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Abstract

Traditionally machine learning has been focusing on the problem of solving a single

task in isolation. While being quite well understood, this approach disregards an

important aspect of human learning: when facing a new problem, humans are able to

exploit knowledge acquired from previously learned tasks. Intuitively, access to several

problems simultaneously or sequentially could also be advantageous for a machine

learning system, especially if these tasks are closely related. Indeed, results of many

empirical studies have provided justification for this intuition. However, theoretical

justifications of this idea are rather limited.

The focus of this thesis is to expand the understanding of potential benefits of in-

formation transfer between several related learning problems. We provide theoretical

analysis for three scenarios of multi-task learning - multiple kernel learning, sequential

learning and active task selection. We also provide a PAC-Bayesian perspective on

lifelong learning and investigate how the task generation process influences the gener-

alization guarantees in this scenario. In addition, we show how some of the obtained

theoretical results can be used to derive principled multi-task and lifelong learning

algorithms and illustrate their performance on various synthetic and real-world datasets.
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1 Introduction

It has been a long-standing goal in machine learning to develop intelligent agents that

would be able to persist in the world. Over the past decades significant progress has

been made in developing efficient solutions for many related challenging problems, in

particular in computer vision applications. Some of them even lead to super-human

performance [25]. However, in order to succeed these methods often need an access

to large amounts of annotated data. This is not a problem when the goal is to solve

a particular isolated learning problem, due to the emergence of large data collections

like ImageNet [79] with millions of images and hundreds of classes. However, it makes

the application of many of the current machine learning methods for building intelligent

systems doubtful, because it would require collecting extensive amounts of annotated

data for every task the system faces during its life.

In contrast, humans are known to be able to learn new concepts from just a few

examples. A plausible explanation of this gap is that machine learning problems are

typically considered in isolation, while humans are able to exploit knowledge they

acquired from previously learned tasks for solving new ones more efficiently. This

observation has motivated an alternative, transfer approach to machine learning. It is

based on the idea of transferring information between several related problems in order

to improve the overall performance, instead of building a new model from scratch for

every new learning task.

From the practical point of view, information transfer can be considered successful

whenever, given the same amount of information, i.e. training data, it leads to better test

performance than learning every task in isolation, as can be quantified by extensive

empirical comparisons on various datasets. However, in this work we mainly focus on
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the theoretical analysis of transfer learning. In particular, we are interested in identifying

scenarios under which information transfer leads to provable reductions in the number

of annotated examples needed for every considered task for obtaining reliable solutions.

In this thesis we focus on two learning scenarios - multi-task and lifelong learning.

In the first case the learner is given a set of learning tasks simultaneously and its goal

is to perform well on all of them. The success of a multi-task method depends on how

the considered tasks are related and what information is transferred between them.

In Chapter 3 we discuss three types of information transfer, particularly focusing on

the use of linear predictors. In Section 3.1 we describe representation transfer that is

based on the assumption that the tasks share a beneficial, potentially low-dimensional

representation. In particular, we show that if such representation is given by a kernel

function in some fixed set of kernels, then it is possible to infer this kernel based on

the training data for several tasks. Moreover, under mild conditions on the kernel set,

the sample complexity overhead associated with learning a kernel vanishes as the

number of tasks increases and converges to the same sample complexity per task,

as if that beneficial kernel was given to the learner. These results were published in

the paper "Multi-task and Lifelong Learning of Kernels" with Shai Ben-David at ATL

2015 [70]. In Section 3.2 we consider parameter transfer approach that is based on the

idea that the model parameters for the tasks are close to each other. In particular, we

describe a theoretically justified method that is based on this assumption. This method

processes tasks sequentially by transferring information between subsequent tasks and

determines a beneficial task order based only on the training data for the given tasks.

This is a joint work with Viktoriia Sharmanska and Christoph Lampert and was published

in "Curriculum Learning of Multiple Tasks" at CVPR 2015 [74]. Finally, we also discuss

what can be done if not for all tasks any annotated data is available in Section 3.3 [73].

In Chapter 4 we focus on the second, lifelong learning scenario, when the learner

faces a stream of tasks and aims at extracting useful information from the observed

tasks in order to perform well in the future on new ones. For this form of information

transfer to make sense one has to make assumptions not only on the relatedness

between the tasks, but also on the way they are ordered. We start with analyzing

Baxter’s model of lifelong learning [14], in which the tasks are assumed to be sampled

i.i.d. from some unknown distributions. First, we show how the results obtained for
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multi-task learning of kernels (Section 3.2) can be extended to lifelong learning. Then

in Section 4.1.1 we describe a general PAC-Bayesian framework for lifelong learning

and show how parameter and representation transfer approaches can be obtained from

it. This is a joint work with Christoph Lampert published in "A PAC-Bayesian Bound for

Lifelong Learning" at ICML 2014 [71]. After that, in Section 4.1.2 we investigate whether

the i.i.d. assumption can be relaxed. First, we consider the case when the observed

tasks are identically, but not independently distributed and provide a generalization of

the PAC-Bayesian bound presented in Section 4.1.1. Next, we further relax the i.i.d.

assumption by allowing the distribution generating the tasks to change over time. We

show that in this case, under suitable assumptions, it is possible to learn a transfer

procedure that is able to cope with the changes in the task generating distribution.

This section is based on the joint work with Christoph Lampert, presented in "Lifelong

Learning with Non-i.i.d. Tasks" at NIPS 2015 [72]. We conclude by discussing what

can be done without any distributional assumptions on the tasks in Section 4.2. These

results are presented in the joint work with Ruth Urner, "Lifelong Learning with Weighted

Majority Votes" at NIPS 2016 [75].
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2 Background

The focus of this work is to examine potential benefits of multi-task and lifelong learning

compared to solving each task in isolation. To do so from the theoretical perspective

we will utilize tools from statistical learning theory and compare the results to those

established for solving a single task. Thus the purpose of this chapter is to provide

the main notation that will be used in the manuscript as well as an overview of PAC

(Probably Approximately Correct) [96] and PAC-Bayesian [62] theories that provide a

formalism to analyze and compare machine learning methods in a principled way. For

more details on this topic see [86, 66, 20].

2.1 Basic notions

Imagine we would like to write a spam filter - a computer program that, given an email,

predicts whether it is a spam or not. One could try to hard-code all possible features that

make an email a spam, but taking into account the amount of variation and ambiguity

in the data this approach will likely fail. Instead one could design a system that, given

a large corpora of emails that are spam and those that are not spam, would learn the

distinctions. This type of approaches is studied in machine learning.

To design such a system one needs to define how objects of interest are represented

to the computer. For example, one could represent emails as bag-of-words. This defines

the space X of all possible objects (emails) which we will refer to as input or feature

space. One also needs to specify what kind of predictions the system should make, i.e.

the set of possible labels Y. For the a spam filter Y = {"spam", "not spam"}. Finally, in
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order to quantify the quality of the predictions, we will employ the notion of loss function

` : Y × Y → [0, 1] that for every pair of labels (y, y′) specifies a penalty for predicting y

instead of y′. In binary classification the typical choice is 0/1 loss: `(y, y′) = Jy 6= y′K.

Now we can formally define the problem: given a training set S = {(x1, y1), . . . , (xn, yn)}

of object-label pairs a learning system needs to output a predictor or hypothesis

h : X → Y that maps objects to their labels. Of course, for a spam filter to be

useful it should make as few mistakes as possible in the future on potentially new, yet

unseen emails. However, for this to be possible the new, test instances should be

related to what the system was trained one. For example, if for training the system was

only given a collection of emails in English it is unreasonable to assume that it will be

able to correctly identify spam emails in French. This is formalized in statistical learning

theory through the notion of task D as a probability distribution over X ×Y . In particular,

it is assumed that the object-label pairs in the training set S are sampled i.i.d. from

some unknown task D and that the output of the learning system is tested on random

examples coming from the same distribution, which is formally captured by the notion of

expected error :

erD(h) = E
(x,y)∼D

[`(h(x), y)] , (2.1)

In this work we mostly focus on proper learning, where the learner is required to

output a hypothesis from a predefined hypothesis class H. In this case the goal of the

learner is to find a hypothesis with expected error close to the minimum value it can be,

which is called approximation error :

optD(H) := inf
h∈H

erD(h). (2.2)

2.2 PAC learning

Since instead of the task distribution D the learner is given only a finite set of annotated

examples S, it is not realistic to expect the learner to always find a good hypothesis.

Therefore, instead, we are interested in algorithms that output a hypothesis with small

expected error only with high probability. On top of that, the output of the learner is

only needed to be a good approximation of the best hypothesis in the class. These
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requirements are formally captured by the following definition, which is due to [35]:

Definition 1. (Agnostic PAC learnability) A hypothesis classH is agnostic PAC learnable

if there exist a function nH : (0, 1)2 → N and a learning algorithm, such that for every

ε, δ ∈ (0, 1), for every data distribution D over X × Y and every n ≥ nH(ε, δ) with

probability at least 1− δ over a training set S of size n:

erD(h) ≤ optD(H) + ε, (2.3)

where h ∈ H is the hypothesis returned by the algorithm. The quantity nH(ε, δ) is called

sample complexity of class H.

Learnability is closely related to the concept of uniform convergence.

Definition 2. (Uniform convergence) A hypothesis classH has the uniform convergence

property if there exists a function nH : (0, 1)2 → N such that for every ε, δ ∈ (0, 1), for

every data distribution D over X × Y and every n ≥ nH(ε, δ) with probability at least

1− δ over a training set S of size n:

∀h ∈ H | erD(h)− êrS(h)| ≤ ε, (2.4)

where êrS(h) denotes the empirical error :

êrS(h) =
1

n

n∑
i=1

`(h(xi), yi). (2.5)

If follows immediately from the above definitions that uniform convergence implies

learnability:

∀h ∈ H : erD(hS) ≤ êrS(hS) + ε ≤ êrS(h) + ε ≤ erD(h) + 2ε, (2.6)

where hS ∈ arg minh∈H êrS(h) is the empirical risk minimizer (ERM). Moreover, in the

case of binary classification, Y = {−1, 1}, with 0/1 loss, `(y, y′) = Jy 6= y′K, these two

conditions are equivalent (Theorem 6.7 in [86]).
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The uniform convergence property provides a way of proving learnability using

techniques from probability theory. For a fixed hypothesis h the deviation between the

expected error erD(h) and its empirical counterpart êrS(h) can be bounded with high

probability using concentration inequalities, like Hoeffding’s [38]. However, in order to

obtain a uniform convergence result one has to take into account the capacity of the

hypothesis set H. If H is finite, the number of its elements is a natural choice. However,

even some of infinetly large hypothesis sets have the uniform convergence property. In

the case of binary classification they are exactly those with finite VC dimension [97]:

Definition 3. (VC dimension) The VC-dimension of a binary hypothesis class H, de-

noted by VC(H), is the maximal size of a set C ⊂ X such that the restriction of H to C

is a set of all possible 2|C| functions from C to {−1, 1}.

VC-dimension of a hypothesis class determines the number of samples needed to

guarantee low estimation error:

Theorem 1 (Corollary 3.4 in [66]). LetH be a family of functions taking values in {−1, 1}

with a finite VC-dimension and ` be the 0/1 loss. Let S be a set of n training examples

sampled i.i.d. from an unknown distribution D over X × {−1, 1}. Then for any δ > 0 the

following holds with probability at least 1− δ over the training set S for all h ∈ H:

erD(h) ≤ êrS(h) +

√
2 VC(H) log(en/VC(H))

n
+

√
log(1/δ)

2n
. (2.7)

This result shows that the sample complexity of learning can be upper bounded by

Õ
(

VC(H)+log(1/δ)
ε2

)
1. However, a better bound of form Õ

(
VC(H)+log(1/δ)

ε

)
can be obtained

in the realizable case, when optD(H) = 0:

Theorem 2 (Corollaries 5.2 and 5.3 in [20]). Let H be a class of binary functions with a

finite VC-dimension and ` be the 0/1 loss.There exists a constant C, such that for any

δ ∈ (0, 1) and any learning task D with probability at least 1− δ over a training set S of

1We use Õ to hide some of the logarithmic factors.
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size n, sampled i.i.d. from D:

erD(hS) ≤ êrS(hS) +
√

êrS(hS) ·∆ + ∆, (2.8)

êrS(hS) ≤ erD(hS) +
√

erD(hS) ·∆ + ∆, (2.9)

erD(hS) ≤ optD(H) +
√

optD(H) ·∆ + ∆, (2.10)

where hS ∈ arg minh∈H êrS(h) is an empirical risk minimizer and

∆ = C
VC(H) log(n) + log(1/δ)

n
. (2.11)

Theorems 1 and 2 show that whenever the VC-dimension of a hypothesis class is

small, an empirical risk minimizer is guaranteed to work well. However, requiring a small

VC-dimension seriously limits the approximation properties of the class. In particular, it

may lead to large optD(H). A possible way to overcome this problem is to modify the

functional to be minimized based on the training data.

Consider the class of linear classifiers:

H = {hw : x 7→ sign(〈w, x〉) | w ∈ Rd, ‖w‖ ≤ 1}. (2.12)

Note that the constraint on the norm of the weight vector w does not influence the

capacity of the hypothesis class, because only the sign of the output is used for making

predictions. The VC-dimension of this class is d and therefore the sample complexity of

ERM is Õ(d/ε2), which can be problematic for high-dimensional problems. However, if

instead of searching for a hypothesis that just makes few mistakes on the training set,

the learner would prefer classifiers that also produce confident predictions, the sample

complexity can be reduced. This idea is captured by the notion of margin error :

erγD(hw) := E
(x,y)∼D

Jy〈w, x〉 < γK. (2.13)

Note that erD(h) ≤ erγD(h) for every γ ≥ 0. The following theorem provides a bound on

the sample complexity of minimizing the margin loss (a similar bound in the opposite

direction of the same form can also be obtained):
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Theorem 3 (Corollary 4.1 in [66]). Let H be a set of linear predictors and assume that

X ⊂ {x ∈ Rd : ‖x‖ ≤ B}. Fix γ > 0. Then for any δ > 0 with probability at least 1− δ the

following holds for any hw ∈ H:

erD(hw) ≤ êrγS(hw) + 2

√
B2

γ2n
+

√
log(1/δ)

2n
, (2.14)

where êrγS is the empirical margin loss:

êrγS(hw) =
1

n

n∑
i=1

Jyi〈w, x〉 < γK. (2.15)

The most important property of the above bound is that it does not depend on the

dimensionality d. In particular, it holds even for infinitely dimensional spaces. This

may seem to contradict the fact that infinitely dimensional linear predictors have infinite

VC-dimension and therefore are not learnable. However, this is not the case because

Theorem 3 is meaningful only if there exists a predictor with low margin error, which is a

significantly stronger requirement than that of having a small expected error with 0/1

loss.

Theorem 3 suggests that one could enrich the expressive power of linear predictors

by first mapping the data into a high dimensional space and then learn a halfspace

there. This idea motivates more general kernel approaches.

Definition 4. (Kernel function) A function K : X × X → R is called a kernel, if there

exist a Hilbert space F and a mapping φ : X → F with inner product 〈·, ·〉 such that

K(x, x′) = 〈φ(x), φ(x′)〉 for all x, x′ ∈ X .

A kernel function allows treating potentially non-linear predictors on X as linear, only

in a different space F :

HK = {hw : x 7→ sign(〈w, φ(x)〉) | ‖w‖K ≤ 1}. (2.16)

Moreover, many learning algorithms for halfspaces can be performed only based on the

values of the kernel function for pairs of training examples, so there is no need to specify
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the mapping φ explicitly. In addition, it makes them more computationally tractable than

performing a straightforward empirical risk minimization.

Theorem 3 applies to HK with just a modification of B2 = supx∈X K(x, x).

2.3 PAC-Bayesian learning

In contrast to PAC learning that deals with deterministic predictors, PAC-Bayesian theory

analyses randomized, Gibbs predictors. Given a distribution Q over the hypothesis set

H, the corresponding Gibbs predictor for every input x ∈ X samples a hypothesis h

according to Q and returns its prediction h(x). Its expected error on a task D can then

be written as:

erD(Q) = E
h∼Q

E
(x,y)∼D

`(h(x), y) (2.17)

and its empirical counter-part computed based on a training set

S = {(x1, y1), . . . , (xn, yn)} is:

êrS(Q) = E
h∼Q

1

n

n∑
i=1

`(h(xi), yi). (2.18)

PAC-Bayesian bounds allow us to relate these two quantities and also explicitly

incorporate prior knowledge in a form of some prior distribution P over the hypothesis

set H. There are many ways of proving PAC-Bayesian bounds that lead to slightly

different results [22, 84]. In this work we will concentrate of the following, probably the

simplest form:

Theorem 4. Let ` be a loss functions that takes values in [0, 1] and P be any prior

distribution over the hypothesis set H that should be selected before seeing the training

data. Then for any δ > 0 with probability at least 1− δ over a training set S of size n for

all distributions Q over H the following holds:

erD(Q) ≤ êrS(Q) +
1√
n

(
KL(Q||P ) +

1

8
+ log

1

δ

)
, (2.19)

where

KL(Q||P ) = E
h∼Q

ln
Q(h)

P (h)
(2.20)
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is the Kullback-Leibler divergence.

Proof. The main ingredient of PAC-Bayesian bounds is the following inequality [28] that

holds for any λ > 0:

E
h∼Q

g(h) ≤ 1

λ

(
KL(Q||P ) + log E

h∼P
eλg(h)

)
. (2.21)

By applying the above inequality to g(h) = n(erD(h)− êrS(h)) we obtain:

n(erD(Q)− êrS(Q)) ≤ 1

λ

(
KL(Q||P ) + log E

h∼P
eλn(erD(h)−êrS(h))

)
. (2.22)

Note that:

eλg(h) =
n∏
i=1

exp(λ(erD(h)− `(h(xi), yi))). (2.23)

Since for any fixed h ∈ H the factors are independent, by applying Hoeffding’s lemma

one obtains that:

E
S∼Dn

eλg(h) ≤ e
λ2n
8 . (2.24)

Using the fact that the prior P does not depend on the training data S we get that:

E
S∼Dn

E
h∼P

eλg(h) ≤ e
λ2n
8 . (2.25)

Therefore, by Markov’s inequality with probability at least 1− δ:

log E
h∼P

eλg(h) ≤ λ2n

8
+ log(1/δ). (2.26)

By choosing λ = 1/
√
n we obtain the statement of the theorem.

In terms of technicality the above proof is much more basic than those needed for

proving bounds like Theorems 1 and 2. This is because randomized predictors allow

substituting the worst case analysis, i.e. union bounds employed in PAC analysis, and

the corresponding combinatorial arguments by the averages and Markov’s inequality.

Consequently, the above theorem does not involve any combinatorial measure of

capacity of the hypothesis set H. Instead, it contains the Kullback-Leibler divergence

between the prior and the posterior distributions, which makes it data-dependent. In

particular, it suggests that in order to guarantee a small upper bound on the expected
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loss one should try to search for a posterior distribution that leads to small empirical

error, but at the same time is not significantly different from the prior, which is captured

by KL divergence and can be seen as some form of regularization. Consequently,

the minimization of the right hand side of (2.19) does not lead to just empirical risk

minimization, as it is for PAC bounds, but allows to develop other algorithms that can

also take into account the prior knowledge about the problem. And the fact that the

bound holds uniformly for all posterior distributions means that its guarantee will also

hold for the one minimizing its right hand side.

On the other hand, the guarantees provided by Theorem 4 are for Gibbs predictors,

which are rarely used in practice. However, there are situations when equation (2.19)

can be converted into one about standard, deterministic predictors. In particular, in

case of binary classification with 0/1 loss, the expected error of a majority vote classifier,

corresponding to a distribution Q, is at most twice erD(Q) [63, 51]:

E
(x,y)∼D

s
sign

(
E
h∼Q

h(x)

)
6= y

{
≤ 2 erD(Q). (2.27)

This is because, for a fixed point (x, y), the majority will make a mistake on it if and

only if at least a half of the predictors, with respect to distribution Q, are also giving an

incorrect prediction on it, in which case Eh∼QJh(x) 6= yK ≥ 0.5.

A concrete form of an objective function provided by the right hand side of (2.19)

depends on the choice of the hypothesis set H and a form of prior and posterior

distributions. The best understood case are linear predictors and Gaussian distributions.

In particular, let P = N (wP , Id) and Q = N (wQ, Id), i.e. Gaussian distributions with unit

variance that differ only by the value of their means. First, one has to compute the

empirical error of a Gibbs classifier. For this choice of posterior distributions it is [33, 50]:

êrS(Q) =
1

n

n∑
i=1

Φ̄

(
yi〈wQ, xi〉
‖xi‖

)
, (2.28)

where

Φ̄(z) =
1

2

(
1− erf

(
z√
2

))
(2.29)
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and

erf(z) =
2√
φ

∫ z

0

e−t
2

dt. (2.30)

The Kullback-Leibler divergence between N (wP , Id) and N (wQ, Id) is simply ‖wP−wQ‖
2

2
.

Lastly, note that the majority vote classifier associated with N (wQ, Id) is identical to the

one given by its mean, i.e. wQ. Therefore the bound (2.19) leads to the following result

for linear predictors:

1

2
erD(hwQ) ≤ 1

n

n∑
i=1

Φ̄

(
yi〈wQ, xi〉
‖xi‖

)
+
‖wP − wQ‖2

2
√
n

+
log 1/δ + 1/8√

n
. (2.31)

Now we can see that if we set wP to be the zero vector, we obtain an objective function

similar to one used in Support Vector Machines (SVM).
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3 Multi-task Learning

In multi-task learning [21, 2] a learner is given a collection D1, . . . , DT of T prediction

tasks that need to be solved. As most of the previous works, we will assume that all of

them are defined on the same domain X × Y, however, there were some attempts to

generalize multi-task learning to heterogeneous representations [100]. For each task Dt

the learner is given a training set of i.i.d. annotated examples St = {(xt1, yt1), . . . , (xtn, y
t
n)}.

We will also assume that the size of the training sets n is the same for all tasks. Given a

hypothesis set H and a loss function ` the goal of the learner is to identify a predictor ht

for every task Dt, such that the resulting average expected error is small:

erD(h) =
1

T

T∑
t=1

erDt(ht), (3.1)

where D = (D1, . . . , DT ) and h = (h1, . . . , hT ).

Traditional machine learning algorithms can be applied to solve each of the given

tasks in isolation. However, the motivation behind the multi-task scenario is that by

solving all given tasks jointly and transferring information between them the learning

process can be made more efficient. The success of information transfer depends

on how the given tasks are related. Various assumptions have been exploited in the

multi-task literature, ranging from Bayesian approaches [10, 36], to learning shared

metrics for nearest neighbor classifiers [92], shared low-dimensional representations [6]

or joint regularization [32] for linear classification.

There are also numerous works aiming at demonstrating potential benefits of infor-

mation transfer from the theoretical perspective through sample complexity reductions.

One of the first and most general analysis of multi-task learning was performed by
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Baxter [13, 14]. Assuming that instead of considering a single hypothesis set H, the

learner is given a collection of hypothesis classes H, Baxter proved uniform convergence

bounds of the following form (Theorem 4 in [14]) for all h ∈ HT = ∪H∈H{(h1, . . . , hT ) :

h1, . . . , hT ∈ H}:

erD(h) ≤ êrS(h) + εmt, (3.2)

where

êrS(h) =
1

T

T∑
t=1

êrSt(ht) (3.3)

is an average empirical error evaluated on the collection of training sets S = {S1, . . . , ST}.

Alternatively one could simply sum up individual uniform convergence bounds for T

tasks using the union bound argument and obtain a similar result, but for all h ∈ HT
ind =

{(h1, . . . , hT ) : h1, . . . , hT ∈ ∪H∈HH}:

erD(h) ≤ êrS(h) + εind. (3.4)

On one hand, the second approach gives a more general statement, because considers

a larger hypothesis class: HT ⊂ HT
ind. On the other hand, εind in (3.4) decreases

only with n (as, for example, in Theorem 1), while εmt, as shown in [14], under some

circumstances decreases with both n and T and can potentially be smaller. Therefore,

in general (3.2) and (3.4) are not comparable. However, if we assume that tasks are

related in a way that there exists H ∈ H that works well for all T given tasks, i.e. the

empirical error on the right hand side of (3.2) can be made as small as that in (3.4),

and the number of tasks T is large, Baxter’s result shows that the number of training

examples per task needed to achieve particular estimation error is smaller than that

given by considering every task in isolation, as in (3.4). This is one of the examples of

how relatedness between tasks may lead to provable sample complexity reductions in

comparison to solving each given task independently from the others.

Baxter’s analysis was later improved in [61] by using Rademacher complexities.

Similar results were also obtained in [18] under the assumption that the task distribu-

tions can be transformed one to another by applying transformation functions from a

predefined set of possible transformations.

In this chapter we will discuss some of the possible relatedness assumptions in more
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details, including representation transfer and hypothesis transfer, and illustrate potential

benefits of joint learning from both theoretical and experimental perspectives.

3.1 Representation transfer

One of the widely used assumptions on task relatedness is that there exists a common

representation that leads to low average approximation error for all tasks. In particular,

this assumption was explored in case where every task is solved using a sparse

combination of original features or their linear transformations [5, 6]. Assuming that

the sparsity pattern is shared across the given learning problems, the corresponding

methods aim at inferring it from the data for all tasks. In its simplest form, where only

sparse combinations of the original features are considered, it is achieved through

minimizing the following objective function:

êrS(hw1 , . . . , hwT ) + γ‖W‖2
2,1, (3.5)

where hwt(x) = 〈wt, x〉 are linear predictors and W is a matrix with columns given by

the weight vectors w1, . . . , wT . First, the objective function (3.5) favors linear predictors

that lead to small average empirical error (3.3). Moreover, the regularization term

‖W‖2
2,1 =

(∑
k ‖wk‖2

)2, where wk denotes the k-th row of matrix W , enforces the weight

matrix W to have many rows equal to zero. Thus minimizing (3.5) leads to linear

predictors that well perform on all tasks and share a common sparsity pattern.

These methods were further extended to be able to handle different levels of related-

ness between tasks [8], disjoint [7] or overlapping [47] groups of related tasks and

exploit known unrelated tasks [78]. A similar paradigm was also used in [1], where the

predictors for the tasks are assumed to lie on a low-dimensional manifold, rather than in

a linear subspace. Furthermore, it was extended to kernel methods, where the common

representation is assumed to be described by a kernel function and the corresponding

methods aim at discovering a suitable kernel [39, 40, 34, 83, 76, 101].

The assumption of a common low-dimensional representation can be seen as a

particular case of Baxter’s model where tasks share a good hypothesis space. Therefore

his analysis [13, 14] can be directly applied to this scenario. However, potential sample
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complexity improvements provided by these results depend on the behavior of particular

types of covering numbers, which, due to generality of Baxter’s results, is often not

easy to infer. This motivated a series of works analyzing specifically possible benefits

of inferring a low-dimensional representation from a group of tasks, either as a sparse

combination of initial features [58, 45, 53] or their linear transformations [55, 59, 60].

