−n). Both x and w are k-ultimately periodic and have length greater than

k + n, so they both must be of the form

w, x = L(π) ∈ pref(yzuω).
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Consider any path π ∈ Dk−n(x), and let E(π) denote all extensions of π to the paths of

length |w|:

E(π) = {p1 · · · p|w| | ∀i ≤ |x| : pi = si ∧ ∀i < |w| : P(pi, pi+1) > 0}.

All paths in E(π) are labelled by the same word, namely w, and enter a n2-deterministic state

before step k − n, therefore E(π) ⊆ Dk−n(w), which implies that P(SB1) ≤ P(SB2). Now,

consider any path π ∈ Dk−n(w). The prefix of π ↓ |x| is labelled by the word x, and enters a

n2-deterministic state before step k − n ≥ |x|, so π ↓ |x| ∈ Dk−n(w); this implies the other

inequality that P(SB2) ≤ P(SB1).

Finally, we write

P(x)− P(w) = SB1 + SD1 − SB2 − SD2 by (4.8) and (4.9)

= SB1 − SB2 by (4.12)

≤ (1− pcmin)
b k−n

c
c by (4.10) and (4.11).

Theorem 4.3. Consider Markov chainsM1 andM2 that have at most n states. For ε > 0 it

holds that

|DFT(M1,M2)−max
i≤k

Di
FT(M1,M2)| ≤ ε, where k = n2d log ε

log(1− pn2

min)
e+ 2n.

Proof. We show that for any word w ∈ (2Ap)+:

∣∣∣|P1(w)− P2(w)| − |P1(w ↓ k)− P2(w ↓ k)|
∣∣∣ ≤ ε. (4.13)

For |w| ≤ k (4.13) holds trivially. Suppose that |w| ≥ k and consider two cases.

1. If Pi(w ↓ k) > ε, then by Lemma 4.6 w ↓ k is (k − n)-ultimately periodic. Then by

Lemma 4.7 Pi(w ↓ k) ≤ Pi(w) + ε.

2. If Pi(w ↓ k) ≤ ε, then clearly Pi(w ↓ k) ≤ Pi(w) + ε.

Both cases can be summarised by

Pi(w) ≤ Pi(w ↓ k) ≤ Pi(w) + ε. (4.14)
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W.l.o.g assume that P1(w) ≥ P2(w). Then by (4.14)

P1(w ↓ k)− P2(w ↓ k) ≥ P1(w)− P2(w)− ε,

which implies (4.13).

4.6 Other Distances

We now discuss the consequences of the (in)estimability results for several specific subclasses of

ω-regular languages, captured topologically, logically, or by automata. We also remark on the

estimability in case when the transition probabilities have finite precision.

4.6.1 Topology

Negative result for clopen sets Note that the proof of inestimability was based on the ability

to express the events En for any n ∈ N:

En = “there is at most cn = (0.5 + τ/2)n symbols b in the prefix path of length n.”

Observe that each En can be expressed as a finite union of cones, each expressing exact positions

of a’s and b’s in the first n steps. For instance, for τ = 0.2, the event E2, “there is at most 1

symbol b in the first 2 steps,” can be described by the union Cone(aa) ∪ Cone(ab) ∪ Cone(ba).

Since finite unions of cones form exactly the clopen sets, the lowest class ∆1 in the Borel

hierarchy, it follows that distances based on any class in the hierarchy are inestimable.

Positive result for the infinite-trace distance Using the result on finite-trace distance, we

can prove that the infinite-trace distance DIT of Example 4.3.1 is also estimable. Indeed, the

distance is non-zero only due to k-ultimately periodic ω-words with positive probability. By

Lemma 4.7 we can provide confidence intervals for these probabilities through the k-prefixes

using the fixed-length distance Dk
FT.

4.6.2 Logic

Negative result for LTL. The LTL distance as in Example 4.3.1 is again inestimable since

we can express the event En in LTL by a finite composition of operators ,,∧,∨ (notably
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this fragment induces the same distance as LTL [86]). Indeed, for instance, for τ = 0.2, the

event E10, “there is at most 6 symbols b in the path prefix of length 10,” is equivalent to “at

least 4 symbols a in the path prefix of length n,” and it can be described by a disjunction of(
10
4

)
formulae, each determining the possible position of symbols a, resulting in a formula

(a ∧,a ∧,2a ∧,3a) ∨ (a ∧,a ∧,2a ∧,4a) ∨ . . . ∨ (,7a ∧,8a ∧,9a ∧,10a).

Positive result for LTL(♦�,�♦). The distance generated by the fragment of LTL described

by combining operators ♦� and �♦ and Boolean operators is estimable. Notice that the

probability of the property ϕ ≡ ♦�ϕ′ equals the probability of reaching a BSCC such that ϕ′

holds in all of its states, while the probability of property ϕ ≡ �♦ϕ′ equals the probability that

every BSCC contains a state which satisfies ϕ′. Hence, properties expressed in this fragment

of LTL can be checked by inferring all BSCCs of a chain and a simple analysis of them. The

statistical estimation of all BSCCs for labelled Markov chains where only the minimal transition

probability is known is possible and is shown in Chapter 3.

4.6.3 Automata

Negative result for automata distances. For the class of all deterministic Rabin automata

(DRA), the distance (as in Example 4.3.1) is inestimable. This is implied by the inestimability

for clopen sets or for LTL. Further, we can also directly encode the event En that “at least k

symbols a are observed in the path of length n” by an automaton: the DRA counts how many

symbols a are seen in the prefix up to length n; this can be done with k · n states where the

automaton is in a state sk′,n′ if and only if in the n′ ≤ n prefix of the input word, there are k′ ≤ k

symbols a.

Positive result for fixed-size automata. When restricting to the class of DRA of size at most

k ∈ N, the distance DDRA≤k can be estimated. A naive algorithm amounts to enumerating all

automata up to given size k, then applying statistical model checking to infer the probability of

satisfying the automata in each of the Markov chains, and checking for which automaton the

probability difference in the two chains is maximized. Statistically inferring the probability of

whether a (black-box) Markov chain satisfies a property given by a DRA is a subroutine of the

procedure for statistical model checking Markov chains for LTL, described in Chapter 3.



77

4.6.4 Finite Precision

When the transition probabilities have finite precision, e.g. are given by at most two decimal

digits, several negative results turn positive. Finite precision allows us to learn the Markov

chains exactly with high probability, by rounding the learnt transition probabilities to the closest

multiple of the precision. Subsequently, we can approximate the distance by the algorithms

applicable in the white-box setting. In case of the total variation distance, one can apply the

approximation algorithm of [83]; for trace distances, the approximation algorithm of [86] is also

available. In particular, for the special case of the trace equivalence EFT we can leverage the

fact that Markov chains are equivalent when all their traces up to length |M1|+ |M2| − 1 have

equal probability. With the assumption of finite precision one can get by sampling the exact

distribution of such traces with high confidence. Note that the same algorithm can not be applied

without assuming finite precision, since arbitrarily small difference in chains cannot be detected.
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5 Qualitative Analysis of Probabilistic

Systems

5.1 Introduction

One of the key challenges in analysis of probabilistic systems (as in the case of non-probabilistic

systems) is the state explosion problem [9], as the size of concurrent systems grows exponentially

in the number of components. One key technique to combat the state explosion problem is

the assume-guarantee style composition reasoning [95], where the analysis problem is decom-

posed into components and the results for components are used to reason about the whole

system, instead of verifying the whole system directly. For a system with two components,

the compositional reasoning can be captured as the following simple rule: consider a system

with two components G1 and G2, and a specification G′ to be satisfied by the system; if A is

an abstraction of G2 (i.e., G2 refines A) and G1 in composition with A satisfies G′, then the

composite systems of G1 and G2 also satisfies G′. Intuitively, A is an assumption on G1’s

environment that can be ensured by G2. This simple, yet elegant asymmetric rule is very ef-

fective in practice, specially with a counterexample guided abstraction-refinement (CEGAR)

loop [35]. There are many symmetric [96] as well as circular compositional reasoning [97;

96; 98] rules; however the simple asymmetric rule is most effective in practice and extensively

studied, mostly for non-probabilistic systems [96; 99; 100; 101].

In this chapter we consider the fragment of pCTL∗ [50; 51; 52] that is relevant for qualitative

analysis, and refer to this fragment as QCTL∗. The qualitative analysis for probabilistic systems

refers to almost-sure (resp. positive) properties that are satisfied with probability 1 (resp. positive

probability). The qualitative analysis for probabilistic systems is an important problem in
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verification that is of interest independently of the quantitative analysis problem. There are many

applications where we need to know whether the correct behavior arises with probability 1. For

instance, when analyzing a randomized embedded scheduler, we are interested in whether every

thread progresses with probability 1 [102]. Even in settings where it suffices to satisfy certain

specifications with probability λ < 1, the correct choice of λ is a challenging problem, due to

the simplifications introduced during modeling. For example, in the analysis of randomized

distributed algorithms it is quite common to require correctness with probability 1 (see, e.g., [103;

104]). Furthermore, in contrast to quantitative analysis, qualitative analysis is robust to numerical

perturbations and modeling errors in the transition probabilities.

Contributions In this chapter we focus on the compositional reasoning of probabilistic systems

with respect to qualitative properties, and our main contribution is a CEGAR approach for

qualitative analysis of probabilistic systems. The details of our contributions are as follows:

1. To establish the logical relation induced by QCTL∗ we consider the logic ATL∗ for two-

player games and the two-player game interpretation of an MDP where the probabilistic

choices are resolved by an adversary. In case of non-probabilistic systems and games

there are two classical notions for refinement, namely, simulation [19] and alternating

simulation [21]. We first show that the logical relation induced by QCTL∗ is finer than the

intersection of simulation and alternating simulation. We then introduce a new notion of

simulation, namely, combined simulation, and show that it captures the logical relation

induced by QCTL∗.

2. We show that our new notion of simulation, which captures the logic relation of QCTL∗,

can be computed using discrete graph algorithms in quadratic time. In contrast, the

current best known algorithm for strong simulation is polynomial of degree seven and

requires numerical algorithms. The other advantage of our approach is that it can be

applied uniformly both to qualitative analysis of probabilistic systems as well as analysis

of two-player games (that are standard models for open non-probabilistic systems).

3. We present a CEGAR approach for the computation of combined simulation, and the

counterexample analysis and abstraction refinement is achieved using the ideas of [105]

proposed for abstraction-refinement for games.
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4. We have implemented our approach both for qualitative analysis of MDPs as well as

games, and experimented on a number of well-known examples of MDPs and games. Our

experimental results show that our method achieves significantly better performance as

compared to the non-compositional verification as well as compositional analysis of MDPs

with strong simulation.

Outline The basic definitions of games, logic and Markov decision processes (MDP) are in

Chapter 2. In Section 5.2 we review the related work. In Section 5.3 we introduce additional

notions for games. In Section 5.4 we present a new simulation relation for games, show that

it is finer than both simulation and alternating simulation, and present algorithms to compute

the relation. In Section 5.5 we present a qualitative logics for MDPs, and in Section 5.6 show

that the logical relation induced by the qualitative logics on MDPs can be obtained through our

simulation relation introduced in Section 5.4. In Section 5.7 we present a CEGAR approach for

our simulation relation and present experimental results in Section 5.8.

5.2 Related Work

There are many works that have studied abstraction-refinement and compositional analysis for

probabilistic systems [106; 107; 108; 109]. Our work is most closely related to and inspired

by [110] where a CEGAR approach was presented for analysis of MDPs (or labeled probabilistic

transition systems); and the refinement relation was captured by strong simulation that captures

the logical relation induced by safe-pCTL [50; 51; 52].

Compositional and assume-guarantee style reasoning has been extensively studied mostly

in the context of non-probabilistic systems [96; 99; 100; 101]. Game-based abstraction refine-

ment has been studied in the context of probabilistic systems [108]. The CEGAR approach

has been adapted to probabilistic systems for reachability [107] and safe-pCTL [106] under

monolithic (non-compositional) abstraction refinement. The work of [110] considers CEGAR

for compositional analysis of probabilistic system with strong simulation. The main difference

w.r.t. [110] is that strong simulation preserves exact probabilities and therefore the algorithm

of [110] requires numerical algorithms whereas our algorithm requires only discrete graph algo-

rithms. Moreover, our approach can be applied uniformly both to MDPs and two-player games.
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An abstraction-refinement algorithm for a class of quantitative properties was studied in [111;

112] and also implemented [113]. Our logical characterization of the simulation relation is

similar in spirit to [114], which shows how a fragment of the modal µ-calculus can be used to

efficiently decide behavioral preorders between components.

The qualitative analysis problem has been extensively studied for many probabilistic models,

such as for MDPs [115; 15; 116; 117; 118; 119; 120], perfect-information stochastic games [121;

122; 123; 124; 125], concurrent stochastic games [126; 127; 128; 129; 130; 131; 132], partial-

observation MDPs [133; 134; 135; 136; 137], partial-observation stochastic games [138; 139;

140; 141; 142; 143; 144], and real-timed systems [145; 146].

Our work focuses on CEGAR for compositional analysis of probabilistic systems for qualita-

tive analysis: we characterize the required simulation relation; present a CEGAR approach for

the computation of the simulation relation; and show the effectiveness of our approach both for

qualitative analysis of MDPs and games.

5.3 Games and Logic

In Chapter 2 we presented two-player games and alternating-time temporal logic (ATL∗) for

specifying their properties. In this section we present additional notions that are used later in this

chapter. For technical convenience we consider that in the case of turn-based games, there is an

atomic proposition turn ∈ Ap such that for every Player-1 state s we have turn ∈ L(s), and for

every Player 2 state s′ we have turn 6∈ L(s′).

Definition 5.1 (Parallel composition of two-player games). Given gamesG = (S,A,Av, δ, L, s0)

andG′ = (S ′, A,Av′, δ′, L′, s′0) the parallel composition of the gamesG ‖ G′ = (S,A,Av, δ, L, s0)

is defined as follows:

• The states of the composition are S = S × S ′.

• The set of actions does not change with the composition.

• For all (s, s′) we have Av((s, s′)) = Av(s) ∩ Av′(s′).

• The transition function for a state (s, s′) ∈ S and an action a ∈ Av((s, s′)) is defined as

δ((s, s′), a) = {(t, t′) | t ∈ δ(s, a) ∧ t′ ∈ δ′(s′, a)}.
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• The labeling function L((s, s′)) is defined as L(s) ∪ L′(s′).

• The initial state is s0 = (s0, s
′
0).

For simplicity we assume that the set of actions in both components is identical, and for

every pair of states the intersection of their available actions is non-empty. Parallel composition

can be extended to cases where the sets of actions are different [147].

Logic fragments We define several fragments of the logic ATL∗:

• Restricted temporal operator use. An important fragment of ATL∗ is ATL where every

temporal operator is immediately preceded by a path quantifier.

• Restricting path quantifiers. We also consider fragments of ATL∗ (resp. ATL) where

the path quantifiers are restricted. We consider (i) 1-fragment (denoted 1-ATL∗) where

only 〈〈1〉〉 path quantifier is used; (ii) the (1, 2)-fragment (denoted (1, 2)-ATL∗) where only

〈〈1, 2〉〉 path quantifier is used; and (iii) the combined fragment (denoted C-ATL∗) where

both 〈〈1〉〉 and 〈〈1, 2〉〉 path quantifiers are used. We use a similar notation for the respective

fragments of ATL formulas.

Logical characterization of states Given two games G and G′, and a logic fragment F of

ATL∗, we consider the following relations on the state space induced by the logic fragment F :

4F (G,G′) = {(s, s′) ∈ S × S ′ | ∀ψ ∈ F : if s |= ψ then s′ |= ψ};

and when the games are clear from context we simply write 4F for 4F (G,G′). We will use the

following notations for the relation induced by the logic fragments we consider: (i) 4∗1 (resp.

41) for the relation induced by the 1-ATL∗ (resp. 1-ATL) fragment; (ii) 4∗1,2 (resp. 41,2) for

the relation induced by the (1, 2)-ATL∗ (resp. (1, 2)-ATL) fragment; and (iii) 4∗C (resp. 4C)

for the relation induced by the C-ATL∗ (resp. C-ATL) fragment. Given G and G′ we can also

consider G′′ which is the disjoint union of the two games, and consider the relations on G′′; and

hence we will often consider a single game as input for the relations.
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5.4 Combined Simulation

In this section we first recall the notion of simulation [19] and alternating simulation [21]; and

then present a new notion of combined simulation.

Definition 5.2 (Simulation). Given two-player games G = (S,A,Av, δ, L, s0) and G′ =

(S ′, A′,Av′, δ′, L′, s′0), a relation S ⊆ S × S ′ is a simulation from G to G′ if for all (s, s′) ∈ S

the following conditions hold:

1. Proposition match: The atomic propositions match, i.e., L(s) = L′(s′).

2. Step-wise simulation condition: For all actions a ∈ Av(s) and states t ∈ δ(s, a) there

exists an action a′ ∈ Av′(s′) and a state t′ ∈ δ′(s′, a′) such that (t, t′) ∈ S.

We denote by SG,G′max the largest simulation relation between the two games (we write Smax

instead of SG,G′max when G and G′ are clear from the context). We write G 6S G′ when

(s0, s
′
0) ∈ Smax. The largest simulation relation characterizes the logic relation of (1, 2)-ATL and

(1, 2)-ATL∗: the (1, 2)-ATL-fragment interprets a game as a transition system and the formulas

coincide with existential CTL, and hence the logic characterization follows from the classical

results on simulation and CTL [19; 147].

Proposition 5.1. For all games G and G′ we have SG,G′max =4∗1,2=41,2.

