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Abstract

The process of gene expression is central to the modern understanding of how cellular systems

function. In this process, a special kind of regulatory proteins, called transcription factors,

are important to determine how much protein is produced from a given gene. As biological

information is transmitted from transcription factor concentration to mRNA levels to amounts of

protein, various sources of noise arise and pose limits to the fidelity of intracellular signaling.

This thesis concerns itself with several aspects of stochastic gene expression: (i) the mathe-

matical description of complex promoters responsible for the stochastic production of biomolecules,

(ii) fundamental limits to information processing the cell faces due to the interference from mul-

tiple fluctuating signals, (iii) how the presence of gene expression noise influences the evolution

of regulatory sequences, (iv) and tools for the experimental study of origins and consequences

of cell-cell heterogeneity, including an application to bacterial stress response systems.
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0 Introduction

Two discoveries in molecular biology and genetics during the middle of the last century were

of fundamental importance for our modern understanding of how biological systems are orga-

nized [Alberts et al., 2002]. First, this was the identification of the most important biochemical

molecules and their roles, summarized in the so called central dogma of molecular biology (see

Figure 1A) [Crick, 1970]. The second crucial discovery was the existence of a certain class of

proteins: DNA-binding transcription factors (TFs) that determine which proteins are produced

in which amounts and under which circumstances [Jacob and Monod, 1961]. While the central

dogma describes the structure of biopolymers, gene expression research focuses on the reg-

ulation of their amount in a given condition. The reliability of cellular processes that determine

the amount of biomolecules is the over-arching topic of this thesis.

Every step in the central dogma offers a possibility to tune the amount of protein that is

made, most importantly transcription (DNA to mRNA) and translation (mRNA to protein). For

example, the propensity of a ribosome to bind to an mRNA molecule and start translating will

determine how many copies of the encoded protein will be made (on average) before a tran-

script is degraded. More important for this thesis, however, is the fact that some proteins bind

to special regions of the DNA, termed regulatory regions, and influence the rate of transcription

of a gene (see Figure 1B). This fact – that proteins can again interact with DNA and determine

its utilization – closes the loop in the sense that the activity of one part of the DNA can influence

the activity of another part. This potential to interact gives rise to gene networks (see Figure

1C).

Gene regulatory interactions and the networks arising from them are central in the modern

understanding of several sub-fields of biology. Embryonic development, metabolism, cellular

stress response, and even clinically relevant topics such as cancer and antibiotic resistance

cannot be understood today without taking at least some aspects of gene regulation into ac-

count.
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One important aspect common to every step of gene expression and thus to every inter-

action in a gene network (TF production, diffusion, and binding, initiation of transcription and

translation, degradation of mRNA and protein) is that they are performed by single molecules,

sometimes present at very low copy numbers – most extremely exemplified by the fact that

there is only a single gene coding for a particular type of protein [Babu et al., 2004]. This dis-

creteness and the susceptibility to thermally induced fluctuations in individual reaction events

unavoidably lead to fluctuations in the whole reaction network [van Kampen, 1981] – in addi-

tion to other, naturally occurring sources of stochasticity [Raj and van Oudenaarden, 2008]. A

classic tool used when studying the effects of diversity between clonal individuals, i.e. differ-

ences that cannot be traced to genetic differences, are twin studies [Raser and O’Shea, 2005;

Burga et al., 2011]. The underlying idea is that two identical copies of a system that are ex-

posed to the same environment, will still display differences in their reaction or behavior (see

Figure 1D). The first ‘twin study’ on the level individual genes, resp. the activities of two equiv-

alent copies of it, is now usually taken (and cited) as the starting point for the investigation of

stochasticity in gene expression [Elowitz et al., 2002].

From the biophysical standpoint, the identification and quantification of noise sources –

either just as a phenomenological model providing us with a quantitative language to talk about

differences in variants, or with fundamental reasoning from first principles – is of central interest

[Sanchez et al., 2013]. Consequently, there is a large body of work characterizing different

sources of noise and their genetic determinants [Swain et al., 2002; Ozbudak et al., 2002;

Rosenfeld et al., 2005; Pedraza and van Oudenaarden, 2005; Tkačik et al., 2008c; Singh et al.,

2012]. To quantitatively describe different situations, a mathematical description was needed.

The one most widely used today goes back to the random telegraph model (of transcription

bursting) [Kepler and Elston, 2001; model for the statistical fluctuations of protein numbers in

a microbial population, 1978; Cai et al., 2006]. As experimental efforts got more focused, the

data collected could distinguish more complicated models [Suter et al., 2011; Sanchez et al.,

2011a] and dedicated inference schemes to learn their parameters were devised [Neuert et al.,

2013; Sherman and Cohen, 2014; Ruess et al., 2015].

Questions with a more biological flavor revolve around the effects of noisy gene expres-

sion on various aspects of organismal behavior – and ultimately on their influence on evolution

[Raser and O’Shea, 2005; Eldar and Elowitz, 2010; Wolf et al., 2015]. From the engineering

perspective, this means that noise can be taken into account when designing, building and op-

timizing synthetic gene networks [Bandiera et al., 2016; Tsimring, 2014]. In developmental bi-

ology, the question about which architecture of regulatory circuits can provide an adequate bal-
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ance between openness to innovation and yet deliver the necessary reliability for development

continues to be a much researched topic [Houchmandzadeh et al., 2002; Gregor et al., 2007;

Tkačik et al., 2008b; Eldar et al., 2009; Raj et al., 2010; Dubuis et al., 2013].

Stochastic effects have been studied widely in biological systems for a long time, also pre-

ceding the molecular era. Examples can be found in systems of very different scales ranging

from single cell behavior and tissues, over neuronal networks to swarm behavior and whole

ecosystems, often sharing tools for their mathematical analysis [MacKay, 2003; Rieke et al.,

1997; Bialek, 2013; Tkačik and Bialek, 2016]. In population genetics, the concept of finite

population size leading to sampling noise in selection, and the existence of environmental fluc-

tuations adding variance in phenotype to the genetic variance in a population are among the

most prominent examples [Barton et al., 2007; Lenormand et al., 2009]. Recent progress in

measurement techniques has made it possible to also investigate variations on the molecular

level, and relate this to variations on higher levels of organismal organization – in the most

extreme case, the difference between survival and death of single individuals.

As in other subfields of biology, noise in gene regulation has first been documented experi-

mentally and studied mathematically, but the field has now moved on to understand the range

of possible functional consequences: in which cases is noise only a ‘small correction’ to the

average behavior and in which cases does it give rise to new phenomena?

In this thesis I present work relating to different aspects of stochastic gene expression men-

tioned above: the mathematical description of complex promoters that stochastically produce

biomolecules (Chapter 1), fundamental limits to information processing the cell faces due to

the interference from multiple fluctuating signals (Chapter 2), how the presence of gene ex-

pression noise influences the evolution of regulatory sequences (Chapter 3), and finally tools

for the experimental study of origins and consequences of cell-cell heterogeneity, including an

application to bacterial stress response systems (Chapter 4).
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1 Noise and information transmission in

complex promoters

The work presented in this chapter was conducted jointly with and Gašper Tkačik and has been

published in the Biophysical Journal (see [Rieckh and Tkačik, 2014]) and is reproduced here

with minimal changes.

1.1 Introduction

Gene regulation – the ability of cells to modulate the expression level of genes to match their

current needs – is crucial for survival. One important determinant of this process is the wiring di-

agram of the regulatory network, specifying how environmental or internal signals are detected,

propagated, and combined to orchestrate protein level changes [Levine and Davidson, 2005].

Beyond the wiring diagram, the capacity of the network to reliably transmit information about

signal variations is determined also by the strength of the network interactions (the “numbers

on the arrows” [Ronen et al., 2002]), the dynamics of the response, and the noise inherent to

chemical processes happening at low copy numbers [Elowitz et al., 2002; Ozbudak et al., 2002;

Paulsson, 2004; Raj and van Oudenaarden, 2008].

How do these factors combine to set the regulatory power of the cell? Information theory can

provide a general measure of the limits to which a cell can reliably control its gene expression

levels. Especially in the context of developmental processes, where the precise establishment

and readout of positional information has long been appreciated as crucial [Houchmandzadeh

et al., 2002], information theory can provide a quantitative proxy for the biological function of

gene regulation [Tkačik and Walczak, 2011]. This has led to theoretical predictions of optimal

networks that maximize transmitted information given biophysical constraints [Ziv et al., 2007;

Tkačik et al., 2008a; Tkačik et al., 2009; Walczak et al., 2010; Tkačik and Walczak, 2011;

Tkačik et al., 2012], and hypotheses that certain biological networks might have evolved to

maximize transmitted information [Tkačik et al., 2008b]. Some evidence for these ideas has



6

been provided by recent high-precision measurements in the gap gene network of the fruit

fly [Dubuis et al., 2013]. In parallel to this line of research, information theory has been

used as a general and quantitative way to compare signal processing motifs [Tostevin and

ten Wolde, 2009; Tostevin and ten Wolde, 2010; Cheong et al., 2011; de Ronde et al., 2010;

de Ronde et al., 2012; de Ronde et al., 2011; Tostevin et al., 2012; Mugler et al., 2013;

Bowsher and Swain, 2012; Jost et al., 2013; Hormoz, 2013; Levine et al., 2007; Mancini

et al., 2013]. Further theoretical work has demonstrated a relationship between the information

capacity of an organism’s regulatory circuits and its evolutionary fitness [Taylor et al., 2007;

Rivoire and Leibler, 2011; Donaldson-Matasci et al., 2010].

Previously, information theoretic investigations primarily examined the role of the regulatory

network. Here we focus on the molecular level, i.e., on the events taking place at the regula-

tory regions of the DNA. Little is known about how the architecture of such microscopic events

shapes information transfer in gene regulation. Yet it is precisely at these regulatory regions

that the mapping from the “inputs” in the network wiring diagram into the corresponding “output”

expression level is implemented by individual molecular interactions. In this bottleneck various

physical sources of stochasticity – such as the binding and diffusion of molecules [Bialek and

Setayeshgar, 2005; Bialek and Setayeshgar, 2008; Gregor et al., 2007], and the discrete na-

ture of chemical reactions [van Kampen, 1981] – must play an important role. In the simplest

picture, gene expression is modulated through transcriptional regulation. This involves molec-

ular events like the binding of transcription factors (TFs) to specific sites on the DNA, chemical

events that facilitate or block TF binding (e.g., through chromatin modification), or events that

are subsequently required to initiate transcription (e.g., the assembly and activation of the tran-

scription machinery).

While the exact sequence of molecular events at the regulatory regions often remains elu-

sive (especially in eukaryotes), quantitative measurements have highlighted factors that con-

tribute to the fidelity by which TFs can affect the expression of their target genes. These findings

have been succinctly summarized by the so-called “telegraph model” of transcriptional regula-

tion [Peccoud and Ycart, 1995]: the two-state promoter switches stochastically between the

states “ON” and “OFF”, with switching rates dependent on the concentration(s) of the regu-

latory factor(s). This dependence can either be biophysically motivated (e.g. by a thermo-

dynamic model of TF binding to DNA), or it can be considered as purely phenomenological.

The switching itself is independent of mRNA production, but determines the overall production

rate. The production of mRNA molecules from one state is usually modeled as a Poisson pro-

cess, with a first-order decay of messages; this is usually followed by a birth-death process
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in which proteins are translated from the messages. This two-state model is well-studied the-

oretically [Peccoud and Ycart, 1995; Iyer-Biswas et al., 2009; Shahrezaei and Swain, 2008;

Dobrzynski and Bruggeman, 2009; Kepler and Elston, 2001; Hu et al., 2011; Hu et al., 2012]

and has been used extensively to account for measurements of noise in gene expression [So

et al., 2011; Tkačik et al., 2008c; Raser and O’Shea, 2004; Raj et al., 2006]. An increasing

amount of information about molecular details has motivated extensions to this model by intro-

ducing more than two states in specific systems [Sanchez and Kondev, 2008; Gutierrez et al.,

2009; Karmakar, 2010; Coulon et al., 2010; Sanchez et al., 2011a; Zhou and Zhang, 2012;

Zhang et al., 2012; Gutierrez et al., 2012], and recent measurements of noise in gene ex-

pression provided some support for such complex regulatory schemes [Blake et al., 2006;

Blake et al., 2003; Kandhavelu et al., 2011; Suter et al., 2011].

Here we address the general question of the functional effect of complex promoters with

multiple internal states. How does the presence of multiple promoter states affect information

transmission? Which promoter architectures transmit information more reliably when placed

into a regulatory network? Under what conditions, if any, can multi-state promoters perform

better than the two-state model? To address these questions, we consider a wide spectrum

of generic promoter models that can be treated mathematically as state transition diagrams;

many molecular “implementations” could thus share the same underlying model. When placed

into a network, one must further specify which of the transitions are affected by concentrations

of regulatory proteins, and which of the promoter states have nonzero expression rates. With

this framework in hand, we derive the total noise in mRNA expression as a function of the

induction level for all two- and three-state promoter models, and discuss how measurements

of this function can be diagnostic of the underlying mechanism of regulation. To answer the

main question of this paper – namely if additional complexity at the promoter can lead to an

improvement in controlling the output level of a gene – we compute the information transmission

from transcription factor concentrations to regulated protein expression levels through two- and

three-state promoters. Finally, we analyze in detail three complex promoter architectures that

outperform the two-state regulation.
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1.2 Channel capacity as a measure of regulatory power

We start by considering a genetic regulatory element – e.g., a promoter or an enhancer – as

a communication channel, shown in Fig 1.1A. As the concentrations of the relevant inputs (for

example, transcription factors) change, the regulatory element responds by varying the rate of

target gene expression. In steady state, the relationship between input k and expression level

of the regulated protein g is often thought of as a “regulatory function” [Setty et al., 2003]. While

attractive, the notion of a regulatory function in a mathematical sense is perhaps misleading:

gene regulation is a noisy process, and so for a fixed value of the input we have not one, but

a distribution of different possible output expression levels, P (g|k) (see Fig 1.1B). When the

noise is small, it is useful to think of a regulatory function as describing the average expression

level, ḡ(k) =
∫
dg gP (g|k), and of the noise as inducing some random fluctuation around that

average. The variance of these fluctuations, σ2
g(k) =

∫
dg (g − ḡ(k))2P (g|k), is thus a measure

of noise in the regulatory element; note that its magnitude depends on the input, k.

The presence of noise puts a bound on how precisely changes in the input can be mapped

into resulting expression levels on the output side – or inversely, how much the cell can know

about the input by observing the (noisy) outputs alone. In his seminal work on information

theory [Shannon, 1948], Shannon introduced a way to quantify this intuition by means of mutual

information, which is an assumption-free, positive scalar measure in bits, defined as

I(k; g) =

∫∫
dk dg P (k)P (g|k) log2

[
P (g|k)

P (g)

]
. (1.1)

In Eq (1.1), P (g|k) is a property of the regulatory element, which we will be computing below,

while P (k) is the distribution of inputs (e.g. TF concentrations) that regulate the expression;

finally, P (g) =
∫
dk P (g|k)P (k) is the resulting distribution of gene expression levels. With

P (g|k) set by the properties of the regulatory element and the biophysics of the gene expression

machinery, there exists an optimal choice for the distribution of inputs, P ∗(k), that maximizes

the transmitted information. This maximal value, I∗(k; g) = maxP (k)I(k; g), also known as the

channel capacity [Cover and Thomas, 2006], summarizes in a single number the “regulatory

power” intrinsic to the regulatory element [Tkačik et al., 2008b; Tkačik et al., 2008a; Tkačik

et al., 2009; Walczak et al., 2010; Tkačik et al., 2012].

Our goal is to compute the channel capacity between the (single) regulatory input and

the target gene expression level for information flowing through various complex promoters.

Under the assumption that noise is small and approximately gaussian for all levels of input, the

complicated expression for the information transmission in Eq (1.1) simplifies, and the channel

capacity I∗(k; g) can be computed analytically from the regulatory function, ḡ(k), and the noise,
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σ2
g(k). The result is that [Tkačik et al., 2008b; Tkačik et al., 2008a; Tkačik et al., 2009; Walczak

et al., 2010; Tkačik et al., 2012]

I∗(k; g) = log2

Z√
2πe

, with (1.2)

Z =

∫ kmax

0
dk
|dḡ/dk|
σg(k)

=

∫ ḡmax

ḡmin

dḡ

σg(ḡ)
, (1.3)

where in the last equality we changed the integration variables to express the result in terms of

the average induction level, ḡ, using the regulatory function ḡ = ḡ(k). This integral is graphically

depicted in Fig 1.1C (inset). Finally, we will use this to explore the dependence of I∗(k; g) on

parameters that define the promoter architecture (see Fig 1.1D), looking for those arrangements

that lead to large channel capacities and thus high regulatory power.

Information as a measure of regulatory power has a number of attractive mathematical prop-

erties (for review, see [Tkačik and Walczak, 2011]); interpretation-wise, the crucial property is

that it roughly counts (the logarithm of) the number of distinguishable levels of expression that

are accessible by varying the input – also taking into account the level of noise in the system.

A capacity of 1 bit therefore suggests that the gene regulatory element could act as a binary

switch with two distinguishable expression levels; capacities smaller than 1 bit correspond to

(biased) stochastic switching, while capacities higher than 1 bit support graded regulation. An

increase of information by 1 bit means that the number of tunable and distinguishable levels of

gene expression has roughly doubled (!), implying that changes of less than a bit are mean-

ingful. Careful analyses of gene expression data for single-input single-output transcriptional

regulation suggest that real capacities can exceed 1 bit [Tkačik et al., 2008b]. Increasing this

number substantially beyond a few bits, however, necessitates very low levels of noise in gene

regulation, requiring prohibitive numbers of signaling molecules [Tkačik et al., 2008a].

1.3 Multi-state promoters as state transition graphs

To study information transmission, we must first introduce the noise model in gene regulation,

which consists of two components: (i), the generalization of the random telegraph model to

multiple states, and (ii), the model for input noise that captures fluctuations in the number of

regulatory molecules. Starting with (i), we compute here the mean and variance for regulated

mRNA levels, since these quantities are experimentally accessible when probing noise in gene

expression. We assume that the system has reached steady state and that gene product

degradation is the slowest timescale in the problem, i.e., that target mRNA or protein levels

average over multiple state transitions of the promoter and that the resulting distributions of
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Figure 1.2: Promoters as state transition graphs. (A) A state transition graph for an example

3-state promoter. Active state a (double circle) expresses mRNA m at rate r, which are then

degraded with rate d. Transition into a (green arrow) is affected by the input that modulates rate

k = k1a. Stochastic transitions between promoter states {a, 1, 2} are an important contribution

to the noise, σm(k). (B) A possible mechanistic interpretation of the diagram in A: state 1 is

an unoccupied promoter, state 2 is an inaccessible promoter (occupied by a nucleosome or

repressor, black square). Transition to the active state (green arrow) is modulated by changing

the concentration c of activators (filled triangles) which bind their cognate site (empty triangles)

at the promoter with the rate ck+.

mRNA and protein are thus unimodal. While for protein levels these assumptions hold over a

wide range of parameters and include many biologically relevant cases, there exist examples

where promoter switching is very slow and the system would need to be treated with greater

care (e.g., [Walczak et al., 2005; Karmakar, 2010; Iyer-Biswas et al., 2009]).