In this section we extend these results by providing an analysis for learning a common

kernel function for multiple tasks. There results have been published in the paper

"Multi-task and Lifelong Learning of Kernels" [70].

Multiple kernel learning for single-task problems has been studied theoretically using

various techniques. Cortes et al in [26] have analyzed the case of linear combinations of

finitely many kernels with `p constraints using Rademacher complexity. In particular, for

`1 constraint they have provided a bound of form O(
√

log(k)/n), where k is the number

of base kernels and m is the size of the training set. This analysis was further improved

using local Rademacher complexities in [44]. We will instead employ the technique

from [89] that is based on the notion of pseudodimension:

Definition 5. The class K = {K : X × X → R} of kernels pseudo-shatters the set of n

pairs of points (x1, x
′
1), . . . , (xn, x

′
n), if there exist thresholds t1, . . . , tn such that for any

b1, . . . , bn ∈ {−1,+1} there exists a kernel K ∈ K such that sign(K(xi, x
′
i) − ti) = bi.

The pseudodimension dφ(K) is the largest n such that there exists a set of n pairs

pseudo-shattered by K.

This technique leads to suboptimal dependence on the number of kernels in the case

of linear combinations: O(
√
k/n) instead of O(

√
log(k)/n) from [26]. However, it allows

us to obtain general results that hold for any kernel family with finite pseudodimension.

In particular, the following upper bounds on the pseudodimension were shown in [89]:

• convex or linear combinations of k kernels have dφ ≤ k;

• Gaussian families with learned covariance matrix in Rk have dφ ≤ k(k+1)
2

;

• Gaussian families with learned low-rank covariance have dφ ≤ kr log2(8ekr), where

r is the maximum rank of the covariance matrix.
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In order to analyze multiple kernel learning in the multi-task setting we will use the

following multi-task version of the margin loss:

êrγS(h) =
1

T

T∑
t=1

êrγSt(ht) =
1

T

T∑
t=1

1

n

n∑
i=1

Jytiht(x
t
i) < γK, (3.6)

where S = {S1 . . . , ST} is the collection of training sets for all tasks. By employing the

same approach as in Theorem 3, we obtain the following uniform-convergence type of

bound:

Theorem 5 (Theorem 3 in [70]). Let D1, . . . , DT be any T learning tasks, defined on

X × {−1,+1}, and K be any kernel family with finite pseudodimension, such that

K(x, x) ≤ B2 for any K ∈ K and any x ∈ X . Then, for any fixed γ > 0 and any δ > 0,

if n > 2/ε2, then, with probability at least 1 − δ over the training set S = {S1, . . . , ST},

where St ∼ Dn
t for t = 1, . . . , T , the following inequality holds for all h = (h1, . . . , hT ) ∈

∪K∈KHT
K := ∪K∈K{(h1, . . . , hT ) : h1, . . . , hT ∈ HK}:

er2γ
D (h) + ε ≥ êrγS(h) ≥ erD(h)− ε, (3.7)

where

er2γ
D =

1

T

T∑
t=1

er2γ
Dt

(ht) =
1

T

T∑
t=1

E
(x,y)∼Dt

Jyht(x) < 2γK and (3.8)

ε =

√
8

2 log 2−log δ
T

+ log 2 +
dφ(K)

T
log 128eT 2n3B2

γ2dφ(K)
+ 256B2

γ2
log γen

8B
log 128nB2

γ2

n
. (3.9)

Analogously to the case of uniform convergence in PAC learning, the above result

leads to justification of the empirical risk minimization approach:

Corollary 1. Let ĥ be a minimizer, over ∪K∈KHT
K , of the empirical γ-margin loss, êrγS(h).

Then for any h∗ ∈ ∪K∈KHT
K (and in particular for a minimizer over of the true 2γ-loss

er2γ
D (h)):

erD(ĥ) ≤ er2γ
D (h∗) + 2ε.
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Proof. The result is implied by the following chain of inequalities:

erD(ĥ)− ε ≤1 êrγS(ĥ) ≤2 êrγS(h∗) ≤3 er2γ
D (h∗) + ε

where (≤1) and (≤3) follow from the above theorem and (≤2) follows from the definition

of an empirical risk minimizer.

Note that, while Theorem 5 provides performance guarantees for the ERM rule, in

many cases implementing it is NP-hard as is implementing of ERM in the agnostic case

for single-task problems [41].

Note, that in the case of a single task (T = 1) Theorem 5 leads the same bound

of form Õ

(√
dφ+B2/γ2

n

)
as the results of [89]. However, as the number of tasks (T )

tends to infinity, while the number of training examples per task (n) stays constant, the

overhead associated with learning a kernel vanishes. In particular, the bound on the

estimation error turns into Õ
(√

B2/γ2

n

)
, i.e. the bound known for the case of learning

with a single kernel (Theorem 3). Therefore, if there exists a kernel K ∈ K that is useful

for all tasks, i.e. er2γ
D (h∗) is small, then access to training data from sufficiently many

tasks allows to learn them with the same sample complexity per task, as if that good

kernel was known in advance.

3.2 Parameter transfer

The parameter transfer approach is based on the idea that predictors corresponding

to related tasks are similar to each other in terms of their parametric form. In the case

of linear predictors this idea was introduced in [32], where the authors proposed an

SVM-like algorithm:

min
w0,wt,ξti

‖w0‖2 +
1

T

T∑
t=1

‖wt − w0‖2 +
C

T

T∑
t=1

1

n

n∑
i=1

ξti

subject to yti〈wt, xti〉 ≥ 1− ξti , ξti ≥ 0 for all t, i. (3.10)

The regularization term in (3.10) enforces the weight vectors for different tasks to lie

close to each other in terms of `2 norm and thus represents the parameter transfer
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assumption. A similar idea was also used in [23] in combination with online perceptron

algorithm and applied to various compluter vision problems [24, 90].

The main limitation of algorithm (3.10) is that it treats all tasks symmetrically as

equally related. This property reduces its applicability in realistic scenarios, where there

might be some outlier tasks or disjoint groups of related tasks and enforcing information

transfer may cause decrease of prediction quality. In such cases more flexible models

that are able to exploit the underlying task relatedness structure would be preferable.

This can be achieved by using graph regularization [31]. However, it requires prior

knowledge about the level of similarity between the tasks. Alternatively one could allow

the algorithm to automatically determine and exploit the structure of task relations. In

particular, we will discuss how to do it in a principled way in the case, when tasks are

solved sequentially, one at a time by transferring information from previous tasks to the

current one. These results were published in the paper "Curriculum Learning of Multiple

Tasks" [74].

Pi

Si

Qitransfer algorithm learning
algorithm

S1 S2 Si�1

Figure 3.1: Illustration of sequential multi-task learning.

We use the PAC-Bayesian approach to analyze this setting. For every task t let

Qt and Pt denote the posterior and prior distributions over H. We assume that there

is some deterministic transfer algorithm T A that produces a prior for the current task

based on the previous tasks. In addition, there is a learning algorithm A that solves the

task based on this prior knowledge (see Figure 3.1). In contrast to (3.10), this approach

provides flexibility in the sense that not all the tasks need to be equally related. However,

one would expect that its effectiveness depends on the chosen task order. The following

generalization bound allows us to quantify these effects.

Theorem 6 ([74]). For any deterministic transfer algorithm T A, any deterministic learn-

ing algorithm A, any prior distribution P and any δ > 0, the following inequality holds

with probability at least 1− δ over the training sets S1, . . . , ST of size n each for all orders
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π ∈ ST of T tasks:

erD(Q) ≤ êrS(Q) +
1

T
√
n

T∑
t=1

KL(Qπ(t)||Pπ(t)) +
8 log T + 1

8
√
n

+
log 1/δ

T
√
n
, (3.11)

where

Q = (Q1, . . . , QT ) (3.12)

Qπ(t) = A(Sπ(t), Pπ(t)) (3.13)

Pπ(t) =

P for t = 1

T A(Sπ(1), . . . , Sπ(t−1)) for t ≥ 2

(3.14)

erD(Q) =
1

T

T∑
t=1

erDt(Qt) =
1

T

T∑
t=1

E
h∼Qt

E
(x,y)∼Dt

`(h(x), y) (3.15)

êrS(Q) =
1

T

T∑
t=1

êrSt(Qi) =
1

T

T∑
t=1

1

n

n∑
i=1

E
h∼Qt

`(h(xti), y
t
i) (3.16)

The above theorem provides an upper bound on the average expected error over

all tasks - the quantity of interest that the learner would like to minimize but cannot

compute directly. In contrast, the right hand side of (3.11) consists only of computable

quantities: the average empirical error and a sum of Kullback-Leibher divergences

between priors and posteriors for every task. Moreover, it also depends on the order

π, in which tasks are processed, because the prior for every task π(t) depends on the

tasks π(1), . . . , π(t− 1) that were solved before. Therefore the right hand side of (3.11)

can be seen as a quality measure of the order π and by minimizing it one can obtain an

order that is well suited for solving the tasks based on the given training data. In addition,

because the inequality holds uniformly for all possible task orders, its guarantees will

also holds for the resulting, learned data-dependent order.

We illustrate this process for the case of linear binary classification. We assume that

X is a subset of Rd, Y = {−1, 1}, ` is the zero-one loss and H is the set of all linear

classifiers without a bias term {sign〈w, x〉)}, where w ∈ Rd is a weight vector. To capture

this setting in the PAC-Bayesian framework we set all prior and posterior distributions to
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be Gaussian with unit variance that differ only by the value of their means:

Qt = N (wtQ, Id), Pt = N (wtP , Id) for t = 1, . . . , T. (3.17)

In order to apply Theorem 6 one also needs to specify the transfer and the learning

algorithms. We consider a simple transfer algorithm that just remembers the solution

for the last solved task. Thus the prior for the current task is equal to the posterior

obtained for the previous one: Pπ(t) = Qπ(t−1). We also set the initial prior P to be the

standard normal distribution N (0, Id) representing the absence of prior knowledge at

the beginning of the learning process. For the learning algorithm A we select a widely

used in computer vision applications Adaptive SVM [42], which is a modification of the

SVM with biased regularization. For a given weight vector w̃ and training data for a task,

it performs the following optimization:

min
w
‖w − w̃‖2 +

C

n

n∑
i=1

ξi (3.18)

sb.t. yi〈w, xi〉 ≥ 1− ξi, ξi ≥ 0 for all 1 ≤ i ≤ n.

By plugging in all these definitions in Theorem 6 and using a collection of standard

tricks (described in Section 2.3) we obtain the following corollary:

Corollary 2. For any δ > 0 with probability at least 1− δ over the training sets S1, . . . , ST

the following holds uniformly for all possible orders π ∈ ST of T tasks:

1

2T

T∑
t=1

E
(x,y)∼Dt

Jy 6= sign〈wt, x〉K ≤
1

T

T∑
t=1

[
1

n

n∑
i=1

Φ̄

(
y
π(t)
i 〈wπ(t), x

π(t)
i 〉

||xπ(t)
i ||

)
+ (3.19)

||wπ(t)−wπ(t−1)||2

2
√
n

]
+

1

8
√
n
− log δ

T
√
n

+
log T√
n
, (3.20)

where wπ(0) = 0 is the zero vector and for every t = 2, . . . , T the weight vector wπ(t) is

obtained by solving (3.18) using Sπ(t) and wπ(t−1).

Minimizing (3.20) requires searching over all possible permutations π ∈ ST . We pro-

pose to perform this search incrementally - for every t the task index π(t) is determined
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by optimizing the corresponding term in (3.20) with respect to the yet unsolved tasks T̃ :

π(t) = arg min
k∈T̃

1

n

n∑
i=1

Φ̄

(
yki 〈vk, xki 〉
||xki ||

)
+
||vk − wπ(t−1)||2

2
√
n

, (3.21)

where every vk is obtained by solving (3.18) using Sk and wπ(t−1). Thus at every step the

learner selects a task that is easy in the sense that it has low empirical error and is close

to the last solved task in terms of `2 distance between the corresponding weight vectors.

Therefore this procedure fits the intuition of starting with the simplest problem and then

proceeding with the most similar ones. The method is summarized in Algorithm 1 and

we refer to it as SeqMT. The computational complexity of SeqMT is quadratic in the

number of tasks T , because at every step it trains an ASVM for every yet unsolved task

(steps 5-7 in Algorithm 1).

Algorithm 1 Sequential Learning of Multiple Tasks
1: Input S1, . . . , ST {training sets}
2: π(0)← 0, w0 ← 0
3: T̃ ← {1, 2, . . . , T} {indices of yet unused tasks}
4: for t = 1 to T do
5: for all k ∈ T̃ do
6: vk ← solution of (3.18) using Sk, wπ(t−1)

7: end for
8: π(i)← minimizer of (3.21) w.r.t. k
9: wπ(t) ← vk where k = π(t)

10: T̃ ← T̃ \ {π(t)}
11: end for
12: Return w1, . . . , wT and π(1), . . . , π(T )

In order to verify that SeqMT can be used to find a favourable order of tasks we

perform an experimental evaluation on the Animals with Attributes (AwA)1 [49] and

Shoes2 [19] augmented with attributes3 [46] datasets.

In the first experiment we focus on eight classes from the AwA dataset: chimpanzee,

giant panda, leopard, persian cat, hippopotamus, raccoon, rat, seal, for which there is

additional human annotation available [87]. For each class this annotation consists of

ranking scores of its images, whether an object is easy or hard to recognize. We split

the data in each class into five equal parts with respect to this ranking. Each part has

1http://attributes.kyb.tuebingen.mpg.de/
2http://tamaraberg.com/attributesDataset/index.html
3http://vision.cs.utexas.edu/whittlesearch/

http://attributes.kyb.tuebingen.mpg.de/
http://tamaraberg.com/attributesDataset/index.html
http://vision.cs.utexas.edu/whittlesearch/
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on average 120 samples except the class rat, for which there are only approximately

60 samples per part. We create five tasks per class, where every problem is a binary

classification of one of the parts against the remaining seven classes. For each task we

randomly select 21 vs 21 training images and 77 vs 77 test images (35 vs 35 in case of

class rat) with equal amount of samples from each of the classes acting as negative

examples. We also make sure that the data between different tasks does not overlap. As

our feature representation, we use 2000-dimensional bag-of-words histograms obtained

from SURF descriptors [15], which we `2-normalize and augment with a unit element to

act as a bias term. All the methods considered in the evaluation have one free parameter

that we choose from 8 values {10−2, 10−1 . . . , 105} using 5× 5 fold cross-validation.
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Figure 3.2: AwA dataset: comparison of SeqMT method with (3.10) (MT), the single-task
(IndSVM) and MergedSVM baselines. The height of the bar corresponds to the average
error rate (with standard error of the mean) over 5 tasks across 20 repeats.

In order to demonstrate potential advantages of the sequential approach to multi-task

learning we compare SeqMT to the ordinary multi-task method (3.10), which we refer to

as MT. As can be seen from Figure 3.2, the proposed approach outperforms MT method

in all 8 cases. This supports the intuition that, if not all tasks are equally related, learning

them sequentially can be more effective than jointly. The rather poor performance of

a linear SVM baseline that solves each task independently (IndSVM) verifies that the

parameter transfer approach is relevant in the considered setting. As a reference, we

also trained a linear SVM that merges the data from all tasks and outputs one linear

predictor for all tasks (MergedSVM). Its performance is rather unstable: in the cases

of chimpanzee and giant panda MergedSVM outperforms SeqMT and MT methods,

which indicates that the corresponding tasks are so similar that a single hyperplane
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can explain most of them. In this case, MergedSVM benefits from the amount of data

that is available to find this hyperplane. However, when the tasks are different enough,

MergedSVM loses to SeqMT and MT models. In particular, in the case of leopard

MergedSVM does not improve even over independent training.

In order to examine the effect that the task order has on the overall accuracy, we

compare SeqMT to other methods that solve tasks sequentially using an Adaptive

SVM (3.18) and differ only by how the tasks are ordered. First, as can be seen from

Figure 3.3, SeqMT outperforms the Random baseline that processes tasks in a random

order. We also evaluate the Semantic baseline that orders tasks from easiest to hardest

according to human annotation as if it was given to the learner. In 6 out of 8 classes,

SeqMT is better or on par with this baseline. Interestingly, in the case of seal and

hippopotamus Semantic is on par or even worse than Random baseline. This indicates

that the human intuition of what is a favorable order of tasks does not always coincide

with what is beneficial for a machine learning system. In addition, we also evaluate

a baseline inspired by the diversity heuristic from [80]. It defines the next task to be

solved by maximizing (3.21) instead of minimizing it. We refer to it as Diversity. However

this max heuristic is not effective in the considered setting. Lastly, since there are

only five tasks in each experiment, we could also evaluate all possible deterministic

orders of tasks, which results in 120 baselines. We visualize their performance using

a violin plot [37], where the width of a horizontal slice of the shaded area reflects how

many different orders achieve this error rate (performance stated on the vertical axis).

In general, SeqMT is comparable to the best possible fixed orders. Interestingly, it

outperforms them in two cases of rat and seal, which is possible because SeqMT may

vary the order of tasks between different repeats, while every baseline corresponding to

one of 120 task orders solves tasks in the same order in all 20 repeats. Thus, learning

an adaptive order of tasks based on the training data may be advantageous to solving

them in any fixed order, even the best one.

In the second experiment we focus on 10 classes of shoe models from the Shoes

dataset [19]: athletic, boots, clogs, flats, heels, pumps, rain boots, sneakers, stiletto,

wedding shoes, which are associated with 10 attributes [46]: pointy at the front, open,

bright in color, covered with ornaments, shiny, high at the heel, long on the leg, formal,

sporty, feminine. Attributes are provided per class by scores ranging from 1, denoting
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Figure 3.3: Different task order strategies in the experiment with AwA dataset. Averaged
error rate performance (averaged over 20 repeats) is shown on the vertical axis.

class that "has it the least", to 10, denoting class that “has it the most”. Using this

information for each attribute we form a binary classification task, using samples from

classes with ranks 10 and 9 as positives and samples from classes with ranks 1 and 2

as negatives. As a result we obtain 10 tasks. For each of them we use 50 positive and

50 negative samples for training and 300 positive and 300 negative images for testing,

which are randomly sampled from each class in equal amount. As features, we use

960 dimensional GIST descriptor concatenated with `1-normalized 30 dimensional color

descriptor and augment them with a unit element as bias term.

We start with evaluating the same baselines as in the experiment on the AwA dataset:

SepMT, MT, IndSVM, MergedSVM, Diversity and Random. As can be seen from

Table 3.1, in contrast to the first experiment, none of the methods involving parameter

transfer between the tasks show a significant improvement over the independent SVM

approach. This might be because in this setting there are some tasks that are clearly
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Methods Average error
IndSVM 10.34± 0.13
MergedSVM 29.67± 0.10
MT 10.37± 0.13
Diversity 12.66± 0.17
Random 12.14± 0.20
SeqMT 10.96± 0.12

Table 3.1: Experiment on Shoes dataset. We report average error rate performance
over 10 tasks across 20 repeats with standard error of the mean.

related such as high heel and shiny, and some tasks that are not, such as high heel and

sporty. And at the same time all the considered methods do not allow for any groups of

tasks being not related to each other.

The sequential transfer approach does not necessary need all the tasks to be related

to each other. However it relies on the idea that the tasks can be ordered in such a way

that each of them is related to the previous one. In practical applications and as was

observed in the experiment on Shoes dataset this might not be the case since there

might be some outlier tasks that are not similar to any other task, or there might be some

groups in the underlying task structure such that only tasks within a group are related

but there is no connection between the groups. In such cases forcing transfer between

unrelated tasks may lead to a decrease in the performance. This problem can be

avoided by allowing the learner to form multiple subsequences of tasks without forcing

information transfer between them. Alternatively, one could think about a sequence

of all tasks, but the learner is allowed to not transfer information between some of the

subsequent tasks and use the original prior P instead, i.e. start a new subsequence.

To describe this setting we introduce a set of flags bt ∈ {0, 1} for t = 2, ..., T , where

bt = 1 means that to solve the task π(t) the learner uses the information provided by

the previous tasks in the current subsequence, while bt = 0 denotes that there is no

transfer and P is used as a prior. As a result, we can prove the following modification of

Theorem 6:

Theorem 7 ([74]). For any deterministic transfer algorithm T A, any deterministic learn-

ing algorithm A, any prior P and any δ > 0, the following holds with probability at least

1− δ over sampling the training sets S1, ..., ST of size n each uniformly for all orders π in
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the symmetric group ST and any set of flags b2, ..., bT ∈ {0, 1}:

erD(Q) ≤ êrS(Q) +
1

T
√
n

T∑
t=1

KL(Qπ(t)‖Pπ(t)) + +
1 + 8 log 2T

8
√
n

+
log 1/δ

T
√
n
, (3.22)

where:

Q = (Q1, . . . , QT ) (3.23)

Qπ(t) = A(Pπ(t), Sπ(t)), (3.24)

Pπ(t) =

P for t = 1 or bt = 0

T A(Sπ(i), . . . , Sπ(t−1)) for bt = 1 and i = max{j : j < t ∧ bj = 0}
(3.25)

Analogously to Corollary 2, one obtains an instance of Theorem 7 for the case of

linear predictors:

Corollary 3. For any δ > 0, the following holds with probability at least 1 − δ over

sampling the training sets S1, ..., ST of size n each uniformly for all orders π of T tasks

and any set of flags {b2, ..., bT} ∈ {0, 1}T−1:

1

2T

T∑
t=1

E
(x,y)∼Dt

Jy 6= sign〈wt, x〉K ≤
1

T

T∑
t=1

[
1

n

n∑
i=1

Φ̄

(
y
π(t)
i 〈wπ(t), x

π(t)
i 〉

||xπ(t)
i ||

)
+

||wπ(t) − btwπ(t−1)||2

2
√
n

]
+

1

8
√
n
− log δ

T
√
n

+
log 2T√

n
, (3.26)

where wπ(0) = 0 and for every t = 2, . . . , T wπ(t) is obtained by solving (3.18) using Sπ(t)

and btwπ(t−1).

The corresponding algorithm that incrementally minimizes the right hand side

of (3.26) is summarized in Algorithm 2 and we refer to it as MultiSeqMT. Like Se-

qMT, its multiple subsequences version, MultiSeqMT, chooses which task to solve next

iteratively. However, at every step it has a possibility to continue any of the existing

subsequences or even start a new one. Specifically, at step (6) of Algorithm 1 the

learner for every yet unsolved task learns its weight vector wt using the Adaptive SVM

algorithm (3.18) not only with the weight wπ(t−1) of the last solved task, but also with the

weight vectors of the last tasks of all the existing subsequences and with zero vector.
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Methods Average error
IndSVM 10.34± 0.13
MergedSVM 29.67± 0.10
MT 10.37± 0.13
Diversity 12.66± 0.17
Random 12.14± 0.20
SeqMT (ours) 10.96± 0.12

MultiSeqMT (ours) 9.95± 0.12
RandomMultiSeq 10.89± 0.14

Table 3.2: Extended experiment on Shoes dataset. The numbers correspond to average
error rate performance over 10 tasks across 20 repeats with standard error of the mean.

Therefore at every iteration (3.20) is used not only to define the next task to solve, but

also to decide which subsequence to continue. Note that the possibility to generate

multiple subsequences of tasks results in higher complexity of running MultiSeqMT as it

may require to solve (3.18) up to T 3 times.

Algorithm 2 MultiSeqMT: Sequential Learning with Multiple Subsequences
1: Input S1, . . . , ST {training sets}
2: T̃ ← {1, 2, . . . , T} {indices of yet unused tasks}
3: P ← {0} {ws of the last tasks in the existing subsequences}
4: for t = 1 to T do
5: for all w̃ ∈ P do
6: k(w̃)← steps 5-7 of Algorithm 1 with w̃ instead of wπ(t−1)

7: end for
8: w∗ ← minimizer of (3.20) w.r.t. w̃ with substituting wπ(t−1) by w̃ and k by k(w̃)
9: wk(w∗) ← solution of (3.18) using Sk(w∗) and w∗

10: T̃ ← T̃ \ {k(w∗)}
11: P ← P ∪ {wk(w∗)}
12: if w∗ 6= 0 then
13: P ← P \ {w∗}
14: end if
15: end for
16: Return w1, . . . , wT

In order to demonstrate potential benefits of the ability to divide tasks into subse-

quences, provided by MultiSeqMT, we evaluate it on the described before experiment

with Shoes dataset, where all other parameter transfer approaches failed to outperform

the independent SVM method. Additionally we include a baseline RandomMultiSeq that

learns attributes in a random order with an option to randomly start a new subsequence.

As can be seen from Table 3.2, MultiSeqMT outperforms all other baselines, while

SeqMT and MT are affected by forcing transfer between unrelated tasks and match the



30

performance of IndSVM. This confirms that learning multiple subsequences is advanta-

geous, when not all given tasks are equally related. Moreover, learning multiple random

subsequences as RandomMultiSeq does is better than learning a single sequence of

all tasks, as SeqMT, Random and Diversity baselines do.

3.3 Active task selection

All multi-task methods mentioned before need at least some training data for all tasks

of interest and focus on reducing the sample complexity per task. However, in some

situations, the fixed costs of obtaining annotated examples can be high, while variable

costs per label are reasonable. In such scenarios collecting even a few annotated

examples for every task of interest might be expensive and it would be preferable to

obtain possibly larger amounts of training data, but from fewer tasks. For example,

for building a personalized speech recognition system it would be easier to collect a

reasonable amount of data from a few users, rather than a few examples from every

potential user of the system.

The active task selection approach is an alternative to more traditional multi-task

methods that does not need access to annotated training data for all tasks of interest.

In contrast, initially every task is represented only by a set of unlabeled examples.

Based on this information, the learner is allowed to select a subset of tasks for which to

request labels. After obtaining those, the learner needs to provide solutions for all tasks,

selected as well as not selected. Similarly to active learning the hope is that selecting

objects to be labeled in an intelligent, data-dependent way might be more beneficial

than choosing them at random. However, in contrast to traditional active learning where

the learner has to provide only one predictor for all examples, in active task selection he

has to identify individual predictors for every task of interest, including those for which

there are no labeled examples available. Such unlabeled tasks can be solved only

by transferring information from the selected labeled tasks. This is a type of situation

considered in unsupervised domain adaptation and the quality of the resulting solutions

will depend on the choice of transfer algorithm. Moreover, the transfer method should

also influence the choice of the labeled tasks, because for different approaches different

subsets of tasks might be most informative. In this section we will describe how to select
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the labeled tasks in a principled way for two domain adaptation methods.