Definition 5.3 (Alternating simulation). Given two games G = (S,A,Av, δ, L, s0) and G′ =

(S ′, A′,Av′, δ′, L′, s′0), a relation A ⊆ S × S ′ is an alternating simulation from G to G′ if for all

(s, s′) ∈ A the following conditions hold:

1. Proposition match: The atomic propositions match, i.e., L(s) = L′(s′).

2. Step-wise alternating-simulation condition: For all actions a ∈ Av(s) there exists an

action a′ ∈ Av′(s′) such that for all states t′ ∈ δ′(s′, a′) there exists a state t ∈ δ(s, a)

such that (t, t′) ∈ A.

We denote by AG,G′max the largest alternating-simulation relation between the two games (we

write Amax instead of AG,G′max when G and G′ are clear from the context). We write G 6A G′

when (s0, s
′
0) ∈ Amax. The largest alternating-simulation relation characterizes the logic relation

of 1-ATL and 1-ATL∗ [21].
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Proposition 5.2. For all games G and G′ we have AG,G′max =4∗1=41.

We present a new notion of combined simulation that extends both simulation and alternating

simulation, and we show how the combined simulation characterizes the logic relation induced by

C-ATL∗ and C-ATL. Intuitively, the requirements on the combined-simulation relation combine

the requirements imposed by alternating simulation and simulation in a step-wise fashion.

Definition 5.4 (Combined simulation). Given two-player games G = (S,A,Av, δ, L, s0) and

G′ = (S ′, A′,Av′, δ′, L′, s′0), a relation C ⊆ S × S is a combined simulation from G to G′ if for

all (s, s′) ∈ C the following conditions hold:

1. Proposition match: The atomic propositions match, i.e., L(s) = L′(s′).

2. Step-wise simulation condition: For all actions a ∈ Av(s) and states t ∈ δ(s, a) there

exists an action a′ ∈ Av′(s′) and a state t′ ∈ δ(s′, a′) such that (t, t′) ∈ C.

3. Step-wise alternating-simulation condition: For all actions a ∈ Av(s) there exists an

action a′ ∈ Av′(s′) such that for all states t′ ∈ δ′(s′, a′) there exists a state t ∈ δ(s, a)

such that (t, t′) ∈ C.

We denote by CG,G′max the largest combined-simulation relation between the two games (and

write Cmax when G and G′ are clear from the context). We also write G 6C G′ when (s0, s
′
0) ∈

Cmax. We first illustrate with an example that the logic relation 4C induced by C-ATL is finer

than the intersection of simulation and alternating-simulation relation; then present a game

theoretic characterization of Cmax; and finally show that Cmax gives the relations 4∗C and 4C .

s0 s1

G

t2 t0 t1

G′

a2 a3

a1

a2 a3

a2

a1

Figure 5.1: Games G,G′ such that G 6S G′ and G 6A G′, but G 66C G′.

Example 5.1. Consider the games G and G′ shown in Figure 5.1. White nodes are labeled by

an atomic proposition p and gray nodes by q. The largest simulation and alternating-simulation

relations betweenG andG′ are: SG,G′max = {(s0, t0), (s1, t1)},AG,G′max = {(s0, t0), (s0, t2), (s1, t1)}.

However, consider the formula ψ = 〈〈1〉〉(,(p∧〈〈1, 2〉〉(,q))). We have that s0 |= ψ, but t0 6|= ψ.

It follows that (s0, t0) 6∈4C .
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The simulation and the alternating-simulation relation can be obtained by solving two-player

safety games [148; 21; 149]. We now define a two-player game for the combined-simulation

relation characterization. The game is played on the synchronized product of the two input

games. Given a state (s, s′), first Player 2 decides whether to check for the step-wise simulation

condition or the step-wise alternating-simulation condition. The step-wise simulation condition

is checked by playing a two-step game, and the step-wise alternating-simulation condition is

checked by playing a four-step game.

Definition 5.5 (Combined-simulation games). Consider two games G = (S,A,Av, δ, L, s0) and

G′ = (S ′, A′,Av′, δ′, L′, s′0). We construct the combined-simulation game

GC = (SC, AC,AvC, δC, LC, sC0)

as follows:

• The set of states. The set of states SC is:

SC = (S × S ′) ∪ (S × S ′ × {Sim} × {1, 2}) ∪ (S × S ′ × {Alt} × {2})

∪ (S × S ′ × {Alt} × A× {1}) ∪ (S × S ′ × {Alt} × A× A′ × {1, 2})

Intuitively, in states in S × S ′ and in states where the last component is 2 it is Player 2’s

turn to make the choice of successors, and in all other states Player 1 makes the choice of

actions.

• The set of actions The set of actions is as follows: AC = {⊥} ∪ S ∪ S ′ ∪ A′.

• The transition function and the action-available function

1. Choice of simulation or alternating-simulation For a state (s, s′) we have only one ac-

tion⊥ available for Player 1 and we have δC((s, s′),⊥) = {(s, s′,Alt, 2), (s, s′, Sim, 2)},

i.e., Player 2 decides whether to check for step-wise simulation or step-wise alternating-

simulation conditions.

2. Checking step-wise simulation conditions We describe the transitions for checking

the simulation conditions:

(a) For a state (s, s′, Sim, 2) we have only one action ⊥ available for Player 1 and

we have δC((s, s′, Sim, 2),⊥) = {(t, s′, Sim, 1) | ∃a ∈ Av(s) : t ∈ δ(s, a)}.
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(b) For a state s = (t, s′, Sim, 1) we have AvC(s) = {t′ | ∃a′ ∈ Av(s′) : t′ ∈

δ′(s′, a′)} and δC(s, t′) = {(t, t′)}.

Intuitively, first Player 2 chooses an action a ∈ Av(s) and a successor t ∈ δ(s, a)

and challenges Player 1 to match, and Player 1 responds with an action a′ ∈ Av′(s′)

and a state t′ ∈ δ′(s′, a′).

3. Checking step-wise alternating-simulation conditions We describe the transitions for

checking the alternating-simulation conditions:

(a) For a state (s, s′,Alt, 2) we have only one action ⊥ available for Player 1 and

we have δC((s, s′,Alt, 2),⊥) = {(s, s′,Alt, a, 1) | a ∈ Av(s)}.

(b) For a state s = (s, s′,Alt, a, 1) we have AvC(s) = Av′(s′) and δC(s, a′) =

{(s, s′,Alt, a, a′, 2)}.

(c) For a state (s, s′,Alt, a, a′, 2) we have only one action ⊥ available for Player 1

and we have δC((s, s′,Alt, a, a′, 2),⊥) = {(s, t′,Alt, a, a′, 1) | t′ ∈ δ′(s′, a′)}.

(d) For a state s = (s, t′,Alt, a, a′, 1) we have AvC(s) = δ(s, a) and δC(s, t) =

{(t, t′)}.

Intuitively, first Player 2 chooses an action a from Av(s) and Player 1 responds with

an action a′ ∈ Av′(s′) (in the first two-steps); then Player 2 chooses a successor t′

from δ′(s′, a′) and Player 1 responds by choosing a successor t in δ(s, a).

• The labeling function The set of atomic proposition Ap contains a single proposition

p ∈ Ap. The labeling function LC given a state s ∈ SC is defined as follows: LC(s) = p iff

s = (s, s′) and L(s) 6= L′(s′). Intuitively, Player 2’s goal is to reach a state (s, s′) where

the propositional labeling of the original games do not match, i.e., to reach a state labeled

p by LC .

• The initial state The state sC0 is (s0, s
′
0).

In the combined simulation game we refer to Player 1 as the proponent (trying to establish the

combined simulation) and Player 2 as the adversary (trying to violate the combined simulation).

Example 5.2. A part of the combined-simulation game of G and G′ from Figure 5.1 is shown in

Figure 5.2. Dashed arrows indicate that the successors of a given state are omitted in the figure.

Gray states are labeled by an atomic proposition p, hence are the goal states for the adversary.
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(s0, t0)(s0, t0,Alt, 2) (s0, t0, Sim, 2)

(s0, t0,Alt, a1, 1) (s0, t0,Alt, a2, 1)

. . . (s0, t0,Alt, a2, a1, 2)(s0, t0,Alt, a2, a2, 2) (s0, t0, Sim, 1)(s1, t0, Sim, 1)

. . .(s0, t2,Alt, a2, a2, 1) . . .

(s0, t2) (s1, t0) (s1, t1) (s1, t2)

. . . . . . . . . . . .

⊥⊥ ⊥

a1a2

⊥

s0

t0 t1 t2

Figure 5.2: Part of the combined-simulation game of G and G′ from Figure 5.1.

Theorem 5.1. For all games G and G′ we have Cmax = J〈〈1〉〉(�¬p)KGC ∩ (S × S ′).

Proof. The statement follows directly from the definition of combined simulation, and the fact

that the game construction mimics the definition of combined simulation (as in the case of

simulation and alternating simulation [148; 21; 149]).

Winning strategies Given a combined-simulation game GC we say that a strategy σ for the

proponent is winning from a state s if for all strategies θ of the adversary we have Play(s, σ, θ) |=

�(¬p). A strategy θ for the adversary is winning from state s if for all strategies σ of the

proponent we have Play(s, σ, θ) |= trueUp. Whenever the proponent (resp. adversary) has a

winning strategy, the proponent (resp. adversary) also has memoryless winning strategy [49].

Combined simulation logical characterization Our next goal is to establish that combined

simulation gives the logical characterization of C-ATL∗ and C-ATL. To prove the result we

first introduce the following relation between plays: Given two plays ρ = s0a0s1a1s2 · · · and

ρ′ = s′0a
′
0s
′
1a
′
1s
′
2 · · · we write ρ 6C ρ′ if for all i ≥ 0 we have (si, s

′
i) ∈ Cmax.

Lemma 5.1. Given two games G and G′, let Cmax be the combined simulation. For all (s, s′) ∈

Cmax the following assertions hold:

• For all Player 1 strategies σ in G, there exists a Player 1 strategy σ′ in G′ such that for

every play ρ′ ∈ Plays(s′, σ′) there exists a play ρ ∈ Plays(s, σ) such that ρ 6C ρ′.

• For all pair of strategies σ and θ in G, there exists a pair of strategies σ′ and θ′ in G′ such

that Play(s, σ, θ) 6C Play(s′, σ′, θ′),
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Proof. We present the details of the first item.

• Consider a winning strategy σC for the proponent in GC such that for all (s, s′) ∈ Cmax and

against all strategies θC we have Play(s, σC, θC) ∈ J�(¬p)K. Given the Player 1 strategy

σ in G we construct σ′ in G′ using the strategy σC . Consider a history w · s in G and

w′ · s′ ∈ G′ such that (s, s′) ∈ Cmax. Let σ(w · s) = a. We define σ′(w′ · s′) as follows.

Let h be an arbitrary history in GC that only visits states in Cmax and ends in (s, s′). Let

a′ = σC(h · (s, s′,Alt, 2) · (s, s′,Alt, a, 2)); (i.e., the action played by the strategy σC in

response to the choice of checking alternating simulation and the action a by Player 2 in

GC). Then the strategy σ′ plays accordingly, i.e., σ′(w′ · s′) = a′. In the next step for every

choice t′ of the adversary there exists a choice t of the proponent such that L(t) = L′(t′)

and (t, t′) ∈ Cmax and the matching can proceed.

• The proof is similar to the first item, and instead of using the step-wise alternating-

simulation gadget for strategy construction (of the first item) we use the step-wise simula-

tion gadget from GC to construct the strategy pairs.

The desired result follows.

In the following theorem we establish the relation between combined simulation and the

C-ATL∗ fragment of ATL∗.

Theorem 5.2. For all games G and G′ we have Cmax =4∗C=4C .

Proof. First implication We first prove the implication Cmax ⊆4∗C . We will show the following

assertions:

• For all states s and s′ such that (s, s′) ∈ Cmax, we have that every C-ATL∗ state formula

satisfied in s is also satisfied in s′.

• For all plays ρ and ρ′ such that ρ 6C ρ′, we have that every C-ATL∗ path formula satisfied

in ρ is also satisfied in ρ′.

We will prove the theorem by induction on the structure of the formulas. The interesting cases

for the induction step are formulas 〈〈1〉〉(ϕ) and 〈〈1, 2〉〉(ϕ), where ϕ is a path formula.
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• Assume s |= 〈〈1〉〉(ϕ) and (s, s′) ∈ Cmax. It follows that there exists a strategy σ ∈ Σ that

ensures the path formula ϕ from state s against any strategy θ ∈ Θ. We want to show that

s′ |= 〈〈1〉〉(ϕ). By Lemma 5.1(item 1) we have that there exists a strategy σ′ for Player 1

from s′ such that for every play ρ′ ∈ Plays(s′, σ′) there exists a play ρ ∈ Plays(s, σ) such

that ρ 6C ρ′. By inductive hypothesis we have that s′ |= 〈〈1〉〉(ϕ).

• Assume s |= 〈〈1, 2〉〉(ϕ) and C(s, s′). It follows that there exist strategies σ ∈ Σ, θ ∈ Θ

that ensure the path formula ϕ from state s. By Lemma 5.1(item 2) we have that there

exist strategies σ′ and θ′ such that the two plays ρ′ = Play(s′, σ′, θ′) and ρ = Play(s, σ, θ)

satisfy ω 6C ω′. By inductive hypothesis we have that s′ |= 〈〈1, 2〉〉(ϕ).

• Consider a path formula ϕ. If ρ 6C ρ′, then by inductive hypothesis for every sub-formula

ϕ′ of ϕ we have that if ρ |= ϕ′ then ρ′ |= ϕ′. It follows that if ρ |= ϕ then ρ′ |= ϕ.

Second implication It remains to prove the second implication 4∗C⊆4C⊆ Cmax. Assume

that given states s and s′ we have that (s, s′) 6∈ Cmax, then there exists a winning strategy in the

corresponding combined-simulation game for the adversary from state (s, s′), i.e., there exists a

strategy θC such that against all strategies σC we have Play((s, s′), σC, θC) reaches a state labeled

p. As memoryless strategies are sufficient for both players in GC [49], there also exists a bound

i ∈ N, such that the proponent fails to match the choice of the adversary in at most i turns. We

sketch the inductive proof that there exists a formula with i nested operators 〈〈1〉〉, or 〈〈1, 2〉〉,

that is satisfied in s but not in s′. For i equal to 0 the states can be distinguished by atomic

propositions. For the inductive step one can express the simulation turns by a 〈〈1, 2〉〉(, . . .)

formula and alternating simulation turns by a 〈〈1〉〉(, . . .) formula. It follows that (s, s′) 6∈4C .

The result follows.

Note that in most cases the action set is constant and the state space of the games are huge.

Then the combined simulation game construction is quadratic, and solving safety games on them

can be achieved in linear time (in the size of the game) using discrete graph algorithms [150;

151].

Theorem 5.3. Given two-player games G and G′, the Cmax, 4∗C , and 4C relations can be

computed in quadratic time using discrete graph algorithms.
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5.5 Qualitative Logics for Markov Decision Processes

In this section we consider Markov decisions processes (MDPs) and logics to reason qualitatively

about them. We consider MDPs which can be viewed as a variant of two-player games defined

in Section 2.2.4.

Interpretations We interpret an MDP in two distinct ways: (i) as a 11
2
-player game and (ii) as

a turn-based two-player game, where we regard the probabilistic states as Player-2 states. The

11
2
-player interpretation is the classical view and it is explained in Section 2.2.4. We will use the

two-player interpretation to relate logical characterizations of MDPs and logical characterization

of two-player games with fragments of ATL∗.

Two-player interpretation The two-player interpretation corresponds to turn-based two-

player games introduced in Section 2.1.4, where the probabilistic aspect of the MDP is re-

placed by a second player. Formally, given an MDP G = (S, (S1, SP ), A,Av, δ1,P, L, s0) we

define a turn-based two-player game Ĝ = (Ŝ, Â, Âv, δ̂, L̂, ŝ0) as follows: (i) the states are

Ŝ = S; (ii) the set of actions contains a new action ⊥ not present in A, i.e., Â = A ∪ {⊥};

(iii) the action-available function for states s ∈ S1 is defined as Âv(s) = Av(s) and for states

sp ∈ SP as Âv(sp) = {⊥}; (iv) for s ∈ S1 and a in Âv(s) we have δ̂(s, a) = {δ1(s, a)}, and for

sp ∈ SP we have δ̂(sp,⊥) = Supp(P(sp)); (v) the labeling function for a Player-1 state s is

L̂(s) = L(s) ∪ {turn} and for a Player-2 state s′ coincides with L(s′); and (vi) the initial state is

the same ŝ0 = s0. Given an MDP G we denote by Ĝ the two-player interpretation of the MDP.

Note that for all Player-1 states s ∈ S1 we have |δ̂(s)| = 1 and for all Player-2 states sp ∈ SP
we have |Av(sp)| = 1. Therefore for any MDP the corresponding two-player interpretation is a

turn-based game.

Example 5.3. In Figure 5.3 we present three MDPs G1, G2, and G′ that we use as running

examples. We thoroughly describe only MDP G′ = (S, (S1, SP ), A,Av, δ1,P, L, s0). Player-1

states, depicted as circles, are S1 = {s′0, s′2, s′3} and probabilistic states, depicted as rectan-

gles, are SP = {s′1, s′4}. The set of actions is A = {a, b}. Action a is available in states

s′0, s
′
2 and action b is available only in states s′0, s

′
3. The deterministic transition function is

δ1(s′0, a) = s′1, δ1(s′0, b) = s′4, δ1(s′2, a) = s′4, δ1(s′2, b) = s′4, δ1(s′3, b) = s′4. The probabilistic

transition function P gives the following probability distributions over possible successor states:
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P(s′1, s
′
2) = 1

2
,P(s′1, s

′
3) = 1

2
,P(s′4, s

′
3) = 1. There is a single atomic proposition p ∈ Ap and

the states labeled by p are depicted in gray. The initial state is s′0.

Parallel composition of MDPs An MDP is said to be alternating if the initial state is a Player-1

state, all the successors of Player-1 states are probabilistic states, and vice versa.

