On the Complexity of Intersection Non-emptiness for Star-Free Language Classes

Emmanuel Arrighi
University of Bergen, Norway

Henning Fernau
Fachbereich IV, Informatikwissenschaften, Universität Trier, Germany

Stefan Hoffmann
Fachbereich IV, Informatikwissenschaften, Universität Trier, Germany

Markus Holzer
Institut für Informatik, Universität Giessen, Germany

Ismaël Jecker
Institute of Science and Technology, Klosterneuburg, Austria

Mateus de Oliveira Oliveira
University of Bergen, Norway

Petra Wolf
Fachbereich IV, Informatikwissenschaften, Universität Trier, Germany

Abstract

In the Intersection Non-emptiness problem, we are given a list of finite automata A_1, A_2, \ldots, A_m over a common alphabet Σ as input, and the goal is to determine whether some string $w \in \Sigma^*$ lies in the intersection of the languages accepted by the automata in the list. We analyze the complexity of the Intersection Non-emptiness problem under the promise that all input automata accept a language in some level of the dot-depth hierarchy, or some level of the Straubing-Thérien hierarchy. Automata accepting languages from the lowest levels of these hierarchies arise naturally in the context of model checking. We identify a dichotomy in the dot-depth hierarchy by showing that the problem is already NP-complete when all input automata accept languages of the levels B_0 or $B_{1/2}$ and already PSPACE-hard when all automata accept a language from the level B_1. Conversely, we identify a tetrachotomy in the Straubing-Thérien hierarchy. More precisely, we show that the problem is in AC^0 when restricted to level L_0; complete for L or NL, depending on the input representation, when restricted to languages in the level $L_{1/2}$; NP-complete when the input is given as DFAs accepting a language in L_1 or $L_{3/2}$; and finally, PSPACE-complete when the input automata accept languages in level L_2 or higher. Moreover, we show that the proof technique used to show containment in NP for DFAs accepting languages in L_1 or $L_{3/2}$ does not generalize to the context of NFAs. To prove this, we identify a family of languages that provide an exponential separation between the state complexity of general NFAs and that of partially ordered NFAs. To the best of our knowledge, this is the first superpolynomial separation between these two models of computation.

2012 ACM Subject Classification
Theory of computation → Regular languages; Theory of computation → Problems, reductions and completeness

Keywords and phrases
Intersection Non-emptiness Problem, Star-Free Languages, Straubing-Thérien Hierarchy, dot-depth Hierarchy, Commutative Languages, Complexity

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2021.34

Funding

Emmanuel Arrighi: Research Council of Norway (no. 274526), IS-DAAD (no. 309319).
Henning Fernau: DAAD PPP (no. 57525246).
Ismaël Jecker: Marie Skłodowska-Curie Grant Agreement no. 754411.
Mateus de Oliveira Oliveira: Research Council of Norway (no. 288761), IS-DAAD (no. 309319).
Petra Wolf: DFG project FE 560/9-1, DAAD PPP (no. 57525246).

© Emmanuel Arrighi, Henning Fernau, Stefan Hoffmann, Markus Holzer, Ismaël Jecker, Mateus de Oliveira Oliveira, and Petra Wolf; licensed under Creative Commons License CC-BY 4.0

41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021)

Editors: Mikołaj Bojańczyk and Chandra Chekuri; Article No. 34; pp. 34:1–34:15
Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany
Acknowledgements We like to thank Lukas Fleischer and Michael Wehar for our discussions. This work started at the Schloss Dagstuhl Event 20483 Modern Aspekte der Komplexitätstheorie in der Automatentheorie https://www.dagstuhl.de/20483.

1 Introduction

The Intersection Non-emptiness problem for finite automata is one of the most fundamental and well studied problems in the interplay between algorithms, complexity theory, and automata theory [12, 20, 21, 24, 26, 43, 44, 45]. Given a list A_1, A_2, \ldots, A_m of finite automata over a common alphabet Σ, the goal is to determine whether there is a string $w \in \Sigma^*$ that is accepted by each of the automata in the list. This problem is PSPACE-complete when no restrictions are imposed [24], and becomes NP-complete when the input automata accept unary languages (implicitly contained already in [38]) or finite languages [34].

In this work, we analyze the complexity of the Intersection Non-emptiness problem under the assumption that the languages accepted by the input automata belong to a given level of the Straubing-Thérien hierarchy [33, 39, 40, 42] or to some level of the Cohen-Brzozowski dot-depth hierarchy [6, 11, 33]. Somehow, these languages are severely restricted, in the sense that both hierarchies, which are infinite, are entirely contained in the class of star-free languages, a class of languages that can be represented by expressions that use union, concatenation, and complementation, but no Kleene star operation [6, 8, 33]. Yet, languages belonging to fixed levels of either hierarchy may already be very difficult to characterize, in the sense that the very problem of deciding whether the language accepted by a given finite automaton belongs to a given full level or half-level k of either hierarchy is open, except for a few values of k [2, 15, 16, 33]. It is worth noting that while the problem of determining whether a given automaton accepts a language in a certain level or of the Straubing-Thérien hierarchy is computationally hard (Theorem 1), automata accepting languages in lower levels of these hierarchies arise naturally in a variety of applications such as model checking where the Intersection Non-emptiness problem is of fundamental relevance [1, 4, 5].

