Tubulins and brain development – The origins of functional specification

Martin W. Breussa, Ines Lecab, Thomas Gstreinb, Andi H. Hansenb,c, David A. Keaysb,⁎

a Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
b Research Institute of Molecular Pathology, Vienna Biocenter (VBC), Dr Bohr-Gasse 7, Vienna 1030, Austria
c Institute of Science and Technology Austria, Klosterneuburg 3400, Austria

Abstract

The development of the vertebrate central nervous system is reliant on a complex cascade of biological processes that include mitotic division, relocation of migrating neurons, and the extension of dendritic and axonal processes. Each of these cellular events requires the diverse functional repertoire of the microtubule cytoskeleton for the generation of forces, assembly of macromolecular complexes and transport of molecules and organelles. The tubulins are a multi-gene family that encode for the constituents of microtubules, and have been implicated in a spectrum of neurological disorders. Evidence is building that different tubulins tune the functional properties of the microtubule cytoskeleton dependent on the cell type, developmental profile and subcellular localisation.

Here we review of the origins of the functional specification of the tubulin gene family in the developing brain at a transcriptional, translational, and post-transcriptional level. We remind the reader that tubulins are not just loading controls for your average Western blot.

© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

There are three cellular processes that are indispensable for the development of the vertebrate brain: neurogenesis; neuronal migration and neuronal differentiation (Kriegstein and Noctor, 2004; Gotz and Huttner, 2005; Ayala et al., 2007). This review begins by reflecting on the role the microtubule cytoskeleton plays in each of these developmental events, highlighting its diverse functional role. In the second part, we focus on the tubulin gene family and the molecular variation that underlies the functional specification of microtubules. We discuss this topic in light of transcriptional, translational, and post-translational regulation.

2. Microtubules and neurogenesis

The formation of the neural tube during gastrulation is the first step in the development of the brain. During neural tube closure...
Microtubules are known to align along the apico-basal axis of the vertebral neural plate (Cearns et al., 2016). Neuroepithelial cells (NECs) then self-renew to expand the progenitor pool or give rise to a progenitor population called radial glial cells (RGCs) (Kriegstein and Gotz, 2003). While the cell body of RGCs resides close to the ventricular surface, processes of the cell are connected to both the basal and apical side, thereby spanning the entirety of the cortical anlage. As cortical development proceeds, RGCs are complemented by transitional progenitors including: (1) intermediate progenitors; (2) basal radial glial cells (bRGCs); and (3) transit-amplifying progenitors (TAPs) (Lui et al., 2011; Florio and Huttner, 2014). To propagate its genome from one cell to the next each progenitor must successfully duplicate and segregate its complement of chromosomes. This requires the formation of a bipolar mitotic spindle in prometaphase, followed by the generation of force to separate sister chromatids. Aided by kinetochores microtubules are charged with the task of searching and capturing chromosomes, before aligning them along the metaphase plate. Upon induction of the anaphase promoting complex microtubules rapidly translocate attached chromosomes to either end of the cell cortex, and play an active role in cytokinesis (Fig. 1D) (Glotzer, 2009). In addition radial glial cells and neuroepithelial cells exhibit a remarkable behaviour known as interkinetic nuclear migration (Tsai et al., 2010; Lee and Norden, 2013). Within the pseudostratified epithelium nuclei migrate basally during G1, undergo S phase, before migrating apically during G2, followed by the induction of M phase at the ventricular surface (Fig. 1A–D). This movement is microtubule dependent, and is driven by a suite of motor proteins (Messier, 1978). Kif1a drives basal nuclear migration, whereas dynein and Tpx2 are critical for return of the nucleus to the apical surface (Tischfield et al., 2010; Kosodo et al., 2011).