Definition 5.6 (Parallel composition of MDPs). Given two alternating MDPs

G = (S, (S1, SP ), A,Av, δ1,P, L, s0)

G′ = (S ′, (S ′1, S
′
P ), A,Av′, δ′1,P

′, L′, s′0)

the parallel composition is an MDP

G ‖ G′ = (S, (S1, SP ), A,Av, δ1,P, L, s0)

defined as follows:

1. The states are S = S1 ∪ SP , where S1 = S1 × S ′1 and SP = SP × S ′P .

2. For a state (s, s′) ∈ S1 we have Av((s, s′)) = Av(s) ∩ Av′(s′).

3. For a state (s, s′) ∈ S1 and an action a ∈ Av((s, s′)) we have δ1((s, s′), a) = (δ1(s, a), δ′1(s′, a));

4. For a state (sp, s
′
p) ∈ SP we have P((sp, s

′
p), (t, t

′)) = P(sp, t) ·P′(s′p, t′).

5. For a state (s, s′) ∈ S we have L((s, s′)) = L(s) ∪ L′(s′).

6. The initial state is (s0, s
′
0).

s1
0

s1
1

G1

a, b1

s2
0

s2
2 s2

1

s2
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s2
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a
1
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1
4

a, b
1
2a, b

1

b

1

b

s′0

s′1 s′2

s′3 s′4

G′

a
1
2

1
2 a, b

b

1

b

Figure 5.3: Examples of MDPs.



93

5.5.1 Qualitative Logics for MDPs

We consider the qualitative fragment of pCTL∗ (see Section 2.2.5) and refer to the logic as

qualitative pCTL∗ (denoted as QCTL∗) as it can express qualitative properties of MDPs.

Syntax and semantics The syntax of the logic is given in positive normal form and is similar

to the syntax of ATL∗. It has the same state and path formulas as ATL∗ with the exception of

path quantifiers. The logic QCTL∗ comes with two path quantifiers (PQ), namely 〈Almost〉 and

〈Positive〉 (instead of 〈〈1〉〉, 〈〈2〉〉, 〈〈1, 2〉〉, and 〈〈∅〉〉).

QCTL∗ path quantifiers: 〈Almost〉, 〈Positive〉.

The semantics of the logic QCTL∗ is the same for the fragment shared with ATL∗, therefore we

only give semantics for the new path quantifiers. Given a path formula ϕ, we denote by JϕKG the

set of plays ρ such that ρ |= ϕ. For a state s and a path formula ϕ we have:

s |= 〈Almost〉(ϕ) iff ∃σ ∈ Σ : Pσs (JϕK) = 1

s |= 〈Positive〉(ϕ) iff ∃σ ∈ Σ : Pσs (JϕK) > 0.

As before, we denote by QCTL the fragment of QCTL∗ where every temporal operator is

immediately preceded by a path quantifier, and for a state formula ψ the set JψKG denotes the set

of states in G that satisfy the formula ψ.

Logical relation induced by QCTL and QCTL∗ Given two MDPs G and G′, the logical

relation induced by QCTL∗, denoted as 4∗Q, (resp. by QCTL, denoted as 4Q), is defined as

follows:

4∗Q= {(s, s′) ∈ S × S ′ | ∀ψ ∈ QCTL∗ : if s |= ψ then s′ |= ψ}

(resp. ∀ψ ∈ QCTL).

5.6 Characterization of Qualitative Simulation

In this section we establish the equivalence of the 4∗Q relation on MDPs with the 4∗C relation

on the two-player interpretation of MDPs, i.e., we prove that for all MDPs G and G′ we have

4∗Q (G,G′) =4C (Ĝ, Ĝ′), where Ĝ (resp. Ĝ′) is the two-player interpretation of the MDP G
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(resp. G′). In the first step we show how to translate some of the QCTL formulas into C-ATL

formulas. We only need to translate the path quantifiers due to the similarity of path formulas in

the logics.

Lemma 5.2. For all atomic propositions q, r and for all MDPs G, we have:

J〈Almost〉(,q)KG = J〈〈1〉〉(,q)KĜ (5.1)

J〈Almost〉(qWr)KG = J〈〈1〉〉(qWr)KĜ (5.2)

J〈Positive〉(,q)KG = J〈〈1, 2〉〉(,q)KĜ (5.3)

J〈Positive〉(q Ur)KG = J〈〈1, 2〉〉(q Ur)KĜ (5.4)

Proof. Point 1 The inclusion J〈Almost〉(,q)K ⊇ J〈〈1〉〉(,q)K follows from the fact that there

exists a strategy for Player 1 such that for all strategies of Player 2 the next state reached

satisfies q. It follows that the same strategy for Player 1 ensures the formula with probability 1.

For the second inclusion J〈Almost〉(,q)K ⊆ J〈〈1〉〉(,q)K we consider two cases: (i) let s ∈

J〈Almost〉(,q)K be a Player-1 state. Then there exists an available action a that leads to a state

that satisfies formula q. As s is a Player-1 state, the transition function under a has a unique

successor. Therefore, playing the same action ensures q also in the two-player interpretation. The

second case is that s is a probabilistic state. In that case all the successors in the support of the

probabilistic transition function satisfy q. Therefore formula q is also satisfied in the two-player

interpretation.

Point 2 As for the previous point the inclusion J〈Almost〉(qWr)K ⊇ J〈〈1〉〉(qWr)K follows

easily from the definition. For the second inclusion let σ be a strategy that satisfies the formula

qWr almost-surely in the 11
2
-player interpretation. Assume towards contradiction that there

exists a strategy θ for Player 2 in the two-player interpretation, such that the play Play(s, σ, θ)

violates qWr. It follows, that the play Play(s, σ, θ) satisfies ¬r U¬q. This is possible only if

there exists a finite path to a ¬q state that uses only ¬r states, and the finite path has a positive

probability in the 11
2
-player interpretation of the MDP. The contradiction follows.

Point 3. and 4 Point 3 follows similarly to Point 1, and Point 4 follows the same arguments

as in Point 2.

Lemma 5.3. For all atomic propositions r and for all MDPs G we have: J〈Positive〉(� r)KG =

J〈Positive〉(r U〈Almost〉(� r))KG.
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Proof. The result follows from [136, Lemma 1] (shown even for a more general class of

partially observable MDPs) and from [152] showing that deterministic strategies are sufficient in

POMDPs.

Lemma 5.4. For all atomic propositions q, r and for all MDPs G, we have:

J〈Positive〉(qWr)KG = J〈〈1, 2〉〉(q Ur)KĜ ∪ J〈〈1, 2〉〉(q U(〈〈1〉〉(qWfalse)))KĜ

Proof. By definition we have that J〈Positive〉(qWr)K = J〈Positive〉((q Ur) ∨ (�q))K. We write

the formula as follows: J〈Positive〉((q Ur) ∨ (�q))K = J〈Positive〉(q Ur)K ∪ J〈Positive〉(�q)K.

By Lemma 5.3 we have that J〈Positive〉(�q)K = J〈Positive〉(q U〈Almost〉(� q))K. Note that

� q ≡ qWfalse. All these facts together with the already established translations presented in

Lemma 5.2 give us the desired result.

To complete the translation of temporal operators it remains to express the QCTL formula

J〈Almost〉(q Ur)K in terms of C-ATL. We first introduce the Apre function:

Apre Given two sets of states X, Y ⊆ S we define the predecessor operator Apre as follows:

Apre(Y,X) = {s ∈ S1 | ∃a ∈ Av(s) : δ1(s, a) ∈ X ∩ Y } ∪

{sp ∈ SP | Supp(P(sp)) ⊆ Y ∧ Supp(P(sp)) ∩X 6= ∅}.

Intuitively, in the 11
2

interpretation the Apre function given two sets of states X and Y , selects

Player-1 states from which Player 1 can enforce the next state to be in X ∩ Y , and selects

probabilistic states such that the next state is with probability one in Y and with positive

probability in X . As is shown in [126] we can express the states J〈Almost〉(q Ur)K using the

following µ-calculus notation, where µ (resp. ν) denotes the least (resp. greatest) fixpoint:

J〈Almost〉(q Ur)K = νY.µX.(JrK ∪ (JqK ∩ Apre(Y,X))) (5.5)

The fixpoint computation on an MDP with n states can be described as follows: the variable

Y0 is initialized to whole state space, and in each iteration i the variable Xi,0 is initialized to

the empty set; the variable Xi,j+1 is computed from Xi,j applying the one step Apre operator.

Finally, the variable Yi is set as the fixpoint of iteration i.
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Formally, for 1 ≤ i ≤ n and 0 ≤ j ≤ n− 1 we have

Y0 = JtrueK; Xi,0 = JfalseK; Xi,j+1 = (JrK ∪ (JqK ∩ Apre(Yi−1, Xi,j))); Yi = Xi,n;

and then Yn = J〈Almost〉(q Ur)K. Next we show that the Apre function can be expressed in

C-ATL. For C-ATL formulas ψ1, ψ2 we define:

FApre(ψ1, ψ2) = 〈〈1〉〉(,ψ1) ∧ 〈〈1, 2〉〉(,(ψ1 ∧ ψ2))

Lemma 5.5. For all MDPs G and C-ATL state formulas ψ1, ψ2 we have:

JFApre(ψ1, ψ2)KĜ = Apre(Jψ1KĜ, Jψ2KĜ)

Proof. We prove the two inclusions. We start with Apre(Jψ1K, Jψ2K) ⊆ JFApre(ψ1, ψ2)K. Let

s be a state in Apre(Jψ1K, Jψ2K), we consider two cases: (i) s ∈ S1; and (ii) s ∈ SP . For the

case (i) it follows from the definition of Apre that there exists an action a ∈ Av(s) such that the

unique state δ1(s, a) satisfies ψ1∧ψ2. It follows that s ∈ J〈〈1〉〉(,ψ1)∧〈〈1, 2〉〉(,(ψ1∧ψ2))K and

therefore s ∈ JFApre(ψ1, ψ2)K. In case (ii) s ∈ SP , we have by definition Supp(P(s)) ⊆ Jψ1K,

and Supp(P(s))∩Jψ2K 6= ∅. It follows that Supp(P(s))∩Jψ1∧ψ2K 6= ∅ and s ∈ J〈〈1〉〉(,ψ1)∧

〈〈1, 2〉〉(,(ψ1 ∧ ψ2))K, and therefore s ∈ JFApre(ψ1, ψ2)K.

We continue with the second inclusion JFApre(ψ1, ψ2)K ⊆ Apre(Jψ1K, Jψ2K). Let s be a state

in JFApre(ψ1, ψ2)K, we again consider two cases: (i) s ∈ S1; and (ii) s ∈ SP . For case (i) when

s ∈ S1 assume s ∈ J〈〈1〉〉(,ψ1) ∧ 〈〈1, 2〉〉(,(ψ1 ∧ ψ2))K, it follows that there exists an available

action a ∈ Av(s) such that the unique state δ1(s, a) is in Jψ1∧ψ2K. For the second case (ii) when

s ∈ SP we again assume s ∈ J〈〈1〉〉(,ψ1) ∧ 〈〈1, 2〉〉(,(ψ1 ∧ ψ2))K. The first part of the formula

ensures that P(s) ⊆ Jψ1K and the second part ensures that P(s) ∩ Jψ1 ∧ ψ2K 6= ∅. The desired

result follows.

The following lemma shows the first of the two inclusions:

Lemma 5.6. For all MDPs G and G′ we have 4C (Ĝ, Ĝ′) ⊆4Q (G,G′).

Proof. We prove the counterpositive, i.e., we construct a mapping of formulas f : QCTL →

C-ATL such that given two states s, s′ and a QCTL formula ψ we have that if s |= ψ and s′ 6|= ψ

then the C-ATL formula f(ψ) is true in s and not true in s′. We proceed by structural induction
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on the QCTL formula and replace parts that are in scope of a path quantifier by their C-ATL

version. The cases where ψ is an atomic proposition or a Boolean combination of formulas are

straightforward. It remains to translate the formulas 〈Almost〉(,ϕ1), 〈Almost〉(ϕ1Wϕ2), and

〈Almost〉(ϕ1 Uϕ2) for QCTL formulas ϕ1, ϕ2. The translation of the first two follows directly

from Lemma 5.2, therefore it remains to translate the QCTL formula 〈Almost〉(ϕ1 Uϕ2). We

proceed by encoding the fixpoint computation of the 〈Almost〉(ϕ1 Uϕ2) formula into nested

C-ATL formulas. Let n be the number of states of the MDP. Let {φ̃i, φi,j | 0 ≤ i, j ≤ n} be a

set of formulas defined by the following clauses:

φ̃0 = true;

∀1 ≤ i ≤ n : φi,0 = false

∀1 ≤ i ≤ n.∀0 ≤ j ≤ n− 1 : φi,j+1 = f(ϕ2) ∨ (f(ϕ1) ∧ FApre(φ̃i−1, φi,j))

∀1 ≤ i ≤ n : φ̃i = φi,n;

By Lemma 5.5 the set of nested formulas φi,j represents the computation of Xi,j and φ̃i the

computation of Yi (for the computation of the fixpoint formula). It follows that we have

J〈Almost〉(ϕ1 Uϕ2)K = Jφ̃nK and concludes the translation. The translation for formulas

〈Positive〉(,ϕ1), 〈Positive〉(ϕ1Wϕ2), and 〈Positive〉(ϕ1 Uϕ2) to C-ATL formulas follows from

Lemma 5.2 and Lemma 5.4. The desired result follows.

Lemma 5.7. For all MDPs G and G′ we have 4Q (G,G′) ⊆4C (Ĝ, Ĝ′).

Proof. Given MDPs with n states in total, it follows from the proof of Theorem 5.2 for the

combined-simulation game that the n-step approximation 4nC is exactly the same as 4C . We

define a sequence Ψ0,Ψ1, . . . ,Ψn of sets of formulas of QCTL with the property that s 4iC t

iff every formula ψ ∈ Ψi that is true in s is also true in t. We denote by BoolC(Ψ) all

the formulas that consist of disjunctions and conjunctions of formulas in Ψ. We assume that

BoolC(Ψ) does not contain repeated elements, therefore from finiteness of Ψ follows finiteness of

BoolC(Ψ). We define Ψ0 = BoolC({q,¬q | q ∈ Ap}), and for all 0 ≤ i < n we define Ψi+1 =

BoolC({Ψi ∪ {〈Positive〉(,ψ), 〈Almost〉(,ψ) | ψ ∈ Ψi}}). The formulas in Ψ0,Ψ1, . . . ,Ψn

provide witnesses that for all 0 ≤ i ≤ n we have that 4Q⊆4iC , in particular we have that

4Q⊆4C .
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Theorem 5.4. For all MDPs G and G′ we have 4Q (G,G′) =4C (Ĝ, Ĝ′).

Theorem 5.5. For all MDPs G and G′ we have 4∗Q (G,G′) =4Q (G,G′)

Proof. We need to show that if a QCTL∗ formula distinguishes two states, then there is a QCTL

formula that also distinguishes them. The basic idea is similar to the proof of [153, Theorem 7.1,

assertion 2]. We first construct a deterministic parity automata given the formula in QCTL∗,

and the almost-sure or positive solutions for MDPs with parity objectives can be encoded as a

µ-calculus formula [127]. The translation of µ-calculus formulas to a QCTL formula is done as

in Lemma 5.6.

The size of the formulas when translating from QCTL∗ to QCTL (Theorem 5.5) may

be doubly exponential in the size of the input formula. Note, that the translation of LTL to

deterministic parity automata is already doubly-exponential [154].

Theorem 5.6. Given MDPs G and G′ the relation 4∗Q (G,G′) can be computed in quadratic

time using discrete graph algorithms.

Proof. Follows directly from Theorems 5.3, 5.4, and 5.5.

5.7 Counterexample Guided Abstraction Refinement for Com-

bined Simulation

In this section we present a CEGAR approach for the computation of the combined simulation

relation in two-player games.

5.7.1 Simulation Abstraction and Alternating-Simulation Abstraction

Abstraction An abstraction of a game consists of a partition of the game graph such that in

each partition the atomic proposition labeling match for all states. Given an abstraction of a

game, the abstract game can be defined by collapsing states of each partition and redefining the
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action-available and transition functions. The redefinition of the action-available and transition

functions can either increase or decrease the power of the players. If we increase the power

of Player 1 and decrease the power of Player 2, then the abstract game will be in alternating

simulation with the original game, and if we increase the power of both players, then the abstract

game will simulate the original game. We now formally define the partitions, and the two

abstractions.

Partitions for abstraction A partition of a game G = (S,A,Av, δ, L, s0) is an equivalence

relation Π = {π1, π2, . . . , πk} on S such that: (i) for all 1 ≤ i ≤ k we have πi ⊆ S and for all

s, s′ ∈ πi we have L(s) = L(s′) (labeling match); (ii)
⋃

1≤i≤k πi = S (covers the state space);

and (iii) for all 1 ≤ i, j ≤ k, such that i 6= j we have πi ∩ πj = ∅ (disjoint). Note that in

turn-based games Player 1 and Player 2 states are distinguished by proposition turn, so they

belong to different partitions.

Simulation abstraction Given a two-player gameG = (S,A,Av, δ, L, s0) and a partition Π of

G, we define the simulation abstraction of G as a two-player gameAbsΠ
S (G) = (S,A,Av, δ, L, s0),

where

• S = Π: the partitions in Π are the states of the abstract game.

• For all πi ∈ Π we have Av(πi) =
⋃
s∈πi Av(s): the set of available actions is the union of

the actions available to the states in the partition, and this gives more power to Player 1.

• For all πi ∈ Π and a ∈ Av(πi) we have

δ(πi, a) = {πj | ∃s ∈ πi : (a ∈ Av(s) ∧ ∃s′ ∈ πj : s′ ∈ δ(s, a))},

i.e. there is a transition from a partition πi given an action a to a partition πj if some state

s ∈ πi can make an a-transition to some state in s′ ∈ πj , and this gives more power to

Player 2.