An interesting question to consider is how the complexity of the Intersection Non-emptiness problem changes as we move up in the levels of the Straubing-Thérien hierarchy or in the levels of the dot-depth hierarchy. In particular, does the complexity of this problem changes gradually, as we increase the complexity of the input languages? In this work, we show that this is actually not the case, and that the complexity landscape for the Intersection Non-emptiness problem is already determined by the very first levels of either hierarchy (see Figure 1). Our first main result states that the Intersection Non-emptiness problem for NFAs and DFAs accepting languages from the level $1/2$ of the Straubing-Thérien hierarchy are NL-complete and L-complete, respectively, under AC^0 reductions (Theorem 3). Additionally, this completeness result holds even in the case of unary languages. To prove hardness for NL and L, respectively, we will use a simple reduction from the reachability problem for DAGs and for directed trees, respectively. Nevertheless, the proof of containment in NL and in L, respectively, will require a new insight that may be of independent interest. More precisely, we will use a characterization of languages in the level $1/2$ of the Straubing-Thérien hierarchy as shuffle ideals to show that the Intersection Non-emptiness problem can be reduced to Concatenation Non-emptiness (Lemma 5). This allows us to decide Intersection Non-emptiness by analyzing each finite automaton given at the input individually. It is worth mentioning that this result is optimal in the sense that the problem becomes NP-hard even if we allow a single DFA to accept a language from $\mathcal{L}_{1/2}$, and require all the others to accept languages from $\mathcal{L}_{1/2}$ (Theorem 8).
Subsequently, we analyze the complexity of Intersection Non-emptiness when all input automata are assumed to accept languages from one of the levels of B_0 or $B_{1/2}$ of the dot-depth hierarchy, or from the levels L_1 or $L_{3/2}$ of the Straubing-Thérien hierarchy. It is worth noting that NP-hardness follows straightforwardly from the fact that Intersection Non-emptiness for DFAs accepting finite languages is already NP-hard [34]. Containment in NP, on the other hand, is a more delicate issue, and here the representation of the input automaton plays an important role. A characterization of languages in $L_{3/2}$ in terms of languages accepted by partially ordered NFAs [37] is crucial for us, combined with the fact that Intersection Non-emptiness is in NP when the input is given by such automata is NP-complete [29]. Intuitively, the proof in [29] follows by showing that the minimum length of a word in the intersection of languages in the level $3/2$ of the Straubing-Thérien hierarchy is bounded by a polynomial on the sizes of the minimum partially ordered NFAs accepting these languages. To prove that Intersection Non-emptiness is in NP when the input automata are given as DFAs, we prove a new result establishing that the number of Myhill-Nerode equivalence classes in a language in the level $L_{3/2}$ is at least as large as the number of states in a minimum partially ordered automaton representing the same language (Lemma 12).

Interestingly, we show that the proof technique used to prove this last result does not generalize to the context of NFAs. To prove this, we carefully design a sequence $(L_n)_{n \in \mathbb{N} \geq 1}$ of languages over a binary alphabet such that for every $n \in \mathbb{N} \geq 1$, the language L_n can be accepted by an NFA of size n, but any partially ordered NFA accepting L_n has size $2^{\Omega(\sqrt{n})}$. This lower bound is ensured by the fact that the syntactic monoid of L_n has many J-factors. Our construction is inspired by a technique introduced by Klein and Zimmermann, in a completely different context, to prove lower bounds on the amount of look-ahead necessary to win infinite games with delay [22]. To the best of our knowledge, this is the first exponential separation between the state complexity of general NFAs and that of partially ordered NFAs. While this result does not exclude the possibility that Intersection Non-emptiness for languages in $L_{3/2}$ represented by general NFAs is in NP, it gives some indication that proving such a containment requires substantially new techniques.

Finally, we show that Intersection Non-emptiness for both DFAs and for NFAs is already PSPACE-complete if all accepting languages are from the level B_1 of the dot-depth hierarchy or from the level L_2 of the Straubing-Thérien hierarchy. We can adapt Kozen’s classical PSPACE-completeness proof by using the complement of languages introduced in [28] in the study of partially ordered automata. Since the languages in [28] belong to $L_{3/2}$, their complement belong to L_2 (and to B_1), and therefore, the proof follows.

Due to space constraints, many details of the paper can be found in the long version [3].

2 Preliminaries

We let $\mathbb{N}_{\geq k}$ denote the set of natural numbers greater or equal than k.

We assume the reader to be familiar with the basics in computational complexity theory [31]. In particular, we recall the inclusion chain: $AC^0 \subset NC^1 \subset L \subset NL \subset P \subset NP \subset PSPACE$. Let AC^0 (NC^1, respectively) refer to the class of problems accepted by Turing machines with a bounded (unbounded, respectively) number of alternations in logarithmic time; alternatively one can define these classes by uniform Boolean circuits. Here, L (NL, respectively) refers to the class of problems that are accepted by deterministic (nondeterministic, respectively) Turing machines with logarithmic space, P (NP, respectively) denotes the class of problems solvable by deterministic (nondeterministic, respectively) Turing machines in polynomial time, and PSPACE refers to the class of languages accepted by deterministic or
nondeterministic Turing machines in polynomial space [35]. Completeness and hardness are always meant with respect to deterministic logspace many-one reductions unless otherwise stated. We will also consider the parameterized class \(\text{XP} \) of problems that can be solved in time \(n^{f(k)} \), where \(n \) is the size of the input, \(k \) is a parameter, and \(f \) is a computable function [13].