3. Microtubules and neuronal migration

Following their exit from the cell cycle, newly born neurons begin their journey, migrating tangentially or radially (Marin and

Fig. 1. The role of microtubules during neurodevelopment. (A) Schematic of the developing cortex showing radial glial cells (RGCs) in the ventricular zone (VZ) undergoing the four phases of cell cycle (G1, S, G2 and M). In addition a migrating and a differentiating neuron are depicted. (B) Magnification of a G1-phase RGC: basal movement is achieved by the exertion of direct force onto the nucleus by kinesin motor proteins as well as by apically located actomyosin contractility. (C) Magnification of a G2-phase RGC: apical movement is achieved by the exertion of direct force onto the nucleus by dynein motor proteins. (D) Magnification of an M-phase RGC: the sister chromatids are separated by the mitotic spindle that is organized by the centrosomes. Force is generated by the dynamic microtubule ends and by dynein and kinesin motor proteins that connect the plasma membrane to the spindle and the two halves of the spindle, respectively. (E) Magnification of a migrating neuron: the salutatory, step-wise migration of neurons is achieved by a microtubule cage surrounding the nucleus. Direct and indirect force is exerted by dynein motors associated with the nuclear envelope and those that are located basally at the centrosome. In addition, actomyosin contractility is required for proper nucleokinesis. (F) Magnification of a dendrite: microtubules are not uniformly arranged and both plus- (+) and minus- (−) can be found at the distal tip of the neurite. (G) Magnification of an axon: microtubules are uniformly arranged with the plus-end directed towards the distal end of the neurite. This arrangement results in dynein motor proteins transporting cargo towards the soma, whereas plus-end directed kinesin family proteins are responsible for transport towards the developing growth cone during development (and the axonal bouton following differentiation). (H) Magnification of a growth cone: propulsive and retractive forces are mainly generated by actomyosin. Actin bundles dominate in the filopodia and lamellipodia, which are fortified by microtubules at the base of the growth cone.
Rubenstein, 2003). Excitatory pyramidal neurons, which are born at the ventricular surface of the dorsal telencephalon, migrate radially (perpendicular to the ventricular surface) into the developing cortex and hippocampus (Rakic, 1972; Altman and Bayer, 1990) (Fig. 1A). In contrast, inhibitory cells which are born at the proliferative gangli-onic eminences in the ventral telencephalon migrate tangentially (parallel to the ventricular surface) to reach their position in the dorsal forebrain (Kriegerstein and Noctor, 2004). As excitatory neurons migrate they undergo a series of morphological transitions. Early after birth, they adopt a multipolar shape, an overall round appearance with multiple dynamic extensions that make contact with adjacent radial glial fibers (Tabata and Nakajima, 2003). Upon entry into the developing cortical plate, cells assume a bipolar shape with a pronounced leading and trailing process, as they attach and migrate along a radial glia fiber (Fig. 1E). As the leading process of a migrating cell touches the basal membrane, the nucleus is moved into the final position in a final mode of migration termed somal translocation (Nadarajah et al., 2001). Microtubules are indispensable at multiple stages on this cellular journey. The transition from multipolar to bipolar morphology in the intermediate zone involves a complex signalling cascade involving Rnd2, RhoA, GSK-3, Cdk5, Rac1 and Pak-1 which converge on the actin and microtubule cytoskeleton facilitating a co-ordinated change in cell shape (Heng et al., 2009). To enable nucleokinesis microtubules form a cage around the nucleus by extending from the basally located microtubule organising centre (Fig. 1E). Force generated by microtubule motors and the actomyosin cytoskeleton then moves the nucleus in a stepwise fashion into the cortical plate (Tsai and Gleeson, 2005; He et al., 2010; Kuipers and Hoojenraad, 2011). It has been shown that this movement requires microtubule associated proteins such as Dcx, Lis1, Kif1a, Kif2a, as well as various members of the tubulin gene family (Breuss and Keays, 2014). It has been further demonstrated that neuronal migration is affected by post-translational modifications of microtubules, such as acetylation, which influences the stability of the structure and the cohort of proteins that bind to it (Reed et al., 2006; Creppe et al., 2009).