Let us represent the possible states of the promoter (and the transitions between them) by

a state transition graph as in Fig 1.2A. Gene regulation occurs when an input signal modifies

one (or more) of the rates at which the promoter switches between its states. To systematically

analyze many promoter architectures, we choose not to endow from the start each graph with a

mechanistic interpretation, which would map the abstract promoter states to various configura-

tions of certain molecules on the regulatory regions of the DNA (as in Fig 1.2B). This is because

there might be numerous molecular realizations of the same abstract scheme, which will yield

identical noise characteristics and identical information transmission. In Fig 1.3, Fig 1.4, and

Fig 1.5, we discuss known examples related to different promoter architectures.

Given a specific promoter architecture, we would like to compute the first two moments of

the mRNA distribution under the above assumptions. Here, we only sketch the method for the

promoter in Fig 1.2A; for a general description and details see section 1.9. We will denote the

rate of mRNA production from the active state(s) by r and its degradation rate by d. Let further
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pi be the fractional occupancy of state i ∈ {a, 1, 2} and kij the rate of transitioning from state

i to j, i 6= j. Here, a is the active state, and 1, 2 are the non-expressing states. Equations (1.4)

and (1.5) then describe the behavior of the state occupancy and mRNA level m:

∂tp = Kp+ ξ, ∂tm = rpa − dm+ ξm, with (1.4)

K =


−(ka1 + ka2) k1a k2a

ka1 −(k1a + k12) k21

ka2 k12 −(k2a + k21)

 , (1.5)

and p = (pa, p1, p2)T ; ξ = (ξa, ξ1, ξ2)T and ξm are Langevin white-noise random forces [van

Kampen, 1981; Gillespie, 2000] (see section 1.9). In this setup it is easy to compute the

mean and the variance in expression levels given a set of chosen rate constants. Using the

assumption of slow gene product degradation, d � kij , we can write the noise in a generic

way:

σ2
m = m̄

[
1 +

r

d
pact ·∆

]
, (1.6)

where pact is the occupancy of the active states (pa or pa+pb), and the dimensionless expression

for ∆ depends on the promoter architecture and can be read out from Fig 1.3A for different

promoter models. The expression for noise in Eq (1.6) has two contributions. The first, where

the variance is equal to the mean (σ2
m = m̄ + . . . ) is the “output noise” due to the birth-death

production of single mRNA molecules (also called “shot noise” or “Poisson noise”). The second

contribution to the variance in Eq (1.6) is due to stochastic switching of the promoter between

internal states, referred to as the “switching noise.” This term does depend on the promoter

architecture and has a more complicated functional form than being simply proportional to the

mean. A first glance at the expressions for noise seems to imply that going from two to three

promoter states can only increase the noise (and by Eq (1.3) decrease information), since

new, positive contributions appear in the expressions for σ2
m; we will see that, nevertheless,

transmitted information can increase for certain architectures.

1.4 Input noise

In addition to the noise sources internal to the regulatory mechanism, we also consider the

propagation of fluctuations in the input, which will contribute to the observed variance in the

gene expression level. Can we say anything general about the transmission of input fluctu-

ations through the genetic regulatory element? Consider, for instance, the modulated rate k
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that depends on the concentration c of some transcription factor, as in k = k+c, where k+ is

the association rate to the TF’s binding site. Since the TF itself is expressed in a stochastic

process, we could expect that there will be (at least) Poisson-like fluctuations in c itself, such

that σ2
c ∝ c; this will lead to an effective variance in k that will be propagated to the output vari-

ance in proportion to the “susceptibility” of the regulatory element, (∂ḡ/∂k)2. Extrinsic noise

would affect the regulatory element in an analogous way, as suggested in [Swain et al., 2002].

Independently of the noise origin, we can write

σ2
g = · · ·+ v

(
∂ḡ

∂k

)2

k, (1.7)

where (. . .) indicate output and switching terms from Eq (1.8) and v is the proportionality con-

stant (σ2
k = vk) that is related to the magnitude of the input fluctuations and, possibly, their

subsequent time averaging [Paulsson, 2004].

Even if there were absolutely no fluctuations in the total concentration c of transcription

factor molecules in the cell (or the nucleus), the sole fact that they need to find the regulatory

site by diffusion puts a lower bound on the variance of the local concentration at the regu-

latory site. This diffusion limit, first formulated for the case of bacterial chemotaxis by Berg

and Purcell [Berg and Purcell, 1977], has been subsequently derived for the general case

of biochemical signaling [Bialek and Setayeshgar, 2005; Bialek and Setayeshgar, 2008]: the

lower bound on the variance in local concentration obeys σ2
c ∝ cd′/D`, where D is the dif-

fusion constant of the TF molecules, ` is the linear size of the binding site, and 1/d′ is the

noise averaging time (here the lifetime of the gene product). Analyses of high-precision mea-

surements in gene expression noise during early fruit fly development have shown that this

diffusion noise represents a substantial contribution to the total [Gregor et al., 2007; Tkačik

et al., 2008c]. Thus, for this biophysical limit set by diffusion, we find yet again that the vari-

ance in the input is proportional to the input itself. This, in sum, demonstrates that Eq (1.7)

can be used as a very generic model for diverse kinds of input noise. To see which values

the constant v can take, note that σ2
k = k2

+σ
2
c ∝ k2

+cd
′/D` = kk+d

′/D`. As an example, con-

sider diffusion-limited association, where k+ = 4πD` [Berg and von Hippel, 1985]. Depending

on the accuracy and the geometry of the sensing mechanism we now get different values for

ṽ = v/d′, but in general ṽ is expected to be of order unity. For example, the perfect absorb-

ing sphere has σ2
c = cd′/(4πD`) and therefore ṽ = 1; the perfect monitoring sphere in the

Berg–Purcell limit has σ2
c = 3cd′/(5πD`) and therefore ṽ = 2.4 [Endres and Wingreen, 2008;

Berg and Purcell, 1977].
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1.5 Experimentally accessible noise characteristics

Could complex promoter architectures be distinguished by their noise signatures, even in the

easiest case where the input noise can be neglected (as is often assumed [Tkačik et al.,

2008c])? The expressions for the noise presented in Fig 1.3A hold independently of which

transition rate the input is modulating. We can specialize these results by choosing the mod-

ulation scheme, that is, making one (or more) of the transition rates the regulated one. This

allows us to construct the regulatory function (insets in Fig 1.3B). Additionally, we can also plot

the noise (here shown as the Fano factor, σ2
m/m̄) as a function of the mean expression, m̄, thus

getting the noise characteristic of every modulation scheme. These curves, shown in Fig 1.3B,

are often accessible from experiments [Carey et al., 2013; So et al., 2011], even when the iden-

tity of the expressing state or the mechanism of modulation are unknown. We systematically

organize our results in Fig 1.3B (for the case when k = k1a is modulated), and provide a full

version in Fig 1.4 and Fig 1.5; we also list four molecular schemes implementing these architec-

tures in Fig 1.3C, while providing additional molecular implementations in Fig 1.4 and Fig 1.5.

We emphasize that very different molecular mechanisms of regulation can be represented by

the same architecture, resulting in the same mathematical analysis and information capacity.

Measured noise-vs-mean curves have been used to distinguish between various regulation

models [de Ronde et al., 2009; Carey et al., 2013; So et al., 2011]. For this, two conditions have

to be met [Tkačik et al., 2008c; Sanchez et al., 2013]. First, it must be possible to access the

full dynamic range of the gene expression in an experiment, and this sometimes seems hard

to ensure. The second condition is that the input noise is not the dominant source of noise:

input noise can mimic promoter switching noise and can, e.g., provide alternative explanations

for noise measurements in [So et al., 2011] that quantitatively fit the data (not shown).

Even if these conditions are met, it would be impossible to distinguish between certain pro-

moter architectures (e.g., 2-a1 vs. 3E-a1) with this method, while some would require data of

a very high quality to distinguish (e.g., activating 3E-1a vs. repressing 3E-12, see Fig 1.4 and

Fig 1.5), at least in certain parameter regimes. On the other hand, there exist noise character-

istics that can only be obtained with multiple states (e.g., 3M-1a).

One feature that can easily be extracted from the measured noise characteristics is the

asymptotic induction: it can be equal to 1 (e.g., in 2-1a), or bounded away from 1 (e.g., in

3M-1a). While this distinction between architectures cannot be inferred from the shapes of the

regulatory functions, the effect on the noise characteristics is unambiguous: in the case where

the expressing state is never saturated, the Fano factor does not drop to the Poisson limit of 1
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even at the highest expression levels (which seems to have been the case in [So et al., 2011]).

Taken together, when the range of promoter architectures is extended beyond the two-state

model, distinguishing between these architectures based on the noise characteristics seems

possible only under restricted conditions, emphasizing the need for dynamical measurements

that directly probe transition rates (e.g., [Suter et al., 2011; Golding et al., 2005]), or for the

measurements of the full mRNA distribution (rather then only its second moment). We note

that dynamic rates are often reported assuming the two-state model, as they are inferred from

the steady state noise measurements (e.g., [So et al., 2011; Raj et al., 2006]), and only a few

experiments probe the rates directly (e.g., [Geertz et al., 2012]); for a brief review of the rates

and their typical magnitudes see section 1.8.
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Information transmission in the two-state model. To establish the baseline against which

to compare complex promoters, we look first at the two-state promoter (2-1a). Here the transi-

tion into the active state is modulated by TF concentration c via k = k1a = k+c, as it would be

in the simple case of a single TF molecule binding to an activator site to turn on transcription.

Adding together the noise contributions of Eqs (1.8,1.7), we obtain our model for the total noise:

σ2
g = ḡ

[
(1 + ν) +

rr′

dka1
(1− pa)2 +

v

ka1

rr′

dd′
(1− pa)3

]
. (1.9)

To compute the corresponding channel capacity, we use Eq (1.3) with the noise given by

Eq (1.9):

Z =

∫ ḡmax

ḡmin

dḡ

σg(ḡ)
=
√
Nmax

∫ pmax
a

0
dpa ×

× p−1/2
a

[
1 +

1

k̃−
(1− pa)2 +

ṽ

k̃−
(1− pa)3

]−1/2

(1.10)

=
√
NmaxZ0. (1.11)

Here, Nmax = (rr′)/[(dd′)(1 + ν)] and k̃− = ka1/(d
′Nmax) is the dimensionless combination of

parameters related to the off-rate for the TF dissociation from the binding site. Nmax can be

interpreted as the number of independently produced output molecules when the promoter is

fully induced [Tkačik et al., 2009; Tkačik et al., 2012; Walczak et al., 2010]. In the case where

mRNA transcription is the limiting step for protein synthesis, Nmax corresponds to the maximal

average number of mRNA synthesized during a protein lifetime: Nmax = r/d′ · ν/(1 + ν) ≈ r/d′.

With this choice of parameters, Nmax affects Z multiplicatively and thus simply adds a constant

offset to the channel capacity I∗ [see Eq (1.2)] without affecting the parameter values that

maximize capacity. In what follows we therefore disregard this additive offset, and examine in

detail only I∗ = log2 Z0. We also only use dimensionless quantities (as above, e.g., the rates

are expressed in units of d′), but leave out the tilde symbols for clarity.

Optimizing information transmission. What parameters maximize the capacity of the

two-state promoter 2-1a given by Eq (1.10)? Given that the dynamic range of input (e.g., TF

concentration) is limited [Tkačik et al., 2008a; Tkačik et al., 2009; Tkačik et al., 2012; Walczak

et al., 2010], k ∈ [0, kmax], and given a choice of v that determines the type and magnitude of

input noise, the channel capacity I∗ for the two-state promoter only depends non-trivially on

the choice of a single parameter, k− Figure 1.6 shows the tradeoff that leads to the emergence

of a well-defined optimal value for k∗−: at a fixed dynamic range for the input, k ∈ [0, kmax], the

information-maximizing solution chooses k∗− that balances the strength of binding (such that

the dynamic range of expression is large), while simultaneously keeping the noise as low as

possible. If this abstract promoter model were interpreted in mechanistic terms where a TF
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binds to activate gene expression, then choosing the optimal k− would amount to choosing

the optimal value for the dissociation constant of our TF; importantly, the existence of such a

nontrivial optimum indicates that, at least in an information-theoretic sense, the best binding is

not the tightest one [Li et al., 2009; Grönlund et al., 2013; Tkačik et al., 2008a; Tkačik et al.,

2009; Walczak et al., 2010; Tkačik et al., 2012; Levine et al., 2007]. This tradeoff between noise

and dynamic range of outputs (also called “plasticity”) has also been noticed in other contexts

[Lehner, 2010; Bajic and Poyatos, 2012].

1.7 Improving information transmission with multi-state promot-

ers

We would like to know if complex promoter architectures can outperform the two-state model

in terms of channel capacity. To this end, we have examined the full range of three-state

promoters, summarized in Fig 1.4 and Fig 1.5, and found that generally – as long as only one

transition is modulated and only one state is active – extra promoter states lead to a decrease in

the channel capacity relative to two-state regulation. However, by relaxing these assumptions,

architectures that outperform two-state promoters can be found.

1.7.1 Cooperative regulation

The first such pair of architectures is illustrated in Fig 1.7A and B: three-state promoters with

one (or two) expressing states, where two transitions into the expressing states are simulta-

neously modulated by the input. A possible molecular interpretation of these promoter state

diagrams is an AND-architecture cooperative binding for the model with one expressing state,

and an OR-architecture cooperative activation for the model with two expressing states. In

case of an AND-architecture, a TF molecule hops onto the empty promoter (state 2) with rate

2k (since there are two empty binding site), while a second molecule can hop on with rate ρk

(called “recruitment” if ρ > 1), bringing the promoter into the active state. The first of two bound

TF molecules falls off with rate 2γ−1k− (called “cooperativity” if γ > 1), bringing the promoter

back to state 1, and ultimately, the last TF molecule can fall off with rate k−. The dynamics are

now described (cf. Eq (1.5)) by the matrix

K =


−(2γ−1k−) ρk 0

2γ−1k− −(k− + ρk) 2k

0 k− −(2k)

 , (1.12)



22

and p = (pa, p1, p2)T , resp. p = (pb, pa, p1)T . To compute the noise, we can use the solutions

for the generic three-state model 3E from Fig 1.3A by making the following substitutions: ka1 =

2γ−1k−, k1a = ρk, k12 = k−, k21 = 2k.

To simplify our exploration of the parameter space, we choose ρ = 1 (i.e., no recruitment),

but keep k− (unbinding rate) and γ (cooperativity) as free parameters; the modulated rate k is

proportional to the concentration of TF molecules and is allowed to range from k ∈ [0, kmax].

For every choice of (k−, γ), we computed the regulatory function and the noise, and used these

to compute the capacity, I∗(k; g), using Eqs (1.2, 1.3). This information is shown in Fig 1.7C

and D for the AND- and OR-architecture, respectively.

In the case of an AND-architecture, where both molecules of the TF have to bind for the

promoter to express, there is a ridge of optimal solutions: as we move along the ridge in the

direction of increasing information, cooperativity is increased and thus the doubly-occupied

state is stabilized, while the unbinding rate increases as well. This means that the occupancy

of state 1 becomes negligible, and the regulation function becomes ever steeper, as is clear

from Fig 1.7E, while maintaining the same effective dissociation constant (the input k = k1/2 at

which the promoter is half induced, i.e., pa(k1/2) = 0.5). In this limit, the shape of the regulation

function must approach a Hill function with the Hill coefficient of 2, pa(k) = k2/(k2 + k2
1/2).

Surprisingly, information maximization favors weak affinity of individual TF molecules to the

DNA, accompanied by strong cooperativity between these molecules. The OR-architecture

portrays a different picture: here, the maximum of information is well-defined for a particular

combination of parameters (k−, γ), as shown in Fig 1.7D. As γ → 0 (increasing destabilization

for γ < 1), the second active state (b) is never occupied, and the model reverts to a two-state

model.

For both architectures we can assess the advantage of the three-state model relative to the

optimal two-state promoter. Figures 1.7E and F show the information of the optimal solutions

as a function of the input noise magnitude as well as the input range, kmax. As expected, the

information increases as a function of kmax since the influence of input and switching noise

can be made smaller with more input molecules. This increase saturates at high kmax because

output noise becomes limiting to the information transmission – this is why the capacity curves

converge to the same maximum, the v = 0 curve that lacks the input noise altogether. The

advantage (increase in capacity) of the three-state models relative to the two-state promoter is

positive for any combination of parameters kmax and v. It is interesting to note that increasing

kmax and decreasing v have very similar effects on channel capacity, since both drive the system

to a regime where the limiting factor is the output noise.
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act as repressors (kmax − k), which compete for the same binding site. The channel capacity

of this motif is depicted in Fig 1.8B as a function of promoter parameters kA and kR, showing

that a globally optimal setting (denoted “A”) exists for these parameters; with these parameters,

the input/output function, shown in Fig 1.8C, is much steeper than what could be achieved with

the best two-state promoter, and that is true despite the fact that the molecular implementation

of this architecture uses only a single binding site. The ability to access such steep regulatory

curves allows this architecture to position the mid-point of induction at higher inputs k, thus es-

caping the detrimental effects of the input noise at low k, while still being able to induce almost

completely (i.e., make use of the full dynamic range of outputs) as the input varies from 0 to

kmax. This is how the dual-role regulation can escape the tradeoff faced by the two-state model

2-1a (shown in Fig 1.6). Sharper transition at higher input would lead us to expect that the

advantage of this architecture over the two-state model is most pronounced when input noise

is dominant (small kmax, large v), which is indeed the case, as shown in Fig 1.8D.