We mostly consider nondeterministic finite automata (NFAs). An NFA \(A \) is a tuple \(A = (Q, \Sigma, \delta, q_0, F) \), where \(Q \) is the finite state set with the start state \(q_0 \in Q \), the alphabet \(\Sigma \) is a finite set of input symbols, and \(F \subseteq Q \) is the final state set. The transition function \(\delta : Q \times \Sigma \rightarrow 2^Q \) extends to words from \(\Sigma^* \) as usual. Here, \(2^Q \) denotes the powerset of \(Q \). By \(L(A) = \{ w \in \Sigma^* \mid \delta(q_0, w) \cap F \neq \emptyset \} \), we denote the language accepted by \(A \). The NFA \(A \) is a deterministic finite automaton (DFA) if \(|\delta(q, a)| = 1 \) for every \(q \in Q \) and \(a \in \Sigma \). Then, we simply write \(\delta(q, a) = p \) instead of \(\delta(q, a) = \{ p \} \). If \(|\Sigma| = 1 \), we call \(A \) a unary automaton.

We study \textsc{Intersection Non-emptiness} problems and their complexity. For finite automata, this problem is defined as follows:

- **Input:** Finite automata \(A_i = (Q_i, \Sigma, \delta_i, q_{0,i}, F_i) \), for \(1 \leq i \leq m \).
- **Question:** Is there a word \(w \) that is accepted by all \(A_i \), i.e., \(\bigcap_{i=1}^m L(A_i) \neq \emptyset \)?

Observe that the automata have a common input alphabet. Note that the complexity of the non-emptiness problem for finite automata of a certain type is a lower bound for the \textsc{Intersection Non-emptiness} for this particular type of automata. Throughout the paper we are mostly interested in the complexity of the \textsc{Intersection Non-emptiness} problem for finite state devices whose languages are contained in a particular language class.

We study the computational complexity of the intersection non-emptiness for languages from the classes of the Straubing-Thérien [39,42] and Cohen-Brzozowski’s dot-depth hierarchy [11]. Both hierarchies are concatenation hierarchies that are defined by alternating the use of polynomial and Boolean closures. Let’s be more specific. Let \(\Sigma \) be a finite alphabet. A language \(L \subseteq \Sigma^* \) is a marked product of the languages \(L_0, L_1, \ldots, L_k \), if \(L = L_0 a_1 L_1 \cdots a_k L_k \), where the \(a_i \)’s are letters. For a class of languages \(\mathcal{M} \), the polynomial closure of \(\mathcal{M} \) is the set of languages that are finite unions of marked product of languages from \(\mathcal{M} \).

The concatenation hierarchy of basis \(\mathcal{M} \) (a class of languages) is defined as follows (also refer to [32]): Level 0 is \(\mathcal{M} \), i.e., \(\mathcal{M}_0 = \mathcal{M} \) and, for each \(n \geq 0 \),

1. \(\mathcal{M}_{n+1/2} \), that is, level \(n + 1/2 \), is the polynomial closure of level \(n \) and
2. \(\mathcal{M}_{n+1} \), that is, level \(n + 1 \), is the Boolean closure of level \(n + 1/2 \).

The basis of the dot-depth hierarchy is the class of all finite and co-finite languages\(^1\) and their classes are referred to as \(\mathcal{B}_n \) (\(\mathcal{B}_{n+1/2} \), respectively), while the basis of the Straubing-Thérien hierarchy is the class of languages that contains only the empty set and \(\Sigma^* \) and their classes are denoted by \(\mathcal{L}_n \) (\(\mathcal{L}_{n+1/2} \), respectively). Their inclusion relation is given by

\(^1\) The dot-depth hierarchy, apart level \(\mathcal{B}_0 \), coincides with the concatenation hierarchy starting with the language class \(\{\emptyset, \{\lambda\}, \Sigma^+, \Sigma^*\} \).
We refer to a partially ordered NFA (DFA, respectively) as poNFA (poDFA, respectively). with input alphabet which can be described by expressions that use union, concatenation, and complementation, Dot-depth hierarchy:

Straubing-Thérien hierarchy: A language of Σ^* is of level 0 if and only if it is empty or equal to Σ^*. The languages of level 1/2 are exactly those languages that are a finite (possibly empty) union of languages of the form $\Sigma^* a_1 \Sigma^* a_2 \cdots a_k \Sigma^*$, where the a_i's are letters from Σ. The languages of level 1 are finite Boolean combinations of languages of the form $\Sigma^* a_1 \Sigma^* a_2 \cdots a_k \Sigma^*$, where the a_i's are letters. These languages are also called piecewise testable languages. In particular, all finite and co-finite languages are of level 1.

Finally, the languages of level 3/2 of Σ^* are the finite unions of languages of the form $\Sigma^* a_1 \Sigma^* a_2 \cdots a_k \Sigma^*$, where the a_i's are letters from Σ and the Σ_i are subsets of Σ.

Dot-depth hierarchy: A language of Σ^* is of dot-depth (level) 0 if and only if it is finite or co-finite. The languages of dot-depth 1/2 are exactly those languages that are a finite union of languages of the form $u_0 \Sigma^* u_1 \Sigma^* u_2 \cdots u_k \Sigma^*$, where $k \geq 0$ and the u_i's are words from Σ^*. The languages of dot-depth 1 are finite Boolean combinations of languages of the form $u_0 \Sigma^* u_1 \Sigma^* u_2 \cdots u_k \Sigma^*$, where $k \geq 0$ and the u_i's are words from Σ^*.

It is worth mentioning that in [37] it was shown that partially ordered NFAs (with multiple initial states) characterize the class $L_{3/2}$, while partially ordered DFAs characterize the class of \mathcal{R}-trivial languages [7], a class that is strictly in between L_1 and $L_{3/2}$. For an automaton A with input alphabet Σ, a state q is reachable from a state p, written $p \leq q$, if there is a word $w \in \Sigma^*$ such that $q \in \delta(p, w)$. An automaton is partially ordered if \leq is a partial order.