We focus on binary classification with 0/1 loss, i.e. Y = {−1, 1} and `(y, y′) = Jy 6=

y′K. Moreover, we consider only deterministic labeling functions. Thus we assume

that there are T tasks 〈D1, f1〉, . . . , 〈DT , fT 〉, where every task t is described by a

marginal distribution Dt over the input space X and a labeling function ft : X → Y.

Initially the learner is given a collection of T unlabeled training sets Su1 , . . . , SuT , where

every Sut = {xt1, . . . , xtn} consists of n i.i.d. samples from the corresponding marginal

distribution Dt. Based on this information the learner is allowed to select a subset

{t1, . . . , tk} of k tasks. For each selected task ti the learner obtains labels for a random

subset Slti ⊂ Suti of m points (we assume that these examples are sampled from the

unlabeled training set without replacement).

Probably the simplest unsupervised domain adaptation method is to train a classifier

on the labeled data from one task and use it without any changes on the task of interest.

The expected performance of this hypothesis on the target task depends on how similar

the tasks are in terms of the discrepancy [43, 17] between their marginal distributions:

Definition 6 (Definition 4 in [54]). The discrepancy between distributions D1 and D2

over X with respect to a hypothesis set H is defined as:

disc(D1, D2) = max
h,h′∈H

|erD1(h, h
′)− erD2(h, h

′)| , (3.27)

where erDi(h, h
′) = Ex∼Di `(h(x), h′(x)).

The corresponding guarantees are provided by the following result:

Proposition 1 (Theorem 2 in [16]). For any two tasks 〈D1, f1〉 and 〈D2, f2〉 and any

hypothesis h ∈ H the following inequality holds:

er2(h) ≤ er1(h) + disc(D1, D2) + λ12,

where λ12 = minh∈H(er1(h) + er2(h)).

One of the important advantages of discrepancy as a measure of the difference

between distributions is that it can be estimated based on the unlabeled samples:
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Proposition 2 (Lemma 1 in [16]). Let d be the VC dimension of the hypothesis set H

and S1, S2 be two i.i.d. samples of size n from D1 and D2 respectively. Then for any

δ > 0 with probability at least 1− δ:

disc(D1, D2)≤disc(S1, S2)+2

√
2d log(2n) + log(2/δ)

n
,

where

disc(S1, S2) = max
h,h′∈H

|êrS1(h, h
′)− êrS2(h, h

′)|

is the empirical discrepancy between the samples and

êrSi(h, h
′) =

1

n

∑
x∈Si

`(h(x), h′(x)).

Assuming that this simple method is the transfer approach selected by the learner,

active task selection approach reduces to choosing k tasks and assigning each of

the remaining tasks to one of them based on the unlabeled data. We encode such

an assignment by a vector C = (c1, . . . , cT ) that has at most k different components

corresponding to the selected tasks and ct specifies which of them is used as a source

of information for the t-th task. Thus the only remaining question is how to find such an

assignment wisely based only on the unlabeled data. The following theorem quantifies

the effect that the selection of the labeled tasks and the assignment of the unlabeled

tasks to them have on the overall multi-task generalization error:

Theorem 8. Let d be the VC dimension of the hypothesis set H, k be the maximum

number of tasks for which the learner may ask for labels, Su1 , . . . , SuT be T random sets

of size n each, where St
i.i.d.∼ Dt , and Sl1, . . . , SlT be their random subsets of size m each,

for which labels can be provided upon learner’s request. Then, for any δ > 0, provided

that the choice of labeled tasks I = {t1, . . . , tk} and assignment C = (c1, . . . , cT ) are

fully determined by the unlabeled data, the following inequality holds with probability at

least 1− δ uniformly for all possible choices of the assignment C and the corresponding
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hypotheses:

1

T

T∑
t=1

ert(hct) ≤
1

T

T∑
t=1

êrct(hct) +
1

T

T∑
t=1

disc(St, Sct) +
1

T

T∑
t=1

λtct (3.28)

+

√
2d log(em/d)

m
+

√
log(4/δ)

2m
+

√
2d log(en/d)

n
+

√
log(T ) + log(4/δ)

2n

+
2(T − k)

T

√
2d log(2n) + 2 log(T ) + log(4/δ)

n
. (3.29)

where êrt(h) = 1
m

∑
x∈Slt

`(h(x), ft(x)).

The above theorem provides an upper bound on the average expected error on all

tasks by the sum of three complexity terms and three task-dependent terms: training

errors on the labeled tasks, average distances to the prototype in terms of the empirical

discrepancies and an average of λ-s. The first complexity term vanishes as the number

of unlabeled examples per task (n) tends to infinity, indicating that in this case the

discrepancies between the tasks can be estimated precisely. If the number of labeled

examples for each of the selected tasks (m) tends to infinity, the remaining complexity

terms converge to 0 as 1/
√
m, showing that in this case the learner has full knowledge

about the labeled tasks. This rate of convergence is the best we can expect for the

considered transfer method, because there is no sharing of information between the

labeled tasks.

The only component of the right hand side of (3.29) that can not be estimated from

the data that is available to the learner is the average of the λ-s with respect to the

assignment C. While discrepancy captures the similarity between the marginal distribu-

tions, λ in addition embodies the similarity between the labeling functions. And though

Theorem 8 holds without any assumptions on the task relatedness, its guarantees are

most relevant when this term (as well as others) is small. While it is unreasonable to

expect λij to be small for every pair of tasks i and j, the right hand side of (3.29) is

small (and thus informative) only if the average discrepancy between every unlabeled

task and the labeled task it is assigned to is small:

1

T

T∑
t=1

disc(St, Sct). (3.30)

Thus requirement on the λ-term to be small can be reformulated as some kind of a
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smoothness assumption: if two tasks have similar marginal distributions, i.e. discrepancy

between them is small, they likely have similar labeling functions.

Minimizing (3.29) (taking into account that the choice of labeled tasks has to be done

based only on the unlabeled data) results in the following strategy for the active task

selection with single-source transfer (ATS-SS):

1. estimate pairwise discrepancies between the tasks based on the unlabeled data

2. minimize (3.30), i.e. cluster the tasks using the k-medoids method based on the

obtained empirical discrepancies

3. train classifiers for the cluster centers and transfer them to the other tasks in the

corresponding clusters.

Note that the inequality (3.29) holds uniformly with respect to assignment C and the

corresponding hypotheses, thus it also holds for the output of ATS-SS.

Theorem 8 and the resulting approach ATS-SS are based on the assumption that

for solving every task the learner uses only one of the chosen labeled tasks and there

is no information transfer between the labeled tasks. The simplicity of this approach

makes it intuitive and allows for simple analysis and implementation. However, it might

be suboptimal: potentially all k labeled tasks could be used to obtain predictors for the

remaining unlabeled tasks and information could also be shared between them. In order

to exploit this possibility, we consider a domain adaptation method [16] that minimizes a

convex combination of training errors on all given source domains, i.e. labeled tasks.

Given a set of tasks I = {t1, . . . , tk} ⊂ {1, . . . , T} define:

ΛI =

{
α ∈ [0, 1]T :

T∑
i=1

αi = 1; suppα ⊆ I

}
(3.31)

for suppα = {i ∈ {1, . . . , T} : αi 6= 0}. For a weight vector α ∈ ΛI , an α-weighted

empirical error of a hypothesis h ∈ H is defined as follows:

êrα(h) =
∑
i∈I

αiêri(h). (3.32)

Now we consider the scenario when in order to obtain a predictor for every task t, labeled

as well as unlabeled, the learner minimizes êrαt(h) for some parameter vector αt ∈ ΛI ,
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where I is the set of selected labeled tasks. This is a generalization of the previously

considered transfer from a single labeled task, because it reduces to that method if

every weight vector αt has only one non-zero component. However, real-valued weights

can potentially improve the performance and the following theorem provides a guide on

how to choose which tasks to label for this adaptation method:

Theorem 9. Let d be the VC dimension of the hypothesis set H, k be the maximum

number of tasks for which the learner may ask for labels, Su1 , . . . , SuT be T sets of size

n each, where Sui
i.i.d.∼ Di, and Sl1, . . . , S

l
T be their random subsets of size m each for

which labels would be provided upon learner’s request. Then for any δ > 0, provided

that the choice of labeled tasks I = {i1, . . . , ik} and the weights α1, . . . , αT ∈ ΛI are fully

determined by the unlabeled data only, the following inequality holds with probability at

least 1− δ over Su1 , . . . , SuT and Sl1, . . . , SlT for all possible choices of I, α1, . . . , αT ∈ ΛI

and h1, . . . , hT ∈ H:

1

T

T∑
t=1

ert(ht) ≤
1

T

T∑
t=1

êrαt(ht) +
1

T

T∑
t=1

∑
i∈I

αti disc(St, Si) (3.33)

+
A

T
‖α‖2,1 +

B

T
‖α‖1,2 + C +D +

1

T

T∑
t=1

∑
i∈I

αtiλti, (3.34)

where:

‖α‖2,1 =
T∑
t=1

√∑
i∈I

(αti)
2, ‖α‖1,2 =

√√√√∑
i∈I

(
T∑
t=1

αti

)2

,

A =

√
2d log(ekm/d)

m
, B =

√
log(4/δ)

2m
,

C =

√
8(log T + d log(enT/d))

n
+

√
2

n
log

4

δ
,

D = 2

√
2d log(2n) + 2 log(T ) + log(4/δ)

n
.

First, note that in the worst case, when there exists i ∈ I such that αti = 1 for every

t ∈ {1, . . . , T}, ‖α‖2,1 = ‖α‖1,2 = T and, thus, the term A
T
‖α‖2,1 + B

T
‖α‖1,2 behaves as
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O(
√
d log(km)/m). In the opposite extreme, if every αt weights all the labeled tasks

equally, i.e. αti = 1/k for all t ∈ {1, . . . , T} and i ∈ I, ‖α‖2,1 = ‖α‖1,2 = T√
k
. There-

fore the convergence of the corresponding term improves from O(
√
d log(km)/m) to

O(
√
d log(km)/km), which is the best we can expect from having km labeled examples.

Thus, this term in (3.35) captures the intuition that multi-source approach may improve

the performance: it encourages the learner to use data from multiple labeled tasks

for adaptation and to select the tasks that all would be equally useful, thus preventing

labeling tasks that would be useful for only a few others.

At the same time the complexity terms C and D behave as O(
√
d log(nT )/n). In

order for these terms to be balanced with A
T
‖α‖2,1 + B

T
‖α‖1,2, i.e. for the uncertainty

coming from the estimation of discrepancy to not dominate the uncertainty from the

estimation of the α-weighted risks, the number of unlabeled examples per task n should

be significantly (for k � T ) larger than m. However, under the common assumption that

obtaining enough unlabeled examples is significantly cheaper than annotated ones, this

is not a strong limitation.

As in the case of single-source transfer, we can use the right hand side of Theorem 9

to guide the choice of the labeled tasks and the weights α1, . . . , αT . In particular, its part

that can be evaluated based only on the unlabeled data and depends on the choice of I

and α-s is:
1

T

T∑
t=1

∑
i∈I

αti disc(St, Si) +
A

T
‖α‖2,1 +

B

T
‖α‖1,2. (3.35)

Thus we obtain the following analog of ATS-SS for the case of multi-source transfer

(ATM-MS):

1. estimate pairwise discrepancies between the tasks based on the unlabeled data

2. choose the labeled tasks I and the weights α1, . . . , αT by minimizing (3.35)

3. for every task t train a classifier by minimizing (3.32) using the obtained weight

vector αt.

Note that the above method satisfies the conditions of Theorem 9, thus its guarantees

also hold for the resulting solution.

Both ATS-SS and ATS-MS come with theoretical guarantees. However, implementing

them exactly is computationally hard, because it requires performing ERM and solving



37

k-medoids problem, both of which are in general NP-hard [41, 67]. Thus examine the

performance of the variations of ATS-SS and ATS-MS in practice when the optimization

problems are solved approximately by evaluating them on synthetic and real data. In

both experiments we use linear predictors without a bias term.

Since there are no earlier methods for multi-task learning with unlabeled tasks, we

compare both methods to the natural baseline commonly used to benchmark active

learning methods: it selects the labeled tasks randomly and then applies the same

adaptation method, i.e. each unlabeled task is solved using the predictor from the

closest labeled task (RTS-SS), or by training on a task-specific weighted combination

of labeled tasks (RTS-MS) with only the weights obtained by minimizing (3.35). We

also evaluate independent ridge regressions that have access to labels for all tasks

(denoted by Fully Labeled). However, this baseline has access to many more annotated

examples in total than the active and random task selection methods. In order to quantify

this effect we evaluate a Partially Labeled baseline. This method also has access to

labeled examples for all tasks, but the total number of annotated examples it sees is the

same as for task selection approaches. In particular, when the number of labeled tasks

is k, the number of labels per task the Partially Labeled baseline sees is mk/T . To avoid

the need for heuristic choices, we report results for this baseline only for integer values

of mk/T .

In order to estimate the empirical discrepancies between a pair of tasks (step 1 in

ATS-SS and ATS-MS) we find a linear predictor that minimizes the squared loss for

the binary classification problem of separating the two sets of instances, as in [16].

To minimize the k-medoid risk (step 2 in ATS-SS) we use local search [68]. For the

corresponding minimization of (3.35) in ATS-MS we use the GraSP algorithm [9]. GraSP

requires as a subroutine a method for optimizing the objective with respect to a given

sparsity pattern, for which we use gradient descent. To obtain classifiers for the individual

tasks in all scenarios we use least-squares ridge regression with regularization constant

from the set {10−3, 10−2, 10−1, 1, 10, 102, 103} found by 5× 5-fold cross validation.

First, we generate synthetic data that well suits the active task selection paradigm.

We construct T = 1000 binary classification tasks in R2, where every marginal distribu-

tion Dt is a unit-variance Gaussian with mean µt chosen uniformly at random from the

set [−5, 5] × [−5, 5]. The label +1 is assigned to all points that have angle between 0
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(a) Synthetic Data, single-source transfer
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(b) Synthetic Data, multi-source transfer
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(c) ILSVRC2010, single-source transfer
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(d) ILSVRC2010, multi-source transfer

Figure 3.4: Experimental results on synthetic and real data: average test error and
standard deviation over 100 repeats (synthetic) or 20 repeats (real) for the proposed
active task selection (ATS) and random task selection (RTS) as well as fully supervised
and partially labeled baselines.

and π with µt (computed counter-clockwise), the other points are labeled −1. We use

n = 1000 unlabeled and m = 100 labeled examples per task.

For the real-data experiment we use the train part of the ImageNet ILSVRC2010

dataset [79], which consists of approximately 1.2 million natural images from 1000

classes. We extract features using a deep convolutional neural network [88] that was

pretrained on MIT Places. For computational simplicity we reduce their dimension to 5

using PCA and augment them with a constant feature, resulting in d = 6. We construct

999 balanced binary tasks of classifying the largest class, Yorkshire terrier, versus one

of the remaining classes. We use n = 400 unlabeled samples per task and label a

subset of m = 100 examples for each of the selected tasks.

As can be seen from Figure 3.4 in both single-source and multi-source adaptation

cases choosing labeled tasks actively according to ATS-SS and ATS-MS is advanta-

geous over a random choice, especially when the budget only allows for a small fraction

of tasks to be labeled. The difference with the Partially Labeled baseline is even bigger,

indicating that in this case, having more labels for fewer tasks rather than only a few

labels for all tasks is beneficial not only in terms of annotation costs, but also in terms of
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prediction accuracy. Note that if the tasks in question were completely unrelated this

would likely not hold.

As the number of labeled tasks gets larger, e.g. half of all tasks, the performance of

the active task selection learner becomes almost identical to the performance of the

fully supervised method, even improving over it in the case of multi-source transfer on

synthetic data. This confirms the intuition that in the case of many related tasks even a

fraction of the tasks can contain enough information for solving all tasks.

3.4 Conclusion

In this chapter we have discussed various assumptions on task relatedness used in

multi-task learning. In particular, we have shown that previous results in representation

transfer that aim at learning a linear feature transformation can be extended to kernel

learning. The obtained results, given by Theorem 5 show that access to data from

several related learning tasks reduces the sample complexity per task for learning a

kernel whenever the pseudodimension of the considered kernel family is finite. In the

case of parameter transfer we have shown that processing tasks sequentially can be

more effective than doing it jointly. Theorems 6 and 7 capture the effect of the task

order on the average performance of the learner and can be used to derive algorithms

capable to automatically determine a favorable order of tasks based only on the training

data. We have illustrated this process in the case of linear predictors and shown the

effectiveness of the resulting SeqMT and MultiSeqMT methods on two real-worlds

image datasets. Finally, in Section 3.3 we have discussed the active task selection

framework: a modification of the standard multi-task scenario when initially all tasks

of interest are represented only by unlabeled data and the learner is able to select a

subset of tasks for which to request labels. Theorems 8 and 9 provide analysis of this

framework for two domain adaptation methods and can be used to make the choice

of which tasks to label in a principled way. We have illustrated the performance of the

resulting ATS-SS and ATS-MS methods on two datasets.
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4 Lifelong Learning

In lifelong learning [91] the learner encounters a stream of tasks - D1, . . . , DT , . . . For

every task he observes a training set St = {(xt1, yt1), . . . , (xtn, y
t
n)} of annotated examples

sampled i.i.d. from the corresponding distribution Dt. As in multi-task learning, we

assume that all tasks share the same domain X × Y and the learner uses the same

loss function ` to evaluate the performance of prediction methods. However, in contrast

to the multi-task setting, at every time step T the goal of the learner is not to perform

well on the observed tasks D1, . . . , DT , but rather to extract some information from them

that would be useful for solving new, yet unobserved tasks. Thus, for this goal to make

sense one has to assume some relatedness between the observed tasks and the new

ones.

The first formal model of the lifelong learning setting was proposed by Baxter [14],

who introduced the notion of task environment - a set T of all tasks that may need

to be solved at some point and a probability distribution D over it. Under Baxter’s

model the observed tasks are assumed to be sampled i.i.d. from some unknown task

environment and the goal of the learner is to perform well in expectation over new tasks

coming from the same environment. Thus, the task environment provides a way to

formally define a process that generates the tasks. However, this is not enough. Imagine

a situation where T contains all possible tasks (or just sufficiently many) on a given

domain and D assigns to all of them the same probability. In such case the finitely many

observed tasks very likely will not have anything in common and will not contain any

useful information for the future. Thus, as in multi-task learning, one also has to assume

some kind of functional relatedness between the tasks, which in the case of lifelong

learning is formulated not on the level of the observed tasks, but on the level of the task
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environment as a whole.

Conceptually almost all relatedness assumptions that are useful in multi-task learn-

ing, can also be exploited in lifelong learning by just casting the observed tasks at

every time step T as a multi-task problem. Consider, for example, an assumption of a

shared low-dimensional representation discussed in the multi-task scenario. Under this

assumption the lifelong learner could just perform optimization (3.5) on the observed

data, use the inferred feature representation for solving new tasks and repeat the pro-

cess when new data arrives. The drawback of such a naive approach is that it requires

re-training a model from scratch with every new task. This might not be satisfactory

when dealing with a potentially long stream of tasks, where one would prefer to be able

to efficiently update the model when new data arrives. Motivated by this observation, a

modification of multi-task methods of representation transfer [5, 6] for lifelong learning

was developed in [81, 82]. The main difference of the proposed there algorithm to its

multi-task ancestor is that it allows for such fast, incremental updates.

From the theoretical perspective the difference between multi-task and lifelong

learning is that in the latter case there is an additional source of uncertainty, because

the learner does not know precisely what new tasks are going to be. In case of Baxter’s

assumption of a shared inductive bias [14] it results in searching for a hypothesis set

H ∈ H that minimizes the following, lifelong expected error:

erD(H) = E
D∼D

erD(H) = E
D∼D

inf
h∈H

E
(x,y)∼D

`(h(x), y) (4.1)

instead of its multi-task version:

erD(H) =
1

T

T∑
t=1

erDt(H) =
1

T

T∑
t=1

inf
h∈H

E
(x,y)∼Dt

`(h(x), y). (4.2)

However, typically generalization bounds for lifelong expected error (4.1) are obtained

by first relating it to the multi-task version (4.2) and then relating the latter one to its

empirical counterpart. Thus, generalization bounds for multi-task learning can often be

obtained as a subproduct of proving bounds for the lifelong learning scenario [57].

We take the same path to extend our result for multi-task multiple kernel learning to

lifelong learning. In this case the quantity of interest - lifelong expected error - can be
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written as:

erD(HK) = E
D∼D

inf
h∈HK

erD(h) = E
D∼D

inf
h∈HK

E
(x,y)∼D

Jyh(x) < 0K. (4.3)

The following extension of Theorem 5 provides a uniform bound on its deviation from

the empirical counterpart given by:

êrγS(HK) =
1

T

T∑
t=1

inf
h∈HK

1

n

n∑
i=1

Jytih(xti) < γK. (4.4)

Theorem 10 (Theorem 5 in [70]). Let 〈T,D〉 be a task environment defined on X ×

{−1,+1} and K be any kernel family with finite pseudodimension dφ(K), such that

K(x, x) ≤ B2 for any K ∈ K and any x ∈ X . Then, for any fixed γ > 0 and any ε > 0, if

T > 8/ε2 and n > 8/ε2, then:

Pr
{
∀K ∈ K er2γ

D (HK) + ε ≥ êrγS(HK) ≥ erD(HK)− ε
}
≥ 1− δ, (4.5)

where

er2γ
D (HK) = E

D∼D
inf
h∈HK

er2γ
D (h) = E

D∼D
inf
h∈HK

E
(x,y)∼D

Jyh(x) < 2γK

δ = 2T+2

(
512eT 2n3B2

γ2dφ

)dφ (512nB2

γ2

) 1024B2T
γ2

log( eγn16B )
exp

(
−Tnε

2

32

)
+

4

(
32CT 5d5

φ

(
64B

εγ

)17
)dφ

exp

(
−Tε

2

128

)
. (4.6)

First note that, as in Theorem 5, the above result holds without any assumptions

on the task environment 〈T,D〉. However, it has the most significant implications in the

case when there exists some kernel K ∈ K that has low approximation error for all

tasks in the environment. This is the assumption on task relatedness that is indirectly

exploited by Theorem 10. In such case, the kernel that minimizes the average error over

the set of observed tasks is expected to be useful in expectation for new tasks coming

from the same environment.

The only difference between Theorem 10 and Theorem 5 is the second term in (4.6).
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Technically, this term comes from bounding the difference between lifelong expected

error erD(HK) and its multi-task version:

er
γ/2
D (HK) =

1

T

T∑
t=1

inf
h∈HK

E
(x,y)∼Dt

Jyh(x) < γ/2K. (4.7)

Indeed, the same arguments as for proving Theorem 5 can be used to bound the

difference between er
γ/2
D (HK) and its empirical counterpart erγS(HK). The only remaining

step is to relate erD(HK) to er
γ/2
D (HK). Thus, this additional term in (4.6) captures the

uncertainty coming from the fact that the lifelong learner does not know exactly what

new tasks are going to be. In the limit of infinitely many observed tasks (T →∞) this

term vanishes, indicating that by observing sufficiently many tasks the learner gets

the full knowledge about the task environment. The first term in (4.6) behaves exactly

the same as the one in Theorem 5: its part that depends on the pseudo-dimension

dφ vanishes as the number of observed tasks T grows and thus it converges to the

complexity of learning one task as if the learner would know a good kernel in advance.

The combination of two types of complexity terms - one for the task environment, i.e.

the first expectation in the definition of the lifelong expected error, and one for the

data distributions corresponding to the observed tasks - and vanishing of the overhead

associated with inferring the commonality, i.e. kernel function in case of Theorem 10,

are two distinct features of generalization bounds for lifelong learning that demonstrate

complexity and potential benefits of this setting from the theoretical perspective.

4.1 PAC-Bayesian perspective

4.1.1 I.i.d. tasks

Baxter’s idea of learning an inductive bias from multiple tasks can naturally be translated

to PAC-Bayesian language. Though Theorem 4 holds regardless of the agreement

between the prior distribution P and the underlying data distribution D, its implications

are most significant when the prior is informative, i.e. is close to posteriors with low

empirical error êrS(Q). In such cases the value of the right hand side of (2.19) can

be made small, because there exist posteriors with low empirical error and small
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KL-divergence from the prior.

While informative priors are most useful, in practice it might be hard to come up with

one. Thus, it would be preferable to be able to infer an informative prior from the data.

However, the only condition that the prior has to satisfy is to be independent from the

training data. A way around this problem was proposed in [69] by splitting the data into

two parts and using one for estimating a prior and another one for learning a predictor.

However, this approach requires a significant amount of training data and can not be

applied to lifelong learning, where the learner is interested in new, yet unobserved tasks.

Alternatively, one could follow the logic of Baxter’s inductive bias learning and try to infer

the prior from multiple observed tasks. In this section we will discuss how to do this in a

principled way. These results were published in the paper "A PAC-Bayesian Bound for

Lifelong Learning" [71].

First, note that technically minimizing a PAC-Bayesian bound like (2.19) with respect

to P is not a valid strategy for learning a prior. This is because, in contrast to being

uniform in posterior Q, inequality (2.19) holds only for a fixed, data independent prior.

Thus, if we wish to develop a PAC-Bayesian bound that can be used for learning priors

from the data, its guarantees have to be uniform in P . In order to achieve this we treat

the prior P itself as a random variable. We let P be an initial hyperprior distribution

over the set of possible priors and reformulate the goal of inferring the prior from the

observed tasks as adjusting P info a data-dependent hyperposterior distribution Q

over the set of priors. We also assume that for every task t the learner uses a fixed

deterministic learning algorithm that outputs a posterior Qt(St, P ) based on a prior P

and a training set St. Then the goal of the learner is to identify a hyperposterior Q that

in expectation leads to a low expected error erD(Q) on a new randomly sampled task D

with a training set S, when the prior is sampled according to Q:

erD(Q) = E
D∼D

E
S∼Dn

E
P∼Q

erD(Q(S, P )). (4.8)

Following the PAC-Bayesian path we require the hyperprior P to be independent from

the data and obtain the following result that bounds the difference between erD(Q) and
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its empirical counterpart:

êrS(Q) =
1

T

T∑
t=1

E
P∼Q

êrSt(Qt(St, P )), (4.9)

uniformly for all hyperposteriors Q:

Theorem 11 ([71]). Let 〈T,D〉 be any task environment and P be any fixed hyperprior

distribution. Then, for any δ > 0 the following inequality holds with probability at least

1− δ (over the training samples {S1, . . . , ST}) for all hyperposterior distributions Q:

erD(Q) ≤ êrS(Q) +

(
1√
T

+
1

T
√
n

)
KL(Q‖P) (4.10)

+
1

T
√
n

T∑
t=1

E
P∼Q

KL(Qt(St, P )‖P ) +
1√
n

(
1

8
− 1

T
log

δ

2

)
.