1.7.3 Promotor cycling

In the last architecture considered here, promoters “cycle” through a sequence of states in

a way that does not obey detailed balance, e.g., when state transitions involve expenditure

of energy during irreversible reaction steps. In the scheme shown in Fig 1.9A, the regulated

transition puts the promoter into an active state a; before decaying to an inactive state, the

promoter must transition through another active state b. Effectively, this scheme is similar to

the two-state model in which the decay from the active state is not first-order with exponentially

distributed transition times, but rather with transition times that have a sharper peak. The

benefits of this architecture are maximized when the transition rates from both active states

are equal. While it always outperforms the optimal two-state model, the largest advantage

is achievable for small kmax. At large kmax the advantage tends to zero: this is because the

optimal off-rates are high, causing the dwell times in the expressing states to be short. In

this regime the gamma distribution of dwell times (in a three-state model) differs little from

the exponential distribution (in a two-state model). Note that this model would not yield any

information advantage if the state transitions were reversible.

Figures 1.9C, D show that irreversible transitions alone do not generate an information ad-

vantage: a promoter that needs to transition between two inactive states (1, 2) to reach a single

expressing state a from which it exits in a first-order transition, is always at a loss compared to

a two-state promoter. This is because here the effective transition rate to the active state in the

equivalent two-state model is lower (since an intermediate state must be traversed to induce),
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1.8 Experimentally measured promoter switching rates

Direct measurements of switching rates are rare since they require live imaging. Examples

include the relative measurements of on-, off- and mRNA-production rates in E. coli [So et al.,

2011] using the MS2-GFP system [Golding et al., 2005], reporting 2 − 10 fold higher on- than

off-rates, and mRNA production rates an order of magnitude higher than the on-rates; original

bursting reported in [Golding et al., 2005] finds the on-time duration to be roughly 6 and the off

time 37 minutes in a synthetic E. coli reporter system. Recently, on-rates of ∼ 3 · 10−2 min−1,

roughly ten-fold higher off-rates, and mRNA production rates ranging from 0 − 5 min−1 have

been reported in mammalian cells using the luciferase reporter system [Suter et al., 2011].

Using new high-throughput microfluidic methods, it is now possible to measure TF binding and

unbinding times directly: [Geertz et al., 2012] reports mouse and yeast in vitro transcription

factor dissociation rates between ∼ 10 s−1 and 10−2 s−1, as well as the range of the corre-

sponding association rates; it is, however, less clear if these can be unambiguously identified

with switching rates in functional models.

A larger body of work extracts the rates of the two-state model from the noise characteristics

(which are the primary measurement), assuming the two-state model without diffusion noise

is applicable. The reported Fano factors for mRNA counts vary, but are of the order of 1 −

10. The typical values for kinetic parameters extracted for a range of E. coli promoters are

10−3 − 10−2 s−1 for the on-rate, 10−1 − 1 s−1 for the mRNA production rate when induced,

and a variable off-rate that depends strongly on the induction level [So et al., 2011]. Using

a similar technique in mammalian cells, [Raj et al., 2006] extracted two-state parameters and

found the on-rate normalized by mRNA decay time to be roughly of order unity, while the ratio

of mRNA production rate to the off-rate varied from ∼ 10 − 400, depending on the system and

the induction level.

1.9 Langevin method and promoters as state-transition graphs

In this section we describe the general method used to derive the behavior of noise and mean

for different promoter architectures, followed by a calculation for one example architecture.

1.9.1 Translating a state transition diagram into dynamic equations

Let {a, b, . . .M} denote the states of the promoter that produce mRNA at a fixed rate r and

{1, 2, . . . N} denote states without production. For S = {a, b, . . .M, 1, 2, . . . N} 3 i, j, let kij ≥
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0, i 6= j be the rate with which the promoter switches from state i to state j, d be the rate of

mRNA-degradation, and pi be the fractional occupancy of state i. For simplicity, we will only

treat the case M = 1 here.

Deterministic equations. The list of (non-zero) rates fully defines the state-transition

graph, i.e. the promoter model. This directly translates into a linear system of equations that

describes the dynamics of the system:

∂tp = Kp , with (1.13)

K =


−
∑

j∈S kaj k1a · · · kNa

ka1 −
∑

j∈S k1j · · · kN1

...
...

. . .
...

kaN k1N · · · −
∑

j∈S kNj

 , (1.14)

p = [pa, p1,
..., pN ]T , subject to the normalization constraint

∑
i∈S pi = 1.

The dynamics of mRNA are described by linking them to the activity of the promoter:

∂tm = rpa − dm . (1.15)

To compute the average amount of mRNA m̄ in steady state, we set the time derivatives to 0

and solve the linear set of equations

Kp̄ = 0 , (1.16)

m̄ =
r

d
pa . (1.17)

As the occupancy of the active state pa is a function of the rates in K, we can obtain the

dependence of m̄ on any rate of interest, i.e. we can obtain the regulation function.

Langevin approach to calculate noise behavior. For the noise behavior, we linearize

Eqs (4,5) of the main text around the mean:

p(t) = p̄+ δp(t), (1.18)

m(t) = m̄+ δm(t) (1.19)

and introduce the Fourier-transformed variables

δpi(t) = (2π)−1

∫
dω δp̂i(ω) exp (−iωt) , (1.20)

δm(t) = (2π)−1

∫
dω δm̂(ω) exp (−iωt) , (1.21)
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so that we get the linear response to random fluctuations:

(−iω)δp̂ = Kδp̂+ ξ̂ , (1.22)

(−iω)δm̂ = rδp̂a − dδm̂+ ξ̂m . (1.23)

The statistics of the Langevin forces are given by:

〈ξ̂∗i ξ̂j〉 = −(p̂iKij + p̂jKji) , (1.24)

〈ξ̂∗mξ̂m〉 = 2dm̄ ; (1.25)

to see this for the variances, consider 〈ξiξ∗i 〉 = −2p̂iKii = 2p̂i
∑

j kij , since all entries in the

diagonal of K are negative. This is two times the rate of leaving state i. Similarly, for 〈ξ∗mξm〉

the variance is two times the rate of degrading a molecule. The factor of two comes from the

fact that we consider a system at steady state, so the rates of entering and leaving a state (or

creating an destroying a molecule) must be equal. For the covariances 〈ξ∗i ξj〉 (i 6= j), the two

Langevin forces are anti-correlated, since leaving one state means entering another. The rate

of changing between the two states is the probability of being in state i (pi) times the rate of

transition from that state into the other (kij = Kij) – and this holds for both directions between

the pair of states. Also, since we assume that production of mRNA and promoter switching are

independent, 〈ξ∗i ξm〉 = 0 for all states i.

To get the variance in mRNA, we compute σ2
m = (2π)−1

∫
dω |δm̂(ω)|2, where δm̂(ω) is

obtained from Eq (1.23) as

〈δm̂∗δm̂〉 =
2dm̄

d2 + ω2
+

r2

d2 + ω2
〈δp̂∗aδp̂a〉 , (1.26)

where 〈δp̂∗aδp̂a〉 is calculated by solving Eq (1.22) and using the Langevin noise magnitudes

from Eqs (1.24,1.25).

With the assumption d� kij , Eq (1.23) becomes

0 = K(δp̂) + ξ̂ , (1.27)∑
i

δp̂i = 0 , (1.28)

which simplifies the expressions for the δp̂i. This is because the terms with (−iω) in the denom-

inator (as seen in the next section in Eqs (1.48,1.49)) would give an additional, multiplicative

term of the form 1/(k2
ij + ω2) in Eq (1.26). The ω-dependence of these terms can be neglected

for the integration, since for d� kij we have

1

k2
ij + ω2

1

d2 + ω2
≈ 1

k2
ij

1

d2 + ω2
. (1.29)
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1.9.2 Example: Dual regulation (3E-1a)

We are interested in a system where the promoter of a gene can either be occupied by an

activator (present at concentration a) or a repressor (present at concentration b). If it is in the

active state, it produces mRNA at a constant rate r, which is later degraded at rate d.

1 a2 m O

ak+b k+

ka−

r

kb−

d

Deterministic equations. Following the setup from the last section, we translate the state

transition diagram into a matrix that describes the dynamics at the promoter:
∂tpa

∂tp1

∂tp2

 =


−ka− ak+ 0

ka− −(ak+ + bk+) kb−

0 bk+ −kb−

 ·

pa

p1

p2

 . (1.30)

This is then the basis for a description of the dynamics of the output (here mRNA):

∂tm = rpa − dm , (1.31)

∂t pa = ak+p1 − ka−pa , (1.32)

∂t p2 = bk+p1 − kb−p2 , (1.33)

pa + p1 + p2 = 1 . (1.34)

With the definitions A = ak+
ka−

, B = bk+
kb−

, S = 1 + A + B and R = r
d we get for the steady

state:

p̄a = A/S, p̄1 = 1/S, p̄2 = B/S , (1.35)

m̄ = Rp̄a = RA/S . (1.36)

Langevin approach. To see how the dynamics of the promoter influence the statistics of

mRNA we perturb the systems with Langevin forces (while still keeping the gene copy number

constant):

∂tm = rpa − dm+ ξm , (1.37)

∂t pa = ak+p1 − ka−pa + ξa , (1.38)

∂t p2 = bk+p1 − kb−p2 + ξ2 , (1.39)

pa + p1 + p2 = 1 . (1.40)
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The mean of the Langevin forces is zero (〈ξi(t)〉 = 0) and they are uncorrelated in time

(〈ξi(t)ξi(t′)〉 ∝ δ(t− t′)).

We linearize around the mean, where deviations from the mean are denoted by δ:

m(t) = m̄+ δm(t) , (1.41)

pa(t) = p̄a + δpa(t) , (1.42)

p2(t) = p̄2 + δp2(t) , (1.43)

δp1 = −δpa − δp2 . (1.44)

After inserting the linearized equations into the Langevin approach we perform a Fourier trans-

form:

−iωδm̂ = rδp̂a − dδm̂+ ξ̂m , (1.45)

−iωδp̂a(ω) = ak+(−δp̂2 − δp̂a)− ka−δp̂a + ξ̂a , (1.46)

−iωδp̂2(ω) = bk+(−δp̂a − δp̂2)− kb−δp̂2 + ξ̂2 . (1.47)

Starting with the equations for the occupancies, we rewrite Eqs (1.46,1.47) and use the approx-

imation that d is significantly slower than the other rates to get:

δp̂a(ω) =
ak+δp̂1 + ξ̂a
ka− − iω

≈ Aδp̂1 +
ξ̂a
ka−

, (1.48)

δp̂2(ω) =
bk+δp̂1 + ξ̂2

kb− − iω
≈ Bδp̂1 +

ξ̂2

kb−
, or (1.49)

δp̂a = −δp̂2
A

(1 +A)
+
ξ̂a
ka−

1

(1 +A)
, (1.50)

δp̂2 = −δp̂a
B

(1 +B)
+
ξ̂2

kb−

1

(1 +B)
. (1.51)

Solving this system yields:

δp̂a = − ξ̂2

kb−
p̄a +

ξ̂a
ka−

(p̄1 + p̄2) . (1.52)

The variances of the Langevin forces are:

〈ξ̂∗a ξ̂a〉 = 2ka−p̄a , (1.53)

〈ξ̂∗2 ξ̂2〉 = 2kb−p̄2 , (1.54)

〈ξ̂∗mξ̂m〉 = 2dm̄ , (1.55)

and their covariances vanish, since the direct transition from state a to state 2 is not allowed.

From Eqs (1.45,1.52) we get:

〈δp̂∗aδp̂a〉 = 2
p̄2

kb−
p̄2
a + 2

p̄a
ka−

(p̄1 + p̄2)2 , (1.56)

〈δm̂∗δm̂〉 =
2dm̄

d2 + ω2
+

r2

d2 + ω2
〈δp̂∗aδp̂a〉 . (1.57)
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Finally, with 1
2π

∫∞
−∞ 2 1

x2+ω2 dω = 1
x we get:

σ2
m =

dm̄

d
+
r2

d

(
p2

kb−
p2
a +

pa
ka−

(p1 + p2)2

)
=

= m̄

[
1 + r

(
p2

kb−
pa +

1

ka−
(1− pa)2

)]
. (1.58)

This is one description of noise in the 3E architecture. To get the noise characteristics for

modulation scheme 3E-1a, we need to express p2 in terms of pa (not shown). From Eq (1.58)

we can see that in the absence of repressors (p2 = 0) and also for very fast unbinding of the

repressors (kb− → ∞) the noise shows the quadratic dependence on the occupation of the

promoter that we see in the corresponding two-state model 2-1a.

1.9.3 Comparison to other methods

The results obtained with the Langevin approach were compared against two other methods:

(i) the exact numerical solution of the chemical master equation and (ii) results from stochastic

simulation using the Gillespie algorithm. Two kinds of comparisons are relevant: first, how well

the gaussian distribution approximates the true distribution of mRNA levels; and second, how

the Langevin-derived expressions for the noise characteristics compare to the exact values.

Fig 1.10A compares the distribution of mRNA levels obtained from the numerical solution of

the chemical master equation to the gaussian approximation for the dual regulation architecture

discussed in the last section.

The stochastic simulation algorithm is time consuming and offers no special benefit for the

simple systems studied here, but we have nevertheless checked a few example architectures

against simulation results. The results for dual regulation are shown in Fig 1.10B. Values for

ak+ and ka− were chosen from a grid. This makes it possible to show the agreement with

the Langevin-derived noise characteristics in two different modulation schemes (cf. inset in

Fig 1.10B).

Another way to obtain analytical expressions for the mean and variance of the mRNA-

distributions is the method of partial moments (e.g., [Sanchez et al., 2011a; Sanchez and Kon-

dev, 2008]). While this method can also be used to derive higher moments, a minor advantage

of the Langevin method for the purposes here is that the approximation d � kij can be used

earlier in the derivations, leading to simpler expressions.
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from the questions of functional consequences. Here, we extended a well-known functional

two-state model of gene expression to multiple internal states. We introduced state transi-

tion graphs to model the “decision logic” by which changes in the concentrations of regulatory

proteins drive the switching of our genes between various states of expression. This abstract

language allowed us to systematically organize and explore non-equivalent three-state promot-

ers. The advantage of this approach is that many microscopically distinct regulatory schemes

can be collapsed into equivalent classes sharing identical state transition graphs and identical

information transmission properties.

The functional description of multi-state promoters confers two separate benefits. First,

it is able to generate measurable predictions, such as the noise vs mean induction curve.

Existing experimental and theoretical work using the two-state model has demonstrated how

the measurements of noise constrain the space of promoter models [So et al., 2011], how the

theory establishes the “vocabulary” by which various measured promoters can be classified

and compared to each other [Zenklusen et al., 2008], and how useful a baseline mathematical

model can be in establishing quantitative signatures of deviation which, when observed, must

lead to minimal model revisions able to accommodate new data [Suter et al., 2011]. Alternative

complex promoters presented here could explain existing data better either because of the

inclusion of additional states (c.f. [Sanchez et al., 2011a]), or because we also included and

analyzed the effects of input (diffusive) noise, which can mimic the effects of promoter switching

noise but is often neglected [Tkačik et al., 2008c]. As a caveat, it appears that in many cases

discriminating between promoter architectures based on the noise characteristics alone would

be very difficult, and thus dynamical measurements would be necessary.

The second benefit of our approach is to provide a convenient framework for assessing the

functional impact of noise in gene regulation, as measured by the mutual information between

the inputs and the gene expression level. We were interested in the question whether multi-

state promoters can, at least in principle, perform better than the simple ON/OFF two-state

model. We find that generically, i.e., for all three-state models where one state is expressing

and only one transition is modulated by the input, the multi-state promoters underperform the

two state model. Higher information transmission can be achieved when these conditions are

violated, and biological examples for such violations can be found. For example, we find that

a multi-state promoter with cooperativity has a higher channel capacity than the best compara-

ble two-state promoter, even when promoter switching noise is taken into account (c.f. [Tkačik

et al., 2009]). Dual-regulation yields surprisingly high benefits, which are largest when input

noise is high. In the context of metazoan development where the concentrations of the mor-
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phogen molecules can be in the nanomolar range and the input noise is therefore high [Gregor

et al., 2007], the need to establish sharp spatial domains of downstream gene expression (as

observed, [Dessaud et al., 2008]) might have favored such dual-role promoter architectures.

Lastly, we considered the simplest ideas for a promoter with irreversible transitions and have

shown that they can lead to an increase in information transmission by sharpening the distribu-

tion of exit times from the expressing state [Pedraza and Paulsson, 2008].

The main conclusion of this article – namely that channel capacity can be increased by

particular complex promoters – is testable in dedicated experiments. One could start with a

simple regulatory scheme in a synthetic system and then by careful manipulation gradually

introduce the possibility of additional states (e.g., by introducing more binding sites), using

promoter sequences which show weaker binding for individual molecules yet allow for stronger

cooperative interaction. In both the simple and complex system one could then measure the

noise behavior for various input levels. Information theoretic analysis of the resulting data

could be used to judge if the design of higher complexity, while perhaps noisier by some other

measure, is capable of transmitting more information, as predicted.

The list of multi-state promoters that can outperform the two-state regulation and for which

examples in nature could be found is potentially much longer and could include combinations

of features described in this article. Rather than trying to find more examples, we should per-

haps ask about the fundamentally different mechanisms and constraints that our analysis did

not consider. In all cases that we analyzed the largest difference between the two- and three-

state models was at low kmax. This makes sense: at high kmax the dominant source of noise

is the (bursty) Poisson production of gene products, which is the same regardless of the pro-

moter architecture, while at low inputs, the input fluctuations filter through the promoter in ways

that depend on its architecture. What other tricks could biology use to cope with input noise?

By expending energy to keep the system out of equilibrium, one could design robust reaction

schemes where, for example, the binding of a regulatory protein leads (almost) deterministically

to some tightly controlled response cycle, perhaps evading the diffusion noise limit [Aquino and

Endres, 2010] and increasing information transmission. At the same time, cells might be con-

fronted by sources of stochasticity we did not discuss here, for example, due to cross-talk from

spurious binding of non-cognate regulators. Finally, cells need to not only transmit information

through their regulatory elements, but actually perform computations, that is, combine various

inputs into a single output, thereby potentially discarding information. A challenging question

for the future is thus about extending the information-theoretic framework to these other cases

of interest.
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2 The broadcasting cell

The work presented in this chapter was performed in collaboration with Sarah Cepeda-Humerez

and Gašper Tkačik and was partly published in Physical Review Letters (see [Cepeda-Humerez

et al., 2015]). This part is reproduced here with small changes in section 2.3. The software to

calculate the data for Figures 2.4, 2.5, and 2.6 was written by Sarah Cepeda-Humerez.