Partially ordered automata are sometimes also called acyclic or weakly acyclic automata. We refer to a partially ordered NFA (DFA, respectively) as poNFA (poDFA, respectively).

The fact that some of our results have a promise looks a bit technical, but the following result implies that we cannot get rid of this condition in general. To this end, we study, for a language class L, the following question of L-MEMBERSHIP.

- **Input:** A finite automaton A.
- **Question:** Is $L(A) \in L$?

Theorem 1. For each level L of the Straubing-Thérien or the dot-depth hierarchies, the L-MEMBERSHIP problem for NFAs is PSPACE-hard, even when restricted to binary alphabets.

Proof. For the PSPACE-hardness, note that each of the classes contains $\{0, 1\}^*$ and is closed under quotients, since each class is a positive variety. As NON-UNIVERSALITY is PSPACE-hard for NFAs, we can apply Theorem 3.1.1 of [19], first reducing regular expressions to NFAs. ▲

For some of the lower levels of the hierarchies, we also have containment in PSPACE, but in general, this is unknown, as it connects to the famous open problem if, for instance, L-MEMBERSHIP is decidable for $L = L_3$; see [27, 33] for an overview on the decidability status of these questions. Checking for L_0 up to L_2 and B_0 up to B_1 containment for DFAs can be done in NL and is also complete for this class by ideas similar to the ones used in [9].
3 Inside Logspace

A language of Σ^* belongs to level 0 of the Straubing-Thérien hierarchy if and only if it is empty or Σ^*. The Intersection Non-emptiness problem for language from this language family is not entirely trivial, because we have to check for emptiness. Since by our problem definition the property of a language being a member of level 0 is a promise, we can do the emptiness check within AC^0, since we only have to verify whether the empty word belongs to the language L specified by the automaton. In case $\varepsilon \in L$, then $L = \Sigma^*$; otherwise $L = \emptyset$. Since in the definition of finite state devices we do not allow for ε-transitions, we thus only have to check whether the initial state is also an accepting one. Therefore, we obtain:

\begin{enumerate}
\item The Intersection Non-emptiness problem for DFAs or NFAs accepting languages from L_0 belongs to AC^0.
\end{enumerate}

For the languages of level $L_{1/2}$ we find the following completeness result.

\begin{enumerate}
\item The Intersection Non-emptiness problem for NFAs accepting languages from $L_{1/2}$ is NL-complete. Moreover, the problem remains NL-hard even if we restrict the input to NFAs over a unary alphabet. If the input instance contains only DFAs, the problem becomes L-complete (under weak reductions\(^2\)).
\end{enumerate}

Hardness is shown by standard reductions from variants of graph accessibility [17,41].

\begin{enumerate}
\item The Intersection Non-emptiness problem for NFAs over unary alphabet accepting languages from $L_{1/2}$ is NL-hard. If the input instance contains only DFAs, the problem becomes L-hard under weak reductions.
\end{enumerate}

It remains to show containment in logspace. To this end, we utilize an alternative characterization of the languages of level 1/2 of the Straubing-Thérien hierarchy as exactly those languages that are shuffle ideals. A language L is a shuffle ideal if, for every word $w \in L$ and $v \in \Sigma^*$, the set $w \shuffle v$ is contained in L, where $\shuffle := \{ w_0v_0w_1v_1 \ldots w_kv_k \mid w = w_0w_1 \ldots w_k \text{ and } v = v_0v_1 \ldots v_k \text{ with } w_i,v_i \in \Sigma^*, \text{ for } 0 \leq i \leq k \}$. The operation \shuffle naturally generalizes to sets. For the level $L_{1/2}$, we find the following situation.

\begin{enumerate}
\item Let $m \geq 1$ and languages $L_i \subseteq \Sigma^*$, for $1 \leq i \leq m$, be shuffle ideals, i.e., they belong to $L_{1/2}$. Then, $\bigcap_{i=1}^m L_i \neq \emptyset$ iff the shuffle ideal $L_1L_2 \ldots L_m \neq \emptyset$ iff $L_i \neq \emptyset$ for every i with $1 \leq i \leq m$. Finally, $L_i \neq \emptyset$, for $1 \leq i \leq m$, iff $(a_1a_2 \ldots a_k)^{\ell_i} \in L_i$, where $\Sigma = \{ a_1,a_2,\ldots a_k \}$ and the shortest word in L_i is of length ℓ_i.
\end{enumerate}

Now, we are ready to prove containment in logspace.

\begin{enumerate}
\item The Intersection Non-emptiness problem for NFAs accepting languages from $L_{1/2}$ belongs to NL. If the input instance contains only DFAs, the problem is solvable in L.
\end{enumerate}

\textbf{Proof.} In order to solve the Intersection Non-emptiness problem for given finite automata A_1,A_2,\ldots,A_m with a common input alphabet Σ, regardless of whether they are deterministic or nondeterministic, it suffices to check non-emptiness for all languages $L(A_i)$, for $1 \leq i \leq m$, in sequence, because of Lemma 5. To this end, membership of the words $(a_1a_2 \ldots a_k)^{\ell_i}$ in L_i has to be tested, where ℓ_i is the length of the shortest word in L_i. Obviously, all ℓ_i are linearly bounded in the number of states of the appropriate finite automaton.