• For all πi ∈ Π we have L(πi) = L(s) for some s ∈ πi: the abstract labeling is well-defined,

since all states in a partition are labeled by the same atomic propositions.

• s0 is the partition in Π that contains state s0.
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Alternating-simulation abstraction Given a two-player game G = (S,A,Av, δ, L, s0) and a

partition Π of G, we define the alternating-simulation abstraction of G as a two-player game

AbsΠ
A(G) = (S̃, A, Ãv, δ̃, L̃, s̃0), where

• S̃ = Π;

• For all πi ∈ Π we have Ãv(πi) =
⋃
s∈πi Av(s);

• For all πi ∈ Π and a ∈ Ãv(πi) we have

δ̃(πi, a) = {πj | ∀s ∈ πi : (a ∈ Av(s) ∧ ∃s′ ∈ πj : s′ ∈ δ(s, a))},

i.e. there is a transition from a partition πi given an action a to a partition πj if all states

s ∈ πi can make an a-transition to some state in s′ ∈ πj , and this gives less power to

Player 2. For technical convenience we assume δ̃(πi, a) is non-empty.

• For all πi ∈ Π we have L̃(πi) = L(s) for some s ∈ πi;

• s̃0 is the partition in Π that contains state s0 (as in the case of simulation abstraction).

The following proposition states that the (alternating-)simulation abstraction of a game G is in

(alternating-)simulation with G.

Proposition 5.3. For all partitions Π of a two-player game G we have: (1) G 6A AbsΠ
A(G);

and (2) G 6S AbsΠ
S (G).

Example 5.4. Consider a two-player interpretation Ĝ2 of the MDP G2 from Figure 5.3. The

coarsest partition of Ĝ2 is Π = {π0, π1, π2}, where π0 = {s2
0, s

2
1, s

2
3}, π1 = {s2

2, s
2
4, s

2
6}, π2 =

{s2
5}. The alternating-simulation abstraction and the simulation abstraction of Π are depicted in

Figure 5.4.

π0 π1 π2AbsΠ
A(G2)

a, b

⊥

b

π0 π1 π2AbsΠ
S (G2)

⊥

a, b b

Figure 5.4: Alternating-simulation and simulation abstractions of the two-player interpretation

Ĝ2 (MDP G2 from Figure 5.3).



101

5.7.2 Sound Assume-Guarantee Rule

In this section we present the sound assume-guarantee rule for the combined-simulation problem.

To achieve this we first need an extension of the notion of combined-simulation game.

Definition 5.7 (Modified combined-simulation game). Consider gamesGAlt = (S,A, δAlt,AvAlt, L, s0),

GSim = (S,A, δSim,AvSim, L, s0) andG′ = (S ′, A, δ′,Av′, L′, s′0). The modified simulation game

GM = (SM, AM,AvM, δM, LM, sM0 ) is defined exactly like the combined simulation game

given GAlt and G′, with the exception that the step-wise simulation gadget is defined using the

transitions of GSim instead of GAlt. Formally, we change the transitions as follows:

• Checking step-wise simulation conditions Transition (a) from Definition 5.5 is redefined:

for a state (s, s′, Sim, 2) we have only one action ⊥ available for Player 1 and we have

δM((s, s′, Sim, 2),⊥) = {(t, s′, Sim, 1) | ∃a ∈ AvSim(s) : t ∈ δSim(s, a)}.

We write (GAlt ⊗GSim) 6M G′ if and only if (s0, s
′
0) ∈ J〈〈1〉〉(�¬p)KGM .

Proposition 5.4. Let G,G′, GAlt, GSim be games such that G 6A GAlt and G 6S GSim. Then

(GAlt ⊗GSim) 6M G′ implies G 6C G′.

The key proof idea for the above proposition is as follows: if G 6A GAlt and G 6S GSim,

then in the modified combined-simulation game GM the adversary (Player 2) is stronger than in

the combined-simulation game GC . Hence winning in GM for the proponent (Player 1) implies

winning in GC and gives the desired result of the proposition.

Sound assume-guarantee method Given two games G1 and G2, checking whether their

parallel composition G1 ‖ G2 is in combined simulation with a game G′ can be done explicitly

by constructing the synchronized product. The composition, however, may be much larger

than the components and thus make the method ineffective in practical cases. We present an

alternative method that proves combined simulation in a compositional manner, by abstracting

G2 with some partition Π and then composing it with G1. The sound assume-guarantee rule

follows from Proposition 5.3 and Proposition 5.4.
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Proposition 5.5 (Sound assume-guarantee rule). Given games G1, G2, G
′, and a partition Π of

G2, let A = G1 ‖ AbsΠ
A(G2) and S = G1 ‖ AbsΠ

S (G2). If (A⊗ S) 6M G′, then (G1 ‖ G2) 6C

G′, i.e.,
A = G1 ‖ AbsΠ

A(G2); S = G1 ‖ AbsΠ
S (G2); (A⊗ S) 6M G′

(G1 ‖ G2) 6C G′ . (5.6)

Note that for the trivial partition Π, where every equivalence relation is a singleton, the

modified combined-simulation game coincides with the combined simulation game. We will use

this fact to argue about completeness of our CEGAR approach.

If the partition Π is coarse, then the abstractions in the assume-guarantee rule can be smaller

than G2 and also their composition with G1. As a consequence, combined simulation can be

faster as compared to explicitly computing the composition. In Section 5.7.4 we describe how to

effectively compute the partitions Π and refine them using CEGAR approach.

5.7.3 Counterexamples Analysis

Representation of counterexamples If the premise (A⊗S) 6M G′ of the assume-guarantee

rule (5.6) is not satisfied, then the adversary (Player 2) has a memoryless winning strategy θabs

in GM, and the memoryless strategy is the counterexample. To use the sound assume-guarantee

rule (5.6) in a CEGAR loop, we need analysis of counterexamples. Note that in GM Player 2

has a reachability objective, and thus a winning strategy θabs ensures that the target set is always

reached from the starting state, and hence no cycle can be formed without reaching the target

state once the memoryless winning strategy is fixed. Hence we represent counterexamples as

directed-acyclic graphs (given the strategy θabs we denote the corresponding directed acyclic

graph as DAG(θabs)), where the leafs are the target states and every non-leaf state has a single

successor chosen by the strategy of Player 2 and has all available actions for Player 1.

Abstract, concrete, and spurious counterexamples Given two-player games G1 and G2, let

G = (G1 ‖ G2) be the parallel composition. Given G and G′, let GC be the combined-simulation

game of G and G′. The abstract game GM is the modified combined-simulation game of (A⊗S)

andG′, where A = G1 ‖ AbsΠ
A(G2) and S = G1 ‖ AbsΠ

S (G2). We refer to a counterexample θabs

in GM as abstract, and to a counterexample θcon in GC as concrete. An abstract counterexample

θabs is feasible if we can substitute partitions in A and S in a rooted subtree of θabs with states of
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G2 to obtain a concrete counterexample (see [105] for details). An abstract counterexample is

spurious if it is not feasible.

Concretization of counterexamples We follow the approach of [105] to check the feasibility

of a counterexample by finding a concretization function Conc from states in GM to a set of

states in G2 that witnesses a concrete strategy θcon from the abstract strategy θabs. A state in GM

has as one of its components a subset of states πi ∈ Π, which is an equivalence class from the

abstracted game G2. Intuitively, for a state s of GM in the counterexample graph DAG(θabs), the

concretization function represents the subset of πi where a concrete winning strategy exists that

replays the strategy represented by the subtree of the graph DAG(θabs) rooted at state s.

Computation of the concretization function Given an abstract counterexample θabs and a

state s in GM, let Succ(s) be the set of all successors of s in GM given θabs is fixed by Player 2.

The concretization function Conc is computed inductively on the structure of the abstract coun-

terexample θabs starting from the leaves. The formal description of the concretization computation

is given in Figure 5.5, where the concretization of a state s in the abstract counterexample is

computed from its successors in the DAG. We use the notation Av1, Av2, and δ2 to represent the

action-available functions of G1 and G2, and the transition function of G2, respectively.

Proposition 5.6. [105, Proposition 2] An abstract counterexample θabs is feasible if and only if

the concretization function Conc of the root of the graph DAG(θabs) contains the initial state of

the game G2.

Illustrative examples We present intuitive description of two representative cases of con-

cretization from Figure 5.5: (1) Consider a state s = ((s1, π2), s′,Alt, 2) where the abstract

counterexample chooses the successor s′ = ((s1, π2), s′,Alt, a, 1) (intuitively this corresponds to

choice of action a). The concretization Conc(s) = {s ∈ π2 | a ∈ Av2(s)∧ s ∈ Conc(s′)} is the

subset of states in π2 where the action a is available and s also belongs to the concretization of

the successor state s′. (2) For a state s = ((s1, π2), s′,Alt, a, a′, 1), the concretization is the set of

states where action a is not available or all successors given action a belong to the concretization

of the successors of s.
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s = ((s1, π2), s′) : Conc(s) =


π2 s is a leaf

Conc(s′) otherwise, where Succ(s) = {s′}

s = ((s1, π2), s′, Sim, 2) : Conc(s) = {s ∈ π2 | ∃a ∈ Av1(s1) ∩ Av2(s) : δ2(s, a) ∩ Conc(s′) 6= ∅}

where Succ(s) = {s′}

s = ((s1, π2), s′, Sim, 1) : Conc(s) =
⋂

s′∈Succ(s)

Conc(s′)

s = ((s1, π2), s′,Alt, 2) : Conc(s) = {s ∈ π2 | a ∈ Av2(s) ∧ s ∈ Conc(s′), } where

Succ(s) = {s′} and s′ = ((s1, π2), s′,Alt, 2, a)

s = ((s1, π2), s′,Alt, a, 1) : Conc(s) =
⋂

s′∈Succ(s)

Conc(s′)

s = ((s1, π2), s′,Alt, a, a′, 2) : Conc(s) = Conc(s′), where Succ(s) = {s′}

s = ((s1, π2), s′,Alt, a, a′, 1) : Conc(s) = {s ∈ π2 | a 6∈ Av2(s) ∨ δ2(s, a) ⊆
⋃

s′∈Succ(s)

Conc(s′)}

Figure 5.5: Concretization function; s is a state in an abstract counterexample.

Example 5.5. Consider MDPs G1, G2, G
′ in Figure 5.3 interpreted as games and the abstract

games AbsΠ
A(Ĝ2), AbsΠ

S (Ĝ2) in Figure 5.4. Let A = Ĝ1 ‖ AbsΠ
A(Ĝ2) and S = Ĝ1 ‖ AbsΠ

S (Ĝ2).

Figure 5.6 shows part of an abstract counterexample to the modified combined-simulation game

of (A ⊗ S) and G′. In this counterexample the adversary first plays in the simulation gadget

and the proponent responds by moving to a state ((s1
1, π1), s′1) or a state ((s1

1, π1), s′4) (their

successors are not depicted in Figure 5.6). From the state ((s1
1, π1), s′1) the adversary has a

winning strategy by playing in the alternating-simulation gadget, and from ((s1
1, π1), s′4) by

playing in the simulation gadget. The dashed shows assign the concretization of states in the

abstract counterexample. The counterexample is spurious, since the initial state of G2 does not

belong to the concretization of the initial state of the counterexample.

5.7.4 CEGAR

The counterexample analysis presented in the previous section allows us to automatically refine

abstractions using the CEGAR paradigm [35]. The pseudo-code of the CEGAR algorithm for
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((s10, π0), s
′
0)

((s10, π0), s
′
0, Sim, 2)

((s11, π1), s
′
0, Sim, 1)

((s11, π1), s
′
1)

. . .

((s11, π1), s
′
4)

. . .

∅

∅

∅
{s2

4, s
2
6}{s2

2}

⊥

⊥

s′1

⊥

s′4

⊥

Conc

Conc

Conc

ConcConc

Figure 5.6: Abstract counterexample to the modified combined-simulation game of (A⊗ S) and

G′, where A = Ĝ1 ‖ AbsΠ
A(Ĝ2) and S = Ĝ1 ‖ AbsΠ

S (Ĝ2).

Algorithm 5.5 Assume-guarantee CEGAR for 6C .

Input: Two-player games G1, G2, G
′.

Output: Yes if G1 ‖ G2 6C G′, otherwise No

Π← coarsest partitioning of G2

loop

A← G1 ‖ AbsΠ
A(G2); S← G1 ‖ AbsΠ

S (G2)

GM ← modified combined simulation game of (A⊗ S) and G′

if Player 1 wins in GM then return Yes

else

Cex←abstract counterexample in GM

if Feasible(Cex) then return No

else Π← Refine(Cex, Π)

the assume-guarantee combined simulation is shown in Algorithm 5.5. The algorithm takes

G1, G2, G
′ as arguments and answers whether (G1 ‖ G2) 6C G′ holds. Initially, the algorithms

computes the coarsest partition Π ofG2. Then, it executes the CEGAR loop: in every iteration the

algorithm constructs A (resp. S) as the parallel composition of G1 and the alternating-simulation

abstraction (resp. simulation abstraction) of G2. Let GM be the modified combined-simulation

game of (A⊗ S) and G′. If Player 1 has a winning strategy in GM then the algorithm returns

Yes; otherwise it finds an abstract counterexample Cex in GM. In case the counterexample is

feasible, then it corresponds to a concrete counterexample, and the algorithm returns No. If Cex

is spurious, the algorithm calls a refinement procedure that uses the concretization of Cex to

return a partition Π′ finer than partition Π. Our technique can be extended to handle multiple
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components in a similar way as presented in [110, Section 5].

Refinement procedure Given a partition Π and a spurious counterexample Cex together with

its concretization function Conc we describe how to compute the refined partition Π′. Consider

a partition π ∈ Π and let Sπ = {s1, s2, . . . , sm} denote the states of the abstract counterexample

Cex that contain π as its component. Every state si splits π into at most two sets Conc(si) and

π \ Conc(si), and let this partition be denoted as Ti. We define a partition Pπ as the largest

equivalence relation on π that is finer than any of the equivalence relation Ti for all 1 ≤ i ≤ m.

Formally, Pπ = {π1, π2, . . . , πk} is a partition of π such that for all 1 ≤ j ≤ k and 1 ≤ i ≤ m

we have πj ⊆ Conc(si) or πj ⊆ π \Conc(si). The new partition Π′ is then defined as the union

over Pπ for all π ∈ Π.

Example 5.6. We continue with our running example. In Example 5.5 we showed that the

abstractions of Ĝ2 by the coarsest partition Π lead to a spurious counterexample depicted in

Figure 5.6. Consider the partition π1 = {s2
2, s

2
4, s

2
6}. There are three states in the counterexample

that have π1 as its component and the concretization function assigns to them three subsets of

states: ∅, {s2
2}, {s2

4, s
2
6}. After the refinement partition π1 is split into two partitions π′1 = {s2

2}

and π′′1 = {s2
4, s

2
6}.

Proposition 5.7. Given a partition Π and a spurious counterexample Cex, the partition Π′

obtained as refinement of Π is finer than Π.

Sound and completeness of our CEGAR approach Since we consider finite games, the

refinement procedure only executes for finitely many steps. In every iteration of the CEGAR

algorithm, either the algorithm returns a correct answer (by soundness), or a finer partition is

obtained. Thus either we end up with a correct answer, or the trivial partition, and hence the

completeness of our approach follows. Thus our CEGAR approach is both sound and complete.

5.8 Experimental Evaluation

We implemented our CEGAR approach for combined simulation in Java, and experimented

with our tool on a number of MDPs and two-player games examples. Our algorithms use
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explicit representation of MDPs. We use PRISM [62] model checker to specify the examples

and generate input files for our tool.

To be compatible with the existing benchmarks (e.g. [110]) in our tool actions are observable

instead of atomic propositions. Our algorithms are easily adapted to this setting. We also allow

the user to specify silent actions for components, which are not required to be matched by the

specification G′.

Improved (modified) combined-simulation game We leverage the fact that MDPs are in-

terpreted as turn-based games to simplify the (modified) combined-simulation game. When

comparing two Player-1 states, the last two steps in the alternating-simulation gadget can be

omitted, since the players have unique successors given the actions chosen in the first two

steps. Similarly, for two probabilistic states, the first two steps in the alternating-simulation

gadget can be skipped. We check the (modified) combined-simulation games using the stan-

dard attractor algorithm to solve games with safety (as well as reachability) objectives [147;

155].

Improved partition refinement procedure In the implementation we adopt the approach

of [105] for refinement. Given a state s of the abstract counterexample with partition π as its

component, the equivalence relation may split the set π \ Conc(s) into multiple equivalence

classes. Intuitively, this ensures that similar-shaped spurious counterexamples do not reappear in

the following iterations. This approach is more efficient than the naive one, and also implemented

in our tool.

MDP examples with safety specifications We used our tool on all the MDP examples and

specifications from [110]. The specifications describe safety properties of the systems.

• Client-Server protocol (CS1 and CSn)

Model: The example models a Client-Server protocol with mutual exclusion and proba-

bilistic failures in one (CS1) or all of the clients (CSn). The model is parametrized by

the number of clients.

Specification: The safety specification is exactly the same as in [110] and characterizes

the probabilistic failure model of the clients.
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• Mars Exploration Rover (MER)

Model: The example models an arbiter module of NASA’s software for Mars Exploration

Rovers, which grants shared resources for several users. The number of users is the

parameter of the model.

Specification: The specification is exactly the same as in [110] and imposes a safety

requirement on the users’ behavior.

• Sensor networks (SN)

Model: The example models a network of sensors that communicate via a bounded buffer

with probabilistic behavior in the components. The model is parametrized by the

number of sensors.

Specification: The specification is exactly the same as in [110] and is an abstraction of

the observed system behavior.