2.1 Introduction

The mathematical machinery of modeling promoters as state transition diagrams used in the

previous chapter can also be used to address a range of fundamental questions in cell signal-

ing: Given the largely non-compartmentalized nature of the cell, we can ask how the presence

of many different signals influences signaling through one particular channel under considera-

tion. Is there a limit to how much information can be transmitted through a channel, given that

many other signals are broadcast at the same time?

For a single channel in isolation, more reliable signaling can generally be achieved by using

more signaling molecules [Tkačik et al., 2009]. This, however, can carry a metabolic burden, or

slow down the adaptation of a system to a new condition. In this section, we show that these

costs are not only the ones that might be relevant in shaping cellular signaling networks. Rather,

we argue that there is a cost intrinsic to the presence of many signaling molecules in the same

compartment. Given that these signals are broadcast and have only a finite specificity for their

target [von Hippel et al., 1974; Bird, 1995; Gerland et al., 2002; Johnson et al., 2005; Maerkl

and Quake, 2007; Wunderlich and Mirny, 2009; Rockel et al., 2013; Todeschini et al., 2014] ,

we show that this interference effect sets a scale for useful amounts of signaling molecules.

This is therefore a global effect, not specific to a single gene – rather something the whole cell

as a system is constrained by.
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A

ck+ →

ycmaxk+ →

k−

r

ku−

d

B

Figure 2.1: (A) The presence of many different signals (TF , D1, ... DN with cognate signal

recipients P , P1, ... PN ) in the same compartment poses a challenge to filter the cognate

signal for a certain channel under consideration (TF → P ) if there is some residual activity

in non-cognate channels (D1 → P , ..., DN → P ). (B) The 3-state model that can be used to

represent the situation from (A). The specific input (TF ) has a restricted range c ∈ [0, cmax] and

an unbinding rate k−. Other channels (D1, ... DN ) are restricted by the same cmax, where their

influence y = Nc̄ is a combination of the number of channels N and their typical concentrations

c̄. Non-specific binding is characterized by an off-rate ku−.

To build an intuition, we first remark that the direct effect of spuriously binding proteins

(termed decoys in the remainder) is not important for noise considerations. We can use the

simple 3-state model investigated in section 1.9.2 from the previous chapter. In this model,

we interpret state 2 as the promoter being occupied by a non-specific decoy molecule. From

this, we can conclude that if an individual decoy molecule binds significantly shorter than the

specific transcription factors, the second term in equation (1.58) does not contribute much to

the total noise since 1/kboff � 1/kaoff . This is true when comparing the noise for the same

mean expression level. A promoter, however, can not achieve the same mean expression in

the presence of decoys given the same binding rate for cognate molecules. This causes an

indirect effect of decoys on the switching noise, since we have to decrease the off-rate of the

specific TF to get to the same mean, i.e. retain a useful dynamic range for signaling.

Since it is not possible to increase the number of transcription factor molecules indefinitely,

the promoter occupancy of the decoys has to be counteracted through stronger binding of the

(specific) activators, which increases the switching noise (see also section 1.3 in the previous

chapter). This leads to the following model assumption: we assume that signaling molecules

that act as decoys for one promoter are specific for some other promoter; thus, increasing the

number of all transcription factors – since all are cognate to some channel – leaves the fraction

of one particular species the same (see Figure 2.1).
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2.2 A simple model demonstrates the detremental effects of cross-

talk on signaling fidelity

We can take the model 3E-1a from the previous chapter, as depicted in Figure 2.1B, and its

noise model (still in dimensionless units):

σ2
m = m̄

[
1 + r

1

ka1
(1− pa)

[
1− pa

(
1− ka1

k21
p0

2

)]
+
r

d

1

D

1

ka1
p0

1(1− pa)3

]
. (2.1)

To adapt it to our purposes, we identify the rates with the ones from Figure 2.1B: ck+ = k,

ka1 = k−, k21 = ku−. Most importantly we add the following relationship between the rates to

represent the presence of the decoys: k12 = ykmax, where y is a factor summarizing affinity

and copy number of decoy molecules from other channels. Note that their influence will scale

with the maximally allowed number of signaling molecules for the specific channel kmax. Setting

p0
2 = ykmax

ku−+ykmax
and p0

1 = 1− p0
2 completes the noise model. The upper limit for the integration to

calculate the mutual information is pmax
a = kmax/

[
k− + kmax

(
1 + y k−ku−

)]
.

With this noise model at hand, we can now ask how increasing the number of signaling

molecules improves information transmission capacity for a given number of interfering chan-

nels. Figure 2.2 shows that the presence of additional signals can have a significant influence

on the information capacity of a channel. Specifically, Figure 2.2B suggests that there is a limit

up to which increasing the number of signaling molecules can help increase information capac-

ity. Viewed from the perspective of the whole cell, this then suggests that there is an upper limit

for the number of signaling molecules that can usefully be employed in a typical channel. This

upper limit is not caused by factors external to the signaling apparatus, such as the metabolic

cost of producing the molecules, but rather by an intrinsic property of the system.

2.3 Kinetic proofreading alleviates deleterious effects of cross-

talk

Faced with the problem of interfering channels, improved specificity of the signals to their cog-

nate channels can alleviate the problem of cross-talk. In this section, we describe a way to

improve the insulation between channels by increasing the ability of a regulatory sequence to

distinguish between cognately and non-cognately binding transcription factors. This increased

distinguishability does not necessarily have to come from a larger difference in binding energies

between cognate and non-cognate molecules if we allow for irreversible transitions in the state-

transition-graph that models the process of gene expression. The results here therefore are
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ers, 1985a; Bintu et al., 2005], and the success of this framework in prokaryotes [Kinney et al.,

2010] has prompted its application to eukaryotic, in particular, metazoan, enhancers [Janssens

et al., 2006; He et al., 2010; Fakhouri et al., 2010]. To illustrate the crosstalk problem in this

setting, consider the ratio σ of the dissociation constants to a nonspecific and a specific site for

an eukaryotic TF; typically, σ ∼ 103 (corresponding to a difference in binding energy of∼ 7 kBT )

[Maerkl and Quake, 2007; Rockel et al., 2013]. Because there are ν ∼ 102 − 103 of different

TF species in a cell, TFs nonspecific to a given site will greatly outnumber the specific ones.

For an isolated binding site, this would imply roughly equal occupancy by cognate and noncog-

nate TFs, suggesting that crosstalk could be acute. For multiple sites, cooperative binding is

known for its role in facilitating sharp and strong gene activation even with cognate TFs of in-

termediate specificity – but could the same mechanism also alleviate crosstalk? First, note that

there exist well-studied TFs which do not bind cooperatively (e.g. [Giorgetti, 2010]). Second,

while many proposed regulation schemes give rise to cooperativity (e.g., nucleosome-mediated

cooperativity [Mirny, 2010], or synergistic activation [Todeschini et al., 2014]) they will not sup-

press crosstalk; for the latter, cooperativity needs to be strong and specific, stabilizing only

the binding of cognate TFs. Third, even when cooperative interactions are specific, crosstalk

can pose a serious constraint. Regulating a gene implies varying the cognate TF concentration

throughout its dynamic range, and when this concentration is low and the target gene should be

uninduced, cooperativity cannot prevent the erroneous induction by noncognate TFs. For that,

the cell could either keep the genes inactive by binding of specific repressors, or by making the

whole gene unavailable for transcription. The first strategy seems widely used in bacteria but

less so in eukaryotes; the second strategy (“gene silencing”) is widespread in eukaryotes, but

only happens at a slow timescale and involves a complex series of nonequilibrium steps.

Here we propose a plausible and fast molecular mechanism which alleviates the effects of

crosstalk; a detailed account of when crosstalk poses a severe constraint for gene regulation is

presented in [Friedlander et al., 2015]. The proposed mechanism is consistent with the known

tight control over which genes are expressed in different conditions or tissues (e.g., during

development [McGinnis and Krumlauf, 1992]) on the one hand, and on the other, explains

the high levels of measured noise in transcription initiation of active genes [Raj et al., 2006;

Little et al., 2013].

The simplest proofreading architecture for transcriptional gene activation that can cope with

erroneous binding is presented in Fig 2.3A,B, motivated by a scheme first proposed by Hopfield

[Hopfield, 1974]. Specificity is only conveyed by differential rates of TF unbinding (“off-rates”

kc
−, k

nc
− , with σ = knc

− /k
c
−). There are ν noncognate TF species whose typical concentration we
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take to be cnc = 1
2νC, and C is the maximal concentration for the cognate TFs cc, cc ∈ [0, C].

The ratio Λ = ν/σ determines the severity of crosstalk, which is weak for Λ� 1 and strong for

Λ � 1. The response of the promoter to the dimensionless input concentration c (= k+cc/d,

see Fig 2.3B) of cognate TFs is captured by the steady state distribution of mRNA, P (m|c);

the spread of this distribution is due to the stochasticity in gene expression, which includes

random switching between promoter states and the birth-death process of mRNA expression

[Peccoud and Ycart, 1995]. If the reaction rates are known, P (m|c) is computable from the

chemical Master equation corresponding to the transition diagram in Fig 2.3B; using finite-state

truncation, this becomes a linear problem that is numerically tractable.

Figures 2.3C and D each compare the steady state distributions of mRNA at low and high

concentration of cognate TF, c. The behavior crucially depends on the out-of-equilibrium rate qd.

When qd → 0, the scheme of Fig 2.3B becomes a normal two-state promoter as the states 1c

and 2c (likewise 1nc and 2nc) fuse into a single state. In this limit, the effect of crosstalk is highly

detrimental already at Λ = 0.1 used in this example: at low c, the promoter repeatedly cycles

through erroneous initiation and the gene is highly expressed both at low c as well as at high c

(where most of the expression is indeed due to correct initiation); as a result, the distributions

P (m|c) show substantial overlap in the two input conditions shown in Fig 2.3C. In contrast, for

a non-trivial choice of q (kc
− � 1/q ' knc

− ), the model can exhibit proofreading. Even at low

cognate concentration c, the slow irreversible transition ensures that noncognate TFs unbind

from the promoter and that erroneous initiation is consequently rare, which is manifested as

a sharp peak of P (m|clow) at small m in Fig 2.3D. The proofreading architecture generates a

larger output dynamic range and consequently makes the responses distinguishable.

What are the costs to the cell of the proposed proofreading mechanism? First, the mecha-

nism requires an energy source, e.g., ATP, to break detailed balance. Whether such a metabolic

cost is a burden to the cell is unclear: a few molecules of ATP paid per initiation should be neg-

ligible compared to the processive cost of transcription and translation. Second, however, is an

indirect cost in terms of gene expression noise. While proofreading decreases erroneous in-

duction, it takes longer to traverse the state transition diagram from empty state 0 to expressing

state 2, and since the promoter can perform aborted erroneous initiation cycles, the fluctuations

in the time-to-induction will also increase [Bel et al., 2009]. This will result in additional variance

in the mRNA copy number at steady state compared to the two-state (qd → 0) scheme. While

the speed/specificity tradeoff in protein synthesis has been examined before using determinis-

tic chemical kinetics [Savir and Tlusty, 2013], this stochastic formulation of proofreading has,

to our knowledge, remained unexplored. Proofreading in gene regulation is thus expected to
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strained information (capacity) maximization is a well-known problem in information theory that

can be solved using the Blahut-Arimoto algorithm [Blahut, 1972].

Figure 2.4A shows how the information transmission I(m; c) through the promoter depends

on the (inverse) reaction rate qd. We start by looking at the classic measure of proofreading

performance, the “error fraction,” i.e., the ratio of the mRNA expressed from state 2nc due to

noncognate TFs, vs mRNA expressed from state 2c due to cognate TFs. As qd is increased,

the error fraction drops, with no clear optimum. In contrast, there exists an optimal q∗d at which

the information is maximized – this is the point where proofreading is most effective, optimally

trading off erroneous induction (here, suppressed by a factor of ∼ 30 relative to no proofread-

ing), noise in gene expression, and dynamic range at the output. In Fig 2.4B we plot the noise

in gene expression, as a function of the input concentration c for the optimal proofreading archi-

tecture and the non-proofreading limit. In both cases the noise has super-Poisson components

due to the switching between promoter states, but this excess is substantially higher in the

proofreading architecture, as expected.

While attractive, these results still depend on the particular rates chosen for the model in

Fig 2.3B. Surprisingly, if we choose to compare the optimal proofreading scenario with the opti-

mal non-proofreading one, the problem simplifies further. Given that the input TF concentration

c varies over some limited dynamic range, c ∈ [0, Cmax = k+C/d], there should exist also an

optimal setting for kc
−: set too high, the cognate TFs will be extremely unlikely to occupy the

promoter for any significant fraction of the time and induce the gene; set too low, the switching

contribution to noise in gene expression will blow up. With kc
− and q in the “correct initiation”

pathway of Fig 2.3B set by optimization, the remaining rates in the “erroneous initiation” path-

way are fixed by the choice of crosstalk severity Λ. The remaining parameters regulating mRNA

expression – the average mRNA count m̄ and the rate r – do not change the results qualita-

tively. The mRNA expression rate r simply sets the maximal number of mRNA molecules at full

expression in steady state (r/d); this influences the Poisson noise at the output, but does so

equally for any regulatory architecture, proofreading or not. As long as r is large enough so that

the average mRNA constraint m̄ is achievable, the precise choice of these values is not crucial

(we use r/d = 200, m̄ = 100, plausible for eukaryotic expression). In sum, we can compare how

well the optimal proofreading architecture does compared to optimal non-proofreading architec-

ture in terms of information transmission, as a function of two key parameters: the crosstalk

severity, Λ, and the input dynamic range, Cmax.

Figure 2.5A shows the advantage, in bits, of the optimal proofreading architecture relative

to the optimal non-proofreading one. This “information plane,” Iq∗(m; c) − Iq=0(m; c), is plotted
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as a function of Λ and Cmax. In the limit Λ → 0, the difference in performance goes to zero:

there, optimization drives q∗knc,∗
− � 1, but proofreading offers vanishing advantage over the

optimal two-state promoter architecture when noncognate binding is negligible. As Λ increases,

proofreading becomes beneficial over the two-state architecture, and more so for higher values

of Cmax. Higher input concentrations c ∈ [0, Cmax] permit faster on-rates, resulting in faster

optimal off rates kc,∗
− and faster optimal 1/q∗. Generally, faster switching of promoter states in

Fig 2.3B means that promoter switching noise will be lower and thus information higher (at fixed

mean mRNA expression m̄); in particular, optimization tends to minimize promoter switching

noise by selecting the fastest 1/q that still admits error rejection, i.e., q∗knc,∗
− ∼ 1. At Λ =

ν/σ ' 1, the signaling capacity of the non-proofreading architecture collapses completely, with

Iq=0(c;m) ≈ 0 2. At this point optimal proofreading architectures are affected, but still generally

maintain at least half of the capacity seen at Λ = 0; proofreading extends the performance of

the gene regulation well into the Λ > 0 region, before finally succumbing to crosstalk.

Where do different organisms lie in the information plane? Prokaryotes have on the order of

ν ∼ 100 types of transcription factors, whose binding site motifs typically contain around 23 bits

of sequence information [Wunderlich and Mirny, 2009], corresponding to the binding energy

difference of 16 kBT between cognate and noncognate sites [Gerland et al., 2002], and thus a

specificity of roughly σ ∼ 107. This corresponds to a small value of crosstalk severity, Λ ∼ 10−5.

For yeast, the typical sequence information is 14 bits (10 kBT ) [Wunderlich and Mirny, 2009],

which gives Λ ∼ 0.01 (for ν ∼ 200 [Jothi et al., 2009]). For multicellular eukaryotes, the typical

sequence information is 12 bits (8 kBT ), and the number of TF species varies between ν ≈ 103

(C. elegans) to ν ≈ 2 · 103 (human) [Milo et al., 2010], putting Λ between 0.1 and 1. We can

also estimate the dimensionless parameter Cmax = k+C/d. Assuming diffusion-limited binding

of TFs to their binding sites, k+C/d ≈ 3DaN/R3d, where D ∼ 1µm3/s is the typical TF diffusion

constant [Milo et al., 2010], a ∼ 3 nm is the binding site size, R = 3 µm (1 µm) is the radius of

an eukaryotic nucleus (prokaryotic cell), and N is the typical copy number of TFs per nucleus

(N ∼ 10 for prokaryotes, 103 for yeast, 103 − 105 for eukaryotes). Typical mRNA lifetimes are

5− 10 min in prokaryotes, 20− 30 min in yeast, and > 1 hour in metazoans. This yields Cmax of

order 10 for prokaryotes, 102 for yeast cells, and > 103 for multicellular eukaryote cells. While

these are very rough estimates, different kinds of cells clearly differ substantially in their location

on the information plane of Fig 2.5A.

2This is independent of whether one modulates Λ by changing ν, as for Fig 2.5A, or by changing σ; although the

optimal rates may take on different values, the information plane is essentially unchanged irrespective of how Λ is

modulated.
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Taken together, these values suggest that crosstalk is acute for metazoans and that proof-

reading in gene regulation could provide a vast improvement over equilibrium regulation schemes,

as in Fig 2.5B. In contrast, our proposal offers no advantage for prokaryotes, and remains ag-

nostic about yeast (Figs 2.5C, D). While much remains unknown about the molecular machinery

of eukaryotic gene regulation, it has been experimentally shown that transcriptional initiation

(not just elongation) involves a series of out-of-equilibrium steps. Amongst those, perhaps the

most intriguing are the covalent modifications on the eukaryotic RNA polymerase II CTD tail

[Egloff and Murphy, 2008]. The tail contains tandem repeats of short peptides (from 26 repeats

in yeast to 52 in mammals), which need to get phosphorylated in order to initiate transcription

and subsequently cleared after completed transcription in order to reuse the polymerase; ge-

netic interference with this tail seems to be lethal. One can contemplate a scenario where a

sequence of such phosphorylation steps corresponds to the out-of-equilibrium reaction q of our

simple proofreading scheme, “ticking away” time until the polymerase commits to initiation, with

every tick giving the machinery another opportunity to check if cognate TFs are still bound and,

if not, abort transcription. The existence of any such (or similar) proofreading scheme would be

interesting, but is currently purely hypothetical.