\(^2\) Some form of AC^0 reducibility can be employed.
that accepts L_i. Hence, for NFAs as input instance, the test can be done on a nondeterministic logspace-bounded Turing machine, guessing the computations in the individual NFAs on the input word $(a_1 a_2 \ldots a_k)^{\ell_i}$. For DFAs as input instance, nondeterminism is not needed, so that the procedure can be implemented on a deterministic Turing machine. ▶

4 NP-Completeness

In contrast to the Straubing-Thérien hierarchy, the **Intersection Non-emptiness** problem for languages from the dot-depth hierarchy is already **NP-hard** in the lowest level B_0. More precisely, **Intersection Non-emptiness** for finite languages is **NP-hard** [34, Theorem 1] and B_0 already contains all finite languages. Hence, the **Intersection Non-emptiness** problem for languages from the Straubing-Thérien hierarchy of level L_1 and above is **NP-hard**, too. For the levels B_0, $B_{1/2}$, L_1, or $L_{3/2}$, we give matching complexity upper bounds if the input are DFAs, yielding the first main result of this section proven in Subsection 4.1.

▶ **Theorem 7.** The **Intersection Non-emptiness** problem for DFAs accepting languages from either B_0, $B_{1/2}$, L_1, or $L_{3/2}$ is **NP-complete**. The same holds for poNFAs instead of DFAs. The results hold even for a binary alphabet.

For the level L_1 of the Straubing-Thérien hierarchy, we obtain with the next main theorem a stronger result. Recall that if all input DFAs accept languages from $L_{1/2}$, the **Intersection Non-emptiness** problem is ℓ-complete due to Lemmata 4 and 6.

▶ **Theorem 8.** The **Intersection Non-emptiness** problem for DFAs is **NP-complete** even if only one DFA accepts a language from L_1 and all other DFAs accept languages from $L_{1/2}$ and the alphabet is binary.

The proof of this theorem will be given in Subsection 4.2.

For the level B_0, we obtain a complete picture of the complexity of the **Intersection Non-emptiness** problem, independent of structural properties of the input finite automata, i.e., we show that here the problem is **NP-complete** for general NFAs.

For the level $L_{3/2}$, if the input NFA are from the class of poNFA, which characterize level $L_{3/2}$, then the **Intersection Non-emptiness** problem is known to be **NP-complete** [28]. Recall that $L_{3/2}$ contains the levels $B_{1/2}$, and L_1 and hence also languages from these classes can be represented by poNFAs. But if the input automata are given as NFAs without any structural property, then the precise complexity of **Intersection Non-emptiness** for $B_{1/2}$, L_1, and $L_{3/2}$ is an open problem and narrowed by **NP-hardness** and membership in **PSPACE**. We present a “No-Go-Theorem” by proving that for an NFA accepting a co-finite language, the smallest equivalent poNFA is exponentially larger in Subsection 4.3.

▶ **Theorem 9.** For every $n \in \mathbb{N}_{\geq 1}$, there exists a language $L_n \in B_0$ on a binary alphabet such that L_n is recognized by an $\bar{\text{NFA}}$ of size $O(n^2)$, but the minimal poNFA recognizing L_n has more than 2^{n-1} states.

While for NFAs the precise complexity for **Intersection Non-emptiness** of languages from L_1 remains open, we can tackle this gap by narrowing the considered language class to **commutative** languages in level L_1; recall that a language $L \subseteq \Sigma^*$ is **commutative** if, for any $a, b \in \Sigma$ and words $u, v \in \Sigma^*$, we have that $uav \in L$ implies $ubv \in L$. We show that for DFAs, this restricted **Intersection Non-emptiness** problem remains **NP-hard**, in case the alphabet is unbounded. Concerning membership in **NP**, we show that even for NFAs, the **Intersection Non-emptiness** problem for **commutative** languages is contained in **NP**.
in general and in particular for commutative languages on each level. This generalizes the case of unary NFAs. Note that for commutative languages, the Straubing-Thérien hierarchy collapses at level $L_{3/2}$. See Subsection 4.4 for the proofs.

Theorem 10. The Intersection Non-emptiness problem

- is NP-hard for DFAs accepting commutative languages in L_1, but
- is contained in NP for NFAs accepting commutative languages that might not be star-free.

The proof of NP-hardness for commutative star-free languages in L_1 requires an arbitrary alphabet. However, we show that Intersection Non-emptiness is contained in XP for specific forms of NFAs such as poNFAs or DFAs accepting commutative languages, with the size of the alphabet as the parameter, i.e., for fixed input alphabets, our problem is solvable in polynomial time.

4.1 NP-Membership

Next, we focus on the NP-membership part of Theorem 7 and begin by proving that for B_0, regardless of whether the input automata are NFAs or DFAs, the Intersection Non-emptiness problem is contained in NP and therefore NP-complete in combination with [34].

Lemma 11. The Intersection Non-emptiness problem for DFAs or NFAs all accepting languages from B_0 is contained in NP.

Proof. Let A_1, A_2, \ldots, A_m be NFAs accepting languages from B_0. If all NFAs accept co-finite languages, which can be verified in deterministic polynomial time, the intersection $\bigcap_{i=1}^{m} L(A_i)$ is non-empty. Otherwise, there is at least one NFA accepting a finite language, where the longest word is bounded by the number of states of this device. Hence, if $\bigcap_{i=1}^{m} L(A_i) \neq \emptyset$, there is a word w of length polynomial in the length of the input that witnesses this fact. Such a w can be nondeterministically guessed by a Turing machine checking membership of w in $L(A_i)$, for all NFAs A_i, in sequence. This shows containment in NP as desired. ◀
if only one DFA accepts a language from states

We showed in Section 3 that \(w \) words \(v \) belongs to

By Lemma 12, we have that the number of states in a minimal poNFA is at most the

Proof. Now, we can use the result from Masopust and Krötzsch to prove that the Intersection Non-emptiness problem for DFAs accepting languages in \(L_{3/2} \) is in NP.

\(\textbf{Lemma 13.} \) The Intersection Non-emptiness problem for DFAs accepting languages from \(L_{3/2} \) belongs to NP.