Like Theorem 10, Theorem 11 contains two types of complexity terms. The first one,

KL(Q‖P) corresponds to the level of the task environment in general and vanishes only

when the number of observed tasks T tends to infinity, i.e. when the learner has full

information about the task environment 〈T,D〉. In contrast, in the second complexity

term every KL(Qt(St, P )‖P ) belongs specifically to the t-th task. When T grows, this

term converges to an average KL-divergence over tasks and may remain non-zero,

indicating that full knowledge about the task environment is not sufficient to overcome

the uncertainty within each task. When, in contrast, the number of samples per task n

tends to infinity, the second complexity term converges to 0 as 1/
√
n, while the first one

does not, since there is still uncertainty on the task environment level.

As a PAC-Bayesian bound, the right hand side of (4.10) contains only computable

quantities and can thus be seen as a quality measure of the hyperposterior Q. By

minimizing it one can obtain a hyperposterior that is well suited to the particular task

environment and since (4.10) holds uniformly in Q, the obtained distribution over the

priors can be expected to work well on new tasks from the same environment. Now,

we will illustrate this process for two information transfer strategies discussed in the

multi-task chapter - parameter and representation transfer.

We focus on the case of linear predictors, i.e. X ⊂ Rd and h(x) = 〈w, x〉 if Y = R



46

or h(x) = sign〈w, x〉 if Y = {−1, 1}, where w ∈ Rd is a weight vector. We start with the

parameter transfer approach that is based on the assumption that the weight vectors for

different tasks are similar to each other [32]. In accordance with standard techniques,

we let prior and posterior distributions be Gaussian with unit variance that differ only by

the values of their means:

P = N (wP , Id) and Q = N (wQ, Id).

Thus priors are parametrised by wP , which is first distributed according to the hyperprior

distribution, P = N (0, σId) and later according to the hyperposterior Q = N (wQ, Id). To

capture the relatedness assumption we use as a learning algorithm for every task the

following modification of Adaptive SVM (3.18) with squared loss:

wQ = arg min

(
‖w − wP‖2 +

C

n

n∑
i=1

(yi − 〈w, xi〉)2

)
, (4.11)

which has a closed form solution

wQ =
( n
C
Id +XX>

)−1 ( n
C
wP +XY

)
= AwP + b, (4.12)

where X is the matrix with columns x1, . . . , xn, Y is a column of labels (y1, . . . , yn)>,

A =
(
Id + C

n
XX>

)−1 and b = C
n
AXY .

Using these definitions we can compute the complexity terms in (4.10):

KL(Q‖P) =
‖wQ‖2

2σ
+
d

2

(
log σ +

1

σ
− 1
)

and

E
P∼Q

KL(Qt(St, P )‖P ) =
1

2

(
‖(At − Id)wQ + bt‖2 + tr(At − Id)2

)
. (4.13)

For the loss function ` we consider two cases - 0/1 loss for binary classification and

truncated squared loss `(y, y′) = min{(y − y′)2, 1} for regression. In the first case the

expected empirical error of the Gibbs classifier is given by the following expression

[33, 50]

êrS(wQ) =
1

T

T∑
t=1

1

n

n∑
i=1

Φ̄

(
yti(x

t
i)
>(AtwQ + bt)√

(xti)
>(Id + AtA>t )xti

)
. (4.14)

Keeping in mind that for 0/1-loss the Gibbs error is at most twice smaller than the
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expected error of the classifier defined by AiwQ + bi [63, 51], we obtain the following

instantiation of inequality (4.10):

∀wQ
1

2
E

D∼D
E

S∼Dn
E

(x,y)∼D
[y 6= sign〈AwQ + b, x〉] ≤

√
Tn+ 1

2σT
√
n
‖wQ‖2 (4.15)

+
1

2T
√
n

T∑
t=1

‖(At − Id)wQ + bt‖2+
1

T

T∑
t=1

1

n

n∑
i=1

Φ̄

(
yti(x

t
i)
>(AtwQ + bt)√

(xti)
>(Id + AtA>t )xti

)
+const .

For regression tasks, since `(y, y′) = min{(y − y′)2, 1} ≤ (y − y′)2, we can upper

bound êr(wQ) by the empirical error of the Gibbs predictor with squared loss. This error

differs from the error of the predictor that is defined by AtwQ + bt only by an additive

constant that does not depend on wQ. Moreover, similarly to 0/1 loss, for truncated

squared loss ` the error of Gibbs predictor is also at least one half of the expected error

of the predictor defined by AtwQ+ bt. Thus we obtain the following instantiation of (4.10)

for the truncated squared loss:

∀wQ
1

2
E

D∼D
E

S∼Dn
E

(x,y)∼D
min{(y − 〈AwQ + b, x〉)2, 1} ≤

√
Tn+ 1

2σT
√
n
‖wQ‖2 (4.16)

+
1

2T
√
n

T∑
t=1

‖(At − Id)wQ + bt‖2 +
1

T

n∑
t=1

1

n

n∑
i=1

(yti − 〈AtwQ + bt, x
t
i〉)2 + const .

The bounds (4.15) and (4.16) suggest learning a data-dependent hyperposterior

by minimizing their right hand sides with respect to wQ. We will refer to the resulting

algorithms as Prior Learning with Gaussian hyperprior (PL-G).

In a practical implementation of PL-G for binary classification we replace Φ̄ in (4.15)

by its convex relaxation, Φcvx(z) = 1
2
− z√

2π
, if z ≤ 0 and Φcvx(z) = Φ̄(z) otherwise,

and use the conjugate gradient method for finding the minimum. PL-G for regression

problems is even simpler, because optimizing (4.16) has a closed form solution:

wQ =−
(
D +

√
Tn+ 1

σT
√
n
Id +

1

T
√
n

T∑
t=1

A′>t A
′
t

)−1(
c+

1

T
√
n

T∑
t=1

A′>t bt

)
,

where A′t = At − Id, D =
2

T

T∑
t=1

1

n
A>t XtX

>
t At, (4.17)

c> =
2

T

T∑
t=1

1

n

(C
n
Y >t X

>
t A
>
t XtX

>
t At − Y >t X>t At

)
.
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Representation transfer techniques are based on the assumption that the weight

vectors for different tasks lie in a low-dimensional subspace. In order to use Theorem 11

for learning such a subspace in a principled way we start with representing k-dimensional

subspaces of Rd by d× k matrices with orthogonal columns, i.e. elements of the Stiefel

manifold Vd,k. At the beginning of the learning process all subspaces are equally likely,

thus we let the hyperprior P be the uniform distribution over Vd,k [30]:

pP(B) =
1

C0

for anyB ∈ Vd,k, (4.18)

where C0 = 0F1(1
2
d, 0). For the hyperposterior Q we look for a distribution that concen-

trates its mass around a specific subspace, M . For this we employ a special case of

Langevin distribution, D(Ik,M), which can be interpreted as an analog of the Gaussian

distribution on Vd,k:

pQ(B) =
1

C1

exp(tr(M>B)) for anyB ∈ Vd,k, (4.19)

where C1 = 0F1(1
2
d, 1

4
M>M). This distribution is parametrized by a d× k matrix M with

M>M = Ik that represents the most promising subspace.

As before we use Gaussian distributions for priors and posteriors, however now they

are defined only within the subspaces sampled from P or Q:

P = N (0, σIk) and Q = N (wQ, σIk). (4.20)

For the learning algorithm we select ridge regression that again is defined only within

the subspace determined by the prior:

wQ = arg min
w

(
‖w‖2 +

C

n

n∑
i=1

(yi − 〈w,B>xi〉)2

)
, (4.21)

whereB is the matrix representing the subspace andB>x is the projected representation

of the training data in this subspace.

Now we can compute the complexity terms in (4.10). First, note that for any M ∈ Vd,k
there exits an orthogonal matrix L ∈ Rd×d such that LM = J = {δij} ∈ Rd×k. Therefore

if B ∼ D(Ik,M), than LB ∼ D(Ik, LM) = D(Ik, J). Thus, the entropy of D(Ik,M)
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is equal to the entropy of D(Ik, J) and is a constant independent of M . Since P is

uniform, KL(Q‖P) depends only on the differential entropy of Q and thus is also a

constant independent of M . Furthermore, KL(Qt(St, P )‖P ) = 1
2σ
‖wt(B)‖2, where B is

the representation of the selected subspace. Thus, we obtain the following corollary of

Theorem 11:

er(M) ≤ 1

T

T∑
t=1

E
B∼Q

{
êr(wt(B)) +

1

2σ
√
n
‖wt(B)‖2

}
+ const , (4.22)

where wt(B) = C
n

(
Ik + C

n
B>XtX

>
t B
)−1
B>XtYt. Interpreting the right hand side as

a quality measure, we can conclude that a representation, M , can be considered

promising for future tasks, if for all observed tasks it allows for classification with small

loss and small weight vector norm, i.e. large margin.

For a practical implementation for both binary classification and regression problems

we use the standard squared loss, which is an upper bound on both the 0/1 and the

truncated squared losses. Moreover, we substitute all expectations over Q by their

values at its mode, M , and replace the error of any Gibbs predictor by the error of the

deterministic predictor defined by the mode of the posterior distribution, wt(M). As a

result we obtain a quadratic optimization problem over the Stiefel manifold, which we

solve using gradient descent with curvilinear search [98] and call the corresponding

algorithm Prior Learning with Langevin hyperprior (PL-L).

In order to examine the quality of priors learned by minimizing (4.15), (4.16) and (4.22),

we evaluate PL-G and PL-L on three real world datasets:

• The Land Mine Detection [99] dataset consists of 14820 data points, each repre-

sented by 9 features extracted from radar images and associated with a binary

label corresponding to landmine or clutter. Data is collected from 29 geographical

regions and we treat each region as a binary classification task. We add a bias

term, resulting in 10-dimensional features.

• London School Data is a regression dataset, containing exam scores of 15362

students from 139 schools, where each school constitutes a task. We use the

same procedure as in [81] to encode 4 school-specific, 3 student-specific features

and a year of examination in a set of binary features. With a bias term the resulting
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dimensionality is d = 28. We divide labels (examination scores) by their maximum

value, thus we can assume that the squared loss will not exceed 1. We report the

squared error multiplied by the squared value of the maximum examination score.

• The Animals with Attributes Dataset [49] contains 30475 images from 50 classes.

We use PCA to reduce original 2000-dimensional features to 100 dimensions,

which we then l2-normalize and add a bias term. We form 49 binary classification

tasks, each of them is a binary classification of the largest class collie versus one

of the remaining classes. To prevent data overlap between different tasks, for

every task we use 2% of the data (approximately 20 images) available for collie

class and the same amount of images from the negative class.

We compare PL-G and PL-L to ordinary ridge regression, adaptive ridge regression

(ARR), i.e. Equation (4.11) with the prior wpr set to the average of the weight vectors

from the observed tasks, and with the ELLA algorithm [81] that learns a subspace

representation using structured sparsity constraints, also with squared loss.

In order to examine the effect of different number of observed tasks on the perfor-

mance of the algorithms on future tasks, in each experiment we set aside a subset of

tasks as unobserved (9 in Landmines, 39 in Schools, 9 in Animals) and use different

fractions of the remaining ones for training. To get reliable estimates of the transfer risk,

we repeat the experiment 100 times for each dataset and report the mean errors and

standard errors of the mean.

The only free parameter C in PL-G, PL-L and ARR we select from {10−3. . . 103} using

the following modification of the ordinary 3-fold cross-validation: we split the data of

each task into three parts and use the first third of all tasks jointly to learn a prior, then

we train individual predictors on the second part of the data and test their quality on the

last third. Using the same procedure, we select the regularization strength parameter µ

of the ELLA algorithm, while the remaining parameters are fixed at their default values.

We set the regularization parameter of the Ridge Regression using ordinary 3-fold

cross-validation.

The results of the empirical evaluation are reported in Figure 4.1. For the Landmine

dataset we report the value of area under the ROC curve, because the tasks are

unbalanced. By construction problems on the Animals with Attributes dataset are
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balanced, thus we report the standard mean classification error. Performance on the

Schools dataset is measured using the mean squared error.

First, note that all the methods that use information transfer for sufficiently many

observed tasks outperform the Ridge Regression baseline, indicating that the tasks are

related in the considered experimental settings. Moreover, their performance improves

with the number of observed tasks, which confirms the intuition that more observed

tasks contain more information for the lifelong learning scenario.

In order to illustrate the effect of the hyperprior, we report performance of PL-G

for two different values for the Gaussian hyperprior variance. We observe that higher

variance (σ = 10) leads to faster convergence, compared to σ = 1, for which the

adaption process is more conservative and many tasks are needed to find a reliable

hyperposterior.

Overall, PL-G and PL-L are comparable to the existing, manually designed methods -

ARR and ELLA, respectively. This indicates that the generalization bound of Theorem 11

can be used to derive principled and reasonably performing algorithms for lifelong

learning. At the same time it provides an alternative view on the implicit assumptions of

possible learning methods by reformulating them in terms of hyperpriors/hyperposterios.

4.1.2 Non-i.i.d. tasks

The original analysis of Baxter [14], as well as Theorems 10 and 11 rely on the assump-

tion that the observed tasks, as well as new ones are sampled i.i.d. from the same task

environment. This assumption makes it possible to rigorously argue about the future

of the learning process based on the observations. However, it limits the applicability

of these results in practice. In this subsection we will discuss two possible relaxations

of the i.i.d. assumption that nevertheless still can be used to analyze the future of the

lifelong learning process. These results were published in the paper "Lifelong Learning

with Non-i.i.d. Tasks" [72].

The simplest and most intuitive way to relax the i.i.d. assumption is to keep the

task environment fixed, but allow dependencies between the observed tasks. In this

case tasks are identically, but not independently distributed. In terms of relatedness

assumptions this setting is equivalent to the i.i.d. case, since in lifelong learning these



52

(a) (b)

(c) (d)

(e)

Figure 4.1: (a) mean AUC vs number of training tasks on Landmine dataset for ridge
regression, ARR and PL-G with σ = 1 and σ = 10, (b) mean squared error vs number
of training tasks on Schools dataset for ridge regression, ARR and PL-G with σ = 1
and σ = 10, (c) mean error vs number of training tasks on Animals dataset for ridge
regression, ARR and PL-G with σ = 1 and σ = 10, (d) mean AUC vs number of training
tasks for ELLA and PL-L with number of basis vectors k = 3 and k = 5 and variance
σ = 1 and σ = 10 on Landmine dataset, (e) MSE vs number of training tasks for ELLA
and PL-L with number of basis vectors k = 3 and k = 5 and variance σ = 1 and σ = 10
on Schools dataset.
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assumptions are formulated on the task environment level and this is assumed to be

constant. Thus, we can keep the same paradigm as that used for proving Theorem 11.

As commonly done in analyzing lifelong learning, the proof of Theorem 11 consists of

two steps. First, one bounds the difference between the empirical error êrS(Q) and the

average expected error over the observed tasks:

erD(Q) = E
P∼Q

1

T

T∑
t=1

E
h∼Qt(P,St)

E
(x,y)∼Dt

`(h(x), y). (4.23)

This step is performed conditioned on the observed tasks. Thus, the corresponding

training samples remain independent and one can keep this part of the proof without

changes.

In contrast, the second step of the proof of Theorem 11 that bounds the difference

between erD(Q) and erD(Q) directly exploits the i.i.d. assumption on the observed

tasks and therefore cannot be used. In order to extend this analysis one has to

be able to quantify the amount of the dependencies between the observed tasks,

because presumably it will effect the performance of the learner and the corresponding

guarantees. In particular, if we imagine an extreme case, when the observed tasks are

sampled by first randomly sampling a task from the environment and then repeating

the obtained task T − 1 times, it seems intuitive that such observation will contain only

limited amount of information about the environment and thus the convergence rate of

the upper bound should become slower compared to the i.i.d. case.

In order to formally quantify such effects we use the properties of a dependency

graph built on the observed tasks.

Definition 7. The dependency graph Γ(t) = (V,E) of a set of random variables t =

(t1, . . . , tn) is such that:

• the set of vertices V equals {1, . . . , n},

• there is no edge between i and j if and only if ti and tj are independent.

Definition 8. Let Γ = (V,E) be an undirected graph with V = {1, . . . , n}. A set

C = {(Cj, wj)}kj=1, where Cj ⊂ V and wj ∈ [0, 1] for all j, is a proper exact fractional

cover [94] if:
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w(C) = k = 3

Figure 4.2: Illustration of the concept of a graph cover. Nodes with the same color
correspond to the same subset in the cover.

• for every j all vertices in Cj are independent,

• ∪jCj = V ,

• for every i ∈ V
∑k

j=1 wjIi∈Cj = 1.

The sum of the weights w(C) =
∑k

j=1wj is called the chromatic weight of C and k is

called the size of C.

By adopting ideas from chromatic PAC-Bayesian bounds [77], we obtain the following

generalization of Theorem 11:

Theorem 12 (Theorem 4 in [72]). Let 〈T,D〉 be any task environment, P be any fixed

hyper-prior distribution, Γ be the dependency graph of the observed T tasks and C be

any proper exact fractional cover of Γ of size k. Then for any δ > 0 the following holds

with probability at least 1− δ uniformly for all hyper-posterior distributions Q:

erD(Q) ≤ êrS(Q)+
1 +

√
w(C)Tn

T
√
n

KL(Q||P) +
1

T
√
n

T∑
t=1

E
P∼Q

KL(Qt(P, St)||P )+

T + 8 log 2/δ

8T
√
n

+

√
w(C)(1 + 8 log 2/δ + 8 log k)

8
√
T

. (4.24)

The form of inequality (4.24) is exactly the same as of inequality (4.10) for the i.i.d.

case. The only difference is the presence of the weight of the fractional cover C in the

terms, corresponding to the task environment level, i.e. those coming from bounding the

difference between erD and erD. In particular, now these terms converge to zero as the
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number of the observed tasks T grows as
√
w(C)/T , compared to 1/

√
T for the i.i.d.

case. Thus, the weight of the cover represents the amount of the dependencies among

the observed tasks and can be used to quantify its effects on the convergence rate. The

fastest convergence is obtained by using a cover with minimal chromatic weight, χ∗(Γ),

which satisfies the following inequality [94]:

1 ≤ c(Γ) ≤ χ∗(Γ) ≤ ∆(Γ) + 1, (4.25)

where c(Γ) is the order of the largest clique in Γ and ∆(Γ) is the maximum degree

of a vertex in Γ. In the extreme case discussed before, where all the observed tasks

are actually the same, the dependency graph is fully connected and its weight is T .

This results in the corresponding terms not converging to zero, which confirms the

intuition that observing the same problem again and again does not increase the

knowledge about the whole task environment. In the opposite case, when the tasks are

actually i.i.d., the weight is one, because the dependency graph contains no edges and

inequality (4.24) transforms into (4.10). Thus Theorem 12 is a strict generalization of

Theorem 11.

Next we discuss what can be learned when the observed tasks are not identically

distributed. In particular, we consider a situation when the task environment is allowed

to gradually change: every new task t+ 1 is sampled from a distribution Dt+1 over the

tasks T that can depend on the history of the process. In such setting the previously

explored idea of automatically inferring a prior does not seem reasonable anymore,

because such prior or, analogously, inductive bias in Baxter’s works characterizes a

task environment and models similarity between the tasks from the same environment.

In contrast, in case of changing environments one would prefer to be able to model the

change. For this we propose to learn a transfer algorithm that produces a solution for the

current task based on the corresponding sample set and the data from the previous task.

More formally, we assume that the learner has access to a set A of learning algorithms

that produce a posterior distribution Qt+1 for task t+ 1 based on the training samples

St and St+1, and its goal is to identify an algorithm in this set that can be successfully

applied to the next observed task.

For a task t and an algorithm A ∈ A we can write the corresponding expected and
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empirical errors:

erDt(A) = E
h∼Qt

E
(x,y)∼Dt

`(h(x), y), êrSt(A) = E
h∼Qt

1

n

n∑
i=1

`(h(xti), y
t
i), (4.26)

where Qt = A(St, St−1). Thus, the goal of the learner can be reformulated as to find A

that minimizes erT+1 given the history of the observed T tasks.

Note that if the task environment would change arbitrary over time, there would be no

relevant information to the future in the observed tasks. Thus, one has to assume some

regularities in the environmental changes in order to be able to benefit from transferring

information from the previous tasks to the new ones. In particular, we assume that the

expected success of every algorithm in the considered set A does not change over time.

In other words, every A ∈ A is associated with a value er(A):

E
{Et−1,Et}

[ ert(A) |E1, . . . , Et−2 ] = er(A), (4.27)

for every i = 2, . . . , T + 1, with Et = (Dt, Dt, St). Note that while the left hand side

of (4.27) depends on t, er(A) does not. This indicates that the quality of every considered

transfer algorithm is assumed to be the same throughout the learning process. Note also

that this is a natural assumption in a sense that if the performance of every algorithm

would be allowed to change over time arbitrary the learner could end up in a situation

where an algorithm that perfectly works on the observed sequence of tasks shows poor

performance on the new ones. However, one could argue that assumption (4.27) is too

strong. It seems sufficient to assume that the algorithm that leads to (close to) optimum

performance remains the same over time, while assumption (4.27) also implies that its

(and every other algorithm’s) expected error does not change.

In order to be able to identify an algorithm A ∈ A with minimal er(A) in a principled

way, we develop an upper bound on er(A) that consists only of computable quantities

and holds uniformly in A and thus can be used to guide the learner. For this we adopt

the construction with hyperpriors and hyperposteriors: we define P as a hyperprior

distribution over the set of possible algorithms A and let Q be a possibly data-dependent

hyperposterior. The quality of the hyper-posterior Q and its empirical counterpart are
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given by:

er(Q) = E
A∼Q

er(A), (4.28)

êr(Q) = E
A∼Q

1

T − 1

T∑
t=2

êrSt(A). (4.29)

Now we can formulate the corresponding generalization bound:

Theorem 13 (Theorem 7 in [72]). For any hyperprior distribution P and any δ > 0 with

probability at least 1− δ the following holds uniformly for all Q:

er(Q) ≤ êr(Q) +

√
(T − 1)n+ 1

(T − 1)
√
n

KL(Q‖P) +
1

(T − 1)
√
n

T∑
t=2

E
A∼Q

KL(Qt‖Pt)

+
(T − 1) + 8 log 2/δ

8(T − 1)
√
n

+
1 + 2 log 2/δ

2
√
T − 1

, (4.30)

where P2, . . . , PT are some reference prior distributions that should not depend on the

training sets of subsequent tasks.

As all previously discussed lifelong learning generalization bounds (given by Theo-

rems 10, 11, 12), the right hand side of (4.30) contains two types of complexity terms -

one corresponding to the level of the changes in the task environment and task-specific

terms. The difference is that the first one converges as 1/
√
T − 1 because instead of

individual tasks in this setting the learner operates on pairs of subsequent tasks.

In order to illustrate how inequality (4.30) can be used to learn a transfer algorithm

we consider a toy example (Figure 4.3), where X = R2, Y = {−1, 1} and the change in

the environment between two steps is due to a constant rotation by θ0 = π
6

of the feature

space. To further simplify the problem we assume that every task environment contains

only one task, i.e. every Dt is a delta peak. We also assume that the learner uses

linear classifiers, h(x) = sign〈w, x〉, and 0/1-loss, `(y1, y2) = Jy1 6= y2K, for solving every

task. For the set of transfer algorithms we use a one-parameter family of algorithms Aα

(α ∈ R) that given two sample sets Sprev and Scur, first rotates Sprev by the angle α, and

then trains a linear SVM on the union of both sets. An elementary calculation shows that

condition (4.27) is fulfilled, thus we can use the bound (4.30) as a criterion to determine

a beneficial angle.
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Figure 4.3: Illustration of three learning tasks sampled from a non-stationary environ-
ment. Shaded areas illustrate the data distribution, + and − indicate positive and
negative training examples. Between subsequent tasks, the data distribution changes
by a rotation. A transfer algorithm with access to two subsequent tasks can compensate
for this by rotating the previous data into the new position, thereby obtaining more data
samples to train on.

As before, we set posterior and prior distributions to be Gaussian:

Qi = N (wi, I2), Pi = N (0, I2). (4.31)

Similarly, we set the hyperprior distribution P to be a zero-mean Gaussian, however,

we increase its variance to 10 such that all reasonable angles α lie within one standard

deviation from the mean. For the hyperposterior Q we select N (θ, 1) and thus the goal

is to determine the best θ. By plugging all these definitions into the bound (4.30) and

applying the standard combination of tricks we obtain the following objective function:

J (θ) =

√
(T − 1)n+ 1

(T − 1)
√
n
· θ

2

20
+

1

T − 1

T∑
t=2

(
‖wt‖2

2
√
n

+
1

n

n∑
i=1

Φ

(
yti〈wt, xti〉
‖xti‖

))
. (4.32)

By optimizing J (θ) using T = 2, . . . , 11 tasks with n = 10 samples each, one obtains

rotation angles that on average lead to the test error of 14.2% for the (T + 1)th task. As

expected, this approach is more effective than not transferring any information from

the previous tasks (which leads to the error of 15.0%), but not as beneficial as rotating

always by the optimal angle of π
6

(which leads to the error of 13.5%).
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4.2 Lifelong learning with weighted majority votes

Theorems 12 and 13 in the previous subsection show that the assumption that the

observed tasks, as well as the future ones are sampled i.i.d. from a task environment

can be relaxed. However, they still employ the notion of task environment. From the

technical point of view, the concept of a task environment is a natural extension of the

i.i.d. generative model used to analyze traditional single task learning. Essentially it

just adds another level of randomness to the system and, as it is pointed out in the

discussion in [14], this process can be continued by adding a third level and so on. On

the other hand, motivation for lifelong learning often comes from the human education

process and the human ability to exploit knowledge acquired from previously learned

concepts for solving new problems more effectively. In this respect, modeling learning

tasks as a random sample from an unknown distribution seems to be less natural. In

particular, human education, which is often used to illustrate lifelong learning, is a highly

organized process where new concepts are introduced gradually and their order is

believed to optimize the effectiveness of the learning process. Presumably if students at

school would study subjects in a random order, it would have negative effects. Thus,

possibly, a task environment is not always the best way to model a lifelong learning

system. Moreover, such a model results in a quality measure of the learner that is its

performance in expectation over all tasks in the environment (see equation (4.1)) and

the corresponding generalization bounds provide guarantees in terms of this quantity.

However, in some situations good performance in expectation may not be sufficient.

Imagine an autonomous robot that encounters different problems during the course of its

life: failure on a single task may cause a robot to break and thus end up with, potentially

expensive and time-consuming, repair. Finally, the theoretical analysis that employs

Baxter’s model relies on the assumption that at every time step the learner has access to

all training examples for all previously observed tasks. This allows us to formulate a joint

optimization problem. For example, Theorem 10 leads to a multi-task generalization of

the standard empirical risk minimization approach. However, in practice it seems unlikely

that an autonomous agent will be able to keep all this information. Therefore, there is

clearly a need for an alternative streaming model of lifelong learning that (1) provides

guarantees for every observed task, (2) does not make distributional assumptions on
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the task generation process and (3) requires storage of only a compact description of

the previous tasks, for example, only the corresponding learned hypotheses.