4. Microtubules and neuronal differentiation

As a neuron settles in the forebrain the cellular program of differentiation is started, which allows for the generation of functional circuits. Excitatory neurons build large dendritic trees that receive inputs from thousands of other cells (Gulledge et al., 2005). Extending from the primary neurite axons are formed, some of which are destined to cross the cerebral hemispheres. The morphology of a developing axon is similar to the processes formed during migration: the neurite itself is stabilized by parallel microtubule bundles while the growth cone is made up of actin-rich lamellipodia and filopodia that sense the local environment (Fig. 1G–H) (Namba et al., 2015). This growing axon is receptive to a wide range of guidance cues including ephrins, semaphorins and slit proteins which facilitate its navigation to the correct target (Dickson, 2002). In axons microtubules are organized in a unipolar fashion forming molecular highways, such that the plus-ends are orientated towards the growing tip (Baas, Deitch et al., 1988). As a consequence the kinesins, which are primarily plus end motors, move cellular freight in an anterograde direction, whereas the minus end directed dyneins move cargo in a retrograde direction (Kevenaar and Hoojenraad, 2015). The uniform polarity of microtubules in axons contrasts with those in dendrites that are arranged in a more haphazard fashion (Fig. 1F). Within dendrites microtubules have also been implicated in the formation and plasticity of spines. For instance, the treatment of hippocampal neurons with low doses of the microtubule destabilizing drug Nocodazole impairs BDNF induced dendritic spine formation (Gu et al., 2008).

5. Microtubules and tubulin isomers

It is clear that microtubules are essential for an array of cellular tasks in mitosis, migration and differentiation. This functional diversity reflects the molecular diversity of the constituents of microtubules: the tubulins. Tubulin heterodimers are formed by the stereotypic folding and assembly of exactly one α- and one β-tubulin, which polymerize into hollow microtubules in a head-to-tail juxtapositional arrangement (Fig. 2A) (Lewis et al., 1996; Lewis et al., 1997; Tian et al., 1997; Feng et al., 2016). Microtubules typically have 13 protofilaments, resulting in an outer diameter of 25 nm, however, the protofilament number can vary between 9 and 16 (Chretien et al., 1992; Wade and Chretien, 1993; Kwiatkowska et al., 2006). In a cellular environment microtubules undergo cycles of growth and shrinkage by transitioning through catastrophe and rescue. This property, which is referred to as dynamic instability, enables a cell to quickly reorganise its shape (Mitchison and Kirschner, 1984).

The tubulin gene family has been subject to evolutionary expansion (Cleveland et al., 1980; McKeen et al., 2001). In yeast there are 2 α-tubulin and 1 β-tubulin genes, in fruit flies there are 4 α-tubulin and 4 β-tubulin genes, in mice there are 7 α- and 8 β-tubulin genes, whereas in humans there are 8 α- and 9 β-tubulin genes. It should be noted that it is currently unclear whether different α-tubulin isoforms have any preference with respect to their β-tubulin partner or whether the pairing is determined stochastically (Fig. 2B–C). This is largely because the generation of specific antibodies for individual isoforms has been problematic. In vertebrates each of the tubulin genes is located at a different genetic locus, and encodes for a protein that is approximately 400 amino acids in length. Despite the expansion of this family these proteins show a remarkable degree of homology, with more than 88% of sequence identity when comparing all the human α- and β-tubulins. The notable exception is the negatively charged C terminal domain, which is the most variable, lies on the surface of the structure, and subject to extensive post-translational modification. So what is the evidence supporting functional specification of the tubulins?