In addition, we also considered two other classical MDP examples:

• Leader election protocol (LE)

Model: The example is based on a PRISM case study [62] that models the Leader election

protocol [156], where n agents on a ring randomly pick a number from a pool of

K numbers. The agent with the highest number becomes the leader. In case there

are multiple agents with the same highest number the election proceeds to the next

round. The model is parametrized by the values of n and K, respectively.

Specification: The specification requires that two leaders cannot be elected at the same

time.

• Peterson’s algorithm (PETP)

Model: The example is based on Peterson’s algorithm [157] for mutual exclusion of n

threads, where the execution order is controlled by a randomized scheduler. We

extend Peterson’s algorithm by giving the threads a non-deterministic choice to restart

before entering the critical section. The restart operation succeeds with probability 1
2

and with probability 1
2

the thread enters the critical section.
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Specification: The specification requires only one process to be in the critical section at

any time.

Summary of results for safety specifications For all examples, other than the Client-Server

protocol, the assume-guarantee method scales better than the monolithic reasoning; and in all

examples our qualitative analysis scales better than the strong simulation approach. Qualitative

analysis through combined simulation relies on discrete graph algorithms (attractor computation),

while checking strong simulation requires calls to an SMT solver.

Details of experimental results for safety specifications Table 5.1 shows the results for

MDP examples we obtained using our assume-guarantee algorithm and the monolithic approach

(where the composition is computed explicitly). We also compared our results with the tool

presented in [110] that implements both assume-guarantee and monolithic approaches for strong

simulation [158]. All the results were obtained on a Ubuntu-13.04 64-bit machine running on an

Intel Core i5-2540M CPU of 2.60GHz. We imposed a 4.3GB upper bound on Java heap memory

and one hour time limit. For MER(6) and PETP(5) PRISM cannot parse the input file (probably

it runs out of memory).
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AGCS AGSS MONCS MONSS

Ex. |G1|, |G2|, |G′| Time Mem I, |Π| Time Mem I, |Π| Time Mem Time Mem

CS1(5) 36 / 405 / 16 1.13s 112MB 49 / 85 6.11s 213MB 32 / 33 0.04s 34MB 0.18s 95MB

CS1(6) 49 / 1215/ 19 2.52s 220MB 65 / 123 11.41s 243MB 40 / 41 0.04s 51MB 0.31s 99MB

CS1(7) 64 / 3645/ 22 5.41s 408MB 84 / 156 31.16s 867MB 56 / 57 0.05s 82MB 0.77s 113MB

CSn(3) 125 / 16 / 54 0.65s 102MB 9 / 24 33.43s 258MB 11 / 12 0.09s 35MB 11.29s 115MB

CSn(4) 625 / 25 / 189 6.22s 495MB 15 / 42 TO - - 0.4s 106MB 1349.6s 577MB

CSn(5) 3k / 36 / 648 117.06s 2818MB 24 / 60 TO - - 2.56s 345MB TO -

MER(3) 278 / 1728 / 11 1.42s 143MB 8 / 14 2.74s 189MB 6 / 7 1.96s 228MB 128.1s 548MB

MER(4) 465 / 21k / 14 4.63s 464MB 13 / 22 10.81s 870MB 10 / 11 11.02s 1204MB TO -

MER(5) 700 / 250k / 17 29.23s 1603MB 20 / 32 67s 2879MB 15 / 16 - MO MO -

SN(1) 43 / 32 / 18 0.13s 38MB 3 / 6 0.28s 88MB 2 / 3 0.04s 29MB 3.51s 135MB

SN(2) 796 / 32 / 54 0.9s 117MB 3 / 6 66.09s 258MB 2 / 3 0.38s 103MB 3580.83s 1022MB

SN(3) 7k / 32 / 162 4.99s 408MB 3 / 6 TO - - 4.99s 612MB TO -

SN(4) 52k / 32 / 486 34.09s 2448MB 3 / 6 TO - - 44.47s 3409MB TO -

LE(3, 4) 4 / 415 / 269 0.25s 70MB 7 / 16 0.71s 164MB 7 / 8 0.28s 80MB 3.46s 163MB

LE(3, 5) 4 / 814 / 513 0.35s 80MB 7 / 16 Error - - 0.81s 157MB Error -

LE(4, 4) 6 / 5665 / 2561 1.27 128MB 7 / 19 TO - - 12.74s 1186MB TO -

LE(5, 5) 8 / 29k / 21k 6.73s 517MB 7 / 21 TO - - TO - TO -

LE(6, 4) 10 / 42k / 40k 8.98s 664MB 7 / 25 TO - - TO - TO -

LE(6, 5) 10 / 169k / 56k 36.38s 2372MB 7 / 25 TO - - TO - TO -

PETP(2) 68 / 3 / 3 0.04s 31MB 0 / 2 0.04s 87MB 0 / 1 0.04s 30MB 0.04s 90MB

PETP(3) 4 / 1730 / 4 0.19s 65MB 6 / 8 0.29s 153MB 3 / 4 0.24s 72MB 1.07s 170MB

PETP(4) 5 / 54k / 5 1.58s 325MB 8 / 10 3.12s 727MB 4 / 5 7.04s 960MB 31.52s 1741MB

Table 5.1: Results for MDPs examples with safety specifications: AGCS stands for our assume-

guarantee combined simulation; AGSS stands for assume-guarantee with strong simulation;

MONCS stands for our monolithic combined simulation; and MONSS stands for monolithic

strong simulation. The number I denotes the number of CEGAR iterations and |Π| the size of

the abstraction in the last CEGAR iteration. TO and MO stand for a time-out and memory-out,

respectively, and Error means that an error occurred during execution. The memory consumption

is obtained using the Unix time command.

MDP examples with liveness specifications We have also experimented with MDPs with

liveness specifications. We consider the LE and PETP models from the previous safety ex-

periments, as the liveness properties are natural in these models. We also add the additional
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Szymanski’s mutual-exclusion protocol [159].

AGCS MONCS

Ex. |G1|, |G2|, |G′| Time Mem I, |Π| Time Mem

LE(6, 4) 10 / 42k / 27 0.82s 172MB 8 / 41 1.66s 275MB

LE(6, 5) 10 / 169k / 27 1.73s 351MB 8 / 25 5.05s 808MB

LE(6, 6) 10 / 521k / 27 5.01s 946MB 8 / 41 17.3s 2134MB

LE(7, 4) 12 / 187k / 31 2.59s 447MB 8 / 52 5.79s 1029MB

LE(7, 5) 12 / 948k / 31 12.49s 1748MB 8 / 27 35.49s 3370MB

LE(7, 6) 12 / 3.5m / 31 85.61s 4303MB 8 / 27 MO -

PETP(2) 17 / 184 / 154 0.35s 93MB 3 / 8 0.18s 73MB

PETP(3) 25 / 10k / 154 1.23s 170MB 3 / 8 4.79s 593MB

PETP(4) 33 / 864k / 154 28.61s 2187MB 2 / 8 MO -

SZYM(2) 24 / 325 / 204 0.5s 108MB 2 / 8 0.28s 99MB

SZYM(3) 24 / 5010 / 204 1.1s 140MB 3 / 8 3.34s 407MB

SZYM(4) 24 / 74k / 204 3.88s 343MB 2 / 8 48.34s 3246MB

SZYM(5) 24 / 1073k / 204 27.71s 2152MB 2 / 8 MO -

Table 5.2: Results for MDPs examples with liveness specifications.

• Leader election protocol The specification for the leader election protocol LE in addition

to the safety property, requires a liveness property that a leader is elected with probability

one.

• Peterson’s algorithm The specification for Peterson’s algorithm PETP requires the live-

ness property that a requesting process is eventually granted access to the critical section

with probability one.

• Szymanski’s algorithm (SZYM)

Model: The example is based on the Szymanski’s algorithm [159] for mutual exclusion

of n threads with a randomized scheduler. Threads were additionally extended by

a non-deterministic choice to wait, rather than only request access to the critical

section.

Specification: As for PETP, the specification requires that a requesting process eventually

enters the critical section with probability one.
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Table 5.2 shows the experimental results for systems with liveness specification. We did not

compare our results with the tool prototype from [110], which checks strong simulation, since

the tool was tailored to safety specifications only. For all the examples, the assume-guarantee

method scales better than the monolithic method both in time and memory.

Two-player games examples We also experimented with our tool on several examples of

games, where one of the players controls the choices of the system and the other player represents

the environment.

• Error-correcting device (EC)

Model: The example is based on [160] and models an error-correcting device that sends

and receives data blocks over a communication channel. Notation EC(n, k, d) means

that a data block consists of n bits and it encodes k bits of data; value d is the

minimum Hamming distance between two distinct blocks. In the first component

Player 2 chooses a message to be sent over the channel and is allowed to flip some

bits in the block during the transmission. The second component restricts the number

of bits that Player 2 can flip.

Specification: The specification requires that every message is correctly decoded.

• Peterson’s algorithm (PETG)

Model: The model is similar to the Peterson’s algorithm [157] example for MDPs, with

the following differences: (a) the system may choose to restart instead of entering

the critical section; (b) instead of a randomized scheduler we consider an adversarial

scheduler.

Specification: The specification requires only one process to be in the critical section at

any time.

• Virus attack (VIR1)

Model: The example models a virus that attacks a computer system with n nodes (based

on case study from PRISM [62]). Player 1 represents the virus and is trying to infect

as many nodes of the network as possible. Player 2 represents the system and may
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recover an infected node to an uninfected state. VIR2 is a modified version of VIR1

with two special critical nodes in the network. Whenever both of the nodes are

infected, the virus can overtake the system.

Specification: The specification for VIR1 requires that the virus has a strategy to avoid

being completely erased, i.e., maintain at least one infected node in the network. The

specification for VIR2 is like for VIR1, i.e., the virus can play such that at least one

node in the network remains infected, but it additionally requires that even if the

system cooperates with the virus, the system is designed in a way that the special

nodes will never be infected at the same time.

The results for two-player game examples are shown in Table 5.3. Along with AGCS and

MONCS for assume-guarantee and monolithic combined simulation, we also consider AGAS and

MONAS for assume-guarantee and monolithic alternating simulation, as for properties in 1-ATL

it suffices to consider only alternating simulation. For all the examples, the assume-guarantee

algorithms scale better than the monolithic ones. Combined simulation is finer than alternating

simulation and therefore combined simulation may require more CEGAR iterations.
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AGCS MONCS AGAS MONAS

Ex. |G1|, |G2|, |G′| Time Mem I, |Π| Time Mem Time Mem I, |Π| Time Mem

EC(32, 6, 16) 71k / 193 / 129 3.55s 446MB 1 / 7 1.15s 281MB 2.34s 391MB 0 / 2 1.03s 251MB

EC(64, 7, 16) 549k / 385 / 257 70.5s 3704MB 1 / 131 9.07s 1725MB 16.79s 1812MB 0 / 2 4.83s 1467MB

EC(64, 8, 16) 1.1m / 769 / 513 - MO - - MO 52.63s 3619MB 0 / 2 - MO

EC(64, 8, 32) 1.1m / 1025 / 513 - MO - - MO 54.08s 3665MB 0 / 2 - MO

PETG(2) 3 / 52 / 3 0.08s 35MB 4 / 6 0.03s 30MB 0.07s 35MB 4 / 6 0.03s 29MB

PETG(3) 4 / 1514 / 4 0.2s 63MB 6 / 8 0.25s 74MB 0.22s 62MB 6 / 8 0.21s 64MB

PETG(4) 5 / 49k / 5 1.75s 316MB 8 / 10 8.16s 1080MB 1.6s 311MB 8 / 10 6.94s 939MB

VIR1(12) 14 / 4097 / 1 0.91s 159MB 15 / 30 1.69s 255MB 0.35s 114MB 2 / 4 1.53s 215MB

VIR1(13) 15 / 8193 / 1 1.47s 197MB 16 / 32 4.36s 601MB 0.6s 178MB 2 / 4 2.8s 402MB

VIR1(14) 16 / 16k / 1 3.09s 326MB 17 / 34 8.22s 992MB 0.75s 241MB 2 / 4 6.49s 816MB

VIR1(15) 17 / 32k / 1 4.47s 643MB 18 / 36 15.13s 2047MB 1.05s 490MB 2 / 4 9.67s 1361MB

VIR1(16) 18 / 65k / 1 8.65s 1015MB 19 / 38 41.28s 3785MB 1.37s 839MB 2 / 4 23.71s 2591MB

VIR1(17) 19 / 131k / 1 18.68s 1803MB 20 / 40 - MO 2.12s 1653MB 2 / 4 62.24s 4309MB

VIR1(18) 20 / 262k / 1 38.68s 3079MB 21 / 42 - MO 3.35s 2878MB 2 / 4 - MO

VIR2(12) 13 / 4096 / 1 1.02s 151MB 19 / 34 0.81 154MB 0.68s 122MB 9 / 14 0.57s 133MB

VIR2(13) 14 / 8192 / 1 1.48s 190MB 20 . 36 1.13s 216MB 1.01s 183MB 9 / 14 1.01s 208MB

VIR2(14) 15 / 16k / 1 2.9s 315MB 21 / 38 2.33s 389MB 1.94s 311MB 9 / 14 2.09s 388MB

VIR2(15) 16 / 32k / 1 5s 631MB 22 / 40 6.29s 964MB 2.12s 489MB 9 / 14 4.69s 757MB

VIR2(16) 17 / 65k / 1 9.82s 949MB 23 / 42 7.55s 1468MB 3.96s 897MB 9 / 14 6.09s 1315MB

VIR2(17) 18 / 131k / 1 23.33s 1815MB 24 / 44 23.54s 3012MB 8.16s 1676MB 9 / 14 15.36s 2542MB

VIR2(18) 19 / 262k / 1 45.89s 3049MB 25 / 46 55.28s 4288MB 20.3s 2875MB 9 / 14 28.79s 3755MB

Table 5.3: Results for two-player games examples.
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6 Array Folds Logic

6.1 Introduction

Arrays and lists (or, more generally, sequences) are fundamental data structures both for im-

perative and functional programs: hardly any real-life program can work without processing

sequentially-ordered data. Testing and verification of array- and list-manipulating programs is

thus a task of crucial importance. Almost any non-trivial property about these data structures

requires some sort of universal quantification; unfortunately, the full first-order theories of arrays

and lists are undecidable. This has motivated researchers to investigate fragments with restricted

quantifier prefixes, and has given rise to numerous logics that can describe interesting properties

of sequences, such as partitioning or sortedness. These logics have efficient decision procedures

and have been successfully applied to verify some important aspects of programs working with

arrays and lists: for example, the correctness of sorting algorithms.

However, an important class of properties, namely, counting over arrays, has eluded re-

searchers’ attention so far. In addition to the examples from the abstract, this includes statements

such as “the histogram of the input data satisfies the given distribution,” or “the packet adheres to

the requirements of the given type-length-value (TLV) encoding (e.g., of the IPv6 options).” Such

properties, though crucial for many applications, cannot be expressed in decidable fragments of

the first-order theory of arrays, nor in the decidable extensions of the theory of concatenation.

In this chapter we present array folds logic (AFL), which is an extension of the quantifier-free

theory of integer arrays. But instead of introducing quantifiers, we introduce counting in the form

of fold terms. Folding is a well-known concept in functional languages: as the name suggests, it

folds some function over an array, i.e., applies it to every element of the array in sequence, while
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preserving the intermediate result.

min = max = a[0];

j = k = 0;

for(i=0;i<size(a);i++) {

if(a[i]<min) { min=a[i]; j=1; }

if(a[i]==min) j++;

}

for(i=0;i<size(a);i++) {

if(a[i]>max) { max=a[i]; k=1; }

if(a[i]==max) k++;

}

assert(j==k);

(a) C language.

∃min,max , i1, i2, j, k :

0 ≤ i1 < |a| ∧ 0 ≤ i2 < |a| ∧

a[i1] = min ∧ a[i2] = max ∧

∀i : (a[i] ≥ min) ∧

∀i : (a[i] ≤ max ) ∧

j =
∣∣{i | a[i] = min}

∣∣ ∧
k =

∣∣{i | a[i] = max}
∣∣ ∧

j = k

(b) Quantified arrays + cardinality.

0 ≤ i1 < |a| ∧ 0 ≤ i2 < |a| ∧ a[i1] = min ∧ a[i2] = max ∧

folda

(
0
0

)(
e=min ⇒ c1++
e>min ⇒ skip

)
=
(
|a|
j

)
∧ folda

(
0
0

)(
e=max ⇒ c1++
e<max ⇒ skip

)
=
(
|a|
k

)
∧ j = k

(c) Array folds logic.

Figure 6.1: A toy array problem.

To illustrate the kind of problems we are dealing with, consider the following toy example:

given an array, accept it if the number of minimum elements in the array is the same as the number

of maximum elements in the array. E.g., the array [1, 2, 7, 4, 1, 3, 7, 5] is accepted (because there

are two 1’s and two 7’s), while the array [1, 2, 7, 4, 1, 3, 6, 5] is rejected (because there is only

one 7).

Written in a programming language like C, the problem can be solved by the piece of

code shown in Figure 6.1a, but such explicit solution cannot express verification conditions

for symbolic verification and testing. We can use the quantified theory of arrays mixed with

assertions about cardinality of sets, as in Figure 6.1b. Unfortunately, such a combination is

undecidable (by a reduction from Hilbert’s Tenth Problem: replace folds with cardinalities in the
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proof of Theorem 6.2).