\(\textbf{Proof.} \) By Lemma 12, we have that the number of states in a minimal poNFA is at most the number of classes of the Myhill-Nerode equivalence relation. Hence, given a DFA accepting a language \(L \in L_{3/2} \), there exists a smaller poNFA that recognizes \(L \). By [28, Theorem 3.3], if the intersection is not empty, then there is a certificate of polynomial size.

\[
\begin{align*}
\text{Figure 2} & \text{ DFA } A_{v_i} \text{ with } L(A_{v_i}) = \Sigma^{i_1} \cdot 1 \cdot \Sigma^{n-i_1-1} \cup \Sigma^{i_2} \cdot 1 \cdot \Sigma^{n-i_2-1} \cup \Sigma^{n+1}. \text{ A dotted arrow between some states } j \text{ and } j' \text{ represents a chain of length } j' - j \text{ with the same transition labels.}
\end{align*}
\]

\(\textbf{Lemma 12.} \) Let \(A = (Q, \Sigma, \delta, q_0, F) \) be a minimal poNFA. Then, \(L(q_1) \neq L(q_2) \) for all states \(q_1, q_2 \in Q \), where \(qA \) is defined as \((Q, \Sigma, \delta, q, F) \).

4.2 NP-Hardness

Recall that by [34, Theorem 1] Intersection Non-emptiness for finite languages accepted by DFAs is already NP-complete. As the level \(B_0 \) of the dot-depth hierarchy contains all finite language, the NP-hardness part of Theorem 7 follows directly from inclusion of language classes. Combining Lemma 13, and [28, Theorem 3.3] with the inclusion between levels in the Straubing-Thérien and the dot-depth hierarchy, we conclude the proof of Theorem 7.

\(\textbf{Remark 14.} \) Recall that the dot-depth hierarchy, apart from \(B_0 \), coincides with the concatenation hierarchy starting with the language class \(\{\emptyset, \lambda, \Sigma^+, \Sigma^*\} \). The Intersection Non-emptiness problem for DFAs or NFAs accepting only languages from \(\{\emptyset, \lambda, \Sigma^+, \Sigma^*\} \) belongs to \(AC^0 \), by similar arguments as in the proof of Theorem 2.

We showed in Section 3 that Intersection Non-emptiness for DFAs, all accepting languages from \(L_{1/2} \), belongs to L. If we allow only one DFA to accept a language from \(L_1 \), the problem becomes NP-hard. The statement also holds if the common alphabet is binary.

\(\textbf{Theorem 8.} \) The Intersection Non-emptiness problem for DFAs is NP-complete even if only one DFA accepts a language from \(L_1 \) and all other DFAs accept languages from \(L_{1/2} \) and the alphabet is binary.

\(\textbf{Proof sketch.} \) The reduction is from Vertex Cover. Let \(k \in \mathbb{N}_{\geq 0} \) and let \(G = (V, E) \) be a graph with vertex set \(V = \{v_0, v_1, \ldots, v_{n-1}\} \) and edge set \(E = \{e_0, e_1, \ldots, e_{m-1}\} \). The only words \(w = a_0a_1 \ldots a_t \) accepted by all DFAs will be of length exactly \(n = \ell + 1 \) and encode a vertex cover by: \(v_i \) is in the vertex cover if and only if \(a_i = 1 \). Therefore, we construct for each edge \(e_i = \{v_{i_1}, v_{i_2}\} \in E \), with \(i_1 < i_2 \), a DFA \(A_{v_i} \), as depicted in Figure 2, that accepts the language \(L(A_{v_i}) = \Sigma^{i_1} \cdot 1 \cdot \Sigma^{n-i_1-1} \cup \Sigma^{i_2} \cdot 1 \cdot \Sigma^{n-i_2-1} \cup \Sigma^{n+1} \). We show that \(L(A_{v_i}) \) is from \(L_{1/2} \), as it also accepts all words of length at least \(n + 1 \). We further construct a DFA \(A_{v_{n-1}} \) that accepts all words of length exactly \(n \) that contain at most \(k \) letters 1. The finite language \(L(A_{v_{n-1}}) \) is the only language from \(L_1 \) in the instance.
The results obtained in the last subsection left the precise complexity membership of intersection non-emptiness in the case of input automata being NFAs without any structural properties for the levels \(B_{1/2}, L_1 \), and \(L_{3/2} \) open. We devote this subsection to the proof of Theorem 9, showing that already for languages of \(B_0 \) being accepted by an NFA, the size of an equivalent minimal poNFA can be exponential in the size of the NFA.

Theorem 9. For every \(n \in \mathbb{N}_{\geq 1} \), there exists a language \(L_n \in B_0 \) on a binary alphabet such that \(L_n \) is recognized by an NFA of size \(O(n^2) \), but the minimal poNFA recognizing \(L_n \) has more than \(2^{2n-1} \) states.

Proof. While the statement requires languages over a binary alphabet, we begin by constructing an auxiliary family \((M_n)_{n \in \mathbb{N}_{\geq 1}} \) of languages over an unbounded alphabet. For all \(n \in \mathbb{N}_{\geq 1} \) we then define \(L_n \) by encoding \(M_n \) with a binary alphabet, and we prove three properties of these languages that directly imply the statement of the Theorem.