6. Evidence of functional specification – the tubulinopathies

Early genetic studies in C. elegans and Drosophila provided data supporting the hypothesis that different tubulins have different functions (Chalfie and Thomson, 1982; Hutchens et al., 1997). The most elegant of these were conducted by Raff and colleagues who showed that replacement of a testes specific tubulin isoform with a developmental variant failed to rescue a spermatogenesis defect, which was associated with a change in the microtubule architecture and protofilament number (Kemphues et al., 1982; Kimble et al., 1989; Raff et al., 1997). This theme of functional specification within the tubulin gene family has been further advanced by the discovery and characterisation of the tubulinopathies; a term that is used to describe a broad spectrum of disease states caused by mutations in tubulin genes. These pathogenic variants reveal an interesting phenotypic pattern, dependent on the functional specification of the tubulins.
Fig. 2. Tubulin heterodimers polymerize into microtubules. (A) Each tubulin heterodimer consists of an α- and a β-tubulin subunit. Once assembled they polymerize into the hollow microtubules in a juxtapositional arrangement. (B) Tubulins are a multi-gene family, which in humans consists of 8 α- and 9 β-tubulin genes. Potentially tubulins could form a combinatorial code if different α-tubulin isoforms preferentially assemble with specific β-tubulins at different time points. (C) We present three hypothetical models for the arrangement of different tubulin isootypes. First, if only a single α-tubulin and a single β-tubulin were expressed in a particular cell type you would expect the formation of homogeneous microtubules. Second, if the expression of tubulin genes were to switch during cellular maturation segregated microtubules might result. Thirdly, it is possible that microtubules are assembled stochastically from different α- and β-tubulins resulting in a mixed distribution of heterodimers.

Fig. 3. Tubulin gene mutations result in distinct as well as convergent phenotypes. Heatmap for the tubulinopathies highlighting the association between mutations in a particular tubulin gene with various phenotypes. It can be observed that mutations in some tubulin genes result in highly specific disease states (e.g. TUBB8, TUBA4A and TUBB1), whereas mutations in other isoforms result in overlapping phenotypes (e.g. TUBA1A, TUBB2B, and TUBB3). CFOM: congenital fibrosis of the extra-ocular muscle; ALS: amyotrophic lateral sclerosis. The darkness of the red colour indicates an increased prevalence of a particular phenotype with a given tubulin gene mutation.
mutations (Jaglin et al., 2009; Poirier et al., 2010; Jansen et al., 2011; Poirier et al., 2012; Cushion et al., 2013). Moreover, TUBB2B and TUBB3 mutations have been associated with axon guidance disorders, specifically congenital fibrosis of the extra-ocular muscles (CFEOM) (Tischfield et al., 2010; Cederquist et al., 2012). Despite this convergence there are distinctions with respect to genotypic-phenotypic association. For instance, TUBA1A mutations invariably result in cortical dyslamination, whereas TUBB3 variants can result in CFEOM without affecting the cortical structure or size (Tischfield et al., 2010; Bahi-Buisson et al., 2014).

It is further apparent that the residue that is mutated within the tubulin molecule is critical in determining the phenotypic outcome. We have previously shown that mutations in TUBB5, such as E401K, M299V, and V353I, cause microcephaly with severe mental retardation that is accompanied by structural brain malformations such as polymicrogyria and dysmorphic basal ganglia (Breuss et al., 2012). More recently, in collaboration with the Van Esch laboratory we have demonstrated that mutations in the same gene (Q15K, Y222F) can also cause the “Michelin Baby Syndrome” which is characterised by circumferential skin folding and facial abnormalities (Isrie et al., 2015) (Fig. 3). While these patients also present with a reduction in brain size, the phenotypes are strikingly different. Taken together, the range of human diseases associated with tubulin mutations strongly suggests that the various isoforms, perhaps even individual residues, have distinct functional properties. In our next section, we will explore the possible mechanisms that drive these differences.

7. Sources of functional specification

7.1. Transcription - spatiotemporal expression of the tubulin genes

Transcriptional processes determine whether or not a gene is expressed and at what level. The activity of the promoter, the action of enhancers (and repressors), as well as the overall epigenetic landscape