Why would eukaryotes employ a method of gene regulation so qualitatively different from

prokaryotes, instead of simply using longer, specific binding sites that would drive crosstalk

severity Λ towards zero? While beyond the scope of this work, one possible hypothesis is that

such longer sites are not easily evolvable and, additionally, that the complexity of regulation

calls for combinatorial control of single genes by many TFs of different species, each of which

could have weak specificity. Such cooperative or combinatorial control could indeed address a

specific target gene uniquely, as proposed (e.g., [Todeschini et al., 2014; Wunderlich and Mirny,

2009]); what has largely been neglected in previous discussions is that it would be difficult

to prevent the target gene from being erroneously induced by crosstalk. Here we advanced

a possible hypothetical mechanism, proofreading-based transcriptional regulation, to mitigate

this problem. It is interesting to note that, unlike most biophysical problems where we clearly

appreciate their out-of-equilibrium nature, transcriptional regulation has remained a textbook

example of a non-trivial equilibrium molecular recognition process, likely due to the success

of the equilibrium assumption in prokaryotes. Perhaps constraints imposed by crosstalk will

motivate us to re-examine this assumption in eukaryotic regulation more closely.
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2.3.1 Robustness to non-optimal input distributions

Capacities for both proofreading and two-state models are computed by finding the optimal

input distributions, P ∗(c), for each model. One could be concerned that the information ad-

vantage of the proofreading mechanism requires a very finely tuned input distribution, and that

small deviations from such a distribution would erase the information advantage. In Fig 2.6 we

show that this is not the case.

Specifically, we pick a proofreading model representative of metazoans (from the corre-

sponding region in the phase diagram in Fig 2.5A), and the matched two-state model (with

q → 0). The optimal distribution for this model looks biologically plausible, with two peaks, at

the high and at the low level of the TF concentration, c. We then perturb the optimal distribu-

tion of the proofreading model, holding other parameters fixed, and compute how this impacts

the information transmission. The perturbations are done by first finding a parametric approx-

imation to the optimal distribution by fitting a mixture-of-Gaussians (two mixture components).

Within this parametric model class, we can now generate new (perturbed) distributions by sam-

pling their parameters using a Monte Carlo scheme: the weight of the two mixture components

is drawn randomly from a uniform distribution on [0, 1], while the means and variances of the

two mixture components are drawn from Gaussian distributions centered on the fitted values

and of increasing variance. We ensure proper discretization, truncation to the original domain,

and normalization; using rejection sampling we only retain distributions that obey the mean

mRNA expression constraint at 〈m〉 = 100± 5, as in the previous section.

Figure 2.6 shows that we can easily generate distributions that are significantly different

from the optimal one by visual inspection, and as quantified by the Kullback-Leibler divergence

measure DKL; qualitatively speaking, as long as the approximate bimodal shape is maintained

with roughly appropriate weights in the two broad peaks (quantitatively, DKL < 0.5 bits), the

distribution details do not matter much and the proofreading will outperform the best possible

two-state model. For a similar result on the robustness of mutual information in a transcriptional

channel see [Tkačik et al., 2008a].
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2.3.2 Possible molecular implementations of proofreading in transcriptional reg-

ulation

We discuss two suggestions for a biologically plausible implementation of the abstract proof-

reading scheme studied in the previous section. The main difference between the two proposed

mechanisms is which molecular complex carries the “mark” of the high-energy state (histone or

polymerase). The first mechanism works also for “naked” DNA, whereas the second proposed

mechanism involves epigenetic factors beyond the DNA and the basic transcription machinery.

Independent of the model under consideration, as described in [Hopfield et al., 1976], a

set of two experiments can determine if a given non-equilibrium scheme contributes to proof-

reading (i.e. to improved specificity). These experiments look at the energy consumption per

product molecule under different circumstances. If the high-energy intermediate (the product

of the “irreversible” driving step) always yields the correct product, the energy consuming step

will be used exactly once per product molecule. If, however, a proofreading mechanism is in

place, the energy consumed per product molecule will be higher. In the case where only the

non-cognate “leg” is possible, the energy consuming-step will be used many more times per

product molecule than in the case where only the non-cognate “leg” is possible. This is the key

experimental signature of proofreading. For transcriptional proofreading, these experiments

would consist of measuring the ATP consumption per transcript initiation event. Proofreading

is indicated by an increased expenditure of ATP when initiation starts using noncognate TFs.

RNAPol-based mechanism

One possible mechanism involving modifications of the RNA polymerase (RNAPol) is schema-

tized in Fig 2.7. A transcription factor (TF) binds and unbinds the DNA in an equilibrium process.

When the TF is bound to DNA together with the RNAPol it can catalyze (or help catalyze) mod-

ifications on the RNAPol that are necessary for transcription; expenditure of energy is needed

to perform such a modification. Even after RNAPol is modified, the TF can still dissociate,

which will induce the dissociation of RNAPol as well and prevent transcriptional initiation. This

constitutes the second specificity-conveying dissociation step of the abstract scheme proposed

in the previous section. Transcription initiation can only commit from a complex of TF, DNA,

and modified RNAPol. Importantly, for this scheme to work, modified RNAPol should not be

allowed to exist in free form and bind directly to DNA (as this would constitute skipping the first

specificity-conveying TF-DNA interaction step).

What could these modifications to the RNAPol be? An intriguing case are the modifications
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3 Biophysical aspects of noisy gene

expression evolution

This chapter reports on joint work with Tiago Paixão, Nicholas Barton, and Gašper Tkačik.

3.1 Introduction

In the two previous chapters I have described aspects of gene expression noise as a topic of

biophysical interest by discussing different sources of noise and how those affect the signaling

challenges a cell faces. In this chapter I turn to the question of how the unavoidable presence

of noise in gene expression influences the evolution of gene expression.

Selection on gene expression is paramount [Fay and Wittkopp, 2007; Zheng et al., 2011;

Romero et al., 2012; Hoekstra and Coyne, 2007]. In recent years, evidence has accumulated

that also the width of the expression distribution (i.e. gene expression noise) is subject to

natural selection. Cases for selection towards reduced [Lehner, 2008; Metzger et al., 2015],

but also elevated [Blake et al., 2006] noise levels have been documented. Examples range

from stress-, persistence- and infection related [Blake et al., 2006; Arnoldini et al., 2014], over

metabolic [Wang and Zhang, 2011], to developmental genes [Raj et al., 2010; Eldar et al.,

2009].

Variability in stress-related genes has often been discussed in the light of so-called bet-

hedging strategies. These strategies help organisms to survive in a variable environment with

limited or no sensing of the current conditions by preparing a part of the population for a range

of possible challenges. It has received both theoretical and experimental attention in recent

years [Kussell and Leibler, 2005; Acar et al., 2008; Davidson and Surette, 2008; Beaumont

et al., 2009; Rotem et al., 2010; Balaban, 2011; Koh and Dunlop, 2012; Müller et al., 2013].

Here we will use microbial stress response pathways as an example to understand fitness

effects of variability in gene expression. On the one hand, this is because these genes have
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been characterized as having high noise [Newman et al., 2006; Silander et al., 2012]; on the

other hand, with the ability to survive under stressful conditions, a measure of fitness is readily

available. A concrete example for this will be discussed in the next chapter.

A very different context where the question of precision in gene regulation is important,

is the case of embryonic development [Houchmandzadeh et al., 2002; Gregor et al., 2007;

Raj et al., 2010; Dubuis et al., 2013]. Even though it is clear that there must be fitness effects

of (im)proper cell-fate decision making, it is much harder to quantify these for several genetic

variants than in the microbial case.

Here we will study the evolution of gene regulation while taking noise in gene expres-

sion into account explicitly. Research in evolution has identified several factors central to

the understanding of how populations adapt to various challenges over time [Barton et al.,

2007]. Most important for the purposes of this chapter, these are the mutational and the adap-

tive landscapes, non-heritable phenotypic variability, and (finite) population size [Iwasa, 1988;

Sella and Hirsh, 2005; Barton and Coe, 2009; Berg et al., 2004]. For the interactions of the

latter two some work has been done [Ito et al., 2009; Sato et al., 2003; Sakata et al., 2009;

Wang and Zhang, 2011; Wolf et al., 2015] but an integrated model of all three components is

still missing. Generally, the evolution of a population will be constrained by the combined action

of neutral and selective forces. To explore these trade-offs, this chapter will deal with interac-

tions of the genotype-phenotype map, finite populations size and the dynamics of adaptation.

The work in this chapter also builds on recent advances in the biophysical understanding of how

regulatory sequences give rise to a noisy genotype-phenotype map to derive quantities central

to evolutionary dynamics from first principles [Rieckh and Tkačik, 2014; Sanchez et al., 2011b;

Jones et al., 2014; Raser and O’Shea, 2004; Garcia and Phillips, 2011; Kinney et al., 2010;

Brewster et al., 2012].

In this chapter, we will first address how to understand the fitness effects of noise in section

3.2. In section 3.3 we will then try to understand how the noise and mean phenotypes are

encoded in the genome, thus providing variants on which selection can act. Finally, we will

explain how noise influences the composition of an adapted population (sections 3.4 and 3.5)

and also their trajectories during adaptation (section 3.6).
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3.2 Noise changes the fitness landscape

3.2.1 Effective fitness

We will first show how noise changes the fitness landscape under which gene regulation

evolves. We consider a gene of interest that is central for the survival or proper development of

an organism (see Fig 3.1A). Depending on the expression level g (e.g. protein copy number) at

a specific point in time, the organism has a certain probability f(g) of surviving (or developing

correctly). This probability is therefore directly related to the fitness of the genotype, which is

why we will call f(g) the molecular fitness function. Given a large number of clonal offspring,

the genotype under consideration produces a range of different expression levels distributed

according to P (g; φ), where φ are parameters of the expression distribution. Typically, these

parameters will be the mean µ and the standard deviation σ, thus providing a way to model

noise and incorporate the results from Chapter 1, e.g. the dependence of noise magnitude on

the mean (σ(µ), noise characterisitc).

The two consecutive probabilistic steps of gene expression and survival given a certain

expression level can be combined into a joint measure of effective fitness f̂ :

f̂(φ) = f̂(µ, σ) =

∫
f(g)P (g; µ, σ) dg . (3.1)

This quantity summarizes the interactions of expression distribution and molecular fitness func-

tion. Similar frameworks have been considered recently [Zhuravel et al., 2010; Charlebois et al.,

2011; Charlebois, 2015; Wolf et al., 2015]. From equation (3.1), we can see that the (molec-

ular) fitness of the mean (i.e. f(µ)) is not necessarily the effective fitness f̂ (also called mean

fitness). Additionally, as illustrated in Fig 3.1B, a wider distribution neither generally increases,

nor generally decreases effective fitness – rather, the effect of increased noise will depend also

on the mean level and the relation to the fitness function. In this section, we will mainly work

with the effective fitness of the mean f̂(µ) and only later (sections 3.5 and 3.6) consider noise

to also be an evolvable quantity, independent of the mean.

The assumption that only the instantaneous level of gene expression is relevant for fitness

might be too strong for some systems. In general, effective fitness could depend in complicated

ways on the whole trajectory of gene expression g(t) through some stages of the life cycle of

an organism, in which case it can be written as

f̂(φ) =

∫
f(g, t)P (g|t;φ) dg dt (3.2)
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3.2.2 Gene expression noise is not generally equivalent to a change in popula-

tion size

A well known stochastic effect in evolution is the sampling noise stemming from the finite num-

ber of individuals in each generation of an evolving population [Barton et al., 2007]. It is there-

fore interesting to see if noise in gene expression can – in its mathematical treatment – simply

be equated to a change in (effective) population size.

For this, we look at a comparatively simple situation: an ensemble of monomorphic, haploid

populations that has reached its steady state after all the effects of the dynamics of adaptation

have decayed [Sella and Hirsh, 2005; Barton and Coe, 2009]. In this setting, the probability

of observing a monomorphic population with a certain genotype s, or a certain phenotype φ is

given by

p(s) =
1

Zs
f̂(s)N , (3.3)

p(φ) =
1

Zφ
g(φ) · f̂(φ)N , (3.4)

where f̂(s) and f̂(φ) are the effective fitnesses of a genotype s or a phenotype φ, N is the

effective population size, g(φ) is the number of genotypes for a given phenotype φ (the neutral

distribution, or density of states) and Zs and Zφ are normalizing factors. In this chapter, the

phenotype φ to be considered will be the parameters of the expression distribution (e.g. mean

and variance of a Gaussian). For more on g(φ) see the next section.

From the form of the above equations one can see that the answer to the question whether

noise and population size are equivalent, will depend on how exactly the width of the expression

distribution enters into the expression for effective fitness f̂(φ) and f̂N (φ), respectively.

If we assume a noise model where the width of the expression distribution is constant (and

therefore independent of the mean), selection can under certain conditions be shown to be

equivalent to the noiseless case with a different effective population size. This, however, does

not hold generally when more realistic models of gene expression noise are considered.

To see this, we look at a Gaussian molecular fitness function with mean µf and variance σ2
f

and a Gaussian expression distribution with mean µ and variance σ(µ)2, as the variance will

generally depend on the mean (also see Chapter 1). For the effective fitness of a certain mean
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µ we then get

f̂(µ) = f̂(µ, σ(µ)) =

∫
G(g; µf , σf )G(g; µ, σ(µ)) dg (3.5)

µ′ =
σ−2
f µ+ σ(µ)−2µf

σ−2
f + σ(µ)−2

, σ′2 =
σ2
fσ(µ)2

σ2
f + σ(µ)2

(3.6)

f̂(µ) =

∫
G(µ;µf ,

√
σ(µ)2 + σ2

f )G(m;µ′, σ′)dm = (3.7)

= G(µ;µf ,
√
σ(µ)2 + σ2

f ) · 1 , (3.8)

where G is the Gaussian function.

Fixed noise: Simple equivalence between phenotypic noise and effective population size

We start with the fixed-noise case, i.e. σ(µ) = σ, and get:

f̂N (µ, σ) ∝ 1(
σ2 + σ2

f

)N/2 · exp

[
−N

(µ− µf )2

σ2 + σ2
f

]
∝

∝ exp

[
−N

(µ− µf )2

σ2 + σ2
f

]
. (3.9)

From this we see that as far as the shape of the fitness function is concerned, we can exchange

N and σ in the following way:

N1

N2
=
σ2

1 + σ2
f

σ2
2 + σ2

f

, (3.10)

and if we take σ1 = 0 as a comparison to the noise-less case, we get

N2 =

(
σ2

2

σ2
f

+ 1

)
N1 . (3.11)

Thus a change in population size can analytically be treated as a change in the selection width

(σf ) or in the width of the expression distribution (σ), as was reported previously [Wang and

Zhang, 2011].

While this noise model (σ(µ) = σ) may hold for abstract phenotypic noise, it is in contradic-

tion with our biophysical understanding of gene expression.

Biophysical noise: Non-equivalence of expression noise and effective population size

To see the effect of a biophysically motivated noise model (and break-down of the equivalence)

we look at σ2(µ) = νµ. The effective fitness term now is

f̂N (µ, σ(µ)) = f̂N (µ, ν) ∝

∝ 1(
νµ+ σ2

f

)N/2 · exp

[
−N

(µ− µf )2

νµ+ σ2
f

]
. (3.12)
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and for the expression distribution

P (g) =
βα

Γ(α)
gα−1 exp [−βg] , (3.14)

µ = αβ−1, σ2 = αβ−2 , (3.15)

and the biophysical (Poisson-like) noise model

σ2 = µν = αβ−2 = µβ−1 , (3.16)

β = ν−1, α = µν−1 . (3.17)

To get the effective fitness, we calculate

f̂(α, β) =

∫
f(m)

βα

Γ(α)
mα−1 exp [−βm] dm = (3.18)

=
βα

Γ(α)

∫
mαf−1mα−1 exp [−βm] exp [−βfm] dm = (3.19)

=
βα

Γ(α)

∫
m(α+αf−1)−1 exp [−(β + βf )m] dm = (3.20)

=
βα

Γ(α)

Γ(α+ αf − 1)

(β + βf )α+αf−1 . (3.21)

Using the properties of Gamma function, for integer αf we get:

f̂(α, β) =
βα

Γ(α)

Γ(α+ αf − 1)

(β + βf )α+αf−1 = (3.22)

=
(α+ αf − 2)Γ(α+ αf − 2)

Γ(α)

βα

(β + βf )α+αf−1 = (3.23)

=
(α+ αf − 2)(α+ αf − 3) · · · (α+ αf − αf )Γ(α)

Γ(α)

βα

(β + βf )α+αf−1 = (3.24)

= ααf−1 · βα

(β + βf )α+αf−1 , (3.25)

with xn = x(x+ 1) . . . (x+ n− 1)︸ ︷︷ ︸
n factors

. This further simplifies to

f̂(α, β) = ααf−1 · β−(αf−1) · (1 + βf/β)−α−(αf−1) . (3.26)

Inserting the biophysical noise model, we get:

f̂(α, β) = (µ/ν)αf−1 · ναf−1 · [(1 + νβf )]−µ/ν−(αf−1) (3.27)

= µ(µ+ ν)(µ+ 2ν) . . . (µ+ (αf − 2)ν)︸ ︷︷ ︸
αf−1 factors

·[(1 + νβf )]−µ/ν−(αf−1) . (3.28)

For αf = 2, this simplifies to:

f̂(α, β) =
αβα

(β + βf )α+1
, (3.29)

f̂(µ, ν) = µ (1 + νβf )−(1+µ/ν) . (3.30)



63

This, in turn, can be shown to attain its maximum at

µ∗(ν) =
ν

log [1 + βfν]
=

1

βf
+
ν

2
−
βf
12
ν2 +

β2
f

24
ν3 + . . . , (3.31)

where we note that 1/βf is the mode of the molecular fitness function (cf. (αf − 1)/βf with

αf = 2). This shows the shift in the position of the fittest mean to higher levels as noise

increases.

3.3 Genotype-phenotype maps based on thermodynamic models

of gene expression

To understand the evolution of a population, in addition to the fitness landscape discussed in

the previous section, one also needs to understand the corresponding genotypic landscape

constraining evolutionary trajectories. Thermodynamic models of gene expression are widely

used to describe how properties of regulatory sequences map into gene expression [Bintu

et al., 2005; Shea and Ackers, 1985b; Berg and von Hippel, 1987; Kuhlman et al., 2007a]. This

class of models aims at describing gene regulation by calculating the equilibrium probability of

a promoter to be in a certain state, which is then associated with an expression activity. For

the description of the mean expression level, these models are therefore equivalent to the ones

discussed in Chapter 1. They can be combined with models of how the sequence gives rise

to the protein-DNA binding energy, which will then determine the occupancy of a site [Stormo

and Fields, 1998; Stormo and Zhao, 2010]. One of the simplest models of how the binding

energy arises from the sequences uses an energy matrix E , the entries of which represent the

independent contributions from every nucleotide at every position. The binding energy Eb is

then computed as the sum of the individual contributions:

Eb =

L∑
i=1

Ei,j , (3.32)

where Ei,j is the contribution of nucleotide j (with j ∈ {A,C,G, T}) at position i in the binding

site and L is the length of the binding site. These energy contributions have been measured

in vitro and in vivo, and typically range from 1 to 3 in units of kBT [Maerkl and Quake, 2007;

Kinney et al., 2010; Brewster et al., 2012; Gerland et al., 2002]. The typical length of the

binding site is 5 to 10 nucleotides for eukaryotes and 10 to 20 in prokaryotes [Wunderlich and

Mirny, 2009; Ptashne and Gann, 2002]. These models predict the strength of binding well for a

few mutations away from a strongest binding sequence [Brewster et al., 2012]. A simplification

of the energy matrix model is the so-called mismatch model, which assumes the existence of
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a preferred or consensus binding sequence [von Hippel and Berg, 1986; Gerland and Hwa,

2002]. The number of nucleotides in the sequence of a binding site that are not the same as

in the consensus sequence indicate the level of mismatch, and, when multiplied by an energy

penalty per nucleotide, give the respective binding energy.