For every \(n \in \mathbb{N}_{\geq 1} \), we define the languages \(M'_n \) and \(M''_n \) over the alphabet \(\{1, 2, \ldots, n\} \) as follows. The language \(M'_n \) contains all the words of odd length, and \(M''_n \) contains all the words in which there are two occurrences of some letter \(i \in \{1, 2, \ldots, n\} \) with only letters smaller than \(i \) appearing in between.\(^3\) Formally,

\[
M'_n = \{ x \in \{1, 2, \ldots, n\}^* \mid |x| \text{ is odd} \},
\]

\[
M''_n = \{ xiyiz \in \{1, 2, \ldots, n\}^* \mid i \in \{1, 2, \ldots, n\}, y \in \{1, 2, \ldots, i-1\}^* \}.
\]

We then define \(M_n \) as the union \(M'_n \cup M''_n \). Moreover, we define \(L_n \) by encoding \(M_n \) with the binary alphabet \(\{a, b\} \): Let us consider the function \(\phi_n : \{1, 2, \ldots, n\}^* \rightarrow \{a, b\}^* \) defined by \(\phi(i_1i_2\ldots i_m) = a^{i_1}b^{n-1-a^{i_2}b^{n-2-\ldots a^{i_m}b^{n-i_m}}} \). We set \(L_n \subseteq \{a, b\}^* \) as the union of \(\phi_n(M_n) \) with the language \(\{a, b\}^* \setminus \phi(\{1, 2, \ldots, n\}^*) \) containing all the words that are not a proper encoding of some word in \(\{1, 2, \ldots, n\}^* \).

The statement of the theorem immediately follows from the following claim

▷ Claim 15. 1. The languages \(M_n \) and \(L_n \) are cofinite, thus they are in \(B_0 \).
2. The languages \(M_n \) and \(L_n \) are recognized by NFAs of size \(n + 4 \), resp. \(O(n^2) \).
3. Every poNFA recognizing either \(M_n \) or \(L_n \) has a size greater than \(2^{2n-1} \).

The formal proof of this claim is presented in the long version [3].

4.4 Commutative Star-Free Languages

In the case of commutative languages, we have a complete picture of the complexities for both hierarchies, even for arbitrary input NFAs. Observe, that commutative languages generalize unary languages, where it is known that for unary star-free languages both hierarchies collapse. For commutative star-free languages, a similar result holds, employing [18, Prop. 30].

Theorem 16. For commutative star-free languages the levels \(L_n \) of the Straubing-Thérien and \(B_n \) of the dot-depth hierarchy coincide for all full and half levels, except for \(L_0 \) and \(B_0 \). Moreover, the hierarchy collapses at level one.

Next we will give the results, summarized in Theorem 10, for the case of the commutative (star-free) languages. The NP-hardness follows by a reduction from 3-CNF-SAT.

\(^3\) The languages \((M''_n)_{n \in \mathbb{N}_{\geq 1}} \) were previously studied in [22] with a game-theoretic background. We also refer to [30] for similar “fractal languages.”
Lemma 17. The Intersection Non-emptiness problem is NP-hard for DFAs accepting commutative languages in L_1.

The upper bound shown next also holds for arbitrary commutative languages.

Theorem 18. The Intersection Non-emptiness problem for NFAs accepting arbitrary, i.e., not necessarily star-free, commutative languages is in NP.

Proof. It was shown in [38] that Intersection Non-emptiness is NP-complete for unary NFAs as input. Fix some order $\Sigma = \{a_1, a_2, \ldots, a_r\}$ of the input alphabet. Let A_1, A_2, \ldots, A_m be the NFAs accepting commutative languages with $A_i = (Q_i, \Sigma, \delta_i, q_0, F_i)$ for $1 \leq i \leq m$. Without loss of generality, we may assume that every F_i is a singleton set, namely $F_i = \{q_f,i\}$.

For each $1 \leq i \leq m$ and $1 \leq j \leq r$, let $B_{i,j}$ be the automaton over the unary alphabet $\{a_j\}$ obtained from A_i by deleting all transitions labeled with letters different from a_j and only retaining those labeled with a_j. Each $B_{i,j}$ will have one initial and one final state. Let $q_0 = (q_{0,1}, q_{0,2}, \ldots, q_{0,m})$ be the tuple of initial states of the NFAs; they are the initial states of $B_{1,1}, B_{2,1}, \ldots, B_{m,1}$, respectively. Then, nondeterministically guess further tuples \vec{q}_j from $Q_1 \times Q_2 \times \ldots \times Q_m$ for $1 \leq j \leq r - 1$. The jth tuple is considered as collecting the final states of the $B_{i,j}$ but also as the start states for the $B_{i,j+1}$. Finally, let $\vec{q}_j = (q_{f,1}, q_{f,2}, \ldots, q_{f,m})$ and consider this as the final states of $B_{1,r}, B_{2,r}, \ldots, B_{m,r}$. Then, for each $1 \leq j \leq r$ solve Intersection Non-emptiness for the unary automata $B_{1,j}, B_{2,j}, \ldots, B_{m,j}$. If there exist words w_j in the intersection of $L(B_{1,j}), L(B_{2,j}), \ldots, L(B_{m,j})$, for each $1 \leq j \leq r$, then, by commutativity, there exists one in $a_1^*a_2^*\cdots a_r^*$, namely, $w_1w_2\cdots w_m$, and so the above procedure finds it. Conversely, if the above procedure finds a word, this is contained in the intersection of the languages induced by the A_i’s.

For fixed alphabets, we have a polynomial-time algorithm, showing that the problem is in XP for alphabet size as a parameter, for a class of NFAs generalizing, among others, poNFAs and DFAs (accepting star-free languages). This is in contrast to the other results on the Intersection Non-emptiness problem in this paper. We say that an NFA $A = (Q, \Sigma, \delta, q_0, F)$ is totally star-free, if the language accepted by $qA_p = (Q, \Sigma, \delta, q, \{p\})$ is star-free for any states $q, p \in Q$. For instance, partially ordered NFAs are totally star-free.