Fig. 4. Sources of functional specification for the tubulins. Functional specification for the tubulins can arise at a transcriptional (A), translational (B) and post-translational level (C). (A) Transcriptional: enhancers, promoters, intronic sequences, and the general genomic environment differ between tubulin isoforms, influencing the expression of transcripts spatially and temporally. (B) Translational: mRNA stability, mRNA localization, secondary structure, mRNA binding sites and the interaction with RNA binding proteins all contribute to translational efficiency of tubulin genes. Note that many of these features are associated with the 5′- and 3′-UTRs, which are highly divergent when comparing different tubulins isoforms. (C) Post-translational: variation in the peptide sequence of the tubulin protein determines whether an isoform can be subject to specific post-translational modification. These modifications (depicted as red hexagons) influence the complement of microtubule associated proteins, as well as the stability and dynamism of the microtubule superstructure. (D) Schematic of a tubulin heterodimer showing examples of post-translational modifications affecting amino acids that vary between tubulin isoforms. Depicted are the: acetylation and methylation of lysine 40 (K40) of α-tubulin (which is absent in Tubal8); the (de)tyrosination of the terminal tyrosine (Y) of α-tubulin (which is absent in Tub4a and Tub8); the acetylation of lysine 216 (K216) of β-tubulin (which is absent in Tubb1); and the phosphorylation of serine 444 (S444) of β-tubulin (which is unique to Tubb3).
surrounding the gene are all involved in this regulation (Fig. 4A) (Orphanides and Reinberg, 2002; Gibney and Nolan, 2010). Following the discovery in the 1980s that there are multiple tubulin genes, it soon became apparent that their spatial and temporal expression was varied (Cowan et al., 1981; Kemphues et al., 1982; Wilde et al., 1982; Cowan and Dudley, 1983; Villasante et al., 1986; Wang et al., 1986; Burgoyne et al., 1988; Carpenter et al., 1992). These early studies primarily relied on analysis of RNA expression employing methods such as in situ hybridisation and Northern blotting. More recently the generation of transgenic mouse models expressing markers driven by the endogenous transcriptional machinery at a specific tubulin locus has permitted a more refined cellular analysis of tubulin gene expression.

The utility of this approach was first demonstrated by Miller and colleagues who expressed a transgenic LacZ protein under the control of the Tuba1a promoter region to visualize cells expressing this isoform (Gloster et al., 1994; Bamji and Miller, 1996). They found that this major α-tubulin is expressed almost exclusively in post-mitotic neurons during development, consistent with this tubulin’s pathogenic role in migration disorders, such as pachygyria or lissencephaly (Bahi-Buisson et al., 2014). To study the cellular expression of Tubb5 and Tubb2b in the developing brain we have adopted a similar strategy creating BAC-transgenic mice that express GFP driven by the native promoter. These studies have demonstrated both the differences and the dynamism of tubulin gene expression. For instance, Tubb5 is expressed

![Fig. 5. Differential spatiotemporal expression of tubulin genes. Images show the expression of the three murine tubulin isoforms Tubb2b, Tubb3, and Tubb5 at embryonic day (E) 14.5 and at 8 weeks (adult). Whereas Tubb2b and Tubb5 are ubiquitously expressed during embryonic development at high levels, Tubb3 predominates in post-mitotic neurons. In adulthood this pattern changes dramatically, as Tubb2b is expressed only in glial cells, Tubb3 is restricted to a subset of neurons, and Tubb5, although still broadly expressed, is present at low levels. Expression was visualized by employing transgenic mouse lines for Tubb2b and Tubb5 (Tg[Tubb2b-eGFP]GlbDAK and Tg[Tubb5-eGFP]) and by antibody staining with Tuj1 for Tubb3. Descriptions of the lines, staining methods, and antibody conditions were published previously (Breuss et al., 2012; Breuss et al., 2015). Scale bars show 50 μm at E14.5 and 100 μm for adult as indicated.](image-url)
throughout the developing brain in Pax6 positive radial glial cells, Tbr2 positive intermediate progenitors, DCX positive post-mitotic progenitors and persists at low levels in NeuN positive adult neurons (Breuss et al., 2012) (Fig. 5). Tubb2b is likewise expressed in developmental progenitors and migrating neurons, but undergoes a distinctive developmental switch postnatally. In adulthood its expression is restricted to GFAP positive astrocytes and Olig-2 positive oligodendrocytes, as well as Bergmann glia in the cerebellum. Interestingly, Tubb2b is largely absent from proliferative progenitors in the retina but is expressed in post-mitotic migrating neurons, and is maintained in differentiated adult neurons in the ganglion cell layer and the granule cells of the inner nuclear layer (Breuss et al., 2015). The expression pattern of Tubb2b contrasts with Tubb3 (Tuj) which is considered to be a marker for post-mitotic neurons in development and adulthood (Fig. 5) (Fanarrega et al., 1999).