The solution we propose is shown in Figure 6.1c: in the example formula, the first fold

applies a function to array a. The vector in the first parentheses gives initial values for the array

index and counter c1; the function is folded over the array starting from the initial index. Index

variable i is implicit, and it is incremented at each iteration. The function itself is given in the

second parentheses, and has two branches. The first branch counts the number of positions

with elements equal to min in counter c1. The second branch skips when the current array

element e is greater than the (guessed, existentially quantified) variable min. When e < min,

the implicit break statement is executed, and the fold terminates prematurely. The result of the

fold is compared to the vector which asserts that the final value of the array index equals to the

array size |a| (which means no break was executed), and the final value of c1 equals to j. The

positions where elements are equal to max , are counted in the second fold , and the equality

between these two counts is asserted. The ability to count over arrays with unbounded elements

is a unique feature of array folds logic.

Contributions Our contributions are as follows:

• We define a new logic, called AFL, that can express interesting and non-trivial properties

of counting over arrays, which are orthogonal to the properties expressible by other logics.

Additionally, AFL can concisely summarize loops with internal branching that traverse

arrays and perform counting, enabling verification and symbolic testing of programs with

such loops.

• We show that the satisfiability problem for AFL is PSPACE-complete, and with a natural

restriction the complexity decreases to NP. We provide a decision procedure for AFL,

which works by a reduction to the emptiness of (symbolic) reversal-bounded counter

machines, which in turn reduces to the satisfiability of existential Presburger formulas. We

show that adding either universal quantifiers or concatenation leads to undecidability.

• We implemented a tool AFOLDER [161] that can discharge proof obligations in AFL, and

we demonstrate on real-life examples that our decision procedure can solve a broad range

of problems in symbolic testing and program verification.
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6.2 Related Work

Our logic is related to the quantified fragments of the theory of arrays such as [24][37][38][39].

These logics allow restricted quantifier prefixes, and their decision procedures work by rewriting

to the (parametric) theories of array indices and elements (Presburger arithmetic being the

most common case) [24][39], or by reduction to flat counter automata with difference bound

constraints [37][38]. An interesting alternative is provided in [162], where the quantification

is arbitrary, but array elements must be bounded by a constant given a priori; the decision

procedure works by a reduction to WS1S. A separate line of work is presented by the theory

combination frameworks of [163][164], where the quantifier-free theory of arrays is extended by

injective predicate and domain function [163], or with map and constant-value combinators

[164]. The theory of concatenation and its extensions [28][165][166] are also related; their

decision procedures work by reduction to Makanin’s algorithm for solving word equations [167].

AFL can express some properties that are also expressible in these logics, such as boundedness,

partitioning, or periodicity; other properties, such as sortedness, are not expressible in AFL. The

counting properties that constitute the core of AFL are not expressible in any of the above logics.

We compare the expressive power of AFL and other logics in Section 6.3.3.

There are numerous works on loop acceleration and summarization [168][169][170], also in

the context of verification and symbolic testing [171][172][173][174] and array-manipulating

programs [175][176][177]. Our logic allows one to summarize loops with internal branching

and counting, which are outside of the scope of these works.

The decision procedure for AFL is based on the decidability results for emptiness of reversal-

bounded counter machines [178][179][180], on the encoding of this problem into Presburger

arithmetic [181], and on the computation of Parikh images for NFAs [182]. In Section 6.6 we

extend the encoding procedure to symbolic counter machines, and present some substantial

improvements that make it efficient for solving practical AFL problems.

6.3 Syntax and Semantics

We assume familiarity with the standard syntax and terminology of many-sorted first-order

logics. We use vector notation: v = (v1, . . . , vn) denotes an ordered sequence of terms. The i-th
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element of v is denoted by v(i) = vi. For two vectors u and v, we write their concatenation as

uv.

In this chapter we consider the domains of arrays, array indices, and array elements to be

A = Z∗, N = { 0, 1, . . . }, and Z = { . . . ,−1, 0, 1, . . . }, respectively. Presburger arithmetic

has the signature ΣZ = { 0, 1,+, < }; we use it for array indices and elements, as well as other

arithmetic assertions, possibly with embedded array terms. We write true and false to denote a

valid and an unsatisfiable Presburger formula, respectively.

The theory of integer-indexed arrays extends Presburger arithmetic with functions read , and

write, and has the signature ΣA = ΣZ ∪ { ·[·], ·{· ← ·} }. The read function a[i] returns the

i-th element of array a, and the write function a{i← x} returns array a where the i-th element

is replaced by x. These functions should satisfy the read-over-write axioms as described by

McCarthy [183]; the decision procedure for the quantifier-free array theory is presented in [184].

6.3.1 Syntax

Array folds logic (AFL) extends the quantifier-free theory of integer arrays with the ability to

perform counting. The extension works by incorporating fold terms into arithmetic expressions;

such a term folds some function over the array by applying it to each array element consecutively.

AFL contains the following sorts: array sort ASort, integer sort ISort, Boolean sort BSort,

and two enumerable sets of sorts for integer vectors VSortm and functional constants FSortm =

VSortm × ISort→ VSortm, for each m ∈ N, m > 0. The syntax of the AFL terms is shown in

Table 6.1; a and b denote array variables, x denotes an integer variable, n and m denote integer

constants.

Array terms A of the sort ASort are represented either by an array variable a, or by the write

term a{T ← T}.

Integer terms T of the sort ISort can be integer constants n ∈ Z, integer variables x, integer

addition, read term A[T ] for the index represented as an integer term, or the term |a|, which

represents the length of array a.

Boolean terms B of the sort BSort are formed by the standard Presburger and Boolean

operators, and equality between vectors of the sort VSortm.

Vector terms V m of the sort VSortm are either a list of m integer terms, or a fold term. The



120

former is written as a vertical list in parentheses; they can be omitted when m = 1. The latter,

written as folda v f , represents the result of the transformation of an input vector v of the sort

VSortm by folding a functional constant f of the sort FSortm over an array a. The first element

of v specifies an initial value of the array index; the remaining elements give initial values for

the counters that can be used inside f . The resulting vector after the transformation gives the

final values for the array index and the counters.

Functional constants (when no confusion can arise, we call them functions) Fm of the sort

FSortm can only be a parenthesized list of branches (guarded commands); the length of the list

is unrelated to m. A function f of the sort FSortm can refer to the following implicitly declared

variables: e for the currently inspected array element; i for the current array index; c1, . . . , cm−1

for the counters; s for the state (control flow) variable. All other variables that occur inside f are

considered as free variables of the sort ISort.

Guards are conjunctions of atomic guards, which can compare array elements, indices,

and counters to integer terms; the state variable can only be compared to integer constants.

Updates are lists of atomic updates; they can increment or decrease counters by a constant,

assign a constant to the state variable, skip, i.e. perform no updates, or execute a break statement,

which terminates the fold at the current position. Counter or state updates define a function

Z → Z. Guards and updates translate into logical formulas that either constrain the current

variable values, or relate the current and the next-state (primed) variable values in the obvious

way; we denote this translation by Φ. E.g., the update upd ≡ (c1 +=n) defines the formula

Φ(upd) ≡ (c′1 = c1 + n).

The size |φ| of an AFL formula is the length of the binary encoding of φ. We require that

guards of all branches are mutually exclusive. There is an implicit “catch-all” branch with

the break statement, whose guard evaluates to true exactly when guards of all other branches

evaluate to false. We also require that each branch contains at most one update for each implicit

variable.

We restrict the control flow in functions, which is defined by state variable s. Notice that s is

syntactically finite state. Thus, given a set of function branches Br , we define an edge-labeled

control flow graph G = 〈Q,E, γ〉, where:

• states Q =
{

0
}
∪
{
n | s←n ∈ Br

}
;
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A ::= a | a{T ← T}

T ::= n | x | T + T | A[T ] | |a|

B ::= T = T | T < T | ¬B | B ∧B | V m = V m

V m ::=
(
T
···
T

)
| folda V m Fm

Fm ::=
(

grd⇒upd
···

grd⇒upd

)
grd ::= e ≈ T | i ≈ T | cm ≈ T | s ≈ n | grd ∧ grd (≈ ∈ {>,<,=, 6=})

upd ::= cm +=n | s← n | skip | break | upd ; upd

Table 6.1: Syntax of AFL.

• edges E =
⋃

grd⇒upd∈Br

{
(s1, s2) | grd [s/s1] is sat ∧ s2 = ite(s←n ∈ upd , n, s1)

}
;

• γ is the labeling of edges with the set of formulas Φ(grd) and Φ(upd) for each guard or

update which occurs in the same branch.

We require that edges in the strongly-connected components of G are labeled with counter

updates that are, for each counter, all non-decreasing, or all non-increasing. Thus, G is a

DAG of strongly connected components (SCC), where counters within each SCC behave in a

monotonic way. We use this restriction to derive from f a reversal-bounded counter machine

(see Definition 6.2).

The presented syntax is minimal and can be extended with convenience functions and

predicates such as {−, n·, ,≤,≥, ∨ ,++,-,-=n} in the usual way. We allow to use ∗ to denote

the absence of constraints: this is useful for vector notation. We replace each ∗ in the formula

with a unique unconstrained variable.

6.3.2 Semantics

For a given AFL formula φ, we denote the sets of free variables of φ of the sort ASort and ISort

by VarA and Var I , respectively. All free variables are implicitly existentially quantified. For
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1. [V m
1 = V m

2 ]σ ≡ ∀i : 1 ≤ i ≤ m =⇒ [V m
1 ]σ (i) = [V m

2 ]σ (i)

2. [folda v f ]σ ≡ [folda v f ]σ,κ , where κ(FVm) =

(
[v]σ

0
[a]σ

)
3. [folda v f ]σ,κ ≡ if ([i]κ < 0) or ([i]κ ≥ | [a]σ |) or (false ∈ [f ]σ,κ) then v′,where

(
v′

s′
α

)
= κ(FVm)

else [folda v f ]σ,κ
′
, where κ′(FVm) =

(
v′

s′
α

)
= [f ]σ,κ

(
κ(FVm)

)
4. [f ]σ,κ

(
v1
...
vm

)
≡
(
v′1
...
v′m

)
, where v′j ≡ if upd(vj) ∈ [f ]σ,κ then upd(vj), else vj

5.
[(

grd1⇒upd1···
grdm⇒updm

)]σ,κ
≡ {i′= i+1} ∪ [grd1 ⇒ upd1]σ,κ ∪ . . . ∪ [grdm ⇒ updm]σ,κ

6. [grd ⇒ upd ]σ,κ ≡ if [grd ]σ,κ = true then [upd ]σ,κ else ∅

7. [e ≈ t]σ,κ ≡ [α]κ ([i]κ) ≈ [t]σ (similarly for i ≈ T, cm ≈ T, s ≈ n)

8. [grd1 ∧ grd2]σ,κ ≡ [grd1]σ,κ ∧ [grd2]σ,κ

9. [upd1; upd2]σ,κ ≡ [upd1]σ,κ ∪ [upd2]σ,κ

10. [cm +=n]σ,κ ≡ {c′m=cm+n}

11. [s← n]σ,κ ≡ {s′ = n}

12. [skip]σ,κ ≡ ∅

13. [break ]σ,κ ≡ {false}

Table 6.2: Semantics of AFL

functions of the sort FSortm, we denote by FVm the set of their implicit variables and a special

variable α that denotes the value of the array being folded, i.e. FVm = {i, c1, . . . , cm−1, s, α}.

The treatment of array writes and reads in the quantifier-free array theory is standard [184],

and we do not elaborate on it here. Array equalities partition the set of array variables into

equivalence classes; all other constraints are then translated into constraints over a representative

of the corresponding equivalence class.

An interpretation for AFL is a tuple σ = 〈λ, µ〉, where λ : Var I → Z assigns each integer

variable an integer, and µ : VarA → Z∗ assigns each array variable a finite sequence of integers.

The semantics of an AFL term t under the given interpretation σ is defined by the evaluation



123

[t]σ. Terms that constitute functions are evaluated in the additional context κ. For a function f of

the sort FSortm, κ : FVm → Z ∪ Z∗ maps internal variables of f to integers, and the special

variable α to the value of the array being folded. The evaluation of Presburger, Boolean, and

array terms is standard; the remaining ones are shown in Table 6.2. We give some explanations

here (the remaining semantic rules are self-explanatory):

1. Vector equality resolves to equality between components.

2. A fold term evaluates in the initial context that is defined by the given initial vector of

counters v, assigns 0 to the state variable s, and map the variable α to the value of the

folded array.

3. A contextual fold term checks whether the array index is out of bounds, or a break

statement is executed in the current context (this is the only way for [f ]σ,κ to contain false).

If yes, fold terminates, and returns the current values of the array index and counters.

Otherwise fold continues with the updated vector and context.

4. If an update upd(vj) for some variable vj is present in the function evaluation, then it is

applied. Otherwise, the old variable value is preserved.

5. An evaluation of a function, represented by a list of branches, is a union of updates from

its branch evaluations. Index i is always incremented by 1.

6. A guarded command evaluates to its update if its guard evaluates to true.

7. A comparison over an internal variable evaluates it in the context κ, and the comparison

term is evaluated in the interpretation σ.

6.3.3 Expressive Power

Here we give some example properties that are expressible in AFL, and compare its expressive

power to other decidable array logics.

1. Boundedness. All elements of array a belong to the interval [l, u].

folda

(
0
)(

l≤e≤u⇒ skip

)
= |a|
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2. Partitioning. Array a is partitioned if there is a position p such that all elements before p

are smaller or equal than all elements at or after p.

folda

(
0
)(

i<p ∧ e≤a[p]⇒ skip
i≥p ∧ e≥a[p]⇒ skip

)
= |a|

3. Periodicity. Array a is of the form (01)∗:

folda

(
0
)(

s=0 ∧ e=0⇒ s←1
s=1 ∧ e=1⇒ s←0

)
= |a|

4. Pumping. Array a is of the form 0n1n (a canonical non-regular language; 0n1n2n, a

non-context-free language, is equally expressible):

folda

(
0
0
0

)(
s=0 ∧ e=0⇒ c1++
s=0 ∧ e=1⇒ c2++ ∧ s←1
s=1 ∧ e=1⇒ c2++

)
=
(
|a|
n
n

)
5. Equal Count. Arrays a and b have equal number of elements greater than l:(

|a|
n

)
= folda

(
0
0

)(
e>l⇒ c1++
e≤l⇒ skip

)
∧
(
|b|
n

)
= fold b

(
0
0

)(
e>l⇒ c1++
e≤l⇒ skip

)
6. Histogram. The histogram of the input data in array a satisfies the distributionH

(
{i|a[i] <

10}
)
≥ 2H

(
{i | a[i] ≥ 10}

)
:

folda

(
0
0

)(
e<10⇒ c1++
e≥10⇒ skip

)
=
(
|a|
h1

)
∧ folda

(
0
0

)(
e≥10⇒ c1++
e<10⇒ skip

)
=
(
|a|
h2

)
∧ h1 ≥ 2h2

7. Length of Format Fields. The array contains two variable-length fields. The first two

elements of the array define the length of each field; they are followed by the fields

themselves, separated by 0:

len1 = a[0] ∧ len2 = a[1] ∧ folda

(
2
0
0

)(
s=0 ∧ e 6=0⇒ c1++
s=0 ∧ e=0⇒ s←1
s=1 ∧ e 6=0⇒ c2++

)
=

(
|a|
len1
len2

)

Comparison with other logics. Most decidable array logics can specify universal properties

over a single index variable like (1) above; AFL uses folds to express such universal quantifica-

tion. Properties that require universal quantification over several index variables, like sortedness,

are inexpressible in AFL (it can simulate some of such properties, like partitioning (2), using a

combination of folds with existential guessing). Periodic facts like (3) are inexpressible in [24],

but AFL as well as [37][165] can express it. Counting properties such as (4)–(7), which constitute

the core of AFL, are not expressible in other decidable logics over arrays and sequences.
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6.4 Motivating Example

As a motivating example to illustrate applications of our logic, we consider a parser for the

Markdown language as implemented in the Redcarpet project, hosted on GitHub [185]. Redcarpet

is a popular implementation of the language, used by many other projects, in particular by the

GitHub itself. Figure 6.2 shows the excerpt from the function parse_table_header, which

can be found in the file markdown.c.

The function considered in the example parses the header of a table in the Markdown format.

The first line of the header specifies column titles; they are separated by pipe symbols (‘|’);

the first pipe is optional. Thus, the number of pipes defines the number of columns in the

table. The second line describes the alignment for each column, and should contain the same

number of columns; in between each pair of pipes there should be at least three dash (‘-’) or

colon (‘:’) symbols. A colon on the left or on the right side of the dashes defines left or right

alignment; colons on both sides mean centered text. Thus, the two lines “|One|Two|Three|”

and “|:--|:--:|--:|” specify three columns which are left-, center-, and right-aligned.

Replacing the second line with either “|:-|:--:|--:|” or “|:--|:--:|” would result in

the ill-formed input: the former doesn’t contain enough dashes in the first column, while the

latter doesn’t specify the format for the last column.

Suppose, we are interested in the symbolic testing of the parser implementation; in particular,

we want to cover all branches in the code for a reasonably long input. For that we postulate that

the first input line contains at least n columns (we add the condition assert(col>=n) after

line 19).

Now, consider the last conditional statement at line 19. The if branch is satisfied by an

empty second input line; and indeed, concolic testers such as CREST can easily cover it. The

else branch, however, poses serious problems. In order to cover it, a well-formed input that

respects all constraints should be generated; in particular the smallest length of such input, e.g.,

for n equal to 3, is 17. The huge number of combinations to test exceeds the capabilities of the

otherwise very efficient concolic tester: for n = 2 CREST needs 800 seconds to generate a test,

and for n = 3 it is not able to finish within 3 hours.

Let us now examine the encoding of the implementation semantics in array folds logic. The

AFL assertions are shown in Figure 6.2 intertwined with the source code: they encode the
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1: static size_t parse_table_header(uint8_t *a, size_t size, ...)