An example of a non-totally star-free NFA accepting a star-free language is given next. Consider the following NFA $A = (\{q_0, q_1, q_2, q_3\}, \delta, q_0, \{q_0, q_2\})$ with $\delta(q_0, a) = \{q_1, q_2\}$, $\delta(q_1, a) = \{q_0\}$, $\delta(q_2, a) = \{q_3\}$, and $\delta(q_3, a) = \{q_2\}$ that accepts the language $\{a\}^*$. The automaton is depicted in Figure 3. Yet, neither $L(q_0A_{q_0}) = \{aa\}^*$ nor $L(q_0A_{q_2}) = \{a\}\{aa\}^* \cup \{\varepsilon\}$ are star-free.

The proof of the following theorem uses classical results of Chrobak and Schützenberger [10,36].

Theorem 19. The Intersection Non-emptiness problem for totally star-free NFAs accepting star-free commutative languages, i.e., commutative languages in $L_{\lambda/2}$, is contained in XP (with the size of the alphabet as the parameter).
Remark 20. Note that Theorem 19 does not hold for arbitrary commutative languages concerning a fixed alphabet, but only for star-free commutative languages, since in the general case, the problem is NP-complete even for languages over a common unary alphabet [38].

5 PSPACE-Completeness

Here, we prove that even when restricted to languages from B_1 or L_2, INTERSECTION NON-EMPTINESS is PSPACE-complete, as it is for unrestricted DFAs or NFAs. We will profit from the close relations of INTERSECTION NON-EMPTINESS to the NON-UNIVERSALITY problem for NFAs: Given an NFA A with input alphabet Σ, decide if $L(A) \neq \Sigma^*$. Conversely, we can also observe that NON-UNIVERSALITY for NFAs is PSPACE-complete for languages from B_1.

Theorem 21. The INTERSECTION NON-EMPTINESS problem for DFAs or NFAs accepting languages from B_1 or L_2 is PSPACE-complete, even for binary input alphabets.

As $B_1 \subseteq L_2$, it is sufficient to show that the problem is PSPACE-hard for B_1. While without paying attention to the size of the input alphabet, this result can be readily obtained by re-analyzing Kozen’s original proof in [24], the restriction to binary input alphabets needs some more care. Details can be found in the long version [3]. We modify the proof of Theorem 3 in [25] that showed PSPACE-completeness for NON-UNIVERSALITY for poNFAs (that characterize the level 3/2 of the Straubing-Thérien hierarchy). Also, it can be observed that the languages involved in the intersection are actually locally testable languages. Without giving details of definitions, we can therefore formulate:

Corollary 22. The INTERSECTION NON-EMPTINESS problem for DFAs or NFAs accepting locally testable languages is PSPACE-complete, even for binary input alphabets.

By the proof of Theorem 3 in [25], also $\bigcup_i L_i$ belongs to B_1, so that we can conclude:

Corollary 23. The NON-UNIVERSALITY problem for NFAs accepting languages from B_1 is PSPACE-complete, even for binary input alphabets.

6 Conclusion and Open Problems

We have investigated how the increase in complexity within the dot-depth and the Straubing-Thérien hierarchies is reflected in the complexity of the INTERSECTION NON-EMPTINESS problem. We have shown the complexity of this problem is already completely determined by the very first levels of either hierarchy.

Our work leaves open some very interesting questions and directions of research. First, we were not able to prove containment in NP for the INTERSECTION NON-EMPTINESS problem when the input automata are allowed to be NFAs accepting a language in the level 3/2 or in the level 1 of the Straubing-Thérien hierarchy. Interestingly, we have shown that such containment holds in the case of DFAs, but have shown that the technique we have used to prove this containment does not carry over to the context of NFAs. In particular, to show this we have provided the first exponential separation between the state complexity of general NFAs and partially ordered NFAs. The most immediate open question is if INTERSECTION NON-EMPTINESS for NFAs accepting languages in $B_{3/2}$, L_1, or $L_{3/2}$ is complete for some level higher up in the polynomial-time hierarchy (PH), or if this case is already PSPACE-complete. Another tantalizing open question is whether one can capture the levels of PH in terms
of the INTERSECTION NON-EMPTINESS problem when the input automata are assumed to accept languages belonging to levels of a sub-hierarchy of L_2. Such sub-hierarchies have been considered for instance in [23].

It would also be interesting to have a systematic study of these two well-known sub-regular hierarchies for related problems like NON-UNIVERSALITY for NFAs or UNION NON-UNIVERSALITY for DFAs. Notice the technicality that UNION NON-UNIVERSALITY (similar to INTERSECTION NON-EMPTINESS) has an implicit Boolean operation (now union instead of intersection) within the problem statement, while NON-UNIVERSALITY lacks this implicit Boolean operation. This might lead to a small “shift” in the discussions of the hierarchy levels that involve Boolean closure. Another interesting hierarchy is the group hierarchy [32], where we start with the group languages, i.e., languages acceptable by automata in which every letter induces a permutation of the state set, at level 0. Note that for group languages, INTERSECTION NON-EMPTINESS is NP-complete even for a unary alphabet [38]. As Σ^* is a group language, the Straubing-Thérien hierarchy is contained in the corresponding levels of the group hierarchy, and hence, we get PSPACE-hardness for level 2 and above in this hierarchy. However, we do not know what happens in the levels in between.

References

34:14 On the Complexity of Intersection Non-emptiness for Star-Free Language Classes

18 Stefan Hoffmann. Regularity conditions for iterated shuffle on commutative regular languages. accepted at CIAA, 2021.