A few attempts have been made to progress in this direction. In domain adaptation

it was previously argued for keeping only limited information from previously observed

tasks [48]. A way to provide performance guarantees for every task in the multi-task

setting was demonstrated in [18]. However these guarantees are a consequence of the

employed relatedness assumption that implies that all the tasks have the same expected

error. The first analysis of lifelong learning under streaming model was recently provided

by Balcan et al . [11], where the authors concentrate on the case of learning linear

classifiers. They propose an iterative algorithm that maintains a set of base predictors

learned from previous tasks. For every new task it first attempts to learn it within the

span of base predictors and, if that fails, learns a new linear predictor which is then

added to the base set. Under the assumption that the tasks share a low-dimensional

representation the authors demonstrate that the proposed method leads to sample

complexity reductions compared to solving each task in isolation. However, their analysis

relies also on the assumption that the marginal distributions for all tasks are isotropic

log-concave and it is stated as an open problem whether this can be extended to other

types of distributions. In this section we will discuss what kind of guarantees can be

obtained for streaming lifelong learning with arbitrary marginal distributions. These

results were published in "Lifelong Learning with Weighted Majority Votes" [75].

Our main insight is to consider weighted majority votes over the base predictors

rather than their linear combinations. Apart from allowing us to consider any ground

hypothesis set H, as it will become evident later, this shift also introduces sufficient

stability to the learned base set that allows exploiting it for later tasks and that cannot

be achieved by linear combinations of linear predictors without additional assumptions

on the marginal distributions. For a set of hypothesis h1, . . . , hk ∈ H we define a set of

weighted k-majority votes as:

{
g : X → Y | ∃w1, . . . , wk ∈ R : g(x) = sign

(
k∑
i=1

wihi(x)

)}
(4.33)

and denote it by MV(h1, . . . , hk).

We will focus on binary realizable case, thus every task encountered by the learner
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can be represented as a pair 〈Di, h
∗
i 〉 of a marginal distribution Di over X and a de-

terministic labeling function h∗i : X → {−1, 1} that lies in some fixed ground class

H.

As in any transfer learning case, in the streaming lifelong learning setting potential

benefits of the information transfer depend on how related the observed tasks are.

A distinctive feature of the streaming case is that the learner has access only to the

knowledge extracted from the previous tasks and thus the transfer is happening only

in one direction. Therefore we will formulate the relatedness assumption in terms of a

sequence of tasks, rather than a set (like in multi-task learning) or a task environment

(like in Baxter’s model). For this we will employ the following (pseudo-)metric over the

hypothesis class with respect to a marginal distribution D:

dD(h, h′) = E
x∼D

Jh(x) 6= h′(x)K. (4.34)

Furthermore, we can define a distance from a hypothesis to a hypothesis space as

dD(h,H′) = min
h′∈H′

dD(h, h′) (4.35)

and a distance between two sets of hypotheses as

dD(H,H′) = max
h∈H

dD(h,H′) = max
h∈H

min
h′∈H′

dD(h, h′). (4.36)

Though the latter is not necessarily a metric over subsets of the hypothesis space, it

does satisfy the triangle inequality.

Now we can formulate the measures of task diversity that we will use:

Definition 9 (γ-separability). A sequence of learning tasks 〈D1, h
∗
1〉, . . . , 〈Dn, h

∗
n〉 is

γ-separated, if dDi(h∗i ,MV (h∗1, . . . , h
∗
i−1)) > γ for every i.

Definition 10 (γ-dimension). A sequence of learning tasks 〈D1, h
∗
1〉, . . . , 〈Dn, h

∗
n〉 has

γ-effective dimension k, if the largest γ-separated subsequence of these tasks has

length k.

Definitions 9 and 10 are closely related to the corresponding notions employed

in [11]: one obtains definitions from [11] by assuming the ground classH to be linear and
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substituting weighted majority votes by linear combinations. However, this substitution

leads to significant differences in the nature of the used complexity measures. In the

case of linear predictors and their linear combinations small a dimensionality of the

sequence is a relaxation of the often used assumption that the predictors for the tasks lie

in a low-dimensional subspace. And, in addition, the order of the tasks is not important -

shuffling the tasks does not increase the dimensionality of the sequence. In contrast,

for weighted majority votes the order of tasks is of crucial importance. Indeed, the same

set of tasks may have different dimensionality depending on how the tasks are ordered.

One intuitively advantageous scenario for a streaming lifelong learner is when

throughout the course of learning most of the time information obtained from the

observed tasks is sufficient for solving the current one. We formalize this intuition by

saying that the γ-effective dimension k of the observed sequence of tasks is relatively

small for a sufficiently small γ. This assumption is a relaxation of the relatedness

assumption employed in [27], which states that there exist k hypotheses such that every

task can be well explained by one of them.

In addition, we will need that the discrepancy between the marginal distributions of

different tasks is small with respect to the ground hypothesis set H:

discH(Di, Dj) = max
h,h′∈H

|dDi(h, h′)− dDj(h, h′)|. (4.37)

Note that linear predictors together with an assumption that the marginal distributions for

all tasks are isotropic log-concave, employed in [11], imply that the above discrepancy

between any two tasks is zero. Since we do not make assumptions on the parametric

form of the underlying data distributions, we need to control the discrepancy explicitly.

Algorithm 3 provides the pseudocode for the proposed procedure. It takes as input

a set of 5 parameters: a fixed, ground hypothesis class H, the total number of tasks

in the sequence T , an upper bound on the γ-dimensionality of the task sequence k

and accuracy and confidence parameters ε and δ. The algorithm maintains a set of

base hypotheses h̃1, . . . , h̃k̃. At the beginning this set is empty and the first task is

solved within the ground class H using a training set S1 large enough and the obtained

hypothesis g1 becomes the first element of the base set. After that for every new task

the algorithm first attempts to solve it using a weighted majority vote over the set of
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Algorithm 3 Lifelong learning of majority votes
1: Input parameters H, T, k, ε, δ
2: set δ′ = δ/(2T ), ε′ = ε/(8k)
3: draw a training set S1 from 〈D1, h

∗
1〉, s.t. ∆1 := ∆(VC(H), δ′, |S1|) ≤ ε′

4: g1 = arg minh∈H LS1(h)
5: set k̃ = 1, h̃1 = g1

6: for t = 2 to T do
7: draw a training set St from 〈Dt, h

∗
t 〉,

s.t. ∆t := ∆(VC(MV (h̃1, . . . , h̃k̃)), δ
′, |St|) ≤ ε

40

8: gt = arg minh∈MV (h̃1,...,h̃k̃) êrSt(h)

9: if êrSt(gt) +
√

êrSt(gt) ·∆t + ∆t > ε then
10: draw a training set St from 〈Dt, h

∗
t 〉, s.t. ∆t :=∆(VC(H), δ′, |St|)≤ε′

11: gt = arg minh∈H êrSt(h)
12: set k̃ = k̃ + 1, h̃k̃ = gi
13: end if
14: end for
15: return g1, . . . , gT

base predictors collected so far. If it succeeds, it moves to the next task. Otherwise it

learns the task using the ground hypothesis class and adds the resulting predictor to

the base set.

An alternative way to look at the proposed method is to focus on the case when the

ground class H is the set of linear predictors. Then the algorithm can be seen as a way

to construct a neural network with sign() as the activation function. Indeed, in this case

each base hypothesis is a node in a hidden middle layer or, in other words, a feature in

the feature representation of the constructed neural net. When a new task is observed,

it is either learned using the current representation, i.e. task-specific weights for the

last layer are learned, or a new node is added to the middle layer and thus the feature

representation is extended.

While this paradigm is very natural, the main challenge is to accurately select the

internal parameters. In particular, one has to control the error propagation, since every

task is solved based only on a finite training set. This is ensured using the results of

Theorem 2 by choosing the training sets Si large enough so that

∆i := ∆(VC(Hi), δ
′, |Si|) := C

VC(Hi) log(|Si|) + log(1/δ′)

|Si|

is sufficiently small, where, depending on the situation, Hi is either the ground class H

or the set of weighted majority votes over the current base set. In addition, it is important
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to ensure that the algorithm does not search over the, potentially large, ground set H

too often and thus may lead to sample complexity reductions over solving every task

independently. In fact, the key component of the proof of the following theorem is to

show that throughout the course of learning at most k tasks would not be solved as

majority votes over earlier tasks:

Theorem 14 (Theorem 2 in [75]). Consider running Algorithm 3 on a sequence of tasks

with γ-effective dimension at most k and discH(Di, Dj) ≤ ξ for all i, j. Then, if γ ≤ ε/4

and kξ < ε/8, with probability at least 1− δ:

• The error of every task is bounded: erDt,h∗t (gt) ≤ ε for every t = 1, . . . , T .

• The total number of labeled examples used is Õ
(
Tk+VC(H)k2

ε

)
.

Algorithm 4 Lifelong learning of majority votes with unkown horizon
1: Input parameters H, ε, δ
2: set δ1 = δ/2, ε′1 = ε/16
3: draw a training set S1 from 〈D1, h

∗
1〉, s.t. ∆(VC(H), δ1, ‖S1‖) ≤ ε′1

4: g1 = arg minh∈H êrS1(h)
5: set k̃ = 1, h̃1 = g1

6: for t = 2 to T do
7: set l = blog tc, m = blog k̃ + 1c
8: set δt = δ

22l+2 , ε′t = ε
22m+4

9: draw a training set St from 〈Dt, h
∗
t 〉, s.t. ∆(VC(MV (h̃1, . . . , h̃k̃)), δt, ‖St‖) ≤ ε/40

10: gt = arg minh∈MV (h̃1,...,h̃k̃) êrSt(h)

11: if êrSt(gt) +
√

êrSt(gt) ·∆ + ∆ > ε then
12: draw a training set St from 〈Dt, h

∗
t 〉, s.t. ∆(VC(H), δt, ‖St‖) ≤ ε′t

13: gt = arg minh∈H êrSt(h)
14: set k̃ = k̃ + 1, h̃k̃ = gt
15: end if
16: end for
17: return g1, . . . , gT

An important aspect of Algorithm 3 is that its internal parameters depend on the

task horizon T and complexity k. In practice, however, one would expect both of

these parameters to be unknown to the learner. By slightly modifying the method (see

Algorithm 4) using the doubling trick one can avoid this dependence at the price of

worse sample complexity guarantees that are summarized in the following theorem:

Theorem 15 (Theorem 3 in [75]). Consider running Algorithm 4 on a sequence of tasks

with γ-effective dimension at most k and discH(Di, Dj) ≤ ξ for all i, j. Then, if γ ≤ ε/4

and kξ < ε/8, with probability at least 1− δ:
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• The error of every task is bounded: erDt.h∗t (gt) ≤ ε for every t = 1, . . . , T .

• The total number of labeled examples used is Õ
(
Tk+VC(H)k3

ε

)
.

Theorems 14 and 15 quantify the intuition that if most tasks in a sequence are

well learnable by weighted majority votes over the previously observed tasks, then the

proposed streaming lifelong learning method will lead to sample complexity reductions.

Indeed, learning every task independently using the ground class has the total sample

complexity

Õ

(
VC(H)T

ε

)
, (4.38)

since by the assumption every task is realizable by the ground class. In contrast, the

complexities of Algorithms 3 and 4 are Õ
(
Tk+VC(H)k2

ε

)
and Õ

(
Tk+VC(H)k3

ε

)
respectively,

which is significantly smaller than (4.38) whenever the effective dimension k of the task

sequence is much smaller than the total number of tasks T and the VC-dimension of the

ground class. Thus the key condition for the sample complexity improvement is a small

effective dimension of the observed sequence. Note, however, that both Algorithm 3

and 4 are in general not computationally efficient as they require performing ERM for

every observed task.

4.3 Conclusion

In this chapter we have discuss the lifelong learning scenario which can be seen as an

extension of multi-task learning with an additional source of uncertainty that comes from

the fact that the learner does not know what tasks he will encounter in the future. We

have illustrated this by extending the result for multiple kernel learning in the multi-task

scenario (Theorem 5) to lifelong learning. Then we have shown how the original ideas

of Baxter [14] can be translated from the PAC to PAC-Bayesian language, which results

in Theorem 11 that can be used to develop principled lifelong learning algorithms. We

have illustrated this process for parameter and representation transfer approaches,

which resulted in PL-G and PL-L methods. The rest of the chapter was dedicated to

investigation of possible relaxations on the core assumption of many lifelong learning

analyses, which states that the observed tasks, as well as the future ones are sampled
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i.i.d. from some task environment. First, under the assumption that the observed tasks

are identically, but not independently distributed, we have shown how the amount of

the dependencies between them influences the generalization guarantees. Second, we

have shown that when the task environment is changing over time, but in a restricted way,

it is possible to learn a transfer method that would compensate for the environmental

changes. Lastly, in Section 4.2 we have discussed a more challenging streaming model

of lifelong learning that does not make any assumptions on the task generation process.
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5 Future directions

The key aspect of all transfer learning approaches, including multi-task and lifelong

learning, are assumptions on the relatedness between the prediction tasks. Therefore it

is important to identify and explore different kinds of relatedness that could make the

information transfer beneficial. Most of the transfer methods concentrate on learning a

"good" representation, where quality of a representation is measured by its approxima-

tion ability and simplicity. Such assumptions were exploited not only for linear classifiers,

as was discussed in Section 3.1, but also for neural networks [52], where shared repre-

sentation takes a form of a shared layers of a deep architecture. However, this is not the

only option. One could also think of a good representation as one that leads to "easy"

learning of every task, i.e. learning with fast rates. In this case one could use measures

of distribution "niceness" that have been shown to lead to faster convergence rates, like

Probabilistic Lipschitzness [95], as a quality measure of a learned representation. A

completely different approach to defining task relatedness was explored in [3]. There

the authors consider learning several tasks using deep neural networks under the

assumption that what makes the tasks of interest similar is not the architecture of the

network, but an optimization procedure and the proposed method aims at in inferring

optimal gradient step updates for training neural networks corresponding to different

tasks.

Probably a more general question is whether the existing models for multi-task

and lifelong learning are relevant. In particular, multi-task learning is almost always

defined as a setting where the learner is given a collection of annotated training sets for

several tasks and the goal is to minimize the average expected error over all of them.

However, as was discussed in Section 3.3 there could be some situations where not for
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all tasks of interest labeled data is available. Or, as was pointed out in [65], the average

performance might not be what one should care about. Lifelong learning is even less

well-defined area and thus it is important to identify scenarios under which information

transfer could be beneficial. Presumably, all these aspects of transfer learning depend

on the area of application. Therefore it is important to put a greater focus on modeling

problems that are considered by machine learning practitioners.
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A Proofs of theorems in Chapter 3
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A.1 Proof of Theorem 5

In order to prove Theorem 5 we employ the technique of covering numbers:

Definition 11. A subset Ã ⊂ A is called an ε-cover of A with respect to a distance

measure d, if for every a ∈ A there exists a ã ∈ Ã such that d(a, ã) < ε. The covering

number Nd(A, ε) is the size of the smallest ε-cover of A.

In particular, we will use covers of HT = ∪K∈KHT
K with respect to `∞ metric associ-

ated with a sample x ∈ X (T,n):

dx∞(h,h′) = max
t=1...T

max
i=1...n

|ht(xti)− h′t(xti)|. (A.1)

The corresponding uniform covering number N(T,n)(HT , ε) is given by considering the

maximum covering number over all possible samples x ∈ X (T,n):

N(T,n)(HT , ε) = max
x∈X (T,n)

Ndx∞(HT , ε). (A.2)

Using this notion we can obtain the following result:

Theorem 16. For any ε, γ > 0, if n > 2/ε2, we have that:

Pr
{
∃h ∈ HT : erD(h) > êrγS(h) + ε

}
≤ 2N(T,2n)(HT , γ/2) exp

(
−Tnε

2

8

)
. (A.3)

Proof. We utilize the standard 3-steps procedure (see Theorem 10.1 in [4]). If we

denote:

Q =
{
S ∈ (X × Y)(T,n) : ∃h ∈ HT : erS(h) > êrγS(h) + ε

}
R =

{
S = (S1,S2) ∈ (X × Y)(T,n) × (X × Y)(T,n) :

∃h ∈ HT : êrS2(h) > êrγS1
(h) + ε/2

}
,

then according to the symmetrization argument Pr(Q) ≤ 2 Pr(R). Therefore, instead of

bounding the probability of Q, we can bound the probability of R.
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Let Γ2n be a set of permutations σ on the set {(1, 1), . . . , (T, 2n)} such that {σ(t, i), σ(t, n+

i)} = {(t, i), (t, n+i)} for every t = 1, . . . , T and i = 1, . . . , n. Then Pr(R) ≤ maxS∈(X×Y)(T,2n) Prσ(σS ∈

R).

The last step is a reduction to a finite class. Fix some S ∈ (X × Y)(T,2n) and let

σ be a permutation such that σS ∈ R. By definition there exists h ∈ HT such that

êrS2(h) > êrγS1
(h) + ε/2, where (S1,S2) = σS:

1

T

T∑
t=1

1

n

2n∑
i=n+1

Jht(xtσ(ti))y
t
σ(ti) < 0K >

1

T

T∑
t=1

1

n

n∑
i=1

Jht(xtσ(ti))y
t
σ(ti) < γK + ε/2.

Denote by x = (xti) ∈ X(T,2n) the X -part of sample S and let Γ be a γ/2-cover of HT with

respect to dx∞. If we denote by h̃ the function in the cover Γ corresponding to h, then

the following inequalities hold:

if h̃t(xti)y
t
i <

γ

2
, then ht(x

t
i)y

t
i < γ

if ht(xti)y
t
i < 0, then h̃t(x

t
i)y

t
i <

γ

2
.

By combining them with the previous inequality we obtain that:

1

T

T∑
t=1

1

n

2n∑
i=n+1

r
h̃t(x

t
σ(ti))y

t
σ(ti) <

γ

2

z
>

1

T

T∑
t=1

1

n

n∑
i=1

r
h̃t(x

t
σ(ti))y

t
σ(ti) <

γ

2

z
+
ε

2
.

Now, if we define the following indicator: v(h̃, t, i) = Jh̃t(xti)yti < γ/2K, then:

Pr
σ
{σS ∈ R} ≤ Pr

σ

{
∃h̃ ∈ Γ :

1

T

T∑
t=1

1

n

n∑
i=1

(v(h̃, σ(t, n+ i))− v(h̃, σ(i, i))) >
ε

2

}

≤ |Γ|max
h̃∈Γ

Pr
σ

{
1

T

T∑
t=1

1

n

n∑
i=1

(v(h̃, σ(t, n+ i))− v(h̃, σ(t, i))) >
ε

2

}

= |Γ|max
h̃∈Γ

Pr
β

{
1

T

T∑
t=1

1

n

n∑
i=1

|v(h̃, t, n+ i)− v(h̃, t, i)|βti >
ε

2

}
= (∗),

where βti are independent random variables uniformly distributed over {−1,+1}. Then

{|v(h̃, i,m + j)− v(h̃, i, j)|βij} are Tn independent random variables that take values
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between −1 and 1 and have zero mean. Therefore by Hoeffding’s inequality:

(∗) ≤ |Γ| exp

(
−2(Tn)2ε2/4

Tn · 4

)
= |T | exp

(
−Tnε

2

8

)
.

Since by the definition |Γ| ≤ N(T,2n)(HT , γ/2), we conclude the proof of Theorem 16.

By using the same technique as for proving Theorem 16, we can obtain a lower

bound on the difference between the empirical error rate êrγS(h) and the expected error

rate with double margin:

er2γ
D (h) =

1

T

T∑
t=1

E
(x,y)∼Dt

Jyht(x) < 2γK. (A.4)

Theorem 17. For any ε > 0, if n > 2/ε2, the following holds:

Pr
{
∃h ∈ HT : er2γ

D (h) < êrγS(h)− ε
}
≤ 2N(T,2n)(HT , γ/2) exp

(
−Tnε

2

8

)
. (A.5)

The last step in proving Theorem 5 is to upper bound the covering numbers, used in

Theorems 16 and 17, in terms of the pseudodimension of the kernel family K:

Lemma 1. For any set K of kernels bounded by B2 (K(x, x) ≤ B2 for all K ∈ K and all

x ∈ X ) with pseudodimension dφ the following inequality holds:

N(T,n)(HT , ε) ≤ 2T
(

4eT 2n3B2

ε2dφ

)dφ (16nB2

ε2

) 64B2T
ε2

log( eεn8B )
.

In order to prove this result, we first introduce some additional notation. For a sample

x = (x1, . . . , xn) ∈ X n we define l∞ distance between two functions as:

dx∞(f1, f2) = max
i=1...n

|f1(xi)− f2(xi)|. (A.6)

Then the corresponding uniform covering number is:

Nn(F , ε) = sup
x∈Xn

Ndx∞(F , ε) (A.7)
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We also define l∞ distance between kernels with respect to a sample x = (x1, . . . ,xT) ∈

X (T,n) as:

Dx
∞(K, K̂) = max

t
|Kxt − K̂xt|∞ (A.8)

where Kx is a kernel matrix associated with a sample x. The corresponding uniform

covering number is:

N(T,n)(K, ε) = sup
x∈X(T,n)

NDx
∞(K, ε).

In contrast, in [89] the distance between two kernels is defined based on a single sample

x = (x1, . . . , xn) of size n:

Dx
∞(K, K̂) = |Kx − K̂x|∞ (A.9)

and the corresponding covering number is Nn(K, ε). Note that this definition is in strong

relation with ours: N(T,n)(K, ε) ≤ NTn(K, ε), and therefore, by Lemma 3 in [89]:

N(T,n)(K, ε) ≤ NTn(K, ε) ≤
(eT 2n2B2

εdφ

)dφ
(A.10)

for any kernel family K bounded by B2 with pseudodimension dφ. Now we can prove

Lemma 1:

Proof of Lemma 1. Fix some x = (x1, . . . ,xT ) ∈ X (T,n). Define εK = ε2/4n and εH = ε/2.

Let K̃ be an εK-net of K with respect to Dx
∞. For every K̃ ∈ K̃ and every t = 1 . . . T let

H̃t
K̃

be an εH-net of H̃K̃with respect to dxt∞. Now fix some h ∈ HT . Then there exists a

kernel K such that h = (h1, . . . , hT ) ∈ HT
K . Therefore there exists a kernel K̃ ∈ K̃ such

that |Kxt − K̃xt|∞ < εK for every t. By Lemma 1 in [89] ht(xt) = K
1/2
xt wt for some unit

norm vector wt for every t. Therefore for h̃t(xt)K̃
1/2
xt wt ∈ HK̃ we obtain that:

dxt∞(ht, h̃t) = max
i
|ft(xti)− h̃t(xti)| ≤ ||ht(xt)− h̃t(xt)|| =

||K1/2
xt wt − K̃

1/2
xt wt|| ≤

√
n|Kxt − K̃xt|∞ ≤

√
nεK .

In addition, for every h̃t ∈ HK̃ there exists ˜̃ht ∈ H̃t
K̃

such that dxt∞(h̃t,
˜̃ht) < εF . Finally, if
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we define ˜̃h = (˜̃h1, . . . ,
˜̃hT ) ∈ H̃1

K̃
× · · · × H̃T

K̃
, we obtain:

dx∞(h,˜̃f) = max
t
dxt∞(ht,

˜̃ht) ≤ max
t

(dxt∞(ht, h̃t) + dxt
∞(h̃t,

˜̃ht)) <
√
nεK + εF = ε.

The above shows that H̃K = ∪K̃∈K̃H̃1
K̃
× · · · × H̃T

K̃
is an ε-net of HT with respect to x.

Now the statement follows from (A.10) and the fact that for any HK with bounded by B2

kernel K([89, 4]):

Nn(HK , ε) ≤ 2
(4nB2

ε2

) 16B2

ε2
log2

(
εen
4B

)
. (A.11)

Theorem 5 follows from combining Theorems 16, 17 and Lemma 1.
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A.2 Proofs of Theorems 6 and 7

We start with analyzing the case of the sequential multi-task learning with the task order

being fixed in advance. Without loss of generality we can consider the permutation π

being the identity and obtain the following result:

Theorem 18. For any deterministic transfer algorithm T A, any deterministic learning

algorithm A, any prior distribution P and any δ > 0, the following inequality holds with

probability at least 1− δ over the training sets S1, . . . , ST of size n each:

erD(Q) ≤ êrS(Q) +
1

T
√
n

T∑
t=1

KL(Qt, ||Pt) +
1

8
√
n

+
log 1/δ

T
√
n
, (A.12)

where

Qt = A(St, Pt) (A.13)

Pt =

P for t = 1

T A(S1, . . . , St−1) for t ≥ 2

. (A.14)

Proof. We start with Donsker-Varadhan’s variational formula [28] to change the expec-

tation over posteriors (Q1, ..., QT ) to the expectation over priors (P1, P2, ..., PT ):

erD(Q)− êrS(Q) ≤ 1

λ

(
KL
(
Q1 × · · · ×QT ||P1 × · · · × PT

)
+ log E

h1∼P1

... E
hT∼PT

exp

(
λ

T

T∑
t=1

(erDt(ht)− êrSt(ht))

))
. (A.15)

This inequality holds for any λ > 0.

Note, that by construction Pt may depend on S1, ..., St−1, but does not depend on

St, ..., ST . Therefore:

E
S1...ST

E
h1∼P1

... E
hT∼PT

exp

(
λ

T

T∑
t=1

(erDt(ht)− êrSt(ht))

)
= (A.16)

E
h1∼P1

E
S1

exp

(
λ

T
(erD1(h1)− êrS1(h1))

)
· · · E
hT∼PT

E
ST

exp

(
λ

T
(erDT (hT )− êrST (hT ))

)
.
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Fix some hT ∈ H. Then we can rewrite the last term of (A.16) in the following way:

exp

(
λ

T
(erDT (hT )− êrST (hT ))

)
=

T∏
t=1

exp

(
λ

Tn

(
erDT (hT )− `(hT (xTi ), yTi )

))
. (A.17)

Since the data points in ST are i.i.d., all terms in this product are independent and take

values between λ(erDT (hT )−1)

Tn
and λ erDT (hT )

Tn
. Therefore, by Hoeffding’s lemma [38], we

obtain that the last term of (A.16) is bounded by a constant:

E
hn∼PT

E
ST

exp

(
λ

T
(erDT (hT )− êrST (hT ))

)
≤ exp

(
λ2

8T 2n

)
.

By repeating the same procedure for all other tasks we obtain that:

E
S1...ST

E
h1∼P1

. . . E
hT∼PT

exp

(
λ

T

T∑
t=1

(erDt(ht)− êrSt(ht))

)
≤ exp

(
λ2

8Tn

)
.