In this section, we will use these models to illustrate important properties of biophysically

motivated genotype-phenotype maps for gene expression. As we have seen already in equa-

tion 3.4, the number of genotypes g(φ) displaying the same phenotype φ is an important quan-

tity for evolutionary questions. In statistical physics it is called the density of states (DoS),

whereas in population genetics it is called the neutral distribution (of phenotypes).

3.3.1 Simple form of neutral distribution of mean expression phenotypes

We will now show that the neutral distribution (DoS) for the mean expression level in a ther-

modynamic model, where the binding energies are derived from a mismatch model, takes a

simple form. Furhermore this distribution can be well-approximated by a power-law.

We use a mismatch model to calculate binding energies from sequences, with k being the

number of mismatches and Ex the energy contribution from a single mismatch:

Eb = Ex · k . (3.33)

Consequently, Eb = 0 is the maximal binding strength and k takes values in [0, L], where L is

the length of the binding site.

To calculate the DoS of binding energies, we can view the sequence as a binomial process

with L iterations and a probability of success (i.e. finding a mismatch) of 3/4. We can then use

the mean and variance of this process to approximate the DoS with a Gaussian:

p(Eb) = A exp
[
−dw(Eb − E0)2

]
, (3.34)

E0 =
3

4
ExL , (3.35)

1/dw = 2 · E2
x

1

4

3

4
· L =

3

8
E2
xL . (3.36)

The simplest energy-to-expression model (which has been tested experimentally [Brewster

et al., 2012]) is of the form

µ = exp [−Eb] , (3.37)

with µ signifying the (normalized) mean expression level. Furthermore, Eb = − log [µ] and

∂µEb = −∂µ log [µ] = −1/µ.
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With µ = fµ(Eb), or Eb = f−1
µ (µ), and pµ(µ) = pEb

[
f−1
µ (µ)

]
·
∣∣∂µf−1

µ (µ)
∣∣ we therefore get for

the DoS of the means:

pµ(µ) = A exp

−dw(− log [µ]︸ ︷︷ ︸
=Eb

−E0)2

 · µ−1 , (3.38)

pµ(µ) = A exp
[
−dw(log [µ] + E0)2

]
· µ−1 . (3.39)

We now need to argue why this distribution of mean expression levels can be developed as

pµ ∼ µ−α . If we consider

log [p(µ)] = log [A]− dw(log [µ] + E0)2 − log [µ] (3.40)

= log [A]− dw(log [µ]2 + 2 log [µ]E0 + E2
0)− log [µ] (3.41)

= aE − (1 + 2E0dw) log [µ]− dw log2 [µ] (3.42)

with E0 = 3
4ExL and dw = 8

3E
−2
x L−1 we get 2E0dw = 23

4ExL
8
3E
−2
x L−1 = 4E−1

x . We can see

that the linear term (1 + 2E0dw) is independent of L and larger than dw, since E0 and dw are

positive. Therefore, log [p(µ)] is dominated by log [µ] and p(µ) can be approximated by a power

law. Note that the quadratic term will diminish as L gets longer and the exponent of the power

law only depends on Ex.

Figure 3.4A shows that a similar argument using measured position weight matrices [Kinney

et al., 2010; Brewster et al., 2012] and the central limit theorem to get the Gaussian distribution

of binding energies can be made to approximate the DoS of mean expression levels with a

power law (see Figure 3.4B). Figure 3.4C uses the more general energy-to-expression model

µ = µ0
1

1 + exp [Eb − Ec]
, (3.43)

which also lends itself to being approximated by a power law. The 8 most informative positions

in the measured position weight matrix were used to calculate the DoSs. The free parameters

were chosen such that the average binding energy of the E. coli genome is zero, the wild-

type lac promoter has an energy of −5.35 kBT [Brewster et al., 2012], and corresponds to an

expression level of 20 mRNA.

3.3.2 Joint densities of states for mean and noise in thermodynamic models

For a given network architecture, for example an upstream TF that can bind to a downstream

promoter and influence its expression activity, we can ask how many sequences encoding the

network give rise to a certain mean and noise level of the downstream gene. This will extend

the DoS studied in the previous section to a joint density of states of mean and noise levels.
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Figure 3.4: (A) The densities of states of binding energies and (B) in the space of mean ex-

pression levels for the model µ ∝ exp [−Eb] (dark blue dots). The DoS in energy space can

be approximated by a Gaussian and the DoS of mean expression levels follows a power-law

distribution (light blue lines). Also shown is a power-law fit for expression levels above 10 (gray

dashed line). (C) DoS for the mean expression levels calculated with the expression function

µ = µs/(1 + exp [Eb − Ec]), Ec = −2.0 (dark blue dots), also showing a power-law approxima-

tion between minimal and maximal expression level (light blue line). The tail of the distribution

above expression level 10 offers a better fit to the power-law (gray dashed line).

Here, we use the promoter models of the type studied in Chapter 1 to understand the joint DoS

for mean and noise of the expression distribution for two simple regulatory architectures.

To relate switching rates to binding energies, we can look at thermodynamic models such

as in equation 3.43 and develop the mathematical equivalence (cf. Figure 1.3 for the mean of

the two state model):

µ =
exp [Ec]

exp [Ec] + exp [Eb]
=

kON
kON + kOFF

, (3.44)

which, together with the argument about exponential transformations (cf. equation 3.37 and the

Arrhenius equation [Bialek, 2013]) justifies the use of power laws also for the DoS of switching

rates.

We can now use the promoter models from Chapter 1 (cf. section 1.9 and figure 1.4) to

compute the joint DoS for mean and noise values, by combining them with the DoS of the

switching and production rates. As a simple example, we pick the two-state model and use

power-law DoS for the rates. In these models, there are two kinds of rates: one is determined

by the concentration of a TF and the other is calculated from the affinity of a TF molecule to

a sequence. The difference between activator and repressor schemes is in the sign of the

exponent for ON- and OFF-rates. For example, in the activator scheme, the ON-rate is set by

the concentration of an activating TF – for which we can assume that sequences encoding high

concentrations are rare. Thus this exponent is negative. For the OFF-rate in the same scheme,
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however, the exponent is positive. This is because fast rates here corresponds to weak binding

of the TF and many sequences give rise to weak TF binding.

Figure 3.5 shows the joint densities of states for mean and noise for a simple activator and a

simple repressor scheme. Generally, we clearly see the Poisson limit in both cases, prohibiting

solutions for a high mean and a low noise at the same time. Above the Poisson limit, one can

see a concentration of sequences for low super-Poissonian noise for a given mean. Also, this

pair of models for activator and repressor suggests that for a given mean it should be easier to

find a high-noise sequence in the activator than in the repressor setting. For simplicity, the used

models do not account for the potential overlap of TF binding sites and the RNA polymerase.

These interactions can, however, add some interesting features to the genotypic landscape

[Paixao and Bauer, 2015]. In section 3.5 we will see that the details of the joint map can be

important for the outcome of evolution.
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3.4 Combined effects of expression noise, density of states, and

finite population size on genetic diversity

One might expect that since noise in gene expression can generate phenotypic diversity, it

would also lead to higher genotypic diversity in a population. In this section, we therefore

ask how phenotypic diversity caused by noise in gene expression affects genotypic diversity.

As a measure for the latter we choose the expected number of genotypes in an ensemble of

monomorphic population at steady state. This can be defined in a straight-forward manner

from the description of a monomorphic population in steady state used in section 3.2.2. Geno-

typic diversity N is then defined using the distribution of phenotypes and multiplicity of each

phenotype (DoS) as

N =

∫
g(φ)p(φ) dφ . (3.45)

So for the simple case of the evolving mean expression level (φ = µ), e.g. calculated with some

binding energies and a thermodynamic model of gene expression, and by using equation 3.4

we obtain:

N =

∫
g(µ)p(µ) dµ =

∫
g2(µ)f̂(µ)N dµ∫
g(µ)f̂(µ)N dµ

. (3.46)

From the partial equivalence of gene expression noise to a change in effective population

size (cf. section 3.2.2), one might expect that an increase in noise will always lead to less

stringent selection, thus leaving more genotypes compatible with the requirements of selection.

However, Fig. 3.6 shows that this is generally not the case.

How can this be understood mathematically? For large population sizes N , we can evaluate

the integrals using the Laplace method. For this, we observe that for two functions k(x) and

h(x) the following holds:∫
k(x) exp [N · h(x)] dx ≈ k(x∗) exp [N · h(x∗)]

√
2π

N |h′′(x∗)|
, (3.47)

with h′(x∗) = 0, where x∗ is the position of the maximum of h(x).

With the Laplace method with h(x) = log f(µ) and k(x) = g(µ), we can now approximate

integrals of the type occurring in the definition of N resulting in

N ∝ g(µ∗)f̂N (µ∗)

√
f̂(µ∗)

N |f̂ ′′(µ∗)|
, (3.48)

where µ∗ is the mean expression value that maximizes fitness. This expression emphasizes

how the DoS together with the effective fitness determines the effect of increased noise. To
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Figure 3.6: Noise can influence genetic diversity in different ways. Two cases, based

on the molecular fitness functions in Figure 3.3, where increased gene expression noise has

opposing effects on genetic diversity. In case of the truncating selection (left column, (A-C)), in-

creasing noise will shift the optimal expression mean to a region of lower sequence abundance,

as seen in (B). For stabilizing selection (right column, (D-F)), on the other hand, the same in-

crease in noise leads to a shift of the maximum of the effective fitness to lower mean expression

levels. For these low-mean phenotypes, a larger number of genotypes are available, as can be

seen in (E). Genetic diversity in (C,F) are normalized to diversity at ν = 1. Shown are exact

numerical results for genetic diversity N , and the power-law shaped DoS in (B,E) are motivated

by thermodynamic models of gene expression, as discussed in section 3.3.1.

understand the effect of increased noise, the most important features to track are the position

of the maximal fitness (µ∗) and the curvature of effective fitness around this maximum (f̂ ′′(µ∗)).

From equation 3.48 we can also see that since a change in effective population size can never

systematically account for a shifted position of the maximal fitness, the equivalence of popu-

lation size can only hold in special cases (cf. section 3.2.2). However, the curvature of the

effective fitness function around its maximum can be traded against a change in population

size, as can be seen in the denominator of the expression under the square-root, N |f̂ ′′(µ∗)|,

which accounts for the intuition that increased noise leads to greater diversity.
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3.5 Effects of a joint genotype-phenotype map for noise and mean

expression

We have so far looked at noise models where the mean expression level alone determined the

noise – but it could not evolve independently. As seen in section 3.3.2, already simple regulatory

networks are capable of encoding mean and noise in a (to some degree) independent fashion,

i.e. there are different noise levels available for the same mean (and vice versa). To therefore

show how the structure of the joint genotype-phenotype map matters for which values of mean

and noise evolving populations will reach, we here look at the effects of correlations in the DoS

between mean and noise.

As before, we summarize the effect of noise on fitness by the effective fitness. In this

section, however, we treat noise and mean expression level as (a priori) independent traits,

leading to a fitness landscape on the mean-noise plane (see Figure 3.7A). No noise model

needs to be assumed, other than the Gaussian form of the expression distribution and the

DoS. To be able to vary the relation between mean and noise in genotype space with a single

parameter we model the DoS as a bivariate Gaussian (see Figure 3.7B):

G (µ, σ) ∝ exp

(
−1

2
(x−m)TS−1(x−m)

)
, (3.49)

with m =

mµ

mσ

 , S =

 s2
µ ρsµsσ

ρsµsσ s2
σ

 . (3.50)

where ρ is the correlation coefficient between mean and noise.

The distribution of phenotypes in steady state is then calculated in the monomorphic ap-

proximation (see section 3.2.2), where the probability of finding a population with a given phe-

notype φ solely depends on its effective fitness f̂(φ), the population size N , and the DoS g(φ)

(cf. equation 3.4):

p(φ) =
1

Z
g(φ) · f̂(φ)N , (3.51)

p(µ, σ) =
1

Z
g(µ, σ) · f̂(µ, σ)N . (3.52)

Figure 3.7C shows how these factors together give rise to a distribution of phenotypes. In Figure

3.7D, we see that the correlation in the DoS between mean and noise, can have pronounced

effects on the level of mean and noise that a population displays. For high anti-correlation the

DoS offers genotypes with high mean and low noise, which represents a combination with high

fitness in this context. As the correlation coefficient increases, this kind of combinations get

very rare and therefore the population settles on lower mean and higher noise genotypes.
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Figure 3.7: (A) When studying a freely evolving noise parameter in addition to the mean ex-

pression level one has to look at the fitness landscapes of combinations of these parameter

values. Shown in gray on the left is the molecular fitness function which corresponds to the

noiseless case. In the main plot, we can see that noise and mean expression combine in a

non-trivial way to give the effective fitness for any combination of the two parameters. The plot

shows normalized fitness, such that the highest fitness value is 1. (B) For similar reasons as in

(A), we also need to look at the joint DoS of mean and noise parameters. In this example they

are a bivariate Gaussian with significant correlation. The plot shows normalized log-density

with a correlation coefficient of ρ = 0.2. (C) At a finite population size, the fitness landscape

from (A) and (B) will combine into a distribution of observed phenotypes after evolution has

reached a steady state (green). Shown is the log-probability normalized to its maximum. (D)

By changing the correlation coefficient ρ between noise and mean in the DoS, while keeping

the position of the maximal density the same, we can see how the genotypic correlation influ-

ences the level of noise observed in a population. Shown are the most probable mean and

noise values (full lines) with the dotted lines indicating full width at half maximum. In all plots

we use mµ = 10,mσ = 15, s2
µ = sσ = 5, ρ ∈ [−0.99, 0.99], N = 100 and molecular fitness

f(g) = G(g; 20, 32).
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The results obtained so far by considering populations at steady state can be summarized as:

• Generically, evolving gene regulatory elements with noisy gene expression is not equiv-

alent to evolving noiseless expression at a different effective population size. This is

because the underlying molecular fitness function and noise combine in a nontrivial way

to the effective fitness, which can both shift the region of selected phenotypes and change

the stringency with which parts of sequence space are ‘carved out’ by selection.

• A central quantity to understand ensembles of populations at steady state is the density of

states (for phenotypes in sequence space). For biophysical models of gene expression,

these are computable both for noise and mean and also for their combination, yielding

a two-dimensional density of states. The structure of this joint density is important in

determining which noise and mean values will be observed at steady state.

From these observations we can state that gene expression noise and evolution can interact

to a significant degree. The effects, however, are roughly of order unity. In the next sections,

we will turn to the study of the dynamics of adaption and see that there are potentially larger

effects, which could turn out to be biologically even more relevant.
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3.6 Dynamics of evolution for noisy promoters

We now turn to the dynamics of adaptation and how they are influenced by the presence of

gene expression noise. Previous studies have found that the formation of a transcription factor

binding site can be prohibitively slow in some settings [Tuğrul et al., 2015; Berg et al., 2004].

These slow rates can be accelerated by various mechanisms, such as partially decayed old

sites, or regulatory architectures that allow for a binding site to evolve in a longer stretch of

DNA and still influence expression. This also helps to explain genomic evidence for the speed

of adaptation in regulatory sequences [Dowell, 2010; Villar et al., 2014]. In this section, we will

see that noise can also accelerate adaptive dynamics.

To study how gene expression noise affects the dynamics of adaptation, we use a simple

population genetics model including mutation, selection, and drift, similar to the ones used in

[Tuğrul et al., 2015] and [Berg et al., 2004] and described in sections 3.6.1 and 3.6.2. To point

out the effect of noise independently of the architecture that gave rise to it, we introduce an

additional parameter of the fitness function in 3.6.3. With this parameter, which can be thought

of as an averaging time for the selected output, we can tune the importance of noise for fitness,

and thus evolution, within the same expression architecture. In addition, it is also an example

for a more general dependence of fitness on the time trace of gene expression, as mentioned at

the end of section 3.2.1. An expression model involving an activator and its binding site, which

serves as an example for a small network where noise and mean can, to some degree, evolve

independently, is introduced in section 3.6.4. Finally, section 3.6.5 shows that the presence of

noise can speed up adaptation – potentially countering an intuition built from the results in the

last sections.

3.6.1 Mutation rates in mismatch models

To see how regulatory sequences evolve under noise, we consider a small stretch of regulatory

DNA sequence s of length L = n1 +n2 + . . .+nR, accommodating R binding sites for regulatory

proteins (RP), such as TFs and RNAPs. The binding of each RP is modeled with a mismatch

model (cf. section 3.3.1), i.e. the binding site with k mismatches has the binding energy

Er = Exkr , r ∈ [1, R] , kr ∈ [0, nr]. (3.53)

We only consider point mutations here; see [Tuğrul et al., 2015] for a more general mu-

tational regime. If such a change from one nucleotide to one of the three others occurs in a
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binding site of length n, the probability of increasing the number of mismatches is

pk→k+1 =
n− k
n

= 1− k

n
, (3.54)

while the probability of decreasing it is

pk→k−1 =
k

n

1

3
=

k

3n
. (3.55)

Thus, when considering all binding sites with potentially different lengths together, the proba-

bilities for a single binding site are:

pkr→kr+1 =
nr

n1 + . . .+ nR

nr − kr
nr

=
nr − kr
L

(3.56)

pkr→kr−1 =
nr

n1 + . . .+ nR

kr
nr

1

3
=
kr
3L

(3.57)

These probabilities then combine into the mutation rate matrix:

Uk′,k =


L u pk→k′ for k′ 6= k

−
∑

k′ 6=kUk′,k for k′ = k

, (3.58)

with u being the mutation rate per base pair per generation.