2: size_t i=0, pipes=0; {
i0 = 0 ∧ p0 = 0

}
3: while (i < size && a[i] != ’\n’)

4: if (a[i++] == ’|’) pipes++; { (
i1
p1

)
= folda

(
i0
p0

)(
e=P ⇒ c1++

e6=P ∧ e6=N ⇒ skip

) }
5: if (a[0] == ’|’) pipes--; { (

∗
p2

)
= folda

(
0
p1

)(
i = 0 ∧ e = P ⇒ c1-

) }
6: i++;

7: if (i < size && a[i] == ’|’) i++;{
i2 = i1 + 1 ∧ i3 = folda

(
i2

)(
i = i2 ∧ e = P ⇒ skip

) }
8: end = i;

9: while (end < size && a[end] != ’\n’) end++;{
e0 = i3 ∧ e1 = folda

(
e0

)(
e 6= N ⇒ skip

) }
10: for (col = 0; col<pipes && i<end; ++col) {

11: size_t dashes = 0; {
c0 = 0 ∧ c0 < p2 ∧ i3 < e1 ∧ d0 = 0

}
12: if (a[i] == ’:’) { i++; dashes++; column_data[col] |= ALIGN_L; }{ (

i4
d1

)
= folda

(
i3
d0

)(
i = i3 ∧ e = C⇒ c1++

) }
13: while (i < end && a[i] == ’-’) { i++; dashes++; }{ (

i5
d2

)
= folda

(
i4
d1

)(
i < e1 ∧ e = D⇒ c1++

) }
14: if (a[i] == ’:’) { i++; dashes++; column_data[col] |= ALIGN_R; }{ (

i6
d3

)
= folda

(
i5
d2

)(
i = i5 ∧ e = C⇒ c1++

) }
15: if (i < end && a[i] != ’|’ && a[i] != ’+’) break;

16: if (dashes < 3) break;

17: i++; {
(i6 ≥ end1 ∨ a[i6] = P ∨ a[i6] = A) ∧ d3 ≥ 3 ∧ i7 = i6 + 1 ∧ c1 = c0 + 1

}
18: }

19: if (col < pipes) return 0; {
c1 ≥ p2

}

Figure 6.2: An excerpt from the Redcarpet Markdown parser with AFL annotations
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semantics of the preceding code lines in the SSA form. To shorten the presentation we use

the following conventions: variables i, a, pipes, end, col, and dashes are represented by

(SSA-indexed) logical variables i, a, p, e, c, and d respectively; characters ‘\n’, ‘|’, ‘:’, ‘-’,

and ‘+’ by logical constants N , P , C, D, and A respectively; finally, the subscript denotes the

SSA index of a variable.

The Presburger constraints such as those after line 2 are standard and we do not elaborate

on them here. The first AFL-specific annotation goes after line 4: it directly reflects the loop

semantics. The fold term encodes the computation of the number of pipes: they are computed in

the counter c1, which gets its initial value equal to p0, and its final value is equal to p1. Similarly,

array index i is initialized with i0; and its final value is asserted to be equal to i1. Both for counter

c1 and for index i (which is a special type of a counter) their initial and final values can be both

constant and symbolic: in fact, arbitrary Presburger terms are allowed.

Notice that the loop at lines 3-4 is outside of the class of loops that can be accelerated by

previous approaches. In particular, the difficulty here is the combination of the iteration over

arrays with the branching structure inside the loop. On the contrary, AFL can summarize the

loop in a concise logical formula.

The next conditional statement at line 5, takes care of the optional pipe at the beginning

of the input. The annotation shown demonstrates that conditional statements are also easily

represented by fold terms. In particular, here the function is folded over a starting from 0; the

final index is unconstrained. The branch checks that the index is 0 (to prevent going further

over the array), and that the symbol at this position is ‘|’. Counter c1 is decremented only if

these two conditions are met; otherwise, the fold terminates. An equivalent encoding using only

array reads is possible: (a[0] = P ∧ p2 = p1 − 1) ∨ (a[0] 6= P ∧ p2 = p1), but this encoding

involves a disjunction.

The other program statements of the motivating example are encoded in a similar fashion.

The encoding shown is for one unfolding of the for loop at line 10; several unfoldings are

encoded similarly. We have checked the resulting proof obligations with our solver for AFL

formulas, called AFOLDER; it can discharge them and generate the required test input in less

than 2 minutes for n = 3.
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6.5 Theoretical Complexity

Symbolic counter machines A counter machine is a finite automaton extended by a vector

η = (η1, . . . , ηk) of k counters. Every counter in η stores a non-negative integer, and a counter

machine can compare it to a constant, and increment/decrease its value by a constant. For the

formal definition of counter machines consult, e.g. [180].

We extend counter machines to symbolic counter machines (SCMs), which accept words

(arrays) of integers. We denote the symbolic value of an array cell by a special integer variable xe.

Let X be a set of integer variables, where xe 6∈ X . An atomic counter constraint is a formula of

the form: true, ηi ≈ c or ηi ≈ x, where c ∈ N, x ∈ X , and ≈ ∈ {<,≤, >,≥,=, 6=}. Similarly,

an atomic input constraint is of the form: true, xe ≈ c or xe ≈ x. A counter constraint νCC

(resp. an input constraint νIC) is a conjunction of atomic counter constraints (resp. atomic input

constraints):

νCC ::= true | ηi ≈ c | ηi ≈ x | νCC ∧ νCC

νIC ::= true | xe ≈ c | xe ≈ x | νIC ∧ νIC.

We denote by CCk(X) (resp. IC(X)) the set of all counter constraints with counters not greater

than k (resp. input constraints) over variables in X .

Definition 6.1 (Symbolic counter machine). A symbolic k-counter machine (SCM) is a tuple

C = (η,X, S, δ, ı), where:

• η = (η1, . . . , ηk) is a vector of k counter variables,

• X is a finite set of integer variables,

• S is a finite set of states,

• δ ⊆ S × CCk(X)× IC(X)× S × Zk is a transition relation,

• ı ∈ S is the initial state.

A configuration of a k-counter SCM C is a tuple ζ = (q,w), where q ∈ S, and w ∈ Zk is a

vector of non-negative integers. Let σX : X 7→ Z be an interpretation of the variables in X . A

SCM C may make a transition from a configuration ζ = (q,w) to a configuration ζ ′ = (q′,w′)
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on the input c ∈ Z under the interpretation σX , written as ζ c−→σX ζ ′, if there exists a transition

(q, νCC, νIC, q
′,v) ∈ δ, such that (i) σX |= νCC[η1/w(1), · · · , ηk/w(k)], (ii) σX |= νIC[xe/c],

and (iii) w′ = w + v. A path in C under the interpretation σX is a sequence of configurations

ζ0, · · · , ζn, such that (a) ζ0 = (ı, ·), and (b) there exists a word c0, · · · , cn−1 ∈ Zn, such that

∀0 ≤ i < n : ζi
ci−→σX ζi+1. A SCM is called deterministic if δ is functional. A symbolic counter

machine is reversal-bounded if there exists a constant c ≥ 0 such that under all interpretations on

all paths each counter makes at most c alternations between non-increasing and non-decreasing

(or vice-versa).

Translation of folds to SMC The following definitions show how fold terms can be translated

to SCMs. For technical convince we assume that variables and constants are the only integer

terms inside folds; any AFL formula can be rewritten to this form by replacing each complex

integer term T by a fresh variable x and adding the equality x = T to the outermost formula.

Definition 6.2. Let φ be an AFL formula, such that all integer terms in the folds of φ are variables

or constants. We define the translation of a functional constant f of sort FSortm, occurring in φ,

to an SCM C(f) = (η,X, S, δ, ı). Let G = 〈Q,E, γ〉 be the edge-labeled graph for f as defined

in Section 6.3.1. Then η = {i, c1, . . . , cm−1}, X are the variables in f , S = Q, ı = 0, and for

each edge (s1, s2) ∈ E, δ contains a transition from s1 to s2 labeled with a conjunction of all

constraints labeling the edge. Due to the constraint on G, we have that C(f) is reversal-bounded.

Thus, we can translate a fold term into an SCM. A parallel composition of SCMs captures

the scenario when several folds operate over the same array.

Definition 6.3. The parallel composition (product) of two SCMs C1 and C2, where Ci =

(ηi, Xi, Si, δi, ıi), is an SCM C = (η,X, S, δ, ı) such that:

• η = η1η2,

• X = X1 ∪X2,

• S = S1 × S2,

• for each pair of transitions (qi, νCCi , νICi , pi,wi) ∈ δi, where i = 1..2, there is the transi-

tion
(
(q1, q2), νCC1 ∧ νCC2 , νIC1 ∧ νIC2 , (p1, p2),w1w2

)
∈ δ, which are the only transitions

in δ,
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• ı = (ı1, ı2).

Small-model property One of the fundamental questions that can be asked about a logic

concerns the size of its models. The following lemma shows that models of bounded size are

enough to check the satisfiability of an AFL formula.

Lemma 6.1 (Small-model property). There exists a constant c ∈ N, such that an AFL formula

φ is satisfiable iff there exists a model σ such that a) for each integer variable x in φ, σ maps x

to an integer ≤ 2|φ|
c
, and b) for each array variable in φ, σ maps the variable to a sequence of

≤ 2|φ|
c

integers, where each integer is ≤ 2|φ|
c
.

Proof. One direction of the proof is trivial.

For the other direction, assume that φ has a model σ. Let X be the set of variables in φ.

W.l.o.g. we assume that all folds are of the form

(
out1
···
outn

)
= folda

(
in1
···
inn

)
Fm

where out1, . . . , outn, in1, . . . , inn are integer variables.

From the model σ of φ we build a conjunction ψ of literals in the following way: for every

atomic formula γ of the form T = T, V m = V m, or T ≤ T in φ we add a conjunct γ to ψ if σ

satisfies γ, and we add a conjunct ¬γ otherwise. Observe that σ is a model of ψ and every model

of ψ is a model of φ. In the remaining part of the proof we show that ψ has a small model.

Let s = |ψ|, and note that s ≤ 3|φ|. Moreover, we write ψ = ψf ∧ ψnf , where ψf contains

only literals with folds, and ψnf contains only literals without folds.

Let us assume that folds are over the same array a; we will later deal with this restriction. Let

F = {fold1
a, . . . , fold

n
a} be a set of folds in ψ over the array a. We translate each fold fold ia ∈ F

to a symbolic counter machine Ci. Each Ci has at most s transitions, and the sum of counters and

reversals among all Ci is at most s. Next, we create the product C = (η, S,Σ, δ, ı) of all the folds

in F . The product counter machine C has at most k = s counters, ss states and transitions, and

makes at most r = s reversals.

In the following part of the proof, we extend the technique of [179] to show that there exist a

sufficiently short path of C. Under the interpretation σ, all variables in the counter constraints
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become constants. Let c = (c1, . . . cn) be a non-decreasing vector of constants that appear in the

counter constraints of C after fixing σ. Vector c gives rise to a set of regions

R = {[0, c1], [c1, c1], [c1 + 1, c2 − 1], [c2, c2], . . . , [cl,∞]}.

The size of R is at most 2 dim(c) + 1 ≤ 3s. A mode of C is a tuple in Rk that describes the

region of each counter. Let us observe that each counter can traverse at most |R| modes before it

makes an additional reversal. Thus, C in any path can traverse at most max = r · k · |R| ∈ O(s3)

different modes.

Let win,wout ∈ Nk be the vectors of the initial and final values of the counters of C; these

vectors are given by the interpretation σ of the initial and output variables of folds. We know

that C has a path ζ0, . . . , ζn from the initial configuration ζ0 = (ı,win) to the final configuration

ζn = (·,wout) under the interpretation σ on the word σ(a). Let Tr = t1, . . . , tn ∈ δn be the set

of transitions corresponding to this path, i.e. C makes a transition from ζi to ζi+1 by executing

transition ti.

We partition Tr into sub-sequences Tr1, . . . , T rmax, such that all transitions in Tri are fired

from a configuration in mode i, and for i < max the last transition in Tri leads to a configuration

in mode i+ 1. Let us look into some sub-path Tri = tl . . . tl′ . For each transition t ∈ δ we mark

one occurrence of t in Tri, provided that such a transition occurs. In this way, we mark at most

|δ| ≤ ss transitions in Tri.

Next, we identify sub-sequences ρ = tm, . . . , tn of Tri, such that (i) m < n, (ii) tm = tn,

(iii) all transitions in ρ are unmarked, and (iv) all transitions tm+1, . . . , tn−1 are distinct. Observe

that by deleting transitions tm+1, . . . , tn from Tri we obtain a valid sequence of transition that

ends in the same state, but may lead to different counter values. Let Tri be the sequence of

transitions that results by repeatedly deleting all such sequences from Tri, and let Si be the

multi-set of sequences deleted in such way. Since marked configurations remain in Tri (and

there are at most |δ| of them), and there can be at most |δ| remaining transition between any two

marked configuration in Tri, therefore Tri has at most |δ|(1 + |δ|) = O(s3s) transitions.

For each Si we define an equivalence relation S=
i on the deleted transitions as follows:

two deleted sequences are equivalent if they (i) have the same starting transitions, (ii) have

the same end transitions, and (iii) add/subtract the same value for each counter. Note that

in Tri a deleted sub-sequence can be substituted by an equivalent one, without changing the
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final configuration, i.e. the state and the value of counters remain the same. Let u be the

maximum constant which is added/subtracted in a counter update; u is given in binary, so

u ≤ 2s. There may be at most |δ| transitions in a deleted sequence, so the total net effect

on a single counter may be at most u|δ| = ss2s. The number of equivalence classes in S=
i is

|S=
i | ≤ |δ|2(u|δ|)k ≤ s2s(ss2s)s ∈ O(s2s+2ss).

We construct an integer linear program LP , which expresses models of ψ that lead to some

path Tr∗ of C such that (i) Tr∗ goes through the same modes as Tr, (ii) Tr∗ has the same net

effect on each counter, (iii) Tr∗ is possibly shorter than Tr. The linear program has five parts

LP = LP1 ∧ . . . ∧ LP5.

LP1 In LP1 we specify constraints for the counter values. For every counter 1 ≤ j ≤ k and

mode 1 ≤ i ≤ max we create variables wi,j and zi,j which describe the value of counter j at the

start and the end of mode i. Thus, zmax,j is the value of counter j after executing Tr∗, and w1,j

is the initial value of the counter.

For 1 ≤ j ≤ k, 1 ≤ i ≤ max, part LP1 contains the following equations

zi,j = wi,j + b̄i,j +

|S=
i |∑

m=1

bi,j,m yi,m,

where b̄i,j ∈ Z is the net effect of Tri on the counter j, bi,j,m ∈ Z is the net effect of the sequence

in the equivalence class m in S=
i on the counter j, and variable yi,m denotes the number of times

that the sequence from class m occurs in mode i. Note that the absolute values of b̄i,j and bi,j,m

are at most O(2ss3s).

Additionally, for 1 ≤ i < max− 1, we add to LP1 the constraint:

wi+1,j = zi,j + b+
i,j,

where b+
i,j is the effect of the last transition in Tri on the counter j. We denote by Z,W, Y the

sets of the variables z, w, y, respectively.

LP2 In LP2 we specify the constrain for ψnf , which is the part of ψ that does not contain

folds.We create a copy X ′ of all the variables in X . The linear program contains a formula

LP2 = ψnf [X/X
′].

LP3 We link the initial and end values of counters to the variables in X ′. For a counter

1 ≤ j ≤ k we add the following constraints to LP3

zmax,j = out′k ∧ wi,j = in′k,
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where outk, ink are the variables that specify in ψ the initial and output values of counter j of C.

LP4 W.l.o.g. we assume that the counters in the folds of ψ are only compared to variables. As

the result of our translation, the constants in the counter constraints of C arise from interpretation

σ of some variables in X . Thus, we add the constraint that counter values remain within their

modes. Suppose in mode i, counter j is in the region specified by the interval [xk, xl], where

xk, xl ∈ X . We add the following constraints to LP4:

x′l ≤ wi,j ≤ x′k ∧ x′l ≤ zi,j ≤ x′k.

LP5 Finally, we need to ensure that all the input constraints executed in Tr are satisfiable.

Let I be the set of input constraints executed in Tr, where |I| ≤ s. For every input constraint

νIC ∈ I we create an new variable vi and add to LP5 a linear constraint over vi and X ′ that

corresponds to νIC. We denote by V the set of vi variables.

The linear program LP can be expressed in the form Ax ≤ b, where x is a vector of

variables in X ′∪Z∪W ∪Y ∪V , and and A,b are a matrix, and vector of integers. To determine

the dimension of x, observe that the cardinalities of X ′, Z,W, V are polynomial in s, while

|Y | ≤
max∑
i=1

|S=
i | ∈ O(ss

k0 ),

where k0 is a fixed constant. Thus, dim(x) ∈ O(ss
k0 ). Each of the constraints in LP1, . . . , LP2

adds a number of constrains polynomial in s, so dim(b) ∈ O(sk1), where k1 is a fixed constant.

Observe that the absolute value of the entries in A and b is at most O(2ss3s).

We know that there exists a solution to x that satisfies the linear program: this solution can

be obtained be assigning appropriate variables to the values of Tr and σ. By [186] we know that

there also exists a solution p to x that assigns to every variable an element with the absolute value

at most 2s
k2 , for some fixed constant k2 (to satisfy the requirements of [186], we transforms the

LP program to the form A′x′ = b′,x′ ≥ 0 by introducing new variables and constraints, whose

number is at most polynomial in s. The solutions to x′ can be mapped to the solutions in x).

From the solution p we can construct a model σ′ of ψ in the two steps. First, for integer

variables in X , assign the values of X ′ under p. Clearly, each variable gets a value with a

representation that is O(sk2) bits.