Therefore, by Markov’s inequality, with probability at least 1− δ:

E
h1∼P1

. . . E
hT∼PT

exp

(
λ

T

T∑
t=1

(erDt(ht)− êrSt(ht))

)
≤ 1

δ
exp

(
λ2

8Tn

)
. (A.18)

By combining (A.18) with (A.15) we get:

erD(Q) ≤ êrS(Q) +
1

λ
KL
(
Q1 × · · · ×QT ||P1 × · · · × PT

)
+

λ

8Tn
− 1

λ
log δ.

By setting λ = T
√
n we obtain the final result.

Note that Theorem 18 can be applied to any, fixed in advance order of tasks. Thus, if

we apply it to every task order (of which there are T ! many) with confidence parameter

δ/T ! and combine the results using the union bound argument, we will obtain Theorem 6.

In exactly the same way one can prove an analog of Theorem 18 for the sequential

multi-task learning with multiple subsequences for the case when the task order and the

set of flags are fixed in advance. In order to obtain Theorem 7 one can use the same

union bound argument, but with confidence parameter δ/((2T )T ), because there are

more possible subsequences then sequences on T tasks, but there are not more than

2T−1 · T ! ≤ (2T )T of them.
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A.3 Proof of Theorem 8

For any I = {t1, . . . , tk}, any assignment C = (c1, . . . , cT ) with ci ∈ I and any hi by

Proposition 1 the following inequality holds:

1

T

T∑
t=1

erDt(hct) ≤
1

T

T∑
t=1

erDct (hct) +
1

T

T∑
t=1

disc(Dt, Dct) +
1

T

T∑
t=1

λtct . (A.19)

We continue with upper-bounding the expectations on the right-hand side of the above

inequality by their empirical counterparts.

1. Bound 1
T

∑T
t=1 disc(Dt, Dct)

We start with the discrepancy terms. Note that we only need to upper bound the

discrepancies between pairs of labeled and unlabeled tasks. This is because the la-

beled tasks are assigned to themselves and thus the corresponding discrepancies are

zero. Therefore there are only T − k non-zero components. In order to control them

we use Proposition 2 and a union bound argument. As a result we obtain that with

probability at least 1− δ/2 uniformly for all assignments C:

1

T

T∑
t=1

disc(Dt, Dct) ≤
1

T

T∑
t=1

disc(St, Sct) +
2(T − k)

T

√
2d log(2n) + log(4T 2/δ)

n
. (A.20)

2. Bound 1
T

∑T
t=1 erDct

(hct)

Next we bound the error term and do it in two steps. We introduce an intermediate

quantity 1
T

∑T
t=1 êrSuct (hct), where:

êrSut (ht) =
1

n

n∑
i=1

`(ht(x
t
i), ft(x

t
i), (A.21)

which can be seen as a training error if the learner would receive labels for all n points for

every of the selected tasks. The key observation is that the assignment C can depend

only on the unlabeled data, while the hypotheses hct can depend on the labels as well.

The two-step procedure of going through the 1
T

∑T
t=1 êrSuct (hct) allows us to isolate the
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effects of these two sources of randomness.

2.1 Relate 1
T

∑T
t=1 erDct (hct) to 1

T

∑T
t=1 êrSuct (hct)

Because the choice of the assignment C and of the hypotheses ht depends on the

unlabeled data, we need a bound that holds simultaneously for all possible C and ht.

For that we apply Theorem 1 to each task and use a union bound argument. As a result

we obtain that with probability at least 1− δ/4 for all assignments c and all hypotheses

hct the following holds:

1

T

T∑
t=1

erDct (hct) ≤
1

T

T∑
t=1

êrSuct (hct) +

√
2d log(en/d)

n
+

√
log(4T/δ)

2n
. (A.22)

2.2 Relate 1
T

∑T
t=1 êrSuct (hct) to 1

T

∑T
t=1 êrSlct (hct)

Fix the unlabeled samples Su1 , . . . , S
u
T . This uniquely determines the chosen tasks

I and the assignment C = (c1, . . . , cT ), so the only remaining source of randomness is

the uncertainty which subsets of the selected tasks are labeled. Analyzing this would be

rather straightforward if the labeled points, Sli, were sampled i.i.d. from Sui (i.e. randomly

with replacement). This is not the case, however, since we assume that exactly m

points are labeled, i.e. Sli is sampled from Sui randomly without replacement, and this

introduces dependencies between the elements.

For notational simplicity we pretend that exactly the first k tasks were selected, i.e.

I = {1, . . . , k}. The general case can be obtained by changing the indices in the proof

from 1, . . . , k to i1, . . . , ik. For every t = 1, . . . , k define pt to be the number of times it

appears in the assignment C.

To deal with the dependencies between the labeled data points we first note that any

random labeled subset Sli = (s̄i1, . . . , s̄
i
m) can be described as the first m elements of a

random permutation Zi = (zi1, . . . , z
i
n) over n elements that correspond to the unlabeled

sample Sui , i.e. s̄ij = (x̄ij, ȳ
i
j) = (xi

zij
, yi
zij

). With this notation and writing Z = (Z1, . . . , Zk)
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and `(h, zij) = `(h(x̄ij), ȳ
i
j) we define the following function:

Φ(Z) = sup
h1,...,hk

1

T

T∑
t=1

(
êrSuct (hct)− êrSlct (hct)

)
= (A.23)

sup
h1,...,hk

1

T

k∑
i=1

pi

(
1

n

n∑
j=1

`(ht, z
i
j)−

1

m

m∑
j=1

`(ht, z
i
j)

)
. (A.24)

In order to establish a large deviation bound for Φ we use McDiarmid’s inequality

(Lemma 10) for martingales.

2.2.1 Construct a martingale sequence

For this, we interpret Z = (z1
1 , z

1
2 , . . . , z

k
n) as a sequence of kn dependent variables,

z11, . . . , zkn. For the sake of notational consistency we will keep using double indices,

with the convention that the sample index, j = 1, . . . , n, runs faster than the task index,

i = 1, . . . , k. Segments of a sequence will be denoted by upper and lower double indices,

z ı̄̄ij = (zij, zi(j+1), . . . , zı̄̄) for ij ≤ ı̄̄ and z ı̄̄ij = ∅ otherwise. We now create a martingale

sequence using Doob’s construction [29]:

Wij = E
Z
{Φ(Z)| zij11 }. (A.25)

where here and in the following when taking expectations over Z it is silently assumed

that the expectation is taken only with respect to variables that are not conditioned

on. Note that because of this convention, the expectations in (A.25) is only with

respect to zi(j+1), . . . , zkn, so each Wij is a random variable of z11, . . . , zij. In particular,

W00 = EZ Φ(Z) and Wkn = Φ(Z), and the in-between sequence is a martingale with

respect to z11, . . . , zkn:

E
Z
{ Wij|zi(j−1)

11 } = E
Z

{
E
Z
{Φ(Z)| zij11}

∣∣ zi(j−1)
11

}
= E

Z
{Φ(Z)|zi(j−1)

11 } = Wi(j−1). (A.26)

2.2.2. Compute an upper bound on the coefficient R̂2

Let i ∈ {1, . . . , k} and j ∈ {1, . . . , n} be fixed and let π = (π1, . . . , πk) be specific
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permutations of n elements for which we use the same index conventions as for Z. By

σ and τ will denote elements in πini(j+1), i.e. σ and τ do not occur in any of the first j

positions of the permutation πi. Then

rij(π
i(j−1)
11 ) = sup

σ∈πin
i(j+1)

{ Wij : z
i(j−1)
11 = π

i(j−1)
11 , zij = σ}

− inf
σ∈πin

i(j+1)

{ Wij : z
i(j−1)
11 = π

i(j−1)
11 , zij = σ}

= sup
σ∈πin

i(j+1)

sup
τ∈πin

i(j+1)

[
E

zkn
i(j+1)

{Φ(π
i(j−1)
11 , σ, zkni(j+1))} − E

zkn
i(j+1)

{Φ(π
i(j−1)
11 , τ, zkni(j+1))}

]
. (A.27)

To analyze (A.27) further, recall that:

E
zkn
i(j+1)

{Φ(π
i(j−1)
11 , σ, zkni(j+1))}

=
∑
πkn
i(j+1)

Φ(π
i(j−1)
11 , σ, πkni(j+1))× Pr( zkni(j+1) = πkni(j+1) |z

i(j−1)
11 = π

i(j−1)
11 ∧ zij = σ ),

where here and in the following we use the convention that sums over parts of π run

only over values that lead to valid permutations. Because the permutations of different

tasks are independent, this is equal to

=
∑
πkn
i(j+1)

Φ(π
i(j−1)
11 , σ, πkni(j+1))× Pr( zini(j+1) = πini(j+1) |z

i(j−1)
i1 = π

i(j−1)
i1 ∧ zij = σ )

×Pr(zkn(i+1)1 = πkn(i+1)1) (A.28)

We make the following observation: for any fixed πiji1 and any τ 6∈ πiji1, we can

rephrase a summation over πini(j+1) into a sum over all positions where τ can occur, and

a sum over all configuration for the entries that are not τ :

∑
πin
i(j+1)

F (πini(j+1)) =
n∑

l=j+1

∑
π
i(l−1)
i(j+1)

∑
πin
i(l+1)

F (π
i(l−1)
i(j+1), τ, π

in
i(l+1)) (A.29)
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for any function F . Applying this to the summation in (A.28), we obtain

∑
πkn
i(j+1)

Φ(π
i(j−1)
11 , σ, πkni(j+1)) Pr( zini(j+1) = πini(j+1) |z

i(j−1)
i1 = π

i(j−1)
i1 ∧ zij = σ )

× Pr(zkn(i+1)1 = πkn(i+1)1) =
n∑

l=j+1

∑
π
i(l−1)
i(j+1)

∑
πkn
i(l+1)

Φ(π
i(j−1)
11 , σ, π

i(l−1)
i(j+1), τ, π

kn
i(l+1))

× Pr( z
i(l−1)
i(j+1) = π

i(l−1)
i(j+1) ∧ z

kn
i(l+1) = πkni(l+1)|z

i(j−1)
11 = π

i(j−1)
11 ∧ zij = σ ∧ zil = τ)

× Pr(zkn(i+1)1 = πkn(i+1)1) = E
l∼Unj+1

E
Z

Φ(Z|zi(j−1)
11 = π

i(j−1)
11 ∧ zij = σ ∧ zil = τ), (A.30)

where Un
j+1 denotes the uniform distribution over the set {j + 1, . . . , n}. The analogue

derivation can be applied to the quantity in line (A.27) with σ and τ exchanged.

For any Z denote by Zij↔il the permutation obtained by switching zij and zil. Then,

due to the linearity of the expectation:

rij(π
i(j−1)
11 ) = sup

σ,τ
E

l∼Unj+1

E
Z

[
Φ(Z)− Φ(Zij↔il)|zi(j−1)

11 = π
i(j−1)
11 , zij = σ, zil = τ)

]
. (A.31)

From the definition of Φ we see that Φ(Z) − Φ(Zij↔il) = 0 when j, l ∈ {1, . . . ,m}

or j, l ∈ {m + 1 . . . , n}. Since l > j in (A.31) this implies rij(π
i(j−1)
11 ) = 0 for j ∈

{m+ 1, . . . , n}. The only remaining cases are j ∈ {1, . . . ,m} and l ∈ {m+ 1, . . . , n}, for

which we obtain

Φ(Z)− Φ(Zij↔il) ≤ sup
h1,...,hk

1

T
· pi ·

1

m
(−`(hi, zij) + `(hi, z

i
l )) ≤

pi
Tm

, (A.32)

where for the first inequality we used that supF − supG ≤ sup(F − G) for any F,G,

and for the second inequality we used that ` is bounded by [0, 1]. Consequently,

rij(π
i(j−1)
11 ) ≤ n−m

n−j
pi
Tm

in this case. Therefore

R̂2 =
k∑
i=1

n∑
j=1

(
rij(π

i(j−1)
11 )

)2 ≤ 1

T 2m2

m∑
j=1

(n−m
n− j

)2
k∑
i=1

p2
i

=
(n−m)2

T 2m(n− 0.5)(n−m− 0.5)

k∑
i=1

p2
i .
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Now from Lemma 10 we obtain that with probability at least 1− δ/4:

Φ(Z)−E
Z

Φ(Z) = Wkn −W0 ≤
1

T

√√√√ k∑
i=1

p2
i

√
log(4/δ)

2m
· n−m√

(n− 0.5)(n−m− 0.5)
. (A.33)

2.2.3 Bound EZ Φ(Z)

The main ingredient here is Lemma 11. First we rewrite Φ(Z) in the following way:

Φ(Z) =
1

T

k∑
i=1

sup
h
pi(êrSui (h)− êrSli(h)) =

1

Tm

k∑
i=1

Φi(Z),

Φi(Z) = sup
h
mpi(êrSui (h)− êrSli(h)).

Note that even though H can be infinitely large, we can identify a finite subset that

represents all possible predictions of hypotheses in H on Su1 ∪ · · · ∪ Suk . We denote their

number by L ≤ 2kn and the corresponding hypotheses by h1, . . . , hL.

Let i ∈ {1, . . . , k} be fixed. Define a set of n L-dimensional vectors, Vi = {vi1, . . . , vin},

where for every j ∈ {1, . . . , n}:

vij =
[
pi
(
êrSui (h1)− `(h1(xij), y

i
j)
)
, . . . , pi

(
êrSui (hL)− `(hL(xij), y

i
j)
)]
. (A.34)

With this notation, choosing a random subset Sli ⊂ Sui corresponds to sampling m

vectors from Vi uniformly without replacement.

Let Ui = {ui1, . . . , uim} be sampled from Vi in that way. Then

Φi(Z) = F

(
m∑
j=1

uij

)
, (A.35)

where the function F takes as input an L-dimensional vector and returns the value of

its maximum component. We now bound EZ Φi(Z) by applying Lemma 11, because by

Lemma 12 F (x) is a convex function:

E
Z

Φt(Z) = E
Ui
F
( m∑
j=1

uij

)
≤ Ê

Ui

[
F

(
m∑
j=1

ûij

)]
. (A.36)
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Switching from the Ui sets by the Ûi sets in Φ corresponds to switching from random

subsets Sli to random sets S̃i consisting of m points sampled from Sli uniformly with

replacement. Therefore we obtain

E
Z

Φi(Z) = E
Sli

Φi(S
l
i) ≤ Ẽ

Si

Φi(S̃i), (A.37)

which allows us to continue analyzing EZ Φi(Z) in the standard way using Rademacher

complexities and independent samples. Applying the common symmetrization trick and

introducing Rademacher random variables σj we obtain:

Φi(S̃i) ≤ 2E
σ

sup
h

m∑
j=1

σjpi`(h(xij), y
i
j).

We can rewrite this using the fact that `(y, y′) = Jy 6= y′K = 1−yy′
2

E
σ

sup
h

m∑
j=1

σjpi`(h(xij), y
i
j) = E

σ
sup
h

m∑
j=1

σjpi
1− h(xij)y

i
j

2
=

1

2
E
σ

sup
h

m∑
j=1

−σjyijpih(xij).

Since −σjyij has the same distribution as σj:

=
pi
2
E
σ

sup
h∈A

m∑
j=1

σjh(xij),

where A = {(h(xi1), . . . , h(xim)) : h ∈ H}. According to Sauer’s lemma (Corollary 3.3

in [66]):

|A| ≤
(em
d

)d
. (A.38)

At the same time:

‖a‖2 =

√√√√ m∑
j=1

(h(xij))
2 =
√
m. (A.39)

Therefore, by Massart’s lemma (Theorem 3.3 in [66]):

E
σ

sup
h

m∑
j=1

σjpi`(h(xij), y
i
j) ≤

pi
2

√
2dm log(em/d). (A.40)
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By applying this result for all i we obtain:

E
Z

Φ(Z) =
1

Tm

k∑
i=1

E
Z

Φi(Z) ≤ 1

Tm

k∑
i=1

Ẽ
Si

Φi(S̃i) ≤
1

T

k∑
i=1

pi

√
2d log(em/d)

m

=

√
2d log(em/d)

m
. (A.41)

Therefore we obtain that for fixed unlabeled samples Su1 , . . . , SuT with probability at least

1− δ/4 for all choices of hc1 , . . . , hcT :

1

T

T∑
t=1

êrSuct (hct) ≤
1

T

T∑
t=1

êrSlct (hct) +

√
2d log(em/d)

m

+
1

T

√√√√ k∑
i=1

p2
i

√
log(4/δ)

2m
· n−m√

(n− 0.5)(n−m− 0.5)
. (A.42)

Theorem 8 follows by combining inequalities (A.19), (A.20), (A.22) and (A.42).

A.4 Proof of Theorem 9

As in the proof of Theorem 8, we bound the multi-task error by the errors on the source

tasks, and transition to empirical quantities while keeping the effect of random sampling

controlled. However, the steps will be more involved, since we now require the bounds

to be uniform also in the (continuous) weights α.

1. Obtain an analog of (A.19)

We start with establishing an analog of (A.19) for the case of multi-source transfer.

Fix a subset of labeled tasks I = {i1, . . . , ik}, a task 〈Dt, ft〉 and a weight vector α ∈

ΛI . Let h∗i ∈ arg minh∈H(ert(h) + eri(h)).1 Writing `(h, h′) as shorthand for `(h(x), h′(x)),

1If the minimum is not attained, the same inequality follows by an argument of arbitrary close
approximation.
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we have

| erα(h)− ert(h)| =
∣∣∣∑
i∈I

αi eri(h)− ert(h)
∣∣∣ ≤∑

i∈I

αi
∣∣ eri(h)− ert(h)

∣∣ (A.43)

≤
∑
i∈I

αi

(∣∣ eri(h)− E
x∼Di

`(h, h∗i )
∣∣+
∣∣ E
x∼Di

`(h, h∗i )− E
x∼Dt

`(h, h∗i )
∣∣ (A.44)

+
∣∣ ert(h)− E

x∼Dt
`(h, h∗i )

∣∣) = (∗) (A.45)

We can bound each summand:

| eri(h)− E
x∼Di

`(h, h∗i )| ≤ eri(h
∗) by the triangular inequality for `

| E
x∼Di

`(h, h∗i )− E
x∼Dt

`(h, h∗i )
∣∣ ≤ disc(Di, Dt) by the definition of discrepancy

| ert(h)− E
x∼Dt

`(h, h∗i )
∣∣ ≤ ert(h

∗
i ) by the triangular inequality for `

Therefore,

(∗) ≤
∑
i∈I

αi(eri(h
∗
i ) + disc(Di, Dt) + ert(h

∗
i )) =

∑
i∈I

αi(λit + disc(Di, Dt)). (A.46)

Consequently, assuming that every task t has its own weights αt we obtain that:

1

T

T∑
t=1

ert(h) ≤ 1

T

T∑
t=1

erαt(ht) +
1

T

T∑
t=1

∑
i∈I

αti disc(Dt, Di) +
1

T

T∑
t=1

∑
i∈I

αtiλti. (A.47)

We continue with bounding every expectation on the right hand side of (A.47) by its

empirical counterpart.

2. Bound 1
T

∑T
t=1

∑
i∈I α

t
i disc(Dt, Di)

As in the proof of Theorem 8, we apply Proposition 2 to every summand and com-

bine the results using a union bound argument. We obtain that with probability at least

1− δ/2 uniformly for all choices of I and α1, . . . , αT ∈ ΛI :

1

T

T∑
t=1

∑
i∈I

αti disc(Dt, Di) ≤
1

T

T∑
t=1

∑
i∈I

αti disc(St, Si) + 2

√
2d log(2n) + log(4T 2/δ)

n
.

(A.48)
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3. Bound 1
T

∑T
t=1 erαt(ht)

Now we upper-bound the error term in two steps, analogously to the proof of The-

orem 8.

3.1 Relate 1
T

∑T
t=1 erαt(ht) to 1

T

∑T
t=1 ẽrαt(ht)

We start with relating the multi-task error to the hypothetical empirical error, if the

learner would receive labels for all examples in the selected labeled tasks:

ẽrα(h) =
∑
i∈I

αiêrSui (h) for êrSui (h) =
1

n

n∑
j=1

`(h(xij), fi(x
i
j)). (A.49)

Clearly, if m = n this part is not necessary and we can avoid the resulting complexity

terms.

Because the choice of the tasks to label, I, their weights, α = (α1, . . . , αT ), and the

predictors, h = (h1, . . . , hT ), all depend on the unlabeled data, we aim for a bound that

is holds simultaneous for all choices of these quantities, under the condition that I and

α depend only on the unlabeled samples, while h can be chosen based also on the

labeled subsets.

Our main tool is a refined version of McDiarmid’s inequality, due to Maurer [56]

(Lemma 13), which allows us to make use of the internal structure of the weights, α,

while deriving a large deviation bound.

For any S = (Su1 , . . . , S
u
T ) define:

Ψ(S) = sup
I={i1,...,ik}

sup
α1,...,αn∈ΛI

sup
h1,...,hT

1

T

T∑
t=1

T∑
i=1

αti(eri(ht)− êrSui (ht)) (A.50)

= sup
I

sup
α

sup
h

g(α,h,S) (A.51)

for

g(α,h,S) =
T∑
i=1

n∑
j=1

(
1

Tn

T∑
t=1

αti(eri(ht)− `(ht(xij), ft(xij)))

)
. (A.52)
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For notational simplicity we will sometimes think of every Sut as a set of pairs (xti, y
t
i),

where yti = ft(x
t
i). To apply Lemma 13 we establish a bound on ∆+,Ψ(S) =

∑
i

∑
j(Ψ(S)−

Ψij(S))2, with

Ψij(S) = inf
(x,y)

sup
α

sup
h

g(α,h,S \ {(xij, yij)} ∪ {(x, y)}, (A.53)

i.e. the possible smallest value for Ψ when changing only the data point (xij, y
i
j). Let

α∗,h∗ be the point where the sup in the (A.51) is attained1, i.e. Ψ(S) = g(α∗,h∗,S).

Then:

Ψij(S) ≥ inf
(x,y)

g(α∗,h∗,S \ {(xij, yij)} ∪ {(x, y)} ) (A.54)

and therefore

Ψ(S)−Ψij(S) ≤ g(α∗,h∗,S)− inf
(x,y)

g(α∗,h∗,S \ {(xij, yij)} ∪ {(x, y)}) (A.55)

≤ sup
(x,y)

1

Tn

T∑
t=1

α∗ti (−`(h∗t (xij), yij) + `(h∗t (x), y)) ≤ 1

Tn

T∑
t=1

α∗ti , (A.56)

where for the last inequality we use that ` is bounded in [0, 1]. Because also Ψ(S) −

Ψij(S) ≥ 0, we obtain

∆+,Ψ(S) =
T∑
i=1

n∑
j=1

(Ψ(S)−Ψij(S))2 ≤
T∑
i=1

n∑
j=1

1

T 2n2

(
T∑
t=1

α∗ti

)2

(A.57)

≤ 1

T 2n

(
T∑
i=1

T∑
t=1

α∗ti

)2

=
1

n
, (A.58)

(remember that
∑

i αi = 1 for any α ∈ ΛI). Therefore, according to Lemma 13 with

probability at least 1− δ/4:

Ψ(S) ≤ E Ψ(S) +

√
2

n
log

4

δ
. (A.59)

1If the supremum is not attained the subsequent inequality still follows from an argument of arbitrarily
close approximation.



98

To bound ES Ψ(S) we use symmetrization and Rademacher variables, σij:

E
S

Ψ(S) = E
S

sup
I

sup
α1,...,αT∈ΛI

sup
h1,...,hT

T∑
i=1

n∑
j=1

(
1

Tn

T∑
t=1

αti(eri(ht)− `(ht(xij), yij))

)
(A.60)

≤ 2E
S
E
σ

sup
I

sup
α1,...,αT∈ΛI

sup
h1,...,hT

T∑
i=1

n∑
j=1

(
σij
Tn

T∑
t=1

αti`(ht(x
i
j), y

i
j)

)
(A.61)

≤ 2E
S
E
σ

1

T

T∑
t=1

sup
αt∈Λ,ht

T∑
i=1

n∑
j=1

σijα
t
i

n

T∑
t=1

`(ht(x
i
j), y

i
j) (A.62)

≤ 2E
S
E
σ

sup
α,h

T∑
i=1

n∑
j=1

σijαi
n

`(h(xij), y
i), (A.63)

where line (A.62) is obtained from line (A.61) by dropping the assumption of a common

sparsity pattern between the α-s. Note that the function inside the last sup is linear

in α ∈ Λ, therefore supα can be reduced to the sup over the corners of the simplex,

{(1, 0, . . . , 0), . . . , (0, . . . , 0, 1)}. At the same time, by Sauer’s lemma, the number of

different choices of h on S is bounded by
(
eTn
d

)d. Therefore, the total number of different

choices in (A.63) is bounded by T
(
enT
d

)d. Furthermore, for any choice of α and h, the

norm of the Tn-vector formed by the summands of (A.63) is bounded by 1/
√
n, because

T∑
i=1

n∑
j=1

(σijαi
n

`(h(xij), y
i)
)2

=
1

n2

T∑
i=1

n∑
j=1

(
αi`(h(xij), y

i)
)2 (A.64)

≤ 1

n2

n∑
j=1

(
T∑
i=1

αi

)2

=
1

n
. (A.65)

Therefore, by Massart’s lemma:

E
σ

sup
α,h

T∑
i=1

n∑
j=1

σilαi
n

`(h(xil), y
i
l) ≤

√
2(log T + d log(enT/d))√

n
. (A.66)

Combining (A.59) and (A.66) we obtain that with probability at least 1− δ/4 simulta-

neously for all choices of tasks to be labeled, I, weights α and hypotheses h:

1

T

T∑
t=1

erαt(ht) ≤
1

T

T∑
t=1

ẽrαt(ht) +

√
8(log T + d log(enT/d))

n
+

√
2

n
log

4

δ
. (A.67)
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3.2 Relate 1
T

∑T
t=1 êrαt(ht) to 1

T

∑T
t=1 ẽrαt(ht)

Fix the unlabeled samples Su1 , . . . , S
u
T . This uniquely determines the chosen tasks

I and the weights α1, . . . , αT ∈ ΛI , so the only remaining source of randomness is the

uncertainty which subsets of the selected tasks are labeled.

For notational simplicity we pretend that exactly the first k tasks were selected, i.e.

I = {1, . . . , k}. The general case can be obtained by changing the indices in the proof

from 1, . . . , k to i1, . . . , ik.