We have proposed that the expression pattern of a tubulin isoform might reflect the role of the microtubule cytoskeleton in that particular cell type at a given point in time. This notion is further supported by the differential expression patterns of other tubulin isoforms. For instance, Tuba8 is predominantly expressed in the testes and skeletal muscle (Braun et al., n.d.); the expression of Tubb1 is restricted to the hematopoietic system (Leandro-Garcia et al., n.d.); and the primase specific TUBB8 is enriched in oocytes but is absent from mature sperm (Feng et al., 2016). Little is known of the transcriptional machinery that regulates these differential expression patterns, as well as the developmental transitions we have observed in the case of Tubb2b.

7.2. Translation - mRNA stability, efficiency and localization of tubulin transcripts

mRNAs not only encode the protein to be, but also contain sequences that can determine their stability, localization and expression (Gebauer and Hentze, 2004; Glisovic et al., 2008; Schoenberg and Maquat, 2012). Common mechanisms of regulation include folding of mRNA secondary structures, recognition by micro-RNAs and binding of various RNA binding proteins (Fig. 4B). Many of these functions are mediated by the 5′- and 3′-UTRs that are under less evolutionary constraint compared to the coding sequence, allowing much higher differentiation between isoforms that are closely related on the protein level. The latter is particularly event with respect to the tubulin genes, which exhibit highly variant 5′- and 3′-UTRs (Lewis et al., 1985, Villasante, Wang et al., 1986).

Micro-RNAs (miRNAs) are known to play a critical role during neural development and have emerged as an important element for post-transcriptional gene regulation (Cechella and Hobert, 2012) (Fig. 4B). This class of small, non-coding transcripts can act by decreasing the levels of target mRNAs or repressing translational efficiency (Kosik, 2006). In cell culture systems it has been shown that the 3′-UTR TUBB3 is a direct target of miR-200c (Cochrane et al., 2009; Leskela et al., 2011). An additional factor which determines the stability, and therefore the abundance, of any given mRNA is its codon usage. For instance, it has been shown that the replacement of optimal codons with synonymous non-optimal codons has a dramatic effect on mRNA stability, whereas the reverse substitution results in increased stability of the mRNA molecule (Presnyak et al., 2015). Consistent with this finding Mishima and Tomari have reported that specific codon usage is necessary to ensure the stability of maternal mRNAs in zebrafish embryos (Mishima and Tomari, 2016). A comparison of the transcripts for the alpha tubulin genes in mice, reveals 70% identity of mRNA transcripts in comparison to 88% conservation of the protein sequence. The extent to which differential codon usage influences the stability of various tubulin isoforms is currently unknown; however, it may influence the half-life of different transcripts. Tubulin transcripts with a reduced half-life would enable more precise temporal control over the generation of specific isoforms, which may be beneficial for the generation of particular cellular structures.

The subcellular localisation of the mRNA transcript is an additional parameter that may determine the functional repertoire of different tubulin genes. Preitner and colleagues have shown that the RNA binding protein APC interacts with the mRNA of Tubb2b, ensuring its localization to the growth cone of extending neurons. They showed that impairment of this interaction results in aberrant growth cone shape, implying that a critical concentration of Tubb2b is required in this subcellular compartment (Preitner et al., 2014). We still lack a comprehensive understanding of the subcellular localisation of different tubulin mRNAs, the half-life of the transcripts, or the miRNAs that target them. All of these aspects, however, are likely to contribute to the functional specification of the tubulins.