3.6.2 Population genetics: dynamics of adaptation in monomorphic popula-

tions

As in the previous sections, we restrict ourselves to the monomorphic regime, where mutations

are infrequent enough (and sweeps to fixation fast enough) to be able to always consider the

population at a fixed state [Barton et al., 2007; Desai and Fisher, 2007]. This also means we

can view adaptation as a Markov jump process. We further simplify the setting to that of a single

environment, meaning that we only have one fitness function to which the system is adapting.

With these assumptions we can use the diffusion approximation for adaptive dynamics [Kimura,

1962]. After a mutant with a fitness advantage of ∆f over the established genotype arises, its

probability to grow to fixation pfix in a population of effective size N is

pfix(N, ∆f) =
1− e−2∆f

1− e−2N∆f
. (3.59)

Note that in a finite population, even mutants with a fitness disadvantage (∆f < 0) still have a

positive fixation probability.

For a single binding site, the transition rates from one mismatch class to another, summa-

rized in the matrix R, are therefore

Rk′,k =


2N Uk′,k pfix(N, ∆fk′,k) for k′ 6= k

−
∑

k′ 6=kRk′,k for k′ = k

, (3.60)
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3.6.3 Fitness model with time averaging

In the previous sections, we studied the influence of changing biophysical parameters to em-

phasize the importance of noise structure on evolutionary quantities. Since we here consider

freely evolving noise, determined by an evolving regulatory network, we use an additional pa-

rameter of the fitness function to vary the noise level (see Figure 3.9A). Mathematically, we will

represent this by replacing the distribution P (g; µ, σ) in equation 3.1 with P (g; µ, ασ), where

α ∈ [0, 1]. This then gives the following definition for effective fitness:

f̂(µ, σ; f(g), α) =

∫
f(g)P (g; µ, ασ) dg , α ∈ [0, 1] . (3.63)

This new parameter α can be interpreted as a measure for how long the system integrates the

gene expression level under selection, before evaluating its fitness. It should therefore not be

viewed as a parameter of the evolving regulatory system but rather as an additional parameter

of the fitness function or a property of the downstream network. We can interpret the integration

time variable α in terms of the number of independent measurements nτ needed to reach this

reduction in standard deviation (reflecting the auto-correlation time τ of the expression level).

We then get ασ =
√
nτσ2/nτ , or nτ = 1/α2.

The underlying idea that not only the instantaneous level of gene expression, but its average

in some window of time is relevant to selection may be especially relevant in developmental

biology [Raj et al., 2010]. In principle, also more complicated features of the dynamics in a

window could be relevant [Hansen and O’Shea, 2015], but we will restrict ourselves to time

averaging here.

3.6.4 Expression model for a small regulatory network

To study the influence of noise on the dynamics of adaptation, we look at a sequence-to-

expression model that allows for several noise levels with the same mean (cf. section 3.3.2).

We choose a minimal network consisting of an activating TF produced from a constitutive pro-

moter and a downstream promoter that is sensitive to this activator and produces the output

protein under selection (see Figure 3.9B). One of the mismatch-classes will determine the con-

centration of the activator c, whereas the other will determine the activators binding energy to

the downstream promoter that generates the protein under selection g. We can then calculate
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the downstream promoter (k2) governs the binding strength of individual TF molecules to the

binding site in this promoter. This allows for several combinations of TF levels and binding site

strengths that result in the same mean output level of the downstream gene – yet the noise

levels of it will be different.

We note that in this small network both, the mean and the noise of the downstream gene

depend on both, the level of the upstream TF and the strength of the binding site. This means

that even though selection only directly acts on the downstream gene, both promoters are

expected to change during adaptation. Furthermore, the network has the ability to implement

the same mean expression level in various ways and of those, some will display different levels

of noise. Thus, when selecting on gene expression, not only the final outcome (in steady state)

for mean and noise will depend on the architecture – but also the path a population takes to

reach this state.

3.6.5 Trade-off in evolutionary dynamics

To see how noise changes the dynamics of adaptation, we will now look at the minimal acti-

vator network described in the previous section and use the population dynamics model from

sections 3.6.1 and 3.6.2. The ensemble of populations starts out with the neutral distribution

of genotypes, i.e. the stationary distribution that is reached if all fitness differences in equation

3.60 are set to zero. This distribution is dominated by sequences for which the expression lev-

els of both proteins is low. From there, according to equation 3.62, we simulate the dynamics

of adaptation forward in time until a steady state is reached. Figure 3.10A shows the dynamics

of mean and noise for truncating selection on the output of the activator network. We see that

the mean expression level of the selected output rises over time and eventually crosses the

selection threshold. Noise, on the other hand has a less pronounced increase. The trajectory

of the Fano factor shows that the populations only settle on the smallest possible value after

adaptation has reached a steady state.

To emphasize the effects of evolving noise in the biophysical model, we compare it to a

model where noise is not implement in a biophysical way. To keep this alternative as compa-

rable as possible, we use the same model for mean expression and a constant, i.e. genotype-

independent, value for the variance:

c̄ = c0 ·
1

1 + exp[Exk1]
, (3.68)

ḡ = g0 ·
1

1 + exp[Exk2 − log[c̄]]
, (3.69)

σ2
g = V 2

e , (3.70)





81

with Ve = 25 and all other parameters as stated in section 3.6.4. In addition to the mathematical

convenience, this is also equivalent to evolutionary models that incorporate non-genetic, or

environmental variance but do not resolve molecular details [Bull, 1987; Zhang and Hill, 2005].

Figure 3.10B shows the dynamics of mean and noise for this model with fixed, non-evolving

noise. We can already see that choosing a different noise model has changed the dynamics

for the mean level.

To further explore this impact of noise on the evolutionary dynamics we make use of the

model-independent way to tune the influence of noise on fitness developed in section 3.6.3.

In Figure 3.10C, we show the dynamics of fitness for different, fixed (non-evolving) degrees of

time averaging α. From this, we can see that prolonging integration time (by lowering α) greatly

changes the dynamics of adaptation. For high values of α, fitness rises much earlier than for

the noiseless case. On the other hand, quicker adaptation not only reaches its steady state

earlier but also the final fitness is lower than for the cases where the impact of noise on fitness

is smaller. Thus, for populations far away from a selection threshold, the benefit of higher noise

is faster adaptation. This can be understood in the light of the wider effective fitness curves,

that can exist at the flanking regions of fitness maxima (see figure 3.3A,B). As is expected

from the analysis of the steady state in the preceding sections, higher noise does lower the

fitness peak, i.e. the maximal obtainable fitness will deviate from the noiseless case if there are

no solutions in genotype space that allow for a low enough noise level. In the case of longer

time averaging, however, the populations are less constrained by the availability of low noise

solutions for means above the selection threshold – thus reducing the deviation from maximal

fitness due to noise (the noise load).

This trade-off is summarized in figure 3.10D by plotting the speed of adaptation against the

final fitness for different values of α. We can now ask how severe this trade-off between the

speed of adaptation and noise load is for the different noise models introduced above. For in-

termediate values of α, the speed-fitness trade-off is much less pronounced for the biophysical

model than for the independent noise model. This can be understood from the flexibility that

the biophysical model offers – high noise solutions, that are beneficial when the mean of the

expression is much lower than the selection threshold can evolve to lower levels of noise as

the mean proceeds to higher levels. The terms high and low noise solutions have to be inter-

preted in the sense that these noise levels are still constrained by the Poisson limit built into the

biophysical model (see also the trajectory of the Fano factor in 3.10A). This type of flexibility is

absent in the case of genotype-independent noise, where the noise level can not differ in early

and late stages of adaptation.
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Figure 3.11: Varying the relative importance of noise strengths. To see how the noise

strengths νc and νg influence the trade-off in evolutionary dynamics, (B) and (C) show two

different extremes. For comparison, (A) shows the case of equal strength (νc = νg = 4, same

as Figure 3.10D) and the model for independent noise (Ve = 25) is replotted in all three panels

(dashed lines). As can be seen in (B), larger upstream noise (νc = 16, νg = 4) increases the

degree to which the trade-off is alleviated. Increasing the downstream noise term νg in (C)

(νc = 4, νg = 16) brings the result closer to a model with Poisson-like noise only, i.e. a constant

Fano factor (additional dotted line, νc = σc = 0, νg = 16).

Finally, we can ask how the relative strengths of the different noise sources in the model, νc

and νg, influence the evolutionary dynamics. Figure 3.11 shows that stronger upstream noise

(νc > νg) will further alleviate the speed-fitness trade-off for intermediate values of α. This

contrasts with the situation when νg > νc, where the situation starts to resemble that of a noise

model with constant Fano factor for the gene under selection νc = 0.

3.6.6 Discussion

Generally, one might have expected that the smoothing effect of noise on the fitness landscape

(cf. section 3.2.3) makes evolution proceed slower, since the selective advantage of a certain

difference in mean expression values is lessened by the effects of noise. Here we have shown

that this is not necessarily the case since the flatter effective fitness function also stretches out

further into regions of low-fitness phenotypes. Thus, the effect of slower progression due to

shallower progression can be overcome and increased noise can even speed up adaptation

compared to the noiseless case. This effect of noise is potentially much larger than the ones

discussed in the steady state setting (cf. sections 3.4 and 3.5), as speed of adaptation varies

over several orders of magnitude over the range of α.

Furthermore, as indicated in figure 3.10D, for the same noise level, a larger population will
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also lead to faster adaptation. This means, however, that in terms of the speed of adaptation,

the effects of noise and population size are actually opposite to what we would expect from a

direct analogy to sampling noise (cf. section 3.2.2): high noise in a gene regulatory network

under directional selection can speed up adaptation, whereas in small populations the time to

find fitter genotypes will increase.

Several theoretical studies have shown how increased noise can be beneficial in varying

environments [Bull, 1987; Zhang and Hill, 2005; Wolf et al., 2015], especially when regulation

is not able to track the changes in the environment. These cases are conceptually similar to

the beginning of adaptation in our examples, when high fitness solutions are so far away from

the bulk of the populations that only high noise can help sense and eventually reach them.

This early benefit of reaching into a high-fitness region by noise also is key in the accelerated

adaptive dynamics. It is also categorically different from other mechanisms that have been

proposed to over-come the long waiting times for the arrival of transcription factor binding sites.

Among those are decayed old binding sites, short binding motifs, and long regulatory regions

[Tuğrul et al., 2015; Berg et al., 2004]. These mechanisms are mainly based on facilitating the

finding of a binding site, rather than providing adaptive advantages to weakly binding sites, as

can be achieved by gene expression noise.

Finally, this speed-up is also a qualitatively new example of beneficial effects of noise. It

is sensing remote fitness peaks and provides ways to start moving towards them much earlier

than in the noiseless case. This contrasts with situations where the beneficial effects of noise

come from compensating for a lack of sufficient sensing, as for example suggested in [Wolf

et al., 2015]. In this paper, the authors show that fitness in a changing environment can be

increased when an a downstream gene under selection gets linked to a noisy upstream TF.

While this is a statement about the fitness of different genotypes, it also suggests an important

mechanism for the evolutionary onset of gene regulation that is not unlike the results presented

in this section, which only deal with a single environment.

For future research it will be interesting to investigate more general models of gene ex-

pression than the one studied here. The model of an evolving activator concentration and

binding site in sections 3.6.4 and 3.6.5 is far too restrictive to model the full flexibility avail-

able to many biological systems. A first generalization can be to describe the production

process of proteins in more detail by explicitly including mRNA in the model. This will al-

low the observation of interesting noise parameters over time, as the number of proteins per

mRNA molecule can be linked to the parameters νc and νg of our model [Tkačik et al., 2008a;

Rieckh and Tkačik, 2014]. Furthermore, an exploration of how integration time could evolve
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seems interesting. Here we treated it as a fixed property of the fitness function, but an interpre-

tation as a property of the downstream network that reads the gene under selection could be

an interesting extension. A central questions here would be, what control mechanisms allow for

time averaging and how easily they can adapt to different integration times. An interesting start-

ing point could be the provided by the mechanism of (spatial) averaging between neighboring

cells [Sokolowski and Tkačik, 2015]. Finally, an extension of the framework for evolutionary dy-

namics developed here to also include changing environments could prove to be fruitful. On the

one hand, this will enable us to elucidate the differences between the activating scheme used

here and models of constitutive expression. On the other hand, such an extension will enable

us to further elucidate the links to the stationary results from [Wolf et al., 2015]. Specifically,

it would be interesting to study for which types of regulatory interactions and environmental

statistics noisy TFs can arise and stabilize in a population.

On the experimental side, a direct test of the predictions for the speed-up of adaptation due

to noise could be attempted. Such an effort would profit from an experimental setup includ-

ing a microfluidic device in combination with a microscopy platform that can accommodate a

population large enough to make experimental evolution feasible.

Concerning the genetics of mean and noise in gene expression, there have recently been

some efforts to characterize genetically closely related variants of promoters [Metzger et al.,

2015; Jones et al., 2014]. However, the shear size of genotype space might quickly outgrow

experimentally feasible limits, emphasizing the need for predicitve modeling based on mea-

surements from only a sub-space of possible sequences. See [Jones et al., 2014] for recent

progress in this direction. Combining this kind of detailed molecular knowledge with modern

bar-coding techniques to track very large populations (see for example [Levy et al., 2015]) has

the potential to produce even richer data-sets to elucidate the role of noise in evolution.
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4 A genetic platform to study single cell

stress response

In this chapter I report on work done in collaboration with Karin Mitosch and Tobias Bollenbach.

All measurements in the microfluidic chamber have been performed by Karin Mitosch.

4.1 Introduction

Gene expression levels can be seen as fundamental phenotypic traits that selection can act

on, as was discussed in the previous chapter. Depending on the evolutionary scenario, selec-

tion could either act on the instantaneous gene expression levels or some temporally averaged

version thereof, and a full knowledge of these phenotypes thus requires us to measure com-

plete single cell traces of gene expression as a function of time. The kind of data that can be

collected this way is helpful for both, understanding the mean regulation of a gene, but also

how deviation in single cells from this ‘typical’ behavior influences the non-genetic component

of fitness.

Here, I will first explain a technique that can be used to obtain relevant reporter strains, and

then an application wherein one of these strains was used to describe single cell expression

dynamic and survival under stress.

4.2 A cloning strategy for the construction of chromosomal re-

porter constructs

To understand the dynamics and function of a gene, a common approach is to fuse the promot-

ers of the gene of interest (POI) to a reporter gene, such as a fluorescent protein. For E. coli

K12 (MG1655) a collection of intergenic regions, many of which contain important regulatory
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regions and promoters, has been constructed [Zaslaver et al., 2006]. The cloning strategy de-

scribed in this section is designed to make use of this library of reporter plasmids (and similar

ones) to facilitate the construction of single or multiple chromosomal reporter strains for various

promoters from this library.

When studying single cell effects of gene expression in microbes it can often be beneficial

to have chromosomally integrated reporters for gene expression, rather then reporter plasmids

[Lin-Chao and Bremer, 1986; Paulsson and Ehrenberg, 2001; Pedraza and van Oudenaar-

den, 2005; Wong Ng et al., 2010; Tal and Paulsson, 2012] – especially when studying them in

stressed conditions. Constructing strains with chromosomal reporters in the bacterium E. coli

can be challenging because integrations get less efficient as the DNA molecule that needs to

be integrated gets longer [Kuhlman and Cox, 2010]. Another disadvantage of classical recom-

bineering [Datsenko and Wanner, 2000] is the use of long primers (70 nucleotides and longer),

which are expensive and harder to design and handle than shorter ones, which are usually

used in PCRs. The technique described here circumvents these two issues by dividing the

procedure of getting the desired resistance-marker-promoter-reporter construct into the chro-

mosome into two steps. The first one deals with the integration of a long construct using long

primers. In the second step, this long construct will serve as a ‘landing platform’ for a much

shorter fragment carrying the POI. The first, inefficient step only has to be performed once, and

after the successful integration of the platform, the resulting strain can then be used multiple

times to produce working chromosomal reporter constructs.

The construct from the first step serves as a platform for accepting shorter segments (ob-

tained by PCR with shorter primers) in the second step. For this to work, the strategy needs

three key parts that differ from the conventional recombineering protocol: (1) a selectable

marker for the platform in the first step, (2) a selectable marker that only works once the desired

final construct has been completed in the second step but is non-functional in the first step, and

(3) homology regions for the second integration that can be accommodated even with short

primers.
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4.2.1 Construction of a plasmid containing the platform

To construct the platform, the promoterless plasmid from [Zaslaver et al., 2006], with a pZA

origin [Lutz and Bujard, 1997], was used. First, the reporter gene was changed from GFPmut2

to either a YFP or a CFP variant (sequences obtained from Tobias Bergmiller, as described

in [Cox et al., 2010]), which was achieved by using primers GR-cYFP-1 and GR-cYFP-2 for

YFP, and GR-cCFP-1 and GR-cCFP-2 for CFP (see table 4.1) and the restriction enzymes

HindIII and NdeI (New England Biolabs). This resulted in plasmid pFIL-koy and pFIL-koc.

These two variants of fluorescent proteins were chosen since they are monomeric and fast

maturating (maturation times are below 10 minutes); furthermore they can be used in channels

with reduced background fluorescence in many conditions, and if used simultaneously in one

set-up have minimal bleed-through.

The second modification is to provide a selectable marker for the platform that will be

knocked out upon successful integration of the final reporting construct. For this, the chlo-

ramphenicol resistance cassette from the Lutz&Bujard-library [Lutz and Bujard, 1997] was put

between XhoI and BamHI restriction sites with primers GR-CmR-1 and GR-CmR-2, and cloned

into the plasmid pFIL-koy and pFIL-koc, resulting in the plasmids pFIL-kcy and pFIL-kcc.

In a third step, the intact kanamycin resistance cassette was replaced by a defunct fragment,

starting after the start codon of its protein coding region. For this, whole-plasmid PCR was used

with primers GR-CmR-1 and GR-KnF-2, which also contains an XhoI restriction site. This yields

the plasmid containing the desired platforms pFIL-fcy and pFIL-fcc.

After completion of these plasmids, the platforms were integrated into two different chromo-

somal locations (galK and intS) using lambda-red-recombineering as described in [Datsenko

and Wanner, 2000], with the recombineering plasmid pKD46 and primers GR-intS-1 and GR-

intS-2, or GR-galK-1 and GR-galK-2. Finally, all integrated platforms were checked for mu-

tations by sequencing the PCR product obtained by using primers GR-intS-up, GR-intS-dn,

GR-galK-up, GR-galK-dn on the chromosomal DNA.