To deal with the dependencies between the labeled data points we first note that any

random labeled subset Sli = (s̄i1, . . . , s̄
i
m) can be described as the first m elements of a

random permutation Zi = (zi1, . . . , z
i
n) over n elements that correspond to the unlabeled

sample Sui , i.e. s̄ij = (x̄ij, ȳ
i
j) = (xi

zij
, yi
zij

). With this notation and writing Z = (Z1, . . . , Zk)

and `(h, zij) = `(h(x̄ij), ȳ
i
j) we define the following function

Φ(Z) = sup
h1,...,hT

1

T

T∑
t=1

ẽrαt(ht)− êrαt(ht) (A.68)

= sup
h1,...,hT

k∑
i=1

1

T

T∑
t=1

αti

( 1

n

n∑
j=1

`(ht, z
i
j)−

1

m

m∑
j=1

`(ht, z
i
j)
)
. (A.69)

Our main tool is McDiarmid’s inequality (Lemma 10) for martingales.

3.2.1 Construct a martingale sequence

For this, we interpret Z = (z1
1 , z

1
2 , . . . , z

k
n) as a sequence of kn dependent variables,

z11, . . . , zkn. For the sake of notational consistency we will keep using double indices,

with the convention that the sample index, j = 1, . . . , n, runs faster than the task index,

i = 1, . . . , k. Segments of a sequence will be denoted by upper and lower double indices,

z ı̄̄ij = (zij, zi(j+1), . . . , zı̄̄) for ij ≤ ı̄̄ and z ı̄̄ij = ∅ otherwise. We now create a martingale

sequence using Doob’s construction [29]:

Wij = E
Z
{Φ(Z)| zij11 }. (A.70)

where here and in the following when taking expectations over Z it is silently assumed
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that the expectation is taken only with respect to variables that are not conditioned

on. Note that because of this convention, the expectations in (A.70) is only with

respect to zi(j+1), . . . , zkn, so each Wij is a random variable of z11, . . . , zij. In particular,

W00 = EZ Φ(Z) and Wkn = Φ(Z), and the in between sequence is a martingale with

respect to z11, . . . , zkn:

E
Z
{ Wij|zi(j−1)

11 } = E
Z

{
E
Z
{Φ(Z)| zij11}

∣∣ zi(j−1)
11

}
= E

Z
{Φ(Z)|zi(j−1)

11 } = Wi(j−1). (A.71)

3.2.2 Upper-bound R̂2

In order to apply Lemma 10 we need an upper bound on the coefficient R̂2 defined

there.

Let i ∈ {1, . . . , k} and j ∈ {1, . . . , n} be fixed and let π = (π1, . . . , πk) be specific

permutations of n elements for which we use the same index conventions as for Z. By

σ and τ will denote elements in πini(j+1), i.e. σ and τ do not occur in any of the first j

positions of the permutation πi. Then

rij(π
i(j−1)
11 ) = sup

σ∈πin
i(j+1)

{ Wij : z
i(j−1)
11 = π

i(j−1)
11 , zij = σ}

− inf
σ∈πin

i(j+1)

{ Wij : z
i(j−1)
11 = π

i(j−1)
11 , zij = σ}

= sup
σ∈πin

i(j+1)

sup
τ∈πin

i(j+1)

[
E

zkn
i(j+1)

{Φ(π
i(j−1)
11 , σ, zkni(j+1))} − E

zkn
i(j+1)

{Φ(π
i(j−1)
11 , τ, zkni(j+1))}

]
. (A.72)

To analyze (A.72) further, recall that:

E
zkn
i(j+1)

{Φ(π
i(j−1)
11 , σ, zkni(j+1))}

=
∑
πkn
i(j+1)

Φ(π
i(j−1)
11 , σ, πkni(j+1))× Pr( zkni(j+1) = πkni(j+1) |z

i(j−1)
11 = π

i(j−1)
11 ∧ zij = σ ),

where here and in the following we use the convention that sums over parts of π run

only over values that lead to valid permutations. Because the permutations of different
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task are independent, this is equal to

=
∑
πkn
i(j+1)

Φ(π
i(j−1)
11 , σ, πkni(j+1)) (A.73)

× Pr( zini(j+1) = πini(j+1) |z
i(j−1)
i1 = π

i(j−1)
i1 ∧ zij = σ ) Pr(zkn(i+1)1 = πkn(i+1)1)

We make the following observation: for any fixed πiji1 and any τ 6∈ πiji1, we can rephrase a

summation over πini(j+1) into a sum over all positions where τ can occur, and a sum over

all configuration for the entries that are not τ :

∑
πin
i(j+1)

F (πini(j+1)) =
n∑

l=j+1

∑
π
i(l−1)
i(j+1)

∑
πin
i(l+1)

F (π
i(l−1)
i(j+1), τ, π

in
i(l+1)) (A.74)

for any function F . Applying this to the summation in (A.73), we obtain

∑
πkn
i(j+1)

Φ(π
i(j−1)
11 , σ, πkni(j+1)) Pr( zini(j+1) = πini(j+1) |z

i(j−1)
i1 = π

i(j−1)
i1 ∧ zij = σ )

× Pr(zkn(i+1)1 = πkn(i+1)1) =
n∑

l=j+1

∑
π
i(l−1)
i(j+1)

∑
πkn
i(l+1)

Φ(π
i(j−1)
11 , σ, π

i(l−1)
i(j+1), τ, π

kn
i(l+1))

× Pr( z
i(l−1)
i(j+1) = π

i(l−1)
i(j+1) ∧ z

kn
i(l+1) = πkni(l+1)|z

i(j−1)
11 = π

i(j−1)
11 ∧ zij = σ ∧ zil = τ)

× Pr(zkn(i+1)1 = πkn(i+1)1) = E
l∼Unj+1

E
Z

Φ(Z|zi(j−1)
11 = π

i(j−1)
11 ∧ zij = σ ∧ zil = τ),

where Un
j+1 denotes the uniform distribution over the set {j + 1, . . . , n}. The analogue

derivation can be applied to the quantity in line (A.72) with σ and τ exchanged.

For any Z denote by Zij↔il the permutation obtained by switching zij and zil. Then,

due to the linearity of the expectation:

rij(π
i(j−1)
11 ) = sup

σ,τ
{ E
l∼Unj+1

E
Z
{Φ(Z)− Φ(Zij↔il)|zi(j−1)

11 = π
i(j−1)
11 , zij = σ, zil = τ). (A.75)

From the definition of Φ we see that Φ(Z)−Φ(Zij↔il) = 0 when j, l ∈ {1, . . . ,m} or j, l ∈

{m + 1 . . . , n}. Since l > j in (A.75) this implies rij(π
i(j−1)
11 ) = 0 for j ∈ {m + 1, . . . , n}.
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The only remaining cases are j ∈ {1, . . . ,m} and l ∈ {m+ 1, . . . , n}, for which we obtain

Φ(Z)− Φ(Zij↔il) ≤ sup
h1,...,hT

1

T

T∑
t=1

αti
1

m
(−`(ht, zij) + `(ht, z

i
l )) ≤

1

Tm

T∑
t=1

αti.

where for the first inequality we used that supF − supG ≤ sup(F − G) for any F,G,

and for the second inequality we used that ` is bounded by [0, 1]. Consequently,

rij(π
i(j−1)
11 ) ≤ n−m

n−j
1
Tm

∑T
t=1 α

t
i in this case. Therefore1

R̂2 =
k∑
i=1

n∑
j=1

(
rij(π

i(j−1)
11 )

)2 ≤ 1

T 2m2

m∑
j=1

(n−m
n− j

)2
k∑
i=1

(
T∑
t=1

αti

)2

(A.76)

≤ 1

T 2m

k∑
i=1

(
T∑
t=1

αti

)2

. (A.77)

3.2.3 Upper-bound EZ Φ(Z)

The main tool here is Lemma 11. First we rewrite Φ(Z) in the following way:

Φ(Z) =
1

T

T∑
t=1

sup
h

k∑
i=1

αti(êrSui (h)− êrSli(h)) =
1

Tm

T∑
t=1

Φt(Z)

Φt(Z) = sup
h

k∑
i=1

mαti(êrSui (h)− êrSli(h)).

Note that even though H can be infinitely large, we can identify a finite subset that

represents all possible predictions of hypothesis in H on Su1 ∪ · · · ∪ Suk . We denote their

number by L ≤ 2kn and the corresponding hypotheses by h1, . . . , hL.

Let t ∈ {1, . . . , T} be fixed. For every i ∈ {1, . . . , k} define a set of n L-dimensional

vectors, V t
i = {vti1, . . . , vtin}, where for every j ∈ {1, . . . , n}:

vtij =
[
αti
(
ẽri(h

1)− `(h1(xij), y
i
j)
)
, . . . , αti

(
ẽri(h

L)− `(hL(xij), y
i
j)
)]
. (A.78)

With this notation, for every i ∈ {1, . . . , k} choosing a random subset Sli ⊂ Sui corre-

sponds to sampling m vectors from V t
i uniformly without replacement.

1We generously bound n−m
n−j ≤ 1 in this step. By keeping the corresponding factor in the analysis one

obtains that the constant B in the theorem can be improved at least by a factor of (n−m)2

(n−0.5)(n−m−0.5) .



103

For every i ∈ {1, . . . , k}, let Ui = {ui1, . . . , uim} be sampled from V t
i in that way. Then

Φt(Z) = F

(
k∑
i=1

m∑
j=1

uij

)
, (A.79)

where the function F takes as input an L-dimensional vector and returns the value of its

maximum component. We now bound EZ Φt(Z) by applying Lemma 11 k times:

E
Z

Φt(Z) = E
U1,...,Uk

F
( k∑
i=1

m∑
j=1

uij

)
(A.80)

= E
U1,...,Uk−1

[
E
Uk

[
F
( k−1∑
i=1

m∑
j=1

uij +
m∑
j=1

ukj

)∣∣∣U1, . . . , Uk−1

]]
(A.81)

By Lemma 12 F (x) is a convex function. Thus F (const + x) is also convex and we can

apply Lemma 11 with respect to Uk.

≤ E
U1,...,Uk−1

[
Ê
Uk

[
F

(
k−1∑
i=1

m∑
j=1

uij +
m∑
j=1

ûkj

)∣∣∣U1, . . . , Uk−1

]]
(A.82)

where Ûk = {uki, . . . , ukm} is a set of m vectors sampled from V t
k with replacement.

= E
U1,...,Uk−1,Ûk

[
F

(
k−1∑
i=1

m∑
j=1

uij +
m∑
j=1

ûkj

)]
. (A.83)

Repeating the process k times, we obtain

≤ · · · ≤ E
Û1,...,Ûk

[
F

(
k∑
i=1

m∑
j=1

ûij

)]
. (A.84)

Note that writing the conditioning in the above expressions is just for clarity of presenta-

tion, since the U1, . . . , Uk are actually independent of each other.

Switching from the U sets by the Û sets in Φ corresponds to switching from random

subsets Sli to random sets S̃i consisting of m points sampled from Sui uniformly with

replacement. Therefore we obtain

E
Z

Φt(Z) = E
Sl1,...,S

l
k

Φt(S
l
1, . . . , S

l
k) ≤ E

S̃1,...,S̃k

Φt(S̃1, . . . , S̃k), (A.85)
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which allows us to continue analyzing EZ Φt(Z) in the standard way using Rademacher

complexities and independent samples. Applying the common symmetrization trick and

introducing Rademacher random variables σij we obtain

Φt(S̃1, . . . , S̃k) ≤ 2E
σ

sup
h

k∑
i=1

m∑
j=1

σijα
t
i`(h(xij), y

i
j).

We can rewrite this using the fact that `(y, y′) = Jy 6= y′K = 1−yy′
2

:

E
σ

sup
h

k∑
i=1

m∑
j=1

σijα
t
i`(h(xij), y

i
j) = E

σ
sup
h

k∑
i=1

m∑
j=1

σijα
t
i

1− h(xij)y
i
j

2

=
1

2
E
σ

sup
h

k∑
i=1

m∑
j=1

−σijyijαtih(xij)

Since −σijyij has the same distribution as σij:

=
1

2
E
σ

sup
a(h)∈A

k∑
i=1

m∑
j=1

σijaij(h),

where aij(h) = αtih(xij) and A = {a(h) : h ∈ H}. According to Sauer’s lemma (Corollary

3.3 in [66]):

|A| ≤
(
ekm

d

)d
. (A.86)

At the same time:

‖a‖2 =

√√√√ k∑
i=1

m∑
j=1

(αtih(xij))
2 =
√
m

√√√√ k∑
i=1

(αti)
2. (A.87)

Therefore, by Massart’s lemma (Theorem 3.3 in [66]):

E
σ

sup
h

k∑
i=1

m∑
j=1

σijα
t
i`(h(xij), y

i
j) ≤

1

2

√√√√ k∑
i=1

(αti)
2 ·
√

2dm log(ekm/d). (A.88)
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By applying this result for all t we obtain:

E
Z

Φ(Z) =
1

Tm

T∑
t=1

E
Z

Φt(Z) ≤ 1

Tm

T∑
t=1

Ẽ
S

Φt(S̃) (A.89)

≤ 1

T

T∑
t=1

√√√√ k∑
i=1

(αti)
2 ·
√

2d log(ekm/d)

m
. (A.90)

Combining (A.77) and (A.90) with Lemma 10 we obtain that for fixed unlabeled samples

Su1 , . . . , S
u
T with probability at least 1− δ/4 for all choices of h1, . . . , hT :

1

T

T∑
t=1

ẽrαt(ht) ≤
1

T

T∑
t=1

êrαt(ht) +
1

T
‖α‖2,1

√
2d log(ekm/d)

m
+

1

T
‖α‖1,2

√
log(4/δ)

2m
.

By further combining it with (A.67) we obtain that the following inequality holds uniformly

in h1, . . . , hT ∈ H with probability at least 1−δ/2 over the sampling of the unlabeled train-

ing sets, Su1 , . . . , SuT , and labeled training sets, (Sli)i∈I , provided that the subset of labeled

tasks, I ⊂ {1, . . . , T}, and the task weights, α1, . . . , αT ∈ ΛI , depend deterministically

on the unlabeled training only.

1

T

T∑
t=1

erαt(ht) ≤
1

T

T∑
t=1

êrαt(ht)+
1

T
‖α‖2,1

√
2d log(ekm/d)

m
+

1

T
‖α‖1,2

√
log(4/δ)

2m

+

√
8(log T + d log(enT/d))

n
+

√
2

n
log

4

δ
. (A.91)

The statement of Theorem 9 follows by combining (A.47) with (A.48) and (A.91).
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B Proofs of theorems in Chapter 4
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B.1 Proof of Theorem 10

As in the proof of Theorem 5 we will use the technique of covering numbers to obtain

Theorem 10. However, in this case we will need covers of the kernel family K with

respect to a probability distribution. In particular, for any probability distribution D over

X × Y , we denote its projection on X by DX and define the following distance between

the kernels:

DD(K, K̃)=max{max
h∈HK

min
h′∈HK̃

E
x∼DX

|h(x)− h′(x)|, max
h′∈HK̃

min
h∈HK

E
x∼DX

|h(x)− h′(x)|}. (B.1)

Similarly, for any set of T distributions D = (D1, . . . , DT ) we define:

DD(K, K̃) = max
t=1...T

DDt(K, K̃). (B.2)

The minimal size of the corresponding ε-cover of a set of kernels K we will denote

by NDD
(K, ε) and the corresponding uniform covering number by by N(D,T )(K, ε) =

max(D1,...,DT ) NDD
(K, ε).

Now we proceed similarly to the way Theorem 10 is proved by first obtaining a

generalization bound in terms of the defined above covering numbers.

First, note that for a set of T data distributions D = (D1, . . . , DT ) the following

inequality holds true:

Pr
{
S ∈ (X × Y)(T,n) ∃ K ∈ K : erD(HK) > êrγS(HK) + ε

}
≤

Pr
{
S ∈ (X × Y)(T,n) ∃ h ∈ HT : erD(h) > êrγS(h) + ε

}
,

where

erD(HK) =
1

T

T∑
t=1

inf
h∈HK

E
(x,y)∼Dt

Jyh(x) < 0K. (B.3)

Thus, by exactly following the proof of Theorem 16 one can obtain that:

Pr
{
∃K ∈ K er

γ/2
D (HK)− êrγS(HK) >

ε

2

}
< 2N(T,2n)(HT , γ/4) exp

(
−Tnε

2

32

)
. (B.4)

Therefore the only thing that is left is a bound on the difference between erD(HK) and

erγD(HK).



108

We will use the following notation:

erD(HK) = inf
h∈HK

E
(x,y)∼D

Jh(x)y < 0K,

erγD(HK) = inf
h∈HK

E
(x,y)∼D

Jh(x)y < γK

and proceed in a way analogous to the proof of Theorem 16. First, if we define:

Q = {D = (D1, . . . , DT ) : ∃HK : erD(HK) > erγD(HK) + ε}

R = {D = (D1,D2) : ∃HK : erD2(HK) > erγD1
(HK) + ε/2},

then according to the symmetrization argument Pr(Q) ≤ 2 Pr(R).

Now, if we define Γ2T to be a set of permutations σ on a set {1, 2, . . . , 2T}, such that

{σ(t), σ(T+t)} = {t, T+t} for all t = 1 . . . T , we obtain that Pr(R) ≤ maxD Prσ(σD ∈ R),

if T > 2/ε2. So, the only thing that is left is a reduction to a finite class.

Fix D = (D1,D2) = (D1, . . . , D2T ) and denote by K̃ ⊂ K a set of kernels, such that

for every K ∈ K there exists a K̃ ∈ K̃ such that:

erγDt(HK) + ε/8 ≥ er
γ/2
Dt

(HK̃) ≥ erDt(HK)− ε/8 ∀t = 1 . . . 2T. (B.5)

Then, if FK is such that

erD2(HK) > erγD1
(HK) + ε/2,

then the corresponding K̃ satisfies

er
γ/2
D2

(HK̃) > er
γ/2
D1

(HK̃) + ε/4.

Therefore:

Pr
σ
{σD ∈ R} ≤ Pr

σ

{
∃K ∈ K̃ :

1

T

T∑
t=1

(er
γ/2
Dσ(T+t)

(HK)− er
γ/2
Dσ(t)

(HK)) > ε/4

}
≤

|K̃|max
K∈K̃

Pr
σ

{
1

T

T∑
t=1

(er
γ/2
Dσ(T+t)

(HK)− er
γ/2
Dσ(t)

(HK)) > ε/4

}
=

|K̃|max
K∈K̃

Pr
β

{
1

T

T∑
t=1

| er
γ/2
DT+t

(HK)− er
γ/2
Dt

(HK)|βt > ε/4

}
= (∗),
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where βt are independent random variables uniformly distributed over {−1,+1}. There-

fore {| er
γ/2
DT+t

(HK)− er
γ/2
Dt

(HK)|βt} are T independent random variables that take values

between −1 and 1 and have zero mean. Therefore by applying Hoeffding’s inequality

we obtain:

(∗) ≤ |K̃| exp

(
−2T 2ε2/16

4T

)
= |K̃| exp

(
−Tε

2

32

)
. (B.6)

Now we show that |K̃| can be upper bounded using covering number N(D,2T ):

Lemma 2. For any set of probability distributions D = (P1, . . . , P2T ) there exists K̃ that

satisfies condition of equation B.5 and |K̃| ≤ N(D,2T )(K, εγ/16).

Proof. Fix a set of distributions D = (D1, . . . , P2T ) and denote by K̃ an εγ/16-cover of K

with respect to DD. Then |K̃| ≤ N(D,2T )(K, εγ/16). By definition of a cover for any kernel

K ∈ K there exists K̃ ∈ K̃ such that DD(K, K̃) < εγ/16. Equivalently, it means that for

every K ∈ K there exists K̃ ∈ K̃ such that the following two conditions hold for every

t = 1, . . . , 2T :

1.∀ h ∈ HK ∃h′ ∈ HK̃ : E
(x,y)∼Dt

(|h(x)− h′(x)|) < εγ

16
, (B.7)

2.∀ h′ ∈ HK̃ ∃h ∈ HK : E
(x,y)∼Dt

(|h(x)− h′(x)|) < εγ

16
. (B.8)

Fix some K and the corresponding kernel K̃ from the cover and take any Dt. By

Markov’s inequality applied to the first condition we obtain that for every h ∈ HK there

exists a h′ ∈ HK̃ such that Pr{(x, y) ∼ Dt : |h(x)−h′(x)| > γ/2} < ε/8. Then er
γ/2
Dt

(h′) ≤

erγDt(h) + ε/8. By applying the same argument to the second condition we conclude

that for every h′ ∈ HK̃ there exists a h ∈ HK such that Pr{(x, y) ∼ Dt : |h(x)− h′(x)| >

γ/2} < ε/8. Then erDt(h) ≤ er
γ/2
Dt

(h′)+ε/8. By definition of infinum in er2γ
Dt

(HK) for every δ

there exists h ∈ HK such that erγDt(HK)+δ > erγDt(h) ≥ erγDt(HK). By above construction

for such h there exists h′ ∈ HK̃ such that erγDt(h) ≥ er
γ/2
Dt

(h′) − ε/8 ≥ er
γ/2
Dt

(HK̃) − ε/8.

By combining these inequalities we obtain that for every δ > 0:

erγDt(HK) + δ > er
γ/2
Dt

(HK̃)− ε/8,

or, equivalently:

erγDt(HK) ≥ er
γ/2
Dt

(HK̃)− ε/8.
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Analogously we can get that

er
γ/2
Dt

(HK̃) ≥ erDt(HK)− ε/8.

So, we obtain condition (B.5).

By combining the above Lemma with (B.6) we obtain the following result (the second

inequality can be obtained in a similar manner):

Theorem 19. For any ε > 0, if T > 2/ε2, the following holds:

Pr {∃K ∈ K : erD(HK) > erγD(HK) + ε} ≤ 2N(D,2T )(K, εγ/16) exp

(
−Tε

2

32

)
,

Pr
{
∃K ∈ K : er2γ

D (HK) < erγD(HK)− ε
}
≤ 2N(D,2T )(K, εγ/16) exp

(
−Tε

2

32

)
.

Now we need to bound covering numbers N(D,T ) in terms of the pseudodimension of

the kernel family K.

Lemma 3. There exists a constant C such that for any kernel family K with pseudodi-

mension dφ such that K(x, x) ≤ B2 for every K ∈ K and every x ∈ X :

N(D,T )(K, ε) ≤
(
CT 5d5

φ

(
B/ε

)17)dφ
. (B.9)

The proof this result is based on the following lemma that connects sample-based

and distribution-based covers of kernel families:

Lemma 4. For any probability distribution D over X × Y and any B2-bounded set of

kernels K with pseudo-dimension dφ there exists a sample x of size n = cd2
φB

5/ε5 for

some constant c, such that for every K, K̃ if Dx
1 (K, K̃) < ε/2, then DD(K, K̃) < ε (where

Dx
1 is the same as DD, but all expectations over D are substituted by empirical averages

over x).
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Proof. Define G =
{
g : X → [0, 1] : g(x) = |h(x)−h′(x)|

B
for some h, h′ ∈ ∪K∈KHK

}
. Then

(using Lemma 2 and 3 in [12] and Theorem 1 in [89]):

Pr
{
x ∈ X n : ∃K, K̃ : |Dx

1 (K, K̃)−DD(K, K̃)| > ε/2
}
≤

Pr

{
x ∈ X n: ∃h, h′ ∈ ∪HK :

∣∣∣∣∣ 1n
n∑
i=1

|h(xi)−h′(xi)| − E
(x,y)∼D

|h(x)− h′(x)|

∣∣∣∣∣> ε

2

}
=

Pr

{
x ∈ X n : ∃g, g′ ∈ G :

∣∣∣∣∣ 1n
n∑
i=1

g(xi)− E
(x,y)∼D

g(x)

∣∣∣∣∣ > ε/2B

}
≤

4 max
x

N

(
ε/32

B
,G, dx1

)
e−ε

2n/512B2 ≤ 4 max
x

N
( ε

64B
,∪HK/B, d

x
1

)2

e−ε
2n/512B2

=

4 max
x

N(ε/64,∪HK , d
x
1 )2e−ε

2n/512B2 ≤ 4 max
x

N(ε/64,∪HK , d
x
∞)2e−ε

2n/512B2 ≤

4 · 4 ·N(K, ε2/(642 · 4n))2 ·
(

16nB2642

ε2

) 2·643B2

ε2
log( εen

64∗8B )
e−ε

2n/512B2 ≤

16

(
214en3B2

ε2dφ

)2dφ (216nB2

ε2

) 219B2

ε2
log( εen

29B
)
e−ε

2n/512B2

= (∗∗)

For big enough n (∗∗) is less than 1, which means that there is a sample x ∈ X n such

that for all kernels K, K̃ we have |Dx
1 (K, K̃) − DD(K, K̃)| ≤ ε/2. More precisely, n

should be bigger than cd2
φB

5/ε5 for some constant c.

Now we can prove Lemma 3:

Proof of lemma 3. Fix some set of probability distributions D = (D1, . . . , DT ). For every

Dt denote a sample described by Lemma 4 by xt. Let K̃ be an ε/2T -cover of K with

respect to Dx
1 , where x = (x1, . . . ,xT ) ∈ X Tn and n = cd2

φB
5/ε5. Then the following

chain of inequalities holds:

max
h∈HK

min
h′∈HK̃

1

Tn

T∑
t=1

n∑
i=1

|h(xti)− h′(xti)| ≤ max
h

min
h′
‖h(x)− h′(x)‖ ≤

max
w
||K

1
2
xw − K̃

1
2
xw|| ≤ ‖K

1
2
x − K̃

1
2
x ‖2 ≤

√
‖Kx − K̃x‖2 ≤

√
Tn|Kx − K̃x|∞.

Consequently, by Lemma 3 in [89]:

|K̃| ≤ N(ε/2T,K, Dx
1 ) ≤

(
4en3T 5B2

ε2dφ

)dφ
=

(
CT 5d5

φ

(
B

ε

)17
)dφ

(B.10)
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. It is left to show that K̃ is an ε-cover of K with respect to DD. By definition, for every

K ∈ K there exists K̃ ∈ K̃ such that Dx
1 (K, K̃) < ε/2T . Therefore for every t = 1 . . . T :

max
h∈HK

min
h′∈HK̃

1

n

n∑
i=1

|h(xti)− h′(xti)| ≤ max
h∈HK

min
h′∈HK̃

T

Tn

∑
t,i

|h(xti)− h′(xti)|<
ε

2
.

Consequently, by Lemma 4, DDt(K, K̃) < ε for all t = 1, . . . , T .

The statement of Theorem 10 follows from a combination of equation (B.4), its

equivalent in the opposite direction with Theorem 19 and Lemmas 1 and 3.
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B.2 Proof of Theorem 11

To prove Theorem 11 we introduce an intermediate quantity that can be seen as an

expected multi-task risk :

êrD(Q) = E
P∼Q

1

T

T∑
t=1

E
h∼Qt

E
(x,y)∼Dt

`(h(x), y). (B.11)

First we will bound the uncertainty on the task environment level by bounding the

difference between the expected lifelong error, erD(Q), and expected multi-task error on

the observed tasks, êrD(Q). Then we will bound the uncertainty within observed tasks

by bounding the difference between êrD(Q), and its empirical approximation, êrS(Q).