7.3. Post translational modifications

Tubulin heterodimers in their depolymerized as well as polymerized forms undergo a host of posttranslational modifications (PTMs), including polyamination, S-nitrosylation, sumoylation, and polyglutamylation (Janke and Bulinski, 2011; Yu et al., 2015) (Fig. 4C–D). Excellent reviews of the effect of PTMs on microtubule function have been published elsewhere (Westermann and Weber, 2003). Here, we focus on those modifications that are associated with variations in the amino acids and therefore have the potential to influence the properties of different tubulin isoforms.

Acetylation of the lysine at position 40 (K40) of α-tubulin is the sole luminal amino acid that is the target of PTM (Fig. 4D). It is associated with increased stability of microtubules through indirect mechanisms that rely on the recruitment of other factors (Al-Bassam and Corbett, 2012). In C. elegans, this modification is crucial for the assembly of 15 protofilament microtubules that are required for touch receptivity (Fukusighe et al., 1999; Cueva et al., 2012). This requires the presence of the K40 residue as a substrate, which in humans TUBA8 lacks (Stanchi et al., 2000). Moreover, It has been shown that K40 is also subject to methylation by SETD2 (Park et al., 2016). Similar to the histone code, methylation of α-tubulin K40 acts as a bistable switch. These mutually exclusive modifications impact microtubule function in opposite ways: whereas acetylation is correlated with stable microtubules, methylation is involved with destabilization during mitosis. Recently, it has been shown that K216 in the β-tubulin family is also subject to acetylation (see Table 1 in Liu et al., 2015). While the functional relevance of this modification is not known, it is pertinent to note that Tubb1 lacks this lysine.

Most α-tubulin genes encode a tyrosine at the final amino acid position with the notable exception of Tuba4a and Tub8 (Villasante et al., 1986) (Fig. 4D). Following integration, this tyrosine can be removed by tubulin tyrosine carboxypeptidase which has been shown to increase microtubule stability (Webster et al., 1987). Depolymerized heterodimers can later be targeted for tyrosination to re-start the cycle, by tubulin tyrosine ligase (Yu et al., 2015). It is known that detyrosinated microtubules are enriched in the axon, in contrast to the more dynamic growth cone where tyrosinated tubulin dominates (Marcos et al., 2009). Holzbaur and colleagues have reported that this influences intracellular transport by a CLIP-170 mediated mechanism (Nirschl et al., 2016). Most recently, formation of the metaphase plate during mitosis has been shown to require spatially regulated detyrosination of spindle microtubules. The depletion of detyrosinated tubulin, which is enriched in the vicinity of the spindle poles, results in misaligned chromosomes and delayed mitotic progression by influencing CENP binding (Barisic et al., 2015). In light of this work it is tempting to speculate that the expression of Tuba4a and Tub8 might reflect the need to generate structures with more stable microtubules, such as the axonemes within sperm or the axons of neurons.

A final example of how PTMs tune the functional properties of the microtubule cytoskeleton relates to the phosphorylation of serine 444, a residue that is unique to Tubb3 (Fig. 4D). It has previously been shown that removal of this phosphate, inhibits MAP2 stimulated
microtubule assembly in vitro (Khan and Luduena, 1996). While Tubb3 is generally considered to be expressed exclusively in postmitotic neurons, a recent study by Cunto and colleagues report that it is present at low levels in murine cortical progenitors, most notably in the vicinity of the midbody (Sgro et al., 2016). They demonstrated that deletion of citron kinase (CIT-K) which promotes phosphorylation of the S444 residue, compromises neurogenic cytokinesis. Exploiting Ha cells as a model system they further demonstrated that the expression of a S444A Tubb3 mutant increases the percentage of binucleated cells, which is not apparent in the case of the phospho-mimetic mutant S444D. These data support the hypothesis that the phosphorylation of Tubb3 at S444 is critical for midbody formation, and the progression of cytokinesis in the developing brain.

These are just three examples of how PTMs contribute to the functional diversity of the microtubule cytoskeleton. There are undoubtedly many more. Recently a proteomic study conducted by Liu and colleagues report that it is present in the emerging of the tubulinopathies suggest that this evolutionary expansion of the microtubule code: from the tubulin molecule to neuronal function and disease. Cytoskeleton 73 (10), 521–530.