Second, to get an assignment σ′ to array a we create a computation Tr∗ that has the same

effect as Tr. To obtain Tr∗i , in every reduced sub-sequence Tri place p(yi,m) copies of a
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sequence in the equivalence class m of S=
i after the “marked transition rule identical to the last

transition rule in the sequence” (see [179]). Then Tr∗ = Tr∗1, . . . , T r
∗
max, and the length of Tr∗

is in O(2s
k3 ), where k3 is a fixed constant. The assignment to array a is a sequence of integers

which satisfy the input constraints that path Tr∗ reads. For each input constraint ψi read by

Tr∗, we may use a solution p to vi as a concrete value. The assignment to array a is of length

O(2s
k3 ), and each element can be represented in at most O(sk2) bits. To complete the proof, let

us observe that there can be at most |ψ| arrays in the formula ψ, so having multiple arrays does

not change the order of growth of σ′.

As a consequence of Lemma 6.1 we obtain a result on the complexity of AFL satisfiability

checking.

Theorem 6.1. The satisfiability problem of AFL is PSPACE-complete.

Proof. Membership. By Lemma 6.1, if an AFL formula φ is satisfiable, then it has a model

where integer variables have value ≤ 2|φ|
c , and arrays have length ≤ 2|φ|

c , where each array cell

stores a number ≤ 2|φ|
c . A non-deterministic Turing machine can use a polynomial number of

bits to: (i) guess the value of integer variables and store them using |φ|c bits each, (ii) guess

one-by-one the value of at most 2|φ|
c array cells, and simulate the folds. The Turing machine

needs |φ|c bits for counting the number of simulated cells. The maximum constant used in a

counter increment can be at most 2|φ|. Then, the maximal value a fold counter can store after

traversing the array is at most 2|φ|
c+1 , therefore polynomial space is also sufficient to simulate

the fold counters.

Hardness. We reduce from the emptiness problem for the intersection of deterministic

finite automata, which is PSPACE-complete [187]. We are given a sequence A1, . . . , An

of deterministic finite automata, where each automaton Ai accepts the language L(Ai). The

problem is to decide whether
⋂n
i=1 L(Ai) 6= ∅. We simulate automata Ai with a fold expression

fold ia over a single counter, where input constraints correspond to the alphabet symbols of the

automata. The expression fold ia returns an even number on array a if and only if the interpretation

of a represents a word in L(Ai). To check emptiness of the automata intersection, it is enough to

check whether there exists an array such that all folds fold1
a, . . . , fold

n
a return even numbers. The

reduction can be done in polynomial time.
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6.5.1 Undecidable Extensions

We show that three natural extensions to our logic lead to undecidability.

Theorem 6.2. The satifiability problem of AFL with an ∃∗∀∗ quantifier prefix is undecidable.

Proof. We prove by a reduction from Hilbert’s Tenth Problem [188]; since addition is already in

the logic, we only show how to encode multiplication. The following ∃∗∀∗ AFL formula has a

model iff array a is a repetition of z segments, and each segment is of length y and has the shape

00...01; thus, it asserts that x = y · z:

|a| = x ∧ folda

(
0
0

)(
e=0⇒ skip
e=1⇒ c1++

)
=
(
|a|
z

)
∧

∀j : 0 ≤ j < |a| =⇒ folda

(
j
0

)(
i≤ j+y ∧ e=0⇒ skip
i≤ j+y ∧ e=1⇒ c1++

)
=
(
∗
1

)

In [28], the following is proved about the theory of concatenation:

Theorem 6.3 ([28], Corollary 4; see also [165], Proposition 1). Solvability of equations in the

theory 〈{1, 2}∗, e, ◦,Lg1,Lg2〉, where Lgp(x) ≡ {y ∈ p∗ | y has the same number of p’s as x},

is undecidable.

Corollary 6.1. The satisfiability problem of AFL with the concatenation operator ◦ is undecid-

able.

Proof. For an array x, we can define another array Lg1(x) in AFL as follows:(
|x|

|Lg1(x)|

)
= foldx

(
0
0

)(
e=1⇒ c1++
e6=1⇒ skip

)
∧
(
|Lg1(x)|

)
= foldLg1(x)

(
0

)(
e=1⇒ skip

)

Folds in AFL formulas are deterministic i.e. guards are required to be mutually exclusive.

The following lemma shows that AFL with nondeterministic folds is undecidable.

Corollary 6.2. The satisfiability problem of AFL with nondeterministic folds is undecidable.

Proof. Every nondeterministic reversal-bounded counter machine can be translated to a nonde-

terministic fold term, where the fold function mimics the transitions of the machine. In addition,

the fold sets a designated counter to 1 when the machine accepts the input given as an array. Let
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us observe that the formula where the designed counter returns 0 is satisfiable iff the counter

machine is not universal. However, checking universality of a nondeterministic reversal-bounded

counter machine is undecidable [189].

6.6 Decision Procedure

In Section 6.5 we described how a non-deterministic Turing machine can decide AFL satisfiabil-

ity in PSPACE. Now we present a deterministic procedure that translates AFL formulas to

equisatisfiable quantifier-free Presburger formulas. As a consequence of the procedure, we show

that under certain restrictions satisfiability of AFL is NP-complete.

Deterministic procedure We are given an AFL formula φ such that there are at most m

folds over each array; clearly m can be at most |φ|. We translate φ to a quantifier-free Presburger

formula ψ = ψn ∧ ψe ∧ ψl. For the procedure we assume that there exists a fixed order

x1 ≤ · · · ≤ xn on variables that appear in the counter constraints. We also assume that φ does

not contain any array reads and writes. Array reads and writes can be rewritten by applying the

procedure of [184] with linear increase in the size of the formula.

Formula ψn. The formula ψn is the part of φ that does not contain folds.

Formula ψe. For an array aj in φ, let Fj = {fold1
a, . . . , fold

m
a } be the set of folds in φ over

ai. We translate each fold ia ∈ Fj to a symbolic counter machine Cij . Each Cij has at most |φ|

transitions, and the sum of the counters and the number of reversals among all Cij is at most

|φ|. Next, we construct the symbolic counter machine Cj as the product of all machines Cij .

The machine Cj has at most k = |φ| counters, t = |φ|m transitions and makes at most r = |φ|

reversals.

We translate the reachability problem of Cj to a quantifier-free Presburger formula ψje by

applying an extension of the method described in [181]. In formula ψje, two configurations of Cj
are described symbolically: initial ζ, and final ζ ′. The formula ψje is satisfiable iff there is an

array aj such that Cj reaches ζ ′ from ζ on reading aj . The formula ψe is the conjunction ψje for

all arrays aj .

The formula ψje consists of two parts ψje = ψjp ∧ ψjc . For simplicity we assume that

the counter constraints of Cj are defined only over variables {x1, · · · , xn}. By assumption,

there is a fixed order x1 ≤ . . . ≤ xn, which gives rise a to the set of ≤ 2|φ| + 1 regions
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R = {[0, x1], [x1, x1], [x1 + 1, x2 − 1], · · · , [cl,∞]}. As an optimization, we construct regions

separately for each counter, which allows us to obtain a tighter bound on the number of regions

that need to be encoded.

Each counter may traverse at most |R| regions before it makes a reversal, so an path of Cj
traverses at most max = r · k · |R| = O(|φ|3) modes. We construct an NFA Aj by making

max copies of the control-flow structure of Cj . Every path of Aj gives a correct sequence of

states in Cj , but may violate counter constraints. By using the procedure of [182] we can encode

the Parikh image of Aj as the formula ψpj that is polynomial in the size of A. Similar to [181],

the formula ψjc puts additional constraints on the Parikh image to ensure that by executing the

transitions of Aj we obtain counter values that satisfy the counter constraints of Cj .

The size ψje is of the order O(|φ|3t) = O(|φ|m+3). The formula ψe is the conjunction of

formulas ψje for each array aj . There can be at most |φ| arrays, so the size of ψe is O(|φ|m+4).

Formula ψl. Finally, formula ψl links the initial and final configurations in ψe to the variables

in ψp.

Formula size. The size of the formula ψ is O(|φ|m+4). By keeping m constant, the encoding

size is polynomial in the size of the AFL formula φ.

Restricted fragment of AFL We write m-AFL for formulas that have at most m fold

expressions per array. As a consequence of the deterministic decision procedure, restriction on

m reduces the complexity of deciding satisfiability.

Lemma 6.2. The m-AFL satisfiability problem, for a fixed m, is NP-complete.

Proof. Membership follows from the decision procedure above. For hardness observe that any

quantifier-free Presburger formula is an 0-AFL formula.

Model generation Given a Presburger encoding ψ of an AFL formula φ, we may use the

solution to ψ to generate a model of φ. The solution to ψ immediately gives us interpretation for

the integer variables in φ. To obtain an interpretation for the array variables in φ, we observe that

the folds are implicitly encoded in ψ as counter machines, and that the solution to ψ describes

the Parikh vector for each machine. We use the method of [182] to get a concrete sequence of

transitions in each counter machine that produces the specific Parikh vector. We construct a

multigraph by repeating each transition in Aj according to its Parikh image, and then find an
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Eulerian path in the multigraph. From the sequence of transitions in counter machines, and the

interpretation of input constraints in ψ we obtain an interpretation for the arrays in φ.

6.7 Experimental Evaluation

We implemented the decision procedure described in Section 6.6 in a prototype tool AFOLDER;

the tool is available at [161]. The tool is written in C++ and uses Z3 [190] as the solver for

Presburger formulas. We evaluated our decision procedure on a number of testing and verification

tasks described below.

The experimental results are shown in Table 6.3; all experiments were performed on a Ubuntu-

14.04 64-bit machine running on an Intel Core i5-2540M CPU of 2.60GHz. For every example

we report the length len(φ) of the AFL formula measured as “the number of logical operators”

+ “the number of branches in folds.” The table also shows the number of fold expressions in

a formula, and the maximum number of folds per array (MFPA). Next, we report the time for

translating the problem to a Presburger formula, the time for solving the formula, and whether

the formula is satisfiable. If this is the case, we report the length of a satisfying array generated

by our tool; in case of several arrays, we show the longest.

Markdown This program is described in Section 6.4. The experiments are parametrized by

the required number n of columns in the input.

perf_bench_numa This example is part of a benchmark program for non-uniform memory

access (NUMA) [191]. The program maintains a list of threads, and for each thread a separate

array of size 100 that describes processors assigned to the thread. The data is processed in

a nested loop: the outer loop iterates over threads, and the inner loop counts the number of

assigned processors. The outer loop also maintains the minimum, and maximum number of

processors assigned to any thread. We model a testing scenario like in Section 6.4, where a

symbolic execution tool unrolls the outer loop n times, and the inner loop is summarized by a

fold expression. The testing goal is to provide a valid processor mapping such that each thread is

assigned to exactly one processor. In Table 6.3 we show results for this benchmark parametrized

by the number n of threads. The example scales well, since there a single fold per each processor

array (see Lemma 6.2).

SV-COMP Examples “standard_minInArray” to “standard_vararg” are taken from the SV-
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Table 6.3: Experimental results for AFOLDER.

Example len(φ) folds MFPA transl. time solving time result array length

Markdown(1) 62 6 3 < 1s < 1s sat 8

Markdown(2) 69 7 4 1s < 1s sat 14

Markdown(3) 76 8 5 1.3s 79s sat 17

perf_bench_numa(10) 93 10 1 < 1s < 1s sat 100

perf_bench_numa(20) 183 20 1 < 1s < 1s sat 100

perf_bench_numa(40) 363 40 1 < 1s < 1s sat 100

standard_minInArray 10 3 3 < 1s < 1s unsat -

linear_sea.ch_true 13 3 3 < 1s < 1s unsat -

array_call3 11 2 3 < 1s < 1s unsat -

standard_sentinel 14 3 3 < 1s < 1s unsat -

standard_find 11 3 3 < 1s < 1s unsat -

standard_vararg 11 3 3 < 1s < 1s unsat -

histogram(8) 58 8 8 < 1s 1.3s sat 9

histogram(9) 65 9 9 < 1s 6.9s sat 10

histogram(10) 72 10 10 2s 55s sat 11

histogram(11) 79 11 11 8s 368s sat 12

histogram_unsat(11) 80 11 11 9s 19s unsat -
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COMP benchmarks suite [192]. They model simple verification problems for loops, such as

finding the position of an element in array, finding the minimum, or counting the number of

positive elements. We model these programs as formulas that are unsatisfiable if the program is

safe. Although the programs are simple, most verification tools competing in SV-COMP fail to

prove their safety.

histogram We performed experiments on the histogram example in Section 6.3.3, parametrized

by the number of range values. We observe that solving time grows rapidly with the number of

folds. Example “histogram_unsat” is an unsatisfiable variation that requires two different counts

in the same range.
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7 Formal Testing: A Brief Summary

In this chapter, we shortly summarize authors’s publications on formal testing. For an introduction

to formal testing, the reader may refer to Section 1.4.

7.1 Compositional Specifications for ioco Testing

Model-based testing is a promising technology for black-box software and hardware testing, in

which test cases are generated automatically from high-level specifications. Nowadays, systems

typically consist of multiple interacting components and, due to their complexity, testing presents

a considerable portion of the effort and cost in the design process. Exploiting the compositional

structure of system specifications can considerably reduce the effort in model-based testing.

Moreover, inferring properties about the system from testing its individual components allows

the designer to reduce the amount of integration testing.

In our work [6], we study compositional properties of the ioco-testing theory. We propose

a new approach to composition and hiding operations, inspired by contract-based design and

interface theories. These operations preserve behaviors that are compatible under composition

and hiding, and prune away incompatible ones. The resulting specification characterizes the

input sequences for which the unit testing of components is sufficient to infer the correctness of

component integration without the need for further tests. We provide a methodology that uses

these results to minimize integration testing effort, but also to detect potential weaknesses in

specifications. While we focus on asynchronous models and the ioco conformance relation, the

resulting methodology can be applied to a broader class of systems.
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7.2 Complete Composition Operators for ioco-Testing The-

ory

In [7] we extend the theory of input-output conformance with operators for merge and quotient.

The former is useful when testing against multiple requirements or views. The latter can be used

to generate tests for patches of an already tested system. Both operators can combine systems

with different action alphabets, which is usually the case when constructing complex systems

and specifications from parts, for instance different views as well as newly defined functionality

of a previous version of the system.

7.3 Abstraction-driven Concolic Testing

Concolic testing is a promising method for generating test suites for large programs. However, it

suffers from the path-explosion problem and often fails to find tests that cover difficult-to-reach

parts of programs. In contrast, model checkers based on counterexample-guided abstraction

refinement explore programs exhaustively, while failing to scale on large programs with precision.

In our work [8], we present a novel method that iteratively combines concolic testing and model

checking to find a test suite for a given coverage criterion. If concolic testing fails to cover some

test goals, then the model checker refines its program abstraction to prove more paths infeasible,

which reduces the search space for concolic testing. We have implemented our method on top of

the concolic-testing tool CREST and the model checker CPACHECKER. We evaluated our tool

on a collection of programs and a category of SVCOMP benchmarks. In our experiments, we

observed an improvement in branch coverage compared to CREST from 48% to 63% in the best

case, and from 66% to 71% on average.
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8 Conclusion

The aim of this dissertation was to investigate the verification of systems by statistical and logical

methods. Although these two approaches seem to be very different in nature, we demonstrated

that they can be successful combined for the analysis of probabilistic systems. More precisely,

we showed that logical properties (such as satisfying an LTL formula or equivalence with respect

to fragments of LTL) can be inferred by sampling from a Markov chain and applying statistics. It

is fascinating that such a combination is even possible, where a limited number of simulation runs

is enough to prove global system properties, including properties describing infinite behavior. An

inspiring, and somewhat challenging, direction for future work is to investigate combination of

logical and statistical methods also for programs. The goal would be to prove that a program has

a logical property by applying statistical methods. This direction of research is closely related to

machine learning, and would complement the methods discussed in this dissertation.

In the following, we summarize the contribution of this thesis, and discuss future research

directions.

Statistical Model Checking for Unbounded Temporal Properties To the best of our knowl-

edge, we proposed the first statistical model-checking algorithm that can verify LTL properties

by analyzing simulation runs on the fly. This is also the first application of statistical model

checking to quantitative properties such as mean payoff. In the future work, we plan to extend

our method to continuous-time Markov chains, as well as to Markov decision processes. An-

other possible direction is to increase the performance of our method on white-box models by

leveraging information about the system.
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Linear Distances between Markov Chains We introduced a linear-distance framework for

Markov chains and considered estimating the distances in the black-box setting from simulation

runs. We investigated several distances, delimiting the (in)estimability boarder for distances

given topologically, logically, and by automata. As the next step, it is desirable to look for

practical algorithms that would converge fast on practical benchmarks. Another direction is

to characterize the largest language for which the distance can be estimated, and, dually, the

smallest language that cannot be estimated.

Qualitative Analysis of Probabilistic Systems We introduced a new relation for MDPs,

called combined simulation, which characterizes refinement with respect to qualitative properties.

Combined simulation can be computed in quadratic time by graph algorithms. We also proposed

an assume-guarantee algorithm for computing combined simulation for a composition of MDPs.

Finally, we established a tight link between MDPs and two-player games, which allowed us

to lift our results to two-player games. An interesting direction for future work is to consider

symbolic approaches to the problem. Another possible direction is to consider other styles of

compositional reasoning for concurrent systems.

Array Folds Logic We presented a new logic for arrays, called array folds logic (AFL), which

extends the quantifier-free theory of arrays. The crux of our logic is the fold term, which is

based on a concept well-known from functional languages. The fold term can express counting

properties, which occur frequently in real-life programs. Additionally, AFL can concisely

summarize loops with internal branching and counting over arrays. We analyzed the complexity

of satisfiability checking for AFL formulas, and presented an efficient decision procedure via an

encoding to the quantifier-free Presburger arithmetic.

In the future work, we plan to investigate possible combinations with other decidable

fragments of the theory of arrays (to allow some restricted form of quantifier alternation).

We also plan to automate the generation of proof obligations and the summarization of loops,

and we would like to improve the efficiency of our decision procedure by implementing suitable

optimization and heuristics.
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