4.2.2 Chromosomal integration of promoters of interest

The step that will be performed several times after establishing the platform from the last sec-

tion on the chromosome is the actual integration for the promoters of interest. For this, the POI

and the necessary homology regions, the promoter driving the kanamycin resistance gene and

its start codon are simply amplified via PCR and the primers GR-MKan-1 and GR-YFP-RBS

or GR-CFP-RBS. This provides a comparatively short linear fragment, that still has large ho-
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GR-cYFP-1 AGAAA GGATCC GAGAAGAACTTTTCACTGGAG

GR-cYFP-2 ATGAC CTCGAG CTGAATGAACTGCAGGAC

GR-cCFP-1 GTCCG GGATCC TCTAGATTTAAG

GR-cCFP-2 CTCGAG G GGATCC TCTAGATT

GR-CmR-1 AGATA CTCGAG GTGAAGACGAAAGGG

GR-CmR-2 AGAAT CTCGAG TAGACGTCGATATCTGGCG

GR-KnF-2 AGAAT CTCGAG GATATCTGGCGAAAATGAGAC

GR-intS-1 CCGTAGATTTACAGTTCGTCATGGTTCGCTTCAGATCGTTGACAGCCGCA-

-GAGTCAGTGAGCGAGGAAGC

GR-intS-2 ATAGTTGTTAAGGTCGCTCACTCCACCTTCTCATCAAGCCAGTCCGCCCA-

-TGAAGTCAGCCCCATACGAT

GR-galK-1 GTTTGCGCGCAGTCAGCGATATCCATTTTCGCGAATCCGGAGTGTAAGAA-

-GAGTCAGTGAGCGAGGAAGC

GR-galK-2 ACCATCGGGTGCCAGTGCGGGAGTTTCGTTCAGCACTGTCCTGCTCCTTG-

-TGAAGTCAGCCCCATACGAT

GR-intS-up GTACTTACCCCGCACTCCAT

GR-intS-dn TGTTCAGCACACCAATAGAGG

GR-galK-up CCTACTCTATGGGCTGGCAC

GR-galK-dn GGAAAGTAAAGTCGCACCCC

GR-MKan-1 GCGATACCGTAAAGCACGAG

GR-YFP-RBS GAACAGTTCTTCACCT-TTGCTCATATGTATATCTCCTTC

GR-CFP-RBS GACCAGGATAGGAACCACACCAGTAAACAGCTCCTCGCCC-

-TTGCTCATATGTATATCTCCTTCTTAAATCTAGAG

Table 4.1: Primers for the construction and application of integration platforms. Re-

striction sites are surrounded by spaces. Integration primers contain two parts, separated by a

hyphen, that correspond to chromosomal homology regions and PCR annealing regions.

mology regions and completes a selectable marker upon successful integration. This can now

be used in a standard recombineering protocol to produce the desired chromosomal reporter

strains. For the production of strains with different reporter genes (in our case CFP and YFP)

the same template plasmid can be used – only one of the primers should be changed to provide

a longer homology reaching into the coding region.

After the identification of successful integrands, the sequence of the integrated promoter can

be checked by using the same primers as when checking the integration of the platform (e.g.

GR-intS-1 and GR-intS-2). Additionally, checking for growth rate and unchanged sensitivity to

stresses is advisable.
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The described method can be used to study the details of regulation on complex promoters

(cf. Chapter 1) and fitness effects stemming from different dynamics of expression in promoter

variants (cf. Chapter 3). For this it is necessary to have a method to generate a diverse set

of similar promoters and put them in the same context [Kinney et al., 2010]. Furthermore, in

the quest for a more detailed understanding of how natural pathways perform their function, an

efficient way to produce reporter constructs is beneficial. In the next section a simple application

will be presented.

4.3 Application: Promoter activity and survival under acid stress

in single cells

In this section, the cloning strategy described in the last section is used to study complex

promoters (cf. Chapter 1) and demonstrate that gene expression is a phenotype that selection

can act upon (cf. Chapter 3).

4.3.1 Bacterial stress response and cross-protection

Bacteria can find themselves in harsh environments, where they not only encounter single

stress factors but rather combinations of multiple stresses. They have evolved a number of

different stress response systems to increase their chance of survival under stress. Some of

these systems offer protection not only against one stress, but also against other, subsequently

encountered challenges. This phenomenon is called cross-protection [Al-Nabulsi et al., 2015;

Jenkins et al., 1988; Leyer and Johnson, 1993; McMahon et al., 2007]. Under antibiotic-stress,

the metabolism and gene expression of microorganisms can change markedly [Brazas and

Hancock, 2005; Kwon et al., 2010; Sangurdekar et al., 2011], which can also be the reason for

cross-protective effects.

It has previously been observed that stress response genes tend to have an increased level

of cell-to-cell variability [Newman et al., 2006; Silander et al., 2012]. A cross-protecting effect for

a subsequent antibiotic stress has been reported for nutrient pre-stress [Arnoldini et al., 2014]

and for noisily expressed antibiotic resistance genes [El Meouche et al., 2016]. In these cases,

high gene expression is beneficial for survival under the subsequent stress condition; however,

also a case where the opposite, namely high expression of a gene is harmful for survival has

been reported [Ni et al., 2012]. Here, we show that antibiotics can also cross-protect from other,
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non-antibiotic, stressors, and the survival time under the second stress is influenced by gene

expression noise.

4.3.2 Single cell survival can be predicted by activity of the acid stress pro-

moter PgadB

As a pre-stress that induces a stress response, we chose trimethoprim (TMP), a folic-acid syn-

thesis inhibitor. Since TMP cross-protects against acid stress and up-regulates the expression

from the gadB promoter (PgadB) [Mitosch, Rieckh, Bollenbach; unpublished], we wanted to

know if information on the expression from this promoter with single cell resolution can predict

survival of individual cells. To this end we constructed a reporter for the gadB promoter using

a YFP-based platform at the intS-locus (PgadB − Y FP ) into the chromosome, as described in

the previous section. PgadB controls the expression of two proteins, a glutamate decarboxy-

lase (GadB) and a glutamate:4-aminobutyrate antiporter (GadC). Both are known to have a key

role in survival at low pH [Richard and Foster, 2004]. The GadB protein catalyzes the binding

of protons to glutamate. The product Gamma-aminobutyric acid (GABA) is then exchanged

for glutamate by the antiporter GadC. This lowers the intracellular proton concentration [Hersh

et al., 1996; Tsai et al., 2013].

The activity of the PgadB-reporter construct under TMP and acid stress was then recorded in

a microfluidic device (see Figure 4.2A). This showed a strong up-regulation within three hours

after TMP addition, accompanied by a large variation in expression level: some cells showed

no detectable change, while some others rose about 30-fold (see Figure 4.2A).

We then asked how well the response induced by TMP predicts the time until cell lysis

(termed survival time) after the stress was switched to hydrochloric acid (HCl). We observed a

strong correlation between gadB expression in single cells just before the HCl was added and

the survival time under acid stress (Figure 4.2B). A two-fold increase in gadB expression (and

presumably in GadB) prolonged survival on average by slightly less than 2 hours.

We then wanted to see if a simple averaging scheme (i.e. a prolonged integration time for

the PgadB-signal), as proposed in the previous chapter, can improve the prediction of survival

time. For this, we compare the RMS-error for two predictors in Figure 4.2C. The first predictor

applies a uniform filter for a specified time window before the addition of the second stress (the

acid stress). As a second predictor we use multiple linear regression over YFP values from

the same time windows. Figure 4.2C shows that the best predictor for survival with the uniform

filter is already the instantaneous value of PgadB-expression at the beginning of the acid stress,
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whereas linear regression is able to still exploit some information from the dynamics before the

second stress (roughly 30% reduction in RMS-error for the full time scale). How much of this

improvement is due to overfitting will have to be determined once more data is available.

In this work we have thus demonstrated a previously unknown cross-protective effect from

an antibiotic towards another stress.1 Moreover, we have demonstrated that knowledge of the

activity of a single gene can predict survival in stressful conditions. For future research, we plan

to use the cloning strategy described here to efficiently construct multiple reporters for genes

in different response pathways (acid response, folate synthesis) and record the response to

a number of pre-stressors. This data will then be used to understand in more detail which,

potentially non-linear, features of the dynamics of gene expression contribute to the survival of

single cells.

1This result will be presented in more detail elsewhere [Mitosch, Rieckh, Bollenbach; unpublished].
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4.3.3 Experimental set-up

Strains and culture conditions

We used E.coli K-12 strain MG1655 as the wildtype strain. All experiments were performed

in M9 minimal medium (1x M9 salts,1mM MgSO4, 0.1mM CaCl2, supplemented with 4g/L

glucose and 0.1% amicase). Antibiotic concentrations used for selection and bacterial glycerol

stocks were: kanamycin, 25 µg/mL; ampicillin, 50 µg/mL; spectinomycin, 100 µg/mL. For the

acid stress, the pH of the M9 minimal medium was adjusted to pH 3 with hydrogen chloride

(HCl). All chemicals were ordered from Sigma Aldrich.

Microfluidics and time-lapse microscopy

Bacteria were inoculated from frozen stocks at a dilution of 1:1000 to 1:5000 and grown until an

OD600 of 0.05 to 0.1. Then they were diluted 1:100 and loaded into the microfluidics chamber

(CellASIC ONIX, Merck Millipore). This normally led to spatially well separated single cells for

the beginning of the experiment. All experiments were performed in a heated chamber at 30◦C.

Data acquisition was started after 1-2 hours. Images were taken every 10 to 20 minutes in 100x

magnification with a EMCCD camera (Hamamatsu) on Nikon Eclipse Ti-E (Nikon) with Lumen-

cor light engine (Lumencor), using NIS-Elements software (Nikon). Excitation and emission

wavelength (in nm) for YFP were 513/17 and LP 520, BP 542/27, respectively.

Microfluidics data analysis

Time traces were analyzed using an adapted version of the MATLAB program SchnitzCells

[Young et al., 2012]. YFP expression levels in Figure 4.2 were determined by dividing the total

fluorescence signal from a cell by its cell area. Autofluorescence was subtracted as the mean

fluorescence expression of a microcolony with only the segmentation fluorophore present. Sur-

vival time was determined as the last time point at which fluorescence of the segmentation

color was still above detection threshold. Maturation times of GFP, YFP and CFP were below

10 minutes in our conditions.
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factor binding sites,” BMC Evol Biol, 4:42, 2004.

[Berg and von Hippel, 1985] O.G. Berg and P.H. von Hippel, “Diffusion-controlled macromolec-

ular interactions,” Annu Rev Biophys Biophys Chem, 14:131–58, 1985.

[Berg and von Hippel, 1987] O.G. Berg and P.H. von Hippel, “Selection of DNA binding sites

by regulatory proteins. Statistical-mechanical theory and application to operators and pro-

moters,” J Mol Biol, 193(4):723–50, 1987.

[Bialek and Setayeshgar, 2005] W. Bialek and S. Setayeshgar, “Physical limits to biochemical

signaling,” Proc Natl Acad Sci USA, 102(29):10040–5, 2005.

[Bialek and Setayeshgar, 2008] W. Bialek and S. Setayeshgar, “Cooperativity, sensitivity, and

noise in biochemical signaling,” Phys Rev Lett, 100:258101, 2008.

[Bialek, 2013] William Bialek, Biophysics: Searching for Principles, Princeton University Press,

2013.

[Bintu et al., 2005] L. Bintu, N.E. Buchler, H.G. Garcia, T. Hwa, J. Kondev, and R. Pillips, “Tran-

scriptional regulation by the numbers: models,” Curr Opin Genet Dev, 15:116–24, 2005.

[Bird, 1995] A.P. Bird, “Gene number, noise reduction and biological complexity,” Trends Genet,

11(3):94–100, 1995.

[Blahut, 1972] R.E. Blahut, “Computation of channel capacity and rate-distortion functions,”

IEEE Trans Info Th, 18:460–73, 1972.



97

[Blake et al., 2006] W.J. Blake, G. Balazsi, M.A. Kohanski, F.J. Isaacs, K.F. Murphy, Y. Kuang,

C.R. Cantor, D.R. Walt, and J.J. Collins, “Phenotypic Consequences of Promoter-Mediated

Transcriptional Noise,” Mol Cell, 24(6):853–65, 2006.

[Blake et al., 2003] W.J. Blake, M. Kaern, C.R. Cantor, and J.J. Collins, “Noise in eukaryotic

gene expression,” Nature, 422:633–7, 2003.

[Bowsher and Swain, 2012] C.G. Bowsher and P.S. Swain, “Identifying sources of variation and

the flow of information in biochemical networks,” Proc Natl Acad Sci USA, 109(20):7615–6,

2012.

[Brazas and Hancock, 2005] M.D. Brazas and R.E.W. Hancock, “Using microarray gene sig-

natures to elucidate mechanisms of antibiotic action and resistance,” Drug Discovery Today,

10:1245–52, 2005.

[Brewster et al., 2012] R.C. Brewster, D.L. Jones, and R. Phillips, “Tuning Promoter Strength

through RNA Polymerase Binding Site Design in Escherichia coli,” PLoS Comput Biol,

8(12):e1002811, 2012.

[Bull, 1987] J.J. Bull, “Evolution of phenotypic variance,” Evolution, 41(2):303–15, 1987.

[Buratowski, 2009] S. Buratowski, “Progression through the RNA polymerase II CTD cycle,”

Mol Cell, 36(4):541–6, 2009.

[Burga et al., 2011] A. Burga, M.O. Casanueva, and B. Lehner, “Predicting mutation outcome

from early stochastic variation in genetic interaction partners,” Nature, 480(7376):250–3,

2011.

[Cai et al., 2006] L. Cai, N. Friedman, and X.S. Xie, “Stochastic protein expression in individual

cells at the single molecule level,” Nature, 440(7082):358–62, 2006.

[Carey et al., 2013] L.B. Carey, D. van Dijk, P.M.A. Sloot, J.A. Kaandorp, and E. Segal, “Pro-

moter sequence determines the relationship between expression level and noise,” PLoS Biol,

11(4):e1001528, 2013.

[Cepeda-Humerez et al., 2015] S.A. Cepeda-Humerez, G. Rieckh, and G. Tkačik, “Stochastic
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in stochastically switching environments.,” J Theor Biol, 336:144–57, 2013.

[Neuert et al., 2013] G. Neuert, B. Munsky, R.Z. Tan, L. Teytelman, M. Khammash, and A. van

Oudenaarden, “Systematic identification of signal-activated stochastic gene regulation,” Sci-

ence, 339(6119):584–7, 2013.

[Newman et al., 2006] J.R.S. Newman, S. Ghaemmaghami, J. Ihmels, D.K. Breslow, M. Noble,

J.L. DeRisi, and J.S. Weissman, “Single-cell proteomic analysis of S. cerevisiae reveals the

architecture of biological noise,” Nature, 441:840–6, 2006.

[Ni et al., 2012] M. Ni, A.L. Decrulle, F. Fontaine, A. Demarez, F. Taddei, and A.B. Lindner,

“Pre-disposition and epigenetics govern variation in bacterial survival upon stress,” PLoS

Genetics, 8:e1003148, 2012.

[Nock et al., 2012] A. Nock, J.M. Ascano, M.J. Barrero, and S. Malik, “Mediator-regulated tran-

scription through the +1 nucleosome,” Mol Cell, 48(6):837–48, 2012.

[Ozbudak et al., 2002] E.M. Ozbudak, M. Thattai, I. Kurtser, A.D. Grossman, and A. van Oude-

naarden, “Regulation of noise in the expression of a single gene,” Nat Genet, 31(1):69–73,

2002.

[Paixao and Bauer, 2015] T. Paixao and U. Bauer, “Using Reebs graphs to inestigate fitness

landscapes,” Technical report, IST Austria, 2015.

[Parker et al., 2011] D.S. Parker, M.A. White, A.I. Ramos, B.A. Cohen, and S. Barolo, “The

cis-regulatory logic of Hedgehog gradient responses: Key roles for Gli binding affinity, com-

petition, and cooperativity,” Sci Signal, 4(176):ra38, 2011.

[Paulsson, 2004] J. Paulsson, “Summing up the noise in gene networks,” Nature, 427:415–8,

2004.

[Paulsson and Ehrenberg, 2001] J. Paulsson and M. Ehrenberg, “Noise in a minimal regulatory

network: plasmid copy number control,” Q Rev Biophys, 34:1–59, 2001.



107

[Peccoud and Ycart, 1995] J. Peccoud and B. Ycart, “Markovian modelling of gene products

synthesis,” Theor Pop Biol, 48:222–34, 1995.

[Pedraza and Paulsson, 2008] J.M. Pedraza and J. Paulsson, “Effects of molecular memory

and bursting on fluctuations in gene expression,” Science, 319(5861):339–43, 2008.

[Pedraza and van Oudenaarden, 2005] J.M. Pedraza and A. van Oudenaarden, “Noise propa-

gation in gene networks,” Science, 307(5717):1965–9, 2005.

[Prelich, 2002] G. Prelich, “RNA polymerase II carboxy-terminal domain kinases: emerging

clues to their function,” Eukaryot Cell, 1(2):153–62, 2002.

[Ptashne and Gann, 2002] M. Ptashne and A. Gann, Genes and Signals, Cold Spring Harbor

Press, New York, 2002.

[Raj et al., 2006] A. Raj, C.S. Peskin, D. Tranchina, D.Y. Vargas, and S. Tyagi, “Stochastic

mRNA Synthesis in Mammalian Cells,” PLoS Biol, 4(10):e309, 2006.

[Raj et al., 2010] A. Raj, S.A. Rifkin, E. Andersen, and A. van Oudenaarden, “Variability in

gene expression underlies incomplete penetrance,” Nature, 463(7283):913–8, 2010.

[Raj and van Oudenaarden, 2008] A. Raj and A. van Oudenaarden, “Nature, nurture, or

chance: Stochastic gene expression and its consequences,” Cell, 135(2):216–26, 2008.

[Raser and O’Shea, 2004] J.M. Raser and E.K. O’Shea, “Control of Stochasticity in Eukaryotic

Gene Expression,” Science, 304(5678):1811–4, 2004.

[Raser and O’Shea, 2005] J.M. Raser and E.K. O’Shea, “Noise in gene expression: origins,

consequences, and control,” Science, 309(5743):2010–3, 2005.

[Richard and Foster, 2004] H. Richard and J.W. Foster, “Escherichia coli Glutamate- and

Arginine-Dependent Acid Resistance Systems Increase Internal pH and Reverse Transmem-

brane Potential,” J Bacteriol, 186:6032–41, 2004.
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[Tkačik et al., 2009] G. Tkačik, A.M. Walczak, and W. Bialek, “Optimizing information flow in

small genetic networks,” Phys Rev E, 80:031920, 2009.
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