Our main tool in both cases will be the following lemma.

Lemma 5. Let f be a random variable taking values in A and let X1, . . . , Xl be l

independent random variables with each Xk distributed according to µk over the set Ak.

For functions gk : A×Ak → [ak, bk], k = 1 . . . l, let ξk(f) = EXk∼µk gk(f,Xk) for any fixed

value of f . Then for any fixed distribution π on A and any λ, δ > 0 the following inequality

holds with probability at least 1− δ (over sampling X1, . . . , Xl) for all distributions ρ over

A

E
f∼ρ

l∑
k=1

ξk(f)− E
f∼ρ

l∑
k=1

gk(h,Xk) ≤
1

λ

(
KL(ρ||π) +

λ2

8

l∑
k=1

(bk − ak)2 − log δ

)
.

Proof. We start in a standard way by applying the change of measure inequality to

g(f) =
∑l

k=1 ξk(f)−
∑l

k=1 gk(f,Xk)"

E
f∼ρ

(
l∑

k=1

ξk(f)−
l∑

k=1

gk(f,Xk)

)
≤ 1

λ

(
KL(ρ‖π) + log E

f∼π
eλg(f)

)
. (B.12)

Note, that

eλg(f) =
l∏

k=1

exp(λ(ξk(f)− gk(f,Xk))), (B.13)

since for any fixed f the factors are independent. This allows us to apply Hoeffding’s
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lemma to each factor:

E
X1∼µ1

· · · E
Xl∼µl

eλg(f) ≤ exp
(λ2

8

l∑
k=1

(bk − ak)2
)
. (B.14)

By taking the expectation over f ∼ π we obtain

E
f∼π

E
X1∼µ1

· · · E
Xl∼µl

eλg(f)≤exp
(λ2

8

l∑
k=1

(bk−ak)2
)
. (B.15)

Since π is fixed and does not depend on X1, . . . , Xl, we can exchange the order

of expectations. By applying Markov’s inequality with respect to expectations over

X1, . . . , Xl we obtain that with probability at least 1− δ:

log E
f∼π

eλg(f) ≤ λ2

8

∑l

k=1
(bk − ak)2 − log δ. (B.16)

We obtain (5) by combining (B.16) and (B.12).

In order to bound the difference between erD(Q) and êrD(Q) we treat each task t with

the corresponding training sample St as a random variable and apply Lemma 5. Formally,

we set ρ = Q, π = P , Xk = (tk, Sk), l = T , f = P and gk(f,Xk) = 1
T

E
h∼Qk

E
(x,y)∼Dk

l(h(x), y)

and apply Lemma 5 with λ =
√
T . Since ak = 0 and bk = 1

T
we obtain with probability at

least 1− δ/2 that for all Q

erD(Q) ≤ êrD(Q) +
1√
T

(
KL(Q||P) +

1

8
− log

δ

2

)
. (B.17)

To bound the difference between êrD(Q) and êrS(Q) we apply Lemma 5 to the union

of all training samples S ′ =
⋃T
t=1 St. We set ρ = (Q, Q1, . . . , QT ), π = (P , P, . . . , P ),

Xk = (xti, y
t
i), l = Tn, f = (P, h1, . . . , hT ) and gk(f,Xk) = 1

Tn
`(ht(x

t
i), y

t
i). In this setting

ak = 0 and bk = 1/(Tn), Lemma 5 with λ = T
√
n yields that with probability at least

1− δ/2 for all Q

êrD(Q) ≤ êrS(Q) +
1

T
√
n

KL((Q, Q1, . . . , QT )||(P , P, . . . , P )) +
1

8
√
n
− log δ/2

T
√
n
. (B.18)

The statement of Theorem 11 follows by a union bound from (B.17) and (B.18).
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B.3 Proof of Theorem 12

We will prove Theorem 12 in the same way as we proved Theorem 11. In particular,

note that conditioned on the observed tasks the corresponding training samples are

independent, therefore we can reuse a step from the proof of Theorem 11 that bounds

the difference between the expected multi-task risk êrD(Q) and the empirical error

êrS(Q) with probability at least 1− δ:

êrD(Q) ≤ êrS(Q) +
1

T
√
n

(
KL(Q||P) +

T∑
t=1

E
P∼Q

KL(Qt(P, St)||P )

)
+
T+ 8 log 1/δ

8T
√
n

.

(B.19)

To bound the difference between erD(Q) and êrD(Q), however, we need a different

argument that would take into account dependencies between the observed tasks:

Theorem 20. For any fixed hyper-prior distribution P, any proper exact fractional cover

C of the dependency graph Γ of the observed T tasks of size k and any δ > 0 the

following holds with probability at least 1− δ uniformly for all hyper-posterior distributions

Q:

erD(Q) ≤ êrD(Q) +

√
w(C)

n
KL(Q||P) +

√
w(C)(1− 8 log δ + 8 log k)

8
√
T

. (B.20)

Proof. By Donsker-Varadhan’s variational formula:

erD(Q)− êrD(Q) =
k∑
j=1

wj
w(C)

E
P∼Q

w(C)

T

∑
i∈Cj

E
(t,St)

erDt(Qt)− erDi(Qi) ≤ (B.21)

k∑
j=1

wj
w(C)λj

KL(Q||P) + log E
P∼P

exp
λjw(C)

T

∑
i∈Cj

E
(t,St)

erDt(Qt)− erDi(Qi)

. (B.22)

Since the tasks within every Cj are independent, by Hoeffding’s lemma [38] for every

fixed prior P , we have:

E
(ti,Si),i∈Cj

exp

λjw(C)

T

∑
i∈Cj

E
(t,St)

erDt(Qt)− erDi(Qi)

 ≤ exp

(
λ2
jw(C)2|Cj|

8T 2

)
. (B.23)
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Therefore, by Markov’s inequality with probability at least 1− δj it holds that:

log E
P∼P

exp

λjw(C)

T

∑
i∈Cj

E
(t,St)

erDt(Qt)− erDi(Qi)

 ≤ λ2
jw(C)2|Cj|

8T 2
− log δj.

Consequently, we obtain with probability at least 1−
∑k

j=1 δj:

k∑
j=1

wj
w(C)λj

KL(Q||P)+log E
P∼P

exp
λjw(C)

T

∑
i∈Cj

E
(t,St)

erDt(Qt)− erDi(Qi)

≤ (B.24)

k∑
j=1

wj
w(C)

1

λj
KL(Q||P) +

k∑
j=1

wjλjw(C)|Cj|
8T 2

−
k∑
j=1

wj
w(C)λj

log δj. (B.25)

By setting λ1 = · · · = λk =
√

T
w(C)

and δj =
wj

w(C)
δ we obtain the statement of the

theorem.

By combining (B.19) with Theorem 20 we obtain the statement of Theorem 12.

B.4 Proof of Theorem 13

Similarly to the previous section, we first bound the difference between êrS(Q) and

multi-task expected error given by:

êrD(Q) = E
A∼Q

1

T − 1

T∑
t=2

erDt(A). (B.26)

The following theorem is a slight modification of the argument used to prove Theorems 11

and 12:

Theorem 21. For any fixed hyper-prior distribution P with probability at least 1− δ the

following holds uniformly for all hyper-posterior distributions Q:

êrD(Q) ≤ êrS(Q) +
1

(T − 1)
√
n

KL(Q×Q2 × · · · ×QT ||P × P2 × · · · × PT )

+
(T − 1) + 8 log 1/δ

8(T − 1)
√
n

, (B.27)
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where P2, . . . , PT are some reference prior distributions that do not depend on the train-

ing sets of subsequent tasks. Possible choices include using just one prior distribution

P fixed before observing any data, or using the posterior distributions obtained from the

previous task, i.e. Pt = Qt−1.

Proof. By applying KL-inequality we obtain:

êrD(Q)− êrS(Q) ≤ 1

λ

(
KL(Q×Q2 × · · · ×QT ||P × P2 × · · · × PT )+

log E
A∼P

E
h2∼P2

. . . E
hT∼PT

exp
( λ

T − 1

T∑
t=2

(
E

(x,y)∼Dt
`(ht(x), y)− 1

n

n∑
i=1

`(h(xti), y
t
i)
)))

.

Due to independence of any prior Pt from the consequent sample sets St, . . . , ST , we

obtain that:

E
S1,...,ST

E
A∼P

E
h2∼P2

. . . E
hT∼PT

f2(h2, S1) · · · · · fT (hT , ST ) =

E
A∼P

E
S1

E
h2∼P2

E
S2

f2(h2, S2) . . . E
hT∼PT

E
ST
fT (hT , ST ),

where

ft(ht, St) =
λ

T − 1

(
E

(x,y)∼Dt
`(ht(x), y)− 1

m

n∑
i=1

`(ht(x
t
i), y

t
i)
)
. (B.28)

Due to Hoeffding’s lemma, boundness of the loss and the fact that training samples

are i.i.d., the following holds:

E
ST
fT (hT , ST ) ≤ exp

( λ2

8(T − 1)2n

)
. (B.29)

Therefore:

E
S1,...,ST

E
A∼P

E
h2∼P2

. . . E
hT∼PT

f2(h2, S2) · · · · · fT (hT , ST ) ≤ exp
( λ2

8(T − 1)n

)
. (B.30)

By using Markov’s inequality and setting λ = (T − 1)
√
n we obtain the statement of the

theorem. Note, also, that the KL-term in this theorem can be simplified:

KL(Q×Q2 × · · · ×QT ||P × P2 × · · · × PT ) = KL(Q||P) +
T∑
t=2

E
A∼Q

KL(Qt||Pt).
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To complete the proof of Theorem 13 we need to bound the difference between

er(Q) and êrD(Q). We start with proving the following result which is similar to Lemma 2

in [85]:

Lemma 6. Let X1, . . . , Xn ∈ Ω be a sequence of random variables and g : Ω→ [0, 1] be

a function such that E[g(Xi)|X1, . . . , Xi−1] = bi. Let Z1, . . . , Zn be independent Bernoulli

random variables such that E[Zi] = bi. Then for any convex function f :

E[f(g(X1), . . . , g(Xn))] ≤ E[f(Z1, . . . , Zn)]. (B.31)

Proof. Any point x = (x1, . . . , xn) ∈ [0, 1]n can be written as a linear combination of the

extreme points ν = (ν1, . . . , νn) ∈ {0, 1}n in the following way:

x =
∑

ν∈{0,1}n

(
n∏
i=1

((1− xi)(1− νi) + xiνi)

)
ν. (B.32)

Therefore by convexity of f we have that:

f(x) ≤
∑

ν∈{0,1}n

(
n∏
i=1

((1− xi)(1− νi) + xiνi)

)
f(ν). (B.33)

By taking expectations on both sides we obtain that:

E
Xn

1

f(g(X1), . . . , g(Xn)) ≤

E
Xn

1

 ∑
ν∈{0,1}n

(
n∏
i=1

((1− g(Xi))(1− νi) + g(Xi)νi)

)
f(ν)

 =

∑
ν∈{0,1}n

E
Xn

1

[
n∏
i=1

((1− g(Xi))(1− νi) + g(Xi)νi)

]
f(ν) =

∑
ν∈{0,1}n

E
Xn−1

1

[
E
Xn

[
n∏
i=1

((1− g(Xi))(1− νi) + g(Xi)νi)|Xn−1
1

]]
f(ν) =

∑
ν∈{0,1}n

E
Xn−1

1

[(
n−1∏
i=1

((1− g(Xi))(1− νi) + g(Xi)νi)

)
×

E
Xn

[(1− g(Xn))(1− νi) + g(Xn)νi|Xn−1
1 ]

]
f(ν) =
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∑
ν∈{0,1}n

E
Xn−1

1

[(
n−1∏
i=1

((1− g(Xi))(1− νi) + g(Xi)νi)

)
×

((1− bn)(1− νi) + bnνi)] f(ν) = . . .∑
ν∈{0,1}n

(
n∏
i=1

((1− bi)(1− νi) + biνi)

)
f(ν) = E

Zn1

[f(Zn
1 )].

We proceed by using techniques from [85] in combination of those from [77], resulting

in the following lemma:

Lemma 7. For any fixed algorithm A and any λ the following holds:

E
E1,...,ET

exp

(
λ

(
er(A)− 1

T − 1

T∑
t=2

erDt(A)

))
≤ exp

(
λ2

2(T − 1)

)
. (B.34)

Proof. First, define Xt = (Et−1, Et) for t = 2, . . . , T and g : Xt 7→ erDt(A) and b = er(A).

Then:

exp

(
λ

(
er(A)− 1

T − 1

T∑
t=2

erDt(A)

))

= exp

(
λ

T − 1

(∑
even t

(b− g(Xt)) +
∑
odd t

(b− g(Xt))

))

≤ 1

2
exp

(
2λ

T − 1

∑
even t

(b− g(Xt))

)
+

1

2
exp

(
2λ

T − 1

∑
odd t

(b− g(Xt))

)
. (B.35)

Note, that both, the set of Xt-s corresponding to even t and the set of Xt-s corresponding

to odd t, form a martingale difference sequence. Therefore by using Lemma 6 (or

similarly Lemma 2 in [85]) and Hoeffding’s lemma [38] we obtain:

E
E1,...,ET

exp

(
2λ

T − 1

∑
even t

(b− g(Xt))

)
≤ exp

(
4λ2

8(T − 1)

)
, (B.36)

E
E1,...,ET

exp

(
2λ

T − 1

∑
odd t

(b− g(Xt))

)
≤ exp

(
4λ2

8(T − 1)

)
. (B.37)

Together with inequality (B.35) this gives the statement of the lemma.
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Now we can prove the following statement:

Theorem 22. For any hyper-prior distribution P and any δ > 0 with probability at least

1− δ the following inequality holds uniformly for all Q:

er(Q) ≤ êrD(Q) +
1√
T − 1

KL(Q||P) +
1 + 2 log 1/δ

2
√
T − 1

. (B.38)

Proof. By applying Donsker-Varadhan’s variational formula [28] one obtains that:

er(Q)− êrD(Q) ≤ 1

λ

(
KL(Q||P) + log E

A∼P
expλ

(
er(A)− 1

T − 1

T∑
t=2

erDt(A)

))
.

For a fixed algorithm A we obtain from Lemma 7:

E
E1,...,ET

exp

(
λ

(
er(A)− 1

T − 1

T∑
t=2

erDt(A)

))
≤ exp

(
λ2

2(T − 1)

)
. (B.39)

Since P does not depend on the process, by Markov’s inequality, with probability at

least 1− δ, we obtain

E
A∼P

expλ

(
er(A)− 1

T − 1

T∑
t=2

erDt(A)

)
≤ 1

δ
exp

λ2

2(T − 1)
. (B.40)

The statement of the theorem follows by setting λ =
√
T − 1.

By combining Theorems 21 and 22 we obtain Theorem 13.
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B.5 Proofs of Theorems 14 and 15

We start with presenting the following two lemmas that show how to control the error

propagation of the learned representations (sets of base classifiers).

Lemma 8. Let V =MV (h1, . . . , hk, g) and Ṽ =MV (h1, . . . , hk, g̃). Then, for any distribu-

tion D:

dD(V, Ṽ ) ≤ dD(g, g̃). (B.41)

Proof. By the definition of dD(V, Ṽ ) there exists u ∈ V such that:

dD(V, Ṽ ) = dD(u, Ṽ ). (B.42)

We can represent u as u = sign(
∑k

i=1 αihi + αg) and let u1 =
∑k

i=1 αihi. Note that while

all hi-s, g and g̃ are assumed to take values in {−1, 1}, u1 can take values in R. Then:

dD(u, Ṽ ) = min
h̃∈Ṽ

dD(u, h̃) ≤ min
h̃∈MV (u1,g̃)

dD(u, h̃)

≤ max
h∈MV (u1,g)

min
h̃∈MV (u1,g̃)

dD(h, h̃) = dD(MV (u1, g),MV (u1, g̃)).

Now we show that for any α1u1 + α2g ∈ MV (u1, g) there exists a close hypothesis in

MV (u1, g̃). In particular, this hypothesis is α1u1 + α2g̃:

dD(α1u1 + α2g, α1u1 + α2g̃) =

E
x∼D

Jsign(α1u1(x) + α2g(x)) 6= sign(α1u1(x) + α2g̃(x))K =

E
x∼D

Jα2
1u

2
1(x) + α1α2u1(x)g(x) + α1α2u1(x)g̃(x) + α2

2g(x)g̃(x) < 0K.

Note that for every x on which g and g̃ agree, i.e. g(x)g̃(x) = 1, we obtain:

α2
1u

2
1(x) + α1α2u1(x)g(x) + α1α2u1(x)g̃(x) + α2

2g(x)g̃(x)

= (α1u1(x) + α2g(x))2 ≥ 0.

Therefore:

dD(α1u1 + α2g, α1u1 + α2g̃) ≤ E
x∼D

Jg(x) 6= g̃(x)K = dD(g, g̃). (B.43)
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Lemma 9. Let Vk = MV (h1, . . . , hk) and Ṽk = MV (h̃1, . . . , h̃k). For any distribution D,

if dD(hi, h̃i) ≤ εi for every i = 1, . . . , k, then dD(Vk, Ṽk) ≤
∑k

i=1 εi.

Proof. We will prove the statement by induction on k over a stronger statement that the

conclusion holds for Vk = MV (w1, . . . , wl, h1, . . . , hk) and Ṽk = MV (w1, . . . , wl, h̃1, . . . , h̃k)

for any w1, . . . , wl. Note that for k = 1 the statement follows from Lemma 8.

Let V ′k = MV (w1, . . . , wl, h1, . . . , hk−1, h̃k). Then:

dD(Vk, Ṽk) ≤dD(Vk, V
′
k) + dD(V ′k , Ṽk) (by triangular inequality)

≤dD(hk, h̃k) + dD(V ′k , Ṽk) (by Lemma 8)

≤εk +
k−1∑
i=1

εi (by assuption and induction).

B.5.1 Proof of Theorem 14

1. First, note that for every task Algorithm 3 solves at most 2 estimation problems with a

probability of failure δ′ for each of them. Therefore, with a union bound argument, the

probability of any of these estimations being wrong is at most 2 · T · δ′ = δ. Thus, from

now we assume that all the estimations were correct, that is, the high probability events

of Theorem 2 hold.

2. To see that the error of every encountered task is bounded by ε, note that there

are two cases. For a task t that is solved by a majority vote over previous tasks,

we have êrSt(gt) +
√

êrSt(gt) ·∆t + ∆t ≤ ε. In this case, Equation 2.8 in Theorem 2

implies erDt,h∗t (gt) ≤ ε. For a task t that is not solved as a majority vote over previous

tasks, we have ∆t = ∆(VC(H), δ′, |St|) ≤ ε/8k. Since task t is realizable by the base

class H, we have infh∈H erDt,h∗t (h) = 0, and thus Equation 2.10 of Theorem 2 implies

erDt,h∗t (gt) ≤ ε/8k < ε.

3. To upper bound the sample complexity we first prove that the number k̃ of tasks,

which are not learned as majority votes over previous tasks, is at most k. For that we
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use induction showing that for every k̂ ≤ k̃, when we create a new h̃k̂ from the ik̂-th task,

we have that

dDi
k̂
(h∗ik̂ ,MV (h∗i1 , . . . , h

∗
ik̂−1

)) > γ. (B.44)

This implies k̃ ≤ k by invoking that the γ-effective dimension of the sequence of

encountered tasks is at most k.

To proceed to the induction, note that for k̂ = 1, the claim follows immediately.

Consider k̂ > 1. If we create a new h̃k̂, it means that the condition in line 9 is true, which

is:

êrSi
k̂
(gik̂) +

√
êrSi

k̂
(gik̂) ·∆i + ∆i > ε. (B.45)

Therefore êrSi
k̂
(gik̂) > 0.83ε. Consequently, due to (2.9), erDi

k̂
,h∗i

k̂

(gik̂) > 0.67ε. Finally,

by (2.10), infg erDi
k̂
,h∗i

k̂

(g) > 0.5ε. Therefore there is no majority vote predictor based on

h̃1, . . . , h̃k̂−1 that leads to error less than ε/2 on the problem ik̂. In other words:

dDi
k̂
(h∗ik̂ ,MV (h̃1, . . . , h̃k̂−1)) > ε/2. (B.46)

Now, by way of contradiction, suppose that dDi
k̂
(h∗ik̂ ,MV (h∗i1 , . . . , h

∗
ik̂−1

)) ≤ γ. By con-

struction for every j = 1, . . . , k̂ − 1 dDij (h
∗
ij
, h̃j) ≤ ε′ ≤ ε/8k. By the definition of

discrepancy and the assumption on the marginal distributions it follows that for all j:

dDi
k̂
(h∗ij , h̃j) ≤ dDij (h

∗
ij
, h̃j) + discH(Dij , Dik̂

) ≤ ε′ + ξ. (B.47)

Therefore by Lemma 9:

dDi
k̂
(MV (h∗i1 , . . . , h

∗
ik̂−1

),MV (h̃1, . . . , h̃k̂)) ≤ k(ε′ + ξ). (B.48)

Consequently, by using the triangle inequality:

dDi
k̂
(h∗ik̂ ,MV (h̃1, . . . , h̃k̂−1)) ≤ γ + k(ε′ + ξ) ≤ ε/4 + ε/8 + ε/8 = ε/2, (B.49)

which is in contradiction with (B.46).

4. The total sample complexity of Algorithm 3 consists of two parts. First, for every

task Algorithm 3 checks, whether it can be solved by a majority vote over the base,

at most k̃ predictors. VC-dimension of this class is O(k̃ log k̃ log(k̃ log k̃)) (Lemma 10.3
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in [86]). For that it employs Theorem 2 and therefore needs the following number of

samples:

Õ

(
T k̃ log k̃ log(k̃ log k̃) log(2T/δ)

ε

)
= Õ

(
Tk

ε

)
. (B.50)

Second, there are at most k̃ tasks that do not satisfy the condition in line 9 and are

learned using the hypothesis set H with estimation error ε′ = ε/(8k). Therefore the

corresponding sample complexity is: O
(
k̃VC(H) log(2T/δ)

ε/(8k)

)
= Õ

(
VC(H)k2

ε

)
.

B.5.2 Proof of Theorem 15

1. First, as in the proof of Theorem 14, we need to control the total probability of any

conclusion of Algorithm 4 being incorrect. For every task t = 2, . . . , T Algorithm 4

preforms at most two estimations. Therefore the total probability of failure is:

δ1 +
T∑
t=2

2δt =
δ

2
+

blog T c∑
l=1

2(2l+1 − 2l)
δ

22l+2
=
δ

2
+
δ

2

blog T c∑
l=1

1

2l
≤

δ

2
+
δ

2

∞∑
l=1

1

2l
=
δ

2
+
δ

2
= δ.

2. Performance guarantees follow from the design of the algorithm (as in Theo-

rem 14).

3. The fact that k̃ ≤ k can be proven in a way analogous to Theorem 14. However,

we need to make sure that for every k̂ = 1, . . . , k̃, by using Lemma 9, we will obtain a

suitable result. In particular, by construction for every j = 1, . . . , k̂ − 1 dDij (h
∗
ij
, h̃j) ≤ ε′j.

Therefore by Lemma 9

dDi
k̂
(MV (h∗i1 , . . . , h

∗
ik̂−1

),MV (h̃1, . . . , h̃k̂−1))) ≤ (k̂ − 1)ξ +
k̂−1∑
j=1

ε′j. (B.51)

By the definition of ε′j:

k̂−1∑
j=1

ε′j ≤
ε

16
+

bk̂c∑
m=1

(2m+1 − 2m)
ε

22m+4
=

ε

16
+

ε

16

bk̂c∑
m=1

1

2m
<

ε

16
+

ε

16
=
ε

8
.
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Together with the assumption on discrepancies, this guarantees that:

dDi
k̂
(MV (h∗i1 , . . . , h

∗
ik̂−1

),MV (h̃1, . . . , h̃k̂−1))) ≤
ε

4
, (B.52)

which is exactly what is needed to come to contradiction.

4. The sample complexity of Algorithm 4 consists of the same parts as that of

Algorithm 3.

The first difference comes from the fact that δ′ changes over time, because the

algorithm does not know the total number of tasks. However, the smallest value it

attains is δ/(4T 2) and, since the dependence of the sample complexity on the δ is only

logarithmic, it does not change the result significantly.

The second difference is that also ε′ changes over time, because the algorithm does

not know the parameter k in advance. This influences the sample complexity of learning

"base tasks". In order to control it we need to control the following sum:

k̃∑
j=1

1

ε′j
≤
blog kc∑
m=1

(2m+1 − 2m)
22m+4

ε
=

16

ε

blog kc∑
m=1

23m ≤ k3 log k

ε
.

Therefore the complexity of learning the "base tasks" is:

Õ

(
VC(H)k3

ε

)
. (B.53)



126

C Supplementary lemmas

Lemma 10 (Corollary 6.10 in [64]). Let W n
0 be a martingale with respect to a sequence

of random variables (B1, . . . , Bn). Let bn1 = (b1, . . . , bn) be a vector of possible values of

the random variables B1, . . . , Bn. Let

ri(b
i−1
1 ) = sup

bi

{Wi : Bi−1
1 = bi−1

1 , Bi = bi} − inf
bi
{Wi : Bi−1

1 = bi−1
1 , Bi = bi}. (C.1)

Let r2(bn1 ) =
∑n

i=1(ri(b
i−1
1 ))2 and R̂2 = supbn1 r

2(bn1 ). Then

Pr
Bn1

{Wn −W0 > ε} < exp

(
−2ε2

R̂2

)
. (C.2)

Lemma 11 (Originally [38]; in this form Theorem 18 in [93]). Let {U1, . . . , Um} and

{W1, . . . ,Wm} be sampled uniformly from a finite set of d-dimensional vectors {v1, . . . , vN} ⊂

Rd with and without replacement respectively. Then for any continuous and convex

function F : Rd → R the following holds:

E

[
F

(
m∑
i=1

Wi

)]
≤ E

[
F

(
m∑
i=1

Ui

)]
(C.3)

Lemma 12 (Part of Lemma 19 in [93]). Let x = (x1, . . . , xl) ∈ Rl. Then the following

function is convex:

F (x) = sup
i=1...l

xi. (C.4)
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Lemma 13 (Theorem 1 in [56]). Let X1, . . . , Xn be independent random variables taking

values in the set X and f be a function f : X n → R. For any x = (x1, . . . , xn) ∈ X n and

y ∈ X define:

xy,k = (x1, . . . , xk−1, y, xk+1, . . . , xn)

(inf
k
f)(x) = inf

y∈X
f(xy,k)

∆+,f =
n∑
i=1

(f − inf
k
f)2.

Then for t > 0:

Pr{f − E f ≥ t} ≤ exp

(
−t2

2‖∆+‖∞

)
. (C.5